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Abstract

The aim of this thesis is to study the security of two particular quantum communi-

cation protocols. We want to investigate what is the maximumamount of channel

noise for which the protocols can still be secure. We do this by using well known

bounds for limiting the information that an eavesdropper can obtain.

The first protocol that we study is a direct communication protocol using two-

qubit states. We find the security threshold by analyzing theprotocol in an en-

tanglement based setting. The Holevo bound was used to put anupper bound on

the information of an eavesdropper. To arrive at a manageable optimisation prob-

lem, we restrict the eavesdropper’s attack strategy such that the noise introduced

will be unbiased. Furthermore, we also impose some additional constraints on

the eavesdropper that arises from the symmetry of the protocol. After doing this

we then optimise the remaining parameters to arrive at the eavesdropper’s optimal

strategy and find out what is the maximum amount of information she can obtain.

Once the eavesdropper’s maximum information is known, the security threshold

for secure communication was obtained by comparing that information with the

information between the legitimate communicating parties.

The second protocol studied is a continuous variable quantum key distribu-

tion protocol using post-selection. For this protocol, we investigate the maximum



xii

amount of information the eavesdropper can get under individual and collective

attacks in the presence of Gaussian excess noise in the channel. By providing the

eavesdropper with additional information, we can use knownresults on the acces-

sible information for pure input states to bound the eavesdropper’s information.

For individual attacks, Levitin’s result on the optimal measurement was used while

for collective attacks, Holevo’s bound was used to arrive atan upper bound for the

eavesdropper’s information. From this we can then arrive atthe post-selection re-

gion where the legitimate communicating parties have more information than the

eavesdropper. We can then find the maximum amount of noise that the protocol

can tolerate before the eavesdropper knows too much and the protocol fails.
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Chapter 1

Introduction

Quantum key distribution was one of the first real applications of quantum infor-

mation in the commercial world. In fact apart from the quantum random number

generator there is still no other real application of quantum information.

In 1994 Shor discovered an efficient factoring algorithm that works on a quan-

tum machine [50]. That discovery threatens to jeopardise existing classical cryp-

tography protocols whose security depends on the mathematical complexity of

factoring large numbers. However as far as we know, there hasnot been much

success in coherently manipulating more than a handful of qubits. In 2001, the

first successful quantum factorising machine was able to factorise 15 [56]. By

manipulating seven qubits, the group from Stanford and IBM reported that the

prime factors of 15 are 3 and 5. In 2007, optical implementations of a compiled

version of Shor’s algorithm for factoring the same number were reported by two

independent groups [31,37]. This record has not been beaten. So for now at least,

classical cryptography is still safe and not under much threat.
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But when the day comes that our capable scientists and engineers succeed

in building a quantum factorising machine of decent size, many of the current

cryptography protocols will become insecure. In fact the successful labs will be

able to decipher not only current secret messages, but also all old messages that

were encrypted using the compromised protocols.

1.1 Quantum key distribution

It will then be time to look for a more secure cryptography protocol. One protocol

that is not challenged by Shor’s factoring algorithm is theone-time padprotocol

of 1917 which Shannon proved to be unbreakable in 1945 duringWorld War II.

However the one-time pad is not a replacement for modern cryptography protocols

such as the public key cryptography. This is because in the one-time pad, all the

different parties that wish to communicate must a priori share a string of random

keys. The amount of shared random keys required must be equalto the length

of the message that each party wishes to communicate. In other words everyone

must have a trusted channel with everyone else in which to distribute the keys.

This is where quantum key distribution comes in. It acts as a trusted courier in the

one-time pad protocol.

The first published mention of using quantum mechanics for ensuring security

was in Wiesner’s 1983 paper where he proposed a quantum currency that is im-

possible to counterfeit [59]. A year later, the first quantumcryptography protocol

was proposed by Bennett and Brassard [7]. This has become knownas the BB84

protocol.
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For a more comprehensive review of the field, the reader can refer to review

articles on the topic [21,35,45]. In this introduction, we shall restrict ourselves to

giving a brief explanation of the BB84 protocol as well as a quantum key distri-

bution protocol that uses continuous degrees of freedom.

1.1.1 BB84 protocol

The communicating parties are traditionally called Alice and Bob. In a quantum

key distribution protocol, Alice wishes to establish a string of secret keys with

Bob. In the BB84 protocol, Alice will send to Bob one of four possible qubit

states chosen at random. These four states are the horizontally/vertically polarised

states and the diagonal/anti-diagonal states. The horizontal and diagonal states are

assigned the bit 0, while the vertical and anti-diagonal states are assigned the bit 1.

Bob will measure the qubits he received in either the horizontal–vertical basis

or the diagonal–anti-diagonal basis. He chooses one of the two bases at random.

After Bob’s measurements are completed, Alice will announcethrough an authen-

ticated public channel the basis in which she encoded her signals.

Every time that Bob measures in the same basis as Alice encodes, and this

happens on average half of the time, Alice and Bob will share a perfectly corre-

lated bit. The other half of the time when their bases do not match, Alice and Bob

expect no correlation at all. In this sense, the efficiency ofthe protocol is half. On

average, half of the encoding Alice sends will end up as the secret keys.

After authenticating themselves, Alice and Bob then use a fraction of the mea-

surement outcomes to check that they indeed see the correlations that were ex-

pected. This check establishes that the quantum channel between them is secure.
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The remaining matching-basis bits are then processed before being used as keys

for the one-time pad protocol.

In this sense the protocol is not deterministic. In the perfect channel half of

the data Alice sent will still be lost. This can be overcome ifBob has access to a

quantum memory. He can safely store the qubits that Alice sent. Then at a later

time, when Alice is sure that Bob has already received the qubits sent, Alice tells

Bob the basis for each qubit. Bob then measures in the correct basis to recover the

message.

The security of the original BB84 protocol stems from the fact that if someone

(we call her Eve) tries to eavesdrop on the keys, she will not know a priori the

basis that Alice encodes. As such, any attempt that she makesto learn something

about the keys will induce noise on the signals that Bob receive. Subsequently

when Alice and Bob check their correlations, they will find that it is less that what

it should be. In this way, the channel can be characterised. The amount of noise

they see is related to the amount of information an eavesdropper can extract. Alice

and Bob can then protect their keys from the eavesdropper by using suitable error-

correcting and privacy amplification schemes. If they find that the channel is too

noisy, they would abandon the protocol altogether and find a different channel to

use.

Since 1984, many different protocols including numerous variations of the

original BB84 protocols have been proposed. Some of these protocols have been

implemented in the laboratory.
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1.1.2 Continuous variable key distribution

A different class of protocols uses continuous degrees of freedom instead of dis-

crete level systems like qubits. The earliest continuous variable key distribution

protocol was presented in 1999 by Ralph [40] and Hillery [26].These protocols

use squeezed states to ensure the security of the communication. One protocol

that only uses coherent states was Grosshans and Grangier’scoherent state pro-

tocol published in 2002 [23]. We shall explain that protocolin some detail in

chapter 12. This protocol suffers from the 3 dB loss limit. For a transmission loss

of greater than 50% the protocol becomes insecure.

Two different methods were introduced to overcome the 3 dB loss limit: post-

selection [52] and reverse reconciliation [22]. In post-selection protocols, Alice

and Bob would only select data points where they have an information advantage

over Eve. In a reverse reconciliation protocol, Alice corrects her keys to have the

same values as Bob’s. Both protocols and their variants have been successfully

implemented in laboratories.

1.2 Information theory

In this section, we define some terms and recap some useful results from informa-

tion theory that will be used in this thesis. The proofs of theresults can be found

in standard textbooks [6,15].
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1.2.1 Classical entropy

Given a random variableA, where the outcomeai has a probabilityp(ai) for i ∈

{1,2, . . . ,N}, the classical (Shannon) entropy ofA is defined by

H(A) = −
N

∑
i=1

p(ai) logp(ai) . (1.1)

The logarithm is taken in base 2. This measures the bits of information we gain, on

average, when we learn about a letter ofA. Equivalently, it gives the least average

number of bits required to identify a letter ofA. In other words, to unambiguously

transmit a message of lengthM, say:

{a2,a4,aN,a1,a2, . . . ,a4}
︸ ︷︷ ︸

M entries

, (1.2)

there exists (sometimes only whenM tends to infinity) a suitable encoding scheme

in which we can just sendM×H(A) bits of information. In this sense,H(A)/ logN

is also the best compression limit for the random variableA. This is Shannon’s

noiseless coding theorem [49].

1.2.2 Von Neumann entropy

The von Neumann entropy is the quantum analogue of Shannon entropy. Given a

quantum state represented by the density operatorρ, the von Neumann entropy of
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ρ is defined as

S(ρ) = −Tr{ρ logρ} (1.3)

= −∑
n

λn logλn (1.4)

whereλn are the non zero eigenvalues ofρ. Again, suppose Alice sends a message

with M letters, say:

{|ψ2〉 , |ψ4〉 , |ψN〉 , |ψ1〉 , |ψ2〉 , . . . , |ψ4〉}
︸ ︷︷ ︸

M entries

, (1.5)

where each letter is chosen at random from the ensemble of pure states|ψi〉 with

probability p(ψi) for i ∈ {1,2, . . . ,N}. Each letter is described by

ρ =
N

∑
i=1

|ψi〉 p(ψi)〈ψi| . (1.6)

To reliably transmit this whole quantum state, there exist an encoding scheme

in which Alice can just sendM ×S(ρ) qubits (in the limit of largeM). This is

Schumacher’s quantum noiseless coding theorem [47].

1.2.3 Mutual information

Consider a noisy channel in which Alice sends Bob some classical signalsai with

probabilitiesp(ai). When Alice sends the signalai, Bob obtains the measurement

outcomeb j with conditional probabilityp
(
b j |ai

)
.

The mutual informationI(A,B) measures how much one random variableA

can tell us about another random variableB. It gives the maximum value for the
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average information transmitted to Bob per bit that Alice sends. Alice and Bob

will be able to attain this if they use a suitable encoding anddecoding scheme

(which might be available only in the asymptotic limit of infinite signal length).

The mutual information is given by the difference between the entropy of Al-

ice’s distribution (before Bob’s measurement) and the entropy of Alice’s distribu-

tion conditioned on Bob’s outcomes.

I(A,B) = H(A)−H(A|B) . (1.7)

What this says is that the amount of information transmitted to Bob is equal to

the amount of information initially contained in Alice’s distribution minus the

amount of information that is left in Alice’s distribution after Bob has performed

his measurement.

In terms of the probabilities, the entropy of Alice’s distribution is

H(A) = −∑
i

p(ai) logp(ai) . (1.8)

Now conditioned on Bob obtaining an outcomeb j , entropy of Alice’s distribution

would be

H(A|B = b j) = −∑
i

p(ai |b j) logp(ai|b j) . (1.9)
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On average, Alice’s entropy conditioned on Bob’s outcomes would be

H(A|B) = ∑
j

p(b j)H(A|B = b j) (1.10)

= −∑
i, j

p(ai ,b j) log
p(ai ,b j)

p(b j)
(1.11)

= H(A,B)−H(B) (1.12)

which is the chain rule for joint entropy.H(A,B) is the joint entropy ofA andB.

The mutual information between Alice and Bob is then

I(A,B) = H(A)+H(B)−H(A,B) , (1.13)

symmetric between Alice and Bob. The relationship between the entropiesH(A),

H(B), H(A,B), H(A|B), H(B|A) and the mutual informationI(A,B) is expressed

in the Venn diagram in figure 1.1.

1.2.4 Accessible information and Holevo quantity

Now if instead of sending classical signals, Alice sends Bob signals using quan-

tum states through a noisy quantum channel. The message thatAlice sends is from

the classical random variableA. Bob measures every quantum state individually

using some fixed quantum measurement apparatusΠ. After the measurement is

completed, this apparatus gives a classical outcome for each quantum state. We

now have a classical joint probability distribution(A,B) between Alice and Bob.

We can then calculate how much information Bob receives per letter by the mutual

informationI(A,B).
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H(A,B)

H(A|B) H(B|A)I(A,B)

H(A) H(B)

Figure 1.1: Venn diagram representing the relationship between entropy and mu-
tual information. H(A) andH(B) are depicted by the whole circles.H(A,B) is
the union of the two circles.



11

If Bob uses a different measurement schemeΠ̃, he may end up with a different

value of mutual information. The accessible informationIacc is defined as the

maximum ofI(A,B) over all possible measurement apparatus.

Given the state that Alice sends and the a priori probabilities, the task of find-

ing the accessible information is in general not easy. An algorithm to approach

this problem numerically was proposed in [57].

There are however bounds that bound the accessible information from above.

One of them is the Holevo quantity. The accessible information is bounded by the

Holevo quantity,

Iacc≤ S(ρ)−∑ piS(ρi) ≡ χ({piρi}) , (1.14)

whereρi are Alice’s quantum signals andpi are the a priori probabilities for each

ρi . The stateρ = ∑i piρi is the statistical mixture that Bob receives.

1.3 Overview of the thesis

This objective of this thesis is to investigate the securityof two particular quantum

communication protocols when implemented in a noisy channel. It is organised

as follows.

In chapter 2 we state the general security criteria for quantum cryptography.

These criteria will be used in both protocols. Following this the thesis is divided

into two parts.

The first part is concerned with a direct communication quantum communi-

cation protocol that utilises two qubits to transmit a single classical bit [3–5]. In
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chapter 3, we present this protocol. Chapter 4 looks at a particular intercept and

resend attack on the protocol. Chapter 5 considers a more general attack by con-

sidering an equivalent entanglement based protocol. Chapter 6 formulates the

optimisation problem in terms of the matrix representations of Eve’s ancillary sta-

tes. In chapter 7 we define a basis between Alice and Bob so that the constraints

on Eve can be written down explicitly. In chapter 8, we solve the optimisation

problem for simple cases when there is no noise in the channeland also when

there is so much noise that the state between Alice and Bob becomes separable.

Chapter 9 solves the general case for arbitrary noise level. In order to make the

problem more tractable, we had to make some symmetry assumptions on Eve’s

attack. In chapter 10, we present a conclusion and an outlookfor possible future

works.

In appendix A, we show how to construct an equivalent entanglement based

protocol for an arbitrary channel between Alice and Bob. Appendix B lists down

explicitly the 64 constraints on Eve’s ancillary states fora chosen Alice–Bob ba-

sis. Appendix C gives the Schmidt decomposition of Eve’s purification between

Alice–Bob and Eve.

The second part of the thesis begins with a review on continuous variable

Gaussian states in chapter 11. Chapter 12 provides an exampleof one of the

earliest continuous variable quantum key distribution protocols. This protocol

suffers from the 3 dB loss limit. In chapter 13, we introduce the actual protocol

that will be studied. This protocol uses post-selection to overcome the 3 dB loss

limit. Chapter 14 reviews and extends work that was done on theprotocol in the

presence of vacuum noise. In chapter 15, we study the security of the protocol

when there is thermal noise in the channel. In studying this,we need to compute
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the inner products between Eve’s ancillary states which is obtained by performing

the straightforward but lengthy Gaussian integrations. These inner products are

computed in appendix E. In chapter 16 we calculate some numerical values for

useful information between Alice and Bob for a specific channel with transmission

loss of 0.5. Finally in chapter 17 we summarise the results of this partand present

an outlook for future works.

Original work in the thesis: The contents of chapters 1 and 2 are a compila-

tion of existing works. The protocol presented in chapter 3 is not new and was

first published in 2002 [3]. However the experimental setup for the protocol in

section 3.3 has never been published elsewhere. The biased intercept and resend

attack in section 4.2 is a particular case of the optimal scheme presented in [4].

The analysis and results for the unbiased intercept and resend attack in section 4.3

are original. For the remainder of part one of thesis, the tools used for analysing

the security are not new, but their application to this protocol is original.

In part two of the thesis, chapters 11 and 12 are a review of existing works

on Gaussian states and continuous variable key distributions. Chapters 13 and 14

are elaborations of the protocol published in [52]. Except for figure 14.3, all

the other figures in chapter 14 are original. The analytical formula for the post-

selection region in section 14.3.2 is also new. Section 14.4extends the work

in [52] to a collective attack. The contents in chapters 15 and 16 were done

in collaboration with the authors of [1, 54]. The general input state for Eve and

the formulation of her state in terms of a covariance matrix in section 15.1 are

original and has not been published elsewhere. The analytical formulas for Eve’s

inner products presented in 15.1.2 were contributed by me. All the calculations

and results in sections 15.4 and 15.5 are original work. The analytical formula for
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the reconciliation direction in section 15.4, the formula for the asymptotic limit

of the post-selection region and the cubic equation that gives the noise threshold

in section 15.5 were also my contributions. Chapter 16 elaborates on the theory

calculations presented in [54] for a particular value of transmission and excess

noise.
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Chapter 2

Security criteria for quantum key

distribution protocols

In this thesis, we will be investigating the security of two quantum communication

protocols. The first protocol is a discrete variable protocol involving a two-qubit

system while the second protocol is a continuous variable protocol where the sig-

nals are transmitted using single-mode coherent states. Wewill use the same

methods to study both protocols.

In this chapter, we shall discuss in general how much information an eaves-

dropper would be able to get in a generic quantum key distribution protocol.

Throughout this thesis, we assume ideal situations for Alice and Bob. In par-

ticular, we assume that Alice has a perfect random number generator and that Eve

does not have access to Alice and Bob’s labs. We also assume that Alice and Bob

have access to a public but authenticated classical channel. Eve can listen to the

channel but she cannot tamper with it.
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Furthermore, the bounds we provide here are for the asymptotic limit of in-

finite key lengths. Methods for security analysis of finite key length have been

developed by Hayashi [24] and Scarani and Renner [46] but theyare beyond the

scope of this thesis.

This chapter is organised as follows. Section 2.1 gives the definitions of a

quantum state and quantum measurement. Section 2.2 discusses the various types

of eavesdropping that an adversary can do depending on how much power she

has. We also discuss how her information can be bounded. In section 2.3, we

look at how Alice and Bob characterise the channel. This is to determine how

much information was leaked to the eavesdropper. In section2.4, we calculate the

explicit values for the accessible information and Holevo quantity for two pure

input states with equal probability. Finally, section 2.5 gives a discussion on the

classical post-processing steps required in order to extract secret keys from the

raw data.

2.1 Quantum states and quantum measurements

Throughout this thesis, we shall deal with quantum states passing through a quan-

tum channel and being measured using quantum measurement devices. A quan-

tum state is a physical entity with a fixed physical property.We are usually in-

terested in only some degrees of freedom for the entity. Mathematically, the state

is represented by a positive semi-definite operator with unit trace in a complex

Hilbert space. The dimension of the Hilbert space corresponds to the degrees of

freedom that we are interested in.
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When we speak of a quantum channel, we refer to a fixed physical interaction

that brings one quantum state to another quantum state in thesame Hilbert space.

The channel is memoryless; it acts on each quantum state independently. We can

think of the channel as an ensemble of identical channels, each of which is used

only once. Mathematically, a quantum channel can be represented by a completely

positive and trace preserving linear operator acting on thespace of the quantum

states.

A quantum measurement device is a box with certain well defined physical

interactions and having a number of (possibly continuous) outcomes. Whenever a

physical state is put inside this box, the physical interactions are such that one of

its outcomes will click. This outcome presumably measures some physical prop-

erty of the quantum state. The box then resets to its initial state; ready to measure

the next incoming state. As far as this thesis is concerned, once a quantum state

has been measured, it is destroyed and not available for further measurements.

Mathematically, the outcomes of a measurement apparatus isassociated with the

set of positive semi-definite operatorsΠ = {π j} j∈J. The outcomes are labelled

by j andJ denotes the set of all possible outcomes. The outcomes sum upto the

identity on the Hilbert space of the quantum state on which the measurement is

performed. The setΠ is called a positive operator value measure (POVM). For a

stateρ that is to be measured, the probability that it will trigger the j-th outcome

is given by the trace Tr
{

ρπ j
}

.
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2.2 Eve’s attacks

We assume that Eve is capable of doing perfect quantum operations and that she

has a perfect noiseless channel between both Alice and Bob. The noisy quantum

channel between Alice and Bob is replaced by Eve’s perfect channel. But Eve

sends Bob a state that was corrupted by her measurements such that Alice and

Bob still think that the channel is noisy.

Eve’s plan of attack would be to attach probes to the signals that Alice sends

to Bob. Eve lets these probes interact with the signal. But we restrict each probe

to interact with a different signal. After that, Eve waits until Alice and Bob have

concluded the protocol and even after they have utilised thekey to transmit a

message. Only then will Eve measure her probes in such a way sothat she gains

as much information as she can on the secret message. We assume that Eve can

store her probes indefinitely.

If we restrict Eve to measure each probe independently, thisattack is called

an individual attack. The more general case where Eve can measure her probes

together is called a collective attack.

Depending on the probes Eve chooses, and how she measures those probes,

she may be able to get some information on the secret message.Our task is to

quantify how much information Eve can get. By knowing this information limit

on Eve, Alice and Bob can plan to use suitably strong privacy amplification tech-

niques to eliminate Eve’s information.

Fortunately, given the quantum state of Eve’s probes, we canbound Eve’s in-

formation in an individual as well as a collective attack. Inan individual attack,

the amount of information Eve can attain by using a particular measurement strat-
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egy on her probes is given by the mutual information [49]. Themaximum amount

of mutual information Eve can get (by using the best measurement strategy on her

probes) is called the accessible information.

The final key rate between Alice and Bob is given by the difference between

Alice and Bob’s mutual information and Eve’s accessible information (Csiszar

and Korner [16]).

For a collective attack, the amount of classical information Eve can extract

from her probes is bounded by Holevo’s bound [27]. This boundwas shown to be

attainable by Holevo [28] and Schumacher and Westmoreland [48]. The final key

rate between Alice and Bob is given by the difference between Alice and Bob’s

mutual information and the Holevo quantity (Devetak and Winter [17]).

The most general class of attack is known as coherent attack (also called joint

attack). This is when Eve attaches one probe in a high dimensional Hilbert space

to all of Alice’s incoming signals. After Alice has sent her message, Eve then

measures her signal probe. However it was shown that for a finite dimensional

system, a coherent attack does not perform better than a collective attack (Renner

[43]). This result was later extended to an infinite dimensional system in [42].

2.3 Characterising the channel

In practice, the channel between Alice and Bob will not be perfect. There will

be some loss and noise due to interactions with the environment or perhaps to

the presence of an eavesdropper. To arrive at a bound on Eve’sknowledge of the

channel, we assume that all noise in the channel is due to Eve.
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For Alice and Bob to put an upper bound on the information Eve can get,

they would need to continuously characterise the channel. In most protocols,

the channel characterisation is done by using the actual signals and measurement

outcomes that will be used to generate the keys.

Protocols where Alice and Bob can fully characterise the channel are called to-

mographic protocols. The six-state protocol [10] and the Singapore protocol [19]

are examples of tomographic protocols. In these tomographic protocols, there is

a one-to-one correspondence between the noise that Alice and Bob see and the

probes that Eve uses.

In other protocols, there will not be enough information forcomplete char-

acterisation of the channel. These protocols are classifiedas incomplete tomo-

graphic protocols. This means that Eve can use several probing strategies, leaving

Bob with different quantum states, but Alice and Bob will not know which exact

strategy Eve used. The security analysis in such protocols are complicated by the

fact that Alice and Bob do not know what is the quantum state of Eve’s probe.

2.4 Eve’s information for two pure states

In this section, we summarise two useful results: the accessible information and

the Holevo quantity for two pure states with equal a priori probabilities. These

give the maximum amount of classical information that can beobtained by indi-

vidual measurements and collective measurements respectively.
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2.4.1 Accessible information for two pure states

Two pure states can always be mapped onto a two dimensional Hilbert space. We

can represent these two states in the computational basis as






〈0|

〈1|




 |ψ1〉 =






cosα
2

sinα
2




 ,






〈0|

〈1|




 |ψ2〉 =






sinα
2

cosα
2




 . (2.1)

In the Bloch’s sphere, the two states will have the Bloch vectors

ψ1 =









sinα

0

cosα









, ψ2 =









sinα

0

−cosα









. (2.2)

The measurement that optimises the mutual information is a POVM with two

outcomes (Levitin [32]):

|φ1〉 = |0〉=̂






1

0




 , |φ2〉 = |1〉=̂






0

1




 . (2.3)

In the Bloch’s sphere, the two outcomes point to the north and south poles respec-

tively

φ1 =









0

0

1









, φ2 =









0

0

−1









. (2.4)

The state and measurement vectors are depicted in figure 2.1.The probability
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φ1

φ2

ψ1

ψ2

α

α

Figure 2.1: Bloch sphere representation for the POVM that maximises the mu-
tual information for two pure input states with equal a priori probabilities. The
two pure input statesψ1 andψ2 are represented by the red lines while the two
measurement outcomesφ1 andφ2 are shown in black.

table obtained using this POVM would be

Signal state
POVM outcome

〈φ1| 〈φ2|

|ψ1〉 1
2 cos2 α

2
1
2 sin2 α

2

|ψ2〉 1
2 sin2 α

2
1
2 cos2 α

2

for which the mutual information is

I =
1
2

[(

2cos2
α
2

)

log
(

2cos2
α
2

)

+
(

2sin2 α
2

)

log
(

2sin2 α
2

)]

(2.5)

=
1
2

[(1+cosα) log(1+cosα)+(1−cosα) log(1−cosα)] (2.6)

= Φ(cosα) (2.7)

= Φ
(√

1−
∣
∣
〈
ψ1
∣
∣ψ2
〉∣
∣2
)

, (2.8)
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where

Φ(x) =
1
2

[

(1+x) log(1+x)+(1−x) log(1−x)
]

(2.9)

is a monotonically increasing function.

This is the maximum amount of information that can be obtained by individual

measurements on the input states.

2.4.2 Holevo quantity for two pure states

The Holevo quantity for two pure states in section 2.4.1 is given by the entropy of

the statistical mixture

ρT =
1
2
|ψ1〉〈ψ1|+

1
2
|ψ2〉〈ψ2| (2.10)

=̂






1
2

1
2 sinα

1
2 sinα 1

2




 (2.11)

which has eigenvalues12 (1±sinα). The Holevo quantity is

χ = −(1+sinα)

2
log

(1+sinα)

2
− (1−sinα)

2
log

(1−sinα)

2
(2.12)

= 1− 1
2

[(1+sinα) log(1+sinα)+(1−sinα) log(1−sinα)] (2.13)

= 1−Φ(sinα) (2.14)

= 1−Φ
(∣
∣
〈
ψ1
∣
∣ψ2
〉∣
∣
)

. (2.15)

This gives the maximum amount of information that can be obtained by col-

lective measurements on the input states.
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2.5 Classical post-processing

After having a bound on Eve’s information about the raw keys,Alice and Bob

would like to eliminate Eve’s information so that they can share an absolutely

secret key. This is done by doing some post-processing on theraw bits.

The raw bits are established via the quantum key distribution protocol. Alice

first generates a string ofN′ random bits. She transmits this string to Bob through

a noisy channel. If the channel noise is unbiased, then the string as seen by Bob

will also be completely random. In other words, Bob’s string will still have an

entropy ofN′ bits. Next Alice and Bob performs basis reconciliation depending

on the protocol. For example in the BB84 protocol, basis reconciliation would

involve Alice and Bob discarding data points from mismatch bases. After this

step, Alice and Bob would have a string ofN bits.

The mutual information between Alice and Bob can be calculated after doing

a parameter estimation on the channel. We denote this byNIAB. Eve’s information

on Alice’s bits can also be estimated, and we denote her maximum information as

NIE. We assume thatIAB is greater thanIE. Otherwise the protocol fails and no

secret key can be generated. The post-processing begins after this point. The post-

processing can be divided into two parts, information reconciliation and privacy

amplification.

Information reconciliation involves Alice sending classical bits to Bob so that

Bob can correct his errors [9]. At the end of this process, Alice and Bob will

share a perfectly correlated random string of lengthN. Their mutual information

will be N bits. In a perfect reconciliation protocol, Alice will needto send just
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Mutual information Mutual information
between Alice and Bob between Eve and Alice

Raw key NIAB NIE
I.R. N N(1− IAB+ IE)
P.A. N(IAB− IE) 0

Table 2.1: Table showing the mutual information between theAlice and Bob and
between Eve and Alice at the various stages of the post-processing procedure.
In the information reconciliation (I.R.) step, Alice announcesN(1− IAB) bits of
information for Bob to correct his errors. In the privacy amplification (P.A.) step,
the length of the string is reduced byN(1− IAB+ IE) bits so that the final mutual
information between Eve and Alice is zero.

N(1− IAB) classical bits to do the reconciliation. Listening to thesebits, Eve’s

mutual information with Alice is nowN(IE +1− IAB) bits.

The next step is privacy amplification [8]. In this step, Alice will choose a

random universal hashing function and apply that function on her string. As a

result, her string will reduce in length fromN to

M = N−N(IE +1− IAB) (2.16)

= N(IAB− IE) . (2.17)

Bob will apply the same function to distill an identical string of lengthM. The

ratio of the new string to the old string isM/N = IAB− IE . Because Eve’sN bits

string differs from Alice’s, when Eve applies the hashing function, her resulting

M bits string will be completely uncorrelated to Alice’s string. Eve has zero in-

formation on Alice’s bits, while Alice and Bob share a string of M = N(IAB− IE)

secret bits. The mutual information between the Alice and Boband between Alice

and Eve at the various stages of the post-processing procedure are summarised in

table 2.1.
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Part I

Security analysis of a quantum

direct communication protocol in

the presence of unbiased noise
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Chapter 3

Introduction to the protocol

The first protocol that we shall investigate is a discrete variable direct communica-

tion protocol. This direct communication protocol enablesAlice to send messages

to Bob without the need to first establish a shared secret key.

In section 3.1, we will give the origins of the protocol that we want to study.

We also recap some preliminary work that was done to analyse the security of the

protocol. In section 3.2, we shall formally introduce the protocol with an example

to demonstrate its workings. In section 3.3, a possible experimental setup for

of the protocol will be presented. Finally section 3.4 givesa discussion on the

direct communication protocol. It also provides a comparison between a direct

communication protocol and a key distribution protocol.

3.1 Introduction

The protocol that we shall study uses two-qubit states for transmitting a classical

bit. The idea of using two qubits to deterministically send aclassical bit was pub-
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lished by Beige, Englert, Kurtsiefer and Weinfurter in a bookchapter in 2002 [3].

The protocol can also be found in [5] with slight generalisations.

Deterministichere means that for every two-qubit state that Alice sends, Bob

will get one bit of key. Both publications briefly mention a two-qubit protocol in

which Alice can transmit the message securely without having to first establish a

key. Thisdirect communicationprotocol was published as a separate publication

on its own in [4].

In all those publications, the security analysis was restricted to minimising

the error rate in a general intercept and resend attack. The intercept and resend

strategy was not required to be unbiased.

In [4], the intercept resend attack where Eve measures Alice’s qubit using an

orthogonal measurement basis and then forwards the outcomestate to Bob was

analysed. It was found that for any orthogonal measurement used, the error rate

Alice and Bob see will be at least 1/6. Furthermore, numerical simulations in

which Eve forwards a different state from her outcome state were done but the

error rate was still never less than 1/6.

3.2 The protocol

The protocol involves states of two qubits. The next paragraph will introduce the

states.

Let {|1−〉 , |2−〉 , |3−〉 , |4−〉} be a set of orthonormal states that forms a basis

in Alice’s four dimensional Hilbert space. We call these states theminus sta-

tes. We define a second set of orthonormal states which we call theplus states,



31

{|1+〉 , |2+〉 , |3+〉 , |4+〉}, by












|1+〉

|2+〉

|3+〉

|4+〉












=
1√
3












0 1 1 1

−1 0 1 −1

−1 −1 0 1

−1 1 −1 0























|1−〉

|2−〉

|3−〉

|4−〉












. (3.1)

For example the state

|2+〉 =
1√
3

(−|1−〉+ |3−〉−|4−〉) . (3.2)

By construction

〈
n+
∣
∣m−

〉
= 0 if n = m (3.3)

and

∣
∣
〈
n+
∣
∣m−

〉∣
∣=

1√
3

if n 6= m . (3.4)

These eight states{|n+〉 , |n−〉} for n∈ 1,2,3,4 are the ingredients of the protocol.

In the first step of the protocol, Alice will send to Bob one of the eight states

{|n+〉 , |n−〉}. The parity type(+ or−) of the state Alice sends will correspond

to the bit of the message that she intends to convey. The numeral type (1, 2, 3 or

4) is chosen at random.

When Bob receives Alice’s two-qubit state, he picks one of two measurement

boxes to measure the two-qubit state. Each box has four outcomes. The first

box, we call theplus box, has outcomes such that the state|n+〉 will cause the



32

Alice’s numeral type
Bob uses plus box Bob uses minus box

1 2 3 4 1 2 3 4
1 + − − − − + + +
2 − + − − + − + +
3 − − + − + + − +
4 − − − + + + + −

Table 3.1: Table that Bob uses to determine the parity of Alice’s bit based on
Alice’s numeral type and the parity type of Bob’s measuring box. For example, if
Alice sends a type 2, and Bob measured the state using the plus box and obtains
outcome 3, Bob concludes that Alice had send a minus parity.

n-th outcome to click. Bob can construct the plus box since the plus states are

mutually orthogonal. Analogously, theminus boxdistinguishes the minus states.

Bob chooses his measurement box at random.

In the final stage of the protocol, after Bob has done his measurement, Alice

reveals the numeral type of the state that she sends. Bob will then know what is

the bit type by looking up the table 3.1.

3.2.1 Example of the protocol

The protocol is perhaps easiest understood through an example. As an example,

say that Alice wants to send Bob the ten bits string

{−,−,−,+,−,−,+,−,+,−} .

She generates a string of ten random numbers from one to four

{2,1,1,2,4,2,3,1,4,4} .
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She pairs each bit to a random number and sends the state corresponding to the

pairing. In our example, Alice sends the states

{|2−〉 , |1−〉 , |1−〉 , |2+〉 , |4−〉 , |2−〉 , |3+〉 , |1−〉 , |4+〉 , |4−〉} .

Bob will generate a string of ten random bits to use to decide which box (plus

or minus) to use to measure the incoming qubit pairs. Bob generates the random

string

{+,−,+,−,−,+,+,+,+,−} .

In the first qubit pair, Alice sends a minus state|2−〉 and Bob measures using the

plus box. Due to the relation
〈
2+
∣
∣2−

〉
= 0, Bob will never get the outcome 2. In

fact he would get the outcomes 1, 3 or 4 with equal probability. In this case, let us

say outcome 3 happens to click.

In the second qubit pair, Alice sends the minus state|1−〉 and Bob measures

using the minus box. In this case, Bob will get outcome 1 for certain. The out-

comes for Bob are given in following table.
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Alice Bob’s measurement Bob’s Bob’s

send box outcome decoded bit

|2−〉 + 3 −
|1−〉 − 1 −
|1−〉 + 2 −
|2+〉 − 1 +

|4−〉 − 4 −
|2−〉 + 4 −
|3+〉 + 3 +

|1−〉 + 2 −
|4+〉 + 4 +

|4−〉 − 4 −

When Alice sends the same parity type as Bob’s measurement box,Bob’s outcome

would be the same as Alice’s numeral state (as in cases 2, 5, 7,9 and 10). If Alice’s

parity differs from the parity of Bob’s measurement box, thenBob’s outcome will

not be the same as Alice’s numeral state.

For the first qubit pair, after Alice announces that she sendsa type 2 state, Bob

can find out from table 3.1 that Alice sends the minus bit. Bob can also decode all

the remaining incoming qubit pairs correctly to unravel Alice’s message.

3.3 Experimental setup

To our knowledge, no experiments were conducted with regards to this protocol.

In this section, we outline a possible realisation of the protocol’s two separate

degrees of freedoms using a photon. We use the polarisation of the photon as one

qubit {|v〉 , |h〉} and its path through an interferometer as the second{|L〉 , |R〉}.
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|Lh〉 , |Lv〉

|Rh〉 , |Rv〉

BSBS

VR

VL

V1

V2

|1−〉
|2−〉
|3−〉
|4−〉

Figure 3.1: An experimental setup for converting the plus states to the minus
states. It consists of an interferometer with two sets of polarisersVR andVL to
convert the plus states to the minus states. The polarisersVR andVL consist of a
half waveplate sandwiched between two quarter waveplates.The angle settings
for the waveplates are stated in the text. The polarisersV1 andV2 are set to do
nothing. BS denotes beam splitter.

The labelsv andh denote vertical and horizontal polarisations while the labelsL

andR denote the upper and lower arms of the interferometer respectively.

In [20], it was shown that an arbitrary two-qubit operation can be realised by a

combination of wave plates and phase shifter. In particular, the setup in figure 3.1

can realise any two-qubit gate by suitable choices of phase shifters and wave plate

V1, V2, VL andVR. Each of theseV consists of a half wave plate sandwiched

between a quarter wave plate plus a phase shifter. The unitary action of the beam

splitters are given by:

UBS=
1√
2

(

|R〉〈R|+ |L〉〈L|+ i |R〉〈L|+ i |L〉〈R|
)

(3.5)

and the mirrors by:

UM = −i
(

|L〉〈R|+ |R〉〈L|
)

. (3.6)
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The quarter wave plates acts like

Vλ
4
(θ) =

1√
2

(

1− iσ1sin(2θ)− iσ3cos(2θ)
)

(3.7)

and the half wave plate acts like

Vλ
2
(θ) = −i

(

σ1sin(2θ)+σ3cos(2θ)
)

(3.8)

where

σ1 = |h〉〈v|+ |v〉〈h| (3.9)

and

σ3 = |v〉〈v|− |h〉〈h| . (3.10)

The completeV is made up of

V(α,β,γ,φ) = exp(iφ)Vλ
4
(γ)Vλ

2
(β)Vλ

4
(α) . (3.11)

If we define the plus basis as

{|1+〉 , |2+〉 , |3+〉 , |4+〉} = {|Lv〉 , |Lh〉 , |Rv〉 , |Rh〉} , (3.12)



37

then the choice

V1 = 1 , (3.13)

V2 = 1 , (3.14)

VL = V(α,βL,γ,φ) , (3.15)

VR = V(α,βR,γ,φ) (3.16)

would convert the plus basis into the minus basis where the angles are

γ =
π
8

, (3.17)

βR/L = ±cos−1






1
2

√
√
√
√

2±

√

2± 4
√

2
3




 , (3.18)

α = −3π
8

, (3.19)

φ = 0 . (3.20)

With this choice,

VL =
1√
3

[

|v〉〈v| i + |v〉〈h|(1+ i)+ |h〉〈v|(−1+ i)+ |h〉〈h|(−i)
]

, (3.21)

VR =
1√
3

[

|v〉〈v|(−i)+ |v〉〈h|(1− i)+ |h〉〈v|(−1− i)+ |h〉〈h|(i)
]

(3.22)

and with the combined action of the wave plates as

VWP = |L〉〈L|⊗VL + |R〉〈R|⊗VR , (3.23)
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PBS

FM2FM2

FM2

FM1FM1

FM1 FM2

M M M M

FM1

PBSHWP

D1

D2

D3

D4

SW

Utot U†
tot

Alice Bob

Figure 3.2: Experimental setup for the two-qubit direct communication protocol.
Alice uses a half wave plate (HWP) to send either horizontal orvertical polarised
light. The switch (SW) is used to select either the upper or lower arm of the
interferometer. When her set of flipper mirrors (FM1) is activated, the light will
be reflected off the mirrors (M) and bypass the conversion box(Utot). This will
send a state with positive parity to Bob. Deactivating the flipper mirrors will
cause the light to go through the conversion box which bringsa positive parity
state to a negative parity state. This will send a state with negative parity to Bob.
When Bob activates his set of flipper mirrors (FM2), the light only goes through
a polarising beam splitter (PBS) before being detected at thedetectors (D1–D4).
This will act to distinguish the plus parity states. To implement the negative parity
measurement, Bob deactivates his flipper mirrors causing thelight to pass first
through the reverse conversion box (U†

tot) before the detection.

the setup in figure 3.1 is described by the unitary

Utot = UBSVWPUMUBS (3.24)

= |1−〉〈1+|+ |2−〉〈2+|+ |3−〉〈3+|+ |4−〉〈4+| (3.25)

which converts the plus basis to the minus basis as promised.We call this setup

the conversion box. It turns out that the conversion box will convert the minus

states to the plus states.

The final setup between Alice and Bob is depicted in figure 3.2. Alice always

starts by creating one of the four plus states. To send a minusstate, Alice will put
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her plus state through the conversion boxUtot. This two-qubit state is then sent to

Bob via the quantum channel. At Bob’s laboratory, he has a set offour detectors

used to perform a measurement in the plus basis. To measure inthe minus basis,

Bob will pass the two-qubit state through a conversion box operated in reverse

U†
tot before measuring them.

3.4 Discussions on direct communication

In this section, we discuss the distinctive features of a direct communication proto-

col. We will then point out the main differences between a direct communication

and a key distribution protocol.

The novel feature of a direct communication protocol is thatthe message itself

is being transmitted through the quantum channel. To ensuresecrecy of the mes-

sage, the message must remain undecipherable until the channel security during

transmission has been checked. This is a unique situation where a secret message

has to go through a channel whose security can only be checkedafter its use. To

ensure the message remains undecipherable two different sets of basis are used in

this protocol. The basis announcements that enable the decoding of the message

are only released after the channel security has been established.

For direct communication to take place, Bob must be able to decode each bit

deterministically. For him to do this without having a quantum storage device, the

protocol uses a two-qubit state to transmit a single bit.

To date, most quantum communication implementations have favoured key

distribution rather than direct communication. There are several practical reasons

for the former’s popularity.
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One reason is that a key distribution protocol is less affected by losses than a

direct communication protocol. In a key distribution protocol, a lost signal merely

means that Alice and Bob have to transmit more signals to generate sufficient raw

bits. Since the lost signals do not contain any message yet, they do not compro-

mise security. A direct communication protocol however is not as robust against

loss. Loss translates to missing bits in the message and hence noise in the trans-

mitted message.

Another advantage of key distribution over direct communication is that once

generated, the secret keys can be accumulated and stored forfuture use. The

quantum channel can be consistently utilised to establish areserve of keys. In a

direct communication protocol, the message can only be transmitted when Alice

has something to communicate to Bob. The channel will be utilised during these

periods. However there will be lull periods when Alice does not have anything to

say to Bob where the quantum channel would stay idle. Hence we can foresee that

the capacity of the quantum channel would be better utilisedin a key distribution

protocol rather than a direct communication protocol.

In a key distribution protocol, secret two way communication between Alice

and Bob is possible once the secret keys have been established. However in a

direct communication protocol, to achieve the same thing, atwo way quantum

channel would be needed.

A major flaw of a direct communication protocol is that since the message

is being transmitted, then in the presence of noise, the eavesdropper can gain

information on the message itself. For example, Eve could use the same procedure

that Bob uses to decode the two-qubit states that she intercepts. Doing this, the

message is no longer secret. Eve would gain partial knowledge of the message.
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It is possible for Alice to perform a ‘privacy amplification’procedure prior to

using the channel. This would result in Alice and Bob sharing acompletely secret

message but at the expense that the message will be completely random. This

procedure is discussed briefly in chapter 10.

For these reasons, we do not expect a direct communication protocol to be

favoured over a key distribution protocol in the near future. For the situation to

change, we would need to have a quantum channel with a high transmission rate.

We would also need to develop the ability to easily manipulate two-qubit states.

And at a more fundamental level, we would need to find a way suchthat Bob can

deterministically decode Alice’s message but not Eve.

Even if we concede that performing direct communication is not feasible, the

protocol can still be used as a key distribution protocol. The results in this thesis

can be used to generate secret keys in a conventional key distribution protocol.
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Chapter 4

Noise 1: Intercept and resend

strategies

In this chapter, we shall look at a particular class of intercept and resend attacks.

This class involves Eve measuring Alice’s two-qubit statesusing the plus or minus

measurement box with equal probability. Eve then forwards aplus or minus state

with certain probabilities depending on the outcomes of hermeasurements.

In general, Eve could use a different set of POVM to measure Alice’s two-

qubit state. But in this chapter, we let her measure only the plus or minus POVM.

If Eve measures this on all of Alice’s two-qubit states, she will be able to gain full

information on Alice’s message after Alice announces her numeral type.

Section 4.1 gives some intuition on how the presence of an eavesdropper in the

channel can be noticed. In section 4.2, we present a simple eavesdropping strategy

for Eve that happens to be biased. Finally, section 4.3 introduces the concept of

unbiased noise and gives an example of an unbiased eavesdropping strategy.
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State Alice sends
Outcome of Bob’s measurement

〈1+| 〈2+| 〈3+| 〈4+| 〈1−| 〈2−| 〈3−| 〈4−|
|1+〉 1

16 0 0 0 0 1
48

1
48

1
48

|2+〉 0 1
16 0 0 1

48 0 1
48

1
48

|3+〉 0 0 1
16 0 1

48
1
48 0 1

48

|4+〉 0 0 0 1
16

1
48

1
48

1
48 0

|1−〉 0 1
48

1
48

1
48

1
16 0 0 0

|2−〉 1
48 0 1

48
1
48 0 1

16 0 0

|3−〉 1
48

1
48 0 1

48 0 0 1
16 0

|4−〉 1
48

1
48

1
48 0 0 0 0 1

16

Table 4.1: Joint probability table for the raw data between Alice and Bob for the
direct communication protocol in a noiseless channel.

4.1 Introduction

The security of the protocol hinges on the fact that if an eavesdropper tries to learn

about the message that Alice sends, she will leave behind some traces that Alice

and Bob can detect.

Alice puts some control bits in her message string. These bits are randomly

chosen and randomly interspersed between the message. Theywill be used to

check the integrity of the channel. Alice will announce the positions of the control

bits. For each control bit, Bob then tells Alice the measurement box he used as

well as its outcome. If the channel is perfectly noiseless, then Alice and Bob

would expect to get a joint probability that looks like table4.1. If Alice and

Bob obtains anything different, that would indicate the possible presence of an

eavesdropper in the channel.
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4.2 A simple but biased intercept and resend attack

Let us look at a particular strategy for the eavesdropper Eve. Suppose she does an

intercept and resend attack. Eve intercepts all the incoming qubits and measures

each of them using her own plus or minus box. She then forwardsthe resulting

states to Bob. If Eve was lucky and her chosen basis happens to match the parity

type that Alice encoded, then Eve would not be detected. However if Eve were

to measure in the opposite basis, then Bob might get a measurement outcome that

he should otherwise never get.

For example if Alice sends the state|1+〉 as a control bit. When Eve measures

the qubit pair using the plus basis (she does this half of the time) she will get

the outcome|1+〉. She forwards this to Bob and in this case Alice and Bob do

not suspect that anything is amiss. However when Eve measures using the minus

basis (which she does with probability half), she gets one ofthe three possible

outcomes:{|2−〉 , |3−〉 , |4−〉}, each with equal probability. When she forwards

any of this state to Bob, there is a chance that if Bob were to measure using the

plus basis, his 2, 3 or 4 outcomes would trigger. These outcomes are impossible

in the secure channel. Hence Alice and Bob suspect that their channel has been

compromised.

The probability matters are summarised in the following table. It gives the

probabilities of Bob’s outcomes for each of Eve’s possible outcomes.
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State Eve Outcome of Bob’s measurement Eve’s

forwards 〈1+| 〈2+| 〈3+| 〈4+| 〈1−| 〈2−| 〈3−| 〈4−| M.P.

|1+〉 1
4 0 0 0 0 1

12
1
12

1
12

1
2

|2−〉 1
36 0 1

36
1
36 0 1

12 0 0 1
6

|3−〉 1
36

1
36 0 1

36 0 0 1
12 0 1

6

|4−〉 1
36

1
36

1
36 0 0 0 0 1

12
1
6

Bob’s
1
3

1
18

1
18

1
18 0 1

6
1
6

1
6 1

M.P.

Bob’s
1
2 0 0 0 0 1

6
1
6

1
6 1

E.P.

The abbreviations M.P. and E.P. stand formarginal probabilitiesand expected

probabilities. We see that Bob gets the states|2+〉, |3+〉 and |4+〉 each with a

probability of 1/18. In the secure channel, these states are never expected.

Repeating this for all the other states that Alice sends, we get the joint proba-

bility table between Alice and Bob as given by the following table.

State Alice sends
Outcome of Bob’s measurement

〈1+| 〈2+| 〈3+| 〈4+| 〈1−| 〈2−| 〈3−| 〈4−|
|1+〉 1

24
1

144
1

144
1

144 0 1
48

1
48

1
48

|2+〉 1
144

1
24

1
144

1
144

1
48 0 1

48
1
48

|3+〉 1
144

1
144

1
24

1
144

1
48

1
48 0 1

48

|4+〉 1
144

1
144

1
144

1
24

1
48

1
48

1
48 0

|1−〉 0 1
48

1
48

1
48

1
24

1
144

1
144

1
144

|2−〉 1
48 0 1

48
1
48

1
144

1
24

1
144

1
144

|3−〉 1
48

1
48 0 1

48
1

144
1

144
1
24

1
144

|4−〉 1
48

1
48

1
48 0 1

144
1

144
1

144
1
24

This joint probability table is biased in the sense that the mismatched basis results

are free of noise but the matching basis results suffer from noise.

Eve will get be able to decode with full certainty Alice’s bits once Alice an-

nounces her numeral type. Summing up the entries of the jointprobability table,
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Alice and Bob ends up with the following binary symmetric channel for every

numeral type.

Alice’s bit
Bob’s bit

+ −
+ 5

12
1
12

− 1
12

5
12

The error rate corresponding to this attack isQ = 1/6.

We do not allow Eve to do any attacks that result in biased joint probability

outcomes. The next section will define more precisely what wemean by unbiased

attacks which result in unbiased noise as seen by Alice and Bob.

4.3 Unbiased noise

In an ideal world, Alice and Bob would have a perfect noiselesschannel. They

would abort the protocol whenever they find that their channel is contaminated.

However living in a universe that is not so ideal, Alice and Bobcompromise by

allowing some noise in the channel. Still they insist that the noise isunbiased.

By this, we mean that all the entries of Alice and Bob’s joint probability table are

modified in the same way. The new noisy probabilities are related to the noiseless

probabilities by

pnew = (1− ε)pold + ε
1
64

, (4.1)

where 0≤ ε ≤ 1 quantifies the amount of noise in the channel. With this unbiased

noise the new joint probability table between Alice and Bob isgiven by table 4.2.
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State Alice sends
Outcome of Bob’s measurement

〈1+| 〈2+| 〈3+| 〈4+| 〈1−| 〈2−| 〈3−| 〈4−|
|1+〉 4−3ε

64
ε

64
ε

64
ε

64
ε

64
4−ε
192

4−ε
192

4−ε
192

|2+〉 ε
64

4−3ε
64

ε
64

ε
64

4−ε
192

ε
64

4−ε
192

4−ε
192

|3+〉 ε
64

ε
64

4−3ε
64

ε
64

4−ε
192

4−ε
192

ε
64

4−ε
192

|4+〉 ε
64

ε
64

ε
64

4−3ε
64

4−ε
192

4−ε
192

4−ε
192

ε
64

|1−〉 ε
64

4−ε
192

4−ε
192

4−ε
192

4−3ε
64

ε
64

ε
64

ε
64

|2−〉 4−ε
192

ε
64

4−ε
192

4−ε
192

ε
64

4−3ε
64

ε
64

ε
64

|3−〉 4−ε
192

4−ε
192

ε
64

4−ε
192

ε
64

ε
64

4−3ε
64

ε
64

|4−〉 4−ε
192

4−ε
192

4−ε
192

ε
64

ε
64

ε
64

ε
64

4−3ε
64

Table 4.2: Joint probability table for the raw data between Alice and Bob for the
direct communication protocol in a channel with unbiased noiseε.

The intercept and resend attack strategy in section 4.2 clearly does not mimic

an unbiased noise channel. In fact for that attack, the jointprobability table be-

tween Alice and Bob shows no noise in the event where Alice’s state parity does

not match Bob’s measurement parity. However when their parities match, they

see a noise value corresponding toε = 4/9.

After Alice and Bob find out their actual joint probability table for the strategy

in section 4.2, they can make their joint probability table unbiased by adding some

controlled noise on their raw keys. This will reduce their correlations, but it will

allow Alice and Bob to obtain an upper bound on Eve’s information based only on

unbiased attacks. For this particular attack, the strategyinvolves Bob randomly

flipping 1/4 of his outcomes to the opposite parity type.
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When Bob does this, the new unbiased probabilities ˜p are related to the old

biased probabilitiesp by

p̃(a±,b±) =
3
4

p(a±,b±)+
1
4

p(a±,b∓) , (4.2)

p̃(a±,b∓) =
3
4

p(a±,b∓)+
1
4

p(a±,b±) . (4.3)

We work out four of the probabilities below

p̃(1+,1+) =
3
4
× 1

24
+

1
4
×0 =

1
32

, (4.4)

p̃(1+,2+) =
3
4
× 1

144
+

1
4
× 1

48
=

1
96

, (4.5)

p̃(1+,1−) =
3
4
×0+

1
4
× 1

24
=

1
96

, (4.6)

p̃(1+,2−) =
3
4
× 1

48
+

1
4
× 1

144
=

5
288

. (4.7)

Comparing with the unbiased probability table 4.2, we can check that this corre-

sponds to a noise level ofε = 2/3.

This flipping of parity does not change Eve’s input states when she attacks

Alice. It also does not reveal any additional information toEve. If Alice and Bob

introduce controlled noise to remove any bias in their jointprobabilities, then Eve

will not have any advantage in doing a biased attack. She loses the opportunity to

add her own noise into the channel by doing a biased attack. Hence for the same

unbiased error rate, there is an unbiased strategy that is atleast as good as a biased

strategy. In the next section, we shall give an unbiased intercept and resend attack

that has a noise level ofε = 2/3.
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4.3.1 Unbiased attack with noise level ofε = 2/3

To mimic an unbiased noise, let us consider a different intercept and resend strat-

egy for Eve. She needs to introduce some artificial noise suchthat Alice and Bob

see something unbiased.

Consider this strategy for Eve. Once again Eve measures the incoming two-

qubit state using either the plus or minus box. But she sends whatever state she

measures with a probability of only 3/4. She sends the states with the opposite

parity with probability 1/4. We shall see that this attack results in unbiased noise

between Alice and Bob.

For example, say Alice sends the state|1+〉. Again, Eve will get the state|1+〉

with probability 1/2 or the states{|2−〉 , |3−〉 , |4−〉}, each with probability 1/6.

When Eve gets the state|1+〉, she will send out|1+〉 with probability 3/4 and the

opposite parity state|1−〉 with probability 1/4. She does the same if she gets the

minus states.

The following table summarises the total probabilities forEve to send out each

state when Alice sends the state|1+〉.

Eve’s Eve’s forwarded state Eve’s

outcome |1+〉 |2+〉 |3+〉 |4+〉 |1−〉 |2−〉 |3−〉 |4−〉 M.P.

|1+〉 3
8 0 0 0 1

8 0 0 0 1
2

|2−〉 0 1
24 0 0 0 1

8 0 0 1
6

|3−〉 0 0 1
24 0 0 0 1

8 0 1
6

|4−〉 0 0 0 1
24 0 0 0 1

8
1
6

Total
3
8

1
24

1
24

1
24

1
8

1
8

1
8

1
8 1

M.P.
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The last entry of the table gives the state that Bob will receive from Eve, given

that Alice sends the state|1+〉. When Bob performs his measurements, he will

get the outcomes as given in the next table.

State Eve Outcome of Bob’s measurement Eve’s

forwards 〈1+| 〈2+| 〈3+| 〈4+| 〈1−| 〈2−| 〈3−| 〈4−| M.P.

|1+〉 3
16 0 0 0 0 1

16
1
16

1
16

3
8

|2+〉 0 1
48 0 0 1

144 0 1
144

1
144

1
24

|3+〉 0 0 1
48 0 1

144
1

144 0 1
144

1
24

|4+〉 0 0 0 1
48

1
144

1
144

1
144 0 1

24

|1−〉 0 1
48

1
48

1
48

1
16 0 0 0 1

8

|2−〉 1
48 0 1

48
1
48 0 1

16 0 0 1
8

|3−〉 1
48

1
48 0 1

48 0 0 1
16 0 1

8

|4−〉 1
48

1
48

1
48 0 0 0 0 1

16
1
8

Bob’s
1
4

1
12

1
12

1
12

1
12

5
36

5
36

5
36 1

M.P.

The last entry in the table gives the actual outcomes of Bob’s detectors when

Alice sends the state|1+〉. Comparing with Alice and Bob’s joint probability

table with unbiased noise when Alice sends|1+〉, Alice and Bob would not be

able to differentiate between Eve’s presence and a channel with unbiased noise at

ε = 2/3.

Of course, Bob will get similar unbiased marginal probabilities when Alice

sends other states as well.

We note that since the channel between Alice and Eve was perfect, by doing

this intercept and resend attack, Eve knows everything about the bits that Alice

sends. So we can conclude that when Alice and Bob see an unbiased noise level

of ε = 2/3, Eve already has full information about Alice’s bits.
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4.3.2 A slightly more general unbiased attack with noise level

of ε ≥ 2/3

In fact the intercept and resend strategy that we just presented is just one of many

intercept and resend strategies that Eve can use but that still mimics an unbiased

noise. Here we present a slightly more general strategy.

The strategy is as follows. When Eve measures the outcome 1 in the plus box,

she forwards to Bob the states in the following table with the shown probabilities.

State Eve forwards Probability

|1+〉 p0

|2+〉 p1

|3+〉 p1

|4+〉 p1

|1−〉 p2

|2−〉 p3

|3−〉 p3

|4−〉 p3

Putting this into words, she forwards the state she receiveswith probabilityp0, the

states having a different numeral but the same parity with probability p1, the state

with the same numeral but a different parity with probability p2 and the states

having a different numeral and a different parity with probability p3.

Using this strategy, given that Alice sends the state|1+〉, the probabilities

of Bob obtaining a particular outcome after summing over all of Eve’s possible

outcomes are given in the following table.
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Bob’s outcome Probability

〈1+| 1
6(2p0 + p1 +3p3)

〈2+| 1
18(p0 +8p1 +3p2 +6p3)

〈3+| 1
18(p0 +8p1 +3p2 +6p3)

〈4+| 1
18(p0 +8p1 +3p2 +6p3)

〈1−| 1
6(3p1 + p2 + p3)

〈2−| 1
18(3p0 +6p1 + p2 +8p3)

〈3−| 1
18(3p0 +6p1 + p2 +8p3)

〈4−| 1
18(3p0 +6p1 + p2 +8p3)

For the noise to be consistent with the unbiased noise, Eve needs to choose her

probabilitiesp0, p1, p2 and p3 such that Bob’s outcomes match the entries of

the unbiased joint probability table 4.2. This gives four equations for the four

probabilities:

1
6
(2p0 + p1 +3p3) =

4−3ε
8

, (4.8)

1
18

(p0 +8p1 +3p2 +6p3) =
ε
8

, (4.9)

1
6
(3p1 + p2 + p3) =

ε
8

, (4.10)

1
18

(3p0 +6p1 + p2 +8p3) =
4− ε
24

. (4.11)

These four equations are not all independent. They can be reduced to the following

three equations

p0 + p3 =
7−6ε

4
,

p1 + p3 =
3ε−2

4
,

p2− p3 =
3−3ε

4
,

(4.12)
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where we have one free parameter remaining. The least value of ε consistent with

this unbiased intercept resend strategy can be obtained from the second equation.

Because probabilities have to be positive,

p1 + p3 =
3ε−2

4
≥ 0 (4.13)

=⇒ ε ≥ 2
3
. (4.14)

The unique choice ofp0 = 3/4, p1 = 0, p2 = 1/4 andp3 = 0 corresponds to our

earlier unbiased intercept resend strategy forε = 2/3. Forε > 2/3, there is more

than one eavesdropping strategy for Eve in this class.

4.4 Alice and Bob’s mutual information for unbi-

ased noise

For an unbiased attack, we can find the mutual information between Alice and

Bob in terms of the noise parameter. Summing up the entries in table 4.2, the

channel between Alice and Bob is the following binary symmetric channel.

Alice’s bit
Bob’s bit

+ −
+ 2−ε

4
ε
4

− ε
4

2−ε
4

For this channel, the mutual information between Alice and Bob will be

IAB =
2− ε

2
log(2− ε)+

ε
2

logε . (4.15)

We note that for the unbiased channel, the error rateQ equals toε/2.
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Chapter 5

Noise 2: General eavesdropping

strategies

The intercept and resend strategy that we presented in the last chapter is just one

class of attacks that Eve can perform. The more general thingfor her to do would

be to entangle some ancilla states to Alice’s qubit pairs viaa unitary evolution.

Eve keeps her ancillas and sends Alice’s sub-system to Bob. Toextract the most

information out of her ancillas, Eve will only measure her ancillas once Alice and

Bob have finished the whole protocol and used the resulting keys.

Eve’s entangling scheme is constrained by the probabilities that Alice and Bob

check in table 4.1. The security analysis boils down to finding the best entangling

scheme for Eve (subject to the probability constraints) fora given noise levelε.

In this chapter, we shall recast the problem in a different setting. We look at an

equivalent protocol so that the security analysis becomes slightly neater. Instead

of Alice sending qubit pairs to Bob, we will consider the modified protocol where

Eve sends Alice a qubit pair and she sends Bob another qubit pair. Where Alice
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prepares a state to send to Bob in the original protocol, in this setting Alice will do

a measurement on the state that Eve sends. Her measurement will collapse Bob’s

state to the state that Alice intends Bob to receive.

Section 5.1 presents the protocol in its original setting where Alice sends a

pure state to Bob through a noisy channel. Section 5.2 looks atthe equivalent

protocol where Eve controls the source. Finally, section 5.3 introduces the eaves-

dropper and the records that she has access to when Alice and Bob see noise in

their channel.

5.1 Alice–Bob channel

In the original protocol, there is a quantum channel betweenAlice and Bob. When

Alice sends a pure state to Bob, by the time the state gets to Bob,this channel

would have turned it to something else (unless the channel isperfectly isolated).

There are several equivalent ways to parametrise the channel. We can regard

a channelE as a unitary transformationUBE being done on the input stateρA and

an ancillary state|0〉E. The output stateρB is obtained by tracing out the ancillary

subsystem at the end of the unitary evolution

ρA → ρB = E (ρA) = TrE

{

UBE (ρA⊗|0〉E 〈0|E)U†
BE

}

(5.1)

whereE(ρ) denotes the action of the channel on a stateρ. The maximum dimen-

sion of the ancillary state|0〉 needed to specify an arbitrary channel isd2, where

d is the dimension of Hilbert space of the input states (see forexample [39]).
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The channel can also be described by a pure state ind4 dimensions between

Alice–Bob and Eve. When Alice obtains a POVM outcome corresponding to an

arbitrary stateρA that she sends, the resulting state at Bob’s end would be the

outcome of the channelρB = S(ρA). In appendix A, we provide an explicit con-

struction for the pure state between Alice–Bob and Eve for an arbitrary channel

between Alice and Bob.

5.2 Alice measures protocol

We now introduce the equivalent protocol where Alice and Bob share an entangled

state emitting from a source. Alice will measure her state using a POVM and the

state Bob receives at this end will depend on the outcome of Alice’s measurement.

In this scheme, we consider a source which emits two qubit-pairs, the first pair

to Alice and the second to Bob. The qubit pair is in the state

|Ψ〉AB = (|1+,1+〉+ |2+,2+〉+ |3+,3+〉+ |4+,4+〉) 1
2

(5.2)

where the notation|a,b〉 means|a〉 |b〉. The state|a〉 goes to Alice and the state

|b〉 goes to Bob. We choose this state as the source because we must have the

statistical operator for Bob to be the completely mixed state. Using relation (3.1)

|n+〉 = U |n−〉 =
4

∑
m=1

|m−〉um,n , (5.3)
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where

um,n = 〈m−|U |n−〉 =
〈
m−

∣
∣n+

〉
=

1√
3












0 −1 −1 −1

1 0 −1 1

1 1 0 −1

1 −1 1 0












m,n

, (5.4)

we can write the source state|Ψ〉AB in terms of the minus states. The source state

becomes

|Ψ〉AB =
1
2

4

∑
n=1

|n+,n+〉 (5.5)

=
1
2

4

∑
n=1

4

∑
m=1

4

∑
m′=1

um,num′,n
∣
∣m−,m′−

〉
(5.6)

=
1
2

4

∑
n=1

4

∑
m=1

4

∑
m′=1

u∗m,num′,n
∣
∣m−,m′−

〉
(5.7)

=
1
2

4

∑
m=1

4

∑
m′=1

δm′,m
∣
∣m−,m′−

〉
(5.8)

=
1
2

4

∑
m=1

|m−,m−〉 . (5.9)

The third equality follows becauseum,n is real.

In this setting, Alice also has two measuring apparatus, theplus box and the

minus box. To prepare a plus state, Alice puts the qubit-pairshe receives into her

plus box. If she gets then-th outcome she would collapse Bob’s qubit pair to the

|n+〉 state. In the original protocol, Alice randomly chooses a numeral type, but

now this random selection is made by her measuring box. To prepare a minus
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state, Alice would measure her qubit pair using the minus box. From this point

onwards, the protocol remains the same as the original one.

5.3 When there is noise

If Alice and Bob get the source state in the state|Ψ〉AB, then they will obtain a

joint probability table like table 4.1. We shall see in section 8.1 that with this

pure state, Alice and Bob can be certain that their communication is completely

private. An eavesdropper would not be able to gain any information about their

communication. That is if Alice and Bob see a probability table like table 4.1,

they can be sure that the source state was the pure state|Ψ〉AB.

But when noise is present, the probability table that Alice and Bob get will

no longer be the perfect table. Alice and Bob insist on the noise being unbiased

and not too large. They only continue with the protocol if they have a joint prob-

ability table like table 4.2 and the noise levelε is less than a certain thresholdε0.

Otherwise they conclude that someone is eavesdropping and abort the protocol,

they refuse to communicate. This threshold will be the maximum amount of noise

that Alice and Bob can protect themselves against (by using error correcting codes

and privacy amplification techniques) and yet still maintain a completely private

communication.

On insisting for an unbiased noise, Alice and Bob hope to get a source state

ρ(h)
AB = (1− ε) |Ψ〉AB〈Ψ|AB+ ε

1
16

, (5.10)
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a mixture of the perfect source state with an unbiased noise state. But with only

the joint probability table accessible to them, they cannotbe sure. For any non

zero amount of noise, there will be many different states that will give rise to

the same joint probability table for Alice and Bob. Thus Aliceand Bob must be

content with the following 64 restrictions on the source state they actually get:

Tr{ρAB|a+,b+〉〈a+,b+|} =
1− ε

4
δa,b +

ε
16

, (5.11)

Tr{ρAB|a−,b−〉〈a−,b−|} =
1− ε

4
δa,b +

ε
16

, (5.12)

Tr{ρAB|a+,b−〉〈a+,b−|} =
1− ε
12

(1−δa,b)+
ε

16
, (5.13)

Tr{ρAB|a−,b+〉〈a−,b+|} =
1− ε
12

(1−δa,b)+
ε

16
(5.14)

for {a,b} ∈ {1,2,3,4}, whereρAB is the state from the source.

5.3.1 The eavesdropper

When Alice and Bob see noise in their communication, they attribute that noise to

a malicious eavesdropper Eve that controls their source. They want to know how

much information Eve can learn so that they can protect the communication by

building in redundancies in the message. If Alice and Bob receive the stateρAB

from the source we can always assume that this (possibly mixed) state is part of a

higher dimensional pure state|Ψ〉ABE, where tracing over Eve’s subsystem gives

Alice and Bob’s stateρAB,

ρAB = TrE {|Ψ〉ABE〈Ψ|ABE} . (5.15)
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In this language, for every state that the source provides Alice and Bob, Eve has a

record in the from of

ρE = TrAB{|Ψ〉ABE〈Ψ|ABE} . (5.16)

Eve will keep all her records, until Alice and Bob have performed all their mea-

surements and Alice has revealed her numeral types. At this point the communica-

tion is over and Bob knows the message that Alice wanted to communicate to him.

Now Eve is ready to extract some information about the message by performing a

collective measurement on all her records.

Suppose Alice announces that her measurement outcome was a type 1. Eve’s

input state would depend on whether it was a type 1+ or 1−. If Alice’s outcome

was 1+, Eve’s record state becomesρE
A=1+ and if Alice’s outcome was 1−, Eve’s

record collapses toρE
A=1−, where

ρE
A=1+ = 4TrAB{(|1+〉〈1+|⊗1B) |Ψ〉ABE〈Ψ|ABE} , (5.17)

ρE
A=1− = 4TrAB{(|1−〉〈1−|⊗1B) |Ψ〉ABE〈Ψ|ABE} . (5.18)

The two states are normalised so that the trace of bothρE
A=1+ andρE

A=1− are equal

to one. On average, the message Alice sends has the same number of plus and

minus bits. The probability of Eve to get either state is 1/2.
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The maximum amount of information that Eve can learn from thetype 1 states

is given by the Holevo quantity of her records

IE
A=1 = χ

(
1
2

ρE
A=1+,

1
2

ρE
A=1−

)

(5.19)

= S

(
1
2

ρE
A=1+ +

1
2

ρE
A=1−

)

− 1
2

S
(
ρE

A=1+

)
− 1

2
S
(
ρE

A=1−
)

. (5.20)

The total information Eve learns about the message is then the average of the

information that she learns from each numeral type

IE
A =

1
4

(
IE
A=1 + IE

A=2 + IE
A=3 + IE

A=4

)
. (5.21)

Eve could also choose to learn about Bob’s measurement outcomes instead of

Alice’s. In this case, she will get an analogous quantityIE
B . Our task is to find out

what is the maximum value that the quantityIE
A (or IE

B ) can attain for a given noise

ε. We want to maximiseIE
A (or IE

B ) over all possible purifications|Ψ〉ABE subject

to the 64 conditions (5.11)–(5.14).

5.3.2 Eve’s purification

To perform the maximisation of Eve’s information, we write the pure joint Alice–

Bob–Eve state as

|Ψ〉ABE =
4

∑
a=1

4

∑
b=1

|ea〉 |eb〉
∣
∣Ea,b

〉
, (5.22)

where|ea〉 and|eb〉 are some arbitrary orthonormal basis for Alice and Bob. The

16 kets|Eab〉 are Eve’s records which is the purification of Alice and Bob’s state.
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The choice of this purification determines the information Eve will get. The re-

maining task would be to find the optimal purification that would give Eve the

maximum information.

In writing the purified state|Ψ〉ABE, the choice of basis for Alice and Bob is

irrelevant to Eve. Suppose we write instead

|Ψ〉ABE =
4

∑
n=1

4

∑
m=1

|φn,m〉 |Fn,m〉 , (5.23)

where|φn,m〉 is some (possibly entangled) orthonormal basis for Alice and Bob.

In terms of Alice and Bob’s old basis, the state|Ψ〉ABE is

|Ψ〉ABE =
4

∑
a,b=1

4

∑
n,m=1

|ea,eb〉
〈
ea,eb

∣
∣φn,m

〉
|Fn,m〉 (5.24)

=
4

∑
a,b=1

|ea,eb〉
(

4

∑
n,m=1

〈
ea,eb

∣
∣φn,m

〉
|Fn,m〉

)

(5.25)

Comparing this with equation (5.22) we see that the|Fab〉 kets are related to the

|Eab〉 kets by the unitary transformation

|Eab〉 =
4

∑
n=1

4

∑
m=1

|Fnm〉
〈
ea,eb

∣
∣φn,m

〉
. (5.26)
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5.3.3 Eve’s input states

From equations (5.17) and (5.18), we can write Eve’s reducedstates when Alice

announces that she obtained an outcome of type 1. For the 1+ outcome, we have

ρE
A=1+ = 4TrAB{(|1+〉〈1+|⊗1B) |Ψ〉ABE〈Ψ|ABE} (5.27)

= 4
4

∑
a,b=1

4

∑
a′,b′=1

TrAB
{
(|1+〉〈1+|⊗1B)

∣
∣ea,eb,Ea,b

〉〈
e′a,e

′
b,Ea′,b′

∣
∣
}

(5.28)

= 4
4

∑
b=1

(
4

∑
a=1

∣
∣Ea,b

〉〈
1+
∣
∣ea
〉

)(
4

∑
a=1

〈
ea
∣
∣1+

〉〈
Ea,b

∣
∣

)

(5.29)

while for the 1− outcome, we have

ρE
A=1− = 4TrAB{(|1−〉〈1−|⊗1B) |Ψ〉ABE〈Ψ|ABE} (5.30)

= 4
4

∑
a,b=1

4

∑
a′,b′=1

TrAB
{
(|1−〉〈1−|⊗1B)

∣
∣ea,eb,Ea,b

〉〈
e′a,e

′
b,Ea′,b′

∣
∣
}

(5.31)

= 4
4

∑
b=1

(
4

∑
a=1

∣
∣Ea,b

〉〈
1−
∣
∣ea
〉

)(
4

∑
a=1

〈
ea
∣
∣1−

〉〈
Ea,b

∣
∣

)

. (5.32)

Each state is written as the sum of four projectors and would have a maximum of

rank four. The total stateρE
A=1 = 1

2ρE
A=1+ + 1

2ρE
A=1− can at most have rank eight.

We can also find Eve’s reduced states conditioned on the outcome of Bob’s

measurement. For completeness, we shall write down those states here. For exam-
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ple, if Bob’s outcome happens to be of type 2+, then Eve’s record state becomes

ρE
B=2+ = 4TrAB{(1A⊗|2+〉〈2+|) |Ψ〉ABE〈Ψ|ABE} (5.33)

= 4
4

∑
a=1

(
4

∑
b=1

∣
∣Ea,b

〉〈
2+
∣
∣eb
〉

)(
4

∑
b=1

〈
eb
∣
∣2+

〉〈
Ea,b

∣
∣

)

. (5.34)

If Bob announces the numeral type of her outcome, then Eve would try and dis-

tinguish if her record state is in the stateρE
B=2+ or ρE

B=2−. But since Bob does

not reveal his numeral type, for Eve to guess Bob’s parity, shehas to distinguish

whether her record is in the state

ρE
A=1,B=+ =

1
8

(
4−3ε

64
ρE

A=1+
B=1+

+
4− ε
192

(

ρE
A=1+
B=2−

+ρE
A=1+
B=3−

+ρE
A=1+
B=4−

))

+
1
8

(
ε

64
ρE

A=1−
B=1+

+
ε

64

(

ρE
A=1−
B=2−

+ρE
A=1−
B=3−

+ρE
A=1−
B=4−

)) (5.35)

or

ρE
A=1,B=− =

1
8

(
ε

64
ρE

A=1+
B=1−

+
ε

64

(

ρE
A=1+
B=2+

+ρE
A=1+
B=3+

+ρE
A=1+
B=4+

))

+
1
8

(
4−3ε

64
ρE

A=1−
B=1−

+
4− ε
192

(

ρE
A=1−
B=2+

+ρE
A=1−
B=3+

+ρE
A=1−
B=4+

)) (5.36)

where the state for exampleρE
A=1−
B=3+

is Eve’s reduced state when Alice obtains

outcome 1− and Bob obtains the outcome 3+,

ρE
A=1−
B=3+

=
TrAB{(|1−〉〈−1|⊗ |3+〉〈3+|) |Ψ〉ABE〈Ψ|ABE}
Tr{(|1−〉〈−1|⊗ |3+〉〈3+|) |Ψ〉ABE〈Ψ|ABE}

. (5.37)

However, in this thesis, we shall only be concerned with Eve trying to distinguish

Alice’s states. Eve’s reduced states conditioned on the outcome of Bob’s measure-
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ment would only be relevant if Alice and Bob were to do a reversereconciliation

which is not what is done.
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Chapter 6

The optimisation problem

In this chapter, we formalise the problem of optimising Eve’s information in a

matrix formulation. There are two sections. In the section 6.1, we write down the

constraints on the reduced state between Alice and Bob. In section 6.2, we find

how these constraints set a restriction on Eve’s reduced state.

6.1 The constraints

We write the Alice–Bob–Eve pure state as

|Ψ〉ABE =
16

∑
I=1

|ABI 〉 |EI 〉 , (6.1)

where the kets|ABI 〉 are 16 arbitrary (but not necessarily separable) orthonormal

basis for Alice and Bob. Eve’s records|EI 〉 are not necessarily normalised or

orthogonal.
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The 64 constraints are

TrAB{(Pa±⊗Qb±)ρAB} = p(a±,b±) (6.2)

for all four combinations of pluses and minuses and for{a,b} ∈ {1,2,3,4}. The

stateρAB = TrE {|Ψ〉ABE〈Ψ|ABE} is Alice and Bob’s reduced state andPa± and

Qb± are the measurement outcomes for Alice and Bob

Pa± =
1
2
|a±〉〈a±| , (6.3)

Qb± =
1
2
|b±〉〈b±| (6.4)

with the sums

4

∑
a=1

(Pa+ +Pa−) = 1A , (6.5)

4

∑
b=1

(Qb+ +Qb−) = 1B . (6.6)

The right hand side of equation (6.2) are the probabilities for Alice and Bob to get

the outcomea±,b± as given in table 4.2. The sum of the 16 probabilities in each

sector is a quarter

4

∑
a,b=1

p(a+,b+) =
4

∑
a,b=1

p(a+,b−) =
4

∑
a,b=1

p(a−,b+) =
4

∑
a,b=1

p(a−,b−) =
1
4

(6.7)

and the sum of all 64 probabilities adds up to one.
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6.2 Eve’s records

Eve’s statistical operator would be

ρE = TrAB{|Ψ〉ABE〈Ψ|ABE} (6.8)

=
16

∑
I=1

|EI 〉〈EI | . (6.9)

Conditioned on Alice and Bob getting the outcome ofa± andb± Eve’s reduced

state would be

ρE
a±,b± = TrAB{(Pa±⊗Qb±) |Ψ〉ABE〈Ψ|ABE} (6.10)

=
16

∑
I ,I ′=1

|EI 〉〈ABI ′|Pa±⊗Qb± |ABI 〉〈EI ′| (6.11)

where the trace

Tr
{

ρE
a±,b±

}
= p(a±,b±) (6.12)

equals to the probability of Eve to get that state. Introducing an orthonormal basis

|FJ〉 for Eve,

〈FJ|ρE
b±,a± |FJ′〉 =

16

∑
I ,I ′=1

〈
FJ
∣
∣EI
〉
〈ABI ′|Pa±⊗Qb± |ABI 〉

〈
EI ′
∣
∣FJ′
〉

(6.13)

=
16

∑
I ,I ′=1

〈
FJ
∣
∣EI
〉
〈ABI |P†

a±⊗Q†
b± |ABI ′〉∗

〈
EI ′
∣
∣FJ′
〉

(6.14)
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where since

〈FJ|ρE |FJ′〉 =
16

∑
I=1

〈
FJ
∣
∣EI
〉〈

EI
∣
∣FJ′
〉

(6.15)

=
16

∑
I ,K=1

〈
FJ
∣
∣EI
〉〈

FI
∣
∣FK
〉〈

EK
∣
∣FJ′
〉

(6.16)

= 〈FJ|XX† |FJ′〉 (6.17)

with

X =
16

∑
I=1

|EI 〉〈FI | (6.18)

so that finally,

〈FJ|X |FJ′〉 =
16

∑
I=1

〈
FJ
∣
∣EI
〉〈

FI
∣
∣FJ′
〉

(6.19)

=
〈
FJ
∣
∣EJ′
〉

. (6.20)

Also

〈FJ|X†X |FJ′〉 =
16

∑
I ,I ′=1

〈
FJ
∣
∣FI
〉〈

EI
∣
∣EI ′
〉〈

FI ′
∣
∣FJ′
〉

(6.21)

=⇒
16

∑
k=1

〈FJ|X† |Fk〉〈Fk|X |FJ′〉 =
〈
EJ
∣
∣EJ′
〉

. (6.22)

So if we have all the inner products
〈
EJ
∣
∣EJ′
〉
, we can take the (arbitrary) square

root to get〈FJ|X |FJ′〉 =
〈
FJ
∣
∣EJ′
〉

which gives us a column representation for the

vectors|EJ′〉 in the orthonormal|FJ〉 basis. The choice of the square rootX fixes

the orthonormal basis|FJ〉. Putting this back into Eve’s record state in equa-
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tion (6.14), we get the matrix elements

〈FJ|ρE
a±,b± |FJ′〉 =

16

∑
I ,I ′=1

〈
FJ
∣
∣EI
〉
〈ABI |P†

a±⊗Q†
b± |ABI ′〉∗

〈
EI ′
∣
∣FJ′
〉

(6.23)

=
16

∑
I ,I ′=1

〈FJ|X |FI 〉〈ABI |P†
a±⊗Q†

b± |ABI ′〉∗ 〈FI ′|X† |FJ′〉 . (6.24)

Eve’s measurement strategy depends on the type Alice announces. Eve’s two

input states when Alice announces a type 1 would be

ρE
A=1+ =

4

∑
b=1

(
ρE

1+,b+ +ρE
1+,b−

)
(6.25)

and

ρE
A=1− =

4

∑
b=1

(
ρE

1−,b+ +ρE
1−,b−

)
. (6.26)

The constraints on Eve’s records are

p(a±,b±) = TrAB{(Pa±⊗Qb±)ρAB} (6.27)

=
16

∑
I ,I ′=1

〈ABI ′|(Pa±⊗Qb±) |ABI 〉
〈
EI ′
∣
∣EI
〉

(6.28)

=
16

∑
I ,I ′,k=1

〈FK|X |FI 〉〈ABI |P†
a±⊗Q†

b± |ABI ′〉∗ 〈FI ′|X† |FK〉 (6.29)

Eve’s optimisation problem would be to findX (once she has chosen a basis|F〉)

which maximisesIE
A , the information Eve can learn, subject to the constraints

above. After choosing some orthonormal basis|ABI 〉 for Alice–Bob and|FI 〉 for
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Eve, we write Eve’s input states as a 16 by 16 matrix

ρE
a±,b± = X

(
PT

a±⊗Q T
b±
)
X † (6.30)

whereX is the matrix representation ofX,

XJ,J′ = 〈FJ|X |FJ′〉 (6.31)

and
(
PT

a±⊗Q T
b±
)

is a 16 by 16 matrix with entries

(
PT

a±⊗Q T
b±
)

J,J′ = 〈ABJ|P†
a±⊗Q†

b± |ABJ′〉∗ . (6.32)

The constraints onX becomes

Tr
{

X
(
PT

a±⊗Q T
b±
)
X †
}

= p(a±,b±) . (6.33)

The optimisation problem is now to find the 256 matrix entriesof X subject to

the 64 constraints in equation (6.33) to maximise Eve’s accessible information

which is obtained by finding the entropies of states involving the sum of states in

equation (6.30).
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Chapter 7

Choosing a basis

In this chapter, we will choose a basis for Alice and Bob to write out our equations.

Once a basis is chosen, the constraints for Eve can be writtenout explicitly.

This chapter consists of two sections. In section 7.1, we pick the plus basis as

the basis we shall work in for Alice and Bob. In section 7.2, we pick a basis for

Eve which corresponds to taking the Hermitian square root ofher reduced state

X†X as the choice forX.

7.1 Alice–Bob’s basis

While the basis choice does not affect Eve’s strategy or the final information Eve

can attain, it does however affect the number of pages neededto write down Eve’s

constraints and input states in full.

Eve’s strategy is fully defined by her purification

|Ψ〉ABE =
16

∑
I=1

|ABI 〉 |EI 〉 . (7.1)
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Once we specify the Alice–Bob basis|ABI 〉, Eve’s record states|EI 〉 is also fixed

by the purification. We shall choose the plus states as a basisfor Alice–Bob,

|ABI 〉 = |a+,b+〉 (7.2)

whereI = 4(a−1)+b. With this basis choice, the matrix elements

(Pa±⊗Qb±)J,J′ = 〈ABJ|Pa±⊗Qb± |ABJ′〉 (7.3)

are real. Also the 64 constraints are

p(n±,m±) =
4

∑
a,b,a′,b′=1

〈
a′+,b′+

∣
∣Pn±⊗Qm± |a+,b+〉

〈
Ea′,b′

∣
∣Ea,b

〉
(7.4)

=
4

∑
a,b,a′,b′=1

〈
a′+
∣
∣Pn± |a+〉

〈
b′+
∣
∣Qm± |b+〉

〈
Ea′,b′

∣
∣Ea,b

〉
(7.5)

for n,m∈ {1,2,3,4}.

We divide these 64 constraints into three groups. The first group with 16

constraints is when both Alice and Bob measure in the plus basis. We call these the

short constraints. The second group is when Alice and Bob measure in a different

basis. The 32 constraints in this group are called the mediumconstraints. The

final group is when both Alice and Bob measure in the minus basis. This gives

the final 16 constraints which we call the long constraints.

7.1.1 Short constraints

An example of the short constraint would be when Alice gets the outcomen± =

1+ and Bob obtainsm± = 1+. The probability for this outcome isp(1+,1+) =



75

(4−3ε)/64, and so this constraint reads

〈
E1,1

∣
∣E1,1

〉
=

4−3ε
16

. (7.6)

A second example is whenn± = 1+ and m± = 2+. The probability for this

outcome isp(1+,2+) = ε/64, which gives the constraint

〈
E1,2

∣
∣E1,2

〉
=

ε
16

. (7.7)

The 16 probabilities when Alice and Bob both measure in the plus basis determine

the norm of all of Eve’s 16 record states

〈
Ea,b

∣
∣Ea,b

〉
=

4−3ε
16

for a = b , (7.8)

〈
Ea,b

∣
∣Ea,b

〉
=

ε
16

for a 6= b . (7.9)

We call these 16 equations the short constraints. The doubleindices on
∣
∣Ea,b

〉

correspond to the single index on|EI 〉 by the relationI = 4(a−1)+b.

7.1.2 Medium constraints

As an example of the medium constraint, consider the case when Alice gets the

outcome 1+ and Bob measures in the minus basis and get the outcome 1−. The

constraint that this must happen with probabilityp(1+,1−) = ε/64 gives the con-
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dition

p(1+,1−) =
1
12

(〈
E1,2

∣
∣E1,2

〉
+
〈
E1,2

∣
∣E1,3

〉
+
〈
E1,2

∣
∣E1,4

〉

+
〈
E1,3

∣
∣E1,2

〉
+
〈
E1,3

∣
∣E1,3

〉
+
〈
E1,3

∣
∣E1,4

〉

+
〈
E1,4

∣
∣E1,2

〉
+
〈
E1,4

∣
∣E1,3

〉
+
〈
E1,4

∣
∣E1,4

〉)

=
ε

64
.

(7.10)

Substituting the norms from the short constraints, we get

〈
E1,2

∣
∣E1,3

〉
+
〈
E1,2

∣
∣E1,4

〉
+
〈
E1,3

∣
∣E1,2

〉

+
〈
E1,3

∣
∣E1,4

〉
+
〈
E1,4

∣
∣E1,2

〉
+
〈
E1,4

∣
∣E1,3

〉
= 0 ,

(7.11)

which is a constraint on the sum of the real parts

Re
〈
E1,2

∣
∣E1,3

〉
+Re

〈
E1,2

∣
∣E1,4

〉
+Re

〈
E1,3

∣
∣E1,4

〉
= 0 . (7.12)

A second example is for Alice to get the outcome 1+ and Bob gets the outcome

2−. This occurs with probabilityp(1+,2−) = (4− ε)/192, from which we get

the constraint

p(1+,2−) =
1
12

(〈
E1,1

∣
∣E1,1

〉
−
〈
E1,1

∣
∣E1,3

〉
+
〈
E1,1

∣
∣E1,4

〉

−
〈
E1,3

∣
∣E1,1

〉
+
〈
E1,3

∣
∣E1,3

〉
−
〈
E1,3

∣
∣E1,4

〉

+
〈
E1,4

∣
∣E1,1

〉
−
〈
E1,4

∣
∣E1,3

〉
+
〈
E1,4

∣
∣E1,4

〉)

=
4− ε
192

.

(7.13)
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Substituting the short constraints, this simplifies to

−Re
〈
E1,1

∣
∣E1,3

〉
+Re

〈
E1,1

∣
∣E1,4

〉
−Re

〈
E1,3

∣
∣E1,4

〉
= 0 . (7.14)

In total there are 32 of such constraints on the real parts that we get when Alice

and Bob measure in different bases. We call these themedium constraints. These

constraints are written out in full in appendix B.

7.1.3 Long constraints

The long constraints arise when Alice and Bob both measure in the minus basis.

For example, the probability for Alice to get the outcome 1− and Bob to get the

same outcome 1− gives the constraint

4

∑
a,b,a′,b′=1

〈
a′ +

∣
∣1−

〉〈
1−
∣
∣a+

〉〈
b′ +

∣
∣1−

〉〈
1−
∣
∣b+

〉〈
Ea′,b′

∣
∣Ea,b

〉
=

4−3ε
64

.

(7.15)

This constraint would have 81 different inner products whenwritten in full. How-

ever, substituting the results of the short and medium constraints, this simplifies
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to

Re
〈
E2,2

∣
∣E3,3

〉
+Re

〈
E2,2

∣
∣E3,4

〉
+Re

〈
E2,2

∣
∣E4,3

〉

+Re
〈
E2,2

∣
∣E4,4

〉
+Re

〈
E2,3

∣
∣E3,2

〉
+Re

〈
E2,3

∣
∣E3,4

〉

+Re
〈
E2,3

∣
∣E4,2

〉
+Re

〈
E2,3

∣
∣E4,4

〉
+Re

〈
E2,4

∣
∣E3,2

〉

+Re
〈
E2,4

∣
∣E3,3

〉
+Re

〈
E2,4

∣
∣E4,2

〉
+Re

〈
E2,4

∣
∣E4,3

〉

+Re
〈
E3,2

∣
∣E4,3

〉
+Re

〈
E3,2

∣
∣E4,4

〉
+Re

〈
E3,3

∣
∣E4,2

〉

+Re
〈
E3,3

∣
∣E4,4

〉
+Re

〈
E3,4

∣
∣E4,2

〉
+Re

〈
E3,4

∣
∣E4,3

〉

=
3−3ε

4
.

(7.16)

We call these thelong constraints. The 16 long constraints are given in ap-

pendix B.

7.2 Eve’s basis

Once Eve decides on an eavesdropping strategy, the inner products of her records,

that is all the terms in
〈
EI
∣
∣EJ
〉
, are fixed. This determines the inner product

〈FI |X†X |FJ〉 =
〈
EI
∣
∣EJ
〉

where we recall that the square rootX = ∑16
I=1 |EI 〉〈FI |.

We are still free to choose an arbitrary basis|FI 〉 which will determine the choice

of the square rootX. We shall choose such thatX is Hermitian. A different choice

of X would amount to a unitary transformation on the basis|FI 〉.

We choose a basis for Eve so thatX† = X. This is obtained by first diagonal-

ising ρE = XX†,

XX† =
16

∑
I=1

|φI 〉λ2
I 〈φI | (7.17)
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with λI ≥ 0 and
〈
φI
∣
∣φI ′
〉

= δI ,I ′, and then choosing the square root to be

X = X† =
16

∑
I=1

|φI 〉λI 〈φI | . (7.18)

In these basis (for Alice–Bob and Eve), Eve’s input states would have the matrix

representation

ρE
a±,b± = X (Pa±⊗Qb±)X . (7.19)

We will work with these matrices in the remaining chapters ofthis part of the

thesis to find out the maximum information that Eve can gain.
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Chapter 8

Solving the equations for easy cases

Before going to the general case, we shall look at three easy cases that can be

solved analytically. In section 8.1, we look at the case whenthere is no noise in

the channel. In section 8.2, we look at the case where there isa lot noise for which

we already know from the intercept and resend attack that Evewill be able to get

full information. Section 8.3 looks into the special case when Alice and Bob do a

complete tomography on the state that they receive.

8.1 No noise:ε = 0

We want to find all possible solutions to Eve’s record states when there is no noise.

When there is no noise, the short constraints becomes

〈
E1,1

∣
∣E1,1

〉
=
〈
E2,2

∣
∣E2,2

〉
=
〈
E3,3

∣
∣E3,3

〉
=
〈
E4,4

∣
∣E4,4

〉
=

1
4

(8.1)
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and
〈
Ei, j
∣
∣Ei, j

〉
= 0 wheni 6= j. And from Cauchy–Schwarz inequality, the inner

products

∣
∣
〈
Ei, j
∣
∣Ei′, j ′

〉∣
∣2 ≤

〈
Ei, j
∣
∣Ei, j

〉〈
Ei′, j ′

∣
∣Ei′, j ′

〉
(8.2)

= 0 (8.3)

wheni 6= j or wheni′ 6= j ′. With this all of the medium constraints are automati-

cally satisfied. The long constraints reduce to six equations

Re
〈
E1,1

∣
∣E2,2

〉
= Re

〈
E1,1

∣
∣E3,3

〉
= Re

〈
E1,1

∣
∣E4,4

〉

= Re
〈
E2,2

∣
∣E3,3

〉
= Re

〈
E2,2

∣
∣E4,4

〉
= Re

〈
E3,3

∣
∣E4,4

〉
=

1
4

(8.4)

which means that all four non-zero record states are equal

|E1,1〉 = |E2,2〉 = |E3,3〉 = |E4,4〉 . (8.5)

The joint Alice–Bob–Eve pure state is then

|Ψ〉ABE =
4

∑
n=1

|n+,n+〉 |E1,1〉 (8.6)

which is a separable state between Alice–Bob and Eve. In this case even before

doing error correction, the raw keys between Alice and Bob arealready perfectly

correlated and Eve has no information about it.
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8.2 A lot of noise:ε ≥ 2/3

In this section we shall examine what are Eve’s possible strategies when she is

allowed to add a large amount of noise. In section 4.3.1 we hadan intercept and

resend strategy where Eve gains full information at a noise levelε = 2/3. Here,

we find what is the equivalent entanglement based attack corresponding to that

prepare and send attack.

In the prepare and send scenario, there is a noisy channel between Alice and

Bob. We recall that in this channel, for the particular value of ε = 2/3, Eve mea-

sures the incoming two-qubit state in either the plus or minus basis. She then

forwards the outcome of her measurement with probability 3/4 and with proba-

bility 1/4 she forwards the state with the opposite parity. We can describe this

channelE by its action on a positive operatorρ

ρ → E(ρ) =
1
2

4

∑
n=1

Tr{ρ |n+〉〈n+|}
(

3
4
|n+〉〈n+|+ 1

4
|n−〉〈n−|

)

+
1
2

4

∑
n=1

Tr{ρ |n−〉〈n−|}
(

3
4
|n−〉〈n−|+ 1

4
|n+〉〈n+|

)

(8.7)

=
4

∑
n=1

(
3
8
|n+〉〈n+|ρ |n+〉〈n+|+ 1

8
|n−〉〈n+|ρ |n+〉〈n−|

)

+
4

∑
n=1

(
3
8
|n−〉〈n−|ρ |n−〉〈n−|+ 1

8
|n+〉〈n−|ρ |n−〉〈n+|

)

(8.8)

=
4

∑
n=1

(

A(1)
n ρA(1)†

n +A(2)
n ρA(2)†

n +A(3)
n ρA(3)†

n +A(4)
n ρA(4)†

n

)

(8.9)
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where

A(1)
n = |n+〉〈n+|

√

3
8

,

A(2)
n = |n−〉〈n−|

√

3
8

,

A(3)
n = |n+〉〈n−|

√

1
8

,

A(4)
n = |n−〉〈n+|

√

1
8

(8.10)

for n∈ {1,2,3,4}.

The more general channel corresponding to the intercept andresend schemes

in section 4.3.2 for noise values ofε > 2/3 can be found in a similarly straight-

forward manner. For that intercept and resend scheme, a particular stateρ would

transform to the state

ρ →E(ρ) =
1
2

4

∑
n=1

Tr{ρ |n+〉〈n+|}

×
[

p0 |n+〉〈n+|+ p2 |n−〉〈n−|+ ∑
m6=n

(p1 |m+〉〈m+|+ p3 |m−〉〈m−|)
]

+
1
2

4

∑
n=1

Tr{ρ |n−〉〈n−|}

×
[

p0 |n−〉〈n−|+ p2 |n+〉〈n+|+ ∑
m6=n

(p1 |m−〉〈m−|+ p3 |m+〉〈m+|)
]

,

(8.11)
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wherep0, p1, p2 andp3 are the probabilities introduced in section 4.3.2 of which

only one is a free parameter. The channel can be written as

E(ρ) =
4

∑
n=1

(

A(1)
n ρA(1)†

n +A(2)
n ρA(2)†

n + ∑
n6=m

(

A(3)
n,mρA(3)†

n,m +A(4)
n,mρA(4)†

n,m

)
)

+
4

∑
n=1

(

B(1)
n ρB(1)†

n +B(2)
n ρB(2)†

n + ∑
n6=m

(

B(3)
n,mρB(3)†

n,m +B(4)
n,mρB(4)†

n,m

)
)

(8.12)

where the Kraus operators for this channel are

A(1)
n = |n+〉〈n+|

√
p0

2
, B(1)

n = |n−〉〈n−|
√

p0

2
,

A(2)
n = |n−〉〈n+|

√
p2

2
, B(2)

n = |n+〉〈n−|
√

p2

2
,

A(3)
n,m = |m+〉〈n+|

√
p1

2
, B(3)

n,m = |m−〉〈n−|
√

p1

2
,

A(4)
n,m = |m−〉〈n+|

√
p3

2
, B(4)

n,m = |m+〉〈n−|
√

p3

2

for n,m∈ {1,2,3,4}. Through straightforward but tedious computations, it turns

out that the channel does not depend on the probabilitiespi.

We now want to obtain the pure state|Ψ〉ABE which corresponds to this chan-

nel. The intercept and resend attack is equivalent to Eve sending Alice and Bob a
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separable state such that the joint state between Alice and Bob is

ρAB =

1
8

4

∑
n=1

|n+〉〈n+|⊗
[

p0 |n+〉〈n+|+ p2 |n−〉〈n−|+ ∑
m6=n

(p1 |m+〉〈m+|+ p3 |m−〉〈m−|)
]

+
1
8

4

∑
n=1

|n−〉〈n−|⊗
[

p0 |n−〉〈n−|+ p2 |n+〉〈n+|+ ∑
m6=n

(p1 |m−〉〈m−|+ p3 |m+〉〈m+|)
]

.

(8.13)
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In the plus basis between Alice–Bob, this state has matrix entries

〈ABM|ρAB|ABN〉 =
〈
EN
∣
∣EM

〉
=









































a · · · · x1 x3 x3 · x3 x1 x3 · x3 x3 x1

. b · · x2 · x4 x4 x4 · x3 x5 x4 · x5 x3

. · b · x4 x3 · x5 x2 x4 · x4 x4 x5 · x3

. · · b x4 x3 x5 · x4 x5 x3 · x2 x4 x4 .

. x2 x4 x4 b · · · · x4 x3 x5 · x4 x5 x3

x1 · x3 x3 · a · · x3 · x1 x3 x3 · x3 x1

x3 x4 · x5 . · b · x4 x2 · x4 x5 x4 · x3

x3 x4 x5 · · · · b x5 x4 x3 · x4 x2 x4 .

. x4 x2 x4 · x3 x4 x5 b · · · · x5 x4 x3

x3 · x4 x5 x4 · x2 x4 · b · · x5 · x4 x3

x1 x3 · x3 x3 x1 · x3 · · a · x3 x3 · x1

x3 x5 x4 · x5 x3 x4 · · · · b x4 x4 x2 .

. x4 x4 x2 · x3 x5 x4 · x5 x3 x4 b · · .

x3 · x5 x4 x4 · x4 x2 x5 · x3 x4 · b · .

x3 x5 · x4 x5 x3 · x4 x4 x4 · x2 · · b .

x1 x3 x3 · x3 x1 x3 · x3 x3 x1 · · · · a









































M,N

wherex denotes the negative ofx and the dots are zeros. The magnitudesa =

(4−3ε)/16 andb = ε/16 while the inner productsxi are

x1 = x2 =
1− ε
16

,

x3 = x4 =
1− ε
32

,

x5 = 0

(8.14)
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all of which does not depend on the probabilitypi. The reason for distinguishing

betweenx1 andx2 for example will be clear when we generalise Eve’s attack in

the next chapter. These inner products define the attack thatEve does.

This matrix is diagonalised in appendix C and using the formulation in chap-

ter 6, we can check that Eve gets full information about Aliceand Bob’s bits when

she uses this attack.

8.3 Full tomography solution

For completeness, we note that if Alice and Bob were allowed todo full to-

mography on their states, then Eve’s attack would be restricted to
〈
EN
∣
∣EM

〉
=

〈ABM|ρ(t)
AB|ABN〉 where

ρ(t)
AB = (1− ε) |Ψ〉AB〈Ψ|AB+ ε

1
16

(8.15)

=
1− ε
16 ∑

m,n
|n+,n+〉〈m+,m+|+ ε

16
(8.16)

is the true unbiased noise state as in equation (5.10). This state would correspond

to the values

x1 =
1− ε

4
,

x2 = x3 = x4 = x5 = 0 .

(8.17)

For this attack,|Ψ〉AB is an eigenvector of the stateρAB with an eigenvalue of

(16−15ε)/16. The remaining 15 eigenvectors are degenerate and have eigenval-

ues ofε/16. Eve’s sub-normalised input state when Alice obtains an outcome

n+ and Bob obtains an outcomem+ will be unitarily equivalent to the state
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√ρAB|n+,m+〉〈n+,m+|√ρAB
†:

ρE
n+,m+ ∼√

ρAB|n+,m+〉〈n+,m+|√ρAB
† . (8.18)

We use the symbol ‘∼’ to denote unitary equivalence. To compute Eve’s infor-

mation, we need to find the eigenvalues for Eve’s input stateswhen say Alice

announces the type 1

ρE
A=1+ = 4∑

m
ρE

1+,m+ ∼ 4∑
m

√
ρAB|1+,m+〉〈1+,m+|√ρAB

† , (8.19)

ρE
A=1− = 4∑

m
ρE

1−,m− ∼ 4∑
m

√
ρAB|1−,m−〉〈1−,m−|√ρAB

† (8.20)

and also the eigenvalues for her total state

ρE
A=1 =

1
2

(
ρE

A=1+ +ρE
A=1−

)
. (8.21)

Forn 6= m

√
ρAB|n±,m±〉 = |n±,m±〉

√
ε

16
(8.22)
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while for n = m,

√
ρAB|n±,n±〉 = |Ψ〉AB〈Ψ|AB

√

16−15ε
16

|n±,n±〉

+(1−|Ψ〉AB〈Ψ|AB)

√
ε

16
|n±,n±〉

= |Ψ〉AB
1
2

√

16−15ε
16

+

(

|n±,n±〉−|Ψ〉AB
1
2

)√
ε

16

= |n±,n±〉
(√

16−15ε
16

+
3
√

ε
16

)

+ ∑
m6=n

|m±,m±〉
(√

16−15ε
16

−
√

ε
16

)

≡ |φn±〉
√

4−3ε
16

(8.23)

where |φn±〉 are properly normalised. We can also see that the four vectors
√ρAB|1±,m±〉 for m∈ {1,2,3,4} are orthogonal. From this it follows that Eve’s

input statesρE
A=1+ andρE

A=1− have eigenvalues

{
4−3ε

4
,

ε
4

(deg 3)

}

. (8.24)

The abbreviation ‘deg’ denotes degeneracy. The entropies of Eve’s input states

are then

S
(
ρE

A=1+

)
= S

(
ρE

A=1−
)

= −4−3ε
4

log
4−3ε

4
− 3ε

4
log

ε
4

. (8.25)
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We now proceed to find the eigenvalues for Eve’s total state. Eve’s total state

when Alice announces a type 1 is unitarily equivalent to

ρE
A=1 ∼ 2∑

m

√
ρAB(|1+,m+〉〈1+,m+|+ |1−,m−〉〈1−,m−|)√ρAB

† (8.26)

= |φ1+〉〈φ1+| 4−3ε
8

+
ε
8 ∑

m=2,3,4
|1+,m+〉〈1+,m+|

+ |φ1−〉〈φ1−| 4−3ε
8

+
ε
8 ∑

m=2,3,4
|1−,m−〉〈1−,m−| . (8.27)

The first six eigenvectors for this state are

{|1+,2+〉 , |1+,3+〉 , |1+,4+〉 , |1−,2−〉 , |1−,3−〉 , |1−,4−〉} (8.28)

which have eigenvaluesε/8 and the final two eigenvectors are proportional to

{|φ1+〉+ |φ1−〉 , |φ1+〉− |φ1−〉} (8.29)

whose corresponding eigenvalues are

4−3ε
8

(
1±
〈
φ1 +

∣
∣φ1−

〉)
(8.30)

=
4−3ε

8

(

1± 4−4ε
4−3ε

)

(8.31)

=







8−7ε
8

ε
8

(8.32)

respectively. With this we find that the entropy of Eve’s total state is

S
(
ρE

A=1

)
= −8−7ε

8
log

8−7ε
8

− 7ε
8

log
ε
8

. (8.33)
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Figure 8.1: Plot of Eve’s information (in red) and the mutualinformation between
Alice and Bob (in blue) as a function of the unbiased noise level ε when Alice and
Bob can do a complete tomography of their state for the direct communication
protocol. The two curves intersect atε = 0.279621.

Putting this together with the entropies of Eve’s input states (8.25), the maximum

amount of information Eve can extract can be computed using the Holevo bound

χ = S
(
ρE

A=1

)
− 1

2
S
(
ρE

A=1+

)
− 1

2
S
(
ρE

A=1−
)
≥ IE . (8.34)

This is plotted in figure 8.1 together with the mutual information between Alice

and Bob that we had in section 4.4. Eve’s information intersects Alice and Bob’s

information atε = 0.279621. This corresponds to a bit error rate ofQ = 0.13981.

The maximum information transferred per signal is obtainedfrom the differ-

ence of Alice and Bob’s mutual information and Eve’s information

rk = IAB− IE . (8.35)
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Figure 8.2: Plot of the bit rates for the direct communication protocol when Eve is
restricted to a tomographic attack (in red) and the tomographic six-states protocol
(in blue) as a function of the bit error rate.

This quantity would be called the key rate if we used the protocol to distribute

random keys instead of sending a message. We compare this with the key rate for

the fully tomographic six-state protocol in figure 8.2. The key rate for the six-state

protocol becomes zero when the error rate is greater thanQ = 0.126193 [13, 34].

The tomographic version of the direct communication protocol has a higher key

rate for all values of bit error below the security threshold.
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Chapter 9

Imposing symmetry constraints

The optimisation problem as stated at the end of chapter 6 as it stands is quite

intractable analytically. There are 256 variables with 64 constraints, of which

only 49 are independent. The function to be optimised, the Holevo quantity, is

nonlinear and we have to optimise this subject to the positivity constraints on

Eve’s reduced state. With the 49 constraints, we have 207 free parameters to

optimise.

To make the problem tractable, we impose some additional constraints on

Eve’s records. These constraints were partly motivated by anumerical search

on the optimisation problem. For example, we shall insist that Eve uses the same

strategy to discriminate against the plus parity states as she does against the minus

parity states.

After imposing these additional constraints, we can reduceEve’s free parame-

ters to just four. At this point we can use standard variational methods to optimise

the remaining parameters to obtain Eve’s maximum information.
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In sections 9.1 and 9.2 of this chapter we impose a parity symmetry and nu-

meral symmetry on Eve’s attacks. After imposing these symmetry constraints, we

diagonalise Eve’s reduced state in section 9.3. The optimisation for Eve’s infor-

mation will be carried out in section 9.4. Finally in section9.5, we calculate Eve’s

information and from there find the efficiency of the protocol.

9.1 Parity symmetry

We want Eve’s different inputs to be unitarily equivalent ifwe swap the parity and

that the unitary operator does not depend on the numeral type. That is we insist

that

ρE
a+,b+ = U†

PρE
a−,b−UP (9.1)

for some unitary operatorUP that does not depend ona andb. This constraint is

motivated by the fact that the plus and minus basis play equalroles. They are on

equal footing and we do not expect Eve to gain by treating one basis differently

from the second. From equation (6.30), this constraint requires that the elements

for Eve’s square root matrixX must satisfy the relation

X
(
PT

a+⊗QT
b+

)
X † =U†

PX
(
PT

a−⊗QT
b−
)
X †UP (9.2)

whereUP is the matrix representation forUP with matrix elements

(UP)J,J′ = 〈FJ|UP |FJ′〉 . (9.3)



97

The plus and the minus parity states are related by the unitary transformation

VP =
4

∑
a,b=1

|a−〉〈a+|⊗ |b−〉〈b+| (9.4)

with matrix elements

(VP)J,J′ = 〈ABJ|VP |ABJ′〉 . (9.5)

By construction

VP(Pa+⊗Qb+)V†
P = Pa−⊗Qb− (9.6)

and its equivalent matrix relation

VP(Pa+⊗Qb+)V †
P = Pa−⊗Qb− . (9.7)

Finally, substituting

PT
a−⊗Q T

b− = V ∗ (PT
a+⊗Q T

b+

)
V T (9.8)

into equation (9.2), we arrive at the relation

X
(
PT

a+⊗Q T
b+

)
X † =

(

U†
PXV

∗
P

)(
PT

a+⊗Q T
b+

)(

V T
P X

†UP

)

(9.9)
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which will be satisfied if we impose the condition thatX commutes withV ∗
P and

setUP = V ∗
P :

X = V T
P XV

∗
P . (9.10)

This imposes an additional 104 independent constraints to our equations. This

reduces the number of free parameters from 207 down to 103.

9.2 Numeral symmetry

To further reduce the number of free parameters we impose another symmetry re-

quirement on Eve’s input. We require that if Alice and Bob re-label their numeral

labels cyclically, Eve’s record states should remain unitarily equivalent. In fact

we insist on a stronger condition that when we permute one index to the next in

the cyclic permutation, the unitary transformation for Eve’s record states does not

depend on the index.

Repeating the analysis done for the parity symmetry, we impose the condition

that

X = V T
N1XV

∗
N1 (9.11)

where

(VN1)J,J′ = 〈ABJ|VN1 |ABJ′〉 (9.12)
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and

VN1 =(|1+〉〈2+|− |2+〉〈3+|+ |3+〉〈4+|+ |4+〉〈1+|)A

⊗ (|1+〉〈2+|− |2+〉〈3+|+ |3+〉〈4+|+ |4+〉〈1+|)B

(9.13)

which permutes the numeral indices from 1→ 2→ 3→ 4→ 1. This gives another

78 more independent equations, bringing the number of free parameters to 25.

We impose a last symmetry for Eve’s records

VN2 =(|1+〉〈3+|+ |3+〉〈2+|− |2+〉〈4+|+ |4+〉〈1+|)A

⊗ (|1+〉〈3+|+ |3+〉〈2+|− |2+〉〈4+|+ |4+〉〈1+|)B

(9.14)

which permutes the numeral indices from 1→ 3→ 2→ 4→ 1. This gives another

21 more independent equations, bringing the number of free parameters to four.

Labelling the remaining parameters asx1,x2,x3,x4,x5 we have five parameters

to optimise with one constraint on the sum

x1 +x2 +2x3 +2x4 =
1− ε

4
. (9.15)
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These parameters correspond to the entries in the matrixX †X . With these con-

straints, the matrixX †X takes the form

〈
EI
∣
∣EJ
〉

= (X †X )I ,J =








































a · · · · x1 x3 x3 · x3 x1 x3 · x3 x3 x1

· b · · x2 · x4 x4 x4 · x3 x5 x4 · x5 x3

· · b · x4 x3 · x5 x2 x4 · x4 x4 x5 · x3

· · · b x4 x3 x5 · x4 x5 x3 · x2 x4 x4 ·
· x2 x4 x4 b · · · · x4 x3 x5 · x4 x5 x3

x1 · x3 x3 · a · · x3 · x1 x3 x3 · x3 x1

x3 x4 · x5 · · b · x4 x2 · x4 x5 x4 · x3

x3 x4 x5 · · · · b x5 x4 x3 · x4 x2 x4 ·
· x4 x2 x4 · x3 x4 x5 b · · · · x5 x4 x3

x3 · x4 x5 x4 · x2 x4 · b · · x5 · x4 x3

x1 x3 · x3 x3 x1 · x3 · · a · x3 x3 · x1

x3 x5 x4 · x5 x3 x4 · · · · b x4 x4 x2 ·
· x4 x4 x2 · x3 x5 x4 · x5 x3 x4 b · · ·

x3 · x5 x4 x4 · x4 x2 x5 · x3 x4 · b · ·
x3 x5 · x4 x5 x3 · x4 x4 x4 · x2 · · b ·
x1 x3 x3 · x3 x1 x3 · x3 x3 x1 · · · · a









































I ,J

wherex denotes the negative ofx and the dots are zeros. The magnitudesa= (4−

3ε)/16 andb = ε/16. The negative signs in one of the terms in equations (9.13)

and (9.14) were inserted so that this matrix is similar to theone we obtained in

section 8.2 for the intercept and resend attack.
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9.3 Diagonalising Eve’s attack

After imposing the symmetry constraints, we are left with a manageable problem.

The 16 by 16 matrixX †X can be diagonalised which will also give the Schmidt

decomposition of Eve’s pure state between Alice–Bob and Eve.These eigenvec-

tors are given in appendix C.

From this we can also get the eigenvalues of the matrix representing Eve’s

total stateXX †. The eigenvalues are

µ1 =
1
16

(16−15ε−48x2−96x3−96x4) ,

µ2,3,4 =
1
16

(ε+16x2−32x4) ,

µ5,6,7 =
1
16

(ε+16x2−32x3 +32x4) ,

µ8,9,10 =
1
16

(ε+16x2 +64x3 +32x4) ,

µ11,12,13 =
1
16

(ε−16x2−32x5) ,

µ14 =
1
16

(ε−16x2 +64x4 +32x5) ,

µ15,16 =
1
16

(ε−16x2−32x4 +32x5) .

(9.16)

The parametersx2, x3, x4 andx5 must be chosen such that these eigenvalues are

positive.

9.4 Optimisation problem

To compute the Holevo quantity, we need to find the eigenvalues ofρE
a± andρE

a =

1
2ρE

a+ + 1
2ρE

a−. Our assumptions on Eve’s records ensure that her reduced states

ρE
a± have the same set of eigenvalues for alla∈ {1,2,3,4}. The eigenvalues turn
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out to be

{
4−3ε

4
,

ε
4

(deg 3)

}

(9.17)

which depends onε only. Also the combined stateρE
a has eigenvalues

λ1 =
1
8

(ε−16x2 +32x4) ,

λ2 =
1
8

(ε+16x2−32x4) ,

λ3,4 =
1
8

(ε−16x3 +16x4−16x5) ,

λ5,6 =
1
8

(ε+16x3−16x4 +16x5) ,

λ7 =
1
8

(ε+16x2 +64x3 +32x4) ,

λ8 =
1
8

(8−7ε−16x2−64x3−32x4)

(9.18)

for all a∈ {1,2,3,4}. Hence to maximise the Holevo quantity, we need to max-

imise the entropy ofρE
a ,

S
(
ρE

a

)
= −∑

i
λi logλi , (9.19)
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whereλi are the non zero eigenvalues ofρE
a . There are four parameters to opti-

mise:x2,x3,x4 andx5. The entropy will be extremised when

∂S
∂x j

= 0 , (9.20)

−
8

∑
i=1

(

λi
1
λi

∂λi

∂x j
+

∂λi

∂x j
logλi

)

= 0 , (9.21)

−
8

∑
i=1

(

∂λi

∂x j
+ logλ

∂λi
∂xj
i

)

= 0 , (9.22)

8

∏
i=1

(

λ
∂λi
∂xj
i

)

= 1 (9.23)

where the first term in the third equality above vanishes because the sum of the

eigenvalues∑λi = 1.

At this point, we want to find solutions to these equations forwhich Eve’s total

state remains positive. It turns out that there are two families of solutions. The

first is when the noise levelε is greater than or equal to 2/3 and as we shall see

in the next sub-section, these solutions will give Eve full information. The second

family is whenε is less than 2/3. For these solutions, Eve will no longer be able

to gain full information.

9.4.1 A lot of noise:ε ≥ 2/3

We start with the case when the noise levelε is greater than or equal to 2/3. Taking

the derivative of the entropy with respect tox2, the first condition for extremising

the entropy is

∂S
∂x2

= 0 (9.24)
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which gives

[
1
8

(ε+16x2−32x4)

]16

×
[

1
8

(ε+16x2 +64x3 +32x4)

]16

×
[

1
8

(ε−16x2 +32x4)

]−16

×
[

1
8

(8−7ε−16x2−64x3−32x4)

]−16

= 1

(9.25)

provided that non of the eigenvalues are zero. This simplifies to

(ε+16x2−32x4)× (ε+16x2 +64x3 +32x4)

× (ε−16x2 +32x4)
−1× (8−7ε−16x2−64x3−32x4)

−1 = 1 .

(9.26)

The other three conditions are

∂S
∂x3

= 0 (9.27)

which gives

(ε+16x3−16x4 +16x5)× (ε+16x2 +64x3 +32x4)
2

× (ε−16x3 +16x4−16x5)
−1× (8−7ε−16x2−64x3−32x4)

−2 = 1
(9.28)

and

∂S
∂x4

= 0 (9.29)
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which gives

(ε−16x2 +32x4)× (ε−16x3 +16x4−16x5)

× (ε+16x2 +64x3 +32x4)× (ε+16x2−32x4)
−1

× (ε+16x3−16x4 +16x5)
−1× (8−7ε−16x2−64x3−32x4)

−1 = 1

(9.30)

and

∂S
∂x5

= 0 (9.31)

=⇒ x5× (x4−x3)
−1 = 1 . (9.32)

The solutions to these four equations, parametrised by a parameterα are

x2 = 2α ,

x3 =
1
16

(1− ε−16α) ,

x4 = α ,

x5 =
1
16

[32α− (1− ε)] .

(9.33)

The choice ofα must satisfy the requirement that Eve’s total stateXX † has pos-

itive eigenvalues. Substituting this solution into the eigenvalues, the eigenvalues
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as a function ofε andα are

µ1 =
1
16

(10−9ε−96α) ,

µ2,3,4 =
1
16

ε ,

µ5,6,7 =
1
16

(3ε−2+96α) ,

µ8,9,10 =
1
16

(4−3ε) ,

µ11,12,13 =
1
16

(2− ε−96α) ,

µ14 = µ5 ,

µ15,16 =
1
16

(3ε−2) .

(9.34)

These eigenvalues are always positive provided

ε >
2
3

and
3ε−2

96
≤ α ≤ 2− ε

96
. (9.35)

For every one of the solution, Eve’s total stateρE
a has eigenvalues

{

λ1,2,3,4,5,6 =
ε
8

and λ7,8 =
4−3ε

8

}

(9.36)

that does not depend onα and gives Eve full information. The class of intercept

and resend attacks in section 8.2 is a special case of the solution whenα = (1−

ε)/32.

9.4.2 Not so much noise:ε < 2/3

Whenε < 2/3, the solutions in the previous sub-section are no longer admissible

as they will make Eve’s total state negative. The first two eigenvalues ofXX † to
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become negative are the eigenvalues

µ15,16 =
1
16

(ε−16x2−32x4 +32x5) . (9.37)

Setting these to zero, we can writex5 in terms of the remaining parameters

x5 = x4 +
1
2

x2−
1
32

ε . (9.38)

The combined stateρE
a now has eigenvalues

λ1 =
1
8

(ε−16x2 +32x4) ,

λ2 =
1
8

(ε+16x2−32x4) ,

λ3,4 =
1
16

(3ε−16x2−32x3) ,

λ5,6 =
1
16

(ε+16x2 +32x3) ,

λ7 =
1
8

(ε+16x2 +64x3 +32x4) ,

λ8 =
1
8

(8−7ε−16x2−64x3−32x4) .

(9.39)

Doing as we did before, the three conditions∂S
∂x2

= ∂S
∂x3

= ∂S
∂x4

= 0 give three equa-

tions. The first equation

∂S
∂x2

= 0 (9.40)
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leads to

(ε+16x2−32x4)× (ε+16x2 +32x3)

× (ε+16x2 +64x3 +32x4) × (ε−16x2 +32x4)
−1

× (3ε−16x2−32x3)
−1× (8−7ε−16x2−64x3−32x4)

−1 = 1 .

(9.41)

The second equation

∂S
∂x3

= 0 (9.42)

gives

(ε+16x2 +32x3)× (ε+16x2 +64x3 +32x4)
2

× (3ε−16x2−32x3)
−1× (8−7ε−16x2−64x3−32x4)

−2 = 1 .

(9.43)

From the final equation

∂S
∂x4

= 0 , (9.44)

we get

(ε−16x2 +32x4)× (ε+16x2 +64x3 +32x4)

× (ε+16x2−32x4)
−1× (8−7ε−16x2−64x3−32x4)

−1 = 1 .

(9.45)

Equation (9.45) follows from equations (9.41) and (9.43). The solutions to these

equations can be found by solving a cubic equation. From equation (9.45), we can
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write x3 as

x3 =
1

16ε

[

ε(1− ε)+16x2(1− ε)−16x4(2− ε)
]

. (9.46)

Substituting this into equation (9.43), we obtain a cubic equation inx2 with coef-

ficients involvingx4 andε

[

4096(2− ε)
]

+x2

[

−256
(

ε(−2+3ε)−96(−2+ ε)x4

)]

+16x2
2

[

(ε2(2+3ε)+64ε(−2+3ε)x4−3072(−2+ ε)x2
4

]

+x3
2

[

(2−3ε)ε3−32ε2(2+3ε)x4

−1024ε(−2+3ε)x2
4 +32768(−2+ ε)x3

4

]

= 0 .

(9.47)

The solution to this equation can be written as

x2 = g2(ε)+2α ,

x3 = g3(ε)−α ,

x4 = α

(9.48)

which is parametrised byα and whereg2 andg3 are functions ofε only. The func-

tion g2 is obtained by solving for the roots the cubic equation above. Explicitly,

g2 =
8ε2 +24ε3−18ε4−2εw+3ε2w−w2

48(2− ε)w
,

g3 =
1
16

(1− ε)+g2
(1− ε)

ε

(9.49)
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and

w = 2
1
3

[

2ε3(2−3ε)2(5−3ε)

+3ε3(2− ε)
√

6(2− ε)(4−18ε+54ε2−27ε3)
] 1

3
.

(9.50)

From these solutions we obtain the eigenvalues of Eve’s total stateρE
a , all of which

do not depend onα:

λ1 =
1
8

(ε−16g2) ,

λ2 =
1
8

(ε+16g2) ,

λ3,4 =
1
16

(3ε−16g2−32g3) ,

λ5,6 =
1
16

(ε+16g2 +32g3) ,

λ7 =
1
8

(ε+16g2 +64g3) ,

λ8 =
1
8

(8−7ε−16g2−64g3) .

(9.51)

We plot the eigenvalues as a function ofε in figure 9.1.

From the eigenvalues we can calculate the bound on the mutualinformation

between Eve and Alice. Any value ofα for whichXX † is positive is admissible
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Figure 9.1: Plot of the eigenvalues of Eve’s conditional state ρE
a as a function of

the noise level.

and gives the same information. The eigenvalues ofXX † are

µ1 =
1
16

(16−15ε−48g2−96g3−96α) ,

µ2,3,4 =
1
16

(ε+16g2) ,

µ5,6,7 =
1
16

(ε+16g2−32g3 +96α) ,

µ8,9,10 =
1
16

(ε+16g2 +64g3) ,

µ11,12,13 =
1
16

(2ε−32g2−96α) ,

µ14 = 6α ,

µ15,16 = 0 .

(9.52)

The eigenvaluesµ2,3,4, µ8,9,10 andµ15,16 do not depend onα and they are non-

negative for all values of 0≤ ε ≤ 2/3. The remaining eigenvalues are positive as
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Figure 9.2: Plot showing the admissible region of the parameter α for which the
eigenvalues of Eve’s total stateXX † is positive.

long as

32g3−16g2− ε
96

≤ α ≤ 2ε−32g2

96
(9.53)

for which a solution always exists. This range is plotted in figure 9.2.

9.5 Eve’s information and protocol efficiency

At this point we have all the ingredients needed to calculatethe Holevo quantity

χ = S
(
ρE

a

)
− 1

2
S
(
ρE

a+

)
− 1

2
S
(
ρE

a−
)

(9.54)

which is an achievable bound on Eve’s information. This is plotted in figure 9.3

together with the mutual information between Alice and Bob that we had in sec-

tion 4.4. From the intersection of the two curves, we find thatthe noise threshold
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Figure 9.3: Plot of Eve’s information (in red) and the mutualinformation between
Alice and Bob (in blue) as a function of the unbiased noise level ε for Eve’s opti-
mal attack. The two curves intersect atε0 = 0.154969.

for secure communication isε0 = 0.154969 which corresponds to an error rate of

Q = 0.0774845.

The maximum information transferred per signal is obtainedfrom the differ-

ence of Alice and Bob’s mutual information and Eve’s information

rk = IAB− IE . (9.55)

We compare this quantity with the key rate from the BB84 protocol in figure 9.4.

The key rate for the BB84 protocol becomes zero when the error rate is greater

thanQ= 0.110028 [13,51]. The BB84 protocol has a higher key rate compared to

the direct communication protocol for all values of error rate below its threshold.
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Chapter 10

Conclusion and outlook

In the first part of the thesis, we found some plausible upper bounds on Eve’s in-

formation. To derive these bounds, we had to impose some symmetry constraints

to reduce the number of free parameters for Eve’s attack.

Without imposing the symmetry constraints, a numerical search was carried

out to determine the optimal solution using Monte-Carlo methods. The only con-

straints imposed on Eve’s attack was that the joint probability table between Alice

and Bob should be consistent with an unbiased noise channel. No solutions were

found that were better than the known solution. But this does not say much since

the dimension of the search space is exceedingly large.

At this point, we can ask the following question: Is it possible to restrict Eve’s

attack if we allow Alice and Bob to perform some random processing on their

qubits before measuring them? The method of introducing random processing on

the data to achieve an upper bound on Eve’s information was first presented by

Kraus, Gisin and Renner in [29]. In appendix D, we show that if we allow Alice

and Bob were to perform some random operations on their qubits, to get an upper
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bound on Eve’s information, the state of Eve’s ancilla can beparametrised by only

nine parameters. The checks that Alice and Bob do on their measurement statistics

would put further constraints on this state. By doing this random processing, the

number of parameters for Eve in her attack can be naturally reduced.

In this thesis we have not discussed the error correction andprivacy amplifica-

tion parts of the protocol. These would come after knowing how much informa-

tion Eve can obtain. If we use this protocol for key distribution, these procedures

are well known and can be easily adapted to the needs of this protocol.

However to use the protocol for direct communication, things are not so sim-

ple. If the message itself is being transmitted, then Eve could possibly intercept

the message and gain partial knowledge of its contents. It istoo late to perform an

analogue of a ‘privacy amplification’ procedure as in a key distribution protocol.

It would be interesting to see if Alice can still transmit a deterministic and

secret message to Bob. One way to achieve this is to have Alice suitably encrypt

her message such that Bob would be able to decipher perfectly but Eve would

not be able to obtain any information. How much encryption Alice needs to per-

form would depend on the amount of information Eve has on the raw data. By

encrypt, we mean that Alice pre-processes her message usinga publicly known

error correcting and privacy amplification scheme prior to sending it to Bob.

The complete details for such pre-processing would need more study. But

roughly speaking, Alice will encode the raw bits that she sends with redundancies

by reversing Bob’s decoding process. For example, to send themessagex, Al-

ice will first need to find a longer messagey such thathm(y) = x, wherehm is a

randomly chosen hashing function from a suitable universalclass of hashing func-

tions. This encoding is the analogue of the privacy amplification step in quantum
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key distribution. It is to ensure that even if Eve has some partial knowledge ony,

she cannot learn anything about the actual messagex. Of course the problem with

this is that by definition a universal hashing function does not have an inverse. It

is hard to findy givenx.

Instead, say Alice creates the stringy. With this, she can deterministically

and securely send the messagex = hm(y) to Bob. In other words, Alice will

know what the message will be before she decides to transmit it. But she cannot

deterministically choose her message.

Before Bob can applyhm to learn about the actual messagex, he needs to have

the error-free stringy. To ensure Bob can get the error-free string, Alice has to do

one more step of encoding using error correcting codes. She would need to find

the messagez such thatg(z) = g(z′) = y, wherez′ is the message that Bob receives

which is corrupted by the expected amount of error in the transmission andg is the

error correcting protocol. Alice will then perform one way communication. She

sends some classical bits to Bob so that Bob can correct all his errors. How much

classical information Alice needs to send will depend on themutual information

between Alice and Bob. After Bob has an error-free stringy, Alice will then reveal

the actual functionhm so that Bob can get the actual messagex.

The reason that the encrypting process can be done prior to Alice sending her

signal is because of the fact that the protocol is deterministic. Hence Alice knows

that the final result of Bob’s successful decoding is just her original message. In

a conventional quantum key distribution protocol, it wouldnot be possible (nor

would it be necessary) for Alice to do such encryption prior to sending her signals

because of the random nature of Bob’s raw bits and also the finalkey.
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We remark that since some amount of post-processing needs tobe performed

between Alice and Bob, the protocol is not really a direct communication protocol

in the strictest sense. Alice still needs to send classical bits to Bob in order for

Bob to recover her message. It can then be said that since Alicestill needs to send

classical bits to Bob anyway, then there is not much advantageof this protocol

over a key distribution protocol.

A major concern for the protocol that we have briefly mentioned in the in-

troduction is its performance in the presence of channel loss. In most discrete

variable quantum key distribution protocols, lost qubits (or qudits) do not con-

tribute to the error rate because such events are simply rejected. But in a direct

communication protocol, a lost signal means that some information on the mes-

sage itself is lost. Therefore the lost signals have to be accounted as errors when

characterising the channel. For such events, Bob would randomly choose a bit ‘0’

or ‘1’ to fill in his empty slots. If the error rate is not too large, then the post-

processing procedures will be able to correct for these errors. To minimise Eve’s

information, Alice should not reveal her numeral type for lost events. However

if the channel loss is too high, this will lead to a high noise level. If the noise

level is beyond what the protocol can tolerate, then it will have to be aborted and

Alice and Bob have to restart. Each time they restart the protocol, Alice will have

to start from the beginning. She cannot make use of the signals that Bob had re-

ceived in their previous attempts. That is, she has to make new basis choices and

a new choice of hashing function to encrypt her entire message. This is to ensure

that any information that Eve had gained from the failed communication attempts

cannot be used to eavesdrop on the current attempt.
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Including the effects of loss, the joint state between Aliceand Bob would be

ρAB = [|Ψ〉AB〈Ψ|AB(1− ε)+ ε]η+(1−η) (10.1)

= |Ψ〉AB〈Ψ|AB(1− ε)η+ εη+(1−η) , (10.2)

whereη is the channel transmission. The effective noise parameterwould be

ε′ = εη + (1−η). We need this quantity to be less than the noise threshold of

0.155.

In the thesis, we investigated how much information Eve could potentially

gain if she were to attack Alice. We can also repeat the analysis to see how

much information she can gain if she attacks Bob instead. When Eve chooses

to attack Bob, her input states are given at the end of section 5.3.3. But we do

not expect Eve to learn more information from Bob then she can from Alice.

This is because Alice publicly reveals her numeral type whilst Bob does not have

to reveal anything. If this expectation is true, then the protocol will be more

efficient if Alice and Bob were to do a direct communication version of reverse

reconciliation.

Extension of the protocol to finite bit lengths also remains to be done. Typi-

cally the message that Alice wants to send would be of a relatively short length.

The amount of data that is needed to characterise the channelup to some confi-

dence may end up to be longer than the actual message itself. This question still

needs to be addressed.

An experimental setup for the protocol was proposed in section 3.3. This uses

two degrees of freedom of a single photon to encode a qubit-pair and the setup is

relatively simple to implement. However the sensitivity ofthe protocol to losses
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means that the detector efficiency is a critical factor for experiments. Detector

efficiency refers to the fraction of photons registered to the number of photons

impinging on the detector. To establish a secure key, the detection efficiency has

to be at leastη = 0.845. Avalanche photo diodes are the most commonly used

detectors in quantum key distribution protocols. Good thick junction silicon single

photon avalanche photo diodes have peak efficiency of around0.7 near 800 nm,

falling to 0.03 at 1064 nm [11,14]. Using superconducting transition edge sensors,

better detection efficiencies of up to 0.95 at 1556 nm was achieved by Lita in

2008 [33, 44]. However, these detectors have slower count rates and need to be

cooled to temperatures less than 100 mK.

Based on the above discussions, we can conclude that the direct communica-

tion protocol can already be implemented as a proof-of-principle type of experi-

ment. However to be seriously considered as an alternative to key distribution pro-

tocols, we would need to wait for technological developments that lead to faster

and more efficient photon detectors.
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Appendix A

Equivalence of Alice-prepares and

Alice-measures protocols

In the original protocol, Alice prepares a stateρB and forwards this through a

quantum channelE to Bob. The resulting state that Bob gets will beρ̃B =E (ρB).

In this appendix, we provide an explicit construction of this channel in terms

of a pure state shared between Alice–Bob and Eve. Every input state to the chan-

nel would correspond to a POVM outcome for Alice. The output of the channel

corresponds to the reduced state for Bob.

We describe the channelE as a unitary transformationUBE acting on the input

stateρB and an ancillary state|e1〉. The output stateE (ρB) is obtained by tracing

out the ancillary subsystem at the end of the unitary evolution

ρB → ρ̃B ≡ E (ρB) = TrE

{

UBE (ρB⊗|e1〉〈e1|)U†
BE

}

. (A.1)
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The maximum dimension of the ancillary state|e1〉 needed to specify an arbitrary

channel isd2, whered is the dimension of Hilbert space of the input states [39].

We can also write this in the Kraus representation

ρB → ρ̃B = ∑
k

〈ek|UBE |e1〉
︸ ︷︷ ︸

F(B)
k

ρB〈e1|U†
BE |ek〉

︸ ︷︷ ︸

F(B)†
k

(A.2)

= ∑
k

F(B)
k ρBF(B)†

k (A.3)

where the vectors|ek〉 extends|e1〉 to an orthonormal basis. The operatorsF(B)
k

are the Kraus operators satisfying

∑
k

F(B)†
k F(B)

k = 1(B) (A.4)

which is a condition on the preservation of the trace of the output states. This

representation is equivalent to specifying the action of the channel on a set ofd2

linearly independent state vectors (for example the SIC-POVM [41]).

The choice of basis vectors for Eve|ek〉 for k ∈ {1,2, . . . ,d2} are arbitrary.

We also specify an arbitrary set ofd orthonormal basis vectors for Alice|an〉 and

an arbitrary set for Bob|bm〉 for {n,m} ∈ {1,2, . . . ,d}. In this basis, the Kraus

operators have matrix elements

〈bn|F(B)
k |bm〉 = 〈bn,ek|UBE |bm,e1〉 . (A.5)
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The matrix elements for the output state become

〈bn| ρ̃B |bm〉 = ∑
k

∑
m′,n′

〈bn,ek|UBE |bm′ ,e1〉〈bm′ |ρB |bn′〉〈bn′ ,e1|U†
BE |bm,ek〉 .

(A.6)

The correspondence between the state that Alice prepares inthe original pro-

tocol and the POVM outcome she projects onto is obtained via the pure maximally

entangled state between Alice and Bob

|Ψtrue〉 = ∑
n
|an,bn〉

1√
d

. (A.7)

To prepare a stateρB, Alice projects onto the POVM outcomeπA such that

ρB = TrA{(πA⊗1B) |Ψtrue〉〈Ψtrue|} (A.8)

=
1
d ∑

n,m
〈am|πA |an〉 |bn〉〈bm| (A.9)

or in terms of the matrix elements

〈bn|ρB |bm〉 =
1
d
〈am|πA |an〉 . (A.10)

At this point, we want to find the states
∣
∣Ei, j

〉
that correspond to a channelE ,

such that for everyρB, the outputδB

δB ≡ TrA{(πA⊗1BE) |Ψ〉〈Ψ|} = E (ρB) (A.11)
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is the same as the output ofE , where

|Ψ〉 = ∑
n,m

|an,bm〉 |En,m〉 (A.12)

and

πa = d∑
n,m

|am〉〈bn|ρB |bm〉〈an| . (A.13)

The output stateδB is

δB = TrA{(πA⊗1BE) |Ψ〉〈Ψ|} (A.14)

= ∑
n,n′

m,m′

〈an′ |πA |an〉
〈
En′,m′

∣
∣En,m

〉
|bm〉〈bm′ | (A.15)

= d ∑
n,n′

m,m′

〈bn|ρB |an′〉
〈
En′,m′

∣
∣En,m

〉
|bm〉〈bm′ | (A.16)

which have matrix elements

〈bm|δB |bm′〉 = d ∑
n,n′

〈bn|ρB |an′〉
〈
En′,m′

∣
∣En,m

〉
(A.17)

= d∑
k

∑
n,n′

〈bn|ρB |an′〉
〈
En′,m′

∣
∣ek
〉〈

ek
∣
∣En,m

〉
(A.18)

= ∑
k

∑
n,n′

√
d
〈
ek
∣
∣En,m

〉
〈bn|ρB |an′〉

〈
En′,m′

∣
∣ek
〉√

d . (A.19)
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Comparing this with the matrix elements of the output of the channel described

by UBE in (A.6), we see that by choosing

√
d
〈
ek
∣
∣En,m

〉
= 〈bm,ek|UBE |bn,e1〉 (A.20)

=⇒ |En,m〉 =
1√
d

∑
k

|ek〉〈bm,ek|UBE |bn,e1〉 (A.21)

we get the two outputs to be the same:δB = ρ̃B.
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Appendix B

The constraints

This appendix lists out the 64 constraints on the inner products between Eve’s

probe states after choosing the basis as in chapter 7. Of these 64 constraints, only

49 of them are independent.
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B.1 Short constraints

The 16 short constraints are obtained when both Alice and Bob measure in the

plus basis. They are

〈
E1,1

∣
∣E1,1

〉
=

4−3ε
16

,

〈
E1,2

∣
∣E1,2

〉
=

ε
16

,

〈
E1,3

∣
∣E1,3

〉
=

ε
16

,

〈
E1,4

∣
∣E1,4

〉
=

ε
16

,

〈
E2,1

∣
∣E2,1

〉
=

ε
16

,

〈
E2,2

∣
∣E2,2

〉
=

4−3ε
16

,

〈
E2,3

∣
∣E2,3

〉
=

ε
16

,

〈
E2,4

∣
∣E2,4

〉
=

ε
16

,

〈
E3,1

∣
∣E3,1

〉
=

ε
16

,

〈
E3,2

∣
∣E3,2

〉
=

ε
16

,

〈
E3,3

∣
∣E3,3

〉
=

4−3ε
16

,

〈
E3,4

∣
∣E3,4

〉
=

ε
16

,

〈
E4,1

∣
∣E4,1

〉
=

ε
16

,

〈
E4,2

∣
∣E4,2

〉
=

ε
16

,

〈
E4,3

∣
∣E4,3

〉
=

ε
16

,

〈
E4,4

∣
∣E4,4

〉
=

4−3ε
16

.
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B.2 Medium constraints

There are 32 medium constraints. Sixteen of them are from thecases when Alice

measures in the plus basis while Bob measures in the minus basis. These are

Re
〈
E1,2

∣
∣E1,3

〉
+Re

〈
E1,2

∣
∣E1,4

〉
+Re

〈
E1,3

∣
∣E1,4

〉
= 0 ,

Re
〈
E1,1

∣
∣E1,3

〉
−Re

〈
E1,1

∣
∣E1,4

〉
+Re

〈
E1,3

∣
∣E1,4

〉
= 0 ,

Re
〈
E1,1

∣
∣E1,2

〉
−Re

〈
E1,1

∣
∣E1,4

〉
−Re

〈
E1,2

∣
∣E1,4

〉
= 0 ,

Re
〈
E1,1

∣
∣E1,2

〉
−Re

〈
E1,1

∣
∣E1,3

〉
+Re

〈
E1,2

∣
∣E1,3

〉
= 0 ,

Re
〈
E2,2

∣
∣E2,3

〉
+Re

〈
E2,2

∣
∣E2,4

〉
+Re

〈
E2,3

∣
∣E2,4

〉
= 0 ,

Re
〈
E2,1

∣
∣E2,3

〉
−Re

〈
E2,1

∣
∣E2,4

〉
+Re

〈
E2,3

∣
∣E2,4

〉
= 0 ,

Re
〈
E2,1

∣
∣E2,2

〉
−Re

〈
E2,1

∣
∣E2,4

〉
−Re

〈
E2,2

∣
∣E2,4

〉
= 0 ,

Re
〈
E2,1

∣
∣E2,2

〉
−Re

〈
E2,1

∣
∣E2,3

〉
+Re

〈
E2,2

∣
∣E2,3

〉
= 0 ,

Re
〈
E3,2

∣
∣E3,3

〉
+Re

〈
E3,2

∣
∣E3,4

〉
+Re

〈
E3,3

∣
∣E3,4

〉
= 0 ,

Re
〈
E3,1

∣
∣E3,3

〉
−Re

〈
E3,1

∣
∣E3,4

〉
+Re

〈
E3,3

∣
∣E3,4

〉
= 0 ,

Re
〈
E3,1

∣
∣E3,2

〉
−Re

〈
E3,1

∣
∣E3,4

〉
−Re

〈
E3,2

∣
∣E3,4

〉
= 0 ,

Re
〈
E3,1

∣
∣E3,2

〉
−Re

〈
E3,1

∣
∣E3,3

〉
+Re

〈
E3,2

∣
∣E3,3

〉
= 0 ,

Re
〈
E4,2

∣
∣E4,3

〉
+Re

〈
E4,2

∣
∣E4,4

〉
+Re

〈
E4,3

∣
∣E4,4

〉
= 0 ,

Re
〈
E4,1

∣
∣E4,3

〉
−Re

〈
E4,1

∣
∣E4,4

〉
+Re

〈
E4,3

∣
∣E4,4

〉
= 0 ,

Re
〈
E4,1

∣
∣E4,2

〉
−Re

〈
E4,1

∣
∣E4,4

〉
−Re

〈
E4,2

∣
∣E4,4

〉
= 0 ,

Re
〈
E4,1

∣
∣E4,2

〉
−Re

〈
E4,1

∣
∣E4,3

〉
+Re

〈
E4,2

∣
∣E4,3

〉
= 0 .

Note that not all of the above equations are independent. Forexample, every

fourth equation can be obtained from the previous three.
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The remaining 16 medium constraints are obtained from the cases when Alice

measures in the minus basis and Bob measures in the plus basis.These are

Re
〈
E2,1

∣
∣E3,1

〉
+Re

〈
E2,1

∣
∣E4,1

〉
+Re

〈
E3,1

∣
∣E4,1

〉
= 0 ,

Re
〈
E2,2

∣
∣E3,2

〉
+Re

〈
E2,2

∣
∣E4,2

〉
+Re

〈
E3,2

∣
∣E4,2

〉
= 0 ,

Re
〈
E2,3

∣
∣E3,3

〉
+Re

〈
E2,3

∣
∣E4,3

〉
+Re

〈
E3,3

∣
∣E4,3

〉
= 0 ,

Re
〈
E2,4

∣
∣E3,4

〉
+Re

〈
E2,4

∣
∣E4,4

〉
+Re

〈
E3,4

∣
∣E4,4

〉
= 0 ,

Re
〈
E1,1

∣
∣E3,1

〉
−Re

〈
E1,1

∣
∣E4,1

〉
+Re

〈
E3,1

∣
∣E4,1

〉
= 0 ,

Re
〈
E1,2

∣
∣E3,2

〉
−Re

〈
E1,2

∣
∣E4,2

〉
+Re

〈
E3,2

∣
∣E4,2

〉
= 0 ,

Re
〈
E1,3

∣
∣E3,3

〉
−Re

〈
E1,3

∣
∣E4,3

〉
+Re

〈
E3,3

∣
∣E4,3

〉
= 0 ,

Re
〈
E1,4

∣
∣E3,4

〉
−Re

〈
E1,4

∣
∣E4,4

〉
+Re

〈
E3,4

∣
∣E4,4

〉
= 0 ,

Re
〈
E1,1

∣
∣E2,1

〉
−Re

〈
E1,1

∣
∣E4,1

〉
−Re

〈
E2,1

∣
∣E4,1

〉
= 0 ,

Re
〈
E1,2

∣
∣E2,2

〉
−Re

〈
E1,2

∣
∣E4,2

〉
−Re

〈
E2,2

∣
∣E4,2

〉
= 0 ,

Re
〈
E1,3

∣
∣E2,3

〉
−Re

〈
E1,3

∣
∣E4,3

〉
−Re

〈
E2,3

∣
∣E4,3

〉
= 0 ,

Re
〈
E1,4

∣
∣E2,4

〉
−Re

〈
E1,4

∣
∣E4,4

〉
−Re

〈
E2,4

∣
∣E4,4

〉
= 0 ,

Re
〈
E1,1

∣
∣E2,1

〉
−Re

〈
E1,1

∣
∣E3,1

〉
+Re

〈
E2,1

∣
∣E3,1

〉
= 0 ,

Re
〈
E1,2

∣
∣E2,2

〉
−Re

〈
E1,2

∣
∣E3,2

〉
+Re

〈
E2,2

∣
∣E3,2

〉
= 0 ,

Re
〈
E1,3

∣
∣E2,3

〉
−Re

〈
E1,3

∣
∣E3,3

〉
+Re

〈
E2,3

∣
∣E3,3

〉
= 0 ,

Re
〈
E1,4

∣
∣E2,4

〉
−Re

〈
E1,4

∣
∣E3,4

〉
+Re

〈
E2,4

∣
∣E3,4

〉
= 0 .

The last four equations can be obtained from the first twelve.There are altogether

24 independent equations from the medium constraints.
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B.3 Long constraints

Finally the 16 long constraints are obtained when both Aliceand Bob measure in

the minus basis. These are

Re
〈
E2,2

∣
∣E3,3

〉
+Re

〈
E2,2

∣
∣E3,4

〉
+Re

〈
E2,2

∣
∣E4,3

〉
+Re

〈
E2,2

∣
∣E4,4

〉

+Re
〈
E2,3

∣
∣E3,2

〉
+Re

〈
E2,3

∣
∣E3,4

〉
+Re

〈
E2,3

∣
∣E4,2

〉
+Re

〈
E2,3

∣
∣E4,4

〉

+Re
〈
E2,4

∣
∣E3,2

〉
+Re

〈
E2,4

∣
∣E3,3

〉
+Re

〈
E2,4

∣
∣E4,2

〉
+Re

〈
E2,4

∣
∣E4,3

〉

+Re
〈
E3,2

∣
∣E4,3

〉
+Re

〈
E3,2

∣
∣E4,4

〉
+Re

〈
E3,3

∣
∣E4,2

〉
+Re

〈
E3,3

∣
∣E4,4

〉

+Re
〈
E3,4

∣
∣E4,2

〉
+Re

〈
E3,4

∣
∣E4,3

〉
=

3−3ε
4

,

Re
〈
E2,1

∣
∣E3,3

〉
−Re

〈
E2,1

∣
∣E3,4

〉
+Re

〈
E2,1

∣
∣E4,3

〉
−Re

〈
E2,1

∣
∣E4,4

〉

+Re
〈
E2,3

∣
∣E3,1

〉
+Re

〈
E2,3

∣
∣E3,4

〉
+Re

〈
E2,3

∣
∣E4,1

〉
+Re

〈
E2,3

∣
∣E4,4

〉

−Re
〈
E2,4

∣
∣E3,1

〉
+Re

〈
E2,4

∣
∣E3,3

〉
−Re

〈
E2,4

∣
∣E4,1

〉
+Re

〈
E2,4

∣
∣E4,3

〉

+Re
〈
E3,1

∣
∣E4,3

〉
−Re

〈
E3,1

∣
∣E4,4

〉
+Re

〈
E3,3

∣
∣E4,1

〉
+Re

〈
E3,3

∣
∣E4,4

〉

−Re
〈
E3,4

∣
∣E4,1

〉
+Re

〈
E3,4

∣
∣E4,3

〉
=

1− ε
4

,

−Re
〈
E2,1

∣
∣E3,2

〉
+Re

〈
E2,1

∣
∣E3,4

〉
−Re

〈
E2,1

∣
∣E4,2

〉
+Re

〈
E2,1

∣
∣E4,4

〉

−Re
〈
E2,2

∣
∣E3,1

〉
+Re

〈
E2,2

∣
∣E3,4

〉
−Re

〈
E2,2

∣
∣E4,1

〉
+Re

〈
E2,2

∣
∣E4,4

〉

+Re
〈
E2,4

∣
∣E3,1

〉
+Re

〈
E2,4

∣
∣E3,2

〉
+Re

〈
E2,4

∣
∣E4,1

〉
+Re

〈
E2,4

∣
∣E4,2

〉

−Re
〈
E3,1

∣
∣E4,2

〉
+Re

〈
E3,1

∣
∣E4,4

〉
−Re

〈
E3,2

∣
∣E4,1

〉
+Re

〈
E3,2

∣
∣E4,4

〉

+Re
〈
E3,4

∣
∣E4,1

〉
+Re

〈
E3,4

∣
∣E4,2

〉
=

1− ε
4

,

Re
〈
E2,1

∣
∣E3,2

〉
−Re

〈
E2,1

∣
∣E3,3

〉
+Re

〈
E2,1

∣
∣E4,2

〉
−Re

〈
E2,1

∣
∣E4,3

〉

+Re
〈
E2,2

∣
∣E3,1

〉
+Re

〈
E2,2

∣
∣E3,3

〉
+Re

〈
E2,2

∣
∣E4,1

〉
+Re

〈
E2,2

∣
∣E4,3

〉

−Re
〈
E2,3

∣
∣E3,1

〉
+Re

〈
E2,3

∣
∣E3,2

〉
−Re

〈
E2,3

∣
∣E4,1

〉
+Re

〈
E2,3

∣
∣E4,2

〉

+Re
〈
E3,1

∣
∣E4,2

〉
−Re

〈
E3,1

∣
∣E4,3

〉
+Re

〈
E3,2

∣
∣E4,1

〉
+Re

〈
E3,2

∣
∣E4,3

〉

−Re
〈
E3,3

∣
∣E4,1

〉
+Re

〈
E3,3

∣
∣E4,2

〉
=

1− ε
4

,
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Re
〈
E1,2

∣
∣E3,3

〉
+Re

〈
E1,2

∣
∣E3,4

〉
−Re

〈
E1,2

∣
∣E4,3

〉
−Re

〈
E1,2

∣
∣E4,4

〉

+Re
〈
E1,3

∣
∣E3,2

〉
+Re

〈
E1,3

∣
∣E3,4

〉
−Re

〈
E1,3

∣
∣E4,2

〉
−Re

〈
E1,3

∣
∣E4,4

〉

+Re
〈
E1,4

∣
∣E3,2

〉
+Re

〈
E1,4

∣
∣E3,3

〉
−Re

〈
E1,4

∣
∣E4,2

〉
−Re

〈
E1,4

∣
∣E4,3

〉

+Re
〈
E3,2

∣
∣E4,3

〉
+Re

〈
E3,2

∣
∣E4,4

〉
+Re

〈
E3,3

∣
∣E4,2

〉
+Re

〈
E3,3

∣
∣E4,4

〉

+Re
〈
E3,4

∣
∣E4,2

〉
+Re

〈
E3,4

∣
∣E4,3

〉
=

1− ε
4

,

Re
〈
E1,1

∣
∣E3,3

〉
−Re

〈
E1,1

∣
∣E3,4

〉
−Re

〈
E1,1

∣
∣E4,3

〉
+Re

〈
E1,1

∣
∣E4,4

〉

+Re
〈
E1,3

∣
∣E3,1

〉
+Re

〈
E1,3

∣
∣E3,4

〉
−Re

〈
E1,3

∣
∣E4,1

〉
−Re

〈
E1,3

∣
∣E4,4

〉

−Re
〈
E1,4

∣
∣E3,1

〉
+Re

〈
E1,4

∣
∣E3,3

〉
+Re

〈
E1,4

∣
∣E4,1

〉
−Re

〈
E1,4

∣
∣E4,3

〉

+Re
〈
E3,1

∣
∣E4,3

〉
−Re

〈
E3,1

∣
∣E4,4

〉
+Re

〈
E3,3

∣
∣E4,1

〉
+Re

〈
E3,3

∣
∣E4,4

〉

−Re
〈
E3,4

∣
∣E4,1

〉
+Re

〈
E3,4

∣
∣E4,3

〉
=

3−3ε
4

,

Re
〈
E1,1

∣
∣E3,2

〉
−Re

〈
E1,1

∣
∣E3,4

〉
−Re

〈
E1,1

∣
∣E4,2

〉
+Re

〈
E1,1

∣
∣E4,4

〉

+Re
〈
E1,2

∣
∣E3,1

〉
−Re

〈
E1,2

∣
∣E3,4

〉
−Re

〈
E1,2

∣
∣E4,1

〉
+Re

〈
E1,2

∣
∣E4,4

〉

−Re
〈
E1,4

∣
∣E3,1

〉
−Re

〈
E1,4

∣
∣E3,2

〉
+Re

〈
E1,4

∣
∣E4,1

〉
+Re

〈
E1,4

∣
∣E4,2

〉

+Re
〈
E3,1

∣
∣E4,2

〉
−Re

〈
E3,1

∣
∣E4,4

〉
+Re

〈
E3,2

∣
∣E4,1

〉
−Re

〈
E3,2

∣
∣E4,4

〉

−Re
〈
E3,4

∣
∣E4,1

〉
−Re

〈
E3,4

∣
∣E4,2

〉
=

1− ε
4

,

−Re
〈
E1,1

∣
∣E3,2

〉
+Re

〈
E1,1

∣
∣E3,3

〉
+Re

〈
E1,1

∣
∣E4,2

〉
−Re

〈
E1,1

∣
∣E4,3

〉

−Re
〈
E1,2

∣
∣E3,1

〉
−Re

〈
E1,2

∣
∣E3,3

〉
+Re

〈
E1,2

∣
∣E4,1

〉
+Re

〈
E1,2

∣
∣E4,3

〉

+Re
〈
E1,3

∣
∣E3,1

〉
−Re

〈
E1,3

∣
∣E3,2

〉
−Re

〈
E1,3

∣
∣E4,1

〉
+Re

〈
E1,3

∣
∣E4,2

〉

−Re
〈
E3,1

∣
∣E4,2

〉
+Re

〈
E3,1

∣
∣E4,3

〉
−Re

〈
E3,2

∣
∣E4,1

〉
−Re

〈
E3,2

∣
∣E4,3

〉

+Re
〈
E3,3

∣
∣E4,1

〉
−Re

〈
E3,3

∣
∣E4,2

〉
=

1− ε
4

,
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−Re
〈
E1,2

∣
∣E2,3

〉
−Re

〈
E1,2

∣
∣E2,4

〉
+Re

〈
E1,2

∣
∣E4,3

〉
+Re

〈
E1,2

∣
∣E4,4

〉

−Re
〈
E1,3

∣
∣E2,2

〉
−Re

〈
E1,3

∣
∣E2,4

〉
+Re

〈
E1,3

∣
∣E4,2

〉
+Re

〈
E1,3

∣
∣E4,4

〉

−Re
〈
E1,4

∣
∣E2,2

〉
−Re

〈
E1,4

∣
∣E2,3

〉
+Re

〈
E1,4

∣
∣E4,2

〉
+Re

〈
E1,4

∣
∣E4,3

〉

+Re
〈
E2,2

∣
∣E4,3

〉
+Re

〈
E2,2

∣
∣E4,4

〉
+Re

〈
E2,3

∣
∣E4,2

〉
+Re

〈
E2,3

∣
∣E4,4

〉

+Re
〈
E2,4

∣
∣E4,2

〉
+Re

〈
E2,4

∣
∣E4,3

〉
=

1− ε
4

,

Re
〈
E1,1

∣
∣E2,3

〉
−Re

〈
E1,1

∣
∣E2,4

〉
−Re

〈
E1,1

∣
∣E4,3

〉
+Re

〈
E1,1

∣
∣E4,4

〉

+Re
〈
E1,3

∣
∣E2,1

〉
+Re

〈
E1,3

∣
∣E2,4

〉
−Re

〈
E1,3

∣
∣E4,1

〉
−Re

〈
E1,3

∣
∣E4,4

〉

−Re
〈
E1,4

∣
∣E2,1

〉
+Re

〈
E1,4

∣
∣E2,3

〉
+Re

〈
E1,4

∣
∣E4,1

〉
−Re

〈
E1,4

∣
∣E4,3

〉

−Re
〈
E2,1

∣
∣E4,3

〉
+Re

〈
E2,1

∣
∣E4,4

〉
−Re

〈
E2,3

∣
∣E4,1

〉
−Re

〈
E2,3

∣
∣E4,4

〉

+Re
〈
E2,4

∣
∣E4,1

〉
−Re

〈
E2,4

∣
∣E4,3

〉
=

1− ε
4

,

Re
〈
E1,1

∣
∣E2,2

〉
−Re

〈
E1,1

∣
∣E2,4

〉
−Re

〈
E1,1

∣
∣E4,2

〉
+Re

〈
E1,1

∣
∣E4,4

〉

+Re
〈
E1,2

∣
∣E2,1

〉
−Re

〈
E1,2

∣
∣E2,4

〉
−Re

〈
E1,2

∣
∣E4,1

〉
+Re

〈
E1,2

∣
∣E4,4

〉

−Re
〈
E1,4

∣
∣E2,1

〉
−Re

〈
E1,4

∣
∣E2,2

〉
+Re

〈
E1,4

∣
∣E4,1

〉
+Re

〈
E1,4

∣
∣E4,2

〉

−Re
〈
E2,1

∣
∣E4,2

〉
+Re

〈
E2,1

∣
∣E4,4

〉
−Re

〈
E2,2

∣
∣E4,1

〉
+Re

〈
E2,2

∣
∣E4,4

〉

+Re
〈
E2,4

∣
∣E4,1

〉
+Re

〈
E2,4

∣
∣E4,2

〉
=

3−3ε
4

,

Re
〈
E1,1

∣
∣E2,2

〉
−Re

〈
E1,1

∣
∣E2,3

〉
−Re

〈
E1,1

∣
∣E4,2

〉
+Re

〈
E1,1

∣
∣E4,3

〉

+Re
〈
E1,2

∣
∣E2,1

〉
+Re

〈
E1,2

∣
∣E2,3

〉
−Re

〈
E1,2

∣
∣E4,1

〉
−Re

〈
E1,2

∣
∣E4,3

〉

−Re
〈
E1,3

∣
∣E2,1

〉
+Re

〈
E1,3

∣
∣E2,2

〉
+Re

〈
E1,3

∣
∣E4,1

〉
−Re

〈
E1,3

∣
∣E4,2

〉

−Re
〈
E2,1

∣
∣E4,2

〉
+Re

〈
E2,1

∣
∣E4,3

〉
−Re

〈
E2,2

∣
∣E4,1

〉
−Re

〈
E2,2

∣
∣E4,3

〉

+Re
〈
E2,3

∣
∣E4,1

〉
−Re

〈
E2,3

∣
∣E4,2

〉
=

1− ε
4

,
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Re
〈
E1,2

∣
∣E2,3

〉
+Re

〈
E1,2

∣
∣E2,4

〉
−Re

〈
E1,2

∣
∣E3,3

〉
−Re

〈
E1,2

∣
∣E3,4

〉

+Re
〈
E1,3

∣
∣E2,2

〉
+Re

〈
E1,3

∣
∣E2,4

〉
−Re

〈
E1,3

∣
∣E3,2

〉
−Re

〈
E1,3

∣
∣E3,4

〉

+Re
〈
E1,4

∣
∣E2,2

〉
+Re

〈
E1,4

∣
∣E2,3

〉
−Re

〈
E1,4

∣
∣E3,2

〉
−Re

〈
E1,4

∣
∣E3,3

〉

+Re
〈
E2,2

∣
∣E3,3

〉
+Re

〈
E2,2

∣
∣E3,4

〉
+Re

〈
E2,3

∣
∣E3,2

〉
+Re

〈
E2,3

∣
∣E3,4

〉

+Re
〈
E2,4

∣
∣E3,2

〉
+Re

〈
E2,4

∣
∣E3,3

〉
=

1− ε
4

,

−Re
〈
E1,1

∣
∣E2,3

〉
+Re

〈
E1,1

∣
∣E2,4

〉
+Re

〈
E1,1

∣
∣E3,3

〉
−Re

〈
E1,1

∣
∣E3,4

〉

−Re
〈
E1,3

∣
∣E2,1

〉
−Re

〈
E1,3

∣
∣E2,4

〉
+Re

〈
E1,3

∣
∣E3,1

〉
+Re

〈
E1,3

∣
∣E3,4

〉

+Re
〈
E1,4

∣
∣E2,1

〉
−Re

〈
E1,4

∣
∣E2,3

〉
−Re

〈
E1,4

∣
∣E3,1

〉
+Re

〈
E1,4

∣
∣E3,3

〉

−Re
〈
E2,1

∣
∣E3,3

〉
+Re

〈
E2,1

∣
∣E3,4

〉
−Re

〈
E2,3

∣
∣E3,1

〉
−Re

〈
E2,3

∣
∣E3,4

〉

+Re
〈
E2,4

∣
∣E3,1

〉
−Re

〈
E2,4

∣
∣E3,3

〉
=

1− ε
4

,

Re
〈
E1,1

∣
∣E2,2

〉
−Re

〈
E1,1

∣
∣E2,4

〉
−Re

〈
E1,1

∣
∣E3,2

〉
+Re

〈
E1,1

∣
∣E3,4

〉

+Re
〈
E1,2

∣
∣E2,1

〉
−Re

〈
E1,2

∣
∣E2,4

〉
−Re

〈
E1,2

∣
∣E3,1

〉
+Re

〈
E1,2

∣
∣E3,4

〉

−Re
〈
E1,4

∣
∣E2,1

〉
−Re

〈
E1,4

∣
∣E2,2

〉
+Re

〈
E1,4

∣
∣E3,1

〉
+Re

〈
E1,4

∣
∣E3,2

〉

+Re
〈
E2,1

∣
∣E3,2

〉
−Re

〈
E2,1

∣
∣E3,4

〉
+Re

〈
E2,2

∣
∣E3,1

〉
−Re

〈
E2,2

∣
∣E3,4

〉

−Re
〈
E2,4

∣
∣E3,1

〉
−Re

〈
E2,4

∣
∣E3,2

〉
=

1− ε
4

,

Re
〈
E1,1

∣
∣E2,2

〉
−Re

〈
E1,1

∣
∣E2,3

〉
−Re

〈
E1,1

∣
∣E3,2

〉
+Re

〈
E1,1

∣
∣E3,3

〉

+Re
〈
E1,2

∣
∣E2,1

〉
+Re

〈
E1,2

∣
∣E2,3

〉
−Re

〈
E1,2

∣
∣E3,1

〉
−Re

〈
E1,2

∣
∣E3,3

〉

−Re
〈
E1,3

∣
∣E2,1

〉
+Re

〈
E1,3

∣
∣E2,2

〉
+Re

〈
E1,3

∣
∣E3,1

〉
−Re

〈
E1,3

∣
∣E3,2

〉

+Re
〈
E2,1

∣
∣E3,2

〉
−Re

〈
E2,1

∣
∣E3,3

〉
+Re

〈
E2,2

∣
∣E3,1

〉
+Re

〈
E2,2

∣
∣E3,3

〉

−Re
〈
E2,3

∣
∣E3,1

〉
+Re

〈
E2,3

∣
∣E3,2

〉
=

3−3ε
4

.

Out of these 16 equations, seven are redundant and only nine are independent.
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Appendix C

Schmidt decomposition of Eve’s

attack

In this appendix we will find the Schmidt decomposition of thepure state be-

tween Alice–Bob and Eve after imposing the constraints in chapter 9. With those

constraints, the matrix representation for Eve’s total stateXX † can be fully diag-

onalised. In fact, we find the reduced state between Alice andBob is fixed up to

its eigenvalues.

We recap that Eve’s attack is defined by her purification

|Ψ〉ABE =
16

∑
I=1

|ABI 〉 |EI 〉 (C.1)
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where we chose|ABI 〉 to be the tensor products of the plus basis between Alice

and Bob

|AB1〉 = |1+〉A⊗|1+〉B ,

|AB2〉 = |1+〉A⊗|2+〉B ,

|AB3〉 = |1+〉A⊗|3+〉B ,

...

|AB16〉 = |4+〉A⊗|4+〉B .

(C.2)

The kets|EI 〉 are fixed, up to a unitary transformation, by Eve’s strategy.However

the inner products between the kets are uniquely fixed by her strategy. After im-

posing the symmetry constraints, we find that the inner products are parametrised

by five parameters which we callx1, x2, x3, x4 andx5. The entries for the matrix
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which we calledX †X are given by the 16 by 16 inner products

〈
EI
∣
∣EJ
〉

=








































a · · · · x1 x3 x3 · x3 x1 x3 · x3 x3 x1

· b · · x2 · x4 x4 x4 · x3 x5 x4 · x5 x3

· · b · x4 x3 · x5 x2 x4 · x4 x4 x5 · x3

· · · b x4 x3 x5 · x4 x5 x3 · x2 x4 x4 ·
· x2 x4 x4 b · · · · x4 x3 x5 · x4 x5 x3

x1 · x3 x3 · a · · x3 · x1 x3 x3 · x3 x1

x3 x4 · x5 · · b · x4 x2 · x4 x5 x4 · x3

x3 x4 x5 · · · · b x5 x4 x3 · x4 x2 x4 ·
· x4 x2 x4 · x3 x4 x5 b · · · · x5 x4 x3

x3 · x4 x5 x4 · x2 x4 · b · · x5 · x4 x3

x1 x3 · x3 x3 x1 · x3 · · a · x3 x3 · x1

x3 x5 x4 · x5 x3 x4 · · · · b x4 x4 x2 ·
· x4 x4 x2 · x3 x5 x4 · x5 x3 x4 b · · ·

x3 · x5 x4 x4 · x4 x2 x5 · x3 x4 · b · ·
x3 x5 · x4 x5 x3 · x4 x4 x4 · x2 · · b ·
x1 x3 x3 · x3 x1 x3 · x3 x3 x1 · · · · a









































I ,J

wherex denotes the negative ofx and the dots are zeros. The magnitudesa =

(4− 3ε)/16 andb = ε/16. Not all five parameters are independent. They are

related by the sum

x1 +x2 +2x3 +2x4 =
1− ε

4
. (C.3)

The eigenvectors of this simplified matrix does not depend onany of the parame-

ters or on the noise levelε. The 16 eigenvectors (up to a normalisation constant)



140

are given by the columns of the following matrix









































1 0 0 0 1 1 1 2 2 2 0 0 0 0 0 0

0 1 1 0 1 1 0 1 1 0 0 0 1 1 2 0

0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1

0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1

0 1 1 0 1 1 0 1 1 0 0 0 1 1 2 0

1 0 0 0 1 1 1 2 2 2 0 0 0 0 0 0

0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1

0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1

0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1

0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1

1 0 0 0 1 1 1 2 2 2 0 0 0 0 0 0

0 1 1 0 1 1 0 1 1 0 0 0 1 1 2 0

0 1 0 1 1 0 1 1 0 1 0 1 0 1 1 1

0 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1

0 1 1 0 1 1 0 1 1 0 0 0 1 1 2 0

1 0 0 0 1 1 1 2 2 2 0 0 0 0 0 0









































.
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The corresponding eigenvalues are

µ1 =
1
16

(16−15ε−48x2−96x3−96x4) ,

µ2,3,4 =
1
16

(ε+16x2−32x4) ,

µ5,6,7 =
1
16

(ε+16x2−32x3 +32x4) ,

µ8,9,10 =
1
16

(ε+16x2 +64x3 +32x4) ,

µ11,12,13 =
1
16

(ε−16x2−32x5) ,

µ14 =
1
16

(ε−16x2 +64x4 +32x5) ,

µ15,16 =
1
16

(ε−16x2−32x4 +32x5) .

(C.4)

Having diagonalisedX †X , it is now easy to write the Schmidt decomposition of

|Ψ〉ABE between Alice–Bob and Eve.

C.1 Schmidt basis of Alice–Bob

We begin by the singular value decomposition ofX †X as

〈
EJ
∣
∣EK
〉

=
(

X †X
)

J,K
=

16

∑
N=1

φ∗N,JµNφN,K (C.5)

whereφ are the orthonormal eigenvectors ofX †X

16

∑
J=1

φN,Jφ∗M,J = δN,M (C.6)
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and

16

∑
K=1

(

X †X
)

J,K
φ∗M,K =

16

∑
N,K=1

φ∗N,JµNφN,Kφ∗M,K (C.7)

=
16

∑
N=1

φ∗N,JµNδN,M (C.8)

= φ∗M,JµM . (C.9)

Next, we introduce an orthonormal basis|FN〉 so that

〈
FN
∣
∣EK
〉

= XN,K =
√

µNφN,K (C.10)

or equivalently

|FN〉 =
16

∑
K=1

|EK〉
φ∗N,K√

µN
. (C.11)

With this, we can write|EK〉 in the|FN〉 basis as

|EK〉 =
16

∑
N=1

|FN〉φN,K
√

µN , (C.12)

so that the pure state between Alice–Bob and Eve becomes

|Ψ〉ABE =
16

∑
K=1

|ABK〉 |EK〉 (C.13)

=
16

∑
K,N=1

|ABK〉 |FN〉
√

µNφN,K (C.14)

=
16

∑
N=1

|αN〉 |FN〉
√

µN , (C.15)
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where we define the Schmidt basis|αN〉 as

|αN〉 =
16

∑
K=1

|ABK〉φN,K . (C.16)

They form an orthonormal basis for Alice–Bob

〈
αN
∣
∣αM

〉
=

16

∑
K,K′=1

〈
ABK′

∣
∣ABK

〉
φ∗N,K′φM,K (C.17)

=
16

∑
K=1

φ∗N,KφM,K (C.18)

= δN,M . (C.19)

Equation (C.15) provides the Schmidt decomposition of Eve’spure state between

Alice–Bob and Eve. The Schmidt vectors|αN〉 can be obtained from the eigenvec-

tors ofX †X in equation (C.4). For example|α1〉 corresponding to the eigenvalue

µ1 would be

|α1〉 = |1+,1+〉+ |2+,2+〉+ |3+,3+〉+ |4+,4+〉 . (C.20)

We can also write this state in the Bell basis:|ψi〉AB1⊗
∣
∣ψ j
〉

AB2. Here|ψi〉AB1 are

the Bell basis for Alice’s first qubit and Bob’s first qubit and the Bell basis are
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defined as

|ψ1〉 = (|↑↑〉+ |↓↓〉) 1√
2

,

|ψ2〉 = (|↑↑〉− |↓↓〉) 1√
2

,

|ψ3〉 = (|↑↓〉+ |↓↑〉) 1√
2

,

|ψ4〉 = (|↑↓〉− |↓↑〉) 1√
2

,

(C.21)

where the kets|↑〉 and|↓〉 are the computational basis.

If we identify the plus basis as a two-qubit state in the computational basis

with

|1+〉 = |↑↑〉 ,

|2+〉 = |↑↓〉 ,

|3+〉 = |↓↑〉 ,

|4+〉 = |↓↓〉

(C.22)
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then the Schmidt basis for Alice–Bob becomes

|α1〉 = |ψ1,ψ1〉 ,

|α2〉 = |ψ1,ψ3〉
1√
2

+ |ψ4,ψ4〉
1√
2

,

|α3〉 = |ψ2,ψ3〉
1√
2

+ |ψ3,ψ1〉
1√
2

,

|α4〉 = |ψ3,ψ2〉
1√
2

+ |ψ3,ψ3〉
1√
2

,

|α5〉 = |ψ1,ψ2〉
1√
3

+ |ψ1,ψ3〉
1√
3
−|ψ4,ψ4〉

1√
3

,

|α6〉 = |ψ2,ψ2〉
1√
3
−|ψ2,ψ3〉

1√
3

+ |ψ3,ψ1〉
1√
3

,

|α7〉 = |ψ2,ψ1〉
1√
3
−|ψ3,ψ2〉

1√
3

+ |ψ3,ψ3〉
1√
3

,

|α8〉 = |ψ1,ψ2〉
√

2
3
−|ψ1,ψ3〉

1√
6

+ |ψ4,ψ4〉
1√
6

|α9〉 = |ψ2,ψ2〉
√

2
3

+ |ψ2,ψ3〉
1√
6
−|ψ3,ψ1〉

1√
6

,

|α10〉 = |ψ2,ψ1〉
√

2
3

+ |ψ3,ψ2〉
1√
6
−|ψ3,ψ3〉

1√
6

,

|α11〉 = |ψ4,ψ1〉 ,

|α12〉 = |ψ3,ψ4〉 ,

|α13〉 = |ψ2,ψ4〉 ,

|α14〉 = |ψ1,ψ4〉
1√
3

+ |ψ4,ψ2〉
1√
3

+ |ψ4,ψ3〉
1√
3

,

|α15〉 =

√

2
3
|ψ1,ψ4〉− |ψ4,ψ2〉

1√
6
−|ψ4,ψ3〉

1√
6

,

|α16〉 = |ψ4,ψ2〉
1√
2
−|ψ4,ψ3〉

1√
2

.

(C.23)
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Appendix D

Random processing before

measurement

In this appendix, we show how the optimisation problem for Eve’s information

can be simplified if we let Alice and Bob perform some random processing on

their two-qubits before measurement.

Following [29], for every qubit pair that Alice and Bob receive, Alice decides

with probability half to swap qubits one and two. When Alice swaps her qubits,

she will then tell Bob to do the same.

From equation (5.2), the true state that Alice and Bob expect from the source

is

|Ψ〉AB =
1
2

(

|1+,1+〉+ |2+,2+〉+ |3+,3+〉+ |4+,4+〉
)

. (D.1)
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If Alice and Bob identify the plus states with two qubits in thecomputational basis

as follows

|1+〉 = |↑↑〉 ,

|2+〉 = |↑↓〉 ,

|3+〉 = |↓↑〉 ,

|4+〉 = |↓↓〉 ,

(D.2)

then the true state can be written as

|Ψ〉AB =
1
2

(|↑↑〉A |↑↑〉B + |↑↓〉A |↑↓〉B + |↓↑〉A |↓↑〉B + |↓↓〉A |↓↓〉B) (D.3)

=
1√
2

(|↑↑〉+ |↓↓〉)AB1⊗
1√
2

(|↑↑〉+ |↓↓〉)AB2 . (D.4)

In this form, it is clear that if the state between Alice and Bobwas the true state

(plus unbiased noise), then swapping the first and second qubits should leave the

state unchanged. We also see that for the true state, Alice’sfirst qubit is only

entangled with Bob’s first qubit.

Suppose the state between Alice and Bob has the purification
∣
∣Φ12

〉

ABE such

thatρ12
AB = TrE

{∣
∣Φ12

〉

ABE

〈
Φ12
∣
∣
ABE

}
. When Alice decides to swap or not to swap

based on a random numberR1, the effective state between Alice and Bob would

beρAB = 1
2

(
ρ12

AB+ρ21
AB

)
whereρ21

AB is obtained by swapping qubits one and two.

The state describing the combined system would be

|χ〉ABER1
=

1√
2

(∣
∣Φ12〉

ABE|12〉R1 +
∣
∣Φ21〉

ABE|21〉R1

)
, (D.5)

where theR1 kets are orthonormal.
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We now provide Eve with theR1 system which she can measure after sending

Alice and Bob their qubits. This provides Eve at least as much power as she had

before. Hence it is sufficient to consider the reduced state between Alice and Bob

as obtained by tracing outE andR1. In other words it is sufficient to only consider

ρAB having the formρAB = 1
2

(
ρ12

AB+ρ21
AB

)
.

We can write an arbitrary state between Alice and Bob as

ρ12
AB =

1
16

4

∑
a1=0

4

∑
a2=0

4

∑
b1=0

4

∑
b2=0

c12
a1,a2,b1,b2

σ(1)
a1 σ(2)

a2 τ(1)
b1

τ(2)
b2

, (D.6)

whereσ0 = 1, σ1 = σx, σ2 = σy andσ3 = σz are the Pauli operators for Alice. The

superscripts 1 and 2 refer to qubits one and two. Theτ operators are Bob’s Pauli

operators following the same convention. The coefficientsca1,a2,b1,b2 make up 256

real numbers constrained by the positivity ofρ and the normalisation condition:

c0000= 1.

Swapping qubits one and two, the stateρ21
AB will have the Pauli coefficients

c21
a1,a2,b1,b2

= c12
a2,a1,b2,b1

. The stateρAB = 1
2

(
ρ12

AB+ρ21
AB

)
will then have the Pauli

coefficients

ca1,a2,b1,b2 =
1
2

(
c12

a1,a2,b1,b2
+c21

a1,a2,b1,b2

)
(D.7)

=
1
2

(
c21

a2,a1,b2,b1
+c12

a2,a1,b2,b1

)
(D.8)

= ca2,a1,b2,b1 (D.9)

which set the restrictionsca1,a2,b1,b2 = ca2,a1,b2,b1.

Another set of (local) operations that will leave the true state unchanged is for

Alice and Bob to performσx⊗τx, σy⊗τy or σz⊗τz on each qubit. For each qubit,
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Alice will randomly decide with equal probability to apply 1, σx, σy or σz. She

then tells Bob to do the same operation on his qubits.

We introduce a second random systemR2 which Alice uses to decide which

operation to perform on her qubit pair. By placing this randomsystem in Eve’s

control, we can repeat the argument done for swapping the qubits to show that it

is sufficient to consider the state between Alice and Bob with the form

ρ0
AB =

1
16

4

∑
n=0

4

∑
m=0

(

σ(1)
n σ(2)

m τ(1)
n τ(2)

m

)

ρAB

(

σ(1)
n σ(2)

m τ(1)
n τ(2)

m

)

=
1

256 ∑
n,m

a1,a2
b1,b2

ca1,a2,b1,b2

(

σ(1)
n σ(2)

m τ(1)
n τ(2)

m

)(

σ(1)
a1 σ(2)

a2 τ(1)
b1

τ(2)
b2

)(

σ(1)
n σ(2)

m τ(1)
n τ(2)

m

)

=
1

256 ∑
a1,a2
b1,b2

ca1,a2,b1,b2

(

∑nσ(1)
n τ(1)

n σ(1)
a1 τ(1)

b1
σ(1)

n τ(1)
n

)

×
(

∑mσ(2)
m τ(2)

m σ(2)
a2 τ(2)

b2
σ(2)

m τ(2)
m

)

=
1
16 ∑

a1,a2
b1,b2

ca1,a2,b1,b2

(

σ(1)
a1 τ(1)

b1
δa1,b1

)(

σ(2)
a2 τ(2)

b2
δa2,b2

)

=
1
16 ∑

a1,a2

ca1,a2,a1,a2σ(1)
a1 σ(2)

a2 τ(1)
a1 τ(2)

a2 .

(D.10)

This state is diagonal in the bell basis|φi〉A1,B1

∣
∣φ j
〉

A2,B2 where|φi〉A1,B1 is one of

the four bell states on the first qubits of Alice and Bob. The state has only sixteen

parameters which can be taken to be the eigenvalues corresponding to each pair

of bell-states. If we include the swapping constraint, thisleaves ten undetermined

coefficients (minus one from the normalisation requirement).

At this point, we can further constrain Eve’s state by requiring that Alice and

Bob’s measurement statistics must be consistent with an unbiased noise state. The



151

problem now is to optimise the remaining free parameters to maximise Eve’s in-

formation subject to these constraints. We expect this optimisation problem to be

more tractable than the optimisation for the original protocol since the number of

variables has been naturally reduced.
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Part II

Security analysis of a continuous

variable quantum key distribution

protocol in the presence of thermal

noise
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Chapter 11

Review of continuous variable

Gaussian states

In this chapter, we collect some well known facts that will beused in analysing the

security of the continuous variable key distribution protocol. We shall restrict our

analysis to Gaussian states and how they transform under Gaussian operations.

Section 11.1 provides some basic definitions concerning coherent states. Next,

section 11.2 introduces the Wigner function which is all that we shall use in the

analysis of the Gaussian eavesdropping attacks. The final two sections give two

examples on the transformations of the Wigner function. Section 11.3 gives an

example for the transformations of a single-mode Gaussian state and section 11.4

gives an example for the transformations a two-mode Gaussian state.
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11.1 The ingredients

We start with the Hamiltonian for the single-mode electromagnetic field

H = ~ω
(

a†a+
1
2

)

, (11.1)

wherea is the annihilation operator whilea† is the creation operator. They obey

the bosonic commutation relation

[

a,a†
]

= 1 . (11.2)

For our purposes,~ω are just constants. The eigenstates of the Hermitian operator

a†a are called the Fock states and denoted as|n〉 with corresponding eigenvalues

n.

From the commutation relation, the action of the annihilation and creation

operators on the Fock states can be shown to be

a|n〉 = |n−1〉
√

n , (11.3)

a† |n〉 = |n+1〉
√

n+1 . (11.4)

For the norms of all the statesa|n〉 to be non-negative, the eigenvaluesn can only

take non-negative integer valuesn ∈ {0,1,2, . . .∞}. The state|0〉 corresponding

to the eigenvaluen = 0 is given the special name as the vacuum state. It is the

ground state ofH, with the eigenenergy~ω/2.

We are now almost ready to introduce the coherent states. These states shall

serve as the signal states that Alice would send to Bob in our key distribution
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protocol. We just need one more final ingredient and that is the displacement

operator

D(α) = exp
(

αa†−α∗a
)

, (11.5)

whereα is an arbitrary complex number. The coherent state|α〉 is generated by

operating the displacement operatorD(α/k) on the vacuum state

|α〉 = D
(α

k

)

|0〉 , (11.6)

wherek is some proportionality constant. From this definition for the coherent

state, it also follows that the coherent states are eigenstates of the annihilation

operator

a|α〉 = |α〉 α
k

. (11.7)

The inner product between two coherent states|α1〉 and|α2〉 is

〈
α1
∣
∣α2
〉

= exp

[

|α1|2 + |α2|2 +2α∗
1α2

2k2

]

, (11.8)

so that the absolute value squared is

∣
∣
〈
α1
∣
∣α2
〉∣
∣2 = exp

[

−|α1−α2|2
k2

]

. (11.9)

The missing steps are worked out in textbooks on quantum mechanics [2,18,58].
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Having described operators representing the generation ofcoherent states which

Alice sends, we now proceed to the operators which representthe measurement

process for Bob. The two measurement operators at Bob’s end arethe amplitude

quadrature operatorX and phase quadrature operatorY defined as

X =
v
2

(

a+a†
)

, (11.10)

Y =
v
2i

(

a−a†
)

, (11.11)

with v being a proportionality constant for Bob to choose at his convenience. Note

thatX andY do not commute which means that Bob cannot measure bothX andY

simultaneously on the same state. In fact the commutator betweenX andY turns

out to be

[X,Y] =
i
2

v2 . (11.12)

With this definition, we find that when Alice sends the coherent state|α〉, Bob

will get an expected value of

〈α|X|α〉 =
v
2

〈

α|a+a†|α
〉

(11.13)

=
v
k

Re(α) (11.14)

and

〈α|Y|α〉 =
v
2i

〈

α|a−a†|α
〉

(11.15)

=
v
k

Im(α) . (11.16)
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The variance of an operatorO for the stateρ is defined as

var(O)ρ = Tr
{

ρO2}−Tr{ρO}2. (11.17)

The variances in the outcomes ofX andY for the state|α〉 will be

var(X)α = var(Y)α =
v2

4
. (11.18)

Throughout the thesis, we shall set the proportionality constantk = v = 2σV ,

where we have introduced another constantσV . With these definitions, the co-

herent state|α〉 will give the following outcomes

〈α|X|α〉 = Re(α) , (11.19)

〈α|Y|α〉 = Im(α) , (11.20)

var(X)α = var(Y)α = σ2
V , (11.21)

whereσ2
V is by definition the variance of a quadrature measurement on acoherent

state. In this thesis, unless otherwise specified, we setk = v= 1 so thatσ2
V = 1/4.

11.1.1 Beam splitter matrix

Eve’s basic tool to eavesdrop on Alice’s signal would be the beam splitter. For

the purpose of studying that, we recap how the beam splitter affects the coherent

states.

The beam splitter is represented schematically in figure 11.1 where the two

input ports are labelled asA andV. The output ports are labelled withB andE.
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η

aA aB

aE

aV

Figure 11.1: Schematic diagram of a beam splitter with two input portsA andV
and two output portsB andE. The transmittivity of the beam splitter isη.

The output ports of the beam splitter are related to the inputports by the following

relations on the annihilation operators

aB =
√

ηaA−
√

1−ηaV , (11.22)

aE =
√

1−ηaA +
√

ηaV , (11.23)

whereη is the beam splitter transmission coefficient. When we have a coherent

state|αA〉 going through the first inputA and a second coherent state|αV〉 through
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the second inputV, the output state can be obtained from the input states as follows

|αA〉A |αV〉V (11.24)

= DA

(αA

k

)

DV

(αV

k

)

|0〉 (11.25)

= exp
(

αAa†
A−α∗

AaA

)

exp
(

αVa†
V −α∗

VaV

)

|0〉 (11.26)

= exp
(

αA
√

ηa†
B +αA

√

1−ηa†
E −α∗

A
√

ηaB−α∗
A

√

1−ηaE

)

×exp
(

αV
√

ηa†
E −αV

√

1−ηa†
B−α∗

V
√

ηaE +α∗
V

√

1−ηaB

)

|0〉 (11.27)

= DB

(√
ηαA−

√
1−ηαV

k

)

DE

(√
1−ηαA +

√
ηαV

k

)

|0〉 (11.28)

=
∣
∣
∣
√

ηαA−
√

1−ηαV

〉

B

∣
∣
∣

√

1−ηαA +
√

ηαV

〉

E
. (11.29)

The beam splitter affects a rotation of the input quadratures. The output

quadratures in terms of the input would be












XB

YB

XE

YE












=












√
η 0 −√

1−η 0

0
√

η 0 −√
1−η

√
1−η 0

√
η 0

0
√

1−η 0
√

η























XA

YA

XV

YV












. (11.30)

For the Gaussian states that we shall be considering here, the beam splitter will

displace the coherent amplitude by~x′0 = M~x0 and rotate the covariance matrix
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according toC′ = MCMT where

~x0 =












〈XA〉

〈YA〉

〈XV〉

〈YV〉












, ~x′0 =












〈XB〉

〈YB〉

〈XE〉

〈YE〉












(11.31)

are the coherent amplitudes of the input and output states respectively andC is the

covariance matrix for the input state

C =












〈X̄AX̄A〉 〈X̄AȲA〉 〈X̄AX̄V〉 〈X̄AȲV〉

〈ȲAX̄A〉 〈ȲAȲA〉 〈ȲAX̄V〉 〈ȲAȲV〉

〈X̄VX̄A〉 〈X̄VȲA〉 〈X̄VX̄V〉 〈X̄AȲV〉

〈ȲVX̄A〉 〈ȲVȲA〉 〈ȲVX̄V〉 〈ȲAȲV〉












(11.32)

while C′ is the covariance matrix for the output state

C′ =












〈X̄BX̄B〉 〈X̄BȲB〉 〈X̄BX̄E〉 〈X̄BȲE〉

〈ȲBX̄B〉 〈ȲBȲB〉 〈ȲBX̄E〉 〈ȲBȲE〉

〈X̄EX̄B〉 〈X̄EȲB〉 〈X̄EX̄E〉 〈X̄BȲE〉

〈ȲEX̄B〉 〈ȲEȲB〉 〈ȲEX̄E〉 〈ȲBȲE〉












. (11.33)
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An operator with an over-line denotes the fluctuations of theoperator from its

mean value,̄O = O−〈O〉. M is the beam splitter matrix

M =












√
η 0 −√

1−η 0

0
√

η 0 −√
1−η

√
1−η 0

√
η 0

0
√

1−η 0
√

η












. (11.34)

11.2 Wigner function and general Gaussian states

We introduce another two bases for the single-mode infinite dimensional Hilbert

space. The first basis is comprised of the kets|x〉, the eigenstates of the amplitude

quadrature operatorX corresponding to the eigenvaluesx∈ R. The second basis

is comprised of the kets|y〉, the eigenstates of the phase quadrature operators with

eigenvaluesy∈ R.

We define the Wigner function of a single-mode stateρ̂ though these bases by

ρ(x,y) =
Z

dx̃
2π~

〈

x− x̃
2

∣
∣
∣
∣
ρ̂
∣
∣
∣
∣
x+

x̃
2

〉

exp(iyx̃) (11.35)

=
Z

dỹ
2π~

〈

y− ỹ
2

∣
∣
∣
∣
ρ̂
∣
∣
∣
∣
y+

ỹ
2

〉

exp(ixỹ) . (11.36)

The second equality follows by using the inner product

〈
x
∣
∣y
〉

=
1√
2π~

exp(ixy) . (11.37)
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The symbol~ = 2σ2
v so that the commutation relation betweenX andY reads

[X,Y] = i~ . (11.38)

The marginal distribution for̂ρ to be in the state|x〉 is then

〈x| ρ̂ |x〉 =
Z

ρ(x,y)dy (11.39)

and for it to be in the state|y〉 would be

〈y| ρ̂ |y〉 =
Z

ρ(x,y)dx . (11.40)

The normalisation condition on̂ρ translates to

ZZ

dx dyρ(x,y) = 1 . (11.41)

The overlap between two statesρ̂1 andρ̂2 is given by

Tr{ρ̂1ρ̂2} = 2π~

ZZ

dx dyρ1(x,y)ρ2(x,y) . (11.42)

11.2.1 n-mode Gaussian states

For ann-mode statêρ, the Wigner function is defined as

ρ(~z) =
Z

dx̃1 . . .dx̃n

(2π~)n

〈

x1−
x̃1

2
, . . . ,xn−

x̃n

2

∣
∣
∣
∣
ρ̂
∣
∣
∣
∣
x1 +

x̃1

2
, . . . ,xn +

x̃n

2

〉

×exp(iy1x̃1) . . .exp(iynx̃n)

(11.43)
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where

~z= (x1,y1, . . . ,xn,yn)
T . (11.44)

If the stateρ̂ is a Gaussian state, then its Wigner function can be written in terms

of its mean~x0 and the covariance matrixC as

ρ(~z) =
1

√

(2π)(2n) |C|
exp

{

−1
2

(~z−~z0)
T C−1(~z−~z0)

}

, (11.45)

where

~z0 = (〈x1〉 ,〈y1〉 , . . . ,〈xn〉 ,〈yn〉)T . (11.46)

and

Ci j =
〈
zizj
〉

(11.47)

for {i, j} ∈ {1,2, . . . ,2n}. The overlap between twon-mode stateŝρ1 and ρ̂2 is

given by

Tr{ρ̂1ρ̂2} = (2π~)n
Z

d~zρ1(~z)ρ2(~z) . (11.48)

A unitary Gaussian operatorU acting on the Hilbert spaceH corresponds

to a symplectic transformationS on the phase space of the Wigner function. A

symplectic transformation would evolve the covariance matrix to C → SCST and

the mean becomes~z0 → S~z0. A symplectic transformation is one that preserves
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the commutation relations:
[
Szj ,Szk

]
=
[
zj ,zk

]
. In other wordsSΣ⊕nST = Σ⊕n

where

Σ =






0 1

−1 0




 . (11.49)

Any symplectic transformation can be realised by a combination of three op-

erators. The first is the rotation operatorSrot(θ)

Srot(θ) =






cosθ −sinθ

sinθ cosθ




 (11.50)

which rotates the quadratures by an angleθ. The second operator is the squeezing

operatorSsqz(g)

Ssqz(g) =






1
g 0

0 g




 . (11.51)

This squeezes the amplitude quadrature by the factorg. The last operatorSmix(η)

is the mixing operator between two modes

Smix(η) =












√
η 0 −√

1−η 0

0
√

η 0 −√
1−η

√
1−η 0

√
η 0

0
√

1−η 0
√

η












(11.52)

where 0≤ η ≤ 1 determines the mixing ratio.
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These three operators can be realised in the lab by the passive components

phase shifters, squeezers and beam splitters respectively. In particular, a local

unitary Gaussian operation on a two-mode systemU = U1⊗U2 maps to the lo-

cal symplectic operationS= S1⊕S2. This locality restriction removes the beam

splitter from our set of operations.

Williamson’s theorem states that any covariance matrix canbe brought into

a diagonal form with diagonal entries(κ1,κ1,κ2,κ2, . . . ,κn,κn) via a symplectic

transformation. In this form, the phase space variables arenot correlated to each

other, meaning that there always exist a bi-partition in which an n-mode Gaussian

state becomes separable. This also means that any zero mean Gaussian state can

be created in the lab by our set of three passive components oninitially uncorre-

lated thermal states. In this form the uncertainty relationbecomesκi ≥ σ2
V for all

i ∈ {1,2, . . . ,n} [53].

11.3 Example 1: Single-mode Gaussian states

For a single-mode Gaussian state, we can visualise its Wigner function as an el-

lipse in a two dimensional plane. The centre of this ellipse will correspond to the

mean amplitude. The semi-major and semi-minor axis is proportional to the stan-

dard deviation of the amplitude outcome when measured alongthose quadratures.

The coherent state|x0 + iy0〉 will have a mean amplitudeµ = (x0,y0), and the

covariance matrix

C =






σ2
V 0

0 σ2
V




 . (11.53)



168

For example, the following ball on stick figure is used to represent the coherent

state|6+2i〉:
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The ball is centred at(6,2) and has radius 1 in units ofσv. Applying the squeezing

operator with a squeezing factorg = 1.2, the new state now has a mean amplitude

µ=






1
1.2 0

0 1.2











6

2




=






5

2.4




 . (11.54)

The covariance matrix becomes

C =






1
1.2 0

0 1.2











σ2
V 0

0 σ2
V











1
1.2 0

0 1.2






=






0.69444σ2
V 0

0 1.44σ2
V




 .

(11.55)

The variance in theX quadrature is less than the vacuum noise. But this is at the

expense of a noisierY quadrature. The ball on stick representation of this state is

shown in the following figure:



169

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

X quadrature

Y
qu

ad
ra

tu
re

There is no correlation between theX andY quadratures as seen by the diagonal

covariance matrix and the also by the axis of the ellipse being parallel to thex and

y axes.

Finally if we apply the rotation operator with angleθ = π/6 to this state, the

mean amplitude would be

µ=






cosπ
6 −sinπ

6

sinπ
6 cosπ

6











5

2.4




=






3.13013

4.57846




 . (11.56)

The covariance matrix becomes

C =






cosπ
6 −sinπ

6

sinπ
6 cosπ

6











0.69444σ2
V 0

0 1.44σ2
V











cosπ
6 sinπ

6

−sinπ
6 cosπ

6






=






0.880833σ2
V −0.322835σ2

V

−0.322835σ2
V 1.25361σ2

V




 .

(11.57)

This state is represented by the following figure:
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If we were to measure theX quadrature repeatedly, the outcomes will show a

Gaussian distribution having a mean of value 3.13013 and variance 0.880833σ2
V .

There would be some correlation between theX andY quadratures as seen by the

non zero off diagonal elements in the covariance matrix.

Suppose we measuredX and obtained the outcomex = 5.4, if we were to

measure theY quadrature (not that we could actually measure both quadratures

simultaneously), the conditioned outcomey will have its mean given by

µ2|1 = µ2 +C21C
−1
11 (x−µ1)

= 4.57846+
−0.322835
0.880833

(5.4−3.13013)

= 3.74653.

(11.58)
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The conditional variance is given by

C2|1 = C22−C21C
−1
11 C12

= 1.25361σ2
V − 0.3228352

0.880833
σ2

V

= 1.13529σ2
V .

(11.59)

We note that since these symplectic transformations realise unitary transfor-

mations, the purity of the transformed state remains the same. This can be quanti-

fied by the determinant of the covariance matrix which remains unchanged under

a symplectic transformation.

11.4 Example 2: Two squeezed states at arbitrary

angle

This example illustrates the correlations in a two-mode Einstein-Podolsky-Rosen

(EPR) state. The EPR state is created by shining two squeezed states through the

two inputs of a beam splitter.

We begin with an uncorrelated two-mode system. The first modeis the vac-

uum state which is first squeezed in theX quadrature with a squeezing factorg

and then rotated by an angleθ. This state will have a mean(0,0) and covariance



172

matrix

C1 = Srot(θ)Ssqz(g)






σ2
V 0

0 σ2
V




ST

sqz(g)ST
rot(θ) (11.60)

= Srot(θ)






σ2
sq 0

0 σ2
asq




ST

rot(θ) (11.61)

=






σ2
sqcos2θ+σ2

asqsin2θ
(
σ2

sq−σ2
asq

)
sinθcosθ

(
σ2

sq−σ2
asq

)
sinθcosθ σ2

sqsin2θ+σ2
asqcos2θ




 (11.62)

Here,σ2
sq= σ2

V/g andσ2
asq= gσ2

V where the subscripts denote squeezed and anti-

squeezed respectively. They are the variances of theX andY quadratures respec-

tively before the rotation. This state will be the state through the first input of a

50/50 beam splittera1 as shown in figure 11.2.

The second mode also starts in the vacuum state but it is first squeezed in the

X quadrature with a squeezing factor 1/g and then rotated by an angleθ. This

state will have a mean(0,0) and covariance matrix

C2 = Srot(θ)Ssqz

(
1
g

)






σ2
V 0

0 σ2
V




ST

sqz

(
1
g

)

ST
rot(θ) (11.63)

= Srot(θ)






σ2
asq 0

0 σ2
sq




ST

rot(θ) (11.64)

=






σ2
asqcos2θ+σ2

sqsin2θ −
(
σ2

sq−σ2
asq

)
sinθcosθ

−
(
σ2

sq−σ2
asq

)
sinθcosθ σ2

asqsin2θ+σ2
sqcos2θ




 . (11.65)

This state is then passed through the second input of the beamsplittera2.
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The two input states are shown in the ball on stick representation in figure 11.2.

As we shall see, each of the two output modes turns out to be in athermal state

when examined individually.

The covariance matrix for the output modes withη = 1/2 will be:

Cout = Smix(η)CinSmix(η)T

=












1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

1√
2

0 1√
2

0

0 1√
2

0 1√
2

















C1 02×2

02×2 C2

















1√
2

0 1√
2

0

0 1√
2

0 1√
2

− 1√
2

0 1√
2

0

0 − 1√
2

0 1√
2












=
1
2






C1 +C2 C1−C2

C1−C2 C1 +C2






=












σ2
th 0 −σ2

k cos(2θ) −σ2
k sin(2θ)

0 σ2
th −σ2

k sin(2θ) σ2
k cos(2θ)

−σ2
k cos(2θ) −σ2

k sin(2θ) σ2
th 0

−σ2
k sin(2θ) σ2

k cos(2θ) 0 σ2
th












(11.66)

whereσ2
k =

(
σ2

asq−σ2
sq

)
/2 andσ2

th =
(
σ2

sq+σ2
asq

)
/2. From the diagonal blocks,

we see that both of the outputsa3 anda4 of the beam splitter are in a thermal state

with a variance ofσ2
th. There is no correlation between theX3 andY3 quadratures

or between theX4 andY4 quadratures.

But the outputa3 is correlated toa4. We want to find out what happens to the

output ata3 given that a measurement ofX4 gives the outcomexA. The variable

x3 andy3 will follow a Gaussian distribution and we denote its mean byµ̄12 and



174

a1

a2

a3

a4 1
2

θ

θ

σsq

σsq

σasq

σasq

Figure 11.2: Creation of an EPR state by shining two orthogonally squeezed input
states through a 50/50 beam splitter. The output states are two thermal states
which are correlated to each other.

covariance matrix bȳΣ12;12. The reduced state will have mean

µ̄12 = µ12+C12;3C
−1
3;3(xA−µ3)

=






0

0




+






−σ2
k cos(2θ)

−σ2
k sin(2θ)






1

σ2
th

(xA−0)

= − σ2
k

σ2
th






xAcos(2θ)

xAsin(2θ)






(11.67)
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and its covariance matrix is

Σ̄12;12= C12;12−C12;3C
−1
3;3C3;12

=
1
2






σ2
sq+σ2

asq 0

0 σ2
sq+σ2

asq




− 1

2






(
σ2

sq−σ2
asq

)
cos2(2θ)

(
σ2

sq−σ2
asq

)
sin2(2θ)






× 2
σ2

sq+σ2
asq

(
(
σ2

sq−σ2
asq

)
cos2(2θ)

(
σ2

sq−σ2
asq

)
sin2(2θ)

)

=






σ4
V

σ2
th

cos2(2θ)+σ2
thsin2(2θ)

(

σ2
th−

σ4
V

σ2
th

)

sin(2θ)cos(2θ)
(

σ2
th−

σ4
V

σ2
th

)

sin(2θ)cos(2θ)
σ4

V
σ2

th
sin2(2θ)+σ2

thcos2(2θ)




 .

(11.68)

Writing Σ̄12;12 as

Σ̄12;12= Srot(−2θ)






σ4
V

σ2
th

0

0 σ2
th




ST

rot(−2θ) (11.69)

we see that the reduced state is a squeezed state with a minimum variance of

σ4
V/σ2

th. This state is represented in the ball on stick representation in figure 11.3.

TheX quadrature has a mean value of

−
(
σ2

asq−σ2
sq

)

(
σ2

sq+σ2
asq

)xAcos(2θ) (11.70)

and variance

σ4
V

σ2
th

cos2(2θ)+σ2
thsin2(2θ) . (11.71)
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Figure 11.3: Ball on stick representation of a reduced EPR state.

For a fixed squeezing factorg > 1, the magnitude of the mean value is maximum

whilst the variance is minimum whenθ = 0. For such a state, the two outputs are

said to be EPR entangled.
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Chapter 12

Introduction to continuous variable

quantum key distribution

Continuous variable quantum key distribution uses a continuous degree of free-

dom to distribute secure keys between Alice and Bob. Typically, the amplitude

and phase quadratures of a Gaussian beam are used to carry thesignals.

In single photon implementations of quantum key distribution, when no pho-

tons arrive at Bob’s detector, the signal is simply lost and does not contribute to the

key generation protocol. This is a form of post-selection and the missing events

do not give the eavesdropper any information.

However in continuous variable quantum key distribution with a lossy trans-

mission line, when Alice sends a certain coherent state, Bob would still detect a

coherent state, but having a smaller amplitude. The loss could be due to Eve in-

tercepting some photons and keeping them to herself. Therefore loss would mean

that Eve now has some information regarding the state that Alice sends.
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In this chapter, we will look at how loss affects the securityof one of the

first and simplest continuous variable quantum key distribution protocols. In sec-

tion 12.1, we will introduce the protocol. Section 12.2 analyses its performance

in a perfect lossless channel. Finally, in section 12.3 we discuss how loss in the

channel affects the protocol.

12.1 3 dB loss limit without post-selection

The early continuous variable key distribution protocols suffer from the 3 dB loss

limit. When the loss in the channel is greater than 50% no secure key can be

distributed. We recap one such protocol, presented by Grosshans and Grangier in

2002 [23].

In that protocol, Alice picksN pairs of real numbers
{

x j
A,y j

A

}

for

j ∈ {1,2, . . . ,N}. Both x j
A andy j

A are picked from a Gaussian distribution with

varianceσ2
A and zero mean:

pA

(

x j
A

)

∼N (0,σA) , (12.1)

pA

(

y j
A

)

∼N (0,σA) . (12.2)

Alice then prepares a sequence ofN coherent states
∣
∣α j
〉

with the complex ampli-

tudesα j = x j
A + iy j

A.

Bob will choose to measure each coherent state with either theamplitude op-

eratorX or phase operatorY.
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12.2 Perfect lossless channel

In a lossless and noiseless channel, Bob will receive the state exactly as what Alice

sent without corruption. Together with a perfect measurement device, the proba-

bility of Bob’s outcomexB when he measures the amplitude quadrature given that

Alice sends the coherent state with amplitudexA + iyA will be

pB(xB|xA) ∼N (xA,σV) . (12.3)

Bob’s outcome given Alice’s signal, will be normally distributed with meanxA

and varianceσ2
V . So when Bob measures the amplitude quadrature, he will get

some information about the value ofxA, but no information about the value of

yA. In this sense there are no mismatched bases; each of Bob’s measurements

gives correlated data. However half of the signals that Alice encodes remains

unmeasured.

The joint probability between Alice and Bob will be

pAB(xA,xB) = pB(xB|xA)pA(xA) (12.4)

=
1

2π
√

detC
exp

(

−1
2
~xC−1~x

)

(12.5)

where~x = (xA,xB). This is a Gaussian with mean(x̄A, x̄B) = (0,0) andC is the

covariance matrix

C =






σ2
A σ2

A

σ2
A σ2

V +σ2
A




 . (12.6)
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This describes the raw data between Alice and Bob. The maximumamount of bits

that Alice and Bob can extract from the raw data using the most efficient encoding

algorithm is given by the mutual information between Alice and Bob

IAB =
ZZ

dxA dxB pAB(xA,xB) log
pAB(xA,xB)

pA(xA) pB(xB)
(12.7)

= SA +SB−SAB . (12.8)

HerepB(xB) denotes the probability of Bob’s measurement outcomes

pB(xB) =
Z

dxA pAB(xA,xB) (12.9)

∼N
(
0,σ2

V +σ2
A

)
, (12.10)

andSA is the relative entropy of Alice’s data

SA = −
Z

dxA pA(xA) logpA(xA) (12.11)

=
1
2

[
1+ log

(
2πσ2

A

)]
. (12.12)

The relative entropy of Bob’s dataSB is

SB = −
Z

dxB pB(xB) logpB(xB) (12.13)

=
1
2

[
1+ log

(
2π
(
σ2

V +σ2
A

))]
(12.14)
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while the joint relative entropy between Alice and Bob is

SAB = −
ZZ

dxA dxB pAB(xA,xB) logpAB(xA,xB) (12.15)

=
1
2

[
2+ log

(
(2π)2detC

)]
(12.16)

=
1
2

[
2+ log

(
2πσ2

A

)
+ log

(
2πσ2

V

)]
. (12.17)

Putting this together, the mutual information between Alice and Bob is

IAB =
1
2

log

(
σ2

V +σ2
A

σ2
V

)

(12.18)

=
1
2

log

(

1+
σ2

A

σ2
V

)

(12.19)

=
1
2

log(1+Σ) . (12.20)

In the last equality, we write the net mutual information in terms of the average

signal to noise ratio

Σ =
Z

dxA
x2

A

σ2
V

pA(xA) (12.21)

=
σ2

A

σ2
V

(12.22)

wherex2
A/σ2

V is the signal to noise ratio when Alice sends the signalxA and Bob’s

measurement has a varianceσ2
V .

At this point Alice and Bob share a correlated set of continuous data and can

in theory get up to 1/2× log(1+Σ) bits of information for every measured data

point. In fact the sliced reconciliation protocol can get arbitrarily close to the
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theoretical limit [12,55]. A bigger variance of Alice’s signal will result in a higher

amount of shared bits between Alice and Bob.

We have analysed the case when Bob measures the amplitude quadratureX.

The net information when Bob measures the phase quadrature would follow in a

similar manner.

12.3 A lossy channel

We now consider the effects of transmission losses in the channel between Alice

and Bob. We characterise the loss by the transmission coefficientη. The loss can

be modelled by a beam splitter with transmissionη. Alice’s coherent state enters

the first port of the beam splitter while the vacuum state enters the second port as

in figure 11.1.

From section 11.1.1, the output of the beam splitter would berelated to the

input by

|α〉A |0〉V → |√ηα〉B

∣
∣
∣

√

1−ηα
〉

E
. (12.23)

That is, Bob will still receive a coherent state, but its amplitude is attenuated to
√

ηα. Bob’s outcome is less correlated to the signal Alice sends when there is

loss. The conditional probability of Bob to get the outcomexB is now

pB(xB|xA) ∼N (
√

ηxA,σV) , (12.24)
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and the covariance matrix between Alice’s and Bob’s dataC is

C =






σ2
A

√
ησ2

A

√
ησ2

A σ2
V +ησ2

A




 . (12.25)

The mutual information between Alice and Bob is then

IAB =
1
2

log
σ2

B

σ2
V

(12.26)

=
1
2

log

(

1+η
σ2

A

σ2
V

)

. (12.27)

12.3.1 Eve’s information

From the other port of the beam splitter, Eve receives the coherent state
∣
∣
√

1−ηα
〉
.

The conditional probability between Alice and Eve is

pE(xB|xA) ∼N
(√

1−ηxA,σV

)

. (12.28)

The mutual information between Alice and Eve would be

IAE =
1
2

log

(

1+(1−η)
σ2

A

σ2
V

)

. (12.29)

Figure 12.1 shows the mutual information between Alice and Bob IAB and Eve’s

information IE as a function of the transmissionη. The information between

Alice and Bob will always be greater than the information between Alice and Eve

as long asη > 0.5. In this region, Alice and Bob can still extract a secure key.

Providedη > 0.5, Alice and Bob can get arbitrarily large information by making
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Figure 12.1: Plot of Alice–Eve’s mutual information (in blue) and Alice–Bob’s
mutual information (in red) for a coherent state protocol without post-selection as
a function of the transmission rateη. The two curves intersect atη = 0.5. For
η > 0.5, Eve always has more information than Alice and Bob. The plots are re-
produced for three different values of Alice’s varianceσ2

A =
{

σ2
V ,10σ2

V ,100σ2
V

}
.

For example atη = 0.3 andσ2
A = 100σ2

V , the mutual information between Alice
and Bob is 3.075 bits per signal while Alice and Eve has a mutual information of
2.477 bits per signal. Since Alice and Bob has more information than Alice and
Eve, secure communication is still possible at this point.

the varianceσ2
A large. However onceη < 0.5, Eve will gain too much information

and the protocol is no longer secure. This is the origin of the3 dB limit.
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Chapter 13

Introduction to the protocol

The protocol that we shall study was first presented by Silberhorn, Ralph, L̈utken-

haus and Leuchs in 2002 [52]. In this protocol, Alice sends a coherent state|α〉 to

Bob. Bob measures either the real or imaginary part ofα. Bob will announce the

measurement basis he used as well as the absolute value of themeasurement re-

sult. Alice subsequently announces the absolute value of the real or imaginary part

of α depending on which measurement Bob performed. With this information,

Alice and Bob will share a binary symmetric channel with some error probability

that they can estimate.

Alice and Bob can also estimate the transmission and noise characteristics of

the channel. From this, they can estimate how much information an eavesdropper

can gain. Alice and Bob then perform post-selection. If the eavesdropper has more

information than Bob, then the data point is discarded, otherwise it is kept. By

doing post-selection, Alice and Bob can overcome the 3 dB limit of the Grosshans

and Grangier 2002 protocol [23].
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In the perfect channel with transmissionη = 1, this protocol would be less

efficient than the Grosshans and Grangier 2002 protocol. In this protocol, ev-

ery coherent state Alice sent can give at best just one bit of information. In the

Grosshans and Grangier 2002 protocol, if the transmission is greater than half,

Alice can choose a large varianceσA of the Gaussian distribution of the coher-

ent states to send and potentially extract an arbitrarily large length of key from a

single coherent state.

However if the transmission is less than half, the Grosshansand Grangier 2002

protocol would fail to yield any key whereas this protocol will still give a positive

key rate up to certain noise threshold.

In section 13.1, we give a formal description of the protocolas well as how Al-

ice and Bob estimate the channel parameters. Next, section 13.2 gives the protocol

for extracting the keys from the raw data. Finally, in section 13.3, we shall calcu-

late the mutual information between Alice and Bob as a function of the channel

parameters.

13.1 The protocol

In this protocol, Alice picksN pairs of numbers
{

x j
A,y j

A

}

for j ∈ {1,2, . . . ,N}.

Both x j
A and y j

A are picked from a Gaussian distribution with varianceσ2
A and

mean zero

pA(xA) ∼N (0,σA) , (13.1)

pA(yA) ∼N (0,σA) . (13.2)
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Alice then prepares a sequence ofN coherent states
∣
∣α j
〉

with the complex ampli-

tudesα j = x j
A + iy j

A.

Bob will then choose to measure each coherent state with either the amplitude

operatorX or the phase operatorY. If the transmission channel between Alice

and Bob was perfect, then when Bob measuresX given that Alice sendsxA, the

outcome of Bob’s measurement will have a Gaussian distribution with meanxA

and varianceσ2
V .

However with a lossy and noisy transmission channel with a Gaussian noise,

the outcome of Bob’s measurement will have a mean of
√

ηxA and a variance

(1+δ)σ2
V whereη characterises the loss andδ characterises the excess noise. The

conditional probabilities are drawn from the following normal distributions

pB(xB|xA) ∼N
(√

ηxA,
√

1+δσV

)

, (13.3)

pB(yB|yA) ∼N
(√

ηyA,
√

1+δσV

)

. (13.4)

Before proceeding with the key generation, Alice and Bob will use some mea-

surement results to characterise the channel. They check that their data is indeed

consistent with the expected probability distributions upto some confidence level.

They check that for the amplitude quadrature, their joint probability pAB(xA,xB)

is Gaussian with mean(x̄A, x̄B) = (0,0) and covariance matrix

C =






σ2
A

√
ησ2

A

√
ησ2

A (1+δ)σ2
V +ησ2

A




 (13.5)
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so that

pAB(xA,xB) =
1

2π
√

detC
exp

(

−1
2
~xC−1~x

)

(13.6)

where~x = (xA,xB). Otherwise the protocol fails and is aborted. If the probability

is consistent, the three parameters of the channel—σA, η andδ—can be obtained

from the three covariance equations

〈
x2

A

〉
= σ2

A , (13.7)

〈xAxB〉 =
√

ησ2
A , (13.8)

〈
x2

B

〉
= (1+δ)σ2

V +ησ2
A . (13.9)

Alice and Bob will repeat the same characterisation for the phase quadrature.

In the next step of the protocol, Bob announces the quadratureshe measured,

either X or Y as well as the absolute value of his measurement result. If Bob

announces that he measuredX, Alice will reveal the absolute value ofxA and

if Bob announces that he measuredY, Alice will reveal the absolute value ofyA.

Each pair of absolute values(|xA| , |xB|) and(|yA| , |yB|) constitute a binary channel

between Alice and Bob.

13.2 Key extraction

When Bob measures in theX quadrature, for a given signal that Alice sendsxA

and measurement outcomexB, the raw key between Alice and Bob is given by

the parity ofxA andxB. We denote the absolute values ofxA andxB by sA = |xA|
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andmB = |xB| respectively. If Bob measures in the phase quadrature, then it will

be the imaginary parts that we shall be interested in. In thiscase, using the same

symbols, we denotesA = |yA| andmB = |yB|. The following table gives an example

of a set of ten signals and outcomes from a hypothetical experiment withη = 0.5,

δ = 0.2 andσ2
A = 4σ2

V in units whereσ2
V = 1.

Alice’s Bob’s Bob’s
mB sA

Alice/Bob’s

signal,α quadrature outcome bits

0.87+0.90i X 1.16 1.16 0.87 (+,+)

1.81+1.89i Y 0.16 0.16 1.89 (+,+)

−1.57+4.23i X −0.70 0.70 1.57 (−,−)

−1.23−1.30i Y −0.57 0.57 1.30 (−,−)

0.80+0.60i X −0.30 0.30 0.80 (+,−)

−2.90+2.68i Y 1.03 1.03 2.68 (+,+)

1.98−1.03i Y 0.09 0.09 1.03 (−,+)

−1.37−0.21i Y −1.34 1.34 0.21 (−,−)

1.16+0.67i X 0.60 0.60 1.16 (+,+)

3.77−3.11i X 3.60 3.60 3.77 (+,+)

In this example, the fifth and seventh data points contain errors.

Even in a perfect transmission channel withη = 1, this binary channel will

not be perfect. There will be error when Alice sends a positive signalsA but Bob

measures a negative outcome−mB or when Alice sends a negative signal−sA but

Bob measures a positive outcomemB. The probability of error would be

perror(sA,mB) (13.10)

=
p(mB,−sA)+ p(−mB,sA)

p(mB,sA)+ p(−mB,sA)+ p(mB,−sA)+ p(−mB,−sA)
(13.11)

=
1

1+exp
(

2
√

ηsAmB

(1+δ)σ2
V

) (13.12)



190

which is 1/2 when the productsAmB = 0 and goes to zero for largesAmB. This

means that the channel is better for larger values ofsAmB. The probability distri-

bution between Alice and Bob for the channel is given by the following table.

Alice’s signal
Outcome of Bob’s measurement

mB −mB

sA
1−perror

2
perror

2

−sA
perror

2
1−perror

2

13.3 Mutual information between Alice and Bob

From the binary symmetric probability table between Alice and Bob, we can cal-

culate the mutual information between Alice and Bob for a particular value ofsA

andmB

IAB(sA,mB) = 2
( perror

2

)

log
perror

2
1
2

1
2

+2

(
1− perror

2

)

log
1−perror

2
1
2

1
2

(13.13)

= 1+ perrorlogperror+(1− perror) log(1− perror) (13.14)

= Φ(1−2perror) (13.15)

whereΦ(x) = [(1+x) log(1+x)+(1−x) log(1−x)]/2. Depending on whether

the information between Alice and Bob is greater or the information that Eve can

gain is greater, the channel will be selected or not selected. Only the data from the

selected channel will be used in the key generation.

The final key rate between Alice and Bob is obtained by integrating the differ-

ence between Alice and Bob’s information and Eve’s information IAB(sA,mB)−

IE(sA,mB) weighted by the probabilitiespAB(sA,mB) over the post-selected re-
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gion. For a givenη andδ, this net information would depend on the post-selected

region as well as the distribution of Alice’s signal.

The regions to be post-selected are those in which Alice and Bob have a higher

mutual information than Alice and Eve or Bob and Eve. To proceed we shall need

to calculate Eve’s information or at least put a bound on it.
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Chapter 14

Eve’s information without thermal

noise

Before proceeding to the general case with transmission lossand noisy channel,

we recap and elaborate some results for the case of transmissions in lossy channels

without excess noise as presented in [52].

Section 14.1 introduces the scenario we will be analysing. In section 14.2,

we calculate the mutual information between Alice and Bob after post-selection

for a channel with vacuum noise. Section 14.3 analyses the security of the pro-

tocol under individual attacks. Finally, section 14.4 repeats the same analysis for

collective attacks.

14.1 Post-selection without thermal noise

We are going to study the security of the protocol in a lossy quantum channel

between Alice and Bob. Alice sends the coherent state|α〉 with α = xA + iyA. In
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a lossy but not noisy channel, when Bob repeatedly measures the amplitude and

phase quadratures on different copies of the state that she receives, the outcome

of Bob’s measurement will still have varianceσ2
V but the mean values will now be

(〈X〉α ,〈Y〉α) = (
√

ηxA,
√

ηyA).

The channel between Alice and Bob is modelled by a beam splitter with trans-

mittivity η where a vacuum state|0〉 enters through the unused port of the beam

splitter. For everyα, because the variance of Bob’s measurement isσ2
V , Bob is

certain that he has a pure state. Bob knows that he has the coherent state
∣
∣
√

ηα
〉

and not something else.

However, in the noisy case, when the variances of Bob’s quadrature measure-

ments are greater thanσ2
V , Bob will not know for certain the state he received

because, by only measuring theX andY quadratures, he is not doing a complete

tomography of the state. For example, he would not be able to unambiguously

reconstruct the state’s Wigner function. To do that he wouldhave to measure all

quadrature angles.

We attribute the loss in the channel to the actions of an adversary Eve. In the

beam splitter model, the second output of the beam splitter is kept by Eve. Hence,

for the input state|α〉, Eve will keep state
∣
∣
√

1−ηα
〉

in her record.

14.2 Mutual information between Alice and Eve

As the protocol goes, Bob will then announce the quadrature that he measures and

the absolute value of his measurement result. Suppose Bob chose theX quadra-

ture as his measurement basis. Then he will announcemB = |xB|. Subsequently
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Alice announces the absolute value of her signal corresponding to the measured

quadrature. In this case, Alice will announce the value ofsA = |xA|.

Eve would like to gain as much information as she can regarding the value of

Alice’s signal in the chosen quadrature, in this case theX quadrature. She would

not be interested in theY quadrature value as that value will not be used in the key

generation at all.

After Alice’s announcement ofsA, Eve will know that Alice encoded either

sA or −sA onto the amplitude quadrature. The parity of this encoding provides

the raw key. Since Eve does not know the value of Alice’s encoding in the phase

quadratureyA, her input states are then two mixed states obtained by integrating

Alice’s input states overyA

ρE(±sA) =
Z

dyA pA(yA)
∣
∣
∣

√

1−η(±sA + iyA)
〉〈√

1−η(±sA + iyA)
∣
∣
∣ .

(14.1)

Here pA(yA) is the probability for Alice to encode the signalyA in the phase

quadrature. To obtain an upper bound on Eve’s information, we provide Eve with

the actual value ofyA. Clearly, we are providing Eve with more power than she

originally has. In this case, Eve’s input state will be the two pure states

|ψE (±sA,yA)〉 =
∣
∣
∣

√

1−η(±sA + iyA)
〉

. (14.2)

For this input state, we shall find the amount of information Eve can obtain by

doing individual attacks (in section 14.3) and collective attacks (in section 14.4).

Both values depend only on the overlap between the two input states. The overlap
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between the two states is

f =
∣
∣
〈
ψE (+sA)

∣
∣ψE (−sA)

〉∣
∣= exp

(
−2s2

A(1−η)
)

(14.3)

which does not depend onyA as one would expect.

14.3 Post-selection: Individual attack, without ther-

mal noise

In this section, we consider the case where Eve carries out anindividual attack.

14.3.1 Information difference

The maximum information Eve can learn when she performs an individual attack

is given by the accessible information of Eve’s input states. In this case Eve’s input

state that she can measure to attack Alice or Bob would be|ψE (±sA)〉, which

does not depend on Bob’s measurement results. Using the result for accessible

information for two pure input states in section 2.4.1, we find that Eve’s accessible

information is

I ind
E (sA) = Φ

(√

1− f 2
)

(14.4)

where f = exp
(
−2s2

A(1−η)
)

is the absolute value of the inner product between

Eve’s input states. Figure 14.1 plots Eve’s information againstxA for transmission

η = 0.5. When Alice announces that the value ofsA is very large, Eve is very
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Figure 14.1: A bound for the mutual information between Alice and Eve for a
noiseless coherent state protocol with channel transmission η = 0.5 as a function
of Alice’s signal when Eve is limited to individual attacks.The information does
not depend on Bob’s measurement outcome.

confident that she can guess correctly Alice’s bit. However whensA is close to

zero, Eve has very little information on Alice’s bit.

From equation (13.15), we found that the mutual informationbetween Alice

and Bob was

IAB = Φ(1−2perror) (14.5)

where for noiseless transmission withδ = 0, the probability of error is

perror =
1

1+exp
(

2
√

ηsAmB

σ2
V

) . (14.6)

A contour plot for the mutual information between Alice and Bob is shown in

figure 14.2.
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Figure 14.2: Mutual information between Alice and Bob are shown as contours
for a noiseless coherent state protocol with channel transmission η = 0.5 as a
function of Alice’s signal and Bob’s measurement result.
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14.3.2 Post-selection region

The regions to be post-selected are those in which Alice and Bob have more in-

formation than Eve. The difference between the informationas a function ofxA

andxB is plotted in figure 14.3. This difference gives the theoretical limit for the

key rate. Data points that fall in the post-selected region would contribute to the

raw key generation. We see that the points having very large values ofxB and rel-

atively small values ofxA give Alice and Bob a high information advantage over

Eve. However, as the joint probability distribution is far from its maximum here,

we don’t expect that the majority of the data points to fall here.

The post-selected region is defined as the region where

IAB > I ind
E (14.7)

=⇒ Φ(1−2perror) > Φ
(√

1− f 2
)

(14.8)

=⇒ 1−2perror >
√

1− f 2 . (14.9)

The boundary of the post-selected region is obtained by solving

1− 2

1+exp
(

2
√

ηsAmB

σ2
V

) =
√

1−exp
(
−4s2

A(1−η)
)

(14.10)

which gives

mB =
σ2

V

2
√

ηsA
log




2

1−
√

1−exp
(
−4s2

A(1−η)
) −1



 . (14.11)

The post-selected region is shown in figure 14.3.
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Figure 14.3: Contour plot of the difference in information between Alice–Bob
and Alice–Eve for a noiseless coherent state protocol with channel transmission
η = 0.5 when Eve does individual attacks. The difference in information is plot-
ted as a function of Alice’s signal and Bob’s measurement outcome. The post-
selected regions, coloured in green, are those in which the difference is positive.
The red and blue dots are 5000 randomly simulated data pointswith Alice send-
ing randomly distributed coherent states having mean zero and variance 3σ2

V . In
the protocol, those data points lying outside the post-selected region will not be
included in the key-extraction scheme. The gradient of the blue line gives the ratio
σB/σA.



201

14.3.3 Alice’s distribution

Now that we know the key rate that each effective channel(sA,mB) provides, we

want our distribution of data points to be such that it gives us the maximum key

rate. We want a lot of points to fall in the high key rate regionand not too many

in the discarded region.

Alice can decide what states to send to Bob. For a particular value of xA that

she sends, Bob will obtain an outcomexB with a probability pB(xB|xA), which

is normally distributed with mean
√

ηxA and variance(1+ δ)σ2
V . For a given

sA = |xA|, the key rate between Alice and Bob would be

r ind
k (sA) =

Z

ΩI>0

dmB

(

IAB− I ind
E

)

pB(mB|sA) (14.12)

whereΩI>0 is the post-selected region. The key rate is plotted as a function of sA

in figure 14.4. From the plot, we find that the key rate is maximum when Alice’s

signal has the valuesA = 0.71.

In principle, Alice could just send the coherent states withxA = ±0.71 and

this would give a key rate rate between Alice and Bob of 0.1260 bits per signal.

But in practice it would be easier for Alice to send coherent states with a Gaussian

distribution rather than switching between some discrete set of coherent states.

To maximise the key rate, Alice will choose the variance of her Gaussian dis-

tribution such that

r ind
k =

Z

ΩI>0

dsA dmB

(

IAB− I ind
E

)

pAB(sA,mB) (14.13)

=
Z

dsAr ind
k (sA)pA(sA) (14.14)
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Figure 14.4: A plot of the key rate between Alice and Bob for a noiseless coherent
state protocol with channel transmissionη = 0.5 after doing post-selection as a
function of Alice’s signal when Eve does an individual attack. The maximum
key rate occurs when Alice sendssA = 0.71 for which the maximum key rate
extractable would be 0.1260 bits per signal.

is maximum. HerepA is Alice’s signal distribution having mean zero and vari-

anceσ2
A. This integration can be computed numerically. Some valuesof r ind

k cor-

responding to some chosen values of the varianceσ2
A are given in the following

table:

σ2
A Key rater ind

k

0.25 0.06080

0.50 0.06644

1.00 0.06198

4.00 0.03972

These values are plotted in figure 14.9 which shows the variation of rk as a func-

tion of the varianceσ2
A. The maximum key rate is 0.06644 bits per signal when

σ2
A = 0.51. This is the variance that Alice should use to maximise herkey rate.
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Figure 14.5: A plot of the key rate between Alice and Bob for a noiseless coherent
state protocol with channel transmissionη = 0.5 after doing post-selection as a
function of Alice’s signal varianceσ2

A when Alice sends a Gaussian distribution.
This figure is for individual attacks by Eve. The x-axis is normalised so that the
vacuum state has a varianceσ2

V = 0.25. The maximum is whenσ2
A = 0.51 for

which the attainable key rate is 0.06644 bits per signal.

14.3.4 Optimal variance and key rate

For different values of transmissionη, the optimal variances for Alice and the

maximum key rates Alice and Bob can get are summarised in the following table.
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η σ2
A Key rater ind

k

0 – 0

0.1 0.19 0.00005

0.2 0.30 0.00268

0.3 0.38 0.01332

0.4 0.44 0.03433

0.5 0.51 0.06644

0.6 0.58 0.11077

0.7 0.68 0.17028

0.8 0.84 0.25247

0.9 1.22 0.38074

1 ∞ 1

The key rate goes to zero as the transmissionη goes to zero. But in principle, it is

always positive for allη > 0.

14.4 Post-selection: Collective attack, without ther-

mal noise

In this section, we repeat the same analysis done in the previous section but for a

collective attack.

14.4.1 Information difference

When Eve does a collective attack, the maximum information she can gain is

given by the Holevo bound. After providing Eve the additional information about

Alice’s signal in the unmeasured quadrature, Eve’s input states are just two pure

states. For these two pure state inputs|ψE (±sA)〉, we found from section 2.4.2
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Figure 14.6: A bound for the mutual information between Alice and Eve for a
noiseless coherent state protocol with channel transmission η = 0.5 as a function
of Alice’s signal in a collective attack. The information does not depend on Bob’s
measurement outcome.

that the Holevo bound gives Eve’s maximum information to be

Icol
E (sA) = 1−Φ( f ) (14.15)

where f = exp
(
−2s2

A(1−η)
)

is the overlap between Eve two inputs. Figure 14.6

plots Eve’s information againstxA for transmissionη = 0.5. When Alice an-

nounces that the value ofsA is very large, Eve is very confident that she can guess

correctly Alice’s bit. However whensA is close to zero, Eve has very little infor-

mation on Alice’s bit.

The information between Alice and Bob depends only on the channel param-

eters. It does not depend on the type of attack that Eve does. As long as these

parameters are the same, the mutual information between Alice and Bob is still

IAB = Φ(1− perror), the same as in section 14.3.1 when Eve does an individual
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attack. This mutual information between Alice and Bob for transmissionη = 0.5

was plotted in figure 14.2.

14.4.2 Post-selection region

The difference between the mutual information between Alice and Bob and Eve’s

information is plotted in the contour plot in figure 14.7. Positive values of this

difference gives the maximum theoretical limit for the key rate at that point. The

points with positive key rate would be post-selected. Only data points that fall in

the post-selected region would contribute to the raw key generation.

The post-selected region is defined by the region with

IAB > Icol
E (14.16)

=⇒ Φ(1−2perror) > 1−Φ( f ) . (14.17)

14.4.3 Alice’s distribution

Now that we have the key rate that each effective channel(sA,mB) provides, we

want our distribution of points to be such that it give us the maximum net key rate.

We want a lot of points to be in the high key rate region and not too many in the

discarded region.

Alice can decide what states to send to Bob. For a particular value of xA that

she sends, Bob will obtain an outcomexB with a probability pB(xB|xA), which

is normally distributed with mean
√

ηxA and variance(1+ δ)σ2
V . For a given
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Figure 14.7: Contour plot of the difference in information between Alice–Bob
and Alice–Eve for a noiseless coherent state protocol with channel transmission
η = 0.5 when Eve does collective attacks. The difference in information is plotted
as a function of Alice’s signal and Bob’s measurement outcome. The post-selected
region, coloured in green, are those in which the differenceis positive. The red
dots are 5000 randomly simulated data points with Alice sending randomly dis-
tributed coherent states having mean zero and variance 3σ2

V . In the protocol, those
data points lying outside the post-selected region will notbe included in the key-
extraction scheme. The gradient of the blue line gives the ratio σB/σA.
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Figure 14.8: A plot of the key rate between Alice and Bob for a noiseless coherent
state protocol with channel transmissionη = 0.5 after doing post-selection as a
function of Alice’s signal when Eve does a collective attack. The maximum key
rate occurs when Alice sendssA = 0.67 for which the key rate would be 0.04819
bits per signal.

sA = |xA|, the key rate between Alice and Bob would be

rcol
k (sA) =

Z

ΩI>0

dmB

(

IAB− Icol
E

)

pB(mB|sA) (14.18)

whereΩI>0 is the post-selected region. The key rate is plotted in figure14.8.

From the graph, we see that the key rate is maximum whensA = 0.67.

In principle, Alice could just use the value ofsA = 0.67 and send the signals

havingxA = ±0.67. This would give a key rate rate of 0.04819 bits per signal.

But in practice it would easier for Alice to send coherent states with a Gaussian

distribution rather than switching between some discrete set of coherent states.
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Alice’s Gaussian distributionpA(sA) has mean zero and the variance is chosen

so that

rcol
k =

Z

ΩI>0

dsA dmB

(

IAB− Icol
E

)

pAB(sA,mB) (14.19)

=
Z

dsArcol
k (sA)pA(sA) (14.20)

is maximum. This integration can be computed numerically. Some values ofrcol
k

corresponding to some chosen values of the varianceσ2
A are given in the following

table:

σ2
A Key ratercol

k

0.25 0.02281

0.50 0.02443

1.00 0.02235

4.00 0.01401

These values are plotted in figure 14.9 which shows the variation of rcol
k as a

function of the varianceσ2
A. The key rate attains a maximum value of 0.02445

bits per signal whenσ2
A = 0.46. This is the variance that Alice should use to

maximise the key rate.

14.4.4 Optimal variance and key rate

For different values of transmissionη, the optimal variances for Alice and the

maximum key rates for Alice and Bob are summarised in the following table:
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Figure 14.9: A plot of the key rate between Alice and Bob for a noiseless coherent
state protocol with channel transmissionη = 0.5 after doing post selection as a
function of Alice’s signal varianceσ2

A when Alice sends a Gaussian distribution.
This figure is for collective attacks by Eve. The vacuum statehas a variance
σ2

V = 0.25. The maximum is whenσ2
A = 0.46 for which the attainable key rate is

0.02445 bits per signal.

η σ2
A Key ratercol

k

0 – 0

0.1 0.27 < 10−5

0.2 0.33 0.00018

0.3 0.38 0.00225

0.4 0.42 0.00935

0.5 0.46 0.02445

0.6 0.52 0.05054

0.7 0.59 0.09197

0.8 0.71 0.15777

0.9 0.99 0.27469

1 ∞ 1

The key rate goes to zero as the transmissionη goes to zero. But it remains

positive for all values ofη > 0.
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Chapter 15

Post-selection with thermal noise

We now return to the case when the transmission channel between Alice and Bob

is both lossy and noisy. In the previous chapter, we have seenthat the coherent

state post-selection protocol can tolerate loss in the channel when there is no ex-

cess noise. However in any practical implementations of theprotocol, there will

be some excess noise in the channel.

By a noisy channel with excess noise, we mean that when Alice sends the co-

herent state|α〉 with α = xA + iyA, Bob will not receive a coherent state. Instead,

when Bob measures the amplitude and phase quadratures, he will find the mean

values to be(〈XB〉α ,〈YB〉α) = (
√

ηxA,
√

ηyA) and both measurements to have vari-

ances var(XB)α = var(YB)α = (1+δ)σ2
V whereδ ≥ 0 is the excess noise andη is

the channel transmission. In this analysis, we assume that the excess noise in the

amplitude and phase quadratures are equal. If they are not equal up to some tol-

erance, Alice and Bob abort the protocol. Precisely what thattolerance should be

would depend on the security level Alice and Bob desire and theuncertainties in
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parameterising their channel. The details of these considerations would require

further studies beyond the scope of this thesis.

In this chapter, we want to study the performance of the protocol in the pres-

ence of excess noise. Some results from this chapter have been published else-

where [1, 54]. The effects of excess noise on the security of coherent state quan-

tum cryptography were also discussed by Heid and Lütkenhaus [25].

Section 15.1 gives the input states that Eve receives that she will use to learn

something about Alice and Bob’s communication. Section 15.2gives bounds on

Eve’s information for individual and collective attacks onAlice. Section 15.3

looks at the case when Eve does her attacks on Bob. Section 15.4discusses

whether it would be advantageous for Alice and Bob to do forward reconcilia-

tion or reverse reconciliation. Section 15.5 gives the noise threshold for secure

key distribution in both individual and collective attacks.

15.1 Eve’s input states

We want to bound Eve’s information on Alice and Bob’s bits whenwe restrict Eve

to a Gaussian attack. Before doing that, we shall find out what are the restrictions

on Eve’s input states. Once again, we model Eve’s eavesdropping via a beam

splitter with a mixed state entering through one of the ports. The situation is

depicted in figure 15.1.

The checks that Alice and Bob do would impose some restrictions on the

Gaussian state that enters through the vacuum portaVin . Since the state that Bob re-

ceives ataB must have the same variances in the amplitude and phase quadratures,

the state entering throughaVin must also have equal variances in both quadratures
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aA

aVin

aB

aE1

η

θin σin−

σin+

Figure 15.1: Beam splitter loss model for Eve’s eavesdropping in the coherent
state protocol with thermal noise. Alice sends a coherent state |α〉 = |xA + iyA〉
into aA, the first port of a beam splitter with transmissionη. A Gaussian state
from Eve enters the second port ataVin . This state has varianceσ2

th in both theX
andY quadratures. The state Bob receives at the outputaB is another Gaussian
state with variances(1+ δ)σ2

v in theX andY quadratures and a mean amplitude
of

√
ηxA + i

√
ηyA.
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with mean zero. We denote the variances in theX andY quadratures ofaVin by

var(XVin) = var(YVin) = σ2
th.

The variance of the thermal state throughaVin is related to the excess noise at

Bob’s output by

ησ2
V +(1−η)σ2

th = (1+δ)σ2
V , (15.1)

from which we get

σ2
th =

(

1+
δ

1−η

)

σ2
V . (15.2)

From section 11.4, the variances along theX andY quadratures are related to vari-

ance of the minimum-variance-quadratureσ2
in− and the variance of the maximum-

variance-quadratureσ2
in+ by

var(XVin) = σ2
in− cos2θin +σ2

in+ sin2θin = σ2
th , (15.3)

var(YVin) = σ2
in− sin2θin +σ2

in+ cos2θin = σ2
th , (15.4)

whereθin is the quadrature angle corresponding to minimum variance quadrature.

Solving these two equations, we getθin = π/4 for which

1
2

(
σ2

in− +σ2
in+

)
= σ2

th . (15.5)

Additionally, in order to satisfy the Heisenberg uncertainty relation, we must have

σin−σin+ ≥ σ2
V . The acceptable range ofσ2

in− andσ2
in+ is shown as the black line

in figure 15.2. This line can be parametrised by an eccentricity parameterε with
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0

σ2
th

2σ2
th

0 σ2
th 2σ2

th

minimum variance quadratureσ2
in−
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reσ2 in
+

Figure 15.2: Plot showing the acceptable Gaussian states that Eve can send into
the vacuum port of the beam splitter loss model in the coherent state protocol with
thermal noise. The black line denotes states that are acceptable to Bob where
1
2

(
σ2

in− +σ2
in+

)
= σ2

th. The quadrature squeezing angles for these states must be
θin = π/4. The blue line corresponds to pure states whereσin−σin+ = σ2

V . The two
blue dots corresponds to Eve injecting a 45 degrees pure squeezed state through
the vacuum port. At the red dot, Eve injects a thermal state, which could be
entangled to a second thermal state. The area shaded yellow are states that are not
physical as they would violate Heisenberg uncertainty relation.
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σ2
in− = (1− ε)σ2

th , (15.6)

σ2
in+ = (1+ ε)σ2

th . (15.7)

This line intersects the Heisenberg uncertainty limit when

σin−σin+ = σ2
V (15.8)

=⇒
√

(1− ε2)σ2
th = σ2

V (15.9)

=⇒ ε = ±
√

1− σ4
V

σ4
th

(15.10)

giving the valid range forε as

−
√

1− σ4
V

σ4
th

≤ ε ≤
√

1− σ4
V

σ4
th

. (15.11)

The two end points of the line correspond to two pure squeezedstates. Atε =

0, the noise corresponds to that of a true thermal state with equal noise in all

quadratures. Eve would be restricted to using states at thispoint if Alice and Bob

could do a complete characterisation of the channel.

15.1.1 The input and output states

We let Eve create the thermal state entering the quantum channel ataVin by mixing

two orthogonally squeezed states through a 50/50 beam splitter. The thermal state

created will be correlated to another thermal state which Eve is free to keep and

measure later on. The whole setup with three inputs and outputs is shown in

figure 15.3.
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aA

aV1

aV2

aVin

aB

aE1

aE2
η

1
2

θ1

σ1+

σ1−

θ2

σ2+

σ2−

Figure 15.3: Beam splitter model for the creation of Eve’s eavesdropping thermal
state in the coherent state protocol with thermal noise. Eve’s thermal state is
created by injecting two pure squeezed state through a 50/50 beam splitter. The
rest of the model remains the same. Alice sends a coherent state into aA, the
first port of a beam splitter with transmissionη. Eve’s noisy Gaussian state with
varianceσ2

th in the amplitude and phase quadratures enters the second port ataVin.
The state Bob receives at the outputaB is another noisy Gaussian state.
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The three inputs are Alice’s coherent state ataA and Eve’s two squeezed states

ataV1 andaV2 . The Wigner function for Alice’s coherent state is centred at

~xA = (xA,yA) (15.12)

and has the covariance matrix

CA =






1 0

0 1




 . (15.13)

We take both of Eve’s inputs to be pure squeezed states centred at(0,0) and with

covariance matrix

CV1 =






σ2
1− cos2θ1 +σ2

1+ sin2θ1
(
σ2

1−−σ2
1+

)
sinθ1cosθ1

(
σ2

1−−σ2
1+

)
sinθ1cosθ1 σ2

1− sin2θ1 +σ2
1+ cos2θ1




 (15.14)

and

CV2 =






σ2
2− cos2θ2 +σ2

2+ sin2θ2
(
σ2

2−−σ2
2+

)
sinθ2cosθ2

(
σ2

2−−σ2
2+

)
sinθ2cosθ2 σ2

2− sin2θ2 +σ2
2+ cos2θ2




 (15.15)

whereσ1−σ1+ = σ2
V andσ2−σ2+ = σ2

V and the anglesθ1 andθ2 are the squeezed

quadratures. As Bob checks that the variances in both his quadratures are equal,

this imposes the two constraints

1
2

[(
σ2

1− cos2θ1 +σ2
1+ sin2θ1

)
+
(
σ2

2− cos2θ2 +σ2
2+ sin2θ2

)]

= σ2
th (15.16)
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and

1
2

[(
σ2

1− sin2θ1 +σ2
1+ cos2θ1

)
+
(
σ2

2− sin2θ2 +σ2
2+ cos2θ2

)]

= σ2
th . (15.17)

For a fixed value ofθ1 andθ2, these constraints determine a unique value (up to

permutations) of the squeezed variancesσ1− andσ2−.

SincexA andyA are not correlated, it is reasonable to chooseθ1 = 0 andθ2 =

π/2 and treat the two quadratures independently. With this choice, we haveσ1− =

σ2− and the input covariance matrix becomes

C =









CA 0 0

0 CV1 0

0 0 CV2









(15.18)

=



















σ2
V 0 0 0 0 0

0 σ2
V 0 0 0 0

0 0 σ2
1− 0 0 0

0 0 0 σ2
1+ 0 0

0 0 0 0 σ2
2+ 0

0 0 0 0 0 σ2
2−



















. (15.19)

Since theX andY quadratures are uncorrelated throughout the protocol, we

restrict the analysis to only theX quadrature. That is, we assume that Bob mea-

sured theX quadrature. The action of the two beam splitters on theX quadrature
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is described by the following matrix

M =









√
η −√

1−η 0
√

1−η
√

η 0

0 0 1

















1 0 0

0 1√
2

− 1√
2

0 1√
2

1√
2









(15.20)

=









√
η −

√
1−η

2

√
1−η

2
√

1−η
√

η
2 −

√
η
2

0 1√
2

1√
2









. (15.21)

Hence, when Alice sends the coherent state with real amplitudexA the output state

will have a mean









µB

µE1

µE2









=









√
η −

√
1−η

2

√
1−η

2
√

1−η
√

η
2 −

√
η
2

0 1√
2

1√
2

















xA

0

0









(15.22)

=









√
ηxA

√
1−ηxA

0









(15.23)
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and covariance matrix

ΣB,E1,E2 =









√
η −

√
1−η

2

√
1−η

2
√

1−η
√

η
2 −

√
η
2

0 1√
2

1√
2

















σ2
V 0 0

0 σ2
1− 0

0 0 σ2
1+









(15.24)

×









√
η −

√
1−η

2

√
1−η

2
√

1−η
√

η
2 −

√
η
2

0 1√
2

1√
2









T

(15.25)

=









ησ2
V +(1−η)σ2

th

√

(1−η)η
(
σ2

V −σ2
th

) √
1−ησ2

k
√

(1−η)η
(
σ2

V −σ2
th

)
(1−η)σ2

V −ησ2
k −√

ησ2
k

√
1−ησ2

k −√
ησ2

k σ2
th









(15.26)

where

σ2
th =

1
2

(
σ2

1+ +σ2
1−
)

(15.27)

and

σ2
k =

1
2

(
σ2

1+−σ2
1−
)

. (15.28)

Now in the protocol, Bob will announce the absolute value of his measurement

result. At this point, we can find out what is Eve’s reduced state if Bob measured

the outcomexB by taking the conditioned Gaussian state after conditioning on

Bob’s outcome. But it turns out the computation will be easier if we not do so yet.
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We shall keep the output state as a three-mode Gaussian statebetween Eve and

Bob.

15.1.2 Eve’s reduced input

After Alice announces the absolute value of her signalsA = |xA| and Bob an-

nounces the absolute value of his measurement outcomemB = |xB|, Eve knows

that the reduced state she holds will be in one of the four possible states

{|ψE (+sA,+mB)〉 , |ψE (+sA,−mB)〉 , |ψE (−sA,+mB)〉 , |ψE (−sA,−mB)〉}

with probabilities we denote by

{pE(+,+), pE(+,−), pE(−,+), pE(−,−)} .

For example, the probability that Eve has the state|ψE(+sA,−mB)〉 would be

pE(+,−) =
pB(−mB|+sA)

N
(15.29)

wherepB(xB|xA) is the probability density corresponding to Bob measuring the

outcomexB given that Alice sent the signalxA which is given in section 13.1.N is

the normalisation

N = pB(+mB|+sA)+ pB(+mB|−sA)

+ pB(−mB|+sA)+ pB(−mB|−sA)

(15.30)

so thatpE(+,+)+ pE(+,−)+ pE(−,+)+ pE(−,−) = 1.
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We normalise the states that Eve receives with

〈
ψE(xA,xB)

∣
∣ψE(xA,xB)

〉
= pB(xB|xA) . (15.31)

The overlap between any two of Eve’s input states can be computed by evaluating

∣
∣
∣

〈
ψE (xA,xB)

∣
∣ψE

(
x′A,x′B

)〉
∣
∣
∣

2

= TrE
{

TrB{ρBE(xA) |xB〉〈xB|}TrB
{

ρBE(x′A)
∣
∣x′B
〉〈

x′B
∣
∣
}}

.

(15.32)

The details of the integration can be found in appendix E. Here we just collect the

results for the inner products. The normalisation is

〈
ψE (xA,xB)

∣
∣ψE (xA,xB)

〉
=

1
√

2π(1+δ)σ2
V

exp

[

−(xB−
√

ηxA)2

2(1+δ)σ2
V

]

. (15.33)

The terms that differentiate Eve’s inputs for attacking Alice from attacking Bob

are

〈
ψE (xA,xB)

∣
∣ψE (xA,−xB)

〉
=

1
√

2π(1+δ)σ2
V

exp

[

−(1+δ)2x2
B +ηx2

A

2(1+δ)σ2
V

]

,

〈
ψE (xA,xB)

∣
∣ψE (−xA,xB)

〉
=

1
√

2π(1+δ)σ2
V

exp

[

−x2
B +(1+δ)x2

A

2(1+δ)σ2
V

]

.

(15.34)
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Finally the inner product between the cross terms for matched and unmatched

Alice’s and Bob’s data is

〈
ψE (xA,xB)

∣
∣ψE (−xA,−xB)

〉

=
1

√

2π(1+δ)σ2
V

exp

[

−(x2
A−2

√
ηxAxB +(1+δ)x2

B

2σ2
V

]

.
(15.35)

These inner products define the structure of Eve’s input states which will be given

in the next two sections.

15.2 Bounding Eve’s information when Eve attacks

Alice

To attack Alice, Eve’s input states would be the two states

ρE(+sA) =
1
N

(|ψE (+sA,+mB)〉〈ψE (+sA,+mB)|

+ |ψE (+sA,−mB)〉〈ψE (+sA,−mB)|)
(15.36)

and

ρE(−sA) =
1
N

(|ψE (−sA,+mB)〉〈(−sA,+mB)|

+ |ψE (−sA,−mB)〉〈(−sA,−mB)|)
(15.37)

with equal probabilities and where the normalisation

N = pB(+mB|+sA)+ pB(+mB|−sA)

+ pB(−mB|+sA)+ pB(−mB|−sA) .

(15.38)



225

The two states are normalised such that

Tr{ρE(+sA)} = Tr{ρE(−sA)} =
1
2

. (15.39)

Each of these states are of rank two and together they occupy afour dimensional

space. To represent the input states in some numerical basis, we need to evalu-

ate the inner products between the constituents
〈
ψE(xA,xB)

∣
∣ψE(x′A,x′B)

〉
. Once

we have a representation for the states, it is easy to calculate the Holevo quantity

to get an upper bound on Eve’s information for collective attacks or somewhat

harder, the accessible information to get a bound on Eve’s information for indi-

vidual attacks.

While these quantities would give a tight bound on Eve’s information, here we

are interested in a bound that can be easily computed. For that purpose, we shall

give Eve some additional information. We tell Eve whether Alice and Bob have

matching parity or mismatched parity. With this information, with probability

p1 ≡
pB(mB|sA)+ pB(−mB|−sA)

N
=

2pB(mB|sA)

N
, (15.40)

Eve would have to distinguish between the two equally likelypure states

|ψE (+sA,+mB)〉 and|ψE (−sA,−mB)〉. Also, with probability

p2 ≡ 1− p1 =
pB(−mB|sA)+ pB(mB|−sA)

N
=

2pB(−mB|sA)

N
, (15.41)

Eve would have to distinguish between the two equally likelypure states

|ψE (+sA,−mB)〉 and|ψE (−sA,+mB)〉. Now that Eve only distinguishes between

two pure states, the information she gains can be written down explicitly. From
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section 2.4, we find that for individual attacks, Eve’s information will be bounded

by

I ind
EA (sA,mB) ≤ p1Φ

(√

1− f 2
1

)

+ p2Φ
(√

1− f 2
2

)

, (15.42)

while for collective attacks, Holevo’s bound gives

Icol
EA(sA,mB) ≤ p1(1−Φ( f1))+ p2(1−Φ( f2)) (15.43)

where f1 and f2 are the normalised overlaps

f1 =

∣
∣
〈
ψE (sA,mB)

∣
∣ψE (−sA,−mB)

〉∣
∣

〈
ψE (sA,mB)

∣
∣ψE (sA,mB)

〉 , (15.44)

f2 =

∣
∣
〈
ψE (sA,−mB)

∣
∣ψE (−sA,mB)

〉∣
∣

〈
ψE (sA,−mB)

∣
∣ψE (sA,−mB)

〉 . (15.45)

The inner products in the numerators and denominators off1 and f2 were quan-

tities that are given in section 15.1.2. ThatIEA is an upper bound is clear since

this is the maximum amount of information Eve can obtain if she uses the par-

ity match–mismatch announcements. Ignoring these announcements would only

reduce Eve’s ability to gain information.

Eve’s information bound depends on the channel excess noiseand transmis-

sion. For excess noiseδ = 0.2 and transmissionη = 0.5, this bound for individual

and collective attacks are plotted in figures 15.4 and 15.5 respectively. In both

cases, Eve’s information becomes progressively larger assA and mB increases.

When eithersA or mB is larger than 2.0, Eve’s information is already very close to

1 for both the individual and collective attacks.
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Figure 15.4: Contour plot of Eve’s information bound for individual attacks in the
coherent state protocol with excess noise. The amount of excess noise isδ = 0.2
and the channel transmission isη = 0.5. Eve’s information is plotted as a function
of Alice’s signal and Bob’s measurement outcome.
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Figure 15.5: Contour plot of Eve’s information bound for collective attacks in the
coherent state protocol with excess noise. The amount of excess noise isδ = 0.2
and the channel transmission isη = 0.5. Eve’s information is plotted as a function
of Alice’s signal and Bob’s measurement outcome.



229

15.3 Bounding Eve’s information when Eve attacks

Bob

Instead of attacking Alice, Eve could instead choose to attack Bob. In this case,

Eve’s input states would be

ρE(+mB) =
1
N

(|ψE (+sA,+mB)〉〈ψE (+sA,+mB)|

+ |ψE (−sA,+mB)〉〈ψE (−sA,+mB)|)
(15.46)

and

ρE(−mB) =
1
N

(|ψE (+sA,−mB)〉〈(+sA,−mB)|

+ |ψE (−sA,−mB)〉〈(−sA,−mB)|)
(15.47)

both having equal probability. By repeating a similar analysis that was done for

the case when Eve attacks Alice, we can get a bound on Eve’s information for

attacking Bob. It turns out that for individual attack, the accessible information is

bounded by

I ind
EB (sA,mB) ≤ p1Φ

(√

1− f 2
1

)

+ p2Φ
(√

1− f 2
2

)

, (15.48)

while for collective attacks, Holevo’s bound gives

Icol
EB(sA,mB) ≤ p1(1−Φ( f1))+ p2(1−Φ( f2)) , (15.49)
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which are the same expressions that were obtained when Eve attacks Alice. So

with the additional information on whether Alice and Bob’s bits match or not, it

does not matter whether Eve attacks Alice or Bob.

15.4 Direct or reverse reconciliation

However in practice, Eve does not have the parity match–mismatch information

and the actual accessible information or Holevo quantity when Eve attacks Alice

and when Eve attacks Bob would in general be different. They would only be

the same when Eve’s inputs for both cases are unitarily equivalent. This happens

when

〈
ψE (sA,mB)

∣
∣ψE (sA,−mB)

〉
=
〈
ψE (sA,mB)

∣
∣ψE (−sA,mB)

〉
(15.50)

=⇒ exp

[

−(1+δ)2m2
B +ηs2

A

2(1+δ)σ2
V

]

= exp

[

−m2
B +(1+δ)s2

A

2(1+δ)σ2
V

]

(15.51)

=⇒ mB = ±
√

1+δ−η
(1+δ)2−1

sA . (15.52)

Along this line Eve can get exactly the same information fromAlice as she can

from Bob. In the region

−
√

1+δ−η
(1+δ)2−1

sA < mB <

√

1+δ−η
(1+δ)2−1

sA , (15.53)

Alice would announce a relatively big value ofsA compared to Bob’s announced

mB. In that case Eve shares more information with Alice than with Bob. Hence

it would be more advantageous if Alice and Bob do reverse reconciliation. That

is, we use Bob’s raw key as a reference and Alice corrects her keys to match
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Bob’s. The one way post-processing is done by Bob sending classical information

through the public channel.

Outside this region, Eve has more information about Bob’s rawkey than about

Alice’s raw key. So direct reconciliation, where now Alice’s raw key is used as a

reference, would give Alice and Bob a higher key rate.

For the bounds derived in this thesis, we recall that Eve’s information with

Alice is the same as her information with Bob. Hence the results on the bounds

on the key rates will be valid regardless of whether Alice andBob do a direct

reconciliation or a reverse reconciliation.

15.5 Noise threshold

As long as there are some values ofsA andmB such that Alice and Bob share more

information compared to Eve’s information, there will a non-empty post-selection

region and in principle the key rate would be positive.

For a fixed transmission rate, as the excess noise increases,the size of the post-

selection region will reduce. Beyond some noise threshold, Eve’s information will

become greater than Alice and Bob’s information for all values ofsA andmB. For

example, whenδ > 2η, the state between Alice and Bob becomes separable. In

this case, Eve can do a classical intercept and resend attackfor which IE > IAB for

all values ofsA andmB [38].

To find the noise threshold, we shall solve for the curve wherethe bound on

Eve’s information is equal to Alice and Bob’s information

IE = IAB . (15.54)
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Since at the noise threshold, Eve’s information will be greater than Alice and

Bob’s for all values ofsA andmB, we can consider the case whensA is large.

ForsA ≫ 1, as long asmB 6= 0,

p1

p2
= exp

[

−(mB−
√

ηsA)2

2(1+δ)σ2
V

+
(−mB−

√
ηsA)2

2(1+δ)σ2
V

]

(15.55)

= exp

[
2
√

ηmBsA

(1+δ)σ2
V

]

≫ 1 (15.56)

=⇒ p1 ≫ p2 . (15.57)

This means that whensA ≫ 1, Alice and Bob will most likely get correlated bits.

Eve practically just has to distinguish between the two purestates|ψE (sA,mB)〉

and|ψE (−sA,−mB)〉. Eve’s information for individual attacks will be

I ind
E ≈ Φ

(√

1− f 2
1

)

(15.58)

and for collective attacks, it will be

Icol
E ≈ 1−Φ( f1) (15.59)

wheref1 is the properly normalised inner product between Eve’s mostlikely input

as given in equation (15.44). The approximation gets betterwith largersA.
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15.5.1 Individual attacks

Equating Eve’s information to Alice and Bob’s information, we find that for indi-

vidual attacks, the post-selection boundary for largesA is

3Φ
(√

1− f 2
1

)

= Φ(1−2perror) (15.60)

=⇒
√

1− f 2
1 = 1−2perror . (15.61)

Since f1 ≪ 1, we make the approximation

1− 1
2

f 2
1 ≈ 1−2perror (15.62)

=⇒ f 2
1 = 4perror . (15.63)

Substituting the expression forf1 from equation (15.44) and forperror from equa-

tion (13.12), we get

exp

[

−2(s2
A−2

√
ηsAmB+(1+δ)m2

B)
2σ2

V

]

exp

[

−2(mB−
√

ηsA)2

2(1+δ)σ2
V

] = 4exp

[

−2
√

ηsAmB

(1+δ)σ2
V

]

. (15.64)

Taking log on both sides and dropping constant terms, we obtain

−2
(
s2
A−2

√
ηsAmB +(1+δ)m2

B

)

2σ2
V

+
2(mB−

√
ηsA)2

2(1+δ)σ2
V

≈−2
√

ηsAmB

(1+δ)σ2
V

(15.65)

=⇒ (2δ+δ2)m2
B−2

√
η(1+δ)sAmB +(1−η+δ)s2

A = 0 . (15.66)
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Solving formB gives two solutions

mB =

√
η(1+δ)±

√

η(1+δ)2−δ(2+δ)(1−η+δ)

(2δ+δ2)
sA . (15.67)

For largesA, the post-selection boundary would asymptote to these two lines.

When the term under the radical is zero, the two lines will become one and the

post-selection region becomes empty. Therefore the noise thresholdδ0 is obtained

by solving forδ0 in the cubic equation

η(1+δ0)
2−δ0(2+δ0)(1−η+δ0) = 0 (15.68)

=⇒ −δ3
0 +δ2

0(2η−3)+δ0(4η−2)+η = 0 . (15.69)

Solving this equation, we find that for every value of 0≤ η ≤ 1, there exist exactly

one solution forδ0 that is greater than or equal to zero. This solution is plotted in

figure 15.6 as a function ofη. For channels with excess noise above this line, no

secure communication is possible.

15.5.2 Collective attacks

To find the noise threshold for collective attacks, we equateEve’s information to

Alice and Bob’s information

1−Φ( f1) = Φ(1−2perror) . (15.70)
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Figure 15.6: Plot of the excess noise thresholdδ0 for secure communication as
a function for the channel transmissionη for the coherent state protocol with
thermal noise. The threshold is obtained by solving equation (15.69). Atη = 0.5,
the excess noise threshold is 0.4516.

Since bothf1 and perror are small whensA is large, if we keep only first order

terms, we obtain the approximation

1− f 2
1

2ln2
≈ 1+

1− perror

ln2
ln(1− perror)+

perror

ln2
ln perror (15.71)

=⇒ −1
2

f 2
1 = (1− perror) ln(1− perror)+ perrorln perror (15.72)

=⇒ −1
2

f 2
1 ≈ (1− perror)

(

−perror−
p2

error

2

)

+ perrorln perror (15.73)

=⇒ −1
2

f 2
1 ≈−perror . (15.74)

After substituting the expressions forf1 andperror, taking log and dropping con-

stant terms, we find that this equality gives the same asymptotic behaviour of the

post-selection region as the individual attacks

(2δ+δ2)m2
B−2

√
η(1+δ)sAmB +(1−η+δ)s2

A = 0 . (15.75)
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Hence the noise threshold for the collective attacks is the same as the noise thresh-

old for the individual attacks.
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Chapter 16

Effects of excess noise at

transmission = 0.5

In this chapter, we look in greater detail at the key rates between Alice and Bob

when their channel is contaminated by various degrees of excess noise. Sec-

tion 16.1 studies the case when Eve does an individual attackwhile section 16.2

gives the results for collective attacks. Both are done for a channel transmission

rate of 50%. For a single-mode fibre with an attenuation of 0.5 dB/km at a fre-

quency of 1550 nm, this would correspond to a fibre length of 6 km.

16.1 Individual attack

Using the bound on Eve’s accessible information that we had in equation (15.42)

of the previous chapter, we can now find the key rate between Alice and Bob after

post-selection.
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16.1.1 Excess noise = 0.2

We work out the details for a particular value of excess noiseδ = 0.2. This is

a large excess noise compared to that typically seen in both free space and fibre

based quantum key distribution experiments which is usually less than 0.01 even

for large transmission losses [30, 36]. A large excess noisevalue was chosen in

this sub-section so that its effects would be more prominent.

Figure 16.1 gives a contour plot of the key rate at each point of Alice’s sig-

nal and Bob’s measured result with excess noiseδ = 0.2. The key rate is given

by the difference in Alice–Bob’s mutual information, equation (13.15), and Eve’s

information, equation (15.42), for each value of Alice’s signalsA and Bob’s mea-

surement outcomemB.

For each value of Alice’s signalsA, the key rate between Alice and Bob is ob-

tained by integrating the individual key rate weighted against Bob’s measurement

outcome probabilities

r ind
k (sA) =

Z

ΩI>0

dmB

(

IAB− I ind
E

)

pB(mB|sA) (16.1)

whereΩI>0 is the post-selection region. The key rate is plotted in figure 16.2 as

a function ofsA. For values ofsA below a certain thresholdsA0 = 0.6613, the

key rate is exactly zero since the post-selection region is empty. For all values

of sA > sA0, the key rate will remain positive. But it becomes very small after sA

becomes too large.

In our protocol Alice’s signals follow a Gaussian distribution. The final key

rate will depend on the variance of this distribution. The dependence of the key
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Figure 16.1: Contour plot of the key rate and post-selection region for individual
attacks in the coherent state protocol with excess noise. The amount of excess
noise isδ = 0.2 and the channel transmission isη = 0.5. The key rate is plotted as
a function of Alice’s signal and Bob’s measurement outcome. The post-selection
regions, coloured in green, are those in which the key rate ispositive. The dotted
black line marks the point where Eve can gain the same amount of information
from Alice as she can from Bob. For regions below (above) this line, Eve can get
more information from Alice (Bob). The post-selection region asymptotes to the
two solid black lines.
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Figure 16.2: Plot of the key rate between Alice and Bob as a function of Alice’s
signal for the coherent state protocol with excess noise when Eve does individual
attacks. The plot is for excess noiseδ = 0.2 and transmissionη = 0.5. The
maximum key rate occurs when Alice sendssA = 0.98 for which the key rate
would be 0.01191 bits per signal. For values ofsA < 0.6613, the post-selection
region is empty and the key rate becomes exactly zero.

rate on Alice’s variance is plotted in figure 16.3. It has a maximum value of

r ind
k = 0.0029990 bits per signal whenσ2

A = 1.15 in units whereσ2
V = 0.25.

16.1.2 Different values of excess noise

At η = 0.5, we find from figure 15.6 that the noise threshold for positive key rate

is δ0 = 0.4516. As the amount of excess noise increases, the post-selection region

becomes smaller. Only large values ofsA andmB would yield a positive key rate.

But for large values ofsA andmB, the key rate is very low. Hence we can expect

Alice’s optimal variance would increase with excess noise while the final key rate

would decrease.
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Figure 16.3: Plot of the net key rate as a function of Alice’s varianceσ2
A in the

coherent state protocol with excess noise when Eve does an individual attack. The
amount of excess noise isδ = 0.2 and the channel transmission isη = 0.5. The
vacuum state is normalised toσ2

V = 0.25. The maximum key rate is 0.002999 bits
per signal atσ2

A = 1.15.

Repeating the analysis done in the previous section for different values of

excess noise up toδ0, the optimal variances and net key rates are summarised in

the following table:

δ σ2
A key rater ind

k

0 0.51 0.0664407

0.05 0.66 0.0345575

0.10 0.80 0.0174171

0.15 0.96 0.0079142

0.20 1.15 0.0029990

0.25 1.42 0.0008229

0.30 1.83 0.0001199

0.35 2.61 0.0000038

0.40 4.84 3.8×10−10

0.45 – < 10−10

0.45161 – 0
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In theory, the key rates are always positive whenδ < δ0. But from a practical

point of view, for example whenδ is 0.40, the key rate is already so small that the

protocol becomes impractical.

In an actual experiment, the amount of excess noise would typically not be

larger thanδ = 0.05. At this value of excess noise, if Alice’s variance is chosen

to be near its optimal value, the key rate is reduced by approximately half. This

means that the protocol would still be practical despite theexcess noise.

16.2 Collective attack

We repeat the analysis of the previous section for collective attacks. Everything is

similar except that we now use the Holevo bound (15.43) to bound Eve’s informa-

tion. With this, we can once again find the key rate between Alice and Bob after

post-selection.

16.2.1 Excess noise = 0.2

Again, we work out in greater detail for the case whenδ = 0.2. Figure 16.4 gives

a contour plot of the key rate at each point of Alice’s signal and Bob’s measured

result when the excess noiseδ = 0.2 for a collective attack.

For each value of Alice’s signalsA, the key rate between Alice and Bob is ob-

tained by integrating the individual key rate weighted against Bob’s measurement

outcome probabilities:

rcol
k (sA) =

Z

ΩI>0

dm
(

IAB− Icol
E

)

pB(mB|sA) (16.2)
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Figure 16.4: Contour plot of the key rate and post-selection region for collective
attacks in the coherent state protocol with excess noise. The amount of excess
noise isδ = 0.2 and the channel transmission isη = 0.5. The key rate is plotted as
a function of Alice’s signal and Bob’s measurement outcome. The post-selection
regions, coloured in green, are those in which the key rate ispositive. The dotted
black line marks the point where Eve can gain the same amount of information
from Alice as she can from Bob. For regions below (above) this line, Eve can get
more information from Alice (Bob). The post-selection region asymptotes to the
two solid black lines.
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Figure 16.5: Plot of the key rate between Alice and Bob as a function of Alice’s
signal for the coherent state protocol with excess noise when Eve does individual
attacks. The plot is for excess noiseδ = 0.2 and transmissionη = 0.5. The
maximum key rate occurs when Alice sendssA = 1.23 for which the key rate
would be 0.000372 bits per signal. For values ofsA < 0.9625, the post-selection
region is empty and the key rate becomes exactly zero.

whereΩI>0 is the post-selection region. The key rate is plotted in figure 16.5.

We see in this plot that for all values ofsA below the thresholdsA0 = 0.9625, the

key rate is exactly zero since the post-selection region is empty. For all values of

sA > sA0, the key rate remains positive but the actual value becomes very small as

sA becomes very large.

In our protocol Alice’s signals follow a Gaussian distribution. The final key

rate will depend on the variance of this distribution. This dependence is plotted

in figure 16.6 and it has a maximum value ofrcol
k = 0.0000632 bits per signal at

σ2
A = 1.73 in units whereσ2

V = 0.25.
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Figure 16.6: Plot of the net key rate as a function of Alice’s varianceσ2
A in the

coherent state protocol with excess noise when Eve does a collective attack. The
amount of excess noise isδ = 0.2 and the channel transmission isη = 0.5. The
vacuum state is normalised toσ2

V = 0.25. The maximum key rate is 0.0000632
bits per signal atσ2

A = 1.73.

16.2.2 Different values of excess noise

At η = 0.5, we find from figure 15.6 that the noise threshold for positive key rate

is δ0 = 0.4516. Repeating the analysis done in the previous section fordiffer-

ent values of excess noise up toδ0, the optimal variances and net key rates are

summarised in the following table:
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δ σ2
A key ratercol

k

0 0.46 0.0244538

0.05 0.75 0.0072922

0.10 0.99 0.0021343

0.15 1.30 0.0004753

0.20 1.73 0.0000632

0.25 2.39 0.0000032

0.30 3.57 2.0×10−8

0.35 6.38 6.5×10−13

0.40 8.19 1.3×10−15

0.45 – < 10−15

0.45161 – 0

In theory, the key rates would always be positive as long asδ < δ0. However in

practice, when the key rates becomes too small the protocol would be impractical.

Whenδ = 0.30, the key rate is already of the order 10−8.

In an actual experiment, the amount of excess noise would typically not be

larger thanδ = 0.05. At this value of excess noise, if Alice’s variance is chosen

to be near its optimal value, the key rate is reduced by a factor of 3.4. This means

that the protocol would still remain practical despite the excess noise.
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Chapter 17

Conclusion and outlook for part two

In the second part of the thesis, we studied the security thresholds as well as

the key rates for the coherent state continuous variable quantum key distribution

protocol in the presence of Gaussian excess noise. By providing Eve with the

additional information on Alice’s unmeasured quadrature and whether Alice and

Bob’s raw bits match or not, we derived an upper bound on Eve’s information. We

found that the protocol can remain secure even in the presence of excess noise in

the channel.

The upper bound for collective attacks can be made tighter without giving Eve

the match–mismatch bits information. Applying Holevo’s bound directly on Eve’s

input states given in sections 15.2 and 15.3 would give us a tighter upper bound

on Eve’s information. It is worth investigating how the key rate will improve if

we use this tighter bound.

This thesis proves the security in the limit of an infinite keylength where the

parameters of the channel can be found with arbitrary precision. In practice, to

do the post-processing from the raw data to the final secret keys on a very large
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string of raw bits is computationally intensive. This sets apractical limit on the

key length. Within this statistical limit, the distribution that Alice and Bob see

when they characterise their channel will never be perfectly Gaussian. The final

key rates after accounting for the finite key length would need to be investigated.

The Gaussian attack that was considered in this thesis is just one special attack

that Eve can perform while still ensuring a Gaussian joint distribution between

Alice and Bob in the measured quadratures. More generally, Eve can perform a

Gaussian attack by inserting a 45 degrees squeezed state instead of a thermal state

through the empty port of the beam splitter in figure 15.1. It remains to be seen if

this will provide Eve with more information.

Eve need not be restricted to doing a Gaussian attack. Despite doing a non-

Gaussian attack, she may still simulate a thermal noise in the channel between

Alice and Bob as long as she can engineer her attack such that the amplitude and

phase quadratures of Bob’s state remains Gaussian. To study this attack, it is not

enough just to keep track on the means and covariances of the input states as we

have done in the thesis. A more general approach would have tobe used. One

way to do this would be to express the input and output states in some continuous

quadrature basis.

The effects of practical imperfections when conducting theexperiment would

also reduce the actual secure key rate. For example if the quantum source from

Alice to Bob was not a single propagating spatial mode, and some of the Alice’s

signal is found in other modes of the channel, then Eve might be able to tap those

channels to gain additional information about Alice and Bob’s communications.

In the current protocol, we say that Alice and Bob will abort the protocol if

the joint distribution that they check for is not Gaussian. However we can ask if
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the protocol remains secure if the noise that Alice and Bob seeis not Gaussian. In

which direction and by how much will the key rate change if Alice and Bob get

a skewed joint distribution? This would correspond to Eve doing an asymmetric

attack.
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Appendix E

Inner products between the

constituents of Eve’s input states

In this appendix, we shall evaluate the inner products between Eve’s reduced states

given Alice’s signal and Bob’s outcome. These states are defined in section 15.1.2

and make up Eve’s input states. The situation is depicted in figure E.1. Eve’s

four reduced sub-normalised states when Alice sendsxA and Bob measures the

outcomexB are

{|ψE (+xA,+xB)〉 , |ψE (+xA,−xB)〉 , |ψE (−xA,+xB)〉 , |ψE (−xA,−xB)〉} .

We normalise the states according to

〈
ψE(xA,xB)

∣
∣ψE(xA,xB)

〉
= pB(xB|xA) (E.1)

wherepB(xB|xA) is the probability for Bob to obtain the outcomexB when Alice

encodes the signalxA onto the amplitude quadrature. To attack Alice, Eve’s two
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Figure E.1: The beam splitter model for the output and input states in the coher-
ent state protocol with thermal noise when Alice inputs a coherent state and Eve
creates an EPR state.
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sub-normalised inputs are

ρ̂E(+xA) =
1
N

(|ψE (+xA,+xB)〉〈ψE (+xA,+xB)|

+ |ψE (+xA,−xB)〉〈ψE (+xA,−xB)|)
(E.2)

and

ρ̂E(−xA) =
1
N

(|ψE (−xA,+xB)〉〈(−xA,+xB)|

+ |ψE (−xA,−xB)〉〈(−xA,−xB)|)
(E.3)

where the normalisation

N = pB(+xB|+xA)+ pB(+xB|−xA)

+ pB(−xB|+xA)+ pB(−xB|−xA)

(E.4)

and Tr{ρ̂E (±xA)} = 1/2 is the probability for Eve to get either state after Alice

announces|xA| and Bob announces|xB|. All other states will be properly nor-

malised. In this appendix, we shall evaluate the inner products between the four

pure reduced states for Eve. Consider

∣
∣
〈
ψE (xA,xB)

∣
∣ψE

(
x′A,x′B

)〉∣
∣2

= pB(xB|xA) pB
(
x′B|x′A

)
Tr
{

ρ̂E (xA,xB) ρ̂E
(
x′A,x′B

)}
,

(E.5)

whereρ̂E (xA,xB) is Eve’s reduced state when Alice sendsxA and Bob obtains the

outcomexB. The state is properly normalised with

Tr{ρ̂E (xA,xB)} = 1 . (E.6)
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Now since the partial trace can be expressed as

TrB{ρ̂BE (xA) |xB〉〈xB|} = pB(xB|xA) ρ̂E (xA,xB) , (E.7)

the inner product can be written as the trace

∣
∣
〈
ψE (xA,xB)

∣
∣ψE

(
x′A,x′B

)〉∣
∣2

= TrE
{

TrB{ρ̂BE (xA) |xB〉〈xB|}TrB
{

ρ̂BE
(
x′A
)∣
∣x′B
〉〈

x′B
∣
∣
}}

.

(E.8)

Here ρ̂BE (xA) is the joint state between Bob and Eve which is the output state

of the beam splitters in figure E.1. We can evaluate this innerproduct using the

Wigner function

TrE
{

TrB{ρ̂BE (xA) |xB〉〈xB|}TrB
{

ρ̂BE
(
x′A
)∣
∣x′B
〉〈

x′B
∣
∣
}}

= (2π~)2
Z

d~xE d~yE

(
Z

dxB dyB ρBE (xA;xB,yB,~xE,~yE)δ(xB−xB)

×
Z

dxB dyB ρBE
(
x′A;xB,yB,~xE,~yE

)
δ
(
xB−x′B

)
)

(E.9)

with~xE = (xE1,xE2)
T and~yE = (yE1,yE2)

T. We write the phase space variables

in bold in order to distinguish them from the parametersxA and xB. Also

ρBE (xA;xB,yB,~xE,~yE) without the hat is the Wigner function corresponding to
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stateρ̂BE (xA). It is given by

ρBE (xA;xB,yB,~xE,~yE)

=
1

√

(2πσ2
v)

3
exp
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



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
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√
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√
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√
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√
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
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


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
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
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


.

(E.10)

HereC−1
x andC−1

y are the inverse covariance matrices given by

C−1
x = M









1
σ2

v
0 0

0 1
σ2
−

0

0 0 1
σ2

+









M−1 (E.11)

and

C−1
p = M









1
σ2

v
0 0

0 1
σ2

+
0

0 0 1
σ2
−









M−1 (E.12)



258

with

M−1 =









√
η

√
1−η 0

−
√

1−η
2

√
η
2

1√
2√

1−η
2 −

√
η
2

1√
2









. (E.13)

M is the beam splitter matrix (15.20).σ2
− is the squeezed variance for Eve’s

squeezed state that makes up her EPR state.σ2
+ is the variance in the orthogonal

quadrature whereσ+σ− = σ2
v (see figure E.1). Putting this together and integrat-
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ing overxB, we arrive at

∣
∣
〈
ψE (xA,xB)

∣
∣ψE

(
x′A,x′B

)〉∣
∣2

= 2π~
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√
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√

ηxA

xE1 −
√

1−ηxA

xE2


















×exp










−1
2









x′B−
√

ηx′A

xE1 −
√

1−ηx′A

xE2









T

C−1
x









x′B−
√

ηx′A

xE1 −
√

1−ηx′A

xE2


















×2π~

Z

dyE1 dyE2 dyB dy′B
1

(2πσ2
v)

3 exp










−1
2









yB

yE1

yE2









T

C−1
p









yB

yE1

yE2


















×exp










−1
2









y′B

yE1

yE2









T

C−1
p









y′B

yE1

yE2


















.

(E.14)

The integration is broken up into a product of two independent integrations and we

shall perform thex integration and they integration separately. They integration is

a constant that does not depend onxA or xB. The integrations are straight forward

but tedious.
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E.1 y integration

We start with they integration for which we have

M−1








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yE1

yE2




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
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2 yB +

√
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2
yE2

√
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2 yB−
√

η
2yE1 + 1√

2
yE2









(E.15)
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and hence they integration can be written as

2π~
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(E.16)
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where

~y =












yB

y′B

yE1

yE2












. (E.17)

The covariance matrixMy is

My =












η
2σ2

v
+ η̄
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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−√
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










(E.18)

whereη̄ = 1−η. The two intermediate variancesσ2
k andσ2

th introduced above are

σ2
th

σ2
k







=
1
2

(
σ2

+±σ2
−
)

. (E.19)

The determinant ofMy turns out to be

det(My) =
1+δ
4σ8

v
. (E.20)
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With this, the Gaussian integration works out to be

Z

d~y exp
[
−~yTMy~y

]
=

√

π4

det(My)
(E.21)

=
2π2σ4

v√
1+δ

. (E.22)

Putting everything together and replacing~ = 2σ2
v (see section 11.2), we finally

arrive at

2π~

(2πσ2
v)

3

Z

d~y exp
[
−~yTMy~y

]
=

1√
1+δ

(E.23)

for they integration.

E.2 x integration

For thex integration, we first evaluate an intermediate vector

~xI = M−1
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
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


xB−
√
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√
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

(E.24)

=
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
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√
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√
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√
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. (E.25)
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With this thex integration can be written as
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(E.26)

with the covariance matrix

Mx =
1

σ2
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
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
 (E.27)
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and

~c =
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σ2
v


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√
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The vector~x = (xE1,xE2)
T. The remaining Gaussian integral can be evaluated by

diagonalisingMx and the resulting expression is

Z

d~x exp
[
−~xTMx~x−~cT~x

]
=

√
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detMx
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(E.29)

where

λ1
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(E.30)

are the eigenvalues ofMx. Theb’s are obtained from
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where

S=
√
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
 (E.32)
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with

W = 8η(1−η)+δ(1+η)2 (E.33)

Y = (1−η)
√

δ
√

8η(1−η)+δ(1+η)2 . (E.34)

S is the unitary matrix that diagonalisesMx

SMxS
T =






λ1 0
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


 . (E.35)

The termb2
1/4λ1 +b2

2/4λ2 can be simplified to get
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+
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=
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(E.36)

The determinant ofMx is

detMx =
1+δ

σ4
v

. (E.37)
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Putting all this together, thex-integration becomes
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(E.38)
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. (E.39)

In the last equality, we writeσ− andσ+ in terms ofη andδ using the relation

(1−η)σ2
th +ησ2

v = (1+δ)σ2
v . (E.40)

This completes thex integration.
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E.3 Putting them together

Combining the results for they integration and thex integration, the inner product
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