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Abstract

The Gaussian toolbox of the continuous variables provides for deterministic, high-e�ciency
operations with non-classical states. Its very Gaussian nature, however, restricts its reach
for quantum information and communication applications. This thesis comprises three
experimental works, which seek to examine the strengths of this toolbox and address
some of its weaknesses.

The measurement-based non-linearity of a conditional photon-counting measurement
can be used to ‘de-Gaussify a Gaussian state of light. Here, we propose a continuous vari-
able analog of just such a ‘heralding’ measurement, replacing a non-deterministic photon-
counting measurement with a deterministic measurement of the field quadratures. Such
a technique cannot be used to prepare a non-Gaussian state, but it can, on average, yield
the same non-Gaussian statistics. We demonstrate this technique by reconstructing the
statistics of non-Gaussian photon-subtracted squeezed vacuum states.

We then consider the problem of noiseless linear amplification. We experimentally
demonstrate that in certain scenarios, the requirement for a physical noiseless linear am-
plifier can be exchanged for a straightforward post-selection of the measurement record.
We apply our ‘virtual’ noiseless amplifier to entanglement degraded by transmission loss of
up to the equivalent of 100km of optical fibre. We extract an e↵ective entangled resource
stronger than even that achievable with a maximally entangled resource passively trans-
mitted through the same channel. We also provide a proof-of-principle demonstration of
the value of the measurement-based noiseless linear amplifier for quantum key distribution,
extracting a secret key from an otherwise insecure regime.

Lastly, we turn to the recently popularised measure of all quantum correlations: quan-
tum discord. Quantum discord has emerged as a measure of quantum correlations beyond
entanglement, with significant ramifications for our understanding of Gaussian states.
Here, we introduce a simple protocol that yields an operational interpretation of quantum
discord: that discord describes information only accessible via coherent interactions. We
first experimentally encode information within the discordant correlations of two separable
Gaussian states. The amount of extra information recovered by coherent interactions is
directly linked to the discord of the original state.
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Chapter 1

Introduction

The notion of wave-particle duality to describe light emerged after many centuries of de-
bate. Early in the 17th century, Declight popularised the notion that the behaviour of
light could be accurately described as a wave travelling though a uniform medium he
called the plenum. In the late 17th century, Isaac Newton aggressively championed his
corpuscular hypothesis for light, which he documented in his book, Optiks. The work of
Newton’s contemporaries, Christian Huygens, Robert Hooke, and Augustin-Jean Fresnel
presented a strong argument for the wave nature of light, accurately describing the refrac-
tive and di↵ractive properties of light, experimentally validated in the early 19th century
by Thomas Young’s double slit experiment. By the time Maxwell’s equations emerged, the
corpuscular hypothesis for light had been widely abandoned. James Maxwell’s equations
succinctly captured classical electromagnetism, predicting the nature of light to be the
continuous propagation of energy in the electric and magnetic fields.

However, the turn of the 20th century gave rise to a paradigm shift. Planks’ resolution
of the ultraviolet catastrophe [1] and Einstein’s description of the photoelectric e↵ect [2]
both relied on the quantisation of light. The rise of quantum mechanics saw the ‘granular’
nature of light widely promulgated, as it moved from a mere theoretical convenience in
the mind of Planck, to a cornerstone of modern physics.

In many ways, however, modern quantum optics was actually inadvertently spawned
by two radio astronomers. Hanbury Brown and Twiss set out to demonstrate a new
technique to measure the angular size of stars: an intensity interferometer [3]. The pair had
already demonstrated their intensity interferometer for radiowave sources, the successful
extension to dim light sources was seen as controversial - even heretical - by many of
the quantum mechanics establishment. The result, however, was well accommodated by
classical electromagnetism, where, owing especially to the contributions of Wolf [4], a
mature theory of coherence already existed. The Hanbury-Twiss result, and the ensuing
controversy, was largely remedied by Roy Glauber in 1965 with his quantum theory of
coherence. Glauber’s seminal work was not precipitated by the Hanbury-Twiss result
alone, but also the invention of the ruby laser by Ted Maiman in 1960.

Two distinct and concretely measurable observables arise from the quantised electro-
magnetic field: the energy and the electric field. These two observables have historically
split quantum optics into two distinct camps. The first emphasises the particle-like discrete
variables of light, constructed around measurements of the energy, or photon-number. The
other probes the wave-like continuous variables of light, sampling the quadratures of the
electric field. Though laser technologies improved throughout the sixties and seventies,
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2 Introduction

it was developments in non-linear optics that yielded a revised the toolbox for quantum
optics. The availability of �(2) and �(3) non-linearities provided the discrete variables with
entangled photon pairs, and the continuous variable quantum optics with squeezing.

Whilst the quantum mechanical revolution transpired, another emerged in the begin-
nings of the information revolution. For many, modern computer science began in 1936
when Alan Turing outlined his ‘Turing Machine’, the generalised computing primitive that
formalised our modern concepts of ‘algorithm’ and ‘computation’ [5]. Only a decade later,
Claude Shannon laid the foundations of classical information theory in his seminal paper
“A Mathematical Theory of Communication”, which provided a framework to understand
and quantify the previously nebulous notions of information and communication [6]. With
these two breakthroughs, the information revolution was well and truly underway. From
the beginning, this information age would have remained a largely academic pursuit with-
out the help of quantum mechanics. It is the uniquely quantum underpinnings of the fibre
optic cable and the transistor that have propelled the ideas of Shannon and Turing into
the modern world of internet connections and high speed computation.

However, perhaps due to the abstract splendour of classical information theory, it was
many years before anyone made the realisation that forms the foundation the the field of
quantum information: that information is physical. In essence, this idea is no more than
the observation that the systems that we actually use to communicate and process infor-
mation are ultimately governed by physics. The consequences of this become profound
and, it turns out, useful when we consider that the relevant physics deviates from the
classical. In 1982, Richard Feynman noted the real world - that described by quantum
mechanics - cannot be simulated on a classical computer [7]. In 1985, David Deutsch built
upon these ideas to outline his universal quantum computer - the quantum analog of the
Turing Machine. The first quantum information protocol, however, was a quantum cryp-
tography primitive outlined by Stephen Wiesner in 1970 (though unpublished until 1982)
[8]. Though Weisner’s uncounterfeitable quantum money was itself never implemented,
it very much inspired the first quantum key distribution (QKD) protocol: Bennett and
Brassard’s seminal BB84 [9].

Optics has consistently proved the favoured architecture for the first demonstrations
of quantum information protocols: quantum teleportation in both its discrete and con-
tinuous formulations, super dense coding, and the numerous variations upon quantum
cryptography. The seminal result of Knill, Laflamme, and Milburn [10], that linear-optics
and single photons were su�cient for universal quantum computing, spawned the field of
linear-optical quantum computing. Quantum optics has also provided a testbed for univer-
sal one-way quantum computation in both discrete [11, 12] and continuous variables [13].
Furthermore, optical quantum computing has produced numerous information processing
demonstrations: from Shor’s factoring algorithm [14], to Grover’s search algorithm [15],
and mixed-state quantum computing.

Although commonly the first successful architecture for quantum information process-
ing demonstrations, it remains unlikely that optics alone will be extended to large-scale
quantum computation. When it comes to quantum communication however, optics re-
mains the medium of choice. Interestingly, Brassard has noted that he and Bennett spent
many years mulling over quantum money, but their leap to BB84 came once they stopped
trying to make photons “stay put” [16]. It is this feature of light: challenging to trap
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and store, but able to retain its quantum coherence for long times at ambient temper-
atures, that make it the ideal candidate for the communication of quantum information
over extremely large distances.

Continuous variable quantum optics possesses many highly desirable properties from
a communications perspective. It is inherently broadband and compatible with stan-
dard telecom infrastructure. The workhorses of continuous variable quantum optics are
the Gaussian states, so-called because they generally result in normally distributed mea-
surement outcomes, the operations that preserve this property referred to as the set of
Gaussian operations. These states operations enjoy the enviable position of being ex-
perimentally accessible in a completely deterministic manner, in stark contrast to much
of discrete variable quantum optics. Furthermore, measurement of Gaussian states can
also be undertaken with extraordinarily high e�ciency and speed. Although these tech-
niques have thus allowed the deterministic generation of entanglement [17], and quantum
communication protocols including super-dense coding [18], quantum key distribution [19]
and teleportation [20, 21], there is an important drawback. In recent years several “no-
go” theorems have emerged showing that Gaussian states and operations alone preclude
the possibility of entanglement distillation [22, 23, 24] and error correction [25]. Fur-
thermore, although there exist proposals for universal quantum computation that largely
utilise Gaussian tools, at least one non-Gaussian element remains indispensable [13].

All three areas of original research undertaken in this thesis are centred around the
nature of quantum information and quantum correlations in Gaussian states, in which we
seek to harness the strengths of this toolbox and address some of its weaknesses.

The first area considers an attempted to extract the corspuscular properties of light
with measurements of the continuous variables. If an experimenter were to only have access
to Gaussian measurements, one might naively think that they would be confined to probing
the wave-like properties of light. In the first part of this thesis, we demonstrate homodyne
and heterodyne measurements that allow us to mimic particle like measurements upon one
mode of an entangled Gaussian state, and through appropriate conditional post-processing,
extract strikingly non-Gaussian statistics.

The aforementioned no-go theorems for the distillation of Gaussian states with Gaus-
sian operations require the inclusion of at least one non-Gaussian operation. In the absence
of a large �3 nonlinearity, our most feasible option is to use the non-linearity of measure-
ment, forgoing some of our cherished determinism in exchange for more exotic operations
or stronger correlations. Ideally, this procedure would allow us to break out the Gaussian
box in a controlled manner. Our second area of research is the experimental implementa-
tion of a proposal to perform just such a tradeo↵. We show a carefully chosen post-selection
upon the measurement record can provide access to a more strongly entangled Gaussian
resource.

Our final area of research concerns the recently popularised measure of all quantum
correlations, quantum discord. This information theoretic approach to further refining
our understanding of where quantum and classical physics meet has a particular relevance
for the Gaussian states. Consider the coherent state, the bread and butter of continuous
variable quantum optics. Widely deemed the most classical of pure quantum states, for
many single-mode tests of quantumness it defines the boundary of classicality. Many
other Gaussian states are nothing more than statistical mixtures of coherent states, and



4 Introduction

have obvious classical analogues. Nevertheless we are left with the fact that these states
still exist as objects in a quantum theory and, perhaps more compellingly, have already
been applied to distinctly non-classical communication protocols such as quantum key
distribution. This motivates us to consider measures of correlations between Gaussian
states as a path to uncovering the extent of their quantum nature. We demonstrate an
operational relationship between the quantum discord and the extraction of information
through the coherent interaction of correlated, but separable, Gaussian states.

Thesis Outline

Following this introduction, Chapter 2 provides the theoretical background and experi-
mental techniques required for the rest of thesis. It comprises an small introduction to
quantum optics, and introduces important results of quantum tomography, and quantum
information.

Chapters 3 and 4 respectively address our theoretical and experimental results con-
cerning our continuous variable analog of a photon counting measurement.

In Chapter 5 we present a measurement-based noiseless linear amplifier, a post-selective
emulation of an noiseless linear amplifier operation. We examine its performance for
entanglement distillation and present a proof-of-principle QKD demonstration.

Chapter 6 first provides a review of quantum discord. We then propose a new oper-
ational interpretation of quantum discord, providing a experimental demonstration with
separable Gaussian states.

Finally, Chapter 7 summarises the main results of this thesis and present a brief outlook
for future experimental work.

1.1 Publications

The majority of the research that appears in this thesis has been published in international
peer-reviewed journals. The following is a list of academic publications:

1. B. Hage, J. Janousek, S. Armstrong, T. Symul, J. Bernu, H. M. Chrzanowski, P. K.
Lam, and H. A. Bachor, ”Demonstrating various quantum e↵ects with two entangled
laser beams,” The European Physical Journal D, 63 457461, (2011).

2. H. M. Chrzanowski, J. Bernu, B. M. Sparkes, B. Hage, A. P. Lund, T. C. Ralph, P.
K. Lam, and T. Symul, ”Photon-number discrimination without a photon counter
and its application to reconstructing non-Gaussian states,” Physical Review A, 84
050302, (2011).

3. B. M. Sparkes, H. M. Chrzanowski, D. P. Parrain, B. C. Buchler, P. K. Lam, and T.
Symul, “A scalable, self-analyzing digital locking system for use on quantum optics
experiments,” Review of Scientific Instruments, 82 075113, (2011).

4. M. Gu, H. M. Chrzanowski, S. M. Assad, T. Symul, K. Modi, T.C. Ralph, V. Ve-
dral, and P.K. Lam, “Observing the operational significance of discordconsumption,”
Nature Physics 8 671675 (2012).
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5. H. M. Chrzanowski, S.M. Assad, J. Bernu, B. Hage, A. P. Lund, T.C. Ralph, P.K.
Lam, and T. Symul. “Reconstruction of photon number conditioned states using
phase randomized homodyne measurements,” Journal of Physics B (Special Issue
on Quantum State Engineering) 46 104009 (2013).

6. S Hosseini, S Rahimi-Keshari, J Y Haw, S. M. Assad, H. M. Chrzanowski, J
Janousek, T Symul, T. C. Ralph and P. K. Lam, “Experimental verification of
quantum discord in continuous-variable states,”, Journal of Physics B, 47 025503
(2014).

7. H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T.C. Ralph,
T. Symul, and P.K. Lam, “Measurement-based noiseless linear amplification for
quantum communication,” Nature Photonics 8, 333 – 338 (2014).





Chapter 2

Theoretical Background

In this chapter I hope to provide a brief overview of the theoretical tools and experimental
techniques required for the content of this thesis. There are numerous very comprehensive
texts on this subject - my personal favourites being Leonhardt [26], Walls and Milburn
[27], and Loudon [28].

2.1 The Quantum State

A pure quantum state is represented by its state vector | i, which is defined within a
Hilbert space of a given dimension. As is the case with any vector space, the state vector
can be decomposed into a linear combination of its basis vectors of the Hilbert space, such
that

| i =
X

i

c
i

|�
i

i. (2.1)

where the normalisation condition requires that
P

i

|c
i

|

2 = 1. Here, |c
i

|

2 is the probability
that a measurement in the basis states will yield the state |�

i

i. The observable of any
operator acting on the state will yield an expectation value

hÂi = h |Â| i =
X

i

|ha
i

| i|2, (2.2)

where |a
i

i forms a basis for the operator Â and |ha
i

| i|2 represents the probability of
finding the state vector | i in state |a

i

i. We can consider the extension of a single
state vector to a system of many modes, {a, b, . . .}, each described by a pure state
vector {| i

a

, | i
b

, . . .}. The state of the composite is given by the tensor product
| 

ab...

i = | i
a

⌦ | i
b

⌦ . . .. Composite systems that can be represented in this form
are separable and are known as product states. If a composite system cannot be factorised
into its constitute states, it is known as entangled or inseparable. This is a uniquely quan-
tum behaviour whereby it is impossible to independently attribute a pure state to each
subsystem, even though the system as a whole can be described by one state vector.

7
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2.1.1 Mixed States

Whilst a pure quantum state is described by a single state vector, the density operator
describes a quantum system in a mixed state - that is, it is in a statistical ensemble of
several pure quantum states, | 

i

i. The density operator is given by

⇢̂ =
X

i

p
i

| 
i

ih 
i

| (2.3)

where the quantum system is described by the state vector | 
i

i with a probability p
i

.
The fractional probabilities sum to 1. For a pure state | i the density operator is simply
⇢̂ = | ih |, and a quantum state is pure if and only if ⇢̂ = ⇢̂2. The quantity tr(⇢̂2) is a
scalar that defines the purity of a quantum state and can take values between 1 for a pure
state and 1

n

for a completely mixed state, where n is the dimension of the Hilbert space.
By choosing an arbitrary basis (

P
j

|b
j

ihb
j

| = 1) we define the density matrix with the
elements

⇢
mn

= hb
m

|⇢̂|b
n

i =
X

i

p
i

hb
m

| 
i

ih 
i

|b
n

i. (2.4)

The diagonal matrix elements of ⇢ correspond to the likelihood of finding the system in
the state |b

n

i. The expectation value of any observable A of the system can be obtained
from the density operator

hÂi =
X

i

p
i

h 
i

|Â| 
i

i = tr(⇢̂Â). (2.5)

We can also consider a composite system, where ⇢̂
ab

is the joint density operator of the
multi-mode system comprised of systems a and b. The individual subsystems are now
defined by their reduced density operator

⇢̂
a

= tr
b

(⇢̂
ab

), (2.6)

where tr
b

is the partial trace over system b. If subsystems ⇢̂
a

and ⇢̂
b

share no correlations,
the composite system is the product state described by ⇢̂

ab

= ⇢̂
a

⌦ ⇢̂
b

. The density operator
is a powerful generalisation of the state vector that allows us to describe the role of oper-
ations such a measurement, in addition to an accurate description of physically realisable
quantum states.

2.2 Quantum States of Light

2.2.1 Number or Fock states

A full quantisation of the electromagnetic field can be found in [28]. The Hamiltonian of
a single mode, k, of the quantised electromagnetic field is given by

Ĥ
k

= ~!(â†
k

â
k

+
1

2
) (2.7)
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where â
k

, and its adjoint, â†
k

are the quantised equivalents of the complex amplitudes de-
scribing the classical electromagnetic field. They are respectively dubbed the annihilation
and creation operators, for reasons that will soon become apparent. They obey the usual
bosonic commutation relations, identical to the commutation relations for the quantum
harmonic oscillator,

[â
k

, â†
k

0 ] = (â
k

â†
k

0 � â†
k

0 â
k

) = �
kk

0 . (2.8)

Photon number states, or Fock states, |n
k

i are eigenstates of the Hamiltonian of the
electromagnetic field with corresponding eigenvalues ~!(n + 1

2

), where n
k

is a natural

number. The Fock states are also eigenstates of the photon number operator n̂
k

= â†
k

â
k

,

â†
k

â
k

|n
k

i = n
k

|n
k

i, (2.9)

where the eigenvalue n
k

corresponds to the number of quanta in the mode k. The creation
and annihilation operators act on the corresponding mode k to give

â†
k

|n
k

i =
p

n
k

+ 1|n
k

+ 1i and â
k

|n
k

i =
p

n
k

|n
k

� 1i (2.10)

respectively. This corresponds to the creation or destruction of one quanta of energy ~!
k

,
or a single photon in the mode of interest. The ground state, or vacuum state, |0i is
defined as

â
k

|0
k

i = 0. (2.11)

with a non-zero energy given by ~!
k

2

. This small amount of energy is referred to as the zero-
point energy. Whilst here we have only considered a single mode of the electromagnetic
field, as there are an infinite number of frequency modes accessible, even in a finite volume,
the energy associated with the vacuum state of the electromagnetic field is infinite. Any
Fock state is accessible through successive applications of the creation operator on the
vacuum state

|ni =
(â†)n
p

n!
|0i. (2.12)

The number of photons in a Fock state |n
k

i, and thus its energy, is exactly defined, with
the variance of the photon number of a Fock state equal to zero

h�n2

i = hn|n̂n̂|ni � hn|n̂|ni2 = 0. (2.13)

Fock states form a complete and orthonormal basis in which any arbitrary quantum state
can be represented, and are typically favoured as the basis of choice for density matrix
representations of quantum states. Fock states have no classical analogue, which is per-
haps a little unsurprising as the notion of the photon itself is uniquely quantum. This
inconsistency with notions of classical light is perhaps best illuminated by considering the
so-called quadrature operators,

X̂ = â+ â† and P̂ = i(â† � â). (2.14)
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This pair of operators represent the real and imaginary components of the complex am-
plitude, and are the quantised analogues of the phase and amplitude quadratures of the
electromagnetic field. Unlike the annihilation and creation operators, they are Hermitian
and thus correspond to observables. It follows from the commutation relation [â, â†] = 1
that [X̂, P̂ ] = 2i1, and thus that the quadrature operators are conjugate observables, and
cannot be perfectly determined simultaneously. The uncertainty principle constrains any
attempt to simultaneously measure X̂ and P̂ of a state to a precision

�X̂�P̂ � 1, (2.15)

where �X̂ and �P̂ denotes the variance of X̂ and P̂ . We can also consider a generalised
quadrature operator, a linear combination of the two orthogonal quadratures

X̂✓ = cos ✓X̂ + sin ✓P̂ = â†ei✓ + âe�i✓. (2.16)

We can now ask what is the expectation value for the amplitude or phase of a Fock state?
It is straightforward to see that hn|X̂✓

|ni = 0, for all n. Regardless of the photon number
of the Fock state, the average value of the quantised analogues to the amplitude and phase
of light are always zero. It is straightforward to verify the uncertainty in the quadrature
amplitudes for a Fock state is given by

�X̂✓

n

= hn|(X̂✓)2|ni � hn|X̂✓

|ni2 = (2n+ 1). (2.17)

Using classically familiar quantities such as phase or amplitude to describe Fock states
proves di�cult; we can see that whilst the expectation value for the phase or amplitude
of any given Fock state is zero, the uncertainty in this measurement scales as 2n. With
respect to the notions of classical electromagnetism, the states that form the most natural
Eigenbasis for the quantised electromagnetic field seem wildly exotic. One notable result
occurs for n = 0. Despite us having perfect knowledge that the vacuum state is ‘empty’
the field quadratures are still randomly fluctuating. Of course, Heisenberg’s uncertainty
principle requires they do fluctuate, if not, we could simultaneously obtain knowledge of
both X̂ and P̂ . The vacuum state |0i is a minimum uncertainty state, saturating the
uncertainty principle for the quadrature observables (2.15) such that �X̂�P̂ = 1. More
precisely, this uncertainty is symmetrically distributed between the two quadratures and
�X̂ = �P̂ = 1. The vacuum state in ubiquitous in our description of most every quantum
optics experiment. And it is perhaps the only pure state that we regularly encounter in
the lab.

2.2.2 Coherent States

The Fock states introduced in the previous section bear little resemblance to the classical
light field, and prove impractical for a mathematical description of most of the light we
encounter in the lab. A more appropriate basis for the description of many real electro-

1There are three widely used conventions for normalisation of the quadrature operators corresponding
to the choice of ~: 1

2

, 1, and 2. Here, we choose ~ = 2 which corresponds to a variance of the vacuum

�X̂✓

v

= 1.
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Figure 2.1: Ball-on-stick diagram for (a) vacuum state, (b) coherent state, (c) squeezed vacuum

state, and (d) squeezed coherent state.
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magnetic fields are the coherent states |↵i. First described by Roy Glauber in 1967 - a
result which in part constituted his Nobel prize - they provide the best quantum mechan-
ical approximation to the light produced by a laser. The coherent states are generated by
application of the unitary displacement operator to the vacuum state

|↵i = D̂(↵)|0i (2.18)

where

D̂(↵) = exp (↵ â† � ↵z⇤ â). (2.19)

This corresponds to the displacement of the minimum uncertainty state, |0i by a distance
↵ in phase space. In this sense, it is the best quantum mechanical approximation to a single
point in phase space, and thus, the dynamics of a classical harmonic oscillator. Quantum
optics textbooks often make reference to the ball-on-stick picture. The ball-on-stick picture
or Caves diagram can be considered as a quantum mechanical generalisation of a classical
phasor - where the stick is associated with the coherent amplitude and the ball with
the associated quantum noise. This picture has no direct mathematical correspondence -
unlike the Wigner function (which will be introduced later) or the P-function - and can
be thought of as a slice through the Wigner function. The coherent states are eigenstates
of the annihilation operator

â|↵i = ↵|↵i (2.20)

As â is a non-Hermitian operator, ↵ is complex and often decomposed as ↵ = |↵|ei✓. The
vacuum state is simultaneously a Fock state, and a coherent state with eigenvalue ↵ = 0.
We can expand the coherent states in the Fock basis:

|↵i =
X

n

|nihn|↵i = e�|↵|2/2
X

n

↵n

(n!)1/2
|ni. (2.21)

The coherent states are not pairwise orthogonal, with |h↵|�i|2 = exp (�|↵� �)|, but they
are complete and thus span the entire Hilbert space. They thus form an over-complete
basis of the Hilbert space that can be used to decompose any state, | i:

| i =
1

⇡

Z
|↵ih↵| id2↵. (2.22)

If we consider the expectation value of a general quadrature observable of (2.16) of a
coherent state we have,

hX̂✓

i = h↵|X̂✓

|↵i = ↵ ei✓ + ↵⇤ e�i✓ (2.23)

If we consider the variances in the quadratures we find that the coherent states are not
only minimum uncertainty states, but also occupy the unique position of symmetrically
minimising all the quadrature variances simultaneously.
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From Equation 2.20, the mean photon number for a coherent state is simply

n̄ = hâ†âi
↵

= ↵⇤ ↵ = |↵|2. (2.24)

Though this result coincides with that of a classical harmonic oscillator, in acquiring a
more precise definition for the phase of our quantum light, we forgo our certainty regarding
the energy of the state. As a result, a coherent state does not have a precisely defined
photon number, rather its photon number distribution is Poissonian:

P (n) = |hn|↵i|2 =
|↵|2n e�|↵|2

n!
. (2.25)

Provided n is very large, the uncertainty in n scales as
p

n, and we recover the behaviour
of a classical laser.

2.2.3 Thermal States

In the previous section we briefly discussed coherent states as a useful basis to describe
real light. One such state of light, the thermal state is a special mixed state, which exists
on the boundary between quantum and classical light. Thermal states describe the light
emitted from a black body of temperature, t. In the coherent state basis, the thermal
state is a normally distributed statistical mixure,

⇢
th

=

Z
d2↵

1

⇡n̄
e�|↵|2/n̄

|↵ih,|↵ (2.26)

where n̄ is the mean photon number [29]. In the Fock basis, the thermal states are
described by a density matrix,

⇢
th

=
1

1 + n̄

1X

n=0

✓
n̄

1 + n̄

◆
n

|nihn| . (2.27)

The thermal states are diagonal in the Fock basis, and thus have no meaningful phase. The
thermal states are symmetric in phase space, and the expectation value for the generalised
quadrature operator hX̂✓

i = 0, whilst the variance in X̂✓ scales with n̄ - reminiscent of the
Fock states. Unlike a Fock state however, the photon number variance is not non-zero,
but rather �n =

p

n̄2 + n̄ and thermal states exhibit super-Poissonian statistics.

2.2.4 Uncertainty and Squeezed states

So far, we have only been exposed to a class of minimum uncertainty states: those with
their intrinsic uncertainty symmetrically distributed between the quadratures. However,
we can consider a generalisation of the coherent states: where the uncertainty regarding
one quadrature is smaller at the expense of complementary quadrature - whilst always the
preserving the minimum uncertainty product �X̂�P̂ = 1.2 These are called the squeezed

2In reality, no experimentally prepared state can saturate the uncertainty principle. Experimental
imperfections preclude us from ever preparing a pure squeezed state and thus the product �X̂�P̂ will
always be greater than 1.
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Figure 2.2: Photon number distributions for: (a) a coherent state, (b) a amplitude squeezed

coherent state (with r = 0.5), (c) a phase squeezed coherent state (with r = 0.5), and (d) a

squeezed vacuum state.

coherent states. For simplicity, we will first focus on the application of the squeeze operator
on the vacuum state,

|⇠i = Ŝ(⇠)|0i with ⇠ = r exp (i2�), (2.28)

where r represents the degree of squeezing and � the orientation of the squeezing axis.
The unitary squeezing operator is defined as

Ŝ(⇠) = exp (1
2

⇠⇤(â)2 � 1

2

⇠(â†)2), Ŝ†(⇠) = Ŝ�1(⇠) = Ŝ(�⇠) (2.29)

The properties of the squeeze operator are best illuminated in the Heisenberg picture:

Ŝ†(⇠)âŜ(⇠) = â cosh (r)� â† exp (�2i�) sinh (r) (2.30)

Ŝ†(⇠)â†Ŝ(⇠) = â† cosh (r)� â exp (�2i�) sinh (r). (2.31)

Using the above results, the action of the squeezing operator on the generalised quadrature
operator is given by 3

Ŝ†(⇠)X̂✓Ŝ(⇠) = X̂✓ cosh (r)� X̂✓�� sinh (r). (2.32)

To understand the noise properties of the squeezed vacuum state we introduce the quadra-
tures X̂

1

and P̂
1

, which are the standard quadrature operators X̂ and P̂ rotated by the
orientation of the squeezing axis �,

X̂
1

+ i P̂
1

= (X̂ + i P̂ ) e�i�. (2.33)

3This can be shown by exploiting the operator identity e
ˆ

AB̂e
ˆ

A = B̂ + [Â, B̂] + 1

2

[Â, [Â, B̂]] . . .
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The squeezing operation has transformed the symmetric variances of the quadratures to

�X̂
1

= h⇠|(X̂�)2|⇠i � h⇠|X̂�

|⇠i2 = e�2r (2.34)

�P̂
1

= h⇠|(X̂�+

⇡

2 )2|⇠i � h⇠|X̂�+

⇡

2

|⇠i2 = e2r. (2.35)

We recover the uncertainty product �X̂
1

�P̂
1

= 1. We have ‘redistributed’ the uncertainty
of the original vacuum state; we have enhanced precision in the ‘squeezed’ quadrature, at
the expense of the precision in the complementary, ‘anti-squeezed’ quadrature. A larger
squeezing parameter r corresponds to a smaller variance in the squeezed quadrature. From
an expansion of Equation 2.29 it is clear that the application of the squeezing operator
to the vacuum state produces a superposition state of pairs of photons. The Fock basis
decomposition of a squeezed state is given by

|⇠i =
1

p

cosh r

1X

n=0

p

2n!

n!
(
1

2
sinh rei�)|2ni, (2.36)

with the mean photon number

n̄
⇠

= h⇠|â†â|⇠i = sinh 2(r). (2.37)

It is clear the squeezed vacuum is no longer a true vacuum, but rather a very dim state of
light. The more squeezed a given vacuum state is, the higher the average photon number
(Figure 2.2). Here we have discussed the squeezed vacuum, but one can straightforwardly
generalise to squeezed coherent states. Recalling the coherent state as a class of minimum
uncertainty states generated by displacing the vacuum state, we can also follow the same
procedure to the generate squeezed coherent states,

|↵, ⇠i = D̂(↵) ⇠̂(r) |0i. (2.38)

The mean photon number of the squeezed coherent state is simply

h↵, ⇠|â†â|↵, ⇠i = |↵|2 + sinh 2(r). (2.39)

While the modification of sinh 2(r) to the energy of the coherent state is typically small,
the squeezed coherent state non-longer exibits Poisonnian statistics.

Squeezed states are a uniquely non-classical state of light. This can be simply argued
from the fact they are a pure state, and thus cannot be written as a statistical mixture of
coherent states. The first theoretical proposals for squeezed light emerged in the 1970’s
from Stoler [30] and later, Yuen and Shapiro [31, 32]. The first experimental demonstra-
tion of squeezed light followed in 1985, using four-wave mixing in a cavity with sodium
vapour [33]. Shortly thereafter, Kimble’s group achieved better results with an optical
parametric amplifier (OPA) [34], which is now widely favoured as the tool for producing
highly squeezed light. Whilst this will be discussed in greater detail in the next chapter,
‘pair-production’ processes in non-linear crystals form the workhorses of most quantum
optics experiments. In continuous variables, squeezing provides access to a non-classical
light resource, that, with linear optics, becomes an entanglement resource. In the discrete
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variables domain, the same pair production processes realised as spontaneous parametric
down conversion (SPDC) provide entangled photon pairs with myriad of demonstrated
applications.

2.2.5 Two-Mode Squeezed Light

Another significant quantum state for this thesis is the two-mode squeezed state or EPR
state [35]. The latter name emerges as two-mode squeezed light demonstrates the proper-
ties described in the seminal Einstein, Podolsky and Rosen paper [36]. The two-mode
squeezed state is generated by combining two orthogonal squeezed vacuum states, or
through a non-degenerate two-photon down conversion process. Mathematically, this cor-
responds to the application of the unitary two-mode squeeze operator on the two mode
vacuum,

|⇠
1

, ⇠
2

i = Ŝ
12

|0, 0i = exp (⇠â†
1

â†
2

� ⇠⇤â
1

â
2

)|0, 0i. (2.40)

The resulting state (2.40) can be decomposed in the Fock basis of the two modes

|⇠
1

, ⇠
2

i =
1

cosh r

1X

n=0

ein�(tanh r)n|ni
1

|ni
2

. (2.41)

From (2.41) we can see the two-mode squeezed vacuum is a highly correlated superposition
of Fock states, where the two modes contain the same photon number. Each mode however,
when considered locally, is thermal. This can be seen by tracing over mode 2, Equation
(2.41) becomes

⇢
1

= Tr
2

(|⇠
1

, ⇠
2

ih⇠
1

, ⇠
2

|) =
1

cosh2 r

1X

n=0

(tanh r)2n |ni
1

hn|
1

(2.42)

=
1

1 + n̄

1X

n=0

✓
n̄

1 + n̄

◆
n

|ni
1

hn|
1

, (2.43)

where we have used n̄ = sinh r. The individual states are simply thermal states and the
resulting reduced density matrix is diagonal in the Fock basis. Accordingly, an independent
measurement of the variance of any quadrature of one subsystem �X✓ = cosh 2r = 2n̄+1,
the result for a thermal state. Whilst the individual quadratures appear noisy, the highly
correlated nature of the joint system becomes apparent when considering two new joint
operators of subsystems 1 and 2:

�(X̂
1

� X̂
2

) = �(P̂
1

+ P̂
2

) = e�2r (2.44)

�(X̂
1

+ X̂
2

) = �(P̂
1

� P̂
2

) = e�2r. (2.45)
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Whilst the individual quadratures are not squeezed, the above linear combinations of the
two are. The two mode squeezed state is fully characterised by its covariance matrix,

C(⇠) =

0

BB@

cosh 2r 0 � sinh 2r 0
0 cosh 2r 0 sinh 2r

� sinh 2r 0 cosh 2r 0
0 sinh 2r 0 cosh 2r

1

CCA . (2.46)

The highly correlated nature of the state manifests as an example of the Einstien, Podolsky
and Rosen paradox [36]. The EPR entanglement of the two mode squeezed state was first
experimentally demonstrated in 1992[17], and now forms an indispensable resource for the
fundamental CV quantum information protocols, including teleportation, quantum dense
coding and certain variations of quantum cryptography.

2.3 Phase-space representations

Quantum mechanics typically describes a microscopic system in terms of a state vector,
| i or a density operator, ⇢̂. While well suited for a great many tasks in quantum optics,
these descriptions are often not particularly well adapted to provide an intuitive picture
of states occupying an infinite dimensional Hilbert spaces. The phase space formulation
of quantum mechanics provides an important tool for continuous variable quantum optics
and quantum information. It provides an alternative framework for quantum mechanics
without reference to wave functions, density matrices or a Hilbert space. Instead, the
quantum state is described by a quasi-probability distribution in phase space. These phase-
space distributions are not unique, and for every quantum system there exist infinitely
many formulations of the quasi-probability distribution - the Wigner representation (or
Wigner function) is perhaps the most identifiable. The Husmi Q representation and the
Glauber-Sudarshan P representation also make regular appearances in quantum optics and
information.

2.3.1 The Wigner representation

The power of the phase-space formulation arises in its correspondence with classical me-
chanics. Instead of confining ones description of their quantum system in either the
position or momenta space, the phase space representation considers both equally and
symmetrically. The Wigner quasi-probability distribution behaves like a precisely de-
fined function in x and p without reference to any simultaneous measurement of x and
p. This appears at odds with the Heisenberg uncertainty principle, which restricts our si-
multaneous knowledge of these conjugate observables. Harmony is restored however, once
we realise that the Wigner representation does not in general permit a standard classical
joint-probability distribution for the incompatible observables. Instead we obtain a ‘quasi-
probability’ distribution, where the marginals describe real probability distributions for
x and p, but negative “probabilities” may arise. The Wigner distribution for a general
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a thermal state with n̄ = 2, and (d) a squeezed vacuum state with squeezing parameter ⇠ = 3.



§2.3 Phase-space representations 19

!"#
!$#

!%#

|

|

|
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density operator, ⇢

W (x, p) =
1

⇡~

Z 1

�1
dq hx� q|⇢̂|x+ qi e(

2ipq

~ ), (2.47)

where x and p are the position and momenta - but could be any pair of conjugate variables,
for instance the phase and amplitude quadratures, X and P , of a light field. The Wigner
distribution is a one-to-one mapping of the density matrix to a real function in phase
space. The classical probability distributions describing a measurement of position or
momentum are accessible via the marginals,

Z 1

�1
dpW (x, p) = hx|⇢̂|xi and

Z 1

�1
dxW (x, p) = hp|⇢̂|pi. (2.48)

The trace of the density matrix is given by

Z 1

�1

Z 1

�1
dx dp W (x, p) = Tr(⇢) = 1, (2.49)

and perhaps of more interest, the purity of the state concerned is

2⇡

Z 1

�1

Z 1

�1
dx dp W (x, p)2 = Tr(⇢2) = p, (2.50)

where p = 1 for a pure state, and p < 1 for a mixed state. Operator expectation values
are given by

h |Ô| i = Tr(Ô⇢) =

Z 1

�1

Z 1

�1
dx dp W (x, p)O(x, p) . (2.51)

The resemblance between this quasi-probability distribution and its classical counterpart
deteriorates for quantum states that have no classical analogy. All pure states that are
neither coherent states or squeezed states will have a Wigner function that is negative
somewhere - Fock states for instance (Figure 2.4). Of course, negative probabilities have
no classical interpretation, and “negativity” of Wigner function is a widely used metric of
non-classicality.
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2.3.2 The Glauber-Sudarshan P Representation

Though the Wigner Representation preceded it, the P Representation introduced inde-
pendently by Glauber [37] and Sudarshan [38] is perhaps the true phase space primitive.
The coherent states form an over-complete basis in which any density matrix ⇢̂ can be
diagonalised in the form

⇢̂ =

Z
d2↵ P (↵)|↵ih↵|, (2.52)

where P (↵) is the Glauber-Sudarshan P distribution. Whilst at first glance equation 2.52
looks to be relatively innocuous decomposition of ⇢̂ into a statistical mixture of coherent
states. However, owing to the non-orthogonality of the coherent state basis, the resulting
P (↵) cannot be interpreted as a genuine probability distribution. The non-orthogonality
of the basis states also manifests in P (↵) being more often than not either ill behaved or
ill defined. Consider a pure coherent state ⇢̂ = |�ih�|, the corresponding P-function of a
pure coherent state | i = |↵i is singular, a Dirac delta function at the complex amplitude,
↵. And the only pure states for which it is positive are the coherent states.

Though often mathematically pathological, the P-function provides a straightforward
litmus test of non-classicality unique amongst all other phase-space distributions. For
quantised fields with a classical ‘analog’, that is, can expressed as a statistical mixture of
coherent states, it will be non-negative everywhere. For systems without classical ‘analog’
P (↵) will be negative somewhere, or more singular than a delta function. In this sense,
the singularity of the P-function is proves to be a feature. In smoothing the P-function
to obtain a something more well behaved we forgo this classical-quantum dichotomy. For
example, the Wigner function is accessible via a Gaussian convolution of the P-function,

W (↵) =
2

⇡

Z
d2� P (�) exp (�2|� � ↵|2) (2.53)

whilst the negativity of the Wigner function is successfully used as a metric for the ’non-
classicality’ of states, it fails to capture important quantum states without classical analog,
such as squeezed states.

2.3.3 The Husimi Q Representation

In the same manner that the Wigner function is related to the P function via a Gaussian
convolution, the Husimi Q Representation can be derived from the Wigner function via
the same Gaussian convolution,

Q(↵) =
2

⇡

Z
d2�W (�) exp (�2|� � ↵|2). (2.54)

In the same way the Gaussian convolution tempered the P-function to yield typically well-
behaved state representation – albeit with negative ‘probabilities’ – the Gaussian filtering
of the Wigner function produces a real probability distribution that is positive everywhere.
The Q-Function describes the projection of the quantum state onto the coherent state
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basis,

Q(↵) = h↵|⇢̂|↵i. (2.55)

Physically, the Q-function describes the probability distribution obtain from heterodyne
detection of a quantum state.

2.4 Correlations, Quantum Correlations and Entanglement

In this chapter we have met already number of single mode states that have statistical
or physical properties without analog in classical described light. If there is one subject
I hope the results in this thesis address a little, however, it is the non-classical nature of
correlations. Whilst there is little that is too surprising about correlations in the classical
world, the implications for correlated quantum systems are very di↵erent.

Imagine a bipartite system which describes two spatially separated components, a
and b. The two subsystems interacted in the past, but are now well separated, such
that one can locally measure one subsystems without physically perturbing the other.
Consider a measurement of the amplitude quadrature operators of both modes a and b.
The dependence of the two quadrature operators X̂

a

and X̂
b

is described by the correlation
coe�cient

cxx
ab

=
Cxx

abq
�X̂

a

�X̂
b

, (2.56)

where Cxx

ab

denotes the covariance, and �X̂
a

and �X̂
b

the variance. This quantity varies
between �1 (perfectly anti-correlated) and 1 (perfectly correlated) through 0 (a and b are
independent). Imagine subsystems a and b are not perfectly correlated. A measurement
of one subsystem does not allow us to perfectly infer the state of system b - but we do
gain some information. This reduced uncertainty on b following a measurement of a is
characterised by the conditional variance, defined as

V xx

a|b = �X̂
a

(1� (cxx
ab

)2) = �X̂
a

�

(Cxx

ab

)2

�X̂
b

. (2.57)

Provided the systems a and b are perfectly correlated, V xx

a|b = 0 and there is no uncertainty

regarding the inference of X̂
a

from a measurement of X̂
b

. If the two bi-partitions share
no correlations, the uncertainty regarding each remains unchanged after a measurement
of the other.
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2.4.1 Correlations and Gaussian states

Any bipartite Gaussian state is fully characterised by its coherent amplitudes hX̂
a

i, hP̂
a

i

and hX̂
b

i, hP̂
b

i, and its covariance matrix

C(X̂
a

, X̂
b

, P̂
a

, P̂
b

) =

0

BB@

Cxx

aa

Cxp

aa

Cxx

ab

Cxp

ab

Cpx

aa

Cpp

aa

Cpx

ab

Cxx

ab

Cxp

ba

Cxp

ba

Cxx

bb

Cxp

bb

Cpx

ba

Cpp

ba

Cpx

bb

Cpp

bb

1

CCA , (2.58)

where the matrix coe�cients are given by

Cmn

ab

= 1

2

hM̂
a

N̂
b

+ N̂
b

M̂
a

i � hM̂
a

ihN̂
b

i. (2.59)

If we only consider bipartite systems with zero coherent amplitude - and we generally will
- the above expression further simplifies to

Cmn

ab

= 1

2

hM̂
a

N̂
b

+ N̂
b

M̂
a

i. (2.60)

The symmetry of the form of Cmn

ab

requires that in general, Cmn

ab

= Cnm

ba

. The entire
covariance matrix is thus described by 10 matrix coe�cients [39].

2.4.2 Quantum Correlations, Inseparability and Entanglement

In the previous sections I have briefly introduced correlations in bipartite systems. I
have made no reference to the quantum nature of these correlations, and have addressed
them classically. In reality, even the presence of strong correlations in quantum systems
does not ensure their ‘quantumness’. Classical correlations can be embedded in quantum
states and recent results argue most every correlated bi-partite system will possess both
quantum and classical correlations. It is now widely accepted that states need not be
entangled to demonstrate uniquely quantum correlations, and that nearly any quantum
state selected at random will satisfy some metric for quantum correlations. Historically
however, especially in the framework of pure states, the notion of quantum correlations
is synonymous with the notion of inseparability. If we consider a general bi-partite pure
state, described by a state vector

| i
AB

=
X

i,j

c
i,j

|ii
A

⌦ |ji
B

, (2.61)

where |ii
A

and |ji
B

are defined in their respective Hilbert spacesH
A

andH
B

. The Schmidt
decomposition states that for every | i there exists bases |ui

A

and |vi
B

defined in H
A

and
H

B

respectively such that

| i
AB

=
nX

i=1

�
i

|ui
A

⌦ |vi
B

, (2.62)

where �
i

are non-negative real numbers satisfying
P

n

i

|�
i

|

2 = 1. The number n of non-
zero values �

i

is referred to as the Schmidt number for the state | i
AB

. The Schmidt
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number allows us to characterise the separability of a given composite state: if n = 1
the state is separable, and if n > 1 the state is entangled. If all the coe�cients �

i

are
non-zero and equal, the state | i

AB

is maximally entangled. When restricted to pure
states, any correlations apparent between local measurements of subsystems A and B
guarantee the state is inseparable. Any correlations shared between the components of
a pure bipartite state are quantum in character, and for pure states, entanglement and
correlations are synonymous. Complications arise when we move away from pure states.
A general density matrix ⇢

AB

is considered separable if it can be expressed as a mixture
of product states

⇢
AB

=
�X

i=1

p
i

⇢A
i

⌦ ⇢B
i

, (2.63)

where p
i

� 0 and
P

i

p
i

= 1. If a given ⇢ does not satisfy (2.63) it is entangled, but
subtleties arise in the nature of the correlations involved. In general, determining the
separability of a given bipartite state ⇢ is di�cult, as there are infinitely many ways
express a given ⇢ as a mixture of pure states.

2.4.3 The Inseparability Criterion for Gaussian States

The problem of developing a criterion for inseparability is dramatically simplified when
restricted to only a class of quantum states, and can become a tractable problem. The
inseparability criterion introduced by Duan et al. [40] provides a necessary and su�cient
condition for the inseparability of two-mode Gaussian states. This is the first of two
entanglement witnesses for Gaussian two-mode states introduced in this thesis - the second
being the EPR-paradox criterion introduced by Reid [41].

Consider the form of the general covariance matrix of (2.58) describing any two-mode
Gaussian state. Duan et al. [40] have shown that (2.58) can be transformed through
a series of local linear unitary Bogoliubov operators (LLUBOs) into Standard Form I,
satisfying

C(X̂
a

, X̂
b

, P̂
a

, P̂
b

) =

0

BB@

Cxx

aa

0 Cxx

ab

0
0 Cpp

aa

0 Cpp

ab

Cxx

ab

0 Cpp

bb

0
0 Cpp

ab

0 Cpp

bb

1

CCA , (2.64)

where the matrix components satisfy the following expressions

Cxx

aa

� 1

Cxx

bb

� 1
=

Cpp

aa

� 1

Cpp

bb

� 1
(2.65)

and
q
(Cxx

aa

� 1)(Cxx

bb

� 1)� |Cxx

ab

| =
q
(Cpp

aa

� 1)(Cpp

bb

� 1)� |Cpp

ab

|. (2.66)

The transformation consists of the application of a squeezing operation to ensure modes a
and b have identical variances, and a quadrature rotation to eliminate any cross-quadrature
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correlations. As the unitary operations applied to transform the state to the form of (2.64)
are local, they have no e↵ect on the separability or inseparability of the state. Duan et
al. [40] showed that any general state with Glauber-Sudarshan P-representation that is
positive everywhere (and thus is a quantum state with a classical analog) will satisfy the
will satisfy the criterion

h(X̂
I

)2i+ h(P̂
I

)2i � 2

✓
k2 +

1

k2

◆
, (2.67)

where

hX̂2

a

i =

*✓
kX̂

a

�

1

k

Cxx

ab

|Cxx

ab

|

X̂
b

◆
2

+
, (2.68)

and accordingly for hP̂ 2

a

i. The parameter k compensates for any asymmetry arising be-
tween the two subsystems a and b and is given by

k =

✓
Cxx

bb

� 1

Cxx

aa

� 1

◆ 1

4

=

✓
Cpp

bb

� 1

Cpp

aa

� 1

◆ 1

4

. (2.69)

Violation of the inseparability criterion equality of (2.67) is a necessary and su�cient
condition for the entanglement of a bipartite Gaussian state.

2.4.4 The EPR Paradox

In their seminal paper [36] of 1935, Einstein, Podolsky and Rosen introduced a gedenken-
experiment that proved to be an illuminating critique of the formalism of quantum me-
chanics. They presented an apparent violation of the Heisenberg uncertainty principle
could be achieved, with a pair of non-commuting observables simultaneously known to
perfect precision.

The original thought experiment considers a system of two entangled particles, denoted
a and b, with position and momenta q

a

, q
b

, p
a

and p
b

. The pair of particles interacted
at some point in the past, but are now well separated. The authors argue that the for-
malism of quantum mechanics permits a wave-function describing the bi-partite system
that is simultaneously an eigenstate of the linear operators q̂

a

� q̂
b

and p̂
a

+ p̂
b

. In this
state, a measurement of position on particle a - which cannot physically a↵ect particle b
- allows one obtain perfect knowledge of the position of particle b. With a direct mea-
surement of momentum on particle b, and the position of particle a known, particle b can
seemingly have simultaneously well defined position and momentum. Outwardly, this ap-
peared to be in direct conflict with the formalism of quantum mechanics, which demands
the two conjugate observables cannot be known both precisely and simultaneously. The
authors arguing that the wavefunction alone “does not provide a complete description of
the physical reality” [36].
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2.4.5 EPR Paradox Criterion for Continuous Variables

Whilst the original paper of Einstein, Podolsky and Rosen discussed the position and
momentum of a pair of entangled particles. In 1988, Reid [41, 42] introduced a measure
for the continuous variables analog of the paradox, where an argument can be constructed
for the same apparent violation. The EPR paradox criterion is defined as the product
of the two conditional variances for the amplitude and phase quadratures. Unlike the
Inseparability criterion introduced in §2.4.3, the EPR paradox criterion is an inherently
directional quantity. As a result, there are two criteria, depending on the direction of
inference

✏
ab

= �X̂
a|b�P̂

a|b < 1 (2.70)

✏
ba

= �X̂
b|a�P̂

b|a < 1 (2.71)

where the quadrature conditional variances are defined as follows

�X̂
a|b = �X̂

a

�

|Cxx

ab

|

2

�X̂
b

, (2.72)

and accordingly for �P̂
a|b. Provided the product of the conditional variances of the two

orthogonal quadratures is below one, the state is said to demonstrate the EPR paradox. Of
course, this is only an apparent violation, as the inequality is concerned with conditional
variances, not the variance itself. An EPR criterion ✏ less than one is a su�cient but not
necessary condition for entanglement.

2.5 Quantum State Tomography

The uncertainty principle of quantum mechanics, or equivalently, the no-cloning theorem
require you cannot infer the quantum state or density matrix of a single quantum system
without some prior knowledge of that system. A single measurement of some observ-
able yields a single outcome corresponding to the projection of the quantum state into
an eigenstate with some non-zero probability. The resulting measurement back-action
precludes subsequent measurements. However, given several identical preparations of the
same unknown quantum system, one can choose an set of measurements that allow char-
acterisation of the density matrix. A recipe to do so was first provided by Fano, who
defined the quorum - the minimum set of operators su�cient for determination of the
density matrix.

For this problem quantum optics is itself uniquely placed; a balanced homodyne de-
tector can measure all linear combinations of position and momentum, specifying a single
mode of the electromagnetic field. The field of optical homodyne tomography began with
the observation of Vogel and Risken that, as probability distributions describing the ho-
modyne observables are given by the marginals of the Wigner function [43], homodyne
observables are related to the Wigner function via the Radon transform. Therefore, akin to
established classical imaging techniques, one can reconstruct the Wigner function via the
measured distributions of the homodyne observables by inverting the Radon transform.

Here, we will briefly discuss three di↵erent approaches to quantum tomography: the
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inverse-Radon transform method, the pattern function sampling, and the Maximum En-
tropy principle. I would also like to direct the reader to the excellent review of Lvovsky
and Raymer[44], and also the text Quantum State Estimation[45].

2.5.1 The Inverse-Radon transform

The very first experimental demonstration of optical homodyne tomography was provided
by Smithey et al.[46], reconstructing the Wigner function (and density matrix) via the
inverse Radon transformation.

Recall the general homodyne observable,

x̂
✓

= x̂ cos ✓ + p̂ sin ✓, (2.73)

described by a marginal distribution w(x
✓

, ✓) = hx
✓

|⇢̂|x
✓

i. The Wigner function W (q, p)
of the quantum state, ⇢̂ and the marginals w(x

✓

, ✓) are related via the Radon transform,

w(x
✓

, ✓) =

Z
W (q, p) �(x

✓

� q cos ✓ � p sin ✓) dq dp (2.74)

=

Z
W (x

✓

cos ✓ � x
✓+

⇡

2

sin ✓, x
✓

sin ✓ � x
✓+

⇡

2

cos ✓) dx
✓+

⇡

2

. (2.75)

Or more simply, the marginal, w(x
✓

, ✓), is simply the projection of the Wigner function,
W (q, p), onto the vertical plane oriented at an angle, ✓. Vogel and Risken [43] showed
that knowledge of w(x

✓

, ✓) for all values of ✓ was equivalent to knowledge of the Wigner
function itself.

Given our set of marginal distributions, w(x
✓

, ✓), the Wigner function can be obtained
by ‘inverting’ the Radon transform,

W (q, p) =
1

⇡2

Z
⇡

0

Z 1

�1
w(x

✓

, ✓)⇥K(q cos ✓ + p sin ✓ � x
✓

) dx
✓

d✓, (2.76)

with the integration kernel,

K(x) =

Z 1

�1
|⇠| exp i⇠x d⇠. (2.77)

The kernel is infinite at x = 0 and needs to be regularised. The usual approach is to restrict
the integration limits to some frequency, ±k

c

, corresponding to a low-pass filtering of the
Wigner function. The choice of k

c

is an open problem. For a choice of k
c

too high,
unphysical high frequency components associated with statistical noise can dominate the
reconstruction. Set k

c

too low and finer details of Wigner function will be smoothed away.
Problematically, quantum mechanics provides no guidance regarding the choice of k

c

; it
is a somewhat arbitrary choice left to the judgement of the experimentalist. The tell-tale
ripples of the inverse Radon transform are evident in our previous work[47].
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2.5.2 Pattern Functions

First introduced by dAriano et al. [48] and Kühn [49], and further developed by Leonhardt
et al. [50, 51] and Richter [52, 53], the pattern functions specify a set of functions that
allow direct sampling of the density matrix of a single mode of the electromagnetic field.

The density matrix, ⇢̂ in the Fock basis can be reconstructed directly from the measured
quadrature distributions, w(x

✓

, ✓), by sampling the individual density matrix elements,
⇢
mn

via

⇢
mn

=

Z
⇡

0

Z 1

�1
F
mn

w(x
✓

, ✓)dx
✓

d✓. (2.78)

where F
mn

are a set of sampling functions. This corresponds to simply averaging the
sampling function over the measured quadrature distribution. The Wigner function is
then accessible via the relation,

W (x
✓

, ✓) =
X

m,n

⇢
mn

W|mi|ni(x✓, ✓). (2.79)

The set of sampling functions required for (2.78) are specified by [50, 54]

F
mn

= f
mn

(x
✓

)ei(m�n)✓, (2.80)

where f
mn

are the so-called pattern functions. Note that there is only a dependence on ✓
for the o↵-diagonal elements (m 6= n) corresponding to the coherences. The method for
computing these pattern functions for the Fock basis (and also the coherent state basis)
is provided in [50]. The pattern function approach is more e�cient than the customary
inverse-Radon transformation[51] and also bypasses the somewhat arbitrary filtering the
inverse-Radon transform requires. Instead, the dimension of Hilbert space for the recon-
struction must be truncated, though this a constraint with a clear physical interpretation,
and is also a condition of the Maximum Likelihood and Maximum Entropy principles.
Excepting the truncation of the Hilbert space, the pattern function method involves no
additional restrictions or assumptions regarding the nature of the unknown state. As a
result, the statistical noise associated finite measurement ensemble can manifest in un-
physical contributions (negative elements), and as each element of the density matrix is
sampled independently, nothing constrains the reconstructed state to be normalised.

2.5.3 Maximum Entropy Principle

The maximum entropy principle was first applied to the problem of quantum tomography
by Buẑek and Drobný [55]. Like its more popular cousin, maximum likelihood estimation
[56], it provides a robust approach to tomography by using variational principles within
a framework defined by quantum mechanics. Unlike maximum likelihood estimation,
which seeks to find the most-probable state described by the measurement outcomes, the
principle of maximum entropy minimises the knowledge obtained from the measurement
record. As such, it reconstructs the least-biased state consistent with the measurement
record, and is well suited to applications where the measurement record is tomographically
incomplete.
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Consider our usual problem of optical homodyne tomography, where we sample the
quadrature distributions, w(x

✓

, ✓). Our final measurement record is binned into a rect-
angular array of dimension M

x

⇥ N
✓

. The population of the (m,n) bin, p
mn

, associated
with the quadrature value, xm

✓

,and angle, ✓
n

, is proportional to the expectation value of
the observable, ⇧̂

mn

=
��xm

✓

n

↵⌦
xm
✓

n

��. As the name suggests, the maximum entropy principle
seeks to find an estimate of ⇢̂ that maximises the von Neumann entropy (§2.7.1)

S(⇢̂) = �tr(⇢̂ log
2

⇢̂). (2.81)

whilst fulfilling the conditions,

Tr⇢̂ = 1 and Tr⇢̂⇧
mn

= p
mn

. (2.82)

The state satisfying these conditions is given by

⇢̂
Max

= N

"
exp
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0

n̂�
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✓X

m=1

N

✓X

n=1

�
mn

⇧̂
mn

!#
, (2.83)

where n̂ is the usual photon number operator, and �
mn

are the Lagrange multipliers which
allow us to constrain the state to the conditions of (2.83). Once can solve for the Lagrange
multipliers by minimising the deviation function,

�x
✓

= (n̄� Tr(⇢̂
Max

n̂))2 �
M

✓X

m=1

N

✓X

n=1

h
p
mn

� Tr
⇣
⇢̂
Max

⇧̂
mn

⌘i
2

, (2.84)

where n̄ is the mean photon number.

2.6 Classical Information Theory

2.6.1 Shannon Entropy

“You should call it entropy, for two reasons. In the first place your uncer-
tainty function has been used in statistical mechanics under that name, so it
already has a name. In the second place, and more important, nobody knows
what entropy really is, so in a debate you will always have the advantage.”
– John von Neumann to Claude Shannon regarding what to name the attenu-
ation experienced by phone line signals.

With his landmark paper of 1948 [6], Claude Shannon provided the founding text
for the field of information theory, the mathematical backbone of which is its variant of
entropy. The Shannon entropy, H(X), is a measure of the unpredictability associated with
the outcome of a random variable, X before the outcome is known. Alternatively, and
perhaps more intuitively, it can thought of as the average amount of information gained
about a random variable, X after the outcome is broadcast. The Shannon entropy is a
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Figure 2.5: A Venn diagram capturing the relationships between the di↵erent entropies: the

Shannon entropies H(X) and H(Y ); the joint entropy H(X,Y ); the conditional entropies, H(X|Y )

and H(Y |X); and the mutual information H(X :Y ).

familiar recasting of the Boltzmann entropy of statistical mechanics,

H(X) = �
X

i

P (x
i

) log
b

P (x
i

) (2.85)

where P (x
i

) is the probability of obtaining an outcome x
i

for variable X, and b is the base
of the logarithm (usually 2). Equation 2.85 quantifies the unevenness of the probability
distribution P describing your random variable X. This concept of unevenness often best
elucidated with the example of a coin toss. Consider the coin toss of a fair coin: there
are two possible outcomes, each occurring with equally probability. The best we can do is
make a guess as to the outcome of the coin toss, and 50% of the time we will be correct.
As the uncertainly is symmetrically distributed between the two outcomes, the entropy
of the system is maximal. The entropy associated with a fair coin toss is one bit, and
we obtain one bit of information when we learn the outcome of the toss. But if we now
consider tossing a biased coin - perhaps biased to an outcome of heads - because we possess
some information regarding the likeliness of each outcome the entropy of the coin toss is
reduced. Consider the extreme of a coin of two heads: as the outcome of each coin toss
can be predicted perfectly the entropy of the system is zero.

The english text is a (popular) example of a low entropy system. If we consider we
have 26 possible characters in the english alphabet, if all letters are equally probably, their
entropy would be log

2

26, or approximately 8 bits. Probabilistically however, all letters of
the english alphabet are not created equal. For a randomly chosen word, we intuitively
know we are more likely to find an ‘e’ than we are to encounter a ‘z’. If we are given
an unknown word of an unknown 5 letters, uncovering a ‘z’ provides us more information
than uncovering an ‘e’. Or if we encounter a ‘q’, we know it is extremely probable the
next letter will be a‘u’. The entropy of the alphabet is estimated at between 1� 1.5 bits
per letter.
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2.6.2 Joint Entropy

In the last section we considered the entropy of a single random variable, but consider two
random variables, X and Y , which may or may not be independent. The pair {X,Y } is
described by a set of possible outcomes {x, y} in two-dimensional space occurring with a
probability P (x, y). The joint Shannon entropy of X and Y is given by

H(X,Y ) = �
X

x

X

y

P (x, y) log
2

P (x, y), (2.86)
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. . .
X

x

n

P (x
1
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2
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1

, . . . , x
n

). (2.87)

The joint entropy is bounded above by the sum of all the individual entropies,
H(X

1

, . . . , X
n

)  H(X
1

) + . . . + H(X
n

) and from below by the maximum individual
entropy of the set of individual entropies, H(X

1

, . . . , X
n

) � max(H(X
1

), . . . , H(X
n

)).

2.6.3 Conditional Entropy

Suppose the outcome of Y is known, and thus we have acquired H(Y ) bits of information
about the pair {X,Y }. Any remaining uncertainty regarding the pair {X,Y } is associated
with our residual ignorance of X given our knowledge of Y . The entropy of X conditional
on our knowledge of Y is given by

H(X|Y ) ⌘ H(X,Y )�H(Y ). (2.88)

The conditional entropy captures our average uncertainty regarding X given knowledge of
Y . Consider the scenario where X and Y are completely independent random variables:
knowledge of Y does not surrender any information regarding X, and thus the conditional
entropy of X given Y is simply the original entropy of H(X). If instead X and Y were
perfectly correlated, knowledge of Y perfectly specifies X and the conditional entropy
H(X|Y ) is zero.

2.6.4 Mutual Information

The entropy of the joint distribution comprising the pair X and P is simply the joint
entropy defined §2.6.2. But suppose instead we crudely add the individual entropies of
X and Y ; any information common to both X and Y would be counted twice, whilst
any independent information is counted once. The subtracting the joint entropy from this
quantity we obtain the common or mutual information between X and Y ,

H(X :Y ) = H(X) +H(Y )�H(X,Y ). (2.89)

The mutual information is a measure of the inherent dependence of two random variables,
X and Y . Using (2.88) the mutual information can also be expressed in terms of the
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conditional entropy

H(X :Y ) = H(X)�H(X|Y ), (2.90)

or equivalently

H(X :Y ) = H(Y )�H(Y |X). (2.91)

Classically, all three expressions for the mutual information are equivalent. Whilst this
may seem obvious as we a describing quite non-mysterious correlations of classical prob-
ability distributions, subtleties arise when we will later consider the generalisation of the
mutual information to quantum mechanical systems.

2.7 Quantum Information Theory

2.7.1 von Neumann Entropy

Until now we have considered the Shannon entropy and its variants within the frame-
work of classical information theory. Though quantum mechanics was a largely matured
and fully formed theory by the time Shannon’s ‘A Mathematical Theory of Communica-
tion’ appeared in 1948, the field of quantum information - where information protocols
are formed around the idea of encoding in the state of a quantum mechanical system -
emerged in the 1980’s. The theoretical backbone of quantum information theory is the
von Neumann entropy. Named after John von Neumann - one of the great polymaths
of the 20th century - the von Neumann entropy is the generalisation of classical entropy
to quantum mechanical systems. The von Neumann entropy for a system described by a
density operator ⇢ is given by,

S(⇢) = �tr(⇢ log
2

⇢) = �
X

i

�
i

log
2

�
i

, (2.92)

where {�
i

}

i

are the eigenvalues of ⇢.4 As 0  �
i

 1, the von Neumann entropy is strictly
non-negative, and is only zero if the quantum system is described by a pure state (�

i

= 1).
For a state, ⇢, described in a Hilbert space of dimension d, the entropy is at most log d,
corresponding to a maximally mixed state. If one can find an orthonormal basis, |xi, that
diagonalises ⇢ in the form,

⇢ =
X

x

�
x

|xihx| (2.93)

then the von Neumann entropy reduces to the Shannon entropy, S(⇢) = H(X), where
H(X) is the Shannon entropy of the classical ensemble X with a set of outcomes {x}
occurring with a probabilities {�

x

}. For the state decomposed in an orthogonal basis,
all outcomes can be distinguished perfectly and the problem reduces to a classical one.

4The logarithm is near-universally taken to the base 2, owing to the majority of quantum information
applications considering binary encoding of qubits. Occasionally the natural log appears in information
theory as it sometimes proves more amenable for calculations. The corresponding information unit is nats.
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Though for a single quantum state solving the eigenvalue problem. In general, however -
especially for composite quantum systems - this is often not the case, and the implications
of this will be discussed in the context of ‘quantum discord’.

Before we consider other quantum generalisations of entropic quantities, we need to
establish notation for the von Neumann entropy of composite systems and their parts.
Given a bipartite system ⇢

AB

, we generalise the joint entropy in the obvious way,

S(⇢
AB

) = �tr(⇢
AB

log
2

⇢
AB

). (2.94)

The entropy of the reduced subsystems is given by S(⇢
A

) = S(tr
B

(⇢
AB

), and equivalently
for S(⇢

B

). Analogous to the classical scenario, the von Neumann entropy is additive for
independent systems (product state) S(⇢

A

⌦⇢
B

) = S(⇢
A

)+S(⇢
B

), and this provides with
an upper bound on S(⇢

AB

) for any bipartite quantum state.

2.7.2 Quantum Conditional Entropy

With the von Neumann entropy providing an generalisation of the Shannon entropy to
quantum systems, we can also consider quantum formulations of the conditional entropy
(§2.6.3) and mutual information (§2.6.4). By analogy with the classical equivalent of (2.88)
the quantum conditional entropy is defined as

S(⇢
A

|⇢
B

) ⌘ S(⇢
AB

)� S(⇢
B

). (2.95)

First defined in [57] it was immediately noticed that quite unlike its classical counterpart,
the quantum conditional entropy could be negative. Even though the Von Neumann en-
tropy of any individual quantum variable is strictly non-negative, counter-intuitively, the
entropy of the entire quantum system can be, and often is, smaller than the individual
entropies of its reduced subsystems. That is to say: our uncertainty regarding the en-
tire quantum system is sometimes smaller than our uncertainty regarding its individual
subsystems.

Consider, for instance, a pure two-mode squeezed state (§2.2.5). Whilst the entropy
of the entire system is zero, the individual subsystems are locally thermal states with a
positive entropy, and accordingly, the quantum conditional entropy would be negative. A
operational meaning for this ‘negative’ information was provided in [58] by introducing a
new quantum information primitive called “quantum state merging”.

2.7.3 Quantum Mutual Information

In §2.6.4 we introduced three equivalent expressions for the classical mutual information.
Using (2.95) we can write down the quantum generalisations of the mutual information,

I(⇢
AB

) = S(⇢
A

) + S(⇢
B

)� S(⇢
AB

) (2.96)

= S(⇢
A

)� S(⇢
A

|⇢
B

) (2.97)

= S(⇢
B

)� S(⇢
B

|⇢
A

). (2.98)
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The quantum mutual information captures all the information shared between the two
partitions of a bipartite state. Where the Shannon mutual information describes the
correlations shared between the bi-partitions if the system was described by a classical
probability distribution, the quantum mutual information encapsulates all correlations
within the system, whether classical or quantum in origin. Though all three expressions
are equivalent, earlier I hinted at subtleties that arise when one considers the quantum
generalisation of the mutual distinction. This distinction arises in the notion of accessible
information and will be discussed in the context of its relevance to quantum discord in
Chapter 6.

2.7.4 Holevo’s Bound

Holevo’s bound [59] is one of the earliest and most significant results in quantum infor-
mation. It provides an immensely useful upper bound on the amount of information that
can be known about a quantum state. Holevo’s bound is usually best elucidated by con-
sidering two-party communication. Consider two parties, Alice and Bob.5 Alice possesses
a classical random variable X from which she draws values x with a probability p

x

. Based
on her outcome x, Alice prepares a mixed state ⇢

x

which she transmits to Bob. The total
density matrix of the system is described by the mixture of mixed states,

⇢ =
X

x

p
x

⇢
x

. (2.99)

Bob is tasked with discovering X. Upon receiving ⇢
x

Bob preforms a measurement,
obtaining a classical value Y . We then pose the question: is there any fundamental
limit to the amount of information Bob can obtain about Alice’s random variable X?
Or more formally, is there an upper bound on the mutual information S(X :Y ) between
Alice’s variable X and Bob’s measurement record Y ? This upper bound on the accessible
information is given by:

S(X : Y ) � S(⇢)�
X

i

p
i

S(⇢
i

) (2.100)

where ⇢ =
P

i

p
i

⇢
i

. This result summarises perhaps a surprising di↵erence between quan-
tum systems and classical systems. In classical information theory the notion of accessible
information is not particularly interesting - one should, in theory, always be able to di↵er-
entiate between two classical information states. However in quantum mechanics this is
not always the case. Given two arbitrary quantum states, it is not always possible to find
a measurement that will permit you to distinguish between the two. This scenario is not
a consequence of lacking the optimal measurement, rather, it is a fundamental property
of the quantum system.

5This also marks the debut of the nomenclature of information theory: where Alice and Bob are the
quintessential placeholder names for parties A and B for communication and information protocols.
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2.8 From discrete to continuous modes

So far we have only considered idealised single modes, we now briefly transition to a
continuous mode description for our annihilation and creation operators. A formal tran-
sition from the discrete mode formalism to the continuous mode formalism can be found
in Loudon [60]. A mathematically rigorous extended formalism to describe continuum
multimode quantum states was developed by Caves and Schumaker in two successive pub-
lications [61, 62]. From these, the continuous mode creation and annihilation operators
emerge, which are related to their discrete-mode counterparts (introduced in §2.2.1) by

â
k

!

p

�! â(!) and â†
k

!

p

�! â†(!). (2.101)

The discrete Kronecker delta and the continuous Dirac delta-function are related by �
k,k

0
!

�! �(! � !0), giving the new, but hopefully reminiscent, continuous-mode commutation
relation,

h
â(!), â†(!0)

i
= �(! � !0). (2.102)

Namely, they commute unless they describe the same mode.

2.8.1 Fourier domain operators

In most practical applications, the frequency bandwidth is much smaller than the central
frequency. This narrow-band assumption allows us to extend the lower limit of frequency
integration to �1 without significant error. This motivates a time-domain definition of
the creation and annihilation operators

â(t) ⌘
1

2⇡

Z 1

�1
d! â(!) exp (�i!t) (2.103)

â†(t) ⌘
1

2⇡

Z 1

�1
d! â†(!) exp (i!t), (2.104)

where the above has been chosen to be consistent with â†(t) = [â(t)]†. Through an inverse
Fourier transform we obtain our frequency-domain creation and annihilation operators,

â(!) ⌘
1
p

2⇡

Z 1

�1
â(t)ei!tdt (2.105)

â†(!) ⌘
1
p

2⇡

Z 1

�1
â†(t)ei!tdt, (2.106)

and also the relevant Hermitian conjugates,

[â(!)]† ⌘
1
p

2⇡

Z 1

�1
â(t)e�i!tdt (2.107)

[â(�!)]† ⌘
1
p

2⇡

Z 1

�1
â†(t)ei!tdt (2.108)

= â†(!). (2.109)
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Denoting F [·] to be a Fourier transform, we can now consider the frequency domain
generalisation of the familiar generalised quadrature operator,

X̂✓(!) = F [ei✓a†(t) + e�i✓a(t)] (2.110)

= (cos ✓ + i sin ✓)â(!) + (cos ✓ � i sin ✓)â†(!) (2.111)

= cos ✓(â(!) + â†(!)) + i sin ✓(â†(!)� â(!)) (2.112)

= cos ✓X̂(!) + sin ✓P̂ (!). (2.113)

where, using (2.109) we have defined the frequency domain amplitude and phase quadra-
ture operators,

X̂(!) = â(!) + [â(!)]† and P̂ (!) = i
⇣
[â(!)]† � â(!)

⌘
. (2.114)

2.8.2 Linearised decomposition of the operators

A more intuitive formalism for continuous variable quantum optics comes from a linearised
decomposition of the operators. The first use of this method in the context of quantum
optics dates back to Yurke [63]. For the purposes of most experimental situations, the
fluctuations of the field are negligible when compared the average intensity of the field,
and higher order fluctuation terms are negligible for most scenarios. The linearisation
procedure decomposes the annihilation operator into two contributions: a steady-state
term associated with the expectation value, or amplitude ↵, of the single frequency, and a
fluctuating term �â(t), describing the fluctuations in the continuum of modes surrounding
the carrier. We thus write,

â(t) = ↵+ �â(t) and â†(t) = ↵⇤ + �â(t). (2.115)

We also require two assumptions,

h�â(t)i = 0 and |�â(t)|⌧ |a|. (2.116)

The first, that the fluctuation term has no net contribution to the field amplitude and is
perfectly centred around zero, and second, that any fluctuations are much smaller than the
steady-state amplitude, ↵. These two assumptions allow us to neglect any contribution
from higher-order quantum fluctuation terms (e.g. �â†(t)�â(t)). In the same manner, we
can also simplify our description of the quadrature operators via quadrature fluctuation
operators,

�X̂(t) = �â†(t) + �â(t) (2.117)

�P̂ (t) = i(�â†(t)� �â(t)). (2.118)

2.8.3 Phase and amplitude modulation

Amplitude modulation is a direct modulation of the intensity of a light field at some
modulation frequency, !

m

. The amplitude modulation of an initial field â
0

(t) with carrier
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frequency, ⌦ is given by

â(t) = â
0

(t)(1� ⇠ + ⇠ cos!
m

t), (2.119)

where !
m

is the modulation frequency, and ⇠ represents the modulation depth. Equation
(2.119) can be rewritten in the perhaps more illuminating form of,

â(t) = â
0

(t)(1 + ⇠

2

(ei!m

t + e�i!

m

t)), (2.120)

with the additional assumption of a small modulation depth, ⇠ ⌧ 1. Equation (2.120)
decomposes the modulated field â(t) into the original carrier â

0

(t) at frequency ⌦, and
two sidebands of equal amplitude â

0

(t)⇠

2

at optical frequencies ⌦ + !
m

and ⌦ � !
m

. The
modulation depth, ⇠, relates the proportion of energy transferred from the carrier mode
to the two generated sideband modes. Taking the Fourier transform we obtain

â(⌦) = â
0

(!) +
⇠

2

Z 1

�1

h
â
0

(t)ei(⌦+!

m

)t + â
0

(t)ei(⌦�!
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dt (2.121)

= â(⌦) +
⇠

2
â(⌦+ !

m

) +
⇠

2
â(⌦� !

m

), (2.122)

where the amplitude modulation is comprised of an upper (⌦+ !
m

) and lower (⌦+ !
m

)
sideband.

As the name suggests, phase modulation is a modulation of the phase of a light field.
The phase modulation of some initial field, â

0

(t) is described by

â(t) = â
0

(t) ei⇠ cos!m

t. (2.123)

For ⇠ ⌧ 1, we consider only the first order expansion,

â(t) = â
0

(t)(1 + i⇠ cos!
m

t) (2.124)

= â
0

(t)(1 +
i⇠

2
(ei!m

t + e�i!

m

t)). (2.125)

Taking the Fourier transform we obtain,

â(⌦) = â
0

(⌦) +
i⇠

2

Z 1

�1

h
â
0

(t)ei(⌦+!

m

)t + â
0

(t)ei(⌦�!
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)t

i
dt (2.126)

= â(⌦) +
i⇠

2
â(⌦+ !

m

) +
i⇠

2
â(⌦� !

m

). (2.127)

Phase modulation produces an upper (⌦+!
m

) and lower (⌦+!
m

) sideband with imaginary
amplitudes.

Phase modulation is straightforward to realise in the laboratory. Simply varying the
path length by dithering the position of a mirror is su�cient for low frequencies. Higher
frequency phase modulation usually employs the electro-optic e↵ect, with a sinusoidally
varying electric field applied across a crystal to modulate the refractive index, and thus
the optical path length. Amplitude modulation is usually tricker, here we again use the
electro-optic e↵ect. Applying an electric field to a suitable electro-optic crystal can produce
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a field dependent birefringence, and thus a field dependent polarisation. Selecting one of
the components of the output field with a polariser results in an amplitude modulation of
the field.

2.9 Linear Optics, Losses and Detection

2.9.1 The Beam-Splitter

The humble beam splitter is ubiquitous in quantum optics. Both theoretically and ex-
perimentally, it is one of the most simple and powerful tools we have available. The
beam-splitter allows us to interfere two input modes â

1

and â
2

which share a frequency,
polarisation and transverse spatial profile. Figure 2.6 shows a schematic diagram of the
beamsplitter with transmissivity ⌘ with inputs â

1

and â
2

. On transmission the phase of

Figure 2.6: The schematic diagram of a beamsplitter. â
1

and â
2

are the fields incident, â
3

and

â
4

are the resulting outputs, and ⌘ is the transmissivity.

each field remains unchanged, however, on reflection one field obtains a ⇡ phase shift. The
following output fields are therefore given by

â
3

=
p

⌘â
1

+
p
1� ⌘â

2

â
4

=
p
1� ⌘â

1

�

p

⌘â
2

. (2.128)

The two incident fields are coupled together with a strength dependent on the transmissiv-
ity, ⌘. There are two approaches to our understanding of the beamsplitter transformation
in quantum optics. The first considers the beamsplitter as a randomisation device, whereby
an incident photon is probabilistically directed to one of the two ports. The continuous
field perspective considers that even in the absence of light at one of the inputs, vacuum
fluctuations are coupled into the system through the empty port. One must consider the
role of the vacuum mode in both scenarios to accurately model the physics of the sys-
tem. It is this tidy concept that allows us to utilise the simple beam splitter to model all
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Figure 2.7: Schematic of balanced homodyne detection. The di↵erence current is proportional

to the quadrature observable of the input signal.

manner of losses in optical systems. Factors such as ine�cient photo-detection, attenua-
tion through optical elements, and imperfect spatial mode matching all attenuate the field
concerned and introduce undesirable vacuum fluctuations. These e↵ects can be modelled
by simple beam splitter transformation of the field, with the vacuum mode entering the
empty port.

2.9.2 Direct detection

Perhaps the simplest measurement of a quantum state of light is a direct measurement of
intensity, that is, a measurement of â†â. In actuality, this measurement is essentially all
an individual photodetector can ever do, producing a photocurrent, i(t), proportional to
the number of photons in the optical field,

i(t) / â†(t) â(t) (2.129)

/ (↵⇤ + �â†(t))(↵+ �â(t)) (2.130)

/ |↵|2 + ↵ �â†(t) + ↵⇤ �â(t) + �â†(t) �â(t). (2.131)

Considering only the first order terms (as |�â(t)|⌧ |a|), and assuming ↵ is real we obtain

i(t) / â†(t) â(t) ⇡ |↵|2 + ↵ �X̂+(t). (2.132)

For our linearised decomposition of the field, the photocurrent is comprised of two terms:
a DC term associated with the average optical intensity |↵|2, and time dependent term,
�X̂+(t), describing the fluctuations in the amplitude quadrature.
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2.9.3 Homodyne detection

As a solitary photodetector is insensitive to the quadrature amplitudes of an optical field,
probing the phase information requires that we introduce a phase reference. Homodyne
detection utilises interference of two phase-coherent fields to give a measurement of an
arbitrary quadrature amplitude, X̂✓.

The principle for optical balanced homodyne detection was developed in Yuen and
Shapiro [64] in 1980. A basic schematic for balanced homodyne detection is given in
Figure 2.7. The signal field, â

s

of interest is interfered on an (ideally) 50 : 50 beam
splitter with comparatively very intense coherent beam, ↵

lo

. This local oscillator provides
a phase reference for our quadrature measurement, and it is su�cient for us to assume
it is bright enough to be treated classically. Consider the measured photocurrents i

1

and
i
2

are proportional to the photon numbers, n̂
1

and n̂
2

. Using the relation of (2.128), the
modes emerging from the beamsplitter are

â
1

=
1
p

2
(â

s

� ↵
lo

)

â
2

=
1
p

2
(â

s

+ ↵
lo

), (2.133)

where â
s

denotes the annihilation operator of the signal field, and ↵
lo

the complex am-
plitude of the local oscillator. The di↵erence current, i� is proportional to the di↵erence
photon number,

n̂� = n̂
1

� n̂
2

(2.134)

= â†
1

â
1

� â†
2

â
2

(2.135)

= |↵
lo

|(ei�â
s

+ e�i�â†
s

), (2.136)

where we have used ↵
lo

= |↵
lo

|ei�, where � is the phase of the local oscillator relative
to the signal field. From (2.16) we can see that the di↵erence photocurrent is directly
proportional to the generalised quadrature operator,

i� / |↵
lo

|X̂�

s

. (2.137)

Homodyne detection allows us to sample any arbitrary quadrature amplitude by varying
the relative phase between the two fields. The local oscillator itself acts as an amplifier,
‘boosting’ the measured quadrature by a scaling factor proportional to the local oscillator
amplitude, |↵

lo

|. This enables us to sample the quantum attributes of states that may,
on average, contain less than a photon without being defeated by the inherent electronic
noise of our measuring device. Nevertheless, (2.136) is only true for a ‘balanced’ homodyne
detection, as we require cancellation of the large |↵|2 terms. Experimentally, imperfect
balance can be remedied though electronic attenuation of one photocurrent relative to the
other, allowing close to ideal cancellation of the classical noise associated with the local
oscillator. While the analysis of (2.136) is rather crude, it recovers the same result as the
more sophisticated analyses of [64, 65, 66, 67].

The inclusion of a fictitious beam-splitter is all that is usually required in quantum
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optics to model passive loss. It is no di↵erent for the usual ine�ciencies that arise in
homodyne detection. Thus we can model a lossy detector as a perfect device preceded by
a beamsplitter with a transmission equal to the detection e�ciency.

2.10 Summary

In this chapter we have provided the theoretical background and experimental techniques
required for this thesis. We provided a brief overview of quantum optics and its experi-
mental techniques, classical and quantum information theory, and quantum tomography.



Chapter 3

A Continuous Variable Analog of
a Photon Counting Measurement:
Part I

3.1 Introduction

Central to the weirdness of quantum mechanics is the notion of wave-particle duality, where
classical concepts of particle or wave behaviour alone cannot provide a complete description
of quantum objects. When investigating quantum systems, information concerning one
description is typically sacrificed in favour of the other, depending on which description
suits your endeavour. Probing the continuous variables of an infinite Hilbert space, such as
the amplitude and phase of a light field, is often viewed as less interesting than probing the
quantised variables of a quantum system. This is largely due to the fact that, given current
technology, when probing the continuous variables (CV) of a quantum system alone, one
is restricted to transformations that map Gaussian states onto Gaussian states. This
restriction ensures that computing protocols involving only Gaussian states and Gaussian
operations can always be e�ciently simulated on a classical computer.

Nevertheless, the idea of measuring the quantised nature of light with only CV tech-
niques has been theoretically [50, 68, 69, 70] and experimentally [71, 72, 73, 74] inves-
tigated. The usual CV toolbox of Gaussian transformations, comprising beam splitters,
displacements, rotations, squeezing, homodyne and heterodyne detection allows for deter-
ministic manipulation of quantum optical states that can be experimentally realised with
typically very high e�ciency. However, the absence of a strong non-linearity within this
toolbox severely handicaps the reach of CV techniques for quantum information processing
applications [22, 24]. Conversely, discrete variables (DV) is implicitly non-linear — forgo-
ing determinism to harness the measurement-induced non-linearity of a photon-counting
measurement. Recently, there has been a move to hybridise both CV and DV techniques
for quantum information purposes, as one non-Gaussian operation, when combined with
Gaussian resources and operations, is su�cient to realise universal quantum computing
[75].

Here we present the CV analog of the photon counting measurement, whereby we
replace a non-deterministic photon counting measurement with a deterministic phase ran-
domised measurement of the field quadratures. This extends the ideas reported in [70] to

41
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show how the requirement of a photon counting measurement can be replaced by CV mea-
surements for the reconstruction of the statistics of non-Gaussian states. This approach
forgoes the shot by shot nature of DV photon counting in favour of ensemble measure-
ments, and consequently cannot be appropriated for state preparation. It does, however,
still permit access to the same non-Gaussian statistics that previously only accessible with
the requirement of a projective photon counting measurement. Using this method, we
have successfully reconstructed the non-Gaussian 1, 2 and 3 photon subtracted squeezed
vacuum (PSSV) states.

3.1.1 Schrödinger Kitten States

The work of this Chapter and the next focus on the continuous variable analog of a
photon number discriminating measurement. We then consider the use of this technique
for extracting the statistics of a non-Gaussian state from a system. The non-Gaussian
states of our choosing are the photon subtracted squeezed vacuum states, which bear
close relation to the Schrödinger cat states.

!" #" $"

Figure 3.1: The Wigner functions of the ideal Schrödinger cat state of Equation (3.1) for: a.

↵ = 1 and � = ⇡, b. ↵ = 1 and � = 0, and c. ↵ = 2 and � = ⇡.

In itself, “Schödinger cat state” is not a precisely defined term and is broadly used
within many quantum architectures to describe a quantum superposition of macroscopic
states, alluding to the original paradox. Within quantum optics its usual incarnation is a
coherent superposition of two coherent states with wholly opposite phase defined by,

| 
cat

i ⌘

|↵i+ ei�|� ↵iq
2(1 + cos� e�|

p
2↵|2)

. (3.1)

Two special cases of (3.1) occur for � = 0 and � = ⇡, which we label the even and odd cat
states respectively. This choice of terminology becomes apparent when one considers the
expansion of (3.1) in the Fock basis

| 
cat

i =
1

N
e�|↵|2

X

n

(1 + ei�+in⇡)
↵n

p

n!
|ni (3.2)

The term (1 + ei�+in⇡) ensures the even cat state (� = 0) only occupies the even Fock
states, and the odd cat state only occupies the odd Fock states. Within the literature
‘cat state’ is somewhat of a ‘pet’ name, often used interchangeably with the more precise
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‘coherent state superposition’. The premise for the ‘Schrödinger cat’ label emerges from
the view of coherent states as macroscopic objects. Coherent states define a boundary
of ‘classicality’ in quantum optics; they recover classical behaviour for large number of
photons, and two coherent states well separated in phase space are distinguishable by
a macroscopic measurement, i.e. they can be e�ciently discriminated via homodyne
detection without requiring photon number resolution. As such, a large optical Schrödinger
cat would provide the archetypal system for investigating phenomena at the boundary
of quantum and classical regimes. However, providing the ideal testbed for studying
the decoherence necessitates such states be vulnerable to the environment. As such, all
experimental investigations have either considered systems exceptionally isolated from the
environment[76], or small states that are often referred to as “kitten states”[77, 78, 79, 80].1

Yurke and Stoler [81] showed that a coherent state interacting with a Kerr-like Hamil-
tonian could evolve to a superposition state, but this requires Kerr non-linearities orders
of magnitudes larger than what is currently accessible. Macroscopic Schrödinger cats have
been realised in cavity quantum electrodynamics (QED) systems. These experiments in-
teracted a coherent state with Rydberg atom in a remarkably high Q-factor cavity, creating
macroscopic superpositions strongly isolated from the environment [76]. However, the ma-
jority of the optical implementations of the Schrödinger Cat states have focused on the a
protocol introduce by Dakna et al. [82].

Figure 3.2: A squeezed vacuum state is incident on a weakly reflective beamsplitter. A mea-

surement of |mihm| heralds the preparation of an m-photon subtracted squeezed vacuum state.

3.1.2 Photon-subtracted squeezed vacuum states

In 1997, Dakna et al. published a rather straightforward theoretical proposal to create
small amplitude Schrödinger cat states [82]. The annihilation of a single photon from a
squeezed vacuum state with appropriate variance produces a quantum state with poten-
tially very high fidelity to a small Schrödinger cat state.2 Larger Schrödinger cat states
are accessible via successive applications of the annihilation operation.

1Convention within the literature would suggest ’kitten’ denotes a cat state with an amplitude ↵ ⇡ 1
or smaller.

2Equivalently, one can also squeeze a Fock state, though this is experimentally more ambitious.
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The photon-subtraction protocol of Danka et al. is outlined in Figure 3.2. Consider a
squeezed vacuum state split on a beamsplitter of low reflectivity, 1 � ⌘ ⌧ 1. A vacuum
state occupies the other input port. Measurement of m photons in the reflected mode
projects the transmitted state into a squeezed vacuum state with m-photon subtracted.
There exist numerous theoretical works considering single mode [82, 83] and multi-mode
[84, 85] descriptions of the original proposal of Danka et al.. Here, I shall consider a simple
theoretical model for the photon-subtracted squeezed vacuum state.

Consider our initial squeezed vacuum state incident on a beamsplitter

| 
in

i = B̂(⌘)⇠̂(r)|0, 0i (3.3)

where,

⇠̂(r)|0i = |⇠i =
1

p

cosh s

1X

n=0

p
(2n!)

n!

�
�

1

2

tanh s
�
n

|2ni (3.4)

The action of the beamsplitter operator is given by [28]

B̂(⌘)|n, 0i =
nX

m=0

p
Bn

m

(⌘)|m,n�mi, (3.5)

where

Bn

m

(⌘) =

s
n!

k!(n� k)!
⌘n�m(1� ⌘)m, (3.6)

and ⌘ is the transmissivity of the beamsplitter. Them-photon subtracted squeezed vacuum
state is given by

| 
out

i = hm| 
in

i = hm|B̂(⌘)⇠̂(s)|0i|0i. (3.7)

Introducing a closure relation on the squeezed vacuum mode and using (3.5)
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After making the change of indices n! m+ k, (3.8) simplifies to
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i =
1X

k=0

hm+ k|⇠̂(s)|0iBm+k

k

(⌘)|ki. (3.9)
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Using (3.4) and (3.6) we obtain a final expression,

| 
out

i =
1

cosh s

1X

k=0

�(m+ k)
(k +m)!

(1
2

(k +m))!

r
(tanh s)k+m

2k+mm!k!
⌘k(1� ⌘)m|ki, (3.10)

where �(l) = (1+ eil⇡)/2 enforces the condition imposed by (3.4) that (m+n) be an even
integer. As the (ideal) squeezed vacuum state is a superposition state of the even Fock

!" #" $"

Figure 3.3: The Wigner functions of the: (a) one photon subtracted squeezed vacuum states

(r = 0.3), (b) two photon subtracted squeezed vacuum state (r = 0.5) , and (c) three photon

subtracted squeezed vacuum state (r = 0.7).

states, the number of photons subtracted determines whether the reconstructed state
resembles the odd or even Schrödinger kitten state. Experimentally, the subtraction is
usually implemented by tapping o↵ 5-10% of a squeezed vacuum state and measuring
via a regular (not photon number resolving) avalanche photo-diode[77, 78, 79]. Photon-
number-resolving capabilities of transition edge sensor photo-detectors have also been used
to reconstruct up the the 3 photon-subtracted squeezed vacuum state. [80].

3.1.3 Hybrid experiments

Our discussion of photon subtracted squeezed vacuum states and Schrödinger kitten states,
whilst important for understanding the results of this and the following Chapter, is some-
what of an aside from the theory presented in this Chapter. The ‘photon-subtracted
squeezed vacuum state’, however, is the prototypical example of a hybrid experiment:
where both the discrete and continuous degrees of freedom are simultaneously exploited.
These experiments combine two historically distinct camps of quantum optics, requiring
the marriage of experimental techniques that address di↵erent regimes: with discrete-
variables implementations broadly focusing on the time domain, while continuous-variables
implementations are typically framed within the frequency domain. While combining
these two domains is experimentally very challenging, it allows one to combine the weak,
deterministic non-linearities readily accessible in continuous variable architectures, with
the non-deterministic, strong measurement-based non-linearities accessible in the discrete
variables. This has provided new research direction in quantum optics, with excellent
prospects for quantum information and communication[86, 87, 88, 89, 90, 91, 92].
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3.2 Theory

In the previous section I introduced the photon-subtraction protocol of Danka et al. [82]
and outlined how a photon counting measurement is used to herald the preparation of a
non-Gaussian state of light. Instead of heralding the preparation of a photon subtracted
state with a ‘photon counting’ measurement, we construct a continuous variable analog of
such a heralding measurement.

If ⇢
ab

originates from a squeezed vacuum mode passing through a weakly reflecting
beam splitter, the resulting mode at b conditioned on finding n photons at a will be an
n-PSSV state (see Figure 3.2). Of course, to prepare such a state, a projective measure-
ment on the Fock basis is required. Instead, we demonstrate how we can imitate this
conditioning with quadrature measurements to reconstruct the statistics of the n-PSSV
states. In doing so we forgo any designs we have on preparing states, and instead take
an ensemble approach, hoping to recover the same statistics from the final measurement
ensemble. We will consider two scenarios: a phase randomised homodyne detection on
mode a, and a heterodyne detection on mode a.

For the first scenario the conditioning measurement consists of sampling the homo-
dyne observable X̂�

a

in a phase randomised manner such that each quadrature angle, �
contributes equally (Figure 3.4.b.). Here, X̂�

a

= e�i�â
a

+ ei�â†
a

, where â
a

and â†
a

are the
annihilation and creation operators in mode a, respectively, and � is the field quadrature
angle. The mode b is characterised via homodyne tomography, with a measurement of
the field quadrature X̂✓

b

. We will later consider a second scenario, where we exchange our
phase-randomised homodyne detection of mode a for a heterodyne detection of mode a
(Figure 3.4.c.).

3.2.1 Transformation Polynomials

In the first example, we will attempt to condition the output state b on the measurement
outcome of operator n̂

a

. To do so, we want to estimate the expectation value
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⇢
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where ⇢
ab

is the joint state at modes a and b. Expanding the operator n̂
a

, (3.11) can be
rewritten as,
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=
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pr(X✓

b|n
a

) . (3.14)

where pr(n) denotes the probability of measuring the eigenvalue n at a, and ⇢
b|n is the

state at b conditional on measuring an outcome n at a.

To illuminate this problem consider ⇢
ab

is a weakly squeezed vacuum state passing
through a low reflectivity beam-splitter (with vacuum occupying the other input port).
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Conditioning

Yes or  No

Conditioning

(a)

(b)

(c)

Conditioning

Figure 3.4: Reconstruction of the output state at b on n̂
a

. (a) A photon number discriminating

detector is used to achieve the conditioning. The outcome of the photon counting measurement

on a heralds the correct preparation of the state. The statistics of the non-Gaussian state are then

reconstructed by keeping only samples X✓

b

that correspond to successful preparations. (b) The

same statistics can be obtained by replacing the photon number discriminating detector with a

phase-randomised homodyne detection, or equivalently, (c) heterodyne detection at mode a. Each

sample at X✓

b

is then weighted by a continuous function of the outcome X�

a

.
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Ignoring higher-order terms, a weakly squeezed vacuum state can be approximated by
| i = |0i � �|2i where � ⌧ 1. The beam-splitter transforms this state to

|0, 0i+ �
⇣
|1, 1i

p
2⌘2(1� ⌘2) + |2, 0i(1� ⌘2) + |0, 2i⌘2

⌘
, (3.15)

where the beamsplitter transmissivity is ⌘ ⇠ 1, and |n,mi describes the state with n
photons in mode a and m photons in mode b.

For this state, the expectation value of (3.11) becomes

Tr
h�
|1ih1| 2⌘2(1� ⌘2) + |0ih0| 2(1� ⌘2)2

� ���X✓

b

ED
X✓

b

���
i
�2 . (3.16)

where the second term arises from the probability of reflecting two photons. For ⌘ ⇠ 1 we
can assume this probability to be very small and the output expectation value gives the
statistics corresponding to a single photon Fock state.

To realise this conditioning, we would typically measure mode a in the Fock basis,
|nihn|, with the measurement outcomes n

a

informing our decision of whether to keep or
reject the corresponding outcomes of b. But consider instead, a futile attempt to measure
n̂
a

by probing the quadratures. Expressing n̂ in terms of the quadrature operators X̂ and
P̂ we obtain

n̂ = â†â =
1

4

⇣
X̂2 + P̂ 2

� 2
⌘

(3.17)

where X̂ and P̂ share the commutation relation [X̂, P̂ ] = 2i. Although this ensures the
perfect simultaneous measurement of conjugate observables X̂ and P̂ is forbidden, (3.11)
can nevertheless can be written as the sum
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The expectation value hX✓

b

i

n

is accessible by combining the outcomes of the two indepen-
dent measurements.

3.2.2 Phase-randomised homodyne detection

The central relationship (3.20) between the familiar field quadrature operators holds for
any pair of orthogonal quadrature operators,

n̂ = â†â =
1

4

⇣
(X̂�)2 + (X̂�+⇡/2)2 � 2

⌘
, (3.20)

where X̂� = e�i�â + ei�â†. As a result, the global phase ✓ is immaterial and does not
need to be controlled. Noting this, (3.20) can be written as an integration over the global
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phase
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where,
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is the phase-averaged quadrature moment operator.

Substituting this into (3.11) we obtain
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The expectation value hX✓

b

i

n

can be obtained by a phase randomised sampling of the
quadratures and weighting the outcomes at b by the result 1

2

(X̄2

a

� 1) at a given an
outcome X✓

a

.

Example: Conditioning on n̂
a

(n̂
a

� 2)

To obtain a more faithful reproduction of the single photon Fock state from the weakly
squeezed state described above, consider that we instead condition on a di↵erent polyno-
mial, n̂

a

(n̂
a

� 2). This further isolates the n
a

= 1 eigenvalues removing the contribution
of two photon outcomes at mode a, in addition to the n

a

= 0 vacuum contribution. For
a weakly squeezed vacuum input state (neglecting four photon terms), the analogue of
(3.16) for this new conditioning is
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To realise this conditioning via our homodyne measurements, we repeat the recipe as
before and cast n̂ in terms quadrature operators X̂ and P̂ .

n̂(n̂� 2) =
1

16

⇣
X̂2 + P̂ 2

� 2
⌘⇣

X̂2 + P̂ 2

� 4
⌘

=
1

16

⇣
2X̄4

� 12X̄2 + 8 + X̂2P̂ 2 + P̂ 2X̂2

⌘
. (3.26)

The terms involving products of X̂ and P̂ cannot be evaluated directly through a phase
randomised homodyne measurement. In order to make them accessible, we reexpress
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X̂2P̂ 2 + P̂ 2X̂2 as a function of X̄, which can be done as follows:
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â†
�

â
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�

â
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where we define â
�

= â exp(�i�). Substituting this into Equation (3.26), we obtain the
sampling polynomial,
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With this, the expectation value becomes
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which can be sampled via a randomised phase quadrature measurement.

3.2.3 Arbitrary conditioning in n̂
a

The first sampling polynomial we considered, Q = n̂
a

, conditioned the reconstructed state
at b on the statistical mixture

⇢̂
a

= |1ih1|+ 2 |2ih2|+ 3 |3ih3|+ . . . , (3.34)

a state diagonal in the Fock basis, where the relevance of each term is accordingly weighted
by their individual eigenvalues. The example of (3.26) then considers a correction to erro-
neous 2 photon ‘events’, removing the |2ih2| term and essentially ‘purifying’ the condition-
ing. To a↵ect a perfect conditioning at a we would ideally like to isolate the |1ih1| term,
which would require an infinite order polynomial. However, we can construct a higher-
order polynomial of n̂ to finite degree in a similar way to that presented in §3.2.2. We
provide two algorithms in Appendix A. These polynomials provide a simple construction
for a k photon subtracted state by conditioning on

P(n̂) =
1

n̂� k

j

maxY

j=0

n̂� j , (3.35)

with j
max

> k. The choice of j
max

allows you to specify the maximum photon correction
for higher photon number contributions up to j

max

. However, this will be at the expense of
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introducing larger weighting on the residual components with photon numbers greater than
j
max

. If the probabilities associated with these residual photon numbers are not vanishing
su�ciently rapidly to negate any growing weighting, one cannot find a polynomial to
provide an arbitrary purity.

As an example, to obtain a 2-PSSV state, we could implement the conditioning poly-
nomial with k = 2 and j

max

= 6:

Q(n̂) = n̂(n̂� 1)(n̂� 3)(n̂� 4)(n̂� 5) . (3.36)

Expanding in the Fock basis,

Q(n̂) = �12 |2ih2|+ 180 |7ih7|+ 1008 |8ih8|+ . . . (3.37)

In this example, we see that the seven photon and eight photons events are weighted by a
factor of 15 and 84 respectively compared to the two photon events. For squeezed states
however, these high photon number states would have exponentially vanishing probabilities
in almost all applications.

3.2.4 Pattern functions

The resolution to the purification issue described above emerges from the pattern functions
(described in detail in §2.5.2). The pattern functions [48, 49, 50] specify the link between
the homodyne observables and the density matrix. In optical homodyne tomography, they
enable the direct sampling of the density matrix, bypassing the need to reconstruct the
Wigner function.

We want to characterise the state at a conditioned on an n photon event at b. Ideally,
we would choose an appropriate polynomial in X�

a

that corresponds to |nihn|. Practically,
however, we can only realise a polynomial of a limited order—correcting for the finite
undesired photon number events that may prove statistically significant. The pattern
functions however permit a perfectly isolating characterisation that removes all unwanted
photon number events.

We start with the general problem of reconstructing the statistics of the post-selected
state at b, ⇢̂

b

, conditioned on the event of having a state ⇢̃
a

at a. This conditioning can
be achieved by means of a measurement apparatus at a having two outcomes:
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is the probability of obtaining outcome ⇡
1

. We decompose the conditioned state ⇢̃
a

in the
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Fock basis with coe�cients c
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so that the post-selected state at b can be written as the sum
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To be able to reconstruct the post-selected state, we perform a quadrature tomography by
measuring X✓

b

at b. The probability of getting an outcome X✓
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on the post-selected state
is
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where ⇢
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�
is the state at a when we obtain outcome X✓
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at b. The probability
of getting this outcome is denoted as pr
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i in terms of quadrature value measurements. For this we utilise the Fock
basis pattern function [50] to write
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where the F
mn

are the pattern functions of the Fock basis. They are given by
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where  
m

(X
a

) and '
m

(X
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) are the m-th regular and irregular eigenfunctions, respectively,
of the Schrödinger equation in a harmonic potential 3. Substituting this into (3.47), we
find
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3Any second order di↵erential equation such as the Schrödinger equation must have linearly independent
eigenfunctions. The first, normalisable, solution is the standard wave function whilst the second is called
the irregular eigenfunction. It is not normalisable and must be discarded as a physical state, but nonetheless
can be a valuable tool in calculations[93].
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Figure 3.5: The convergence of the n̂ polynomials to their corresponding pattern functions for

a photon number measurement of (a) n = 1 and (b) n = 2.
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where pr(X�
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, X✓
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) is the unconditioned probability of obtaining outcomes X�
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and X✓

b

when we measure a and b in quadrature at angles � and ✓. Introducing the weighting
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we can write
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From this expression, we see that the conditioned distribution p̃r
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can be obtained by doing a phase randomised sample of the quadratures of a. To extract
the statistics of an o↵-diagonal element, one needs to keep track of the phase, �. As one
would anticipate, the polynomials we set about constructing earlier appear to converge to
the pattern functions the order grows (Figure 3.5).

3.2.5 Heterodyne Detection

Exactly the same conditioning that we have demonstrated via a scanned homodyne de-
tection is accessible via a heterodyne, or dual-homodyne detection. From an information
perspective, this is somewhat unsurprising, as both are informationally complete positive-
operator valued measures (POVMs) [94] 4. The heterodyne approach, however, is not
nearly as mathematically elegant. The crucial reason for this being the vacuum penalty
paid for the attempted simultaneous measurement of X̂ and P̂ . Consider again, our ex-
pression for the photon number operator in terms of the quadratures,

n̂
a

=
1

4
(X̂2

a

+ P̂ 2

a

� 2). (3.55)

Our attempt to measure X̂ and P̂ results in the actual observables,
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a
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2
(X̂
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+ X̂
v

) (3.56)

P̂
a

2

=
1
p

2
(P̂

a

� P̂
v

), (3.57)

4Provided one keeps a record of the homodyne phase for the scanned homodyne detection. This is not
a problem here because our ‘projection’ on mode a is only concerned with mean amplitudes.
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where X̂
v

and P̂
v

are the vacuum fluctuations. Whilst this noise penalty precludes any
shot-by-shot estimation of n

a

, because we are focused on average outcomes any contam-
ination from the vacuum can be perfectly accounted for. As the vacuum is necessarily
uncorrelated to our measurements and its variance is perfectly specified by quantum me-
chanics, our simplest conditioning transforms to

n̂
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=
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2
(X̂2

a

1
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a

2

� 2). (3.58)

To obtain more sophisticate polynomials in n̂
a

, we essentially follow the same procedure
as in §3.2.3 and Appendix A. We first note that the polynomials of degree d in n̂

a

are of
the form,

Q(n̂
a

) = R(X̂2

a

+ P̂ 2

a

). (3.59)

We thus anticipate the polynomials of our measured heterodyne quadratures will take the
general form,
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For a polynomial Q(n̂
a

) = R(X̂
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) of dimension d we ‘guess’ the general form,

P(X̂
a

1

, P̂
a

2

) =
dX

k=0

↵
k

(X̂2

a

1

+ P̂ 2

a

2

)k (3.61)

=
dX

k=0

↵
k

 
(X̂

a

+ X̂
v

)2

2
+

(P̂
a

+ P̂
v

)2

2

!
k

. (3.62)

(3.63)

Requiring that hP(X̂
a

1

, P̂
a

2

) = hR(X̂
a

, P̂
a

)i allows one to solve for the coe�cients ↵
k

.

Historically, the heterodyne experiment was the first version we experimentally im-
plemented, emerging from the ideas of Ralph et al. [70]. That first theoretical work
demonstrated a method to reconstruct the Wigner function of single photon Fock state by
first constructing the conditioned moments of the homodyne observable hn

a

(X
b

)ki. While
that result evolved into the work presented here, it also recalls some results from §3.2.1.
For the estimation of the simplest polynomial, P = n̂

a

, one only requires two indepen-
dent measurements of X̂ and P̂ , i.e. one could set their homodyne detector at a to first
measure X̂, and then P̂ . For the monomial of order 2 we encounter cross terms in hX̂P̂ i.
Estimation of the cross term hX̂P̂ i only requires two additional homodyne angles, X̂⇡/4

and X̂3⇡/4. As the order of the polynomial in n̂
a

increases, the size of the cross terms in X̂
and P̂ increases and accordingly the reconstruction requires an increasing number of inde-
pendent homodyne slices. This is precisely the limit in which in the series of independent
homodyne measurements becomes informationally complete [94].

As another aside, one might anticipate because of the informational completeness of
heterodyne detection, an analog of the sampling functions should exist for heterodyne
detection. They were provided by Paris in 1996 [95], and allow for the same perfect
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discrimination demonstrated in §3.2.4.

3.3 Discussion & Summary

We must emphasise this technique is not shot-by-shot and cannot be used in any mean-
ingful way to prepare states. There is no way to talk sensibly about ‘events’, and as such,
it is not post-selective. For it to work you need the entire measurement record at your
disposal, with all measurements required to perfectly ‘cancel’ the Gaussianity and yield
the correct statistics. This is quite di↵erent to the post-selective technique that will be
discussed in Chapter 5, where a post-selection informed by a heterodyne measurement
allows one to actually herald a more-entangled system.

This technique requires that the statistical relevance for each measurement you ob-
tain at mode b to the final ensemble is decided by the outcome of some polynomial
P(X̂�

a

). Analogies can be drawn with the aforementioned hybrid experiments, where
the measurement-based non-linearity of a real photon-counting measurement allows one
to de-Gaussify a state. In the analogous hybrid system, the outcome of the conditioning
measurement at b heralds the correct preparation of the state - informing the experimenter
whether the state at a should be kept or rejected. For the technique presented here, the
experimenter has no such information, just a seemingly random string of continuous num-
bers that he uses to weight his measurement result at b. The non-Gaussian statistics
emerge from this post-processing of the data. It could be argued it arises as the polyno-
mials themselves are usually (but not always) greater than quadratic in the annihilation
and creation operators - but this is not always the case. A more satisfying resolution is
that the non-linearity emerges from the weighting procedure itself.



Chapter 4

A Continuous Variable Analog of
a Photon Counting Measurement:
Part II

This chapter will address the experimental implementation and results of the theory out-
lined in the previous chapter. It concerns the experimental details of two very similar
experiments that were done approximately one year apart using (mostly) the same in-
frastructure. As such, the experimental details and results have been condensed into one
chapter, noting the distinctions between both implementations as they arise.

The historically first experiment was the implementation of the ‘heterodyne’ condi-
tioning described in §3.2.5. Here, the term ‘heterodyne’ is used interchangeably with
‘dual-homodyne’. Though equivalent, heterodyne detection is the standard theoretical
term for the simultaneous measurement of X̂ and P̂ , while dual-homodyne detection best
describes what we actually did.

The second experiment replaced the dual-homodyne conditioning measurement with a
single, phase randomised homodyne detection. The experimental schematic for the single-
homodyne implementation is provided in Figure 4.1. The distinction between the two
conditioning measurements is provided in Figure 4.3.

4.1 Experimental Generation of Squeezed Light

4.1.1 Preparation of Seed and Pump Light

The light resource for this experiment was an Innolight Diablo ND:Yag laser producing
continuous wave single mode light at 1064 nm. The laser also featured an internal fre-
quency doubler that frequency doubled a portion of the available 1064 nm light to its
second harmonic at 532 nm. The maximum available power was 400 mW at 1064 nm,
and 800 mW at 532 nm. The laser FWHM linewidth was specified by the manufacturer
to be ⇡ 1 KHz. The laser also featured an internal ‘noise eater’ option which provided 30
dB of suppression of the 900 kHz natural relaxation oscillation of the laser. Even with the
noise eater on, the roll o↵ of the relaxation oscillation is still visible up to approximately
4 MHz.

The 1064 nm light were then passed through an Faraday isolator as a precaution
against optical feedback via unintended backscatter. The 1064 nm and 532 nm light was

57
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Figure 4.1: Experimental Setup A CW Nd:YAG laser at 1064 nm provides the light resource

for this experiment. An internal second harmonic generation (SHG) cavity frequency doubles a

portion of the 1064nm light. Both the 1064 nm and 532 nm fields undergo spatial and frequency

filtering before providing seed and pump resources respectively for a doubly-resonant optical para-

metric amplifier (OPA). A small portion of the resulting squeezed coherent state is then reflected

for ‘conditioning’ by a variable beam-splitter - implement with a �/2 wave-plate and a polarising

beam splitter (PBS). The reflected light (mode a) is subsequently sampled via a phase randomised

homodyne detection. The remaining transmitted light (mode b) is characterised by a tomographic

homodyne detection, sampling X✓

b

for ✓ = 0 . . . 165� in intervals of 15�.
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then passed through their respective high finesse optical resonators, or mode cleaners. The
value of this step was twofold: first, it provided a well-defined single TEM-00 spatial mode
for the entire experiment, and second, it provided additional filtering of the intensity and
frequency noise of the laser above the cavity bandwidth. The two mode cleaners were both
of the same design, consisting of a 3 mirror triangular ring resonator, with an optical path
length of 800 mm. The 1064 and 532 nm mode-cleaners had respective cavity linewidths
of 0.4MHz and 1.0MHz. This additional suppression of the remnant relaxation oscillation
provides a shot noise limited laser field at frequencies above 4 MHz.

Both of the mode cleaners were controlled using the Pound-Drever-Hall (PDH)[96, 97]
with a sideband frequency well outside the resonator linewidth. For this purpose we recycle
the 40 MHz phase modulation sidebands used for control of the internal frequency doubling
cavity within the laser unit. An error signal is obtained via analog demodulation before
PID control is implemented using software written in National Instruments LabView. More
details on this control are given in §4.2.3.

After filtering, the 1064 nm light was divided for three main purposes. A small portion
of the 1064 nm light provided a seed field for the optical parametric amplifier (OPA)
cavity. The rest was provided bright phase reference for measurement, and a field used for
displacement of the prepared squeezed light. For the purposes of the control of both the
OPA cavity length and relative phase between the seed and pump fields, a phase sideband
was encoded on the seed field at 11.25 MHz.

4.1.2 Optical Parametric Amplifier

The optical parametric amplifier is the most complicated aspect of these two experiments.
The same OPA cavity was the source of squeezing for both experiments, however a superior
quality crystal was used in the single homodyne experiment. This was one of two major
improvements made - the other being a dramatic improvement to photodiode e�ciency.
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Figure 4.2: Detailed schematic of the optical parametric amplifier cavity.

Cavity specifications

The OPA cavity was originally designed by Nicolai Grosse and the full details of its original
iteration are available in his thesis [98]. The cavity is a travelling-wave cavity comprised
of four mirrors in a bow tie geometry. A detailed schematic of the OPA cavity is provided
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in Figure 5.3. The cavity consisted of two inner concave mirrors (m
3

and m
4

) with radii
of curvature of 38 mm spaced 44 mm apart, and two flat mirrors spaced 90 mm apart.
The total optical path length was 285 mm with an angle of incidence of 6�. The angle of
incidence was made as small as possible to reduce astigmatism in the cavity mode. As the
cavity was designed to be simultaneously resonant at both the fundamental and second
harmonic, mirrors m

2

, m
3

and m
4

were HR for both 1064 nm and 532 nm. The 10 mm
long crystal was centred between the two convex mirrors, focusing the light to a waist of
approximately 40 µm inside the crystal.

When optimising the squeezing performance of an OPA cavity a parameter of im-
portance is the ‘escape e�ciency’, ⌘

esc

. As the name suggests, the escape e�ciency is
a measure of the e�ciency with which the squeezed light can exit the cavity mode, and
is defined as ⌘

esc

= T/(T + A), where T is the transmission through the input/output
coupler, and A the total intra-cavity losses. There are two ways to improve the escape
e�ciency. The most desirable is to maximise ⌘

esc

by minimising any intra-cavity losses, A.
This requires that we both reduce the number of surfaces the intra-cavity field interacts
with, and also improve the quality of those surfaces. Alternatively, one can also reduce the
reflectivity of the input-output coupler. For bow-tie geometries where the number of intra-
cavity surfaces is inherently higher, the reflectivity of the input-output coupler provides
flexibility. Increasing the transmissivity of the input-output coupler can have undesirable
consequences as reducing the reflectivity will lower the the finesse of the cavity, and thus
the threshold of the system. This was not a concern for our implementation however,
as we had an abundance (700 mW) of available pump light (even less of a concern for a
doubly-resonant system). The final choice of input-output coupler was 85% for 1064 and
70% for 532. For the 1064 nm cavity, the choice of output coupler gave a linewidth and
finesse of 32 MHz and 35 respectively. The 532 nm cavity had a linewidth of 65 MHz and
a finesse of 16.

The non-linear crystal

Both experiments used a periodically-poled Potassium Titanyl Phosphate (PPKTP) crys-
tal with dimensions of 10⇥1 mm3. Potassium Titanyl Phosphate is immensely popular in
non-linear optics, owing to its excellent non-linearity and relatively high damage threshold
(when compared to Lithium Niobate).

The KTP crystal is periodically poled to provide quasi-phase matching. Traditional
phase matching ensures the phase relationship between two interacting fields is maintained
across the non-linear medium. This technique usually exploits the birefringence of the non-
linear medium to find a critical phase matching temperature where the refractive indices
for both fields coincide. Quasi-phase matching, however, relaxes the requirement for a
constant phase relationship across the interaction length, permitting phase mismatch over
some propagation distance. The material is ‘periodically poled’, inverting the sign of the
non-linearity where - due to acquired phase mismatch - the non-linear conversion would
take place in the wrong direction. This provides a net accumulation of the non-linear
interaction over the length of the crystal. This technique also provides some flexibility in
choosing the temperature at which quasi-phase matching occurs, limited by the minimum
domain size for poling. The quasi-phase matched temperature of the PPKTP crystal was
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specified to be around 35�c.

Our choice of a doubly-resonant system also requires that we need to compensate for
the e↵ects intra-cavity dispersion. As all the intra-cavity components are dispersive, the
fundamental and second harmonic fields will accumulate a di↵erent relative phase shift
through a round trip. Consequently, controlling the cavity path length to be resonant
at the seed frequency will not guarantee co-resonance at the pump frequency. To com-
pensate for intra-cavity dispersion a ‘wedged’ crystal was used, with one surface cut at
an angle of approximately 1�. As the crystal is quasi-phase matched, the fundamental
and second harmonic fields experience di↵erent refractive indices. With the addition of a
small wedged section at the end of the crystal, one can vary the intra-cavity path lengths
of the fundamental and second harmonic fields by translating the crystal laterally to the
beam propagation direction until their individual resonance conditions coincide. This a
particularly elegant solution to the dispersion problem as it does not introduce additional
intra-cavity surfaces.

The two experiments used two di↵erent crystals. Both crystals were dual band anti-
reflection AR coated at 532 nm and 1064 nm, however the AR coatings were of di↵erent
qualities. For the first (dual-homodyne) experiment the AR coatings were provided by the
crystal manufacturer Raicol and specified to be AR coated to < 0.1%. The AR coatings
were seen as a potential bottleneck for the quality of the squeezing, given the observably
high non-linearity of KTP. For the second experiment we threw money at the problem.
The non-linear crystals were manufactured by Raicol, the incident surfaces were polished
by LaserOptik and the dual-band AR coating was provided by Advanced Thin Films. The
improved AR coating quality was specified to be 0.01% reflective.

OPA operation and control

Our doubly resonant system can be decomposed into its 1064 nm (seed) cavity, and a 532
nm (pump) cavity. The physical cavity length was defined by the resonance condition of
the fundamental seed field, and then co-resonance with the pump field was established
through a combination of adjustments of the crystal temperature and translations of the
crystal. The relative phase between the seed field and the pump field defines the angle of
the produced squeezed light. We work in the de-amplification regime, where the relative
phase between the pump and seed is maintained at ⇡, such that the seed field is ‘de-
amplified’ by the pump field. This results in a state squeezed in the amplitude quadrature
and anti-squeezed in the phase quadrature.

There are three active control loops required for the operation of the OPA. The first
controls the OPA cavity length and is defined by the resonance condition of the 1064nm
seed light. The second controls the phase relationship between the seed and pump fields
to define the angle of the squeezing. The third controls the non-linear crystal temperature
to ensure quasi-phase matching.

The seed field was injected into the cavity through a HR back mirror (Figure 5.3) with
the reflected/transmitted light detected for the purposes of extracting an error signal for
both the OPA cavity length and the relative phase between the seed and pump fields.
The cavity length was controlled by actuating the position of mirror (m

2

) using a piezo-
electric transducer (PZT). Our choice of sideband modulation for locking the OPA was
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complicated by a few considerations. To ensure a reasonably wide detection band for
acquisition free of classical noise, we needed to take care with our choice of sideband
modulations. This meant introducing as few classical sideband modulations as possible.
In addition to providing an error signal for the OPA cavity length and relative phase,
the phase modulation at 11.25 MHz was also recycled to control the displacement of the
squeezed state.

The technique for extracting an error signal for both the OPA cavity length, and the
phase relationship between the seed and pump fields, from the same photocurrent was
introduced to me by Boris Hage - who briefly discusses it in his thesis[99]. The technique
requires the sideband modulation to be (preferably well) within the cavity linewidth. An
error signal obtained via the PDH locking technique [96, 97] is formed of two compo-
nents: a real term and an imaginary term. These two terms are individually accessible via
demodulation of the photocurrent at � = 0 and � = ⇡/2 respectively, but in almost all
PDH locking scenarios the choice of the modulation frequency (either much larger or much
smaller than the resonator linewidth) ensures that one term is dominant (and thus only one
choice of � is required). It is perhaps more commonplace to choose a modulation frequency
well outside the resonator linewidth, but here we consider a modulation within the res-
onator linewidth. Demodulating of the aforementioned photocurrent at � = ⇡/2 produces
the desired error signal for the cavity length. Demodulation of the same photocurrent at
� = 0 recovers an error signal for the relative phase between the seed and pump fields,
with zero crossings at ✓ = 0 (seed amplification) and ✓ = ⇡ (seed de-amplification). The
⇡/2 di↵erence in the demodulation phase also ensures that the two error signals should
be uncoupled. As the seed field was injected through a HR mirror, it experienced a very
under-coupled cavity, and as such, the error signal was especially sensitive to any parasitic
amplitude modulations on the seed field. A resonant phase modulator circuit was used to
enhance the modulation depth.

The crystal temperature was stabilised in a conventional manner. The crystal was
seated within a small copper co�n mounted on a Peltier. The Peltier itself was mounted
on a comparatively large copper block, which provided a large thermal mass for additional
temperature stability. The temperature was controlled using a high resistivity thermis-
tor mounted within the copper co�n, with the feedback implemented by a commercial
temperature controller.

Doubly-resonant system

One of the primary requirements of the experiment was the long-term stability of the
squeezing source. This required the long-term stability of the co-resonance condition.
As the quasi-phase matching temperature is defined by the periodic poling domain, the
manufacturer specifies an approximate quasi-phase matching temperature. An estimate
of the temperature can be further improved by coupling a bright seed field into the cavity
and measuring the second harmonic generation e�ciency as a function of temperature. In
a doubly resonant design, however, achieving sensitive measurements of the SHG e�ciency
is complicated by the requirement of co-resonance. For periodically poled crystals however,
the sinc-squared dependence of the conversion e�ciency is substantially larger (5�C) than
the co-resonance condition (0.1�C). As such, it was more critical to meet the co-resonance



§4.2 State Reconstruction 63

condition than satisfy the exact quasi-phase matching temperature.

The wedged crystal angle of 1� gave approximately five points of co-resonance (where
the e↵ects of intra-cavity dispersion were compensated) across the diameter of the crystal.
Given an initial crystal temperature close to the ideal phase matching temperature, the
crystal was then translated laterally until the two fields were approximately co-resonant.
Stabilising the cavity on resonance, the crystal temperature was further tuned to maximise
the observed parametric gain, corresponding to achieving the co-resonance condition. As
this co-resonance condition was dependent on the localised heating due to green absorp-
tion, the temperature was again optimised once the relative phase between the seed and
pump was stabilised. Provided this temperature was set correctly, theoretically the system
should ‘self-stabilise’. If the system is perturbed away from the co-resonance condition
- say, the cavity loses lock - the loss of localised heating required that upon reacquiring
the cavity lock, the condition for co-resonance will no longer be met. However, the e↵ects
of absorption from the slightly o↵-resonant green light should push the system closer to
co-resonance, producing more green absorption and iteratively driving the system towards
co-resonance.

As is usually the case, however, things are experimentally more subtle. Small pertur-
bations around the co-resonance condition - usually driven by fluctuations in the pump
power or temperature controller stability - have an observable e↵ect on the error signal
controlling the relative phase between the seed and pump fields. Jitter in the phase angle
between the seed and pump field essentially shakes the squeezing ellipse, manifesting as
non-Gaussian noise that is proportional not only to the size of the rotation, but also the
size of the initial squeezed state [100]. This e↵ect can be largely overcome with optimisa-
tion of the control systems, but over the timescales required for this experiment it proved
problematic. Over timescales of 10 to 20 minutes fluctuations in the pump power and the
temperature control lead to drifts in the squeezing and the squeezing angle. This is most
problematic for tomographic aspect of the experiment, where a fundamental assumption
is the identical preparation of the unknown state over the measurement time. These e↵ects
were partially mitigated by choosing a input coupler with reflectivities 70% for 532 nm and
85% for 1064 nm, that, with the additional absorption for visible light in the bulk material,
produced a 532 nm cavity linewidth over twice that of the 1064 nm cavity. This ensured
that small changes in the co-resonance condition would not have such pronounced conse-
quences for the circulating green power, thus improving the overall stability. In hindsight
however, moving to a singly resonant system would have been a smarter choice.

4.2 State Reconstruction

After preparation of the squeezed resource, our state is divided between two measurement
stages: a conditioning measurement and a reconstruction measurement.

Displacement stage

Homodyne tomography requires we reconstruct the marginals pr(X̂✓) for several quadra-
ture angles ✓. Alternatively, one can continuously sample X̂✓ whilst scanning the measure-
ment angle, ✓, reconstructing the phas. Our technique to define and control the homodyne
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Figure 4.3: The two di↵erent conditioning measurement schemes.

detection angle, ✓, requires we introduce both classical amplitude and phase sidebands.
As we cannot a↵ord the requisite loss from direct modulation of the squeezed state, we
instead make use of an auxiliary beam on which we do the encoding.

A small portion of the available laser light was tapped o↵ after the 1064 nm mode
cleaner. The light was first focused through a phase electro-optic modulator, and then
through an amplitude electro-optic modulator. The polarisation of the light was rotated
from vertical to circular after the phase modulator to ensure a linear response of the
polarisation modulation to the RF signal. The tomographic locking technique that exploits
the phase and amplitude modulation will be discussed in §4.2.2.

The auxiliary mode is then interfered with the squeezed coherent state on a very unbal-
anced 98:2 beamsplitter. The intensity of the 2% transmitted auxiliary mode is matched
to that of the 98% reflected squeezed coherent state, and the relative phase between the
auxiliary and squeezed modes is controlled using the 11.25MHz phase modulation available
on the squeezed state. The error signal extracted from the small 2% transmitted squeezed
light is substantially ‘boosted’ by the auxiliary mode that is ⇡ 2400 times brighter. In
addition to introducing the required phase and amplitude modulation on the squeezed
coherent state, by choosing the relative phase appropriately, it allows us to displace the
coherent squeezed state to a coherent amplitude near to zero. This allows more flexibility
in the intensity of the local oscillator. The displacement is primarily limited by the quality
of the mode matching between the auxiliary mode and squeezed coherent state. Our fringe
visibility was 97.5%.

The squeezed resource state is then split between a conditioning measurement and
a characterisation measurement. Akin to a traditional photon subtraction implementa-
tion, a small portion of the light is reflected to the analogous conditioning measurement,
whilst the remainder is transmitted for the reconstruction of the conditioned states. The
beam-splitter reflectivity defines the fidelity of the “subtraction” operation with an ideal
implementation of the annihilation operator. A half-wave plate combined with a polarising
beam splitter (PBS) gives us a variable beam-splitter, allowing us to vary the proportion
of light used for the conditioning measurement. Typically we reflect 10% of the squeezed
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resource for conditioning, the transmitted 90% for characterisation.

4.2.1 Conditioning Measurement

The di↵erence in the conditioning measurement is the only fundamental change between
the two experimental demonstrations. Schematics for both conditioning measurements
are provided in Figure 4.3. Other changes occurring in the second implementation were
largely technical improvements.

Dual-homodyne detection

The first experiment used dual-homodyne detection (or heterodyne detection) as the con-
ditioning measurement. Historically, the idea of replacing the dual-homodyne detection
with a single phase-randomised homodyne detection occurred to us after these first mea-
surements were made.

The dual-homodyne measurement was implemented using a polarisation technique
outlined in Figure 4.3. The ⇠ 10% or so of the vertically polarised squeezed field reflected
for conditioning is split on a 50:50 non-polarising beam-splitter (NPBS). An orthogonally
(horizontally) polarised bright local-oscillator is injected in the unused input port. Of the
two output paths, the first (mode a

1

) contains a half-wave plate orientated at 45� followed
by a PBS that divides the light between two photodetectors, the subtraction of these two
photocurrents providing one homodyne measurement. The second output path (mode a

2

)
also includes a quarter-wave plate orientated at 45�, which introduces a ⇡/2 phase shift
between the two orthogonally polarised local oscillator and squeezed field. The ⇡/2 phase
shift introduced between the local oscillator and the squeezed field ensures the homodyne
observable, X̂�

a

1

sampled at mode a
1

will be in quadrature with the observable sampled at
mode a

2

.
In principle, this technique makes the active control loop of the second homodyne re-

dundant, as the relative phase between the two fields is already appropriately defined. In
this instance however, it also exempts us of the need to actively control the conditioning
measurement, because, for our estimation of n̂

a

, measurement of X̂
a

1

and P̂
a

2

is equiva-

lent to measurement of X̂�

a

1

and X̂
�+

⇡

2

a

2

. For the dual-homodyne measurement the local
oscillator phase is permitted to drift.

The two homodyne stages each utilised two universal photodetectors (Uni-PD). These
Uni-PD circuits were designed in-house and named such because they balance desirable
high gain and low dark noise properties with reasonable large bandwidth, providing a
photo-detector that is nearly ‘universally’ suitable for many purposes. The detectors were
electronically matched to provide a common mode rejection of 45 dB at the subtraction.
For the sideband frequencies up to 5 MHz the Uni-PD design provided up to 20 dB of
dark noise clearance with a suitably bright local oscillator.

The homodyne e�ciency of the entire detection stage was originally estimated at 94%
±2%. This was primarily limited by the Epitaxx ETX-500 InGaAs photodiodes which
have a manufacturer specified quantum e�ciency of 95 ± 2%. Later independent mea-
surements made with squeezed light contend this number was more likely to be ⇡ 90%.
Improvements of approximately 2% in the absorbed light could be made by tweaking the
angle of incidence, and the total e�ciency could have been improved by retro-reflection
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of the light onto the diode surface. The secondary limitations to the homodyne e�ciency
include the accumulated transmission losses and polarisation mis-match introduced by
the polarisation optics required for dual-homodyne technique, and mode-matching, with
typical fringe visibilities of 99.5 on the dual homodyne stage.

Phase-scanned Homodyne Detection

In the second experiment the conditioning was instead implemented using a single homo-
dyne detection stage. Accurate state reconstruction with this technique relies on phase-
randomised homodyne detection with equal representation of all angles. To reduce error
resulting in a systematic under or over sampling of quadratures angles, we used a symmet-
ric sawtooth signal to ramp the phase of the homodyne over several ⇡ at approximately
100 Hz – significantly faster than the drift of the global phase of the lasers. The en-
coding of phase and amplitude modulation sidebands to allow control of the homodyne
angle X✓

b

for tomographic reconstruction also allows us to verify that for our conditioning

measurement, X�

a

, we are equally sampling all quadratures.

The second experiment utilised a new universal photodetector design with a perfor-
mance comparable to the original design. These new photodetectors used InGaAs diodes
custom manufactured by the Fraunhofer institute which had a manufacturer specified
quantum e�ciency of > 99%. The measured fringe visibility of the homodyne detection
stage was typically 99.7%, giving an overall homodyne e�ciency > 98%.

4.2.2 Characterisation Measurement

The details of the characterisation or reconstruction measurement are largely identical for
both implementations. The second experiment benefitted from a much improved quantum
e�ciency due to the aforementioned improved InGaAs photodiodes.

Tomographic Locking

Optical homodyne tomography requires we stabilise the phase of a balanced homodyne
detector to any arbitrary quadrature of our choosing. To do so, we introduced amplitude
and phase sidebands onto our squeezed field via a displacement (§4.2). Our technique
requires both the frequency, !, and magnitude, ⇠ of the phase and amplitude modulation
be identical, but the signals be in quadrature (requiring a ⇡/2 phase shift between them).
The modulation of both the amplitude and phase quadrature can be described by the
coherent addition of the two,

â(t) =
1

2
â
0

(t) [1 + ⇠ cos!t] +
1

2
â
0

(t)
⇥
1 + i⇠ cos (!t+ ⇡

2

)
⇤

= â
0

(t)


1 +

⇠

2
(cos!t� i sin (!t))

�
= â

0

(t)

✓
1 +

⇠

2
e�i!t

◆
. (4.1)

From the form of (4.1) it is clear we have introduced a single sideband to the signal field.
As we are interested in stabilising the relative phase ✓ between the squeezed field, â,
and the local oscillator, â

lo

, we only need to make reference to their classical amplitudes.
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Interfering the signal field and the local oscillator on a 50:50 beamsplitter, we obtain the
output fields,

↵
1

=
1
p

2

h
↵(1 + ⇠e�i!t) + ↵

lo

ei✓
i

↵
2

=
1
p

2

h
↵(1 + ⇠e�i!t)� ↵

lo

ei✓
i
. (4.2)

Taking the di↵erence of the corresponding photocurrents i
1

and i
2

(where i
k

/ ↵†
k

↵
k

)
gives the expression

�i / 2↵↵
lo

⇠ cos (!t� ✓). (4.3)

Electronically mixing the di↵erence photocurrent with an electronic local oscillator,
sin (!t� �), and low-pass filtering retrieves the error signal,

e / ↵↵
lo

⇠ sin (✓ � �), (4.4)

where � denotes the phase of the electronic local oscillator. Choosing the demodulation
phase, �, equal to the desired homodyne angle ✓, produces an error signal with a zero-
crossing at ✓. This allows stabilisation of the homodyne detection to any arbitrary angle
by simply choosing the electronic demodulation phase.
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Figure 4.4: Variance of the measured squeezed state at the characterisation stage as a function

of the tomographic angle, ✓ = 0�, 15�, . . . 165�

Tomographic measurement

The characterisation used a single balanced homodyne detection stage, with the typically
⇠ 90% of remaining squeezed light split on a 50:50 beam splitter and interfered with
a bright local oscillator. The signal field and local oscillator were matched to a fringe
visibility of 99.7%. The overall homodyne e�ciency for the system was estimated to be
92± 2% for the first experiment, and > 98% for the second experiment.

The auxiliary mode used to displace the squeezed field introduced phase and amplitude
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sidebands at a frequency of 29.0625 MHz (changed to 30 MHz for the second experiment).
The homodyne di↵erence photocurrent was split, with half sent for acquisition whilst the
remainder was used to control the quadrature angle via the aforementioned method.

4.2.3 Experiment Control & Measurement Acquisition

The experiment utilised a digital control system in National Instruments LabView de-
veloped by Ben Sparkes, with an overview of the control system published in [101]. A
frequency generator (FG - National Instruments PXI-5404) provides an 80MHz clock for
the system. The 80 MHz clock is split between a clock generator board (CGB - Analog
Devices AD9959) and a high speed analog-to-digital convertor (ADC - Analog Devices
AD9460BSVZ-80) . The CGB is controlled via a field programable gate array (FPGA -
National Instruments PXI-7852R), providing a sine wave of arbitrary frequency for mod-
ulation of the light for the purposes of locking. The photocurrent used to to extract an
error signal was acquired via the high-speed ADC, and input to the controller algorithm
(discussed in detail in [101]). Given our typical control bandwidth, the resulting error
signal only required a low speed analog output (AOP), and was subsequently amplified
by an analog high voltage amplifier before driving a piezo-electric transducer. At capacity
the system required 6 active control loops.

Crucially, the digital system provided additional flexibility for running an experiment
over a long period of time. The digital system allowed for the inclusion of logic that
allowed for automated re-locking, and also sequential locking, whereby a lock was only
obtained when all the dependencies were themselves locked. Significantly, it also allowed
for integration of the control system with the acquisition system. The acquisition utilised
a pair of 2 channel high-resolution digitisers (National Instruments PXI-5124) mounted in
the same PXI chassis, providing a sampling rate of 200 MS/s and 12-bit vertical resolu-
tion. The acquisition algorithm, developed by Thomas Symul and Ben Sparkes, allowed
for automation of the measurement procedure. In addition to automation of the acquisi-
tion itself, measurement acquisition could also be conditional on the state of the system
controller, ensuring results were only taken when the system was appropriately stabilised.
Depending on the intended reconstruction, acquisition times would vary from 10 minutes
to several hours.

4.3 Data Analysis and Tomographic Reconstruction

If we first ignore the role of conditioning, the ensemble of homodyne measurements at
the tomographic characterisation stage allows construction of the histograms describing
the probability distribution of each measured X✓

b

. To do so, we discretise our continuous
measurement spectrum by decomposing our X✓ into a finite number of bins, M

x

(with
our chosen number of tomographic angles, N

✓

). For each sample, x✓
b

, we increment the
relevant bin, (m,n), by one. Once we have reconstructed histograms describing X✓

b

for
several values for ✓, we then reconstruct the Wigner function or density matrix. Here we
use two di↵erent techniques: direct sampling via the pattern functions (§2.5.2) and the
MaxEnt principle (§2.5.3).

The extension to ‘conditioning’ in post-processing is implemented as follows. For
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b.a.

Figure 4.5: A single data set consisting of 107 data points is decomposed into 100 sets. (a)

Measured probability distribution for the phase quadrature for the 100 sets (b) The reconstructed

probability distribution for the n̂
a

conditioning for each of the 100 sets. The familiar non-Gaussian

shape emerges from the average, provided in white.

each sample x✓
b

we have a corresponding measurement of mode a, x�
a

, which provides the
value for the relevant weighting. Instead of incrementing the bin (m,n) corresponding to
x✓
b

by one, we instead increment the bin by the outcome of a function of our choosing
P(n̂

a

), for which our measured homodyne (or heterodyne) sample at a is the input. We
repeat this process until we accumulate su�cient statistics for the non-Gaussian state that
corresponds to our ‘conditioning’ polynomial emerges.
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Figure 4.6: Reconstructed probability distributions as a function of the tomographic angle, ✓.

4.4 Results & Discussion

4.4.1 Dual-Homodyne Conditioning

We present the results chronologically, beginning with the dual-homodyne conditioning
experiment. For Figure 4.7 we reconstruct the Wigner functions (and the corresponding



70 A Continuous Variable Analog of a Photon Counting Measurement: Part II

density matrices in Figure 4.8) by directly sampling the density matrix via the pattern
functions, using the method described in §2.5.2. We begin by focusing on the recon-
struction of the 1-PSSV state. Figure 4.7(a) gives the Wigner function obtained using
the simplest conditioning polynomial, P = n̂

a

. This conditioning should ideally remove
any contribution corresponding to a measurement of the vacuum, n

a

= 0, in the condi-
tioning mode, a. All other contributions remain, and their contributions are additionally
weighted by their corresponding eigenvalues, n

a

. In essence we reconstruct a statistical
mixture of primarily the 1-PSSV and 2-PSSV states, where their contributions are not
solely weighted by the likelihood of successful ‘conditioning’, but additionally by their
corresponding eigenvalues. For instance, the contributions from n

a

= 2 are weighted at
twice that of contributions from n

a

= 1.

!" !" !"

#$% #&% #'%

Figure 4.7: Reconstructed Wigner functions for the 1-PSSV state using the pattern function

method of sampling the density matrix: The purity and negativity of the reconstructed state

improves as we remove contributions from n
a

= 2 (b.) and n
a

= 3 (c).

As the ideal squeezed vacuum populates only the even photon number pairs, the ideal
subtraction of one photon from squeezed vacuum should produce a superposition of the odd
photons numbers (removing any vacuum contribution). An idealised implementation of a
photon annihilation corresponds to a beam splitter with reflectivity approaching zero. This
permits statistical isolation of a single photon subtraction event from the considerably less
likely two photon subtraction event. However, with an experimental implementation, the
requirement of a finite tap-o↵ (typically around 10%) inevitably introduces spurious higher
order photon subtraction contributions. This is evident when we consider the prominence
of the even-photon number terms in the reconstructed density matrix in Figure 4.8(a).

As described §3.2.3, one can instead consider a higher order polynomial in n̂
a

that
removes potential contributions to the reconstructed state from higher order subtractions
that are unwanted and are su�ciently statistically significant to warrant removal. Fig-
ure 4.7(c) demonstrates the dramatic improvement in the reconstructed 1-PSSV state by
implementing the conditioning polynomial P = n̂

a

(n̂
a

� 2)(n̂
a

� 3), removing polluting
contributions from the 2 and 3 photon subtractions. As the odd-photon number and
the even-photon number subtractions approximate theoretical cat states of di↵erent pari-
ties, contributions from 2 photon ‘events’ in the reconstructed 1-PSSV state degrade the
negativity.

The pattern function method for reconstructing the density matrix, and thus the
Wigner function, is limited by its statistical precision in estimating the photon number
elements. If the measurement ensemble is too small, the error associated with the obtained
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Figure 4.8: Reconstructed density matrices for the 1-PSSV state using the pattern function

method of sampling the density matrix: the dominance of the single photon contribution improves

as the n
a

= 2 and n
a

= 3 contributions are removed.
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Figure 4.9: Reconstructed Wigner functions for the 2-PSSV state using the pattern function

method of sampling the density matrix. The purity and negativity of the initial reconstructed

state (a) improves as we remove contributions from n
a

= 3 (b).

mean value of the photon number element can result in negative contributions or an un-
physical density matrix. It might at first seem stange strange to talk quantitatively about
the size of the measurement ensemble for the technique presented here, as we cannot make
reference to individual, heralded ‘events’, and the reconstruction itself requires the entire
measurement record to succeed. But consider an attempt to reconstruct the 2-PSSV state
in the usual manner. Ignoring the e↵ects of squeezed state purity, and given a typically
beamsplitter reflectivity of 10%, the likelihood that two photon subtraction event occurs
is a tenth as probable as a single photon subtraction event. For a hybrid system it is easy
to understand why you need to measure for longer - for every 10 one photon events you
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see a single two-photon event. Here, we see a similar e↵ect: to obtain the same statistical
precision, you need to acquire an order of magnitude more data.
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Figure 4.10: Reconstructed density matrices for the 2-PSSV state reconstructed using the pattern

functions. Correction for the n
a

= 3 contributions largely eliminates the odd photon number

contributions.

Figure 4.9(a) considers the polynomial, P(X�

a

) = n̂
a

(n̂
a

� 1), removing contributions
corresponding to a photon number measurement of n

a

= 0 and n
a

= 1. The ideal recon-
structed 2-PSSV state has high fidelity with the even kitten state. When we additionally
correct for the contributions of the 3-PSSV state there is a clear improvement (Figure
4.9(b)) in the purity of the reconstructed state, evidenced by the increasing isolation of
the even-photon number contributions to the density matrix (Figure 4.10(b)).

Dark noise correction

There a handful of subtleties involved in the estimation of the photon statistics with
homodyne measurements that we discussed in Chapter 3. Analogies with many of these
can be drawn with the usual problems that a✏ict the analogous real photon counting.
This technique relies on correlations shared between modes a and b, and may be degraded
by any process that introduces uncorrelated classical or quantum noise. The inherently
‘ensemble’ nature of this approach means any noise contributions that are uncorrelated
with the quantum state may be corrected for, assuming that the noise can be correctly
characterised. Unlike experiments with actual photon counters, a correction for dark
noise on the conditioning step can integrated directly into the conditioning polynomial.
For both experiments we routinely characterised the dark noise of the homodyne detectors
for both the conditioning and characterisation measurement. The photodetectors used had
a typical electronic noise floor 20 dB smaller than the shot noise variance. With the 20
dB clearance over our measurement band, any improvement provided by the correction
was negligible, and consequently, all the results presented here are without dark noise
correction.
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The role of loss

However, we are still exposed to the e↵ects of loss. Any loss of purity on the initial
squeezed vacuum state constrains the non-Gaussian nature of the reconstructed state.
The role of loss can be accurately modelled as a beam-splitter with transmissivity, �,
and can be qualitatively understood by drawing analogy to traditional photon counting.
Ine�ciencies arising from imperfect homodyne detection e�ciency or transmission losses
scale the rate of success of the homodyne conditioning, analogous to loss on a photon
counting measurement. Whilst here we cannot refer to individual events, as this approach
succeeds by considering the entire ensemble, we essentially require a larger ensemble to
obtain the same conditioned statistics. Additionally, it can also lead to erroneous condi-
tioning, where a loss of photon may see a 3-photon subtraction event contributing as two
photon subtraction.

!" !"

#$%$

Figure 4.11: Reconstructed Wigner functions for the (a). 1-PSSV and (b). 2-PSSV states using

the MaxEnt principle.

4.4.2 Phase Randomised Homodyne Conditioning

The second experiment experiment saw a large improvement in the overall purity of the
squeezed resource owing to much improved quantum e�ciency of the photodiodes, and
improved quality of the non-linear crystal surfaces and AR coatings. We also enclosed
the experiment table within a box, which reduced temperature gradients and air currents
across the experiment table, minimising loss and noise contributions from beam-pointing.
Figures 4.12 and 4.13 demonstrate the considerable improvements in the purity of the
reconstructed one and two PSSV states, respectively. A comparison of the purities Tr⇢2

of the best 1-PSSV states for the two experimental implementations gives 0.58 for Figure
4.7(c) and 0.72 for Figure 4.12(c). The use of the single homodyne conditioning measure-
ment instead of the dual-homodyne also reduced loss contributions on the conditioning
mode. The single homodyne conditioning is also compatible with the pattern function con-
ditioning introduced in §2.5.2, which, save for experimental limitations, should amount to
the continuous variable analog of perfect photon number discrimination. The f

11

pat-
tern function reconstructs the state with theoretically perfect isolation of the one photon
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statistics on the conditioning mode, the analog of a perfect projective measurement on
⇢̃
a

= |1ih1|.
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Figure 4.12: Reconstructed Wigner functions and density matrices for the 1-PSSV state using

MaxEnt method of reconstructing the density matrix.

Given the homodyne e�ciency of typically 98% our primary source of loss in the
experiment arises from the impurity of the squeezed vacuum resource, and this is most
evident with the reconstruction of the 3-PSSV state (Figure 4.14). In endeavouring to
reconstruct the 3-PSSV state, we optimised the experimental parameters to increase the
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likelihood of having 3 photons in mode a without sacrificing the quality of the reconstructed
state. The likelihood of encountering a 3 photon subtraction event is low. Whilst the
probability of subtracting n-photons with a beam splitter of reflectivity ⌘ scales as ⌘n,
attempting to measure 3 or 4 photons from mode a also enforces the additional requirement
of having at least 4 photons in the original squeezed vacuum mode. As a result, the
likelihood of having 3 or more photons in mode a scales poorly. We can improve this
predicament by first increasing the percentage of the input mode used for conditioning from
10% to 15%, and second, moving to a stronger squeezed resource, enhancing the population
of the higher-order photon pairs. Increasing the squeezing level is often detrimental to the
squeezing purity as it introduces noise sources only dominant at high pump power, such
as phase noise. In our doubly-resonate system, the requirement of the stronger pump field
also has consequences for the long-term stability of the experiment. Obtaining su�cient
statistics requires longer acquisition time which concatenates the typical experimental
drifts in the measured tomographic angle ✓, alignment and squeezing levels over time,
reducing the overall purity of the reconstructed state. This problem is further exacerbated
by the requirement for loss and noise mechanism that become more dominant at higher
pump powers. As a result the reconstructed 3-PSSV state in Figure 4.14(a) has lower
reconstructed state purity (evidenced by the smaller observable negativities at the origin)
than the reconstructed 1 and 2 PSSV states which require smaller data sets.

If we attempt to reconstruct the 3-PSSV state with an additional correction for the 4
photons events in mode a, the reconstructed state becomes noisier. It is not immediately
apparent that removing unwanted contributions should introduce statistical noise into
the ensemble, but conditioning on higher photon numbers or the removal of higher order
terms essentially requires extraction of finer correlations between modes a and b. For a
polynomial P(n

a

) of degree k, we essentially estimate moments of X�

b

up to order 2k.

When coupled with the rapid divergence of the polynomials in X�

b

, su�cient statistics
must be acquired to minimise error. This prevents us from implementing a purification
of the 3-PSSV state in Figure 4.14(a) with the polynomial approach, even though it is
successful with the corresponding f

33

pattern function (Figure 4.14(b)).

While the pattern functions extract the statistics of ideal photon number discriminat-
ing measurement at mode a, limited only by the experimental imperfections, it is worth
noting that one can essentially obtain the same outcome by implementing a polynomial
weighting to only a few orders. This is despite the fact the polynomials calculated to any
P(n̂

a

) rapidly diverge for su�ciently large X✓

b

. To emulate a conditioning photon number
measurement a low-order implementation of the n̂ polynomials is generally su�cient. This
point is primarily academic - there is no advantage to choosing the polynomials over the
pattern functions which they approximate. To the contrary, when reconstructing with
limited statistics, the pattern functions appear at least, if not more e�cient than the
equivalent polynomial that would approximate the same operation.

What are these results good for? The first point of interest is purely academic. These
results build on the several very important works of the mid-to-late 1990’s, where the idea
of investigating the discrete variables of light by interrogating the continuous variables
emerged [46, 50, 54, 102, 51, 103]. On the surface it does appear remarkable that the
statistics of a non-Gaussian state can be extracted from only Gaussian measurements.
And these results are physically meaningful, corresponding to the state that would be
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Figure 4.13: Reconstructed Wigner functions and density matrices for the 2-PSSV state using

MaxEnt principle.
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Figure 4.14: Reconstructed Wigner functions for the 3-PSSV state reconstructed using the Max-

Ent principle.

prepared given the same physical measurement on mode a. However, if one has access to
⇢
AB

- which can be completely determined by way of regular two-mode tomography - one
has access to the same non-Gaussian statistics that we extract with our procedure. In this
sense, what I have presented is a variation upon the problem of two-mode tomography.

Even if it is of fundamental interest, the ensemble nature of the approach renders it
useless for most (or all) quantum information or communication applications. However,
there may be value is this technique in fields where measurements of the continuous vari-
ables are favoured because of technical challenges. Opto-mechanical systems, especially
those in the microwave regime, are restricted to measurements of the field quadratures
as photon counting technology is still undeveloped or experimentally unfeasible. For the
moment, techniques similar to those discussed here are indispensable tools for probing
quantum e↵ects in such systems [104]. This technique could prove useful to understand
and characterise the quantised behaviour of such systems.

4.5 Summary

In this Chapter we have experimentally demonstrated the reconstruction of the photon
subtracted squeezed vacuum states using using only measurements of the field quadratures.
Previously, extracting such statistics would have required a full tomographic reconstruction
of the two-mode Wigner function. These techniques allow for complete characterisation of
the outcome of a conditional measurement on a system, and might prove useful in systems
where measurements of the DV of the system are limited or unavailable.





Chapter 5

Measurement-Based Noiseless
Amplification

5.1 Introduction

The impossibility of determining all properties of a system, as exemplified by Heisenberg’s
uncertainty principle [105] is a well known signature of quantum mechanics. It results in
phase and amplitude fluctuations in the vacuum, enables applications such as quantum
key distribution and is at the heart of fundamental results such as the no-cloning theorem
[106], quantum limited metrology [107], and the unavoidable addition of noise during
amplification [108, 109]. This last constraint means even an ideal quantum amplifier
cannot be used for entanglement distillation [110, 111, 112] which is a critical step in the
creation of large scale quantum information networks [113, 114].

Distillation protocols, originally conceived for discrete variables [110, 111], proved ini-
tially more elusive in the continuous variable (CV) regime. The most experimentally
feasible and theoretically well studied class of CV states and operations are the Gaussian
states and the operations that preserve them [115], however restricting to this subset has
been shown to make distillation impossible [116, 117]. Nevertheless protocols that distill
Gaussian states have been discovered [112, 118] involving an initial non-Gaussian oper-
ation that increases the entanglement followed by a ‘Gaussification’ step that iteratively
drives the output towards a Gaussian state. However, these protocols are experimentally
demanding: Takahashi et al. demonstrated distillation through the de-Gaussification of a
Gaussian state [90], with Kurochkin et al. implementing a quite similar proposal recently
[119].

Returning to quantum limited amplifiers one can still avoid the unavoidable by moving
to a non-deterministic protocol. This ingenious concept and a linear optics implementation
have been proposed [120, 121, 122] and experimentally realised for the case of amplify-
ing coherent states [123, 124, 125, 126], qubits [127, 128, 129], and the concentration of
phase information [130]. All of these were extremely challenging experiments, with only
Ref.[123] demonstrating entanglement distillation and none directly showing an increase
in Einstein-Podolsky-Rosen (EPR) correlations [131]. Moreover the success probability of
these experiments was substantially worse than the maximum set by theoretical bounds.

In the context of quantum key distribution (QKD), References [132, 133] proposed the
possibility of implementing a non-deterministic measurement-based NLA (MB-NLA) to

79
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improve performance. This represents a significant advantage as the di�culty of sophis-
ticated physical operations can be moved from a hardware implementation, where one
must su↵er penalties related to source and detector e�ciencies, to a software implementa-
tion where we are limited primarily by quantum theory and the statistics of our sample.
Here we apply this protocol to EPR entanglement and observe improvements in the mea-
sured correlations consistent with distillation of the entanglement. We emphasise that this
method is only equivalent to entanglement distillation for certain applications. Specifi-
cally, it is only situations where the desired distillation operation immediately precedes
the measurement of the target mode that the two are indistinguishable.

We first derive some general conditions on the limits to implementing arbitrary quan-
tum operations on an ensemble by conditionally filtering the measurement results. Using
this method we experimentally implement an MB-NLA protocol achieving significant dis-
tillation with a much improved probability of success. Furthermore we illustrate the critical
benefit of distillation in combating decoherence by considering the distribution of EPR
entanglement through a lossy channel. We first recover an EPR violating correlations
from an otherwise non-EPR violating state degraded by loss. Further, we measure an
output level of entanglement that exceeds the maximum achievable without distillation,
even if one could use a perfect initial entangled state. Finally, we also examine the role of
the MB-NLA in quantum key distribution, providing a proof-of-principle demonstration
of secret-key extraction from an otherwise insecure regime.

5.2 Theory

In any quantum information application the final result is always some classical measure-
ment record, drawn from a set of possible outcomes {k} and described by some probability
distribution p(k). In an application where the proposed distillation would take place imme-
diately prior to measurement, for example in quantum key distribution, one could imagine
emulating the operation on an ensemble via post-selective measurements. We first con-
sider the process of emulating arbitrary operations via conditioning on measurements in
a general setting before describing the results of References [132, 133] in which an explicit
procedure applicable to the NLA was proposed. Our analysis will allow us to clarify some
of the previous work as well as showing that the gn̂ operator key to the operation of the
NLA, is particularly well suited to emulation via post-selection.

Consider an arbitrary quantum map applied to an incoming state ⇢ which can be
written using the Kraus decomposition as [134].

E(⇢) =
X

i

E
i

⇢E†
i

(5.1)

where {E
i

} are the Kraus operators. Note that this decomposition is valid for any com-
pletely positive operator including those which do not preserve the trace, as is the case
with many useful conditional operations in quantum optics including photon addition
and subtraction and the NLA. In the latter case the Kraus operators fail to satisfy the
usual relation

P
i

E†
i

E
i

= I, with the extra information needed to restore conservation of
probability being the success probability, P , of the conditional process [135].
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If this map is immediately followed by a positive-operator valued measure (POVM)
described by operators {⇡

k

} the corresponding probability distribution is,

p(k) = Tr

"
⇡
k

X

i

E
i

⇢E†
i

#

= Tr [⇡̃
k

⇢] (5.2)

where ⇡̃
k

=
P

i

E†
i

⇡
k

E
i

= Ẽ(⇡
k

) are a new set of POVM elements obtained by applying
the mapping Ẽ to the desired output POVM set. What (5.2) tells us is that we may
obtain the statistics of a POVM set {⇡

k

} upon an arbitrarily transformed state E(⇢) by
conditioning upon measurements made with a transformed set {⇡̃

k

} on the original input
state.

Although the above procedure is quite general, it is not arbitrary in that it does
not allow the reconstruction of any desired POVM set in combination with any desired
operation. If one wishes to implement arbitrary operations E , one is restricted to certain
final POVM sets {⇡

k

} and vice versa. Intuitively we expect that in order to correctly
reconstruct the statistics of an arbitrary POVM upon an arbitrary state it is necessary
to obtain maximum information about that state, i.e. to make measurements capable of
complete tomographic reconstruction. This requirement can be derived by considering
Equation (5.2) and noting that the POVM set with which one must actually measure,
{Ẽ(⇡

k

)}, is not necessarily physical for arbitrary E and {⇡
k

}. The unphysicality occurs
because some of the operations that we wish to emulate are not themselves physical. For
example the NLA itself, as will be discussed later, is trace increasing [136]. If one demands
access to arbitrary operations, then a su�cient condition on {Ẽ(⇡

k

)} would be that it maps
to physical output states and is capable of uniquely determining an arbitrary CP map.
This is precisely the same condition required of a POVM set for it to be classified as
informationally complete (IC) [137, 138]. Conversely, if one is only able to experimentally
realise a certain POVM set then one is limited in the range of operations that can be
faithfully implemented.

5.2.1 Noiseless Amplification

Noiseless amplification is commonly defined as the ability to increase the amplitude of an
unknown coherent state without any noise penalty, e↵ecting the transformation

|↵i ! |g↵i (5.3)

with g > 1. By considering the annihilation and creation operators describing a boson
mode it becomes clear that such a transformation would violate the canonical commutation
relations [â, â†] = 1. Equivalently, the impossibility of deterministic noiseless amplification
can be recast in the terms of the no-cloning theorem [106]. If quantum mechanics prohibits
perfect cloning, it is straightforward to show that it also prohibits noiseless amplification.
One could perfectly clone an unknown coherent state by tuning their noiseless amplifier
to a gain of g =

p

2, and dividing the output on a 50:50 beamsplitter, a↵ecting the
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transformation,

|↵i|0i
amplification

��������! |

p

2↵i|0i
beam�splitter

���������! |↵i|↵i. (5.4)

Consistency with quantum mechanics can be restored, however, if one instead forgoes
non-determinism in favour of a probabilistic transformation,

|↵ih↵|! P |g↵ihg↵|+ (1� P ) |0ih0| (5.5)

in which amplification succeeds with probability P , and fails otherwise. This transforma-
tion is permitted provided, on average, the distinguishability of the amplified state does
not increase.1 Provided the success is heralded, one may enjoy the benefits of entirely
noiseless amplification at least some fraction of the time. As was shown in [120, 122]
just such a transformation is performed by the operator gn̂ where n̂ = â†â is the number
operator. In the amplification regime (g > 1), the operation gn̂ is unbounded, and as
such could only be implemented exactly with a success probability equal to zero. How-
ever, for any particular input state and gain, one can always devise an approximation of
gn̂ that lies within a suitably truncated Hilbert space and amplifies with a fidelity near-
indistinguishable from the perfect NLA. Consider the two-mode squeezed state (or EPR
state) written in the number basis as

|�,�i =
p

1� �2

X

n

�n

|ni|ni (5.6)

where � 2 {0, 1} characterises the entanglement. The application of the amplifier on one
mode, when successful, results in the state,

gn̂|�,�i =
p
1� �2

X

n

(g�)n|n, ni. (5.7)

The parameter � characterising the entanglement scaled by the amplified gain, g. Provided
g > 1, the entanglement of the two-mode squeezed state is probabilistically increased. For
a given Gaussian input state of variance, V, there is a theoretical upper bound on the
maximum gain that can be applied, g

max

=
p

(V + 1)/(V � 1)[139]2. For any pure two-
mode squeezed input state g

max

corresponds to the gain needed to distill to an ‘infinitely
squeezed’ two-mode squeezed state - a perfect EPR state.

Noiseless Amplification & Loss

Instead consider that one arm of a Gaussian two-mode squeezed state has been distributed
through a lossy channel with loss ⌘ (Figure 5.1(a)). The application of the NLA on the
degraded arm results in an output with a greater degree of initial entanglement that

1The condition yields an upper bound on P , though it is unclear if it is tight.
2For squeezed states this g

max

bound corresponds to amplifying the anti-squeezed variance to infinity,
and the squeezed variance to zero
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appears to have su↵ered less loss [120]. The amplified state has an e↵ective entanglement,

�0 = �
p
1 + (g2 � 1)⌘ (5.8)

and an e↵ective loss,

⌘0 =
⌘g2

1 + (g2 � 1)⌘
. (5.9)

It is these restorative properties, necessary for the the realisation of a quantum repeater,
that provide an immediate practical motivation for a scalable implementation of an NLA.
In the presence of only passive loss, application of an NLA with g = g

max

will distill
to a final finite two-mode squeezed state with a infinite variance. The resulting ‘finite
squeezing’ after distillation corresponds to an infinitely squeezed resource before the lossy
channel. Whilst for only passive loss the entanglement improves monotonically with the
NLA gain, with the addition of noise to the situation monotonic improvement is no longer
guaranteed. Thermal noise is a consequence of entanglement between the system and
the environment. As the NLA distills all entangled correlations without discrimination,
noise contributions can be amplified, and the action of the NLA can actually degrade the
entanglement.

We note that although gn̂ appears Gaussian in the sense of being quadratic in the
annihilation/creation operators, it is in fact non-unitary and unbounded. These prop-
erties are also the reason that such an operation falls beyond the purview of the no-go
theorem [116, 117, 140] which states that Gaussian entanglement cannot be distilled via
purely Gaussian operations. In fact an exact implementation of gn̂ would necessitate a
success probability of zero. However, when considering a given set of input states one may
explicitly construct physical operations which have arbitrarily high fidelity with gn̂ while
succeeding with a finite probability. The most intuitive version of this method, proposed
in[120] and utilised in subsequent experiments, is to use a generalised quantum scissors
scheme [141] and truncate in the photon-number basis faithfully amplifying low energy
input states that have negligible higher order terms. However these truncated experi-
ments are by no means trivial, with all demonstration limited to the single photon case
except for [128] in which two stages were achieved. Thus it would be extremely valuable
to devise an easier method of implementing the distillation, albeit for a more restricted set
of applications. Here we implement a measurement-based version of this protocol (Figure
5.1(b)) where the original state is first measured using heterodyne detection upon Bob’s
side. Then a sub-ensemble is post-selected according to a filter function defined by the
desired NLA gain.

5.2.2 A Measurement-based Implementation

The exact filter function corresponding to gn̂ can be derived following reference [132] by
considering the coherent state projection, or the Q-function (§2.3.3), on an arbitrary input
state ⇢,

Q
⇢

(↵) =
1

⇡
h↵|⇢|↵i. (5.10)
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Figure 5.1: Equivalent methods of entanglement distillation with (a) physical and (b)

measurement-based noiseless linear amplifiers. Two-mode EPR entanglement is represented by

two orthogonally juxtaposed squeezed state. One arm of the EPR entanglement is transmitted

through a lossy channel before being noiselessly amplified. In the physical implementation (a) a

quantum scissor setup is used to implement the probabilistic amplification before the final mea-

surement. In the measurement-based implementation (b) a post-selective filter is used to keep a

remaining fraction of data.
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Recalling that the action of the NLA on a coherent state is given by [120],

gn̂|↵i = e
1

2

(g

2�1)|↵|2
|g↵i (5.11)

we can write down the Q function of the amplified state ⇢0,

Q
⇢

0(↵) = h↵|gn̂⇢gn̂|↵i

= e(g
2�1)|↵|2

hg↵|⇢|g↵i

= e(1�1/g

2

)|�|2
h�|⇢|�i. (5.12)

where � = g↵. This equation allows us to determine the particular probabilistic filter and
rescaling we must apply to the original heterodyne data in order to obtain the same output
as a heterodyne measurement applied to the same input state after noiseless amplification
with a gain g. Clearly for g > 1 the filter defined above does not qualify as a sensible
weighting probability as it is always greater than 1. Thus we must renormalise to some
cut-o↵ thereby implementing an approximation to the ideal operation. This is analogous to
the fact that although the success probability for gn̂ has to be zero, one can experimentally
achieve a good approximation of an ideal NLA with finite probability. In the measurement-
based picture, this corresponds to implementing an approximate operation while keeping
a finite fraction of the data after post-selection. In both cases, however, the approximation
can be made arbitrarily close to perfect whilst retaining a finite success probability.

The filter function, or acceptance probability, of the gn̂ modified post-selection filter
with a finite cuto↵ is given by,

P (↵) =

(
e

1

2

(|↵|2�|↵
C

|2)(1�g

�2

), ↵ < ↵
C

1, ↵ � ↵
C

(5.13)

where ↵ = 1p
2

(x+ip) is the coherent state projection for each heterodyne measurement.

Given we have just proposed a ‘virtual’ implementation of gn̂ without extending our-
selves beyond our usual Gaussian toolbox, superficially, this work may appear incompatible
with the important no-go theorems of [116, 117, 140]. There are a few potentially routes
available to resolve this, the most immediate being that our proposal never violates the
aforementioned no-go theorem because it never distilled entanglement. As we require a
least one of the subsystems be measured, the most we can ever claim is we are distilling
correlations between a classical measurement record and an unmeasured quantum state.
Of course, the established CV-QKD application (and perhaps others) make no distinction
between real distillation and this virtual distillation, because the final success of the pro-
tocol only makes reference to the correlations within the classical measurement records.
Alternatively, we can look upon the post-selective procedure itself as the requisite source of
the non-Gaussianity. Even though our filter inputs are themselves described by Gaussian
distributions, and the filter function is itself quadratic in â and â†, the non-deterministic
post-processing of the measurement record could be interpreted as outside the Gaussian
toolbox. Nevertheless it is remarkable that, in certain circumstances, we achieve useful
results utilising only hardware from the experimentally friendly Gaussian toolbox.
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Figure 5.2: Experimental setup of the measurement-based NLA. A laser provides both 1064

nm and 532 nm fields. These fields are spatial and frequency filtered to the quantum noise limit

for the sideband detection frequencies between the range of 3 � 4 MHz. The 1064 nm field is

used as the seed and local oscillator fields for two identical degenerate bow-tie optical parametric

amplifiers (OPAs), whilst the 532 nm light is used as the pump field. Two amplitude squeezed

states are produced and combined on a 50 : 50 beam-splitter. With their relative phase locked in

quadrature, the beam-splitter produces two-mode EPR state at the output. The entangled beams

are sent to Alice locally and through a transmission channel to Bob remotely. Alice performs

homodyne detection of her optical states, alternating between conjugate quadratures. Bob on the

other hand, performs a heterodyne detection of his state, simultaneously measuring both conjugate

quadratures.
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5.3 Experiment

Our experimental setup is detailed in Figure 5.2.

5.3.1 Preparation of Seed and Pump Light

The laser source for this experiment was an Innolight Diablo Neodymium-doped Yttrium
Aluminum Garnet (Nd:YAG) laser producing approximately 400mW of continuous wave
single mode light at 1064 nm. The laser head also housed an internal frequency doubler
producing approximately 800 mW at 532nm. This laser was identical to the model of laser
used for the experiments described in Chapter 4.

As a precaution against optical feedback via unintended backscatter the 1064 nm
light was passed through a Faraday isolator. The 1064 nm and 532 nm light was then
passed through their respective high-finesse mode cleaners, providing a well-defined TEM-
00 spatial mode for the experiment, and additional attenuation of the relaxation oscillation
of the laser.

Both the 1064 nm and 532 nm mode cleaners were again of the same design, consisting
of a 3-mirror triangular ring resonator, with an optical path length of 800 mm. The 1064
and 532 nm mode-cleaners had respective cavity linewidths of 0.4 MHz and 1.0 MHz. This
additional suppression of the remnant relaxation oscillation provides a shot noise limited
laser field at frequencies above 4 MHz. Both of the mode cleaners were controlled using
Pound-Drever-Hall (PDH) technique using an analog PID system.

5.3.2 Optical Parametric Amplifier

The two OPA’s used in this experiment were near identical in design to that of the OPA
cavity used in Chapter 4, but were designed to only be resonant for the seed field. The two
cavities themselves were physically identical and demonstrated near identical performance.
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Figure 5.3: Detailed schematic of the optical parametric amplifier cavity.

The two identical OPA cavities were originally constructed by Jiri Janousek.
Periodically-poled KTP was again the non-linear material of choice, with a bow-tie cavity
resonant at the seed field frequency used to enhance the non-linear interaction. A detailed
schematic of the OPA cavity is provided in Figure 5.3. Both travelling-wave cavities com-
prised of four mirrors in a bow tie geometry: the two inner concave mirrors (m

3

and m
4

)
with radii of curvature of 25 mm spaced 44 mm apart, and two outer plane mirrors (m

1

and m
2

) spaced 90 mm apart. The total round-trip optical path length was 275 mm. The
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resulting beam waist of 19µm centred between the two curved mirrors is almost optimal
for the Boyd-Kleinman condition. The output coupler was chosen to be 90% reflective at
1064 nm, producing a cavity linewidth of 19MHz and finesse of 57 for both cavities.

The crystals used were were manufactured by Raicol and had identical dimensions of
10 ⇥ 5 ⇥ 1 mm3 and poling periods of ⇤

p

= 9µm. The incident surfaces were polished
by LaserOptik and the dual-band anti-reflection coating was manufactured by Advanced
Thin Films. Each crystal was housed within a temperature-stabilised copper oven, with a
Peltier element providing temperature control to within 0.1�c.

In addition to the temperature stabilisation of the non-linear material, two additional
active control loops were required for operation of each OPA. The first controlled the cavity
length to be resonant with the 1064 nm seed field, and the second stabilised the phase
relationship between seed and pump fields, defining direction of the non-linear process and
thus, the angle of the squeezed light. A unique phase modulation was introduced onto
each of seed fields for the purposes of control; 7.3 MHz for OPA 1 and 16 MHz for OPA 2.
Each seed field was coupled into the cavity through the plane input coupler mirror, with
an error signal for stabilisation extracted from the detection of the reflected/transmitted
light using the PDH technique [96, 97]. This photocurrent also yielded an error signal for
the relative phase between the seed and pump light using the method described in §4.1.2.

The pump was initially aligned by production of a small amount of SHG using a bright
reverse-propagating seed field. The travelling-wave design of the cavity means the counter-
propagating field at the seed frequency will be degenerate with the cavity mode defined by
the seed field. This feature is sometimes used for control, and also to provide two squeezed
modes from a single OPA. Here, however, it allows generation of a counter-propagating
field at the pump frequency that allows us to mode-match the mode of the up-converted
light to that of the 532 nm mode cleaner. Examining the SHG conversion e�ciency as a
function of temperature also provided the optimal crystal temperature. As the periodic
polling substantially broadens the e↵ective temperature range over which the seed and
pump are phase-matched, and the precision of the crystal temperature was not critical.

5.3.3 Entanglement Generation

The next experimental task was the generation of the two-mode squeezed state or Einstein-
Podolsky-Rosen (EPR) state described in §2.2.5. This required we interfere our two am-
plitude squeezed coherent states on a 50:50 beamsplitter and control the relative phase
between the two fields to be ⇡/2. The stabilisation of a phase between the two squeezed
fields is critical to the quality of the produced entanglement. If the two squeezed states
are interfered perfectly in quadrature, the resulting EPR criterion (§2.4.5) is somewhat
impervious to purity of the component squeezed states, and largely determined by the
individual squeezed quadrature variances. However, even small rotations will couple the
classical noise associated with the anti-squeezed quadratures into the measured conditional
variance, degrading the entanglement.

To control the relative phase between the two squeezed fields we use a familiar DC
locking technique. As described, the two amplitude squeezed fields are interfered on a 50:50
NPBS. Using a pellicle AR coated for 1064 nm approximately 1% of each output field is
tapped o↵ and detected. The two resulting photocurrents are subtracted to compensate for
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their individual DC o↵sets, and ideally produce a signal insensitive to global fluctuations
in the laser power. The result is a sinusoidal signal with a zero-crossing corresponding
to ✓ = ⇡

2

. The correlation (and anti-correlation) between the two homodyne detection
stages was used to further optimise the DC o↵set of the error signal. Though there are
other approaches to this lock, we considered it worthwhile to concede the small amount
of additional loss to access the stability this technique a↵ords.

5.3.4 Measurement

Bob’s Measurement

Given the operation Bob chooses to implement in post-processing, to do so noiselessly he
needs to isolate the compatible POVM. To noiselessly implement gn̂, Bob must measure
in the coherent state basis, corresponding to a heterodyne detection (or equivalently, a
simultaneous homodyne measurement). To do so, we use the same technique described
in detail in §4.2. Bob’s mode b (vertically polarised) is combined on a 50:50 NPBS with
a bright LO (horizontally polarised). The polarisation of the first output mode is then
rotated by half-wave plate orientated at 45�, before a PBS that divides the mode between
two photodetectors, the subtraction of these two photocurrents providing one homodyne
measurement. The second output path additionally encounters a quarter-wave plate orien-
tated at 45�, producing the desired ⇡/2 phase shift between the signal and local oscillator.

As this technique passively stabilises the phase relationship between Bob’s two ho-
modyne detectors, we only require one active control loop to define the correct phase
relationship between Bob’s mode and the local oscillator. The two di↵erent phase mod-
ulations (at 7.3 MHz and 16 MHz) used to stabilise the two OPA cavities sit within the
cavity linewidth and remain on the two squeezed modes used to generate the entangled
state. Ideally, interfering the two squeezed modes in quadrature produces two outputs,

â±(t) = ↵ei!t(1± i+ i⇠
1

cos!
1

t+ ⇠
2

cos!
2

t) (5.14)

rotating one of the phase sidebands to the amplitude quadrature. Demodulating our
measured homodyne photocurrent at either 7.3 MHz or 16 MHz will yield an error signal
that (given the passive stabilisation between the two homodyne detections) will allow us
to simultaneously sample the phase and amplitude quadrature.

Alice’s Measurement

Alice’s measurement stage comprised of a single homodyne detection which alternated
between sampling the phase and amplitude quadrature. With Bob’s dual-homodyne mea-
surement, Alice’s measurement of X and P allowed characterisation of the covariance
matrix describing the two-mode system. An error signal to stabilise the homodyne detec-
tion to either the phase or amplitude quadrature was extracted by demodulating at the
homodyne photocurrent at either 7.3 MHz or 16 MHz. The quadrature of the relevant
modulation was determined by the phase at the entangling beam-splitter.
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Detection and Losses

All three homodyne stages both used variations of the Uni-PD circuits described in §4.2
with a combination of the Epitaxx ETX-500 and the custom-fabricated Laser Components
InGaAs photodiodes. Additional retro-reflection of the light scattered from the ETX-500
diode surface produced similar e�ciencies to that of the Laser Components photodiodes
(with a specified quantum e�ciency 99%), suggesting the reduced quantum e�ciency of
the ETX-500 is largely consequence scattering from the surface of the material, and not the
result of electron-hole recombination. The overall detection e�ciency of Alice’s homodyne
measurement was ⇠ 98%, with a measured fringe visibility of 99.5%. Bob’s measurement
stage su↵ered from an additional reduction in the overall detection e�ciency due to the
requirement for additional surfaces in the optical path, with the optical elements also
introducing polarisation mis-match.

5.3.5 Experiment Control & Measurement Acquisition

In its completed state, the experiment required 9 active control loops (not including tem-
perature control). The first four control loops (controlling the 1064 nm and 532 nm mode-
cleaners and the cavity length of the two OPAs) used analog Proportional-Integrator (PI)
servos manufactured in house. The error signals for the remaining five control loops were
extracted via analog demodulation, with the PI control implemented digitally in Labview
using an algorithm developed by Seiji Armstrong [142]. The acquisition utilised an 8-
channel digitiser (National Instruments PXI-5105) with a sampling rate of 60 MS/s and
12-bit vertical resolution. .

5.3.6 Filter Implementation

As previously discussed, gn̂ is unbounded for g > 1, and therefore, whether physically or
virtually, it cannot be implemented exactly. However, the virtual implementation, gn̂ can
be emulated to arbitrary precision by truncating our original post-selection filter at an
appropriate amplitude, ↵

C

. The resulting modified post-selection filter is given by

P (↵) =

(
e

1

2

(|↵|2�|↵
C

|2)(1�g

�2

), ↵ < ↵
C

1, ↵ � ↵
C

(5.15)

where, ↵ is obtained from the measured heterodyne outcome via ↵ = 1p
2

(x + ip). Any
measurement outcomes falling beyond the cuto↵ amplitude, ↵

C

, are kept with unit prob-
ability.

The procedure for implementing the measurement-based implementation of gn̂ is as
follows: our experimentally prepared two mode squeezed state is split between two mea-
surement stations, which we identify as Alice (mode a) and Bob (mode b). At a time
we denote t

i

, Bob performs a heterodyne detection of his mode, obtaining two outcomes
x
i

and p
i

. Bob’s measurement-based implementation of ĝn then amounts to him keeping
or rejecting his obtained measurement outcome, ↵

i

(from his heterodyne measurement
outcomes, x

i

and p
i

), with a probability specified by Equation (5.15). If his outcome ↵
i

falls beyond the cuto↵ ↵
C

, he always keeps it. If we then consider a two-mode scenario
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(virtual distillation), Bob also informs Alice to either keep or reject her state - measured
or unmeasured. [132]

The Filter cut-o↵

Care needs to be taken with the choice of ↵
C

to ensure that the truncated approximation
emulates gn̂ with high fidelity. As suggested by Fiurasek and Cerf [132], indistinguishable
fidelity with the gn̂ can always be obtained by pushing ↵

C

out to the largest measure-
ment outcome encountered in the measurement ensemble. This approach, however, scales
very poorly with increasing ensemble size [132]. A compromise between excellent emu-
lation of gn̂ and the post-selection probability can be achieved by implementing an ↵

C

su�ciently large that the purity ( 1

p

det(�)

) of the post-selected state decreases consistent

with an ideal implementation of gn̂. Here, we choose a finite cuto↵ ↵
C

that optimises
post-selection rates whilst preserving high fidelity with the ideal filter. This also ensures
that output distributions remain statistically close to a normal distribution, allowing us
to only consider the second order moments of the measured distribution to characterise
the correlations. There are a few quite subtle points that arise in the implementation of
the ‘truncation’,

As an ideal implementation of gn̂ results in a Gaussian mapping of the input state, by
here ensuring that our emulation is consistent (within statistical error) with the theoretical
mapping of our characterised input state, any non-Gaussianity is necessarily negligible.
The Gaussianity of our amplified ‘state’ itself can be roughly verified by examining the
size of the third (skewness) and fourth (kurtosis) order moments. Owing to the symmetry
of the filter it should not introduce skewness, but implementation of the filter without
a su�ciently large cuto↵ may introduce a “peakedness” that might be quantified via the
fourth moments. One could also consider a more sophisticated approach, like a JarqueBera
test.

If we characterise the original state correctly, and accordingly choose ↵
C

su�ciently
large to ensure that output distributions remain (close to) normally distributed, we only
need consider the first and second order moments of the ‘amplified’ distribution to char-
acterise the correlations. Consider though, that one erroneously sets the cut-o↵ too small,
such that the post-selection produces a ‘non-Gaussian’ distribution. Given our entangle-
ment witnesses only consider the first and second moments of the ‘amplified’ distribution
it is not immediately clear what outcome setting the cuto↵ too low has for the distillation
operation. One could conceive the resulting non-Gaussianity only punishes your relevant
entanglement witnesses? Or the witnesses may be insensitive to it? In reality, setting ↵

C

too small - while o↵ering no real improvement in the final shared correlations - can give
the impression of improved distillation for certain witnesses. This is best elucidated by
considering what the post selection is physically doing. Each post-selection filter with a
gain, g > 1 extracts the statistics of a larger two-mode squeezed state from the original
measurement ensemble. As the amplifier gain grows, so too does the variance of the de-
sired post-selected state, and accordingly, the relevance of measurement outcomes at the
extremities. And as the size of the post-selected state expands, the cut-o↵ needs to also
expand to accommodate it. If not, the filter essentially does not act over the entire phase
space, and the cut-o↵ has a large e↵ect on the statistics of the post-selected ensemble.
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Simply, the NLA ceases to distill. As such, the size of the ensemble usually sets the prac-
tical limit on the amount of distillation that can be achieved, as the ensemble itself is
usually exhausted well before one reaches the theoretical maximum gain set by the energy
of the state [143].

However, even in the afore described situation where additional distillation has ceased
being useful, a di↵erent issue emerges from setting ↵

C

too small. Whilst the ideal gn̂

operation will always decrease in purity of the amplified state, a ‘prematurely truncated’
post-selection filter can distort the noise floor of Bob’s post-selected state. Consequently,
his approximated amplifier no longer preserves the vacuum and entanglement witnesses
that reference a noise floor are distorted, i.e. what we observe as a decrease in the
covariance is actually an artificial decrease in Bob’s variance. These problems are easily
negated by ensuring the purity ( 1

p

det(�)

) of the post-selected state decreases consistent

with an ideal implementation of gn̂.
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Figure 5.4: Measurement-based NLA performed on the receiver, Bob’s, experimental data: (a).

Acceptance probability function of the post-selective filters used to obtained, (b). the resulting

measurement histograms, and (c). the final normalised probability distributions. The gain, g, is

increased by selecting a filter function with increasingly lower acceptance probability. As the gain

is increased, the variance of Bob’s final distribution increases. This corresponds to a larger, more

entangled two-mode squeezed state.

It is also important to note that here that for a given input state, all emulations of gn̂

for varying g use the same cut-o↵ ↵
C

. We restrict ourselves to an ↵
C

su�ciently big to
accommodate the largest gain applied. One could potentially improve on our presented
post-selection rates by considering a gain dependence in the choice of ↵

C

.

For this proof-of-principle demonstration we first characterised the two-mode squeezed
state shared between Alice and Bob by reconstructing the covariance matrix given our
measurements. Bob’s measured variance establishes the size of the cuto↵ ↵

C

needed
to implement gn̂. Here, given our ensemble size of 8 ⇥ 107, the cut-o↵ of 4.5 standard
deviations of Bob’s measured state, balanced post selection rates whilst preserving fidelity
with the ideal gn̂ operation.



§5.4 Results & Discussion 93

5.4 Results & Discussion

Distillation Performance

We begin the results with the simplest scenario: Alice and Bob share a symmetric two-
mode EPR state, with no transmission loss between either of their measurement stations.
In this scenario, a MB-NLA on Bob’s side is indistinguishable from an implementation
on Alice’s side, and the observed distillation should be symmetric for both parties. Our
results use the customary CV entanglement witnesses - the EPR criterion [42] introduced
in §2.4.5 and the inseparability criterion introduced in §2.4.3. As the EPR criterion is
an inherently directional quantity and we borrow terminology from QKD, and refer to
Bob’s ability to infer Alice’s state as the direct inference (E

BIA

= V
x

B

|x
A

V
p

B

|p
A

), and the
converse as the reverse inference (E

AIB

= V
x

A

|x
B

V
p

A

|p
B

). Either E

AIB

< 1 or E

AIB

< 1
is a su�cient but not necessary condition for entanglement. We denote the symmetric
inseparability criterion by I

A⌥B. For Gaussian states I

A⌥B < 1 is both a necessary and
su�cient condition for entanglement.
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Figure 5.5: EPR criterion as a function of post-selection success probability for the direct

(E
AIB

, red) and reverse (E
BIA

, green) inferences for input state with an initial EPR entanglement

strengths of 0.484±0.001 and 0.492±0.001 respectively. Data points presented are the post-selected

ensemble average of 10 experimental runs. The solid lines shows the theoretical distillation of an

ideal implementation of gn̂ given the same input state. Shading represents a 2� confidence in-

terval on the variance of the implemented filter. Inset shows the e↵ect of the distillation on the

inseparability criterion, I
A⌥B

, with the same data set.

Our initial entangled resource demonstrates an EPR criterion violation of E

AIB

=
0.484 ± 0.001 and E

BIA

= 0.492 ± 0.001 with an initial ensemble size of 8 ⇥ 107 data
points. We then apply the post-selection function of (5.15) followed with the required
linear rescaling of Bob’s post-selected measurement record by 1/g. A linear increase in
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the amplifier gain, g sees an exponential reduction in the probability of success, yielding a
smaller, but more correlated subset of the original measurement record. This is equivalent
to Bob and Alice sharing a larger initial two-mode squeezed state. Figure 5.5 demonstrates
our improvement in the EPR criterion as a function of the success probability. The
solid line indicates the behaviour of an ideal implementation of gn̂ with the same input
state [143], and the shaded area gives a 2� confidence interval on the theoretical EPR
violation. For a post-selection probability of 8⇥10�5 we obtain e↵ective EPR criterions
of E

AIB

= 0.25 ± 0.02 and E

BIA

= 0.23 ± 0.02. The asymmetry in the EPR criterions
for the direct (green) and reverse (red) inferences arise from variations in the purity of
the two-subsystems; Bob’s heterodyne measurement introducing additional loss. Figure
5.5 also plots the inseparability criterion as a function of the success probability. We find
excellent agreement between theory and experiment.

The declining probability of success as we apply increasingly larger gain to obtain
stronger correlations manifests in increased statistical uncertainty. To understand the
statistical error we first consider the theoretical probability of success for our truncated
approximation of gn̂. Given the initial state (characterised by its measured covariance ma-
trix), the size of the initial ensemble, and the choice of cut-o↵ ↵

C

, the theoretical probabil-
ity of success allows us to ascertain the statistical error associated with the post-selected
covariance matrix. We calculate a 2� confidence interval on the theoretical performance
of the NLA, reflecting the role of finite sample size. The 2� associated with EPR criterion
will be larger than that of the inseparability criterion; a consequence of its dependence on
the product of the two conditional variances, rather than their sum.
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Figure 5.6: E↵ect of EPR entanglement distillation as a function of probability of success for

di↵erent losses (0%, 25% and 50%).

Most real world applications of a physical NLA employ it to combat the e↵ects of loss.
Here we examine the performance of the MB-NLA in two di↵erent loss regimes: that of
moderate loss, and that of very high loss. We experimentally introduce loss on Bob’s



§5.4 Results & Discussion 95

subsystem, allowing us to model several lossy channels. Bob subsequently implements
a MB-NLA. Figure 5.6 demonstrates the performance of the post-selective NLA for a
two-mode EPR state with moderate loss on one subsystem. Figure 5.6(a) plots the EPR
criterion for the direct inference as a function of post-selection probability for a series of
channel transmissions, whilst the reverse inference is plotted in Figure 5.6(b). For 25%
loss on Bob’s channel, we find that post-selection allows us to fully compensate for any
loss incurred by the quantum state and demonstrate a final EPR correlation well beyond
that of the original state. Despite the initial asymmetry of their subsystems, su�cient
post-selection (a probability of success of ⇠ 10�4) allows Bob to obtain the same EPR
violation as Alice.

Even in the limit of a maximally entangled (infinite energy) two-mode squeezed state,
Bob’s EPR correlations will not survive a perfect passive loss channel of 3dB (50%).
And the situation is only worse for a real channel, where excess noise also contributes.
For 3dB of passive loss, post-selection allows Bob to recover an EPR criterion < 1 from
initial state with a (non-violating) EPR criterion of E

BIA

⇡ 1.3. Recent works have
demonstrated the direct equivalence of EPR violation and the concept of ‘steering’ for
discrete and continuous variable systems[144, 145, 146, 147, 148]. Whilst the concept of
steering provides strong operational meaning for EPR correlations, it is also the resource
of interest for semi-device-independent protocols[149]. Though subtleties likely arise when
combining post-selection with the relaxation of the honesty assumption for the parties in
semi-device independent communication, it may prove a fruitful research avenue.

Perhaps the most interesting regime for the performance of the MB-NLA occurs at
very high loss. In Figure 5.7 we plot the inseparability criterion of the two-mode EPR
state as a function of the channel transmission encountered by Bob’s subsystem. We
consider four di↵erent high loss channels (implemented via a �/2 and a beam-splitter)
with a maximum loss of 99%, equivalent to 100 km of optical fibre.3 For each channel, we
consider examine the improvement that the MB-NLA a↵ords, with a typical maximum
gain of g = 1.6. Without distillation, the best inseparability one can hope to obtain is is
given by the boundary of the shaded area, describing the theoretical inseparability in the
theoretical limit of a perfect (infinitely squeezed) EPR state subject to the same channel
transmissivity. We find that post-selection allows access to final correlation that – without
distillation – proves inaccessible even in the limit of a perfect initial EPR resource.

Entanglement-Based Quantum Key Distribution

Finally, we turn to the application that sparked interest in this protocol, and investigate
the performance of entanglement-based CV-QKD protocol that includes an MB-NLA. For
the sake of brevity, CV-QKD is not introduced in detail in this thesis. The theses of Raúl
Garćıa-Patrón [150] and the recent review of Cerf and Grangier [151] provide an excellent
introduction to CV-QKD.

The works of [132, 133] provide security proofs for CV-QKD protocols using Gaussian
post-selection for arbitrary attacks in the asymptotic limit of large key lengths. These two
results essentially emerged from an extension of two previous results: firstly, under collec-

3Assuming the usual loss of 0.02 dB per kilometre of optical fibre.
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Figure 5.7: Improvement in the inseparability criterion of the two-mode EPR state for a series

of lossy channels. For each transmissivity, a series of post-selection corresponding to an NLA gain

(specified by the legend) are applied. The boundary of the shaded area describes the theoretical

inseparability of a perfect EPR state - infinitely squeezed - subject to the same channel trans-

missivity. Post-selection allows access to an entangled resource beyond that accessible with even

perfect initial resource. The solid lines represent theoretical inseparability of our input state, with

an applied post-selection filter of a defined gain (g = 1, 1.1, . . . 1.5) as a function of the channel

transmission.
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tive attacks4 the key rate is minimised by assuming the final state is Gaussian[152, 153],
and secondly, and secondly, collective attacks are optimal in the asymptotic limit5[154].
Both conditions hold even if the CV-QKD protocol is not perfectly Gaussian, noting
the post-selection procedure could introduce some non-Gaussianity. It is only that the
bounds would become very pessimistic were the post-selection to exhibit a strong non-
Gaussianity, but as explained above, this is not the case here. This level of analysis is
the same as that employed in several CV-QKD experiments [155, 156], including the only
previous demonstration of CV-QKD using entangled states [157], but does not comprise
all of the finite-size e↵ects [158] and reconciliation and privacy amplification processes of
a state of the art CV-QKD demonstration such as [159]. Nevertheless it is su�cient to
demonstrate the benefit of the MB-NLA for key distribution.

We conduct a very cautious analysis in which all measured imperfections are attributed
to the eavesdropper, such that our EPR source is interpreted as a pure EPR source fol-
lowed by a decohering channel. There are some subtleties involved with using genuine
entangled states, as opposed to most CV-QKD experiments, where a theoretical equiv-
alence is established between a prepare and measure scheme (P&M) and one involving
real entanglement [160]. P&M schemes can prepare states of near-perfect purity, with
a corresponding virtual entangled state considerably purer than those currently feasible
experimentally. This can be mitigated by an additional step where the decoherence in the
source production is characterised and the purification of that noise is not attributed to
the eavesdropper. This method was successfully employed by [157] who showed that the
EPR based scheme actually showed improved robustness to channel noise in comparison
to coherent state P&M protocols[161]. An extension of this proof to include the MB-NLA
would mitigate the e↵ects of impurities within our initial two-mode squeezed state. Re-
gardless, we still demonstrate the value of the MB-NLA while attributing all observed
impurities to the eavesdropper.

Our measured covariance matrices are interpreted as coming from a pure EPR source
that has been transmitted through a lossy channel with thermal noise. The e↵ective
channel has a relatively low loss but high additional noise. In this situation the optimal
protocol would be direct reconciliation (DR)6 with heterodyne detection on both Alice
and Bob’s side.

The secret key rate for this protocol is given by [152, 153],

KI = �I(A : B)� S(A : E) (5.16)

where I(A : B) is the classical mutual information between quadrature measurements
made by Alice and Bob, S(A : E) is the Holevo quantity between Eve and Alice and
� 2 [0, 1] is the reconciliation protocol e�ciency. Here we choose an optimistic value of
� = .98, consistent with [157]. Given that the post-selected measurements are still very

4

Collective attacks assume that the eavesdropper acts independently on the quantum systems shared
between the two honest parties, Alice and Bob, at each round of the protocol. The eavesdropper can then
measure her systems collectively to maximise her information. This is stronger than the individual attack

strategy, where the eavesdropper attacks and measures individually with each round of the protocol.
5The asymptotic limit is the limit of infinite key length.
6In direct reconciliation Bob attempts to infer Alice’s measurement results. In the converse, reverse

reconciliation, Alice attempts to guess Bob’s measurement results.
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Gaussian, Alice and Bob’s can be calculated using the formula,

I(A : B) = log
V
A

+ 1

V
A|B + 1

(5.17)

where V
A

is the measured homodyne variance on Alice’s side and V
A|B is the conditional

variance of Alice’s measurement given Bob’s heterodyne detection. Eve’s mutual informa-
tion is given by [152, 153],

S(A : E) = S(AB)� S(B|A) (5.18)

where S(AB) and S(B|A) are the von Neumann entropies of the inferred state ⇢
AB

and the
conditional state following a heterodyne detection by Alice. In general, the von Neumann
entropies are bounded by those of a Gaussian state with the same covariance matrix
(CM). The Gaussian von Neumann entropy can be calculated straightforwardly from the
symplectic eigenvalues of the CM [115], and thus our key rate can be determined directly
from the unconditional and conditional CM’s of our system. Figure 5.8 plots the secret key
rate as a plotted as a function of the post-selection rate. Although we being in an insecure
regime, application of an NLA of su�ciently high gain allows us to extract a secure key.
As noted in [133, 162] the NLA acts to improve the transmission of the e↵ective channel
while actually increasing the noise, but in such a way as to create an information advantage
between Alice and Bob. As explained in [143] this can be seen as the amplifier distilling
both the Alice-Eve and the Alice-Bob entanglement. Figure 5.8 only considers the e↵ect
on the key rate of the post-selected ensemble. When considering the overall key rate,
the maximum gain is unlikely to be the optimal gain; rather, the optimal gain recovers a
secure key while balancing post-selection rates. The large error bars associated with the
experimental results of Figure 5.8 are a consequence of small sample sizes used for our
parameter estimation.

These results also have ramifications for applications of the NLA in metrology. Early
theoretical and experimental implementations have speculated on the potential useful-
ness of the NLA for metrological applications. These initial demonstrations had very
pessimistic success rates for their gn̂ implementations, largely owing to experimental tech-
nicalities. Even still, success probabilities for gn̂ were not concrete, and it was unclear
what limits quantum mechanics actually set. The probabilistic nature of any implemen-
tation of gn̂ must be carefully accounted for when considering metrological applications,
as the value of noiseless amplification must be balanced against the reduced sample size
of the measurement[163]. For example, even the success probabilities achieved here would
render the operation unsuitable for metrology protocols that scale with the square root of
the number of measurements or worse (i.e. most of them). By contrast, in many quan-
tum communication protocols it is the final quality of correlations that is of paramount
importance.

5.5 Summary

The primary significance of this work is two-fold. Firstly, we experimentally demonstrated
the equivalence of the MB-NLA to the implementation of a physical NLA for entangle-
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Figure 5.8: Application of MB-NLA to extract positive key rate from otherwise insecure regime

in CV-QKD system. Secret key rate as a function of the gain for a direct reconciliation CV-QKD

protocol where both parties use heterodyne detection. The application of the MB-NLA allows the

recovery of secure key distribution from an initially insecure situation. The dashed line represents

the theoretical key rate given the initial state. Error bars and the blue shaded region represent the

experimental and theoretical 1� statistical confidence interval for our initial sample of 8.3 ⇥ 107

points, respectively. A larger sample size of 109 and 1010 would reduce our 1� confidence interval

to the beige and red shaded areas, respectively.

ment distillation when considering scenarios where amplification is directly proceeded by
measurement. This equivalence ensures this technique has immediate applications for
CV-QKD, where the advantage of an NLA has already been studied[162, 132, 133]. Fur-
thermore, it provides a generalised theoretical explanation of the conditions in which an
arbitrary quantum operation could, in principle, be implemented upon an ensemble via
post-selective measurements. Secondly, this equivalence is of practical relevance, as the
MB-NLA is significantly less demanding than the existing physical implementations of gn̂,
where ine�ciencies in sources and measurement restrict the physical NLA to very small
input states[120, 123, 124, 128]. In contrast, the ‘software’ nature of the MB-NLA, while
restricting its applicability, ensures that for compatible applications its performance is
superior to its physical predecessor. The inherent flexibility of the software implemen-
tation means that the MB-NLA can be used on a wide variety of input states without
experimental reconfiguration. By circumventing the requirement for experimental hard-
ware and its a accompanying ine�ciencies, it achieves near optimal success probability
for an implementation of gn̂ of arbitrary precision. Whilst there are clear restrictions on
the scenarios where this MB-NLA can be substituted for its physical counterpart, when
applicable, it is certainly advantageous to do so. The achievable entanglement distillation
is now chiefly limited by the amount of data collected. Here, for feasible sample sizes, we
demonstrate distillation of correlations in excellent agreement with close to the theoretical
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ideal performance of gn̂. For moderate loss channels we showed the recovery of EPR cor-
relations from an entangled state, and applied to high loss channels demonstrated levels
of entanglement that are impossible without a distillation process.

Many avenues for further research remain. Beyond the aforementioned applications in
CV-QKD, the NLA could find use in other quantum communication protocols including
teleportation and remote state preparation. This would be of particular interest as it
would enable us to extend these conditioning distillation techniques to improve the quality
of a still propagating, albeit unentangled, quantum mode. Furthermore our theory is
su�ciently general to allow extensions to other conditional processes. For example using
precisely the same setup described here it is also possible to implement the photon addition
operation which has been extensively studied [122, 164, 165, 166, 167]. As well as targeting
other operations one could also use this formalism to consider conditioning on di↵erent
POVM sets, opening up many promising candidates for future applications.



Chapter 6

An Operational Interpretation of
Quantum Discord

6.1 Introduction

Correlations lie at the heart of our capacity to manipulate information. The fewer the
constraints on the correlations we can exploit, the greater our capacity to manipulate
information in ways we desire. The rapid development of quantum information science
is a testament to this observation. Quantum systems may be so correlated that they are
‘entangled’, such that each of their subsystems possesses no local reality. Exploitation
of such uniquely quantum correlations has led to many remarkable protocols that would
otherwise be either impossible or infeasible [168, 14, 169, 15].

However, the absence of entanglement does not eliminate all signatures of quantum be-
haviour. The most mature quantum information protocol, quantum cryptography, exploits
quantum mechanics to provide unconditional security without needing to invoke entangle-
ment [170]. Coherent quantum interactions (i.e., quantum two-body operations) between
separable systems that result in negligible entanglement could still lead to exponential
speed-ups in computation [171, 172, 173, 174] or the extraction of otherwise inaccessible
information [175]. The potential presence of discord [176, 177] within such protocols mo-
tivated speculation that discord could prove a better quantifier of the ‘quantum resource’
that coherent interactions exploit to deliver a ‘quantum advantage’ [178, 173, 179]. Dis-
cord has thus captured a great deal of attention, as evidenced by studies of its role in open
dynamics [180], cloning of correlations [181, 182], scaling laws in many-body physics [183],
and quantum correlations within continuous variable systems [184, 185].

Here, we demonstrate that under certain measurement constraints, discord between
bipartite systems can be consumed to encode information that can only be accessed by co-
herent quantum interactions. The inability to access this information by any other means
allows us to use discord to directly quantify this quantum advantage. We experimentally
encode information within the discordant correlations of two separable Gaussian states.
The amount of extra information recovered by coherent interaction is quantified and di-
rectly linked with the discord consumed during encoding. No entanglement exists at any
point of this experiment. Thus we introduce and demonstrate an operational method to
use discord as a physical resource.

101
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6.2 Quantum Discord

Early on (§2.7.3), I made reference to subtleties that arise when one considers the quantum
generalisations of the classical mutual information. I promised this would be discussed in
detail later and that time has now come. But first I should direct readers to the existence
of a very comprehensive review article on quantum discord and other similar proposed
measures of quantum correlations [186].

Quantum discord emerged in 2001 though the work of Harold Ollivier and Wojciech
H. Zurek [176] and, independently, L. Henderson and Vlatko Vedral [177]. In (§2.7.3) we
introduced three equivalent expressions for the quantum mutual information of a bipartite
system, ⇢

AB

I(⇢
AB

) = S(⇢
A

) + S(⇢
B

)� S(⇢
AB

) (6.1)

= S(⇢
A

)� S(A|B) (6.2)

= S(⇢
B

)� S(B|A).

The quantum mutual information, I(⇢
AB

), provides a measure of all the correlations
within a bipartite system, whether classical or quantum in nature. Consider the quantum
conditional entropies, S(A|B) and S(B|A). One can quickly verify using (6.1) that via
state tomography one can infer the quantity S(A|B) perfectly,

S(A|B) = S(⇢
A,B

)� S(⇢
B

). (6.3)

Equation 6.3 is how the quantum conditional entropy is usually defined within the litera-
ture. But consider a direct attempt to measure S(A|B), that is: if we preform a projective
measurement on B, how does the entropy of A change? Consider a set of measurements
{⇧

i

}, where
P

i

⇧
i

= 1, are made on B. The resulting state of A is given by

⇢
A|i =

1

p
i

Tr
B

(⇢
AB

⇧
i

), where, p
i

= Tr
A,B

(⇢
AB

⇧
i

). (6.4)

This ‘classical-quantum’ version of the conditional entropy associated with the post-
measurement density matrix, ⇢

A|i, is given by,

S
⇧

i

(A|B) ⌘
X

i

p
i

S(⇢
A|i). (6.5)

This is formulation of the conditional entropy is perhaps a more faithful generalisation of
its classical counterpart. Using (6.5) one can also construct a new version of the mutual
information of (6.2), commonly referred to as the one-way classical correlation,

J (A|{⇧
i

}) = S(⇢
A

)� S
⇧

i

(A|B). (6.6)

We interpret J (A|{⇧
i

}) as information gained about one subsystem as a result of a mea-
surement on the other. Unsurprisingly, this quantum analog has an explicit measurement
dependence; there exist many measurements that may be preformed on partition B, each
potentially yielding more or less information regarding system A and thus providing a
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better or worse measure for the classically accessible correlations. Henderson and Vedral
[177] showed that the total classical correlations within a bipartite state can be obtained
by maximising

J (A|B) = max
{⇧

i

}
J (A|{⇧

i

})

= S(⇢
A

)�min
{⇧

i

}
S
⇧

i

(A|B), (6.7)

over all possible measurements, {⇧
i

}. This optimisation is necessary to isolate the least
disturbing measurement, such that the change of entropy on one subsystem due to mea-
surement on the other quantifies the correlations between the two subsystems.

The respective quantum mechanical generalisations of these two, classically equivalent,
forms of the mutual information yield very di↵erent quantities: I(⇢

AB

) provides a measure
of the total correlations within a bipartite system, while J (A|B) captures the classical
correlations. The di↵erence between these two expressions, defined as the quantum discord

D(A|B) = I(⇢
AB

)� J (A|B). (6.8)

provides a measure of all non-classical correlations [177, 176]. As one might suspect from
the form of (6.7), the discord is a directional quantity. For a bipartite system, ⇢

AB

, we
also need to define the discord on partition B,

D(B|A) = I(⇢
AB

)� J (B|A). (6.9)

In general, the discord is asymmetric, such that D(A|B) 6= D(A|B). Using (6.1) and (6.7)
we can define,

D(A|B) = S(⇢
A

)� S(⇢
AB

) + min
{⇧

i

}
S
⇧

i

(A|B)S
⇧

i

(A|B), (6.10)

and equivalently for D(B|A). While it is standard that the optimisation be taken over
the set of all POVMs, this is generally an arduous task. A handful of theoretical works
[184, 185] introduce discord-esque quantities that instead consider a restricted sets of
measurements, making the optimisation problem tenable. One such measure of significance
for this thesis was introduced independently in [184, 185] and considers a restriction to
two-mode Gaussian states and Gaussian measurements.

When quantum discord initially appeared [177, 187] the quantum physics community
proved to be quite indi↵erent. It was a mixed state quantum computing protocol intro-
duced by Knill and Laflamme [171] in the late 90’s, referred to as Deterministic Quantum
Computing with One Qubit (DQC1), that proved critical to discords reemergence from
obscurity. DQC1, though certainly not as powerful as a pure-state quantum computing
protocol, it is nonetheless capable of providing an exponential speed up on some computa-
tional tasks compared to any known classical algorithm. With the resources of a solitary
qubit coupled to a completely mixed bath of dimension n, DQC1 allows e�cient estima-
tion of the trace of any unitary operation applied to the bath [171]. DQC1 proved to be
quite counterintuitive as a quantum computing protocol. Historically, quantum comput-
ing emerged from the formalism of pure states, and perhaps unsurprisingly, entanglement
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was understood to be the resource responsible for any quantum speed up. In 2008 Datta
et al. [188] showed that while there was ‘some’ entanglement between the qubit and the
bath, it was bounded by a constant independent of on the size of the bath n, such that
any entanglement present becomes vanishingly small with large n. This result conflicted
with pure state quantum computing, where to retain exponential speed up entanglement
is required to increase with the size of the problem. Datta et al. [173] demonstrated that
when applied to the problem of DQC1, quantum discord scaled appropriately with the
size of the problem. This scaling was subsequently verified experimentally [174]. However,
there remained (and still remains) no operational link between mixed state computing
and discord, just conjecture regarding whether discord was, or was not, the resource of
interest. But this significant result propelled discord from obscurity, and nearly a decade
after the original proposal, discord was suddenly in vogue and defining itself as a new
research field.

One could conceive of discord as an attempt to generalise the concept of entanglement
to mixed states. Historically, much of the theoretical work concerning correlations and
quantum states was done in the framework of pure states, and within this framework corre-
lations and entanglement are conceptually identical. This may have formed the sometimes
prevailing equivalence within the quantum mechanics community regarding the ideas of
entanglement and quantum correlations.

As a measure of the ‘quantumness’ of correlations, discord has some desirable, and
some less desirable qualities. There are two important properties that quantum discord
satisfies:

1. When restricted to pure states, the discord coincides with the entropy of entanglement,
D(A|B) = S(⇢

A

) = S(⇢
B

).1

2. The discord is zero for product states, ⇢
AB

= ⇢
A

⌦ ⇢
B

.

The first satisfies our intuition that if discord is a measure of quantum correlations, as all
correlations in pure state are ‘entangled’ correlations, discord must reduce to our estab-
lished entanglement measures. The second asserts the discord of any state without any
correlations must be zero. In addition to the above, the discord:

3. Is invariant under local unitary transformations.

4. Is non-increasing under local operations.

This bring us to perhaps the most distinctive di↵erence between discord and the established
notion of entanglement; if in addition to local operations, we permit classical communica-
tion (LOCC) between the subsystems, properties 3. and 4. no longer hold. Entanglement,
however, is strictly invariant under LOCC. Unlike entanglement, one can manufacture dis-
cord within a bipartite system without requiring the two subsystems have ever interacted.
As a result, discord is a “broad net” that encompasses correlations of varying degrees of
‘quantumness’; from those that violate classical models of ‘local realism’ to separable, but
non-orthogonal states.

1The entropy of entanglement is an entanglement measure for pure bipartite states. It is given by Von
Neumann entropy of the reduced subsystems, E(⇢

AB

) = S(⇢
A

) = S(⇢
B

).
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Non-orthogonality as a criterion for quantumness establishes discord as a ubiquitous
quantity. Ferraro et al. in 2009 showed that almost every state picked at random would
have non-zero discord, and that a generic arbitrarily small perturbation of a state with
zero discord will generate discord[189]. Discord’s ubiquity in itself is not a problem. It
is perhaps unsurprising that most any state described by quantum mechanics could, by
some measure, be considered uniquely quantum. But if discord is to be considered useful
for quantum information protocols – especially given the association with mixed state
quantum computation – the discrepancy between the apparent hardness of implementing
quantum information protocols and ease of availability of discord as a resource needs to
be addressed.

There has been some progress in establishing an operational meaning for discord. In
their initial work [177], Henderson and Zurek related discord to the process of decoher-
ence, where vanishing discord is a condition for the evolution of a quantum state into
its ‘classical’ pointer states. Discord has also found favour as a measure in the quantum
thermodynamics community, and is closely related to the quantum deficit introduced by
Oppenheim et al.[190]. Zurek later related discord to di↵erence in e�ciency of quan-
tum and classical Maxwells demons [191]. The majority of literature on quantum discord,
however, has emerged from the quantum information community. In addition to the specu-
lative link to mixed state quantum computation, discord has been theoretically [192, 193]
and experimentally [194] linked to quantum state merging [195]. Links have also been
drawn to dense-coding [192]. As non-orthogonality of basis states is a su�cient resource
for quantum cryptography, and for separable states the discord is a measure of the non-
orthogonality, one could conceive discord should be an excellent candidate to describe
cryptographic protocols.

6.3 Theory

Consider our two usual characters from information theory, Alice and Bob. Alice prepares
some correlated resource ⇢

AB

on a bipartite quantum system. As discord is, in general,
an asymmetric quantity, Alice has two expressions for her discord,

D(A|B) = I(⇢
AB

)� J (A|B) and D(B|A) = I(⇢
AB

)� J (B|A). (6.11)

She the chooses the labelling for her bipartitions, A and B, such that D(A|B)  D(B|A)
and gives subsystem B to Bob.2. Alice possesses a classical random variable K that
takes on the value k with corresponding probability p

k

. She privately encodes K onto her
subsystem by application of a corresponding unitary operator U

k

. The preparation and
encoding scheme is publicly announced. For Alice, with knowledge of her encoding, the
discord of ⇢

AB

is unchanged. But to anyone oblivious to which unitary U
k

was applied,
Alice’s encoding results in the state

⇢̃
AB

=
X

k

p
k

U
k

⇢
AB

U †
k

. (6.12)

2This labelling choice is made for the purposes of the proof of (6.14)
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with a corresponding discord D̃(A|B). To a party oblivious to Alice’s choice of U
k

the en-
coding is non-unitary, and appears as random, uncorrelated noise introduced on partition
A. The amount of discord destroyed or consumed during the encoding of Alice’s partition
is simply given by the di↵erence,

�D(A|B) = D(A|B)� D̃(A|B) (6.13)

This quantity is always greater or equal to 0. Alice then gives her partition A to Bob and
challenges him to estimate K from ⇢̃

AB

. Bob would need to proceed with some decoding
protocol on ⇢̃

AB

that will output a classical variable K
o

describing his estimate of K. The
performance of his chosen decoding protocol is then determined by the classical mutual
information between Alice’s original encoding and Bob’s estimate, given by I(K

o

,K).

We define two di↵erent general strategies that Bob can take in estimating K: an inco-
herent strategy, and a coherent strategy. The incoherent case restricts Bob to performing
individual local measurements on each bipartition and post-processing: i.e. Bob can make
a local measurement first on A, then B, or vice versa, and use combine his two classical
measurement records to estimate K. We denote the upper bound on Bob’s performance
for when restricted to the incoherent strategy as I

c

.

If we extend Bob capabilities to also permit arbitrary coherent operations between A
and B, allowing him to optimisation over all possible measurements of the joint system
AB, we obtain - in general - a di↵erent upper bound on Bob’s information, which we label
I
q

.

We then ask the question, when are coherent interactions advantageous for Bob? That
is, when is I

q

> I
c

?

In Appendix B.1 we prove that

�D(A|B)� J̃ (A|B)  �I  �D(A|B), (6.14)

where J̃ (A|B) represents the classical correlations remaining after encoding (i.e., in ⇢̃
AB

).
Equation (6.14) indicates that the additional information accessible to Bob regarding
Alice’s original encoding, K , when he is allowed to coherently interact his bipartions (that
is, �I = I

Q

� I
C

) is related to the discord of Alice’s original state, ⇢
AB

. Furthermore, we
demonstrate the coherent strategy (i.e. a joint measurement) is advantageous if and only
if ⇢

AB

contains discord. And that the amount of discord Alice consumes during encoding
bounds exactly this advantage. Should Bob and Alice share no discord (�D(A|B) = 0),
the coherent and incoherent strategies are indistinguishable in their performance.

The lower bound �D(A|B)�J̃ (A|B)  �I indicates that an advantage is available for
any encoding such that the discord consumed is strictly greater the classical correlations
after encoding. This is possible for any discorded ⇢

AB

, since there exists since there exists
maximal encodings, such that J̃ = 0 for any ⇢

AB

(see Appendix B.1). In this scenario, all
available discord initially available is consumed and the advantage coincides exactly with
the discord of the initial state,

�I = �D(A|B) = D(A|B). (6.15)

Discord therefore quantifies exactly a resource that coherent interactions can exploit.
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Figure 6.1: Alice begins with a bi-partite resource state, ⇢
AB

. She then encodes a signal K via

a unitary operation, U
k

on subsystem A. She then sends the entire system ⇢
AB

to Bob, who has

two avaliable scenarios to try to ascertain K: incoherent scenario, and an coherent scenario. In

the incoherent scenario, Bob is permitted an individual measurement on each of his subsystems

and post-processing to arrive at his best estimate of K. In the coherent scenario, Bob is allowed

to optimise over all possible measurements of the joint system, AB.
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An example of maximal encoding on two qubits are the Pauli operators {I,�
x

,�
z

,�
x

�
z

}

chosen with equal probability. The special case where this encoding is applied to a singlet
state coincides with dense coding [168]. Coherent interactions allow Bob to extract one
extra bit of knowledge about which of the four unitary transformations was applied by
Alice. This equals the discord consumed when we encode onto the singlet state.

The operational significance of discord beyond entanglement is highlighted when we
repeat the above protocol on a separable discordant resource. For example, take ⇢

AB

=P
i={x,y,z}(|0ii|0iih0|ih0|i+ |1i

i

|1i
i

h1|
i

h1|
i

), where |0i
i

and |1i
i

represent the computational
basis states with respect to �

i

. This resource is clearly separable, and yet possesses a
discord of 1

3

. Therefore coherent processing can harness the discord within this resource
to extract 1

3

extra bits of information despite the absence of entanglement.

So far, we have assumed in our definition of J (A|B) that Bob may choose any POVM
to gain information about Alice’s encoding. It was mentioned briefly in §6.2 that there
exist discord ‘variants’ where J (A|B) is optimised over a restricted class of measurements,
such as projective measurements [176]; and in the case of continuous variables, Gaussian
measurements [184, 185] . The results can be adapted to such variants, where �I now
bounds the extra advantage gained by Bob if he can implement arbitrary coherent in-
teractions within the restricted class of measurements. The experimental demonstration
presented in the next chapter considers the restriction to Gaussian states and Gaussian
measurements.

6.4 Gaussian Discord

The optimisation over all measurements that the discord requires makes it, in general,
onerous to calculate. As such, analytical formulas for the discord of general quantum
systems are not ordinarily forthcoming, with most of the existing success occurring in
very restricted Hilbert spaces, such as a system of two qubits [196, 197]. The infinite
dimensionality of the Hilbert space for continuous-variable systems ensures the calculation
of the discord for even a specific state is an arduous task. To reduce this problem to a more
tractable one, Giorda and Paris [184], and Adesso and Datta [185] introduced a discord
variant that - under the restriction to Gaussian measurements - gave an analytical result
for two-mode Gaussian states.3 This is the so-called ‘Gaussian discord’.

As both D and J are invariant under local unitary operations, we can exploit the
Standard Form of a general two-mode Gaussian state (discussed briefly in §2.4.1) to sim-
plify the analytical result. Recall that any two mode Gaussian state is fully specified by
its covariance matrix and mean vector. By the means of a series of unitary (symplectic)
operations, any covariance matrix can be transformed into Standard Form I with diagonal
sub-blocks,

�
AB

=

✓
A �
�T B

◆
. (6.16)

3Giorda and Paris [184] gave an analytical result for the (admittedly, very general) squeezed-thermal
states. Adesso and Datta [185] produced the general result for all two-mode Gaussian states presented
here.
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For ease of calculation we define the symplectic invariants as ↵ = detA, � = detB, and
� = det�. The covariance matrix corresponds to a physical state if and only if ↵,� � 1
and its symplectic eigenvalues, �± � 1, where

�2± = 1

2

(�+
p
�2

� 4 det�
AB

) (6.17)

and � = ↵ + � + 2�. The Gaussian discord for two-mode Gaussian state described a
covariance matrix �

AB

is given by,

D

G

(A|B) = �(
p
�)� �(��)� �(�

+

) + min
�

⇧

�(
q

det�
A|B) (6.18)

where �(x) = x
+

log
2

x
+

� x� log
2

x�, and x± = 1

2

(x ± 1) [185]. We can also define the
Gaussian discord in the opposite direction,

D

G

(B|A) = �(
p

det↵)� �(��)� �(�
+

) + min
�

⇧

�(
q

det�
B|A). (6.19)

Here, �
A|B corresponds to the covariance matrix of the conditional state ⇢

A|b given a
measurement ⇧

i

on B. We require a minimisation of det�
A|B over all possible Gaussian

measurements �
⇧

(projections onto pure single-mode Gaussian states). Adesso and Datta
provided an analytical result for this minimisation [185],

For (det�
AB

� ↵�) 2  (1 + �) �2 (↵+ det�
AB

) , (6.20)

min
�

⇧

det�
A|B =

2�2 + (�1 + �) (�↵+ det�
AB

) + 2|�|
p
�2 + (�1 + �) (�↵+ det�

AB

)

(�1 + �) 2
.

Otherwise,

min
�

⇧

det�
A|B =

↵� � �2 + det�
AB

�

p
�4 + (�↵� + det�

AB

) 2 � 2�2 (↵� + det�
AB

)

2�
.

Whilst the result above is in a form that renders it quite unilluminating, it has quite
interesting consequences for the way we consider Gaussian states. The results of [185, 184]
showed that the only Gaussian states that do not possess Gaussian discord are product
states; that is to say, all bi-partite states with any correlations whatsoever possess discord.
A large subset of these states would have been broadly identified as ‘e↵ectively’ classical
systems, consisting only of statistical mixtures coherent states.

However, the restriction to a class of measurements is undesirable in that it ensures
that you can only ever overestimate the ‘quantumness’ of the state. As such, the Gaussian
discord only ever provides an upper bound on the actual discord of the state. Recent
work has shown that for Gaussian states, the presence of Gaussian discord necessary con-
dition for genuine discord [198]. There has also been some numerical evidence for the
equivalence of Gaussian discord and discord proper for Gaussian states, arguing for the
optimality of Gaussian measurements for Gaussian states [199]. However this work only
considered a handful of very restrictive non-Gaussian measurements. Gaussian measure-
ments are understood to be, in general, not optimal for Gaussian states, and non-Gaussian
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measurements are usually required to achieve the Holevo information[200].4

6.5 A Continuous Variables Implementation

We now turn our attention applying the theory of §6.3 to a continuous variable physical
system suitable for our demonstration. Consider A and B are continuous variables modes,
with respective quadrature operators X̂

A

, P̂
A

and X̂
B

, P̂
B

that obey the commutation
relations [X

j

, P
k

] = 2i�
jk

.

To emphasise that discord is the quantity of interest in this proof of principle demon-
stration we designed Alice’s resource state to be separable, but discordant. As any bi-
partite Gaussian state that is not a product state has non-zero Gaussian discord, all that
we require is the introduction of correlations between partitions A and B. Alice prepares
her resource state ⇢

AB

by random, and correlated displacement of two vacuum states. The
resulting resource is described by the covariance matrix �(⇢

AB

)

�(⇢
AB

) =

0

BB@

V + 1 0 V 0
0 V + 1 0 �V
V 0 V + 1 0
0 �V 0 V + 1

1

CCA (6.21)

where V is the variance of the correlated noise. As the role of this correlated noise is to
introduce discord between partitions A and B, we will herein reluctantly refer to it as
discording noise. Using (6.20), the Gaussian discord, D

G

(A|B) of Alice’s resource, ⇢
AB

D

G

(A|B) = � (V + 1)� 2�
⇣
p

2V + 1
⌘
+ �

✓
1 +

2V

2 + V

◆
. (6.22)

where �(x) = x
+

log
2

x
+

� x� log
2

x�, and x± = 1

2

(x ± 1). Alice then encodes separate
signals x

s

and p
s

governed respectively by Gaussian distributed random variables X
s

and
P

s

of variance V
s

in the quadratures of her mode by application of

E

A

(x
s

, y
s

) = exp(�1

2

ix
s

X
A

) exp(�1

2

ip
s

P
A

) (6.23)

This results in an encoded state ⇢̃
AB

=
R
E

A

⇢
AB

E

†
A

dx
s

dp
s

with the covariance matrix,

�(⇢̃
AB

) =

0

BB@

V + 1 0 V 0
0 V + 1 0 �V
V 0 V + V

s

+ 1 0
0 �V 0 V + V

s

+ 1

1

CCA . (6.24)

Alice then gives her encoded state ⇢̃
AB

to Bob, and tasks him with estimating the encoded
signal (X

s

,P
s

). In §6.3 we identified two di↵erent strategies undertaken by Bob in esti-
mating (X

s

,P
s

): which we dubbed the incoherent, and coherent strategy. The incoherent

4After the submission this thesis, a proof of the bosonic minimum output entropy conjecture appeared
[201]. This result leads to the optimality of Gaussian discord - that is, for Gaussian states that the Gaussian
discord is the real discord [202].
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strategy restricts Bob to an individual measurement on each mode and post-processing.
An upper bound on Bob’s accessible information for this scenario (with the additional re-
striction to Gaussian measurements) is given by the Holevo information of Bob’s state after
he has preformed his optimal Gaussian measurement on one of his partitions. Application
of (B.7) gives

I
c

= �

✓
1 +

2V

V + 2
+ V

s

◆
� �

✓
1 +

2V

2 + V

◆
. (6.25)

In contrast, the coherent strategy allows Bob to optimise over all possible measurements
of the joint system, ⇢̃

AB

. The upper bound on his accessible information I
q

is simply the
Holevo bound,

I
q

= S(⇢̃
AB

)� S(⇢
AB

) = �(�
+

) + �(��)� 2�(
p

2V + 1), (6.26)

where

�± =

r
2V + 1 +

V
s

2
(V

s

+ 2V + 2±
p

(V
s

+ 2)(4V + V
s

+ 2)).

In the limit that Alice encodes maximally (V
S

! 1) and consequently consumes all the
discord in the encoded state, ⇢̃

AB

, then lim
V

s

!1(I
q

� I
c

) = D(⇢
AB

) and the additional
information available to Bob through coherent interactions is equal to the discord of Alice’s
initial state, ⇢

AB

.

The Holevo bound dictated by (6.26) corresponds to a theoretical bound that in theory
can always be saturated. Practically, however, we rarely know the experimental strategy
that achieves it. For the purposes of this demonstration, however, we only need to isolate
a strategy for which Iexp

q

outperforms the ideal incoherent strategy, I
c

. And the identified
strategy is notably simple: Bob coherently interacts his bipartite system on a 50-50 beam-
splitter and the resulting modes are then measured independently via homodyne detection
in orthogonal quadrature basis. If Bob does this perfectly he can achieve an information,

Iexp
q

= log

✓
1 +

V
s

2

◆
. (6.27)

Note that the result of (6.32) is independent of the discording correlations, V . Interfering
the two subsystems in phase on a 50:50 beamsplitter results in the covariance matrix,

�(⇢̃
AB

) =

0

BB@

2V + V

s

2

+ 1 0 V

s

2

0
0 V

s

2

+ 1 0 �

V

s

2

V

s

2

0 V

s

2

+ 1 0
0 �

V

s

2

0 2V + V

s

2

+ 1

1

CCA . (6.28)

In this idealised scenario Bob can estimate Alice’s encoding without penalty from the initial
encoded noise, his measurement equivalent to a heterodyne detection of Alice’s encoding.
One can check that as V ! 1, Iexp

q

! I
q

(Figure 6.2.a). Provided the discord in the
initial resource is very large, the protocol defined above is almost optimal. Experimentally
however, ‘infinite’ noise proves quite the pain to realise, but we only require ‘discording
noise’ variance comparable to the variance of the signal encoding to see a clear discepency
between Iexp

q

and I
c

.
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We experimentally prepare the aforementioned resource state ⇢
AB

, and encode within
it the signals (X

s

,Y
s

). We then take on the role of Bob, and attempt to mea-
sure some observable pairs (Xexp

s

,Yexp

s

) such that I(X
s

,Y
s

;Xexp

s

,Yexp

s

) is maximized.
Theory dictates that when limited to a single local measurement on each subsystem,
I(X

s

,Y
s

;Xexp

s

,Yexp

s

)  I
c

. Experimental violation of the above inequality will demon-
strate coherent processing can harness uniquely quantum correlations. The magnitude
with which we can violate this inequality

�Iexp = I(X
s

,Y
s

;Xexp

s

,Yexp

s

)� I
c

(⇢
AB

) (6.29)

then defines the observed quantum advantage.
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Figure 6.2: The theoretical mutual information between Alice’s encoding (X
s

, P
s

) and Bob’s

estimates (X
o

and P
o

) for three scenarios: I
c

, Bob’s best performance when he is restricted to

individual measurements; I
q

, when Bob is also able to make joint measurements; and Iprot
q

, the

non-optimal joint measurement protocol specified in §6.5. Figure a. plots the mutual information

as a function of the discording noise for a constant signal strength, V
s

= 10, whereas b. considers

a constant discording noise (V = 10) and a varying signal strength.

We can also compare this rate to the optimal known decoding scheme when limited to
a single local measurement of A and B [203, 204]. In this scheme, Bob makes simultaneous
quadrature measurement of the two modes. The information Bob can extract from a state
having covariance matrix of the form (6.24) is given by

Iprot
c

= log

✓
1 +

1 + V

1 + 2V
V
s

◆
. (6.30)
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Figure 6.3: A laser provides coherent light that is encoded using modulation of the sideband

frequencies. Alice prepares her discordant bi-partite state ⇢
AB

by correlated (anti-correlated)

displacement of two coherent vacuum states in the amplitude (phase) quadrature with Gaussian

distributed noise using electro-optic modulation. Alice then encodes independent signalsX
s

andY
s

on the phase and amplitude quadrature of her subsystem using EOM and subsequently transmits

her state to Bob. We compare Bob’s capacity to extract information in two di↵erent scenarios. The

theoretical limit to Bob’s performance when Bob makes individual measurements of A and B, and

the experimental observed performance when Bob uses a particular protocol involving coherent

interference to enhance his knowledge of Alice’s encoding.
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6.6 The Experiment

In the previous section we have devised a recipe for implementation of the theory of
§6.3, now we turn to the details of the implementation. This experiment is notably more
straightforward than those discussed in the previous chapters, requiring only electro-optic
modulation and homodyne detection.

6.6.1 Light source

The experiment was constructed on an actively damped table using entirely free space
optics. The source of laser light for this demonstration was an Innolight Mephisto
Neodymium-doped Yttrium Aluminum Garnet (Nd:YAG) laser producing up to 2.1W
of single mode continuous wave light at 1064nm. The laser FWHW linewidth was speci-
fied to by the manufacturer to be ⇡ 1 kHz. The ND:Yag crystals non-planar ring geometry
has a natural relaxation oscillation at ⇠ 750 kHz, which is attenuated considerably by the
inclusion of a ‘noise-eater’ option. Despite the noise-eater, the roll o↵ of the relaxation
oscillation was evident up to 4 MHz.

A Faraday isolator was introduced directly after the laser as a precaution against unin-
tended optical feedback. To further improve the suppression of the relaxation oscillation,
and also ensure a well-defined TEM 00 spatial mode for our experiment, the laser field was
passed through a high-finesse optical mode-cleaner. The triangular ring geometry mode
cleaner had a linewidth of approximately 2 MHz and an observed finesse of 160. The mode
cleaner was controlled via Pound-Drever-Hall locking, with a phase-modulator introduced
immediately after the Faraday isolator for this purpose.

6.6.2 State preparation

We now assume the role of Alice. A small portion of the filtered laser light was partitioned
into two beams of equal power, which we labelled partitions A and B. The remainder is
reserved to provide a bright local oscillator for measurement. Consider the ideal form of
the covariance matrix for the initial resource state,

�(⇢
AB

) =

0

BB@

V + 1 0 V 0
0 V + 1 0 �V
V 0 V + V

s

+ 1 0
0 �V 0 V + V

s

+ 1

1

CCA (6.31)

Our first requirement is to introduce discord between subsystems A and B. We do so via
correlated and anti-correlated random displacements of amplitude and phase quadratures
of initial vacuum state. The displacement employed a series of electro-optic modulators
from New Focus that were all broadband coated for the near to far infrared (900-1600
nm). Each beam passed through one phase and one amplitude electro-optic modulator.
The light was polarised vertically to the crystals propagation axis as it entered the phase
modulator. We opted for a quarter wave plate before the amplitude modulator to ensure
a linear response to the modulation signal. Function generators provided two Gaussian-
distributed white noise sources, which we label P

d

and X
d

.
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To correlate the amplitude quadratures of the partitions A and B, our classical signal
X

d

is split to drive both amplitude modulators. Equivalently, the phase quadratures were
anti-correlated by dividing our classical signal P

d

between both phase modulators, with
one output phase shifted by 180�. As this demonstration was concerned with both the
successfully encoding and detection of correlations, the amplitude and phase response of
the system is critical. The requirement for passive electronics like delay, attenuators and
splitters, in addition to the detection circuits, makes ensuring a close to identical frequency
response for both system A and B di�cult across the entire available detection band of
3-10 MHz di�cult. As such, we narrowed our focus to a sideband frequency measurement
window between 3.2-4 MHz, which would later be fine-tuned further for data acquisition.

To ensure the quadratures of modes A and B were optimally correlated we made use of
the two homodyne detection stages required for the measurement. Choosing a frequency
band we would focus on for our measurements, we examined the correlations of both
quadrature across a 1 MHz frequency window around our central sideband frequency of
3.6 MHz. Delay was accordingly introduced on mode B to synchronise it to mode A. The
magnitudes for the white noise were also matched to ensure the closest realisation to the
ideal symmetric form of the covariance matrix of (6.31).

Alice is also required to encode a signal on mode A. We denote Alice’s signal encoding
in the amplitude and phase quadratures of mode A by the Gaussian distributed random
variables, P

s

and X
s

, experimentally provided by two independent function generators.
The signal encoding made use of the existing phase and amplitude modulators on mode
A, electronically adding the ‘signal’ noise to the ‘discording’ noise. A copy of the encoded
signal is recorded for the purposes of characterising success of the protocols. The size of
the encoded signals in both quadratures was balanced V

s

x

⇡ V
s

p

to ensure the encoded
state was close to the form of (6.31).

6.6.3 State measurement

We now consider the implementation of the two measurement scenarios: the incoherent
scenario and the coherent scenario. As we want to establish an upper bound for Bob’s in-
formation when restricted to individual measurements and post-processing, we first char-
acterised Bob’s system by reconstructing the covariance matrix describing the encoded
state, ⇢̃

AB

. The covariance matrix allowed direct inference of the theoretical incoherent
limit, I

c

from the Holevo bound. The coherent scenario, however, required we implement
our chosen protocol: interaction of the two subsystems on a beamsplitter, followed by a
direct measurement via homodyne detection. Both scenarios require two homodyne detec-
tion stages. As such, experiment was designed such that that we could transition between
the coherent and incoherent scenarios by rotating flip mirror mounts in and out of the
beam paths, while still maintaining the same path lengths for mode matching purposes.

Homodyne detection

Both the coherent and incoherent scenarios made use of the same two balanced homodyne
detection stages (labelled 1 and 2). Each homodyne detection stage utilised two Uni-PD
circuits. The homodyne e�ciency of the entire detection stage was originally estimated at
91± 2%. This was primarily limited by the Epitaxx ETX-500 InGaAs photodiodes which
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have a manufacturer specified quantum e�ciency of 95 ± 2%. Improvements of approx-
imately 1-2% in the absorbed light could be made by tweaking the angle of incidence,
and the total e�ciency could have been improved by retro-reflection of the light onto
the diode surface. The secondary limitation to the homodyne e�ciency was the mode-
matching, with typical fringe visibilities of 98%. This was limited by wavefront distortions
introduced by the electro-optic modulators.

For control of the homodyne detection angle of mode A and mode B we introduced
additional sideband modulations at 21.25 MHz and 33.125 MHz respectively. Some care
had to be taken with choice of these frequencies to ensure a clear detection band. De-
pending on our choice of quadrature measurement, an analog switch was used to route
the control frequencies to either their respective amplitude or phase modulators. An error
signal for controlling the homodyne detection was extracted a straightforward demodu-
lating the photocurrent at the modulation frequency. This approach allowed us to easily
switch between a lock of either the phase or amplitude quadrature without requiring any
changes to the electronic hardware.

Incoherent Scenario

We reconstruct the two-mode covariance matrix of the encoded state ⇢
AB

by individual
measurements of modes A and B on two homodyne detection stages. Full reconstruc-
tion of the covariance matrix required we sample all possible combinations of quadrature
measurements of phase and amplitude on modes A and B. This allows us to charac-
terise not only the matrix elements corresponding to the ideal standard form, but also the
cross-terms that arise due to imperfect modulation and control.

Coherent Scenario

The coherent protocol we identified in §6.5, while not optimal, is su�cient to demonstrate
the improvement a↵orded by joint measurements. The protocol requires we interfere the
two input systems on a 50:50 beamsplitter, with the relative phase, �, of the two beams
controlled to be zero. The two resulting beams are then measured via the same balanced
homodyne detection stages described above, one stage sampling the amplitude quadrature,
whilst the other measures the phase quadrature.

The interference beamsplitter uses a non-polarising beamsplitter cube that deviated
from a perfect 50:50 beamsplitter with an observed splitting ratio of 48:52. This ratio
has consequences for the protocol as the ideal implementation of the protocol identified
requires perfect destructive interference of the ‘discording’ noise to realise the information
of

Iexp
q

= log

✓
1 +

V
s

2

◆
. (6.32)

Any deviation from a balanced beamsplitter will introduce a noise term that will rapidly
degrade Bob’s estimation.

Control of the relative phase, �, between the two beams at the beamsplitter required
we encode an additional phase modulation on subsystem A. Consider we block subsystem
B before the beamsplitter, such that we are e↵ectively splitting mode A between two
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homodyne detection stages. We then lock the homodyne detection angle to the sample
the amplitude quadrature of our signal mode (✓ = ⇡/2). Unblocking mode B will produce
some rotation of the phase modulation, resulting in an amplitude modulation contribution
in our measured homodyne photocurrent proportional to the relative phase between A and
B. By demodulating the homodyne photocurrent at this new frequency we can extract an
error signal that is proportional to the relative phase, �. In combination with our existing
error signal for the homodyne angle, we can control the three mode system as desired.
This is not the most elegant approach as the systems are coupled to each other, but it
works well for accommodating small perturbations around � = 0 and ✓ = ⇡/2 and requires
we introduce no additional loss for the purposes of control.

Otherwise, the technical details of the control of the two modes for homodyne measure-
ment are identical to the incoherent scenario. But as we do not need to fully characterise
Bob’s state, but directly extract his estimates X

o

and P
o

, we only require one set of
measurements. For this the amplitude quadrature of the bright output and the phase
quadrature of the dark output are sampled using the two available homodyne detection
stations.

6.6.4 Acquisition and analysis

For each choice of V and V
s

the characterisation of Bob’s covariance matrix for the coherent
strategy required four measurements, corresponding to the permutations of X and P at
the two detection stations. The incoherent strategy required only required the single
measurement of X and P . For each measurement we also record Alice’s encoded signal.
For each separate homodyne detection 5⇥ 106 data points are sampled at 20 MHz using
a digital acquisition system. All measurements were digitally filtered to 3.6-3.8 MHz and
then re-sampled.

To obtain Iexp
q

, we directly calculated the classical mutual information between our
record of Alice’s encodings (X

s

,P
s

), and Bob’s measurement strings (X
o

,P
o

). Our upper
bound I

c

requires we first reconstruct the CM of Bob’s two mode state ⇢
AB

. We then
symmetrised the reconstructed CM before compensating for the presence of loss and noise.
This compensation allowed us to obtain a strong upper bound on the Holevo information
for Bob’s state given the limitations of our experimental implementation. The direct recon-
struction of the CM also allowed us to model both the coherent and incoherent scenarios
accurately, with some additional characterisation of the experimental parameters.

6.6.5 Alignment and optimisation

A successful demonstration of the theory presented in §6.5 required we address a few tech-
nical subtleties that arose. Experimentally, the electro-optic modulation of one quadrature
will always introduce a parasitic modulation contribution in the orthogonal quadrature.
This e↵ect is largely attributed to parasitic etalon e↵ects that occur within the crystal
that induce a small rotation of the modulation sideband, producing a contribution in the
orthogonal quadrature. This e↵ect is routinely worse for amplitude modulators which re-
quire two crystals and thus more interfaces. The broadband coating of the modulators is
the likely culprit, with small changes in alignment and temperature producing large vari-
ation in the contribution from parasitic modulation. When encoding in one quadrature,
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a successful demonstration of the theory required typical suppression of the orthogonal
quadrature to be 25 dB or greater.

6.7 Model

Whilst ideally, we strive to achieve the state described by the covariance matrix of (6.24),
in practise the actual state is never such. To refine the experimental model, we included
e↵ects of imperfect correlations, passive losses, excess noise and unbalanced beam splitter
ratio. The covariance matrix of the bipartite state is a function of the input signal, the
input noise and the quantum noise. It can be expressed as C

0

= v̂†v̂ where

v̂ =
⇣
~X
A

, ~P
A

, ~X
B

, ~P
B

⌘
(6.33)

and ~X
A(B)

and ~P
A(B)

represent the modulation on the amplitude and phase quadratures
of mode A(B) written as a linear combination of eight independent inputs: the input
signals for X(P ), �

sx(p)

, the input classical noise for X(P ), �
nx(p)

and the vacuum noises
in X(P ) in mode A and beam B, �

v

. We write v̂ as
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The coe�cients ⌘ and � characterise the linear correlations between the quadrature mod-
ulations and the applied signal and noise voltages. The terms ⌘

xp

and ⌘
px

capture the
parasitic cross correlations that arise due to imperfectly orthogonal measurements and
imperfect modulation of the quadratures. A non-zero correlation will degrade the mutual
information, with this degradation proving more pronounced for the coherent scenario
owing to the restricted nature of the decoding scheme. The flexibility for additional post-
processing in the incoherent scenario moderates its e↵ect. The terms ⌘

xx

and ⌘
yy

are
the correlations between the signal and the quadrature modulation. Imperfect correlation
will again degrade both the resulting information for both the coherent and incoherent
scenarios. The coe�cients ⇠ characterise excess noise in the quadratures.

The identified decoding strategy for the coherent scenario is quite artificially restricted,
and our strategy is only almost optimal in the limit of a perfect implementation concerning
very large encoding and very large noise. To maximise the observed quantum advantage
the ‘discording’ noise should be as close to equal in magnitude on both modes, allowing
perfect cancellation. An unequal magnitude of the signal encoding on phase and amplitude
quadrature also punishes the coherent scenario where the measurement cannot be biased
appropriately. For the coherent case, we also include a small nonlinear loss that increases
with the signal variance around the order of ⌘

loss

= 0.0001�2
sx(sp)

+ 0.00003�4
sx(sp)

just



§6.8 Results & Discussion 119

before the beam splitter. This is attributed to the nonlinear response of the electro-optic
modulators and gives rise to the observed plateauing of the quantum advantage in Figure
6.5. The loss is simulated by propagating the covariance matrix C

0

through a beam splitter
and tracing over the output of the vacuum port to get the new covariance matrix:

CA

1

= Tr
v

{BS(⌘
loss

) · CA

0

� C
v

·BS(⌘
loss

)†} (6.35)

where

C
v

=

✓
�2
v

0
0 �2

v

◆
(6.36)

is the covariance matrix for the vacuum input and
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is the beam splitter transformation with transmission ⌘. CA

0

= Tr
B

{C
0

} is the covariance
matrix for beam A. For the coherent scenario, the modes A and B are then propagated
through an interference beam splitter with transmission coe�cient ⌘

i

= 0.48 and the
relative phase between the two beams fixed at �

A

� �
B

= 0. The output covariance
matrix is then

C
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where P (�
A

,�
B

) = P (�
A

)� P (�
B

) shifts the phases of beam A(B) by �
A(B)

with
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◆
. (6.39)

The homodyne e�ciencies are modelled as a vacuum noise contaminating the signal. More-
over, we take into account an imperfect locking angle between the local oscillator and the
signal, modelled as a rotation of the beam quadrature before the measurement

CA

3

= Tr
v

{B(⌘A
lo

)P (�A
lo

) · CA

2

· P (�A
lo

)†B(⌘A
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)†} (6.40)

and a similar expression for CB

3

with �A
lo

= 0 and �B
lo

= ⇡/2. Finally, tracing over the
phase quadrature gives the measured output of the detectors in the coherent interaction
setup SX

measured

= Tr
P

⇥
CA

3

⇤
and SP

measured

= Tr
X

⇥
CB

3

⇤
. In the incoherent interaction

case, the covariance matrix C
0

is directly propagated through to the homodyne detection
to sequentially measure both the X̂ and P̂ quadratures of both beams. The information
rate for the incoherent scenario is then calculated using the full covariance matrix.

6.8 Results & Discussion

The experimental results for this work are summarised in only two figures. The first,
Figure 6.4 compares the coherent and incoherent scenarios as a function of the discord-
ing noise. Here we fix the signal variance (normalised to the standard quantum limit)
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at 9.10 ± 0.05. The blue data points represent the directly observed values of Iexp
q

. Our
identified protocol, Iprot

q

should show no ‘advantage’ for very low discording noise, and
should prove almost optimal for very large discording noise. Experimentally, we find that
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Figure 6.4: Plot of Bob’s knowledge of the encoded signal for bipartite resource states with

varying discording noise and fixed encoding variance V
s

. (a) represents the amount of information

Bob can theoretical gain should he be capable of coherent interactions. For our proposed imple-

mentation, this maximum is reduced to (b). Experimentally, Bob’s knowledge about the encoded

signal is represented by the green data points. The line (c) models these observations by taking

experimental imperfections into account. Despite these imperfections, Bob is still able to gain more

information than the incoherent limit (d). The shaded region highlights this quantum advantage.

This advantage is more apparent if we compare Bob’s performance to the reduced incoherent limit

when experimental imperfections are accounted for (e). We can also compare these rates to a

practical decoding scheme for Bob when limited to a single measurement on each optimal mode

(f) and its imperfect experimental realisation (g). The error bars represent a statistical confidence

interval of 3�.

provided the discording noise is su�ciently large (such that the original resource has a sig-
nificant amount of discord) Iexp

q

clearly exceeds the ideal incoherent limit I
c

(Figure 6.4.d.).
There is a considerable deviation between the amount of information we experimentally
extract (Figure 6.4.c.), and the theoretical prediction Iprot

q

of the idealised protocol (Figure
6.4.b.). This discrepancy is largely due to loss on Bob’s measurement. Because we cannot
ensure identical loss contributions for both the coherent and incoherent strategies, when
computing our theoretical bound of Bob’s incoherent information, I

c

, we correct for loss
on Bob’s reconstructed co-variance matrix. This correction lifts Bob’s information from
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the Holevo information of the measured co-variance matrix, Iexp
c

(Figure 6.4.e.) to the
idealised version, I

c

. While our measured Iexp
q

is monotonically decreasing with increasing
discording noise, the same trend is evident in the ‘uncorrected’ incoherent performance,
and is therefore largely attributed to loss.

Other experimental imperfections that contribute to the discrepancy between Iprot
q

and
Iexp
q

include asymmetric modulation variance in the phase and amplitude quadratures of
both the encoded signal and the discording noise, limited suppression of the parasitic
phase and amplitude modulations, and crucially, asymmetry of the ‘50:50’ beam splitter.
Ideally, the beamsplitter interaction eliminates any e↵ect of the discording noise in Bob’s
estimate of Alice’s encoding. If the beamsplitter deviates from 50:50, Bob’s estimate will
be contaminated by a contribution from the ‘uncancelled’ discording noise. As our chosen
coherent protocol is inherently ‘symmetric’, any deviation from symmetric encodings of
the quadratures punishes Iexp

q

much faster than I
c

. These imperfections are well captured
by our model, with theory and experiment showing excellent agreement.

Encoded Signal 

Q
ua

nt
um

 A
dv

an
tag

e 
(b

its
/e

ve
nt

)

 

 

 

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5 a.

b. c.

d.
e.

Figure 6.5: Plot of quantum advantage for a fixed resource state (with V = 10.0 ± 0.1) with

varying strength of the the encoded signal, V
s

. (a) represents the maximum available amount of

discord in the original resource ⇢
AB

, of which we progressively consume more of as we increase

V
s

(b). This bounds the maximum possible quantum advantage, assuming Bob can perform an

ideal decoding protocol that saturates the Holevo limit (c). In the limit of large V
s

, the encoding

becomes maximal, and this tends to the discord of the original resource (a). The actual advantage

that can be harnessed by our proposed protocol is represented by (d). In practice, experimental

imperfections reduce the experimentally measured advantage to (e). The error bars denote a

statistical confidence interval of 99%.
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Figure 6.5 gives the experimentally observed ‘advantage’ for ⇢
AB

with varying strength
of the encoded signal, V

s

, with the discording noise is fixed at V = 10.0± 0.1 (normalised
to shot noise). The ‘advantage’ is defined as the di↵erence between Bob’s experimentally
measured coherent performance, Iexp

q

, and Bob’s incoherent limit, I
c

. The amount of
Gaussian discord within the initial resource is fixed at D(A|B) (Figure 6.5.a). quantifies
the quantum correlations shared by Alice and Bob, proving the resource that can be po-
tentially harnessed to demonstrate an advantage. As Alice increases the strength of the
encoded signal, progressively more of this initial resource is consumed (Figure 6.5.b), the
amount of discord consumed bounding the potential quantum advantage (Figure 6.5.c).
If Alice encodes maximally (V

s

! 1) the potential quantum advantage is exactly equal
to the discord in the initial state. For our identified decoding protocol (Figure 6.5.d)
we observed a clear advantage of coherent protocol over the incoherent protocol over all
encoded signals. In an ideal version of the our identified decoding protocol, the advantage
would increase monotonically with the signal strength (Figure 6.5.d). With our imperfect
experimental setup, there is initially an increase in the observed quantum advantage for
increasing signal. However, there exists a saturation point around V

s

⇠ 20, beyond which
the extra theoretical gain from increased signal strength is o↵set by the extra experimental
imperfections in encoding. This is attributed to the nonlinear response of the electro-optic
modulators and could also be explained by the limited dynamic range of the photodetec-
tors. When we include these imperfections within our theoretical model, observations and
theory agree (Figure 6.5.d).

More intuitively, why do coherent interactions help Bob in this protocol? In short,
Bob’s enhanced performance for the coherent scenario arises from the non-orthogonality
of X̂ and P̂ . This non-orthogonality ensures that when Alice encodes in both X̂ and P̂ ,
the requirement for Bob to estimate both quadratures requires he always incurs a noise
penalty. Bob is burdened with that penalty in both scenarios. It is the additional intro-
duction of correlated ‘discording’ noise between the two partitions makes his ‘incoherent’
challenge harder. When Bob is restricted to individual measurements, his estimate of the
discording noise is also limited by the precision to which he can estimate both quadratures.
There is an inherent quantumness in the joint measurement of X̂ and P̂ that manifests
as uniquely quantum correlations, inaccessible via local operations. The freedom to do
a joint measurement, however, means he is no longer required to precisely measure and
compensate for the correlated noise that degrades his estimate of Alice’s encoded signal.
Instead, the coherent interaction allows for (ideally) perfect cancellation of the unwanted
noise, and retrieves a shot-noise limited measurement of X̂ and P̂ .

In this Chapter, we have introduced and experimentally verified a protocol - albeit
a bit artificial - that gives a clear operational interpretation to discord. We argue that
correlations between two subsystems form a resource that allows one bi-partition to gain
information about the other. This narrative naturally divides correlations into classical
and quantum components. The former can be harnessed by an LOCC alone. The latter,
quantified by discord, are inaccessible without the additional requirement of coherent
interactions. Our demonstration within a separable quantum system, broadly thought of
as classical 5, emphasises that discord is the resource of interest and that systems need

5As correlated, but separable, statistical mixture of coherent states
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not be entangled benefit from joint measurements. As the capacity to coherently interact
quantum systems is essential to quantum information, our results provide evidence that
some of the advantages quantum information pertains over its classical counterpart can
be attributed to its potential to harness discord.

The relation between the advantage of coherent interactions and non-classical corre-
lations has also been studied within related paradigms. The thermodynamic variant of
discord, for example, characterises the advantage of coherent interactions in energy extrac-
tion from a given quantum state [190, 191, 205]. Our protocol gives similar interpretation
for the standard notion of discord in terms of information extraction.

This protocol leads to a direct practical application: By challenging untrusted parties
to perform such tasks, Alice is capable of harnessing discord for the purpose of ‘quantum
processing authentication’. Alice can convince herself that an untrusted device is capable
coherently interacting two spatially separated quantum systems. Unlike entangled states,
Bell’s inequalities, or tomography-based tests for coherent processing, our challenge does
not require Alice to perform any quantum measurements or interact the systems herself.
Our results demonstrate such test remain possible, even when we relax the initial resource
to the point where it contains no entanglement.

The real significance of this work does not lie in the applicability of the protocol
itself, but rather in its implications for established quantum information applications.
The operational link provides between discord and coherent interactions allows potential
reinterpretation of many existing protocols. If we regard our proposal as an attempt for
Alice to communicate the contents of K to Bob via a pre-shared resource ⇢

AB

, the protocol
resembles a quantum one-time pad with a generic resource [206]. Discord now plays a role
in measuring the amount of extra information coherent interactions can unlock. In the
special case where A and B are entangled, this protocol corresponds to dense coding, where
the additional gain in communication rates is made possible by coherent interactions that
decode information within the discordant correlations. Meanwhile, if we regard the task of
trace estimation in DQC1 [171] as Bob’s attempt to extract information Alice has encoded
within the trace of a given unitary, our protocol may shed light on where the power in
DQC1 originates. These connections are worth further investigation, and may not only
lead to additional insight on the role of discord within a diverse range of applications,
but also indicate whether we are already harnessing discord in many existing proposals
without realising it.





Chapter 7

Summary and Future Outlooks

In Chapters 3 & 4 we discussed the problem of mimicking a conditional photon number
measurement with homodyne and heterodyne detection. We showed that given an en-
tangled bi-partite state, ⇢

ab

, with an informationally complete measurement of the field
quadratures at a, one can reconstruct the state at b that corresponds to any projective
measurement in the Fock basis at a. We illustrated this with the characterisation of the
non-Gaussian photon subtracted squeezed vacuum states. We believe this is best under-
stood as a variant upon two-mode tomography, where one can isolate the desired mea-
surement outcome at a and reconstruct the corresponding conditional state at b, without
needing to reconstruct the complete two-mode density operator. These techniques allow
for complete characterisation of the outcome of a conditional measurement on a system,
and might prove useful in systems where measurements of the DV of the system are limited
or unavailable.

In Chapter 5 we instead found superior avenue for our desire to ‘meddle’ with Gaussian
measurement records. The results of [132, 133] showed that, under certain constraints, a
noiseless linear amplifier was equivalent to an appropriate post selection upon the mea-
surement record. This result came with a clear application, itself born out of its relevance
to QKD. In Chapter 5 we first obtain some general conditions on the limits of imple-
menting arbitrary quantum operations on an ensemble via a conditional filtering of the
measurement outcomes. We examined the performance of the MB-NLA in several di↵erent
regimes, most notably the performance of the MB-NLA in restoring correlations degraded
by a lossy channel. The MB-NLA allowed recovery of EPR violating correlations from a
resource state, that after a lossy channel, no longer was no longer EPR correlated. We
demonstrate that even in situations of exceptionally high loss (up to 99%) the MB-NLA
could recover correlations that exceed the maximum achievable with a perfect squeezed
state and an identical lossy channel. We also provided a proof-of-principle demonstration
of the MB-NLA for QKD.

The MB-NLA is a promising tool for quantum communication applications. Whilst
there are clear limitations on its applicability - crucially that the physical amplification
must directly precede the measurement stage for the equivalence to hold - when applicable,
it o↵ers considerable advantages over a physical amplification. The results of Chapter 5
provide two promising avenues of future research. The first is the application of the MB-
NLA to existing quantum communication and information protocols. Numerous CV-QKD
implementations could be improved by its inclusion - whether they be prepare & measure
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or entanglement-based implementations. Quantum teleportation and its variant, remote
state preparation, look to be clear candidates for improved performance via post-selection,
where post-selection could be integrated with the Bell measurement. The generality of the
theory presented in Chapter 5 also provides a second avenue of research, the application
of this recipe to the emulation of other desirable operations.

In Chapter 6 we examined the recently popularised measure of all quantum correla-
tions, quantum discord. We introduced a simple protocol that provides a clear operational
interpretation for discord: that it describes uniquely quantum information only accessible
via coherent interactions. We demonstrate that under certain measurement constraints,
discord between bipartite systems can be consumed to encode information that can only
be accessed by coherent quantum interactions. We experimentally encoded information
within the discordant correlations of two separable Gaussian states. The amount of extra
information recovered by joint measurements, when compared to invidual measuremenets.
is quantified and directly linked with the discord consumed during encoding. No entan-
glement exists at any point of this experiment. Thus we introduce and demonstrate an
operational method to use discord as a physical resource.

There is still much work to be done on understanding the role of discord in quan-
tum information and quantum communications. While discord certainly is a measure
of quantum correlations, it is perhaps unsurprising that links between existing protocols
and discord have not been forthcoming. While discord itself is defined in terms of es-
tablished quantum information quantities, neither the quantum mutual information nor
the one way classical correlation are constructive, in the sense of giving a concrete set of
measurements for both parties to carry out in order to saturate the appropriate entropic
quantities. Therefore if one takes a real world implementation of a quantum information
protocol where the measurements involved are constrained by experimental technology, it
becomes very di�cult to relate the performance of such a protocol directly to the quantum
discord. By constructing a specific protocol we were able to identify as well defined limit
in which the improved performance could be related to the consumption of discord. What
would be more desirable however, would to show whether it is discord or a discord-variant
that this really is the driving quantum advantage of this and other protocols as they are
implemented in the laboratory.



Appendix A

Conditioning Polynomials

In this Appendix, we demonstrate how the sampling polynomials can be obtained for
arbitrary functions of n̂. We provide two equivalent methods for doing this.

The first method involves writing the polynomial functions of the phase randomised
quadrature operators X̄ in terms of n̂ via the creation and annihilation operators. These
functions can then be inverted to solve for functions of n̂ in term of X̄.

The second method reproduce the same polynomials via measuring the moment of the
Fock state by integration of Hermite polynomials.

Method 1

For an arbitrary function of f(n̂), the analogue of equation (3.11) that we want to estimate
using a phase randomised homodyne measurement would be

f
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where ⇢
a

(X✓

b

) is the state at a after tracing out b. Our goal is to find a function F (X̄)
corresponding to f(n̂) such that

Tr [⇢̂f(n̂)] = Tr
⇥
⇢̂F (X̄)

⇤
, (A.3)

where

F (X̄) =
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d✓F (â
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+ â†
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) (A.4)

and â
�

= â exp(�i�). Let us consider polynomial functions of X̄ for which the monomials
X̄m for m = 0, 1, . . . forms a basis.

For all odd values of m, X̄m vanish since the exponential terms exp(�i�) integrate to
zero. For even m, the only terms in the expansion of (â

�

+ â†
�

)m that are not a function of

� are those having equal numbers of â
�

and â†
�

. These are the only terms that are non-zero
after performing the integral in equation (A.4). They can be expressed as a function of n̂
using the identity â†â = n̂ and the commutation relation [â, â†] = 1.
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We provide an example for the case of m = 4:

X̄4 =
1
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= âââ†â† + ââ†ââ† + ââ†â†â (A.6)

+ â†â†ââ+ â†ââ†â+ â†âââ† (A.7)

= 6n̂2 + 6n̂+ 3 . (A.8)

Results for various powers of X̄ are tabulated below.

X̄0 = 1 (A.9)

X̄2 = 1 + 2n̂ (A.10)

X̄4 = 3 + 6n̂+ 6n̂2 (A.11)

X̄6 = 15 + 40n̂+ 30n̂2 + 20n̂3 (A.12)

X̄8 = 105 + 280n̂+ 350n̂2 + 140n̂3 + 70n̂4 (A.13)

X̄10 = 945 + 2898n̂+ 3150n̂2 + 2520n̂3 + 630n̂4 + 252n̂5 (A.14)

Method 2

As an alternative method, we note that equation (A.3) must hold for arbitrary inputs ⇢̂.
In particular, when ⇢̂ = |nihn| we get
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⇥
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= f(n) (A.15)
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where �
n

(x) = hn|xi are the eigenstates of the harmonic oscillators. For F (X̄) = X̄m, the
associated functions of n would correspond to the m-th moment of the eigenstates.

While this integration can be performed directly using the Hermite polynomials, it
turns out that it is more convenient to express X̄ in terms of the annihilation and creation
operators instead. As an example, we evaluate f(n) when F (X̄) = X̄4:

hn|X̄4

|ni =
1

2⇡

Z
2⇡

0

d�hn|
⇣
â
�

+ â†
�

⌘
4

|ni (A.18)

= hn|âââ†â† + ââ†ââ† + ââ†â†â (A.19)

+ â†â†ââ+ â†ââ†â+ â†âââ†|ni (A.20)

= 6n2 + 6n+ 3 (A.21)

which is the same result as Equation (A.8) as to be expected.



Appendix B

Proof of discord relations

B.1 Proof that Discord is a quantifier of quantum advantage

In this section, we explicitly prove that

�D(A|B)� J̃ (A,B)  �I  �D(A|B), (B.1)

which is equivalent to the statement D(A|B)� Ĩ(A,B)  �I  D(A|B)� D̃(A|B), where
Ĩ(A,B) denotes the mutual information of ⇢̃

AB

. To do this, we make use of the Holevo
information. Let K be a random variable that takes on value k with probability p

k

. If
each k is encoded in a quantum state with density operator ⇢
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, then the maximum amount
of information that may later be extracted about K is given by
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when there are no constraints on what quantum operations are allowed.

To evaluate �I, we first introduce an additional scenario where Bob has no access
to system B, and attempts to the find the best estimate of K using only measurements
on system A. Let I

0

be Bob’s maximum performance in this scenario. Recall that after
encoding, the bipartite state between Alice and Bob is given by
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Since Bob has no access to B, we can trace over system B. Noting that U
k

acts only on
system A and is thus preserved under the partial trace, this results in codewords U

k

⇢
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,
which give Bob
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bits of accessible information by application of Eqn. (B.2). Here, ⇢̃
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. This case can be considered the control, i.e.,
the amount of information accessible to Bob when he cannot access any of the correlations
between A and B.

We now compute I
q

, the maximum extra information available to Bob when he can

129



130 Proof of discord relations

implement arbitrary interaction between A and B. In this case, we have codewords ⇢
k

=
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, such that S(⇢
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I and Ĩ respectively represent the total correlations between A and B before and after
encoding. Thus, the advantage of being able to implement arbitrary two-body interactions
over having no way to make use of system B coincides with the total amount of correlations
consumed during the encoding process.

Similarly, we compute I
c

, the maximum amount of information available to Bob by a
single local measurement on each bipartition. We note that this constraint is equivalent
to local operations and one-way communication, since multiple rounds of two way com-
munication does not help Bob if does not measure a single partition more than once. In
this scenario, the best Bob can do is to first measure either A or B in some basis {⇧

b

},
and make use of the classical output to improve his estimate of K.

Consider first a measurement on B. Let Bob’s resulting performance be
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.
To obtain the upper bound on how much information accessible to Bob, we maximize the
expected value of the above subject to all possible measurements Bob could have made,
thus
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Here, we have used the fact that Alice’s application of U
k

on system A, and Bob’s mea-
surement of system B act on di↵erent Hilbert spaces, and thus commute.

Now consider the case where Bob first measures A. We partition to total amount of
information Bob can gain,
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The optimal amount of information Bob can extract without coherent interactions is thus
the maximal of
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separately.



§B.2 Example of Maximal Encodings 131

Substraction of Eq. (B.4) from Eq. (B.6) gives
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Noting that S[⇢̃
A|b]  S[⇢̃
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] since entropy can never increase under conditioning, we
immediately find
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Also, rearranging Eq. B.8 gives
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Meanwhile, subtraction (B.4) from (B.7) gives
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Subtraction of this equation from (B.5) immediately bounds the extra performance of
coherent processing over its incoherent counterpart.
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Applying our assumption that D(A|B)  D(B|A), and the observation that �
q

� �
c

=
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= �I, results in

�D(A|B)� J̃ (A,B)  �I  �D(A|B), (B.14)

as required.

B.2 Example of Maximal Encodings

In this section, we prove the assertion made in the paper that there always exists maximal
encodings. Recall that we may define maximal encodings as follows:

Definition 1 (Maximal Encoding) Consider a bipartite quantum system with subsys-
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tems A and B that is described by density operator ⇢
AB

. The encoding of a random variable
K that takes on values k with probability p

k

, by application of unitaries U
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is a maximal
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In particular, we prove the following:

Theorem 1 Suppose Alice’s bipartition has dimension d, then U
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is a maximum encod-
ing whenever ⇢̃
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is locally a maximally mixed state for any input state ⇢
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on Alice’s
bipartition.

Proof: To prove the result, it su�ces to show that ⇢̃
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is a product state. Consider
an arbitrary projective measurement of the B subsystem in some basis {⇧
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these measurements commute with U
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must be a product state and the result follows. ⌅
Therefore, any encoding that looks like a maximally mixing channel is a maximal en-

coding. One example, on a system of qubits, for example, is application of the set of
unitary transformations {I,�

x

,�
z

,�
x

�
z

}. In an continuous variable mode with annihila-
tion operator a, application of an operation selected uniformly from the set of displacement
operators D(↵) = exp

�
↵â† + ↵⇤â

�
is also a maximal encoding.
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[117] J. Fiurášek, “Gaussian Transformations and Distillation of Entangled Gaussian
States,” Phys. Rev. Lett. 89, 137904 (2002).

[118] J. Eisert, D. Browne, S. Scheel, and M. Plenio, “Distillation of continuous-variable
entanglement with optical means,” Annals of Physics 311, 431 (2004).

[119] Y. Kurochkin, A. S. Prasad, and A. I. Lvovsky, “Distillation of The Two-Mode
Squeezed State,” Physical Review Letters 112, 070402 (2014).

[120] T. C. Ralph and A. P. Lund, Quantum Communication Measurement and
Computing Proceedings of 9th International Conference , 155 (2009).

[121] P. Marek and R. Filip, “Coherent-state phase concentration by quantum probabilis-
tic amplification,” Physical Review A 81, 022302 (2010).
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[126] A. Zavatta, J. Fiurášek, and M. Bellini, “A high-fidelity noiseless amplifier for
quantum light states,” Nature Photonics 5, 52 (2010).

[127] C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew,
“Heralded photon amplification for quantum communication,” Physical Review A
86, 023815 (2012).

[128] S. Kocsis, G. Y. Xiang, T. C. Ralph, and G. J. Pryde, “Heralded noiseless amplifi-
cation of a photon polarization qubit,” Nat Phys 9, 23 (2012).
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[194] B. Dakić, Y. O. Lipp, X. Ma, M. Ringbauer, S. Kropatschek, S. Barz, T. Paterek,
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