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Abstract

The aim of this thesis is to study the security of two paracgjuantum communi-
cation protocols. We want to investigate what is the maxinamount of channel
noise for which the protocols can still be secure. We do thigging well known
bounds for limiting the information that an eavesdropper @latain.

The first protocol that we study is a direct communicatiortgeol using two-
qubit states. We find the security threshold by analyzingpttmocol in an en-
tanglement based setting. The Holevo bound was used to puyg@er bound on
the information of an eavesdropper. To arrive at a managegiilmisation prob-
lem, we restrict the eavesdropper’s attack strategy suattitile noise introduced
will be unbiased. Furthermore, we also impose some additioonstraints on
the eavesdropper that arises from the symmetry of the pbtédter doing this
we then optimise the remaining parameters to arrive at theselaopper’s optimal
strategy and find out what is the maximum amount of infornmasioe can obtain.
Once the eavesdropper’s maximum information is known, dueisty threshold
for secure communication was obtained by comparing thatmmtion with the
information between the legitimate communicating parties

The second protocol studied is a continuous variable quaikiey distribu-

tion protocol using post-selection. For this protocol, weeistigate the maximum



Xii

amount of information the eavesdropper can get under iddaliand collective
attacks in the presence of Gaussian excess noise in theath8yrproviding the
eavesdropper with additional information, we can use knagnlts on the acces-
sible information for pure input states to bound the eava@goler's information.
For individual attacks, Levitin's result on the optimal ,saeement was used while
for collective attacks, Holevo’s bound was used to arriveratipper bound for the
eavesdropper’s information. From this we can then arritbeapost-selection re-
gion where the legitimate communicating parties have mai@mation than the
eavesdropper. We can then find the maximum amount of nois¢hdgrotocol

can tolerate before the eavesdropper knows too much anddtapl fails.
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Chapter 1

Introduction

Quantum key distribution was one of the first real appligadiof quantum infor-
mation in the commercial world. In fact apart from the quamt@ndom number
generator there is still no other real application of quamiaformation.

In 1994 Shor discovered an efficient factoring algorithnt tharks on a quan-
tum machine [50]. That discovery threatens to jeopardis&iag classical cryp-
tography protocols whose security depends on the matheshatbmplexity of
factoring large numbers. However as far as we know, therenbabeen much
success in coherently manipulating more than a handful bitgjuln 2001, the
first successful quantum factorising machine was able toifize 15 [56]. By
manipulating seven qubits, the group from Stanford and IBpbreed that the
prime factors of 15 are 3 and 5. In 2007, optical implemeatetiof a compiled
version of Shor’s algorithm for factoring the same numbereneported by two
independent groups [31,37]. This record has not been he@tefor now at least,

classical cryptography is still safe and not under muckhetiire



But when the day comes that our capable scientists and emgisaeceed
in building a quantum factorising machine of decent sizenynaf the current
cryptography protocols will become insecure. In fact thecegsful labs will be
able to decipher not only current secret messages, but kislol anessages that

were encrypted using the compromised protocols.

1.1 Quantum key distribution

It will then be time to look for a more secure cryptographytpool. One protocol
that is not challenged by Shor’s factoring algorithm is ¢ime-time padgrotocol
of 1917 which Shannon proved to be unbreakable in 1945 diwkiodd War Il.
However the one-time pad is not a replacement for moderrnagyaphy protocols
such as the public key cryptography. This is because in teetiome pad, all the
different parties that wish to communicate must a priorrshaastring of random
keys. The amount of shared random keys required must be aytiz length
of the message that each party wishes to communicate. Inwtirds everyone
must have a trusted channel with everyone else in which tolalise the keys.
This is where quantum key distribution comes in. It acts agstéd courier in the
one-time pad protocol.

The first published mention of using quantum mechanics feueng security
was in Wiesner’s 1983 paper where he proposed a quanturmcyrtieat is im-
possible to counterfeit [59]. A year later, the first quantnyptography protocol
was proposed by Bennett and Brassard [7]. This has become lamtine BB84

protocol.



For a more comprehensive review of the field, the reader den t@ review
articles on the topic [21, 35, 45]. In this introduction, weal restrict ourselves to
giving a brief explanation of the BB84 protocol as well as a quankey distri-

bution protocol that uses continuous degrees of freedom.

1.1.1 BB84 protocol

The communicating parties are traditionally called Alicel@ob. In a quantum
key distribution protocol, Alice wishes to establish arggriof secret keys with
Bob. In the BB84 protocol, Alice will send to Bob one of four pos$siljubit
states chosen at random. These four states are the holigivetdically polarised
states and the diagonal/anti-diagonal states. The hdakand diagonal states are
assigned the bit 0, while the vertical and anti-diagondéstare assigned the bit 1.

Bob will measure the qubits he received in either the horalesertical basis
or the diagonal—anti-diagonal basis. He chooses one ofwbédases at random.
After Bob’s measurements are completed, Alice will annouhoeugh an authen-
ticated public channel the basis in which she encoded healsig

Every time that Bob measures in the same basis as Alice encadeéghis
happens on average half of the time, Alice and Bob will shareréeptly corre-
lated bit. The other half of the time when their bases do ndatmahlice and Bob
expect no correlation at all. In this sense, the efficienapefprotocol is half. On
average, half of the encoding Alice sends will end up as thees&eys.

After authenticating themselves, Alice and Bob then usedifna of the mea-
surement outcomes to check that they indeed see the cmnsldhat were ex-

pected. This check establishes that the quantum chanwe¢&ethem is secure.



The remaining matching-basis bits are then processedéobéing used as keys
for the one-time pad protocol.

In this sense the protocol is not deterministic. In the petrédannel half of
the data Alice sent will still be lost. This can be overcomBab has access to a
guantum memory. He can safely store the qubits that Alicé Semen at a later
time, when Alice is sure that Bob has already received thetgjsbnt, Alice tells
Bob the basis for each qubit. Bob then measures in the corrsisttioarecover the
message.

The security of the original BB84 protocol stems from the faet if someone
(we call her Eve) tries to eavesdrop on the keys, she will matka priori the
basis that Alice encodes. As such, any attempt that she niakesn something
about the keys will induce noise on the signals that Bob recefubsequently
when Alice and Bob check their correlations, they will findtthis less that what
it should be. In this way, the channel can be characterisbd.amount of noise
they see is related to the amount of information an eavepéragan extract. Alice
and Bob can then protect their keys from the eavesdropperibyg sgitable error-
correcting and privacy amplification schemes. If they finat tihe channel is too
noisy, they would abandon the protocol altogether and findfereint channel to
use.

Since 1984, many different protocols including numerousati@ns of the
original BB84 protocols have been proposed. Some of theseqmisthave been

implemented in the laboratory.



1.1.2 Continuous variable key distribution

A different class of protocols uses continuous degreeseafdom instead of dis-
crete level systems like qubits. The earliest continuougbbe key distribution
protocol was presented in 1999 by Ralph [40] and Hillery [ZBjese protocols
use squeezed states to ensure the security of the commaonic&ne protocol
that only uses coherent states was Grosshans and Grarugikreégent state pro-
tocol published in 2002 [23]. We shall explain that protocoksome detail in
chapter 12. This protocol suffers from the 3 dB loss limitr Baransmission loss
of greater than 50% the protocol becomes insecure.

Two different methods were introduced to overcome the 3 d&B linit: post-
selection [52] and reverse reconciliation [22]. In podesgon protocols, Alice
and Bob would only select data points where they have an irdhom advantage
over Eve. In a reverse reconciliation protocol, Alice cotseher keys to have the
same values as Bob’s. Both protocols and their variants hase feccessfully

implemented in laboratories.

1.2 Information theory

In this section, we define some terms and recap some usefiltsr&®m informa-
tion theory that will be used in this thesis. The proofs of thgults can be found

in standard textbooks [6, 15].



1.2.1 Classical entropy

Given a random variabld, where the outcome; has a probabilityp(a;) for i €

{1,2,...,N}, the classical (Shannon) entropyAfs defined by

N
H(A) = —_Zp<aa)log (&) (1.1)

The logarithm is taken in base 2. This measures the bits ofmdtion we gain, on
average, when we learn about a letteAoEquivalently, it gives the least average
number of bits required to identify a letter Af In other words, to unambiguously

transmit a message of length, say:

{ao,as,an, 81,82, ..., 84} 1.2)

v .
M entries

there exists (sometimes only whehtends to infinity) a suitable encoding scheme
in which we can just senldl x H (A) bits of information. In this sensél(A)/logN
is also the best compression limit for the random variableThis is Shannon’s

noiseless coding theorem [49].

1.2.2 Von Neumann entropy

The von Neumann entropy is the quantum analogue of ShanrimpgnGiven a

guantum state represented by the density opepatitie von Neumann entropy of



p is defined as

S(p) = —Tr{plogp} (1.3)

n

wherel, are the non zero eigenvaluesofAgain, suppose Alice sends a message

with M letters, say:

\{|l-|']2>7|qJ4>7|qJN>v|w1>7‘w2>7"'7|q—'4>}17 (15)

M entries

where each letter is chosen at random from the ensemble efgpatesy;) with

probability p(y;) fori € {1,2,...,N}. Each letter is described by

N
p= ;NJO p(Wi) (Wil - (1.6)

To reliably transmit this whole quantum state, there exisieacoding scheme
in which Alice can just sentl x S(p) qubits (in the limit of largeM). This is

Schumacher’s quantum noiseless coding theorem [47].

1.2.3 Mutual information

Consider a noisy channel in which Alice sends Bob some cldssgaalsa; with
probabilitiesp (g;). When Alice sends the signal, Bob obtains the measurement
outcomeb; with conditional probabilityp (b;|a;) .

The mutual information (A,B) measures how much one random variahle

can tell us about another random variaBlelt gives the maximum value for the



average information transmitted to Bob per bit that AlicedsenAlice and Bob
will be able to attain this if they use a suitable encoding dadoding scheme
(which might be available only in the asymptotic limit of imfie signal length).
The mutual information is given by the difference betweendhtropy of Al-
ice’s distribution (before Bob’s measurement) and the gtad Alice’s distribu-

tion conditioned on Bob’s outcomes.
I(A,B)=H(A) —H(AB). (1.7)

What this says is that the amount of information transmitte@ab is equal to
the amount of information initially contained in Alice’sadiibution minus the
amount of information that is left in Alice’s distributioritar Bob has performed
his measurement.

In terms of the probabilities, the entropy of Alice’s dibtition is

H(A) =—> p(a)logp(a) - (1.8)

Now conditioned on Bob obtaining an outcolme entropy of Alice’s distribution

would be

H(AB=bj) = - p(aibj)logp(ai|bj) - (1.9)



On average, Alice’s entropy conditioned on Bob’s outcomesldibe

H(AB) = p(bj)H(AB=bj) (1.10)
J

_ ; p(ai,bj)log pé?tf)j) (1.11)

— H(A,B) — H(B) (1.12)

which is the chain rule for joint entropyd (A, B) is the joint entropy ofA andB.

The mutual information between Alice and Bob is then

I[(A,B)=H(A)+H(B)—H(AB), (1.13)

symmetric between Alice and Bob. The relationship betweeretitropiedd (A),
H(B), H(A,B), H(AB), H(B|A) and the mutual informatioh(A, B) is expressed

in the Venn diagram in figure 1.1.

1.2.4 Accessible information and Holevo quantity

Now if instead of sending classical signals, Alice sends Bgbads using quan-
tum states through a noisy quantum channel. The messagditteasends is from
the classical random variabke Bob measures every quantum state individually
using some fixed quantum measurement apparatulfter the measurement is
completed, this apparatus gives a classical outcome fdr gaantum state. We
now have a classical joint probability distributi¢A, B) between Alice and Bob.
We can then calculate how much information Bob receives pier ley the mutual

informationl (A, B).
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H(A,B)

! !

H(A) H(B)

Figure 1.1: Venn diagram representing the relationshipvéetn entropy and mu-
tual information. H(A) andH (B) are depicted by the whole circlesi (A, B) is
the union of the two circles.
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If Bob uses a different measurement schéiée may end up with a different
value of mutual information. The accessible informatigg is defined as the
maximum ofl (A, B) over all possible measurement apparatus.

Given the state that Alice sends and the a priori probadsljitine task of find-
ing the accessible information is in general not easy. Aordlgm to approach
this problem numerically was proposed in [57].

There are however bounds that bound the accessible inflemfabm above.
One of them is the Holevo quantity. The accessible inforomait bounded by the

Holevo quantity,

lace < S(P) — 5 PiS(pi) =X ({pipi}), (1.14)

wherep; are Alice’s quantum signals argl are the a priori probabilities for each

pi. The statgp = 5 pip; is the statistical mixture that Bob receives.

1.3 Overview of the thesis

This objective of this thesis is to investigate the secuwoftiyvo particular quantum
communication protocols when implemented in a noisy chianhés organised
as follows.

In chapter 2 we state the general security criteria for guantryptography.
These criteria will be used in both protocols. Followingstthe thesis is divided
into two parts.

The first part is concerned with a direct communication qusmtommuni-

cation protocol that utilises two qubits to transmit a singlassical bit [3-5]. In
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chapter 3, we present this protocol. Chapter 4 looks at acpéatiintercept and
resend attack on the protocol. Chapter 5 considers a moreayatiack by con-
sidering an equivalent entanglement based protocol. Chéptermulates the
optimisation problem in terms of the matrix representaiohEve’s ancillary sta-
tes. In chapter 7 we define a basis between Alice and Bob sdidabnstraints
on Eve can be written down explicitly. In chapter 8, we solve bptimisation

problem for simple cases when there is no noise in the chameklso when
there is so much noise that the state between Alice and Bobrie=ceeparable.
Chapter 9 solves the general case for arbitrary noise lemebrder to make the
problem more tractable, we had to make some symmetry assunsmin Eve’s

attack. In chapter 10, we present a conclusion and an outtogsossible future
works.

In appendix A, we show how to construct an equivalent entanght based
protocol for an arbitrary channel between Alice and Bob. Ajye B lists down
explicitly the 64 constraints on Eve’s ancillary statesdathosen Alice—Bob ba-
sis. Appendix C gives the Schmidt decomposition of Eve'sfipation between
Alice—Bob and Eve.

The second part of the thesis begins with a review on contisu@riable
Gaussian states in chapter 11. Chapter 12 provides an exaiplee of the
earliest continuous variable quantum key distributiont@eols. This protocol
suffers from the 3 dB loss limit. In chapter 13, we introdulce actual protocol
that will be studied. This protocol uses post-selectionvercome the 3 dB loss
limit. Chapter 14 reviews and extends work that was done opttbcol in the
presence of vacuum noise. In chapter 15, we study the sgairihe protocol

when there is thermal noise in the channel. In studying tiisneed to compute



13

the inner products between Eve’s ancillary states whichiained by performing
the straightforward but lengthy Gaussian integrationsesgninner products are
computed in appendix E. In chapter 16 we calculate some noahealues for
useful information between Alice and Bob for a specific chawié transmission
loss of 05. Finally in chapter 17 we summarise the results of this adtpresent
an outlook for future works.

Original work in the thesisThe contents of chapters 1 and 2 are a compila-
tion of existing works. The protocol presented in chaptes 8at new and was
first published in 2002 [3]. However the experimental setptifie protocol in
section 3.3 has never been published elsewhere. The biasedept and resend
attack in section 4.2 is a particular case of the optimal sehpresented in [4].
The analysis and results for the unbiased intercept anddesgéack in section 4.3
are original. For the remainder of part one of thesis, théstased for analysing
the security are not new, but their application to this ptotas original.

In part two of the thesis, chapters 11 and 12 are a review ctiagi works
on Gaussian states and continuous variable key distrimitiGhapters 13 and 14
are elaborations of the protocol published in [52]. Exceptffgure 14.3, all
the other figures in chapter 14 are original. The analytioahtila for the post-
selection region in section 14.3.2 is also new. Section &4ténds the work
in [52] to a collective attack. The contents in chapters 18 a6 were done
in collaboration with the authors of [1,54]. The generaluhptate for Eve and
the formulation of her state in terms of a covariance matrisection 15.1 are
original and has not been published elsewhere. The arallftionulas for Eve’s
inner products presented in 15.1.2 were contributed by mkthé calculations

and results in sections 15.4 and 15.5 are original work. Hagyéical formula for
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the reconciliation direction in section 15.4, the formuta the asymptotic limit

of the post-selection region and the cubic equation thasgikie noise threshold
in section 15.5 were also my contributions. Chapter 16 ektbseron the theory
calculations presented in [54] for a particular value ohsmission and excess

noise.
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Chapter 2

Security criteria for quantum key

distribution protocols

In this thesis, we will be investigating the security of tweagitum communication
protocols. The first protocol is a discrete variable protaoelving a two-qubit
system while the second protocol is a continuous varialdeopol where the sig-
nals are transmitted using single-mode coherent stateswiese the same
methods to study both protocols.

In this chapter, we shall discuss in general how much inftionaan eaves-
dropper would be able to get in a generic quantum key digtabyprotocol.

Throughout this thesis, we assume ideal situations forefdicd Bob. In par-
ticular, we assume that Alice has a perfect random numbeargtor and that Eve
does not have access to Alice and Bob’s labs. We also assutéiteaand Bob
have access to a public but authenticated classical chaBwrelcan listen to the

channel but she cannot tamper with it.
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Furthermore, the bounds we provide here are for the asyropitoit of in-
finite key lengths. Methods for security analysis of finite/ kength have been
developed by Hayashi [24] and Scarani and Renner [46] butdheyeyond the
scope of this thesis.

This chapter is organised as follows. Section 2.1 gives #faitions of a
guantum state and quantum measurement. Section 2.2 disdhgsvarious types
of eavesdropping that an adversary can do depending on hah pawer she
has. We also discuss how her information can be bounded. ctiose2.3, we
look at how Alice and Bob characterise the channel. This iseterthine how
much information was leaked to the eavesdropper. In se2tgrwe calculate the
explicit values for the accessible information and Holewartity for two pure
input states with equal probability. Finally, section 2ibeg a discussion on the
classical post-processing steps required in order to @xsecret keys from the

raw data.

2.1 Quantum states and quantum measurements

Throughout this thesis, we shall deal with quantum statssipg through a quan-
tum channel and being measured using quantum measurenvicgsieA quan-
tum state is a physical entity with a fixed physical propekye are usually in-
terested in only some degrees of freedom for the entity. btattically, the state
is represented by a positive semi-definite operator with wace in a complex
Hilbert space. The dimension of the Hilbert space corredpado the degrees of

freedom that we are interested in.
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When we speak of a quantum channel, we refer to a fixed physitesbiction
that brings one quantum state to another quantum state sathe Hilbert space.
The channel is memoryless; it acts on each quantum statpendently. We can
think of the channel as an ensemble of identical channet$, ebwhich is used
only once. Mathematically, a quantum channel can be repredd®y a completely
positive and trace preserving linear operator acting orsgfaee of the quantum
states.

A guantum measurement device is a box with certain well défpteysical
interactions and having a number of (possibly continuoug)ames. Whenever a
physical state is put inside this box, the physical intéoastare such that one of
its outcomes will click. This outcome presumably measuoesesphysical prop-
erty of the quantum state. The box then resets to its initzdésready to measure
the next incoming state. As far as this thesis is concerneck a quantum state
has been measured, it is destroyed and not available fdreiurheasurements.
Mathematically, the outcomes of a measurement apparasss@iated with the
set of positive semi-definite operatdiis= {1 };c3. The outcomes are labelled
by j andJ denotes the set of all possible outcomes. The outcomes sumthe
identity on the Hilbert space of the quantum state on whiehntieasurement is
performed. The sdil is called a positive operator value measure (POVM). For a
statep that is to be measured, the probability that it will trigglee §-th outcome

is given by the trace Trpm; }.
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2.2 Eve’s attacks

We assume that Eve is capable of doing perfect quantum apesand that she
has a perfect noiseless channel between both Alice and Babndiky quantum
channel between Alice and Bob is replaced by Eve’s perfeatradia But Eve
sends Bob a state that was corrupted by her measurementshstichlite and
Bob still think that the channel is noisy.

Eve’s plan of attack would be to attach probes to the sighasAlice sends
to Bob. Eve lets these probes interact with the signal. But w&ice each probe
to interact with a different signal. After that, Eve waitgtiiAlice and Bob have
concluded the protocol and even after they have utilisedk#yeto transmit a
message. Only then will Eve measure her probes in such a wényasshe gains
as much information as she can on the secret message. Weeaimirizve can
store her probes indefinitely.

If we restrict Eve to measure each probe independently,atitéek is called
an individual attack. The more general case where Eve casureaer probes
together is called a collective attack.

Depending on the probes Eve chooses, and how she measusegtiobes,
she may be able to get some information on the secret mes€agetask is to
guantify how much information Eve can get. By knowing thisommhation limit
on Eve, Alice and Bob can plan to use suitably strong privacgldication tech-
niques to eliminate Eve’s information.

Fortunately, given the quantum state of Eve’s probes, weéboand Eve'’s in-
formation in an individual as well as a collective attack.aimindividual attack,

the amount of information Eve can attain by using a particoleasurement strat-
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egy on her probes is given by the mutual information [49]. feimum amount
of mutual information Eve can get (by using the best measen¢strategy on her
probes) is called the accessible information.

The final key rate between Alice and Bob is given by the diffeeesbetween
Alice and Bob’s mutual information and Eve’s accessible rimfation (Csiszar
and Korner [16]).

For a collective attack, the amount of classical infornmatitve can extract
from her probes is bounded by Holevo’s bound [27]. This bowad shown to be
attainable by Holevo [28] and Schumacher and Westmorek8id The final key
rate between Alice and Bob is given by the difference betwelgeAand Bob’s
mutual information and the Holevo quantity (Devetak and Mfifl17]).

The most general class of attack is known as coherent aisik ¢alled joint
attack). This is when Eve attaches one probe in a high diraeakHilbert space
to all of Alice’s incoming signals. After Alice has sent heessage, Eve then
measures her signal probe. However it was shown that for @ filninensional
system, a coherent attack does not perform better thanectod attack (Renner

[43]). This result was later extended to an infinite dimenalsystem in [42].

2.3 Characterising the channel

In practice, the channel between Alice and Bob will not be gurf There will
be some loss and noise due to interactions with the envirohireperhaps to
the presence of an eavesdropper. To arrive at a bound on Eh@dedge of the

channel, we assume that all noise in the channel is due to Eve.
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For Alice and Bob to put an upper bound on the information Eve get,
they would need to continuously characterise the channelmast protocols,
the channel characterisation is done by using the actuahlsignd measurement
outcomes that will be used to generate the keys.

Protocols where Alice and Bob can fully characterise the obbare called to-
mographic protocols. The six-state protocol [10] and theg&pore protocol [19]
are examples of tomographic protocols. In these tomogecgmiotocols, there is
a one-to-one correspondence between the noise that Ald®ah see and the
probes that Eve uses.

In other protocols, there will not be enough information émmplete char-
acterisation of the channel. These protocols are classaedcomplete tomo-
graphic protocols. This means that Eve can use severalqyashiategies, leaving
Bob with different quantum states, but Alice and Bob will noblnwhich exact
strategy Eve used. The security analysis in such protocelsamplicated by the

fact that Alice and Bob do not know what is the quantum statevef€probe.

2.4 Eve’s information for two pure states

In this section, we summarise two useful results: the adadessformation and
the Holevo quantity for two pure states with equal a prioohabilities. These
give the maximum amount of classical information that camlb&ined by indi-

vidual measurements and collective measurements regglgcti
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2.4.1 Accessible information for two pure states
Two pure states can always be mapped onto a two dimensioliertHspace. We

can represent these two states in the computational basis as

0 cosg 0 sin%
o Y1) = >, o Y2) = > . (2.1)

(1] sing (1] cos3

In the Bloch’s sphere, the two states will have the Bloch vector

sina sina
P = 0 , Yo = 0 - (2.2)
cosa —cosa

The measurement that optimises the mutual information Q&N with two

outcomes (Levitin [32]):

Q1) =10) =  |02) =[1) = : (2.3)

In the Bloch’s sphere, the two outcomes point to the north anthspoles respec-

tively
0 0
=] 0| .= 0 : (2.4)
1 -1

The state and measurement vectors are depicted in figureThd.probability
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¢
Y1
a
a
W2
02

Figure 2.1: Bloch sphere representation for the POVM thatimiges the mu-
tual information for two pure input states with equal a prigmobabilities. The
two pure input stateg; andy, are represented by the red lines while the two
measurement outcomes and@, are shown in black.

table obtained using this POVM would be

POVM outcome
Signal state
(@] (@
[ jcofg s
W) isifd  Zcogy

for which the mutual information is

| = % [<2co§%> log <Zco§ %) + (Zsir?%> log <Zsir12%>] (2.5)
= %[(1+ cosa)log(1+cosa) + (1 —cosa)log(1— cosa)] (2.6)
= @ (cosn) (2.7)
—o (Y- [wlva)l?) @®)
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where
d(x) :% (1+x)|og(1+x)+(1—x)|og(1—x)] (2.9)

IS a monotonically increasing function.
This is the maximum amount of information that can be obthineindividual

measurements on the input states.

2.4.2 Holevo quantity for two pure states

The Holevo quantity for two pure states in section 2.4.1vegiby the entropy of

the statistical mixture

1 1
Pr=5 W) (W] + > [W2) (W2 (2.10)
N 3 isina 2.11)
Isina 3

which has eigenvalu&}(lisina). The Holevo quantity is

N (1+sina) log (1+sina) (1-—sina) log (1—sina)

2 2 2 2
=1- % [(1+sina)log(1+sina) + (1—sina)log(1—sina)] (2.13)

(2.12)
=1—P(sina) (2.14)
—1- o (|(wilw)]) (215)

This gives the maximum amount of information that can beiabthby col-

lective measurements on the input states.
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2.5 Classical post-processing

After having a bound on Eve’s information about the raw ked#ce and Bob
would like to eliminate Eve’s information so that they carahan absolutely
secret key. This is done by doing some post-processing oaheits.

The raw bits are established via the quantum key distribyti@tocol. Alice
first generates a string &f random bits. She transmits this string to Bob through
a noisy channel. If the channel noise is unbiased, then thmy sis seen by Bob
will also be completely random. In other words, Bob’s stringj still have an
entropy ofN’ bits. Next Alice and Bob performs basis reconciliation defieg
on the protocol. For example in the BB84 protocol, basis rediation would
involve Alice and Bob discarding data points from mismatckdsa After this
step, Alice and Bob would have a stringbits.

The mutual information between Alice and Bob can be calcdlafeer doing
a parameter estimation on the channel. We denote tHid iy Eve’s information
on Alice’s bits can also be estimated, and we denote her marimformation as
Nlg. We assume thdhg is greater thahg. Otherwise the protocol fails and no
secret key can be generated. The post-processing begngadtpoint. The post-
processing can be divided into two parts, information red@tion and privacy
amplification.

Information reconciliation involves Alice sending clasalibits to Bob so that
Bob can correct his errors [9]. At the end of this process, Abnd Bob will
share a perfectly correlated random string of lergthiT heir mutual information

will be N bits. In a perfect reconciliation protocol, Alice will ne¢al send just
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Mutual information Mutual information
between Alice and Bob between Eve and Alice
Raw key Nlag Nlg
I.R. N N(1—Iag+IE)
P.A. N(lag—Ig) 0

Table 2.1: Table showing the mutual information betweenAtlee and Bob and
between Eve and Alice at the various stages of the post-psoug procedure.
In the information reconciliation (I.R.) step, Alice ann@@sN(1— Iag) bits of
information for Bob to correct his errors. In the privacy aifightion (P.A.) step,
the length of the string is reduced bi{1— Iag+ Ig) bits so that the final mutual
information between Eve and Alice is zero.

N(1—1ag) classical bits to do the reconciliation. Listening to thegs, Eve’s
mutual information with Alice is novN (Ig + 1 — Iag) bits.

The next step is privacy amplification [8]. In this step, Aliwill choose a
random universal hashing function and apply that functiarher string. As a

result, her string will reduce in length froh to

M=N-=N(lg+1—Iap) (2.16)

=N(lag—lE) . (2.17)

Bob will apply the same function to distill an identical sgiof lengthM. The
ratio of the new string to the old string /N = Iag — |g . Because Eve'8l bits
string differs from Alice’s, when Eve applies the hashingdtion, her resulting
M bits string will be completely uncorrelated to Alice’s sigi Eve has zero in-
formation on Alice’s bits, while Alice and Bob share a striffigvb= N(lag — Ig)
secret bits. The mutual information between the Alice and &wbbetween Alice
and Eve at the various stages of the post-processing prazadesummarised in

table 2.1.
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Part |

Security analysis of a quantum
direct communication protocol in

the presence of unbiased noise
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Chapter 3

Introduction to the protocol

The first protocol that we shall investigate is a discretéade direct communica-
tion protocol. This direct communication protocol enalfise to send messages
to Bob without the need to first establish a shared secret key.

In section 3.1, we will give the origins of the protocol that want to study.
We also recap some preliminary work that was done to anatgssdcurity of the
protocol. In section 3.2, we shall formally introduce thetprcol with an example
to demonstrate its workings. In section 3.3, a possible @x@atal setup for
of the protocol will be presented. Finally section 3.4 gigediscussion on the
direct communication protocol. It also provides a commaribetween a direct

communication protocol and a key distribution protocol.

3.1 Introduction

The protocol that we shall study uses two-qubit states &argmitting a classical

bit. The idea of using two qubits to deterministically sendassical bit was pub-
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lished by Beige, Englert, Kurtsiefer and Weinfurter in a babkpter in 2002 [3].
The protocol can also be found in [5] with slight generalwas.

Deterministichere means that for every two-qubit state that Alice sendbs, Bo
will get one bit of key. Both publications briefly mention a twgabit protocol in
which Alice can transmit the message securely without fptarfirst establish a
key. Thisdirect communicatiomprotocol was published as a separate publication
on its own in [4].

In all those publications, the security analysis was retgt to minimising
the error rate in a general intercept and resend attack. Mthecept and resend
strategy was not required to be unbiased.

In [4], the intercept resend attack where Eve measures Algeeit using an
orthogonal measurement basis and then forwards the outstateeto Bob was
analysed. It was found that for any orthogonal measuremsed,the error rate
Alice and Bob see will be at least/@. Furthermore, numerical simulations in
which Eve forwards a different state from her outcome statesvdone but the

error rate was still never less thap6l

3.2 The protocol

The protocol involves states of two qubits. The next panalgnaill introduce the
states.

Let{|1-),|2—),|3—),|4—)} be a set of orthonormal states that forms a basis
in Alice’s four dimensional Hilbert space. We call thesetetatheminus sta-

tes We define a second set of orthonormal states which we capltisestates
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{114),[24),[3+),|4+)}, by

11+) O 1 1 1 |1—)
2+ -1 0 1 -1 2—
2+) | _ 1 2-) (3.1)
39 | V3| -1 -1 0 1 13-)
|4+) -1 1 -1 0 |4—)
For example the state
1
24+) = —(—]1-)+|3-)—|4—-)). 3.2
2+) \/g(l )+13—)—14-)) (3.2)
By construction
(n+|m-)=0ifn=m (3.3)
and
\<n+]m—>|:iifn7£m. (3.4)
V3

These eight statdsn+) , |n—)} forn€ 1,2, 3,4 are the ingredients of the protocol.
In the first step of the protocol, Alice will send to Bob one of thight states
{In+),|n—)}. The parity type(+ or —) of the state Alice sends will correspond
to the bit of the message that she intends to convey. The @mlityee (1, 2, 3 or
4) is chosen at random.
When Bob receives Alice’s two-qubit state, he picks one of tveasurement
boxes to measure the two-qubit state. Each box has four metso The first

box, we call theplus box has outcomes such that the state) will cause the
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Alice’s numeral type Bob uses plus box | Bob uses minus box
1 2 3 4 |1 2 3 4
1 + - - - |- + + +
2 - + - - |+ - 4+ +
3 - - 4+ -+ + =+
4 - - - + [+ + 4+ -

Table 3.1: Table that Bob uses to determine the parity of Alib& based on
Alice’s numeral type and the parity type of Bob’s measuring.l¥or example, if
Alice sends a type 2, and Bob measured the state using the g@tusniol obtains
outcome 3, Bob concludes that Alice had send a minus parity.
n-th outcome to click. Bob can construct the plus box since the gptates are
mutually orthogonal. Analogously, thminus boxdistinguishes the minus states.
Bob chooses his measurement box at random.

In the final stage of the protocol, after Bob has done his measent, Alice

reveals the numeral type of the state that she sends. Bothetilknow what is

the bit type by looking up the table 3.1.

3.2.1 Example of the protocol

The protocol is perhaps easiest understood through an égadp an example,

say that Alice wants to send Bob the ten bits string

{_7_7_7+7_7_7+7_7+7_} .

She generates a string of ten random numbers from one to four

{2,1,1,2,4,2,3)1,4, 4} .
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She pairs each bit to a random number and sends the statspmrding to the

pairing. In our example, Alice sends the states
{12=),11-),11=),124) ,[4-),12=) ,[3+),[1=) . [4+) , [4=)} .

Bob will generate a string of ten random bits to use to decidiehbox (plus
or minus) to use to measure the incoming qubit pairs. Bob géeethe random
string

{+7_7+7_7_7+7+7+7+7_} .

In the first qubit pair, Alice sends a minus sté2e-) and Bob measures using the
plus box. Due to the relatiof2+ ]2—} = 0, Bob will never get the outcome 2. In
fact he would get the outcomes 1, 3 or 4 with equal probabilityhis case, let us
say outcome 3 happens to click.

In the second qubit pair, Alice sends the minus sthte) and Bob measures
using the minus box. In this case, Bob will get outcome 1 fotaier The out-

comes for Bob are given in following table.
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Alice Bob’s measurement Bob’s Bob’s
send box outcome decoded bit
12—) + 3 —
1-) - -
|1-) + 2 -
|2-+) — 1 +
4-) - 4 -
|2—) + 4 -
3+) + 3 +
11-) + 2 =
|4+) + 4 +
4-) - 1 -

When Alice sends the same parity type as Bob’s measuremerBbbis outcome
would be the same as Alice’s numeral state (as in cases 2%and 10). If Alice’s
parity differs from the parity of Bob’s measurement box, tBat’s outcome will
not be the same as Alice’s numeral state.

For the first qubit pair, after Alice announces that she sartglpe 2 state, Bob
can find out from table 3.1 that Alice sends the minus bit. Babatao decode all

the remaining incoming qubit pairs correctly to unravelc&ls message.

3.3 Experimental setup

To our knowledge, no experiments were conducted with regardhis protocol.
In this section, we outline a possible realisation of thetqgrrol's two separate
degrees of freedoms using a photon. We use the polarisdttbe photon as one

qubit {|v), |h)} and its path through an interferometer as the seddbg, |R)}.
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Figure 3.1: An experimental setup for converting the pluedest to the minus
states. It consists of an interferometer with two sets oapsérsvVg andV, to
convert the plus states to the minus states. The polaNgeasdV consist of a
half waveplate sandwiched between two quarter wavepldtks. angle settings
for the waveplates are stated in the text. The polarigemsndV, are set to do
nothing. BS denotes beam splitter.

The labelss andh denote vertical and horizontal polarisations while theslah
andR denote the upper and lower arms of the interferometer résphc

In [20], it was shown that an arbitrary two-qubit operati@amde realised by a
combination of wave plates and phase shifter. In partictharsetup in figure 3.1
can realise any two-qubit gate by suitable choices of pHaifieis and wave plate
V1, Vo, VL andVR. Each of thes&/ consists of a half wave plate sandwiched
between a quarter wave plate plus a phase shifter. The yiaitéion of the beam

splitters are given by:

uBs:%(|R><R|+\L> (LI+ IR (L +i1L) (R (35)

and the mirrors by:

U = i (IL)(RI+IRI (L] ) - (3.6)
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The quarter wave plates acts like
V, (6) = = (1 iousin(20) —i05c0520))
4 V2
and the half wave plate acts like
V% (0) =—i <olsin(26) +03 cos(29)>

where

o1 = |h) {v[+[v) {h|
and

o3 = |v) (V| = |h) {h| .
The completd/ is made up of

V(a,B,Y: ) = expig)Va (Y)Vy (B)Vy (@) -

If we define the plus basis as

{114),124),[3+) ,14+)} = {[Lv), [Lh), RV}, |Rh) }

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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then the choice

VL :V(G,BL,V,(p> )

VR:V((X?BRayv(p)

would convert the plus basis into the minus basis where tgkeamre

_n
y_87
1 [ 42

—4cost| Zh|24£4/2+ 25
Br/L cos ZJ 3 ,
a__3n

=3

¢=0

With this choice,

V= 7= [ (1 1) 0 )+ 1) v (=) ) 0 ()]
V= \i@[m V(=) V) (0] (2 =1) + ) (v] (=2 =) = 1) (h] 1)

and with the combined action of the wave plates as

Myp= |L) (L|®@VL + |R) (R ® VR,

(3.13)
(3.14)
(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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Alice Bob
M M M M
D1
D2

sw

D3
N FM1 FM1 EM2 EM2 PBSL| D!T\ D

HWP FML1 U FM1 FM2 T FM2 PBS‘@
tot UtOt ot

Figure 3.2: Experimental setup for the two-qubit direct commication protocol.
Alice uses a half wave plate (HWP) to send either horizontakotical polarised
light. The switch (SW) is used to select either the upper oreloarm of the
interferometer. When her set of flipper mirrors (FM1) is aati@d, the light will
be reflected off the mirrors (M) and bypass the conversion (bigx). This will
send a state with positive parity to Bob. Deactivating thep#ipmirrors will
cause the light to go through the conversion box which braag®sitive parity
state to a negative parity state. This will send a state wethative parity to Bob.
When Bob activates his set of flipper mirrors (FM2), the lightyagoes through
a polarising beam splitter (PBS) before being detected adi¢tectors (D1-D4).
This will act to distinguish the plus parity states. To impknt the negative parity
measurement, Bob deactivates his flipper mirrors causindigheto pass first
through the reverse conversion bd)xk) before the detection.

the setup in figure 3.1 is described by the unitary

Utot = UgvivPUmUBs (3.24)

=|1-) (14| +|2—) (2+| + |3—) (3+]| + |4—) (4+] (3.25)

which converts the plus basis to the minus basis as promisfedcall this setup
the conversion box It turns out that the conversion box will convert the minus
states to the plus states.

The final setup between Alice and Bob is depicted in figure 3IRefalways

starts by creating one of the four plus states. To send a rsiates, Alice will put
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her plus state through the conversion la¥. This two-qubit state is then sent to
Bob via the quantum channel. At Bob’s laboratory, he has a seetunfdetectors
used to perform a measurement in the plus basis. To meastire minus basis,
Bob will pass the two-qubit state through a conversion boxated in reverse

UtT;t before measuring them.

3.4 Discussions on direct communication

In this section, we discuss the distinctive features of @eaflicommunication proto-
col. We will then point out the main differences between adicommunication
and a key distribution protocol.

The novel feature of a direct communication protocol is thatmessage itself
is being transmitted through the quantum channel. To ersaaoeecy of the mes-
sage, the message must remain undecipherable until theehsecurity during
transmission has been checked. This is a unique situatienendhsecret message
has to go through a channel whose security can only be chedtexdts use. To
ensure the message remains undecipherable two differsrafdeasis are used in
this protocol. The basis announcements that enable theluhgcof the message
are only released after the channel security has been ishtzdhl

For direct communication to take place, Bob must be able todkeeach bit
deterministically. For him to do this without having a quantstorage device, the
protocol uses a two-qubit state to transmit a single bit.

To date, most quantum communication implementations haveufed key
distribution rather than direct communication. There a&neegal practical reasons

for the former’s popularity.
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One reason is that a key distribution protocol is less affétty losses than a
direct communication protocol. In a key distribution prath a lost signal merely
means that Alice and Bob have to transmit more signals to gemsufficient raw
bits. Since the lost signals do not contain any messagehgst,do not compro-
mise security. A direct communication protocol howeveras as robust against
loss. Loss translates to missing bits in the message ane memge in the trans-
mitted message.

Another advantage of key distribution over direct commanan is that once
generated, the secret keys can be accumulated and storédum use. The
guantum channel can be consistently utilised to establigserve of keys. In a
direct communication protocol, the message can only beitnagted when Alice
has something to communicate to Bob. The channel will besatlliduring these
periods. However there will be lull periods when Alice does Imave anything to
say to Bob where the quantum channel would stay idle. Hencewéocesee that
the capacity of the quantum channel would be better utilisedkey distribution
protocol rather than a direct communication protocol.

In a key distribution protocol, secret two way communicatietween Alice
and Bob is possible once the secret keys have been establistuedever in a
direct communication protocol, to achieve the same thinggyaway quantum
channel would be needed.

A major flaw of a direct communication protocol is that sinbe message
is being transmitted, then in the presence of noise, thesdawpper can gain
information on the message itself. For example, Eve cowddhessame procedure
that Bob uses to decode the two-qubit states that she intsrcBping this, the

message is no longer secret. Eve would gain partial knowledghe message.
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It is possible for Alice to perform a ‘privacy amplificatioprocedure prior to
using the channel. This would result in Alice and Bob shariegrapletely secret
message but at the expense that the message will be compltelom. This
procedure is discussed briefly in chapter 10.

For these reasons, we do not expect a direct communicataioqal to be
favoured over a key distribution protocol in the near futuFer the situation to
change, we would need to have a quantum channel with a higbntiasion rate.
We would also need to develop the ability to easily manigutato-qubit states.
And at a more fundamental level, we would need to find a way swethBob can
deterministically decode Alice’s message but not Eve.

Even if we concede that performing direct communicationosfeasible, the
protocol can still be used as a key distribution protocole Tésults in this thesis

can be used to generate secret keys in a conventional keypdiin protocol.
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Chapter 4

Noise 1: Intercept and resend

strategies

In this chapter, we shall look at a particular class of irdpt@and resend attacks.
This class involves Eve measuring Alice’s two-qubit staigiag the plus or minus
measurement box with equal probability. Eve then forwardkia or minus state
with certain probabilities depending on the outcomes ofrheasurements.

In general, Eve could use a different set of POVM to measureeAl two-
qubit state. But in this chapter, we let her measure only the pf minus POVM.
If Eve measures this on all of Alice’s two-qubit states, sliélve able to gain full
information on Alice’s message after Alice announces henenal type.

Section 4.1 gives some intuition on how the presence of agselagpper in the
channel can be noticed. In section 4.2, we present a simpésegopping strategy
for Eve that happens to be biased. Finally, section 4.3dizes the concept of

unbiased noise and gives an example of an unbiased eavpsdyarategy.
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State Alice sends Outcome of Bob’s measurement

(L] (24 3+ (a4 | A-] (2] (3| @
1+) s 0 0 010 G g g
[2+) 0 4% 0 0|5 0 & 4
3+) 0 o i 0 s i 0 X
|4+) 0 0 0 % | % = = 0
11-) 0 &% 2 2| %= 0 0 0
2-) w O @ @ |0 4 O O
3-) ® @ O @ |0 0 g O
4-) @ @ @ 0|0 0 0 g

Table 4.1: Joint probability table for the raw data betwediceAand Bob for the
direct communication protocol in a noiseless channel.

4.1 Introduction

The security of the protocol hinges on the fact that if an edx@pper tries to learn
about the message that Alice sends, she will leave behine s@wes that Alice
and Bob can detect.

Alice puts some control bits in her message string. Thesedoé randomly
chosen and randomly interspersed between the message.wilhég used to
check the integrity of the channel. Alice will announce tlsitions of the control
bits. For each control bit, Bob then tells Alice the measum@nb®x he used as
well as its outcome. If the channel is perfectly noiselesentAlice and Bob
would expect to get a joint probability that looks like talflel. If Alice and
Bob obtains anything different, that would indicate the daespresence of an

eavesdropper in the channel.



45

4.2 A simple but biased intercept and resend attack

Let us look at a particular strategy for the eavesdropper Buppose she does an
intercept and resend attack. Eve intercepts all the incgpmubits and measures
each of them using her own plus or minus box. She then forwtaelsesulting
states to Bob. If Eve was lucky and her chosen basis happenatth ithe parity
type that Alice encoded, then Eve would not be detected. Memwié Eve were
to measure in the opposite basis, then Bob might get a measntemtcome that
he should otherwise never get.

For example if Alice sends the stdfier) as a control bit. When Eve measures
the qubit pair using the plus basis (she does this half ofithe)tshe will get
the outcomg1+). She forwards this to Bob and in this case Alice and Bob do
not suspect that anything is amiss. However when Eve meassieg the minus
basis (which she does with probability half), she gets onthefthree possible
outcomes:{|2—),|3—),|4—)}, each with equal probability. When she forwards
any of this state to Bob, there is a chance that if Bob were to uneassing the
plus basis, his 2, 3 or 4 outcomes would trigger. These outsaame impossible
in the secure channel. Hence Alice and Bob suspect that thaimel has been
compromised.

The probability matters are summarised in the followingdalt gives the

probabilities of Bob’s outcomes for each of Eve’s possiblezomes.
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State Eve Outcome of Bob’s measurement Eve’s
forwards | (1+| (2+| (3+| (@4+| | (1—-] (2—| (3—| (4—| | M.P.
W |3 0 o o0 b b 4| 3
=) | % 0 % % |0 £ 0 0| 3
13—) ¥ 3 0o % 0 0o 5 0 i
4-) | % 3% 3% O |0 0 0 4 | 3
e T T e T T O

M.P. 3 18 18 18 6
BEO_Z_S $; 0 o0 0| 0 z z 1

The abbreviations M.P. and E.P. stand foarginal probabilitiesand expected

probabilities We see that Bob gets the stat@s-),

3+) and|4+) each with a
probability of 1/18. In the secure channel, these states are never expected.
Repeating this for all the other states that Alice sends, wéhggoint proba-

bility table between Alice and Bob as given by the followinglea

_ Outcome of Bob’s measurement
State Alice sends
(4] 2+ B+ @G+ | - 2| (3] (4
1 1 1 1 1 1 1
11+) 2% T4 T4 s | O 4 a8 s
1 1 1 1 1 1 1
24) 42 24 T4 14| a8 9 4@ s
1 1 1 1 1 1 1
3+) T4a 144 24 144 | a8 a8 O s
1 1 1 1 1 1 1
|44) T4a T4 Tah 34 | a8 a8 a9
1) o L1 1 1 | i 1 1 1
48 48 48 24 144 144 144
2-) i o 4 1| 1 1 1 1
48 48 48 144 24 144 142
30) 101 ¢ 1| 1 1 1 1
48 48 48 144 144 24 144
4-) 11 1 g 101 1 1
48 48 48 144 144 144 24

This joint probability table is biased in the sense that tiematched basis results
are free of noise but the matching basis results suffer froisen
Eve will get be able to decode with full certainty Alice’s dibnce Alice an-

nounces her numeral type. Summing up the entries of the poottability table,
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Alice and Bob ends up with the following binary symmetric chahfor every

numeral type.

Bob’s bit
Alice’s hit

_|_

Rl= Rl +
Rlo K=

The error rate corresponding to this attackis- 1/6.
We do not allow Eve to do any attacks that result in biased joiobability
outcomes. The next section will define more precisely whatean by unbiased

attacks which result in unbiased noise as seen by Alice and Bob

4.3 Unbiased noise

In an ideal world, Alice and Bob would have a perfect noisetdsmnel. They
would abort the protocol whenever they find that their chhimeontaminated.
However living in a universe that is not so ideal, Alice and Balonpromise by
allowing some noise in the channel. Still they insist tha tioise isunbiased
By this, we mean that all the entries of Alice and Bob'’s jointlgability table are
modified in the same way. The new noisy probabilities ardedlto the noiseless

probabilities by

1
Prew= (1—¢) Poa + &7 (4.1)

where 0< € < 1 quantifies the amount of noise in the channel. With this asuuil

noise the new joint probability table between Alice and Bobiven by table 4.2.
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State Alice sends Outcome of Bob’s measurement

P

(| 2+ G+ A | A @2 &= (4]

114) 43 & £ £ £ 4 d-e At

64 64 64 64 64 192 192 192

124) £ A3k & £ | 4 & 4-e 4t

64 64 64 64 | 192 B4 192 192

13+) £ e 43 e | 4e 4e & 4t

64 64 64 64 | 192 192 &4 192

|4+) £ £ £ 43| 4e 4e Ae &

64 64 64 64 | 102 192 192 54

11-) =" £ £

64 192 192 192 | 64 64 64 64

12—) 4 & A€ 4 | & 43 & £

192 64 192 192 | 64 64 64 64

13-) 4 4 & 4e | & £ 43 &

192 192 64 192 | 64 64 64 64

14—) 4 4 4e & £ £ £ A3

192 192 192 4 64 64 64 64

Table 4.2: Joint probability table for the raw data betwedicedand Bob for the
direct communication protocol in a channel with unbiased&a

The intercept and resend attack strategy in section 4.2gldaes not mimic
an unbiased noise channel. In fact for that attack, the miobability table be-
tween Alice and Bob shows no noise in the event where Alicaegtarity does
not match Bob’s measurement parity. However when theiriparinatch, they
see a noise value correspondingte 4/9.

After Alice and Bob find out their actual joint probability telfor the strategy
in section 4.2, they can make their joint probability tabhiased by adding some
controlled noise on their raw keys. This will reduce theirretations, but it will
allow Alice and Bob to obtain an upper bound on Eve’s informmatiased only on
unbiased attacks. For this particular attack, the straitegylves Bob randomly

flipping 1/4 of his outcomes to the opposite parity type.
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When Bob does this, the new unbiased probabilipes€ related to the old

biased probabilitiep by

Blac,b=) = op(at b) + ;p(at,br). (4.2)
Blact,bs) = Sp(ack b) + 7plat,b). (4.3)

We work out four of the probabilities below

f)(1+,1+)=§><2—14+%><0:%2, (4.4)
P(1+,2+) = ?1 X 1—i4+% X 4i8: 9_16’ (4.5)
f)(l+,l—):§><0+%>< 2—14= 9%, (4.6)
f)(l+,2—):g><4—18+%><1i4:%3. 4.7)

Comparing with the unbiased probability table 4.2, we carckhbeat this corre-
sponds to a noise level ef=2/3.

This flipping of parity does not change Eve’s input stateswblee attacks
Alice. It also does not reveal any additional informatioritee. If Alice and Bob
introduce controlled noise to remove any bias in their jpmatbabilities, then Eve
will not have any advantage in doing a biased attack. She kbseopportunity to
add her own noise into the channel by doing a biased attackcdH®r the same
unbiased error rate, there is an unbiased strategy thaeiastias good as a biased
strategy. In the next section, we shall give an unbiaseddeps and resend attack

that has a noise level af=2/3.
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4.3.1 Unbiased attack with noise level of = 2/3

To mimic an unbiased noise, let us consider a different teferand resend strat-
egy for Eve. She needs to introduce some artificial noise thathAlice and Bob
see something unbiased.

Consider this strategy for Eve. Once again Eve measures ¢bening two-
gubit state using either the plus or minus box. But she sendsewér state she
measures with a probability of only/3. She sends the states with the opposite
parity with probability /4. We shall see that this attack results in unbiased noise
between Alice and Bob.

For example, say Alice sends the stdte). Again, Eve will get the statd+)
with probability 1/2 or the state§|2—),|3—),|4—)}, each with probability 16.
When Eve gets the stalte+), she will send oufl+) with probability 3/4 and the
opposite parity statll—) with probability 1/4. She does the same if she gets the
minus states.

The following table summarises the total probabilitiesEee to send out each

state when Alice sends the state-).

Eve’s Eve’s forwarded state Eve’s
outcome| |14+) [2+) |3+) |4+) | |1-) [2—) [3—) [|4—) | M.P.
|1+) $ 0 o0 o0 O 0 0] 3
|2—) 0o & 0 0 0 z 0 0 z
13-) o o 4 o/l o0 o0 % 0 :
4—) o o o %/ 0 o0 o0 } z
ol |y 1 0 1 1 1 1 1|

M.P. 8 24 24 24 8
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The last entry of the table gives the state that Bob will rezé&om Eve, given
that Alice sends the staté+). When Bob performs his measurements, he will

get the outcomes as given in the next table.

State Eve Outcome of Bob’s measurement Eve’s
forwards | (1+| (2+| (34| 4+ | (1-| (2—] (3—| {4—|| M.P,
|114) 2 0 0 o| o & L X 3
26) | 0 & 0 d 0 o dh| &
3) 0 0 m 0 lm 1m 0 | o=
|4-+) 0 0 0 & | %72 12 ma O &
- 10 &% @ @ | O 0 0 3
12—) s 0 & X o & O 0 z
13—) % 2 0 & 0 o & 0 z
45 | 4% @ @ 0] 0 0O 0 5| j
Bobs |, . 1 1 |1 s s s | 4
M.P 4 12 12 12 12 36 36 36

The last entry in the table gives the actual outcomes of Bobtealors when
Alice sends the statfl+). Comparing with Alice and Bob’s joint probability
table with unbiased noise when Alice senjtis-), Alice and Bob would not be
able to differentiate between Eve’s presence and a chantirelimbiased noise at
£=2/3.

Of course, Bob will get similar unbiased marginal probaigiditwhen Alice
sends other states as well.

We note that since the channel between Alice and Eve wasgbebfe doing
this intercept and resend attack, Eve knows everything taiheubits that Alice
sends. So we can conclude that when Alice and Bob see an udiniase level

of e = 2/3, Eve already has full information about Alice’s bits.
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4.3.2 A slightly more general unbiased attack with noise level

ofe>2/3

In fact the intercept and resend strategy that we just ptedes just one of many
intercept and resend strategies that Eve can use but thatistics an unbiased
noise. Here we present a slightly more general strategy.

The strategy is as follows. When Eve measures the outcomen# s box,

she forwards to Bob the states in the following table with thenwa probabilities.

State Eve forwards Probability

|1+) Po
2+) P1
3+) P1
|4+) P1
11-) P2
12—) P3
3-) P3
[4-) P3

Putting this into words, she forwards the state she recantbprobability pg, the
states having a different numeral but the same parity wibhglility p;, the state
with the same numeral but a different parity with probabpilt, and the states
having a different numeral and a different parity with protity ps.

Using this strategy, given that Alice sends the statg), the probabilities
of Bob obtaining a particular outcome after summing over alEwe’s possible

outcomes are given in the following table.
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Bob’s outcome Probability

(1+] £(2po+ p1+3p3)

(2+]| L (po+8p1+3p2+6p3)
(3+] A (po+8p1-+3p2 + 6p3)
(4+]| 2 (Ppo+8p1+3p2+6pg)
(1| 1(3pL+ p2+ pa)

(2—| (3po+6p1+ P2+ 8ps3)
(3—| 2 (3po+6p1+ P2+ 8ps)
(4—| L (3po+6p1+ p2+8ps)

For the noise to be consistent with the unbiased noise, Evdsn® choose her
probabilitiespg, p1, p2 and ps such that Bob’s outcomes match the entries of

the unbiased joint probability table 4.2. This gives fouuaiipns for the four

probabilities:
1 43¢
é(zpo-l- p1+3p3) = g (4.8)
1 €
1g(Po+8P1+3p2+6p3) = o, (4.9)
1 €
e8Pt P2t pe) =g, (4.10)
1 4—¢
18(3po+6p1+ P2 +8p3) = T (4.11)

These four equations are not all independent. They can beeddo the following

three equations

L _7—68

Po-+ P3 4
32

|01+|03=—4 , (4.12)
3—3¢

P2—pP3=
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where we have one free parameter remaining. The least vhlueomsistent with
this unbiased intercept resend strategy can be obtainedthre second equation.

Because probabilities have to be positive,

w

c— 2

AV
win o

pL+p3= (4.13)

[N
™
vV

(4.14)

The unique choice oy = 3/4, p1 =0, p2 = 1/4 andps = 0 corresponds to our
earlier unbiased intercept resend strategyefer2/3. Fore > 2/3, there is more

than one eavesdropping strategy for Eve in this class.

4.4 Alice and Bob’s mutual information for unbi-
ased noise

For an unbiased attack, we can find the mutual informatiowden Alice and
Bob in terms of the noise parameter. Summing up the entrieshie &4.2, the

channel between Alice and Bob is the following binary symmethannel.

_ | Bob's bit
Alice’s bit
_|_ J—
2—¢ €
T K
_ £ 2t
4 Z

For this channel, the mutual information between Alice ant Rdl be
2—¢ €
IAB=TI09(2—8)+§Ioge. (4.15)

We note that for the unbiased channel, the error Qaggjuals tce/2.
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Chapter 5

Noise 2. General eavesdropping

strategies

The intercept and resend strategy that we presented ingheHapter is just one
class of attacks that Eve can perform. The more general toirfeer to do would
be to entangle some ancilla states to Alice’s qubit pairsavimitary evolution.
Eve keeps her ancillas and sends Alice’s sub-system to Bobxffact the most
information out of her ancillas, Eve will only measure hecidlas once Alice and
Bob have finished the whole protocol and used the resulting.key

Eve’s entangling scheme is constrained by the probalsilitiat Alice and Bob
check in table 4.1. The security analysis boils down to figdire best entangling
scheme for Eve (subject to the probability constraintsjgfgiven noise leved.

In this chapter, we shall recast the problem in a differetiirge We look at an
equivalent protocol so that the security analysis becorgstly neater. Instead
of Alice sending qubit pairs to Bob, we will consider the maglifprotocol where

Eve sends Alice a qubit pair and she sends Bob another qubityWakere Alice
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prepares a state to send to Bob in the original protocol, sia#iting Alice will do
a measurement on the state that Eve sends. Her measurertieotlapse Bob’s
state to the state that Alice intends Bob to receive.

Section 5.1 presents the protocol in its original settingerghAlice sends a
pure state to Bob through a noisy channel. Section 5.2 lookiseagquivalent
protocol where Eve controls the source. Finally, secti@ifroduces the eaves-
dropper and the records that she has access to when Alice dndeBmoise in

their channel.

5.1 Alice—Bob channel

In the original protocol, there is a quantum channel betwdme and Bob. When
Alice sends a pure state to Bob, by the time the state gets totBisbchannel
would have turned it to something else (unless the chanperfectly isolated).
There are several equivalent ways to parametrise the chaiMeecan regard
a channelE as a unitary transformatidggg being done on the input stapg and
an ancillary stat¢é0). The output statpg is obtained by tracing out the ancillary

subsystem at the end of the unitary evolution

pA— P8 = T (Pa) = Tre {Use (pa® 0)¢ (Ol) Ude | (5.1)

whereE(p) denotes the action of the channel on a spat€he maximum dimen-
sion of the ancillary statg®) needed to specify an arbitrary channetlfs where

d is the dimension of Hilbert space of the input states (seexXample [39]).
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The channel can also be described by a pure staié dimensions between
Alice—Bob and Eve. When Alice obtains a POVM outcome corredpanto an
arbitrary statepa that she sends, the resulting state at Bob’s end would be the
outcome of the chann@k = S(pa). In appendix A, we provide an explicit con-
struction for the pure state between Alice—Bob and Eve forrhaitrary channel

between Alice and Bob.

5.2 Alice measures protocol

We now introduce the equivalent protocol where Alice and Bwrs an entangled

state emitting from a source. Alice will measure her stategia POVM and the

state Bob receives at this end will depend on the outcome oéAlmeasurement.
In this scheme, we consider a source which emits two qulisghe first pair

to Alice and the second to Bob. The qubit pair is in the state

NI =

where the notatioa, b) meansa) |b). The statda) goes to Alice and the state
|b) goes to Bob. We choose this state as the source because we aveshh

statistical operator for Bob to be the completely mixed stdt@ng relation (3.1)

4
In+) =U|n-) = Z IM—) Umn , (5.3)
m=1
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where

0 -1 -1 -1
111 0 211

Umn = (M—|U |n—) = (m— n+) = —
’ V3|1 1 0 -1
1 -1 1 0

we can write the source stat¥) o5 in terms of the minus states. The source state

becomes

Whae— 1S Intan)
Wp== Y n+,nt
AB ZnZ]_
1 4 4 4 ‘ n,{ >
== Um,nUny n |[mM—, m —
2n:lm:lm’zzl o "
1 4 4 4
-3 Ut | 17—
n=1lm=1m=1
1 4 4 ‘ n,.( >
= = 6m' m—,m-—
2m:1n12:1 7m
1S mem
2m:1 ’

The third equality follows becausg,n is real.

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

In this setting, Alice also has two measuring apparatusphixe box and the

minus box. To prepare a plus state, Alice puts the qubitglerreceives into her

plus box. If she gets the-th outcome she would collapse Bob’s qubit pair to the

In+) state. In the original protocol, Alice randomly chooses matal type, but

now this random selection is made by her measuring box. Tpapeea minus
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state, Alice would measure her qubit pair using the minus Béxm this point

onwards, the protocol remains the same as the original one.

5.3 When there is noise

If Alice and Bob get the source state in the st ,g, then they will obtain a
joint probability table like table 4.1. We shall see in sent8.1 that with this
pure state, Alice and Bob can be certain that their communitad completely
private. An eavesdropper would not be able to gain any inédion about their
communication. That is if Alice and Bob see a probability ¢alike table 4.1,
they can be sure that the source state was the pure'‘$tate

But when noise is present, the probability table that Alicd Bob get will
no longer be the perfect table. Alice and Bob insist on theenb&ing unbiased
and not too large. They only continue with the protocol ifytirave a joint prob-
ability table like table 4.2 and the noise leeak less than a certain threshalgl
Otherwise they conclude that someone is eavesdroppinglzortl the protocol,
they refuse to communicate. This threshold will be the maxmamount of noise
that Alice and Bob can protect themselves against (by usiog eorrecting codes
and privacy amplification techniques) and yet still maimtaicompletely private
communication.

On insisting for an unbiased noise, Alice and Bob hope to getiece state

h) 1

Phg = (1-€) [W)ap (Wlap+ 7 . (5.10)
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a mixture of the perfect source state with an unbiased ntage. sBut with only
the joint probability table accessible to them, they carbesure. For any non
zero amount of noise, there will be many different states$ Wik give rise to
the same joint probability table for Alice and Bob. Thus Alexed Bob must be

content with the following 64 restrictions on the sourceaesthey actually get:

1-¢ €
Tr{pasla+,b+) (a+,b+|} = 7 6a’b+l_67 (5.11)
1—¢ €
Tr{pAB’a_u b_> <a_7 b_|} - Téa.,b+ 1_6 ’ (512)
1—¢ €
Tr{pasla+,b—) (a+,b—|} = E(l_ dab) + 16 (5.13)
1-¢ €
Tr{pasla—,b+) (a—,b+[} = ?(1— Bab) + 16 (5.14)

for {a,b} € {1,2,3,4}, wherepag is the state from the source.

5.3.1 The eavesdropper

When Alice and Bob see noise in their communication, theyhaiitei that noise to

a malicious eavesdropper Eve that controls their sourcey Want to know how
much information Eve can learn so that they can protect tinenmenication by
building in redundancies in the message. If Alice and Bobivecine statgag
from the source we can always assume that this (possiblydnstate is part of a
higher dimensional pure stalt#’) ,g, Where tracing over Eve’s subsystem gives

Alice and Bob’s stat@ag,

Pa = Tre {|¥) ae (Wlage] - (5.15)
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In this language, for every state that the source provides/Aind Bob, Eve has a

record in the from of

Pe = Tras{|¥) age (Wlage] - (5.16)

Eve will keep all her records, until Alice and Bob have perfethall their mea-
surements and Alice has revealed her numeral types. Atdinshe communica-
tion is over and Bob knows the message that Alice wanted to agroate to him.
Now Eve is ready to extract some information about the mesbkggerforming a
collective measurement on all her records.

Suppose Alice announces that her measurement outcome waes . tEve’s
input state would depend on whether it was a typeat 1—. If Alice’s outcome
was k-, Eve’s record state becomg§_, . and if Alice’s outcome was-1, Eve’s

record collapses tpﬁzli, where

Ph1s = 4Trae{(|1+) (14| ® 18) |¥) age (WlaBE) - (5.17)

Pae1 =4Trae{(|1-) (1-|® 18) W) Age (W|ase) - (5.18)

The two states are normalised so that the trace of ppth. andp%_,  are equal
to one. On average, the message Alice sends has the samerrafrphes and

minus bits. The probability of Eve to get either state /2.1



62

The maximum amount of information that Eve can learn frontyipe 1 states

is given by the Holevo quantity of her records

1 1
lho1=X (épﬁ—l-w épE—1—> (5.19)

= S(Epgl—i- + épﬁl_) - és(pE:H) — zS(pE:]__) . (520)

The total information Eve learns about the message is theravkrage of the
information that she learns from each numeral type

1
Ik = 2 (s + Ao+ 1ha+ k) - (5.21)

Eve could also choose to learn about Bob’s measurement oatcmstead of
Alice’s. In this case, she will get an analogous quarifityOur task is to find out
what is the maximum value that the quanlify(or IE) can attain for a given noise
€. We want to maximisdaE (or IE) over all possible purification$!) ,ge subject

to the 64 conditions (5.11)—(5.14).

5.3.2 Eve’s purification

To perform the maximisation of Eve’s information, we wriketpure joint Alice—

Bob—-Eve state as

4 4
(W) age = Zlbzl’ea> |€n) |Eap) (5.22)

where|e;) and|e,) are some arbitrary orthonormal basis for Alice and Bob. The

16 kets|Eqp) are Eve’s records which is the purification of Alice and Boliées.
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The choice of this purification determines the informatiore Rvill get. The re-
maining task would be to find the optimal purification that \bgive Eve the
maximum information.

In writing the purified statéW) ,gg, the choice of basis for Alice and Bob is

irrelevant to Eve. Suppose we write instead

4 4
Wase= > > [Gm)|Fom) (5.23)

n=1m=1

where|@, m) is some (possibly entangled) orthonormal basis for Alice Bob.

In terms of Alice and Bob’s old basis, the st{fé) 5g¢ is

(W) age = ; Z |€a, &) (€a, €| Ghm) |Frm) (5.24)

1nm=1

4
= ; |e617 ( Z <eayeo‘(ﬂ1,m>“:n,m>> (525)
ab=1 n,m=1

Comparing this with equation (5.22) we see that|fhg) kets are related to the

|Eap) kets by the unitary transformation

4 4
Eap) = > > |Fam) (€a,€0|¢hm) - (5.26)

n=1m=1
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5.3.3 Eve’s input states

From equations (5.17) and (5.18), we can write Eve’s redstaigs when Alice

announces that she obtained an outcome of type 1. Fortlmificome, we have

Pt =4Tras{(|11+) (1+|® 18) |¥) ape (Wlase) (5.27)
4 4
=4 g g Trag{(|1+) (14| ® 1) |€a, €, Eap) (€4, €&, Ea iy | }
ab=1a b'=1

(5.28)
~a3 (Slmn i) (S Eel) o2

while for the 1- outcome, we have

PE_ 1 =4Trs{(|1-) (1~ ©18) |¥) age (W] el (5.30)
4 4
=4 g Y Trag{(|1-) (1~ ©18) |ea,, Eap) (& &), Ex r|}
ab=1a b=1

(5.31)

03 (S mn ) (SehEl) . e

Each state is written as the sum of four projectors and woane la maximum of
rank four. The total state§_, = 3p§_,, +3p5_,_ can at most have rank eight.
We can also find Eve’s reduced states conditioned on the met@d Bob’s

measurement. For completeness, we shall write down thatesdtere. For exam-
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ple, if Bob’s outcome happens to be of type,2hen Eve’s record state becomes

PE:2+ = 4Trae{(1a®[2+) (2+]) |W) ape (W] aBE) (5.33)

:4§1 (bi{Em <2+|eo>> <bil<e°|2+><Ea’b|> . (5.34)

If Bob announces the numeral type of her outcome, then Evedatoplland dis-
tinguish if her record state is in the stgig_,, or p§_, . But since Bob does
not reveal his numeral type, for Eve to guess Bob’s parity,is®eto distinguish

whether her record is in the state

. 1/4-3 ¢  4-¢

PA-1B—+ =5 pA_1+ + oo pA_1+ + Pa— 1+t PA- 1+

8 64 B— 192 B—3— B—4_ (5 35)
1 :

+= . +—(pE +p5 +pE ))
8 (64pA 1, 64 (pé 3 pA 1P

or

1
pE:l,B:f =8 <64PA_1+ T 64 ( Ef ++ pA_1+ + pé_ﬂ))

8\ 64 A1 192 A— é‘3+ i

where the state for examplg;_, is Eve’s reduced state when Alice obtains
B=3+
outcome - and Bob obtains the outcome-3

oE . — Trag{(|1=) (=1 ®[3+) (3+) W) ape (Wl ae}
8=ar  Tr{(11-) (~1&[3+) 3+])|%) ape (Wlase)

(5.37)

However, in this thesis, we shall only be concerned with Ey@g to distinguish

Alice’s states. Eve’s reduced states conditioned on theooog of Bob's measure-
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ment would only be relevant if Alice and Bob were to do a reveesenciliation

which is not what is done.
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Chapter 6

The optimisation problem

In this chapter, we formalise the problem of optimising Bvieiformation in a
matrix formulation. There are two sections. In the sectidn we write down the
constraints on the reduced state between Alice and Bob. tiose®.2, we find

how these constraints set a restriction on Eve’s reducéel sta

6.1 The constraints

We write the Alice—Bob—Eve pure state as

16

|qJ>ABE: Z |ABI> |EI> ) (6.1)

=1

where the ket$AB;) are 16 arbitrary (but not necessarily separable) orthoabrm
basis for Alice and Bob. Eve’s recordk,) are not necessarily normalised or

orthogonal.



68

The 64 constraints are

Trag{(Pat ® Qpv+) pas} = p(at, b+) (6.2)

for all four combinations of pluses and minuses and{fmb} € {1,2,3,4}. The
statepag = Tre {|¥) age (W|age} IS Alice and Bob’s reduced state aRg: and

Qp+ are the measurement outcomes for Alice and Bob

1
1
Qo = 5 |b) (b= (6.4)
with the sums
4
Z Pa+ + Pa— - 1A 5 (6-5)
a=1
4
Z (Qpoy +Qp-)=1p. (6.6)

The right hand side of equation (6.2) are the probabilittegMice and Bob to get
the outcomet, b+ as given in table 4.2. The sum of the 16 probabilities in each

sector is a quarter

4 4 , ) 1
ag_ p(a+,b+) aglp a+,b—) = g:lp(a—,bJr) :a;lp(a_’b_) =3
6

(6.7)

and the sum of all 64 probabilities adds up to one.
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6.2 Eve’'srecords

Eve’s statistical operator would be

pF = Tras{|¥) age (Wlaset (6.8)
16

= [E)(El. (6.9)
=1

Conditioned on Alice and Bob getting the outcomeadf andb+ Eve’s reduced

state would be

pgi,bi = Trag{(Pax ® Qo+ ) %) age (V| e} (6.10)

16
= > [E) {ABy|Patr ® Qos |ABy) (Ey/| (6.11)
1=

where the trace

Tr{p5eps } = P(at,b) (6.12)

equals to the probability of Eve to get that state. Introdg@n orthonormal basis

|F;) for Eve,

=
(o2}

(FalPbe.ax [Fy) = (F3|E1) (ABy/| Pax ® Qpu |ABy) (Ey/
=1

Fy) (6.13)

~]

=
(o2}

= Y (R|E)YABIPL Q. AR (E/|Fy)  (6.14)
1

~]
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where since
16
(Fal p% [Fy) = 3 (Fs|E)(Ei[Fy) (6.15)
=1
16
= 3 (RIE)(AIRO(ER) (6.6
I.K=
= (F| XXT|Fy) (6.17)
with
16
X=73% |E)(R| (6.18)
=1
so that finally,
16
(RIX|Fy) =5 (R|E)(R|Fy) (6.19)
I=1
= (R|Ey) . (6.20)
Also
16
(Fy| XTX|Fy) = Z (F3|R ) {(Ei|Ey)(F/|Fy) (6.21)
1LI=1
16
— 3 (RIXT|R) (R X |Fy) = (Es|Ey) - (6.22)
k=1

So if we have all the inner produc{&;|Ey ), we can take the (arbitrary) square
root to get(F;| X |[Fy) = <FJ\EJ/> which gives us a column representation for the
vectors|Ey) in the orthonormalF;) basis. The choice of the square rdofixes

the orthonormal basig;). Putting this back into Eve’s record state in equa-
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tion (6.14), we get the matrix elements

16

(F3] pSy ps [Fy) = Z (Fs|E) (ABI|PL. @ Q. |AB/)* (Ei|Fy) (6.23)
1i=1
16

= 3 (RIX|R) (AB|PL © Q5 AR (Fr|XT[Fy) - (6.24)
1,I"'=1

Eve’'s measurement strategy depends on the type Alice anasurEve’s two

input states when Alice announces a type 1 would be

4

pE\:l-F = z (p%+,b+ + pE+,b—) (6.25)
b=1
and
E < e E
PA-1- = ) (PT bt +PT b ) - (6.26)
b=1

The constraints on Eve's records are

p(at,bt) = Trap{(Pat ® Qp+) pas} (6.27)

16

— S (AB| (Pas ®Que) |ABY) (Ey[E) (6.28)
I,1'=1

16
= ; (Fe|X|R) (AB|PL © Q. |AB)* (Fu|XT|R¢)  (6.29)
11" k=1

Eve’s optimisation problem would be to fin€l(once she has chosen a bdsis)
which maximises §, the information Eve can learn, subject to the constraints

above. After choosing some orthonormal basiB,) for Alice—Bob and|F) for
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Eve, we write Eve’s input states as a 16 by 16 matrix
PEip, =X (Ph ® Q) X7 (6.30)
whereX is the matrix representation &,
X3,y = (Fa| X[Fy) (6.31)
and (7], ® Q) is a 16 by 16 matrix with entries
(P ® Q) 5y = (ABy| Pl Q. |ABy)" . (6.32)
The constraints oX becomes
Tr{x (Pl 2 QL) x*} — p(at,bt) . (6.33)

The optimisation problem is now to find the 256 matrix entést subject to
the 64 constraints in equation (6.33) to maximise Eve’s sgibée information
which is obtained by finding the entropies of states invauime sum of states in

equation (6.30).
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Chapter 7

Choosing a basis

In this chapter, we will choose a basis for Alice and Bob toewitit our equations.
Once a basis is chosen, the constraints for Eve can be woittiegxplicitly.

This chapter consists of two sections. In section 7.1, wk fhie plus basis as
the basis we shall work in for Alice and Bob. In section 7.2, wek @ basis for
Eve which corresponds to taking the Hermitian square rodteofreduced state

XTX as the choice foX.

7.1 Alice—Bob’s basis

While the basis choice does not affect Eve’s strategy or tla ififiormation Eve
can attain, it does however affect the number of pages ndededte down Eve’s
constraints and input states in full.

Eve’s strategy is fully defined by her purification

16
W) aBE = |Zl|ABI> E) . (7.1)
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Once we specify the Alice—Bob bas$iB, ), Eve’s record statelE, ) is also fixed

by the purification. We shall choose the plus states as a foagidice—Bob,
|ABy) = |a+,b+) (7.2)
wherel = 4(a— 1) 4+ b. With this basis choice, the matrix elements

(fpai X Qbi)\]”]/ = <ABJ| Pat ® Qpt |ABJ/> (7.3)

are real. Also the 64 constraints are

4
p(nd, mt) = Zb (&+,b'+|Pos ® Qme |a+,b+) (Eapy|Eap)  (7.4)
aba b=1

4
= Eb (&+|Pns lat) (b'+| Qms |b+) (Exp|Eap)  (7.5)
aba =1

forn,me {1,2,3,4}.

We divide these 64 constraints into three groups. The fistmmwith 16
constraints is when both Alice and Bob measure in the plus b call these the
short constraints. The second group is when Alice and Bobune&s a different
basis. The 32 constraints in this group are called the medomstraints. The
final group is when both Alice and Bob measure in the minus basdiss gives

the final 16 constraints which we call the long constraints.

7.1.1 Short constraints

An example of the short constraint would be when Alice ge¢sattcomen+ =

1+ and Bob obtainsnt = 1+. The probability for this outcome ig(1+,1+) =
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(4—3¢)/64, and so this constraint reads

4— 3¢

<E1,1‘E1,1> =15

(7.6)

A second example is whemt: = 1+ and mt = 24. The probability for this

outcome isp(1+,2+) = €/64, which gives the constraint

(E12|E12) (7.7)

_ £
167
The 16 probabilities when Alice and Bob both measure in the pasis determine

the norm of all of Eve’s 16 record states

4-3
(Eap|Ean) ==~ for a=b, (7.8)

3
(Eab|Eap) = 1 for a#b. (7.9)

We call these 16 equations the short constraints. The dontiees on|Ea7b>

correspond to the single index ¢ ) by the relatiorl = 4(a—1) +b.

7.1.2 Medium constraints

As an example of the medium constraint, consider the case Whee gets the
outcome 3 and Bob measures in the minus basis and get the outcemd&@lie

constraint that this must happen with probabifi)l+,1—) = £/64 gives the con-
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dition

1
P+.1-) =15 ((E12|E12) + (E12|E13) + (E12|E14)
+ <E1,3| Ei2)+ <E1,3‘ Ei3)+ <E1,3’ E14)

+ <E174| E1’2> + <E174‘ E1,3> + <E1,4{ E174>)
o €
=64

(7.10)

Substituting the norms from the short constraints, we get

(E12|E13) + (E12|E14) + (E13|E12)

+ (E13|E1r4) + (E14|E12) + (E14|E13) =0,

(7.11)

which is a constraint on the sum of the real parts

Re(Eq2|E13) + Re(E12|E14) + Re(E13|E14) =0. (7.12)

A second example is for Alice to get the outcomg and Bob gets the outcome
2—. This occurs with probabilityp(1+,2—) = (4—¢€)/192, from which we get

the constraint

1
p(1+,2-) =17 ((E11|E11) — (Er1|E13) + (E11|Eva)
- <E1,3| Ei11)+ <E1,3\ Ei3)— <E1,3’ E14)

—|— <E174|E1’1> — <E174‘E1’3> + <El,4{El,4>)
44—t

(7.13)
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Substituting the short constraints, this simplifies to

—Re(E11|E13) + Re(E11|E14) —Re(E13|E14) =0. (7.14)

In total there are 32 of such constraints on the real partstbayet when Alice
and Bob measure in different bases. We call thesenb@dium constraintsThese

constraints are written out in full in appendix B.

7.1.3 Long constraints

The long constraints arise when Alice and Bob both measufeeiminus basis.
For example, the probability for Alice to get the outcome dnd Bob to get the

same outcome-1 gives the constraint

aba’ib’=1<a/+ ‘1_><1_ }a+><b/+ }1_><1_ ‘b+><Ea’7b’|Ea,b> - 4gj£ .

(7.15)

This constraint would have 81 different inner products wiveitten in full. How-

ever, substituting the results of the short and medium caings, this simplifies
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to

Re&(Ez2|Es3) + R&(E22|E34) + Re(E22|Ea3)
+Re(E22|Eq4) + Re(E23|E32) + Re(E23|E34)
+Re(E23|Ea2) + Re(Ez3|Eqa) + RE(E24|Es2)
+Re(Ez4|E33) + Re(E24|Es2) + Re(E24|E43) (7.16)
+Re(Ez2|Es3) + Re(Esp|Eq4) + Re(Eg3|Ea2)

) ) )

+ Re(E33|Ea4) + Re(Es4|Es2) + Re(Ez4|Eq3
3—-3¢
1

We call these thdong constraints The 16 long constraints are given in ap-

pendix B.

7.2 Eve’'s basis

Once Eve decides on an eavesdropping strategy, the inrdugisoof her records,
that is all the terms inE|E;), are fixed. This determines the inner product
(RIXTX|F) = (E |Ey) where we recall that the square root= 315, |E)) (F|.
We are still free to choose an arbitrary basis which will determine the choice
of the square rooX. We shall choose such thétis Hermitian. A different choice
of X would amount to a unitary transformation on the basis.

We choose a basis for Eve so thédt= X. This is obtained by first diagonal-
ising p& = XXT,

16

><><*=Izllcn>A|2<cn| (7.17)
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with A > 0 and{@ |@) = & |, and then choosing the square root to be

16
X=x"= A : 7.18
I;Icm (@] (7.18)

In these basis (for Alice—Bob and Eve), Eve’s input stateslavbave the matrix

representation

PE e = X (Par ® Qi) X . (7.19)

We will work with these matrices in the remaining chapterdho$ part of the

thesis to find out the maximum information that Eve can gain.
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Chapter 8

Solving the equations for easy cases

Before going to the general case, we shall look at three easysdhat can be
solved analytically. In section 8.1, we look at the case wivene is no noise in
the channel. In section 8.2, we look at the case where thar®isoise for which
we already know from the intercept and resend attack thawVbe able to get
full information. Section 8.3 looks into the special caseswllice and Bob do a

complete tomography on the state that they receive.

8.1 Nonoisec=0

We want to find all possible solutions to Eve’s record statesmthere is no noise.

When there is no noise, the short constraints becomes

| =

(E11|E11) = (E22|Ez2) = (Es3|Eas) = (E44|Es4) = (8.1)

4
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and(E; j|Ei j) = 0 wheni # j. And from Cauchy—Schwarz inequality, the inner

products

(B j|Evy)|° < (Eij|Ei (B |Ein ) (8.2)

=0 (8.3)

wheni # j or wheni’ # j’. With this all of the medium constraints are automati-

cally satisfied. The long constraints reduce to six equation

Re(E11|Ez2) = Re(E11|Es3) = R&(E11|Ea4)

8.4)
1 (
= Re(E2|Es3) = Re(Ez2|Eq4) = R&(E33|Es4) = 2

which means that all four non-zero record states are equal

[E11) = [E22) = [E33) = |Ea4) - (8.5)
The joint Alice—Bob—Eve pure state is then

4
Wage= D IN+,n+) |Er) (8.6)
n=1

which is a separable state between Alice—Bob and Eve. In #sis even before
doing error correction, the raw keys between Alice and Bolalieady perfectly

correlated and Eve has no information about it.
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8.2 Alotof noise:e > 2/3

In this section we shall examine what are Eve’s possibldegji@as when she is
allowed to add a large amount of noise. In section 4.3.1 wednadtercept and
resend strategy where Eve gains full information at a naselk = 2/3. Here,
we find what is the equivalent entanglement based attaclkesmonding to that
prepare and send attack.

In the prepare and send scenario, there is a noisy channwetdetAlice and
Bob. We recall that in this channel, for the particular valéie e 2/3, Eve mea-
sures the incoming two-qubit state in either the plus or mibasis. She then
forwards the outcome of her measurement with probabilig &1d with proba-
bility 1 /4 she forwards the state with the opposite parity. We canritesthis

channelE by its action on a positive operatpr
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where

SPNES

3
~ i \/;’ (8.10)
SETENE
ETENE

The more general channel corresponding to the interceptem®hd schemes

forne {1,2,3,4}.

in section 4.3.2 for noise values of> 2/3 can be found in a similarly straight-
forward manner. For that intercept and resend scheme, iayartstatep would

transform to the state

1 4
p—E(p EZ Tr{p|n+) (n+|}
Po [n+) <n+\+p2|n—><n—!+n§ (pllm+><m+!+p3\m—><m—|)]
1 4
+3 2. Trpln-) n-1}

[poln (n—|+ p2|n+) n+|+; (p1 M=) (Mm—| + pg|m+) (m+|)

(8.11)
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wherepg, p1, p2 andps are the probabilities introduced in section 4.3.2 of which

only one is a free parameter. The channel can be written as

4
Z(p)=3 (A.(ql)pA.(ql)uA.%z)pAéz)u ; (AhpARH +A.({‘r)npA.({‘%qT)>
n=1 n#m

4
+y <B§11)pB§3”+B§12)pB(n2”+ > (BiHPBIM + B B&‘H))
n=1 n#m
(8.12)

where the Kraus operators for this channel are

AV =) (] [ 2 B = n—) (n—|/ 2.
AD =In-) ] [ 2 B = In+) (-1 /22,
A= Im+) (n+] 2 B —m-) (n—| /2
A =Im=) (n+ /5 Bin = Im+) n—| /2

fornyme {1,2,3,4}. Through straightforward but tedious computations, ihsur
out that the channel does not depend on the probabifties
We now want to obtain the pure stgt) ,z Which corresponds to this chan-

nel. The intercept and resend attack is equivalent to Evéirsgrlice and Bob a
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separable state such that the joint state between Alice ahdsBo

PaB =

1 4
én;\nﬂ (n+|®

Po [n+) (n+|+ p2[n—) (n—| + Z (P1 [MH) (M| + pg M=) (m—|)]

4
%Z ) (n—|®
[po\n (n—[+pz|n+) n+\+n; (P2 |m—) (m— \+I03|m+><m+!)]

(8.13)
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In the plus basis between Alice—Bob, this state has matritesnt

(ABy|pag|ABN) = (En|Em) =
a - . . - X1 X3 X
X4

X3 X1 X3 - X3 X3 X1

&3
_g<l .
&

X5 X5 X3

&
&
&
X
N

X3
X3 Xs

O
o & X

X4 X3 X5
X1 X3 X3 - X3 X1

9
X
=

X5 X3

8 X
3
x
Q

X4 X3 - X4 X2 X4

&
O
o X & &
5
S
&
K
X

Xq
X4 X% - - - - b
X X2 X4 - X3 X4 X5

&
&
&

X1 X3 - X3 X3 X1 X3 - - a X3 - X1
X3
Xg X4 X2 - X3 X5 X4 - X5 X3 Xg

X3 - X5

X2

X
&
L
&
X .
o

o & &
IS

X3 Xs Xs X3+ X4 X4 X4 - X2 - - Db

X1 X3 X3 - X3 X3 X3 + X3 X3 X - - - - a

M,N

whereXx denotes the negative afand the dots are zeros. The magnitudes

(4—3e)/16 andb = £/16 while the inner products are
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all of which does not depend on the probabilgy The reason for distinguishing
betweenx; andx, for example will be clear when we generalise Eve’s attack in
the next chapter. These inner products define the attacEtatlioes.

This matrix is diagonalised in appendix C and using the fdatnn in chap-
ter 6, we can check that Eve gets full information about Afind Bob’s bits when

she uses this attack.

8.3 Full tomography solution

For completeness, we note that if Alice and Bob were allowedadull to-

mography on their states, then Eve’s attack would be reéstito (EN\EM> =
(ABu| pisg | ABN) where

1

Phs = (1) [W)ap(Wlas +E1 (8.15)
_1-e In+, n+) (m+ m+|+i (8.16)
- 16 mzn ’ ’ 16 '

is the true unbiased noise state as in equation (5.10). Tdteswould correspond

to the values

1-¢
x1=T

Y

(8.17)
Xo=X3=X4=X%X5=0.

For this attack,|W),g is an eigenvector of the stapgg with an eigenvalue of
(16— 15¢)/16. The remaining 15 eigenvectors are degenerate and gamval-
ues ofe/16. Eve’s sub-normalised input state when Alice obtains @came

n+ and Bob obtains an outconme+ will be unitarily equivalent to the state
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/PaB|N+, m+) (N+, M+ /Pas

Prs.me ~ v/PAB|NH, M) (N, M| N (8.18)

We use the symbol’ to denote unitary equivalence. To compute Eve’s infor-
mation, we need to find the eigenvalues for Eve’s input statesn say Alice

announces the type 1

Pa-1: =43 PTime ~ 45 VPas|Lt, M) (1+,m+| /Pas' (8.19)
m m

Pa1 =43 P m ~4Y VPasll-,m-) (1-,m—|/pas’ (8.20)
m m
and also the eigenvalues for her total state
E 1 € E
PA=1= 5 (PA—1+ +PA-1_) - (8.21)

Forn#m

VPaB|NE, ME) = |nt, m+t) ,/1—86 (8.22)
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while forn=m,

16— 15¢
VPaB|NE,nt) = [W) x5 (Vs 16 Int, nt)

1 W) (Wlag) ke

1 /16—15 1 €
~ W3\ e+ ()~ e )4 1

B V16—15¢ 3¢
= |n+,nt) < 6 16 )
V16—15 /e
+r;n|mi,mi) (—16 —1—6)
B 4—3¢
= |t) 16 (8.23)

where |@,+) are properly normalised. We can also see that the four \&ctor
PaB|1E, mt) for me {1,2,3,4} are orthogonal. From this it follows that Eve’s
input statep%_,, andpf_,_ have eigenvalues

4—-3¢ ¢
{ R (degS)}. (8.24)

The abbreviation ‘deg’ denotes degeneracy. The entrogi&v@s input states

are then

(8.25)
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We now proceed to find the eigenvalues for Eve’s total statee’sBotal state

when Alice announces a type 1 is unitarily equivalent to

PR-1~ 2 VPaB(|1+, M) (1, M| + |1—, m=) (1—,m~|) /pag'  (8.26)
m

4-3 ¢
= |gr+) (@1 +]| + 5 |1+, M) (14, m+|
8 8rrh 3,4
4—-3¢ ¢
m=2,3,4

The first six eigenvectors for this state are

which have eigenvalues'8 and the final two eigenvectors are proportional to

{leot) +le—) » lot) — @)} (8.29)

whose corresponding eigenvalues are

5 (1+{p+|@—)) (8.30)
4— 3¢ 4—4¢
= (1i4_3€) (8.31)
8-7¢
= 8 (8.32)

respectively. With this we find that the entropy of Eve’s tatate is

8—7¢, 8-7¢ Te, ¢
S(p5_1) =— 5 10g——— < logz . (8.33)
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Figure 8.1: Plot of Eve’s information (in red) and the mutudbrmation between
Alice and Bob (in blue) as a function of the unbiased noisel levéhen Alice and
Bob can do a complete tomography of their state for the direstrounication
protocol. The two curves intersecteat 0.279621.

Putting this together with the entropies of Eve’s inputetgB.25), the maximum

amount of information Eve can extract can be computed usiadiblevo bound

1

1
X =S(P&-1) — 5S(Pa-1+) — 5S(PA-1-) > e - (8.34)

This is plotted in figure 8.1 together with the mutual infotroa between Alice
and Bob that we had in section 4.4. Eve’s information intdss@tice and Bob’s
information ate = 0.279621. This corresponds to a bit error rat€of 0.13981.

The maximum information transferred per signal is obtaifteth the differ-

ence of Alice and Bob’s mutual information and Eve’s inforioat

ne=lag—Ilg. (8.35)
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Figure 8.2: Plot of the bit rates for the direct communicapootocol when Eve is
restricted to a tomographic attack (in red) and the tomdycagix-states protocol
(in blue) as a function of the bit error rate.

This quantity would be called the key rate if we used the moitéo distribute
random keys instead of sending a message. We compare thitheikey rate for
the fully tomographic six-state protocol in figure 8.2. Tley kate for the six-state
protocol becomes zero when the error rate is greater@har0.126193 [13, 34].
The tomographic version of the direct communication protd@as a higher key

rate for all values of bit error below the security threshold
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Chapter 9

Imposing symmetry constraints

The optimisation problem as stated at the end of chapter 6sdarids is quite
intractable analytically. There are 256 variables with &fstraints, of which
only 49 are independent. The function to be optimised, thiewoquantity, is
nonlinear and we have to optimise this subject to the pdfsitsonstraints on
Eve’s reduced state. With the 49 constraints, we have 2@ gezameters to
optimise.

To make the problem tractable, we impose some additionadtants on
Eve’s records. These constraints were partly motivated byraerical search
on the optimisation problem. For example, we shall insiat #ve uses the same
strategy to discriminate against the plus parity stateb@slees against the minus
parity states.

After imposing these additional constraints, we can rediwss free parame-
ters to just four. At this point we can use standard variaiomethods to optimise

the remaining parameters to obtain Eve’s maximum inforomati
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In sections 9.1 and 9.2 of this chapter we impose a parity sstnynand nu-
meral symmetry on Eve’s attacks. After imposing these syinoenstraints, we
diagonalise Eve’s reduced state in section 9.3. The opiois for Eve’s infor-
mation will be carried out in section 9.4. Finally in sect@®, we calculate Eve’s

information and from there find the efficiency of the protocol

9.1 Parity symmetry

We want Eve’s different inputs to be unitarily equivalenwvi swap the parity and
that the unitary operator does not depend on the numeral fiipat is we insist

that

p§+,b+ = ngg—,bfuP (9.1)

for some unitary operatddp that does not depend @andb. This constraint is
motivated by the fact that the plus and minus basis play eqled. They are on
equal footing and we do not expect Eve to gain by treating aseskdifferently
from the second. From equation (6.30), this constraintireguhat the elements

for Eve’s square root matriX must satisfy the relation
X(Pl oQf ) xt=ulx (2]l o Q) ) xTup (9.2)
whereUp is the matrix representation falp with matrix elements

(Up)yy = (Fs|Up|Fy). (9.3)
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The plus and the minus parity states are related by the yrr@ansformation

4
Ve = ;1|a—><a+|®|b—><b+l

with matrix elements
(Tp)yy = (ABy| VP |ABy) .
By construction
Vp (Pay ® Qo+ )V = Pae @ Qo_

and its equivalent matrix relation

{VP (fPa+ ® Qb+) 'VT =P Q- -

Finally, substituting
Pa ©Q =V (Pa: @ Q) V'

into equation (9.2), we arrive at the relation

X (21, 0 Q) ) X" = (ulxp) (2] @ @) (VX up)

(9.4)

(9.5)

(9.6)

(9.7)

(9.8)

(9.9)
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which will be satisfied if we impose the condition thtcommutes with1g and

P P

This imposes an additional 104 independent constraintsitaequations. This

reduces the number of free parameters from 207 down to 103.

9.2 Numeral symmetry

To further reduce the number of free parameters we imposhansymmetry re-
guirement on Eve’s input. We require that if Alice and Bobabdl their numeral
labels cyclically, Eve’s record states should remain uiyt@quivalent. In fact
we insist on a stronger condition that when we permute onexitol the next in
the cyclic permutation, the unitary transformation for Evecord states does not
depend on the index.

Repeating the analysis done for the parity symmetry, we imtus condition

that
X = VW XV (9.11)
where

({VNl)\]"]/ = (ABj| VN1 |ABy) (9.12)
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and

W1 = (|14) (24 = [24) (3+[ +[3+) (4+] + [4+) (1+])
(9.13)

@ (|14+) (24| — |2+) (3+| + |3+) (4+| + |4+) (1+])g

which permutes the numeral indices from+12 — 3— 4 — 1. This gives another
78 more independent equations, bringing the number of faegpeters to 25.
We impose a last symmetry for Eve’s records

VN2 = ([14) (3+[+[3+) (24| — [2+) (4+[ + [4+) (1+])a
(9.14)

@ (|11+4) (34| +13+) (24| — |2-+) (4+]| +|4+) (1+])g

which permutes the numeral indices from-13 — 2 — 4 — 1. This gives another
21 more independent equations, bringing the number of faegnpeters to four.
Labelling the remaining parametersx@asxo, X3, X4, X5 we have five parameters

to optimise with one constraint on the sum

1-¢
X1+ X2+ 2X3+ 2Xq = 1 (9.15)
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These parameters correspond to the entries in the malrik With these con-

straints, the matrixx T X takes the form

<E| ’EJ> = (XTX)LJ =

a

X1
X3
X3
X3
X1
X3

X3
X3

X1

g X

X
&K

g &

X3

g K

X5

X3

&

o g K

X3

X5

X3

X2

FSl’S

o X & &

3_'<| _g<| 8)<|

&

X5

X4
X3

X1

X3
X3
X1

X3

X3
X3

X1

X3
X5

X5

Fr o

& &K
&

3_'<I a)<|

&

o X X

X5

X3

_g<|

X5

s
X

X2

X1
X3

X3
X1
X3

X1

1,J

wherex denotes the negative pfand the dots are zeros. The magnituades(4—

3¢)/16 andb = £/16. The negative signs in one of the terms in equations (9.13)

and (9.14) were inserted so that this matrix is similar todhe we obtained in

section 8.2 for the intercept and resend attack.
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9.3 Diagonalising Eve’s attack

After imposing the symmetry constraints, we are left withanageable problem.
The 16 by 16 matrixxTx can be diagonalised which will also give the Schmidt
decomposition of Eve’s pure state between Alice—Bob and Eliese eigenvec-
tors are given in appendix C.

From this we can also get the eigenvalues of the matrix reptesy Eve’s
total stateX xT. The eigenvalues are

1
M = 1—6(16— 15¢ — 48xy — 96x3 — 96x4)

1
34 = 16 (e+16x2—32) ,

1
M567 = 1_6 (8 + 16xXo — 32X3 + 32)(4) ,

1
Ho10= 7¢ (€4 16x2 + 64x3+32xa) (9.16)

1
W11213= 76 (e—16x2—32xs) ,

1
s = 7¢ (€ —16x2 + 64x4 1+ 32%s) |

1
516 = 7¢ (€—16x2 — 324+ 32xs) .

The parametersy, X3, X4 andxs must be chosen such that these eigenvalues are

positive.

9.4 Optimisation problem

To compute the Holevo quantity, we need to find the eigengabfips, andp§ =
%p;'i + %pg,. Our assumptions on Eve’s records ensure that her reduatss st

pE, have the same set of eigenvalues forad {1,2,3,4}. The eigenvalues turn
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out to be

{4_438 , Z (deg 3)} 9.17)

which depends oa only. Also the combined stafgs has eigenvalues

A= % (E—16x2+32x) ,
Ao = % (€—|— 16X2—32X4) ,
A3a= 1 (€ —16x3+ 16xq4 — 16x5) ,
? (9.18)
)\5,6 = 3 (4 16x3 — 16x4+ 16Xs)
A7 = % (€4 16x2 4 64x3 4+ 32x4)
Ag = % (8 —7e — 16xp — 64x3 — 32Xy)

for all a € {1,2,3,4}. Hence to maximise the Holevo quantity, we need to max-

imise the entropy ofk,

S(pg) = — 3 Ailoghi, (9.19)
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where); are the non zero eigenvalues@. There are four parameters to opti-

mise: X2, X3, X4 andxs. The entropy will be extremised when

[
0Xj_ ’

8
A.laA'+%| oghi | =0, (9.21)
A; 0X

_Zl(_ﬂ m):o, (9.22)
A5 - 029

where the first term in the third equality above vanishes bsedhe sum of the

(9.20)

eigenvalueg Aj = 1.

At this point, we want to find solutions to these equationsifbich Eve'’s total
state remains positive. It turns out that there are two fasibf solutions. The
first is when the noise levelis greater than or equal tg/2 and as we shall see
in the next sub-section, these solutions will give Eve fulbrmation. The second
family is whene is less than 23. For these solutions, Eve will no longer be able

to gain full information.

9.4.1 Alotofnoise:e >2/3

We start with the case when the noise les/islgreater than or equal tg'2. Taking
the derivative of the entropy with respect¢g the first condition for extremising

the entropy is

S
=0 (9.24)
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which gives

1 16 1 16
{é (e+16%2 — 32x4)] x {é (£+ 16%2 4 64x3 + 32x4)]

1 -1
X {é (8 —16xo+ 32(4)] X {é (8 — 7€ — 16X — 643 — 32)(4)1

provided that non of the eigenvalues are zero. This simglibe

(£+ 16% — 32X4) X (£+ 163 + 64X3 + 32X4)

X (€— 16X +32Xs) I x (B—T7e — 16xp — 64Xz — 32X4) T =1.

The other three conditions are

which gives

(€4 16x3 — 16%4 + 16x5) x (€ + 16% + 64Xz + 32X4)>

x (€ — 16Xa+ 16X — 16X5) "+ x (8— 7€ — 16xp — 64Xz — 32X4) 2 =

and

aS
0X4

=1

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)
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which gives

(e — 16x2 4+ 32x4) X (€ — 16x3 + 16x4 — 16X5)
X (€ + 16X + 64x3 4 32X4) X (€4 16x2 — 32x4) * (9.30)

X (£ 16x3 — 16x4+ 16x5) L x (8— 76— 16%, — 64x3— 32) T =1

and
0S
— =0 9.31
e (9.31)
— X5 X (x4—X3)*l =1. (9.32)

The solutions to these four equations, parametrised byapetera are

Xo =20,
X3=—(1—8—16G) ,

16 (9.33)
Xp=0a,

X5 = %[320(—(1—8)] :

The choice ofx must satisfy the requirement that Eve’s total st&té' has pos-

itive eigenvalues. Substituting this solution into theegigalues, the eigenvalues
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as a function of anda are

1
-~ (10— 9 —
H234 = Eﬁ,
1
Ms5.6,7 = 1—6(38—2+960) ,
1
-~ (4— 9.34
Mg 9,10 16( 3) , (9.34)
1
— —(2—e—
M111213 16( e—96a) ,
M4 = M5,
_ 1 (3e—2)
H1516 = 16 .

These eigenvalues are always positive provided

2 -2 2—¢
= <a<——. _
s>3 and 9% <a< 96 (9.35)
For every one of the solution, Eve's total stafehas eigenvalues
€ 4—3¢
{)\1,2,3,4,5,6 =3 and A7g= 5 } (9.36)

that does not depend @nand gives Eve full information. The class of intercept
and resend attacks in section 8.2 is a special case of thgosolwhena = (1 —

€)/32.

9.4.2 Not so much noiseg < 2/3

Whene < 2/3, the solutions in the previous sub-section are no longevissible

as they will make Eve’s total state negative. The first twesigilues oft X to
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become negative are the eigenvalues
1
H1516 = 16 (€—16x2 — 324+ 32Xs) . (9.37)
Setting these to zero, we can wiigin terms of the remaining parameters
1 1
X5 = X4+ 2xz — 3—28 (9.38)

The combined statgS now has eigenvalues

A % (€—16x2+32x4) ,
Ao % (€4 16x2 — 32x4) ,
1
Aza=—(3e—16x2 —32x3) ,
116 (9.39)
)\575 = 1_6 (8 + 16xo + 32)(3) ,
A7 % (€4 16x2 + 64x3+ 32X4)
Ag % (8— 7€ — 16xp — 64x3 — 32xy) .

Doing as we did before, the three COI”IdItIO(%]%- g—z = a_s 0 give three equa-

tions. The first equation

0S
= = 4
3 =0 (9.40)
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leads to

(& + 16%p — 32X4) X (€ + 16X + 32X3)
X (€+ 16X+ 64%3+32Xs) X (€ — 16% + 32x4) L (9.41)

x (38— 16xp — 32x3) 1 x (8— Te — 16%p — 64x3 — 32¢4) *=1.
The second equation

aS
O (9.42)

gives

(€4 16X2 + 32X3) X (€4 162 + 64Xz + 32x4)?

(9.43)
x (38— 16xp — 32%3) 1 x (8— 7e — 16X — 64x3 —32x4) 2 =1.
From the final equation
:7? =0, (9.44)
we get
(€—16x2 4+ 32¢g) X (€+ 16xp + 64x3+ 32Xy) (6.45)

x (€+ 16X — 32¢4) L x (8— Te — 16xp — 64x3 — 324) T =1.

Equation (9.45) follows from equations (9.41) and (9.43)e Bolutions to these

eguations can be found by solving a cubic equation. Fromtamugd.45), we can
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write X3 as

X3 = % e(l—a)+16xz(1—e)—16x4(2—e)] . (9.46)

Substituting this into equation (9.43), we obtain a cubigagtpn inx, with coef-

ficients involvingx4 ande

[4096(2— s)} —|—X2[— 256(5(—2+ 3e) — 96(—2+ a)x4)]

1168 [(82(2+38) +64e(—2+ 36)xqg — 30742+ s)xﬂ

(9.47)
+x5 [(2 —3e)e3 —326%(2+ 3e)xq
—1024(—2+ 36)x2 + 32768 — 2+ e)xﬂ —0.
The solution to this equation can be written as
X2 =02(€)+ 20,
X3 = g3(€) —a, (9.48)

X4 =a

which is parametrised by and whereay, andgs are functions o only. The func-
tion gy is obtained by solving for the roots the cubic equation ab&wplicitly,
824 24¢3 - 18% — 2ew+ 3e2w — w2

92= 482—e)w !
1-¢
€

(9.49)

1
93:E(1_8)+92
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and

w = 232632 - 3¢)%(5— 3¢)
(9.50)

Wi

+36%(2—€)(/6(2—€) (4~ 186 + 542 - 2769

From these solutions we obtain the eigenvalues of Eve’sstatept, all of which

do not depend on:

1
A1 =3 (e—16g2) ,
1
A2= g (e+16g) ,
1
)\374 = 1_6 (38 — 1602 — 3293) ,
1 (9.51)
A5 = 16 (e+1692+3293) ,
l
s % (8 7e — 169, — 6493)

We plot the eigenvalues as a functioneah figure 9.1.
From the eigenvalues we can calculate the bound on the mnfoaination

between Eve and Alice. Any value affor which X7 is positive is admissible
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Figure 9.1: Plot of the eigenvalues of Eve’s conditionalesp§ as a function of
the noise level.

and gives the same information. The eigenvalues &if are

= = (16 15¢ — 480, — 9605 — 9601)

16
_ 1 (e+1692)
2,34 = 16 2)
1
U567 =16 (e+16g, — 3293+ 9601) ,
1
Heo10= 70 (e+ 169y + 64g3) , (9.52)
1
11213 = 70 (26 — 329, —9601) ,
M4 =60,
Mi516=0.

The eigenvalueg 3 4, Ugo 10 and 516 do not depend o and they are non-

negative for all values of & € < 2/3. The remaining eigenvalues are positive as



112

0014
0.012?—
0.01cf—
o.ooef—

0.00€-

parameten

0.004F

0.002F

0.4 0.5 0.6

0.00CH, .
0.0 0.1 0.2 0.3

noise levek

Figure 9.2: Plot showing the admissible region of the patantefor which the
eigenvalues of Eve’s total statex ™ is positive.

long as

3293 — 1692 — € o< 2 — 320
96 - 96

(9.53)

for which a solution always exists. This range is plottedguife 9.2.

9.5 Eve’s information and protocol efficiency

At this point we have all the ingredients needed to calculadeHolevo quantity
Ey lo/.E 1. €
X =S(ps) - 5S(Pa+) — 5S(Pa-) (9.54)

which is an achievable bound on Eve’s information. This @&tteld in figure 9.3
together with the mutual information between Alice and Badt tee had in sec-

tion 4.4. From the intersection of the two curves, we find thatnoise threshold
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information

noise levek

Figure 9.3: Plot of Eve’s information (in red) and the mutuébrmation between
Alice and Bob (in blue) as a function of the unbiased noisel leVer Eve’s opti-
mal attack. The two curves intersectgt= 0.154969.

for secure communication & = 0.154969 which corresponds to an error rate of
Q=0.0774845.
The maximum information transferred per signal is obtaifteth the differ-

ence of Alice and Bob’s mutual information and Eve’s inforibat

rne=1las—Ig. (9.55)

We compare this quantity with the key rate from the BB84 protactéigure 9.4.
The key rate for the BB84 protocol becomes zero when the erterisayreater
thanQ =0.110028 [13,51]. The BB84 protocol has a higher key rate contitare

the direct communication protocol for all values of errderbelow its threshold.
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Figure 9.4: Plot of the bit rates for the direct communiaatiootocol (in red) and
the BB84 protocol (in blue) as a function of the bit error rate.
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Chapter 10

Conclusion and outlook

In the first part of the thesis, we found some plausible uppentds on Eve’s in-
formation. To derive these bounds, we had to impose some symconstraints
to reduce the number of free parameters for Eve’s attack.

Without imposing the symmetry constraints, a numericatdeaas carried
out to determine the optimal solution using Monte-Carlo madth The only con-
straints imposed on Eve’s attack was that the joint prokigléble between Alice
and Bob should be consistent with an unbiased noise channedoNtions were
found that were better than the known solution. But this dagsay much since
the dimension of the search space is exceedingly large.

At this point, we can ask the following question: Is it po$sito restrict Eve's
attack if we allow Alice and Bob to perform some random proicggen their
qubits before measuring them? The method of introducingaamprocessing on
the data to achieve an upper bound on Eve’s information wsispgiesented by
Kraus, Gisin and Renner in [29]. In appendix D, we show thatdfallow Alice

and Bob were to perform some random operations on their qubiget an upper
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bound on Eve’s information, the state of Eve’s ancilla cap&d@ametrised by only
nine parameters. The checks that Alice and Bob do on theirune@ent statistics
would put further constraints on this state. By doing thisd@n processing, the
number of parameters for Eve in her attack can be naturaliyaed.

In this thesis we have not discussed the error correctionpewacy amplifica-
tion parts of the protocol. These would come after knowing hauch informa-
tion Eve can obtain. If we use this protocol for key distribat these procedures
are well known and can be easily adapted to the needs of thieqm.

However to use the protocol for direct communication, teiage not so sim-
ple. If the message itself is being transmitted, then Evddcpassibly intercept
the message and gain partial knowledge of its contentstdoitate to perform an
analogue of a ‘privacy amplification’ procedure as in a kestribution protocol.

It would be interesting to see if Alice can still transmit aeteninistic and
secret message to Bob. One way to achieve this is to have Alitabl/ encrypt
her message such that Bob would be able to decipher perfadtli\e would
not be able to obtain any information. How much encryptioicdheeds to per-
form would depend on the amount of information Eve has on élnedata. By
encrypt, we mean that Alice pre-processes her message aiginglicly known
error correcting and privacy amplification scheme priorédonding it to Bob.

The complete details for such pre-processing would neeck rstudy. But
roughly speaking, Alice will encode the raw bits that shedsemith redundancies
by reversing Bob’s decoding process. For example, to senthdssage, Al-
ice will first need to find a longer messagesuch thaty,(y) = X, wherehy, is a
randomly chosen hashing function from a suitable univeaisals of hashing func-

tions. This encoding is the analogue of the privacy amptiicestep in quantum
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key distribution. It is to ensure that even if Eve has somégldmnowledge ory,
she cannot learn anything about the actual messaQé course the problem with
this is that by definition a universal hashing function doeshave an inverse. It
is hard to findy givenx.

Instead, say Alice creates the stripg With this, she can deterministically
and securely send the message: hy(y) to Bob. In other words, Alice will
know what the message will be before she decides to transnitt she cannot
deterministically choose her message.

Before Bob can applii, to learn about the actual messagée needs to have
the error-free string. To ensure Bob can get the error-free string, Alice has to do
one more step of encoding using error correcting codes. Siwdweed to find
the messagesuch thag(z) =g(Z') =y, wherez' is the message that Bob receives
which is corrupted by the expected amount of error in thestragssion andj is the
error correcting protocol. Alice will then perform one wagnemunication. She
sends some classical bits to Bob so that Bob can correct alffoiseHow much
classical information Alice needs to send will depend onrthitual information
between Alice and Bob. After Bob has an error-free styinglice will then reveal
the actual functiom,, so that Bob can get the actual message

The reason that the encrypting process can be done prioide #énding her
signal is because of the fact that the protocol is detertignislence Alice knows
that the final result of Bob’s successful decoding is just higimmal message. In
a conventional quantum key distribution protocol, it woualot be possible (nor
would it be necessary) for Alice to do such encryption priosénding her signals

because of the random nature of Bob’s raw bits and also thekiyal
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We remark that since some amount of post-processing nedxsgerformed
between Alice and Bob, the protocol is not really a direct camitation protocol
in the strictest sense. Alice still needs to send classitsltd Bob in order for
Bob to recover her message. It can then be said that since giiiceeeds to send
classical bits to Bob anyway, then there is not much advaréds protocol
over a key distribution protocol.

A major concern for the protocol that we have briefly mentwire the in-
troduction is its performance in the presence of channal. Ids most discrete
variable quantum key distribution protocols, lost qubis gudits) do not con-
tribute to the error rate because such events are simplgteelje But in a direct
communication protocol, a lost signal means that some nmétion on the mes-
sage itself is lost. Therefore the lost signals have to bewatded as errors when
characterising the channel. For such events, Bob would ralydchoose a bit ‘0’
or ‘1’ to fill in his empty slots. If the error rate is not too g, then the post-
processing procedures will be able to correct for these®riim minimise Eve’s
information, Alice should not reveal her numeral type fostlevents. However
if the channel loss is too high, this will lead to a high noieedl. If the noise
level is beyond what the protocol can tolerate, then it walda to be aborted and
Alice and Bob have to restart. Each time they restart the pobtélice will have
to start from the beginning. She cannot make use of the sighat Bob had re-
ceived in their previous attempts. That is, she has to makebasis choices and
a new choice of hashing function to encrypt her entire messalis is to ensure
that any information that Eve had gained from the failed camization attempts

cannot be used to eavesdrop on the current attempt.
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Including the effects of loss, the joint state between Alicel Bob would be

Pag = [|W)ag(Plag(1—€) +€N+(1—n) (10.1)

= [W)ag(Wlag(l—€)n+en+(1—n), (10.2)

wheren is the channel transmission. The effective noise paranvebeitd be
¢ =en+(1—n). We need this quantity to be less than the noise threshold of
0.155.

In the thesis, we investigated how much information Eve d@qdtentially
gain if she were to attack Alice. We can also repeat the aisatpssee how
much information she can gain if she attacks Bob instead. WivencBooses
to attack Bob, her input states are given at the end of sect®B.5But we do
not expect Eve to learn more information from Bob then she cam fAlice.
This is because Alice publicly reveals her numeral type stiidob does not have
to reveal anything. If this expectation is true, then thetgrol will be more
efficient if Alice and Bob were to do a direct communicationsien of reverse
reconciliation.

Extension of the protocol to finite bit lengths also remam$&é¢ done. Typi-
cally the message that Alice wants to send would be of a velgtshort length.
The amount of data that is needed to characterise the chaprielsome confi-
dence may end up to be longer than the actual message itbétfgiliestion still
needs to be addressed.

An experimental setup for the protocol was proposed inse@&i3. This uses
two degrees of freedom of a single photon to encode a qubiitpd the setup is

relatively simple to implement. However the sensitivitytibé protocol to losses
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means that the detector efficiency is a critical factor fqpeekments. Detector
efficiency refers to the fraction of photons registered ® tlumber of photons
impinging on the detector. To establish a secure key, thecten efficiency has

to be at least) = 0.845. Avalanche photo diodes are the most commonly used
detectors in quantum key distribution protocols. Goodkfuaction silicon single
photon avalanche photo diodes have peak efficiency of arBuhdear 800 nm,
falling to 0.03 at 1064 nm [11,14]. Using superconductimgsition edge sensors,
better detection efficiencies of up t098 at 1556 nm was achieved by Lita in
2008 [33, 44]. However, these detectors have slower cotes end need to be
cooled to temperatures less than 100 mK.

Based on the above discussions, we can conclude that thé dwemunica-
tion protocol can already be implemented as a proof-ofeyie type of experi-
ment. However to be seriously considered as an alternatieytdistribution pro-
tocols, we would need to wait for technological developreghat lead to faster

and more efficient photon detectors.



121

Appendices
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Appendix A

Equivalence of Alice-prepares and

Alice-measures protocols

In the original protocol, Alice prepares a staig and forwards this through a
quantum channeft to Bob. The resulting state that Bob gets willfie= Z (pg).

In this appendix, we provide an explicit construction ostbhannel in terms
of a pure state shared between Alice—Bob and Eve. Every ingiat ® the chan-
nel would correspond to a POVM outcome for Alice. The outpiuhe channel
corresponds to the reduced state for Bob.

We describe the chann€las a unitary transformatiddgg acting on the input
statepg and an ancillary state;). The output stat& (pg) is obtained by tracing

out the ancillary subsystem at the end of the unitary evartuti

pa—Pe =" (pe) = Tre {Uee (Pe® o) (@) Ufe | - (A1)
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The maximum dimension of the ancillary stégg) needed to specify an arbitrary
channel igd2, whered is the dimension of Hilbert space of the input states [39].

We can also write this in the Kraus representation

Ps — P = ¥ {ex|Use [en)po (€1 Uge &) (A.2)
F;(E> szg”
_ ZFk(B)pBFk(B)T (A.3)

where the vectorg) extendsie;) to an orthonormal basis. The operatEﬁsB)

are the Kraus operators satisfying
SRR =10 (A4)

which is a condition on the preservation of the trace of thigpwaustates. This
representation is equivalent to specifying the action efdhannel on a set af
linearly independent state vectors (for example the SIC-MQAL]).

The choice of basis vectors for EVe) for k € {1,2,...,d?} are arbitrary.
We also specify an arbitrary set dforthonormal basis vectors for Alide,) and
an arbitrary set for Bolpbm) for {n,m} € {1,2,...,d}. In this basis, the Kraus

operators have matrix elements

(bn| F® [bm) = (bn, | Uske [bm, e1) - (A.5)
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The matrix elements for the output state become

(bn| P [bom) = ZHZ (bn, €| Use [bry . €1) (bt | P& by ) (bry, €1 Uge [, &) -
n
(A.6)
The correspondence between the state that Alice prepaties original pro-

tocol and the POVM outcome she projects onto is obtainedhei@tire maximally

entangled state between Alice and Bob

1
|Wrue) = Z |an, bn)

n T (A.7)

To prepare a statgs, Alice projects onto the POVM outconmg such that

P = Tra{(Ta ® 1g) |Wrue) (Wiruel} (A.8)

1
=3 %<%\ T |@n) [bn) (Bm| (A.9)
or in terms of the matrix elements

(bn| P& |bm) = ~ (@m| Talan) (A.10)

olr

At this point, we want to find the Stat¢Ei7j> that correspond to a channgl

such that for everpg, the outpudg

% = Tra{(ma® 1gg) |¥) (W[} = £ (ps) (A.11)
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is the same as the output &f where

= z |an, bm) |En,m>
Am

and

T =d Z |am) (bn| P |bm) (an| .

n,m

The output statég is

0g = Tra{(Ma @ 1gg) |¥) (W]}

— Z <an/’T[A’an> <En’,m|En,m> ‘bm> <brTf‘

m,nf

= Z (bn| P8 |ag) <En’m(|Enm>‘bm (bry |
o

which have matrix elements
(bm| 38 [bry) = Z<bn’pB’an’ <En’m’Enm>

=4y y Z (bnl P |aw) (Ervm| ) (e[ Enm)

= Z Z \/a<ek|En,m> <bn‘ PB |an’> <En’7rn(|ek>\/a .

n,r

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)
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Comparing this with the matrix elements of the output of tharstel described

by Ugg in (A.6), we see that by choosing

\/a<Q<|En,m> = (bm, &| Uge |bn, €1) (A.20)
— |Enm) = % 5 180 (o U o, 1) (A21)

we get the two outputs to be the samg:= pg.
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Appendix B

The constraints

This appendix lists out the 64 constraints on the inner prtedbetween Eve'’s
probe states after choosing the basis as in chapter 7. Gf 8desonstraints, only

49 of them are independent.
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B.1 Short constraints

The 16 short constraints are obtained when both Alice and Be&sore in the

plus basis. They are

(E11|E11) = 41638 ;
<E1,2}El,2> = 1% )
<E1,3}El,3> = % ;
- &
(E21|E21) = %5 )
(Ep2|E22) = 4158 ;
(Ez3|E23) = % :
(EzalE2a) = 1
(Ez1|Ez1) = 136 )
(Es2|E3z) = 1% ;
(Eas|Ezz) = 41638 ;
(Esa|Ez4) = 16
(E41|E41) = 1% ;
(E42|Eq2) = % ;
(EaglEaz) = 15
(E44|Eq4) = s :
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B.2 Medium constraints

There are 32 medium constraints. Sixteen of them are frommakes when Alice

measures in the plus basis while Bob measures in the minus Gd®se are

Re(E12|E13) + Re(E12|E14) + Re(E13|E14) =0,
Re(Ey1|E13) — Re(Ey1|E14) + Re(E13|E14) =0,
Re(E11|E12) — Re(E11|E14) — Re(E12|E14) =0,
Re(E11|E12) — Re(E11|E13) + Re(E12|Er3) =0,
Re(Ez2|E23) + Re(Ez2|Ez4) + Re(E23|Ez4) =0,
Re(Ez1|E23) — Re(Ez1|E24) + Re(E23|Ez4) =0,
Re(Ez1|Ez2) — Re(Ez1|Ez4) — Re(Ez2|Ez4) =0,
Re(Ez1|E22) — Re(Ez1|Ez3) + Re(Ez2|Ez3) =0,
Re(Ez2|Esz3) + Re(Ez2|Ess) + Re(Ez3|Ess) =0,
Re(Ez1|Ess) — Re(Ez1|Ess) + Re(Ez3|Ezs) =0,
Re(Ez1|Es2) — Re(E31|Ess) — Re(Ez2|Ez4) =0,
Re(Ez1|Es2) — Re(Ez1|Eas) + Re(Ez2|Ess) =0,
Re&(E42|Es3) + R&(Ea2|Es4) + Re(E43|Esa) =0,
Re(E4,1|E43) — R&(Eq1|Es4) + Re(Eq3|Es4) =0,
Re(E41|Es2) — Re(Es1|Eqa) — Re(Es2|Esaa) =0,
Re&(E41|E12) — R&(E41|Es3) + Re(E42|Es3) = 0.

Note that not all of the above equations are independent. ekample, every

fourth equation can be obtained from the previous three.
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The remaining 16 medium constraints are obtained from teescahen Alice

measures in the minus basis and Bob measures in the plus Dasse are

Re(Ez1|E31) +Re(E21Ea1) + Re(Ea1[Ea1) =0,
Re(Ez2|Es2) + Re(Ez2|Es2) + Re(E32|Es2) =0,
Re(E23|E33) + Re(Ez3|Ea3) + Re(Eaa|Ess) =0,
Re(E24|Es4) +Re&(E24|Es4) + R&(E34|Esa4) =0,
Re(Ey1|E31) — Re(Ey1|Ea1) + Re(Ez1|Es1) =0,
Re(E12|E32) — Re(E12|Es2) + Re(Ez2|Es2) =0,
Re(Ey3|Ea3) — Re(E13|Es3) + Re(Ez3|Es3) =0,
Re(E14|Es4) —Re(E14|Eq4) + Re(E34|Esq4) =0,
Re(E11|E21) — Re(E11|Es1) — Re(Ez1|Es1) =0,
Re(E12|Ez2) —Re(E12|Es2) —R&(E22|Es2) =0,
Re(E13|Ez3) — Re(E13|Ess) — Re(Ez3|Es3) =0,
Re(E14|Ez4) —Re(E14|Es4) —R&(E24|Es4) =0,
Re(Ey1|Ez1) — Re(E11|Es1) + Re(Ez1|Es1) =0,
Re(E12|Ez2) — Re(E12|Ea2) + Re(Ez2|Es2) =0,
Re(Eq3|Ez3) — Re(Ey3|Ess) + Re(Ez3|Ess) =0,

Re(E14|Ez4) — Re(E14|Es4) + Re(Ez4|Ez4) =0.

The last four equations can be obtained from the first twélinere are altogether

24 independent equations from the medium constraints.
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B.3 Long constraints

Finally the 16 long constraints are obtained when both Adicd Bob measure in

the minus basis. These are

Re(Ez2|E33) + Re(E22|E34) + Re(E22|Es3) + Re(E22|Es4)
+Re(Ez3|E32) + Re(E23|Ez4) + Re(E23|E4 2) + Re(E23|Es4)
+Re(E24|E32) + Re(E24|Es3) + Re(E24|Eq2) + Re(E24|Eq3)
+Re(E32|Es3) + Re(Es2|Es4) + Re(Ez3|Es2) + Re(E33|Es4)
+Re(E34|E42) + Re(E34|Es3) = ;

Re(E21|E33) — Re(E21|E34) + Re(E21|Es3) — Re(E21|Es4)
+Re(Ez3|Ez1) + Re(E23|Es4) + Re(E23|Es1) + Re(E23|Es4)
—Re(E24|E31) + Re(E24|E33) — Re(E24|Es1) + Re(E24|Ea3)
+Re(E31|Es3) — Re(E31|Es4) + Re(Ez3|Es1) + Re(Ez3|Es4)
—Re(Ez4|Es1) + Re(Ez4|Es3) =

—Re(E21|E32) + Re(E21|E34) — Re(E21|Ea2) + Re(E21|E44)
—Re(Ez2|E31) + R&(E22|Es4) — Re(E2|Es1) + Re(Ez2|Eqa)
+Re(E24|Ez1) + Re(E24|Es2) + Re(E24|Eq1) + Re(E24|Eq2)
—Re(E31|Es2) + Re(E31|Es4) — Re(Es2|Es1) + Re(E32|Esa)
+Re(Ez4|Es1) + Re(Es4|Es2) = ;

Re(Ez1|Ea2) — Re(Ez1|Eas) + Re(Ez1|Es2) — Re(Ez1|Es3)
+R9<E272| Ez1)+ Re<E272| Essz)+ RG<E2,2| Ea1)+ Re<E272| Ea3)
—Re(E23|Es1) + Re(E23|Ea2) — Re(E23|Ea1) + Re(E23|Ea2)
+Re(E31|Es2) — Re(Es1|Es3) + Re(E32|Ea1) + Re(Ez2|Eg3)
—Re(E33|E41) + Re(E33|Es2) = :

1-¢
4

Y

[EEY
N
(e2]

[EEY
N
(e2]
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Re(E12|Eaz3) + Re(E12|Ess) — Re(E12|Es3) — Re(E12|Es4)
+Re(E1 3|E32) + Re(E13|Es4) — Re(E1 3|Eq2) — R&(E13|Eq4)
+Re(E14|E32) + Re(E14|E33) — R&(E14|E12) — R&(E14|Es3)
+Re(Ez2|Es3) + Re(Ez2|Es4) + Re(Ea3|Es2) + Re(Ess|Ess)
+Re(Ez4|Ea2) + Re(Ez4|Es3) = ;

Re(Ey1|Es3) — Re(E11|E34) — R&(E11|E43) + Re(Ep1|Esa)
+Re(E13|E3 1) + Re(E13|Es4) — Re(Ey13|Eq1) — R&(E13|Eq4)
~Re{Exa[Eax) + Re(Es|Eaz) + Re{Ex|Ess) ~ Re{EralEua)
+Re(Ez1|Es3) — Re(Ez1|Es4) + Re(Ea3|Es1) + Re(Ea3|Esa)
—Re(Es4|Es1) + Re(E34|Eq3) = ;

Re(E11|Es2) — Re(E11|E34) — R&(E11|E42) + Re(Ey1|Esa)
+Re(E12|E31) — Re(E12|E34) — Re(E12|Eq1) + Re(E12|Eq4)
~Re{Ex4[Eas) ~ Re(Exe[Eaz) + Re(Ex[Eas) + Re(EralEuz)
+Re(Ez1|Es2) — Re(Ez1|Es4) + Re(Ea2|Es1) — Re(Es2|Es4)
—Re(E34|E41) — Re(E34|Es2) =

—Re(E11|Es2) + Re(E11|E33) + Re(E11|E42) — R&(E11|Ea3)
—Re(E12|Es1) — R&(E12|Ez3) + Re&(E12|Es1) + Re(E12|Es3)
+Re(E13|Es1) — Re(E13|Es2) — R&(E13|Es1) + Re(Ex3|Es2)
—Re(Es1|E42) + Re(Es1|Es3) — R&(Es2|Es1) — R&(E32|Ea )
+Re(Ez3|Es1) — Re(Eas|Es2) =

[ERN
S
(e2]

Y

1-¢
4

Y

1-¢
4
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— Re(E12|E23) — R&(E12|E24) + Re(E12|Es3) + Re(E12|E44)

—Re( E173| Eoo) — Re( E173| Eza) +Re( E173| Ea2) +Re( E1,3| Eaa)
—Re(E14|E22) — R&(E14|E23) + Re(E14|Ea2) + Re(E14|Eq3)
+Re(Ez2|Es3) + Re(E22|Es4) + Re(E23|Es2) + Re(E23|Es4)
+Re(E24|Ea2) + Re(E24|Es3)

Re(E11|Ezs) —Re(E11|E24) — R&(E11|Es3) + Re(E11|Esa)
+R6<E173| Ex1)+ R9<E1,3| Eza)— Re<E173| Ea1)— Re<E173| Eaa)
~Re(Exa[E2:) + Re{Ex[Ezs) + Re(Exa[Exs) - Re{EralEaa)
—Re(E21|Es3) + Re(E21|Es4) — Re(Ex3|Es1) — Re(Ez3|Esa)
+Re(E24|E4,1) — Re(E24|Es3)

R6'<E1,1| Eoo) — R9<E1,1| Eoa) — R€<E1,1| Ea2)+ Re<E171| Eaa)
+Re(E12|E21) — Re(E12|E24) — Re(E12|Es1) + Re(E12|Es4)
~Re(Esa[E2:) - Re{Exa[Ez2) + Re(Exa[Eaa) + Re(EralEa2)
—Re(E21|Es2) + Re(E21|Es4) — Re(E2|Es1) + Re(Ez2|Esa)
+Re(E24|Es1) + Re(E24|Es2)

R€<E1,1| Ezz) — R€<E1,1| Ez3z)— Re<E171| Ea2)+ R€<E1,1| Ea3)
+Re(E12|Ez1) + Re(E12|Ez3) — Re(E12|Es1) — R&(E12|Es3)
—Re(E13|E21) + Re(E13|E22) + R&(E13|Ea1) — R&(E13|Ea2)
—Re(E21|E42) + Re(E21|E43) — R&(E22|E41) — R&(E22|Ea3)
+Re(Ez3|Es1) — Re(E23|Es2)

[EEY
N
(e2]

[EEY
|
(e2]

[N
N
(e2]
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Re<E1,2‘ Ex3)+ R6<E1,2\ Eza)— R€<E1,2\ Ess) — R6<E1,2\ Eza)
+Re(E1 3|E22) + Re(E13|Ez4) — Re(E1 3|E32) — R&(E13|Ez4)
+Re(E14|E22) + Re(E14|Ez3) — Re(E14|Es2) — Re(E14|E33)
+Re(E22|Ea3) + Re(E22|E34) + Re(E23|E32) + Re(E23|Ez4)
+Re(E24|E32) + Re(E24|Es3) =

- R€<E1,1| Ex3)+ Re<E171| Eoa)+ Re<E1,1| Esz) — Re<E1,1} Eza)
—Re(E13|E21) — R&(E13|E24) + Re(E13|Es1) + Re(E1 3|Ez4)
+Re(E14|E21) — Re(E14|E23) — Re(E14|E31) + Re(E14|E33)
—Re(E21|Es3) + Re(E21|Esa) — Re(Ez3|E31) — Re(Ez3|Es )
+Re(E24|E31) — Re(E24|Es3) = ;

Re(Ey1|Ez2) — Re(E11|E24) — R&(E11|E32) + Re(Ep1|Esa)
+Re(E12|E21) — Re(E12|E24) — Re(E12|E31) + Re(E12|E34)
—Re(E14|E21) — R&(E14|E22) + Re(E14|E31) + Re(E14|E32)
+R€<E2,1\ Esz) — R€<E2,1\ Eza)+ R€<E2,2\ Ez1)— R6<E2,2\ Eza)
—Re(E24|E31) — Re(E24|Es32) = :

R9<E1,1\ Ez2) — R9<E1,1! Ex3) — R9<E1,1! Ezz)+ R9<E1,1! Ez3)
+Re(E12|Ez1) + Re(E12|Ez3) — Re(E12|Es1) — R&(E12|Es3)
—Re(E13|E21) + Re(E13|E22) + Re(E13|E31) — Re(E13|E32)
+R€<E2,1\ Ezz) — R€<E2,1\ Es3z)+ R€<E2,2\ Ez1)+ R6<E2,2\ Ez3)

—Re(E23|E31) + Re(E23|E32) =

Y

1—-¢
4

=
N
m

=
N
m

Out of these 16 equations, seven are redundant and only r@medependent.
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Appendix C

Schmidt decomposition of Eve’s

attack

In this appendix we will find the Schmidt decomposition of {hare state be-
tween Alice—Bob and Eve after imposing the constraints irptdred. With those
constraints, the matrix representation for Eve’s totakestax™ can be fully diag-
onalised. In fact, we find the reduced state between AliceBauiulis fixed up to
its eigenvalues.

We recap that Eve’s attack is defined by her purification

16

W) aBE = |21|ABI> E) (C.1)
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where we choséAB) to be the tensor products of the plus basis between Alice

and Bob

|AB1) = [1+)a® [14)g ,
|ABz) = [1+)A® [2+)g ,

[ABg) = [1+)a®[3+)g , (C.2)

|AB1g) = [4+)a® |4+)p -

The ketgE,) are fixed, up to a unitary transformation, by Eve’s stratétpuwever
the inner products between the kets are uniquely fixed bythetegy. After im-
posing the symmetry constraints, we find that the inner rtsdare parametrised

by five parameters which we cad, X2, X3, X4 andxs. The entries for the matrix
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which we calledxx are given by the 16 by 16 inner products

(Bi|E) =

a

X3
X3

X1

&
X

X4
X4 X5
X4 X2

&
&

X5
X5
X3 X3

o XK

X3

X1

& &

X3

X1
X3
X3

X3
X1

X3

_g<| c’>‘)<I

X5

X3

X2

_g<|

&g

o X & &

X3

X5

X4
X3

X1

X3

X3
X5

X5
X3

X5

o & &

&

X2

X1
X3

X3
X1
X3

X1

1,

whereXx denotes the negative afand the dots are zeros. The magnitudes

(4—3¢)/16 andb = €/16. Not all five parameters are independent. They are

related by the sum

1-—¢
X1+ Xo + 2X3 + 2X4 = 2

(C.3)

The eigenvectors of this simplified matrix does not dependrgnof the parame-

ters or on the noise level The 16 eigenvectors (up to a normalisation constant)
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are given by the columns of the following matrix

100011122200000q

10001120

01101101
0011011

1
1

110011

01

1011
011011

0101

2 000O0O00O

22

1

1

1000

011011

1
1 00011

00O0O0O0DO

1222

011

1

0101
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The corresponding eigenvalues are

M = %6(16— 15¢ — 48xp — 96x3 — 96x4)

1
Mez4 = 75 (E+16G—32) ,

1
Ms67 = 7¢ (€4 16x2 — 32%3+324)

1
Mgo10 = 16 (e+16x2+ 64x3+ 32Xq) (C.4)
1
M11213= 74 (e—16x2 —32xs) ,
1
Mg = 75 (€~ 16x2 +64x +326) ,
1
Mi516 = 75 (E—16x2— 324+ 32x5) .

Having diagonalisec T x, it is now easy to write the Schmidt decomposition of

|W) age between Alice—-Bob and Eve.

C.1 Schmidt basis of Alice—Bob
We begin by the singular value decompositiomdtx as
; 16
(BslEx) = (x'x) |, = 2 Buank (C.5)

whereg are the orthonormal eigenvectorssf.x

16
JZ ON,IPv 3 = ON M (C.6)
=
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and

16 16
él (XTX> sk MK = N;:l‘PRJ“NWK%,K

16
= g @, JHNON M
=1

= Q1 gHm -
Next, we introduce an orthonormal ba#ty) so that
(FN|Ex) = Xk = vINONK

or equivalently

16 (pKIK
=1

With this, we can writdEk) in the|Fy) basis as

16
|Ex) :’zlm\l)(ﬂ\l,K\/m,

so that the pure state between Alice—Bob and Eve becomes

16
W) aBE = ;ZJAB@ [Ex)

16

= g [ABK) |Fn) VNN K
K.N=1

16
:’\Zl|GN>|FN>\/m7

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)
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where we define the Schmidt bagis,) as

16

lon) = }Z1|ABI<>¢N7K : (C.16)

They form an orthonormal basis for Alice—Bob

16
(anjam) =5 (ABw|ABK )& kOw.k (C.17)
K,K=1
16
= g BN K PV K (C.18)
=1
=ONM - (C.19)

Equation (C.15) provides the Schmidt decomposition of Epai® state between
Alice—Bob and Eve. The Schmidt vectdesy) can be obtained from the eigenvec-
tors of XT.X in equation (C.4). For example1) corresponding to the eigenvalue

pp would be
lo1) = |14, 14) + |2+,2+) + |3+,3+) + |4+,4+) . (C.20)

We can also write this state in the Bell bagif;) ag; ® |Wj) pg,- HETe|Wi) ppy are

the Bell basis for Alice’s first qubit and Bob’s first qubit andetBell basis are
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defined as
Y= (1) + 1) =
W) =11+l >)72,
1
W2) = (1) = [L1) —= ,
\/12 (C.21)
|LD3>=(|TL>+|H>)72,
1
|L|J4>=(|Ti>—!lT>)72,

where the ket$]) and||) are the computational basis.

If we identify the plus basis as a two-qubit state in the comaponal basis

with
11+) =111) ,
24\ —
2+) =|11) , (©.22)
3+)=111),

[4+) =[L1)
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then the Schmidt basis for Alice—Bob becomes

) = [y, 1)

az) = |w1,ws>7+|w4,w4>7

az) = |wz,w3>7+rw3,wl>7

) = Iy, 42 f+ s, 4s) 7

as) = [,z \f+|w1 4o ﬁ |w4,w4>7
a6) = Iv2.42) - f ~ Wz, 4s) \/§+\w3,¢1>ﬁ
o) = ) I ) \/§+|LU3,LIJ3>7
) = 1.2 - 1.5 7+ )
o) = W) 2+ W) s ) e
|0(10>=|LIJ2711J1>\/7+|LIJ3,HJ2>\/— |LU3,LIJ3>7

011) = [Ya, Y1)
012) = [W3,Ya) ,
013) = [Y2,Ya)

01g) = |UJ1,lIJ4>f+!¢4,¢2>\/§+\¢4,¢3>

|a115) _\/§|¢ Wa) — W LU>——
15) = 1,4 4, W2 \/—

|O16) = !L|J4,llJ2>\/— NJ4,lIJ3>7

-5l

g, Y3) —

\/6 ,

(C.23)
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Appendix D

Random processing before

measurement

In this appendix, we show how the optimisation problem foe’BEwnformation
can be simplified if we let Alice and Bob perform some randonmcpssing on
their two-qubits before measurement.

Following [29], for every qubit pair that Alice and Bob recej\Alice decides
with probability half to swap qubits one and two. When Aliceaps her qubits,
she will then tell Bob to do the same.

From equation (5.2), the true state that Alice and Bob expeat the source

1
Wiae =5 (11+.24) +[24+.24) +[3+.3+) + [4+.4+) ) . (D)
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If Alice and Bob identify the plus states with two qubits in t@mputational basis

as follows

11+) =111) ,

24\ —

2+)=|11), (0.2)
13+)=1I1),

[4+) =|l1),

then the true state can be written as

rw>AB=§<1TT>A|TT>B+m>Am> FUAM s+ ILalle) (D3

L)+ 1)) mm ® = (1110 + 110)) aso - (D.4)

V2 \/_

In this form, it is clear that if the state between Alice and Bads the true state
(plus unbiased noise), then swapping the first and seconitsaltould leave the
state unchanged. We also see that for the true state, Aficgtsqubit is only
entangled with Bob'’s first qubit.

Suppose the state between Alice and Bob has the purific}itib%)ABE such

thatpz = Tre {|®12) .oz (P1?| \5e }- When Alice decides to swap or not to swap

ABE<
based on a random numbley, the effective state between Alice and Bob would
bepas = 3 (PA3 + pak) wherepal is obtained by swapping qubits one and two.

The state describing the combined system would be

|X>ABEF%1 \/— (‘¢12>ABE|12 1+|¢21>ABE|21 Rl) ) (D.5)

where theR; kets are orthonormal.
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We now provide Eve with th&; system which she can measure after sending
Alice and Bob their qubits. This provides Eve at least as muwhep as she had
before. Hence it is sufficient to consider the reduced stitwden Alice and Bob
as obtained by tracing oitandR;. In other words it is sufficient to only consider

pag having the formpag = 3 (PR3 + p2%).-

We can write an arbitrary state between Alice and Bob as

4

12 (2).(1)(2)
PaB = c? ay,by.,b Oa Ga Ty, Ty (D.6)
16a120a220b120b22_ Auf2brbe TR TR T

wheregg = 1, 01 = 0k, 02 = Oy andaz = 07 are the Pauli operators for Alice. The
superscripts 1 and 2 refer to qubits one and two. Thperators are Bob’s Pauli
operators following the same convention. The coefficiegts, v, b, make up 256
real numbers constrained by the positivityppand the normalisation condition:
Coooo= 1.

Swapping qubits one and two, the stafg will have the Pauli coefficients

1

_ A2 C1(nl2 | A21N -
Siasbiby = Cavaybpby: TNE Statepag = 5 (Pzg+pag) will then have the Pauli

coefficients

1 12 1
Cal7aZ7blab2 2 ( ai,ap,b,bp + al,ag,bl,bz) (D7)
1 1
= 5 (G boy T Cana ) (D.8)
= Cap,ay,bp, 1 (D.9)

which set the restrictions, a, b, b, = Cay,aq,by,b; -
Another set of (local) operations that will leave the trusestunchanged is for

Alice and Bob to perfornoy @ 1, 0y ® Ty Or 6; @ T, on each qubit. For each qubit,
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Alice will randomly decide with equal probability to apply &y, oy or g,. She
then tells Bob to do the same operation on his qubits.

We introduce a second random systBgwhich Alice uses to decide which
operation to perform on her qubit pair. By placing this randsystem in Eve’s
control, we can repeat the argument done for swapping thiéssgiobshow that it

is sufficient to consider the state between Alice and Bob viighform

1 4 2 1 2)_(1)_(2 1 2) (1) (2
PRE = 162 rgo (051 Jo )Tm)) PAB <0n Jot)} )rﬁn)>
1 2)_(1)_(2 1) (2)_(1)_(2 1 _(2)_(1)_(2
= 256 ; Cay.az.by bz (051 ot )Tm)> (0&1)052%& It )> (og )o@+ )Tgn)>
ap,ap
by,by
1 Cay,a0,b1,bp (zncﬁl)tﬁl)cé?rg) oﬁl)rﬁ,l)>
256§izb2 % <zm0r(§).[£§)o.£).[$)cg)rg)
1 (1 2.2
= 1_6a1, zca17a2,b17b2 (O-cgll)'[t()l)éal,bl) (0&2)'[5)2)6&2’[32)
b1,by
1
= 1_6 Z 031732,31,320%)Og)Tg)Tg) .
ap,ap
(D.10)

This state is diagonal in the bell bas§s) o1 g, \(p,—>A2’BZ where|@)a; g; is one of
the four bell states on the first qubits of Alice and Bob. Theéesas only sixteen
parameters which can be taken to be the eigenvalues condiggao each pair
of bell-states. If we include the swapping constraint, kbésves ten undetermined
coefficients (minus one from the normalisation requirement

At this point, we can further constrain Eve’s state by reggithat Alice and

Bob’s measurement statistics must be consistent with armgaetinoise state. The
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problem now is to optimise the remaining free parametersagimise Eve’s in-
formation subject to these constraints. We expect thisragétion problem to be
more tractable than the optimisation for the original pecolcsince the number of

variables has been naturally reduced.
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Part |l

Security analysis of a continuous
variable guantum key distribution
protocol in the presence of thermal

noise
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Chapter 11

Review of continuous variable

Gaussian states

In this chapter, we collect some well known facts that wilused in analysing the
security of the continuous variable key distribution pomtio We shall restrict our
analysis to Gaussian states and how they transform undess@aloperations.
Section 11.1 provides some basic definitions concerningrewit states. Next,
section 11.2 introduces the Wigner function which is alk tiwa shall use in the
analysis of the Gaussian eavesdropping attacks. The fimaséestions give two
examples on the transformations of the Wigner function.tiSed 1.3 gives an
example for the transformations of a single-mode Gausséde and section 11.4

gives an example for the transformations a two-mode Gausstide.
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11.1 The ingredients

We start with the Hamiltonian for the single-mode electrgnetic field

H = hw (aTa+ %) , (11.1)

wherea is the annihilation operator while' is the creation operator. They obey

the bosonic commutation relation
[a, aq —1. (11.2)

For our purposegiw are just constants. The eigenstates of the Hermitian aperat
ata are called the Fock states and denote¢hasvith corresponding eigenvalues
n.

From the commutation relation, the action of the annitolatand creation

operators on the Fock states can be shown to be

aln) =[n—1)vn, (11.3)
a'ln) = |n+1)vn+1. (11.4)

For the norms of all the statesn) to be non-negative, the eigenvaluesan only
take non-negative integer values {0,1,2,...}. The statg0) corresponding
to the eigenvalua = 0 is given the special nhame as the vacuum state. It is the
ground state oH, with the eigenenerggiw/2.

We are now almost ready to introduce the coherent stateseTstates shall

serve as the signal states that Alice would send to Bob in oyrdisdribution
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protocol. We just need one more final ingredient and that esdisplacement

operator
D(a) :exp<0(aT—0(*a> : (11.5)

wherea is an arbitrary complex number. The coherent sfajeis generated by

operating the displacement operalbfa /k) on the vacuum state

@) =D ()10 (11.6)

wherek is some proportionality constant. From this definition floe toherent
state, it also follows that the coherent states are eigesstd the annihilation

operator
a
ala) = |a) PR (11.7)

The inner product between two coherent stétg$ and|a>) is

_ o ? + |az|* + 2050
(az]az) =exp 3 , (11.8)
so that the absolute value squared is
2 oy — o
| (ag]oz)|” =exp —— | (11.9)

The missing steps are worked out in textbooks on quantum amech[2, 18, 58].
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Having described operators representing the generaticrhafrent states which
Alice sends, we now proceed to the operators which représennheasurement
process for Bob. The two measurement operators at Bob’s erileasnplitude

guadrature operatof and phase quadrature operatodefined as

X = \—Zf <a—|— aT) , (11.10)
Y = % <a—aT> , (11.11)

with v being a proportionality constant for Bob to choose at his earence. Note
thatX andY do not commute which means that Bob cannot measureXatidY
simultaneously on the same state. In fact the commutatordegtX andY turns

out to be
X,Y] = 'évz. (11.12)

With this definition, we find that when Alice sends the cohestate|a), Bob

will get an expected value of

(a|X o) =\—2/<a]a+aT]a> (11.13)
— ERe(a) (11.14)
and
(alY]a) :%<a|a—aT|a> (11.15)
—Vim(a). (11.16)
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The variance of an operat@r for the statep is defined as
var(0), = Tr{p0?} —Tr{pO}*. (11.17)
The variances in the outcomesXfandY for the statda) will be
var(X), =var(Y), = — . (11.18)

Throughout the thesis, we shall set the proportionalitystamk = v = 20y,
where we have introduced another constapt With these definitions, the co-

herent statéo) will give the following outcomes

(alX]a) = Re(a) (11.19)
(alY|a) =1Im(a), (11.20)
var(X), = var(Y), = 03, (11.21)

Whereo\z, Is by definition the variance of a quadrature measurementoharent

state. In this thesis, unless otherwise specified, wk set = 1 so thato? = 1/4.

11.1.1 Beam splitter matrix

Eve’s basic tool to eavesdrop on Alice’s signal would be tharb splitter. For
the purpose of studying that, we recap how the beam splifiecta the coherent
states.

The beam splitter is represented schematically in figuré there the two

input ports are labelled as andV. The output ports are labelled withandE.
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av

Figure 11.1: Schematic diagram of a beam splitter with twautrportsA andV
and two output port8 andE. The transmittivity of the beam splitter g

The output ports of the beam splitter are related to the ipptis by the following

relations on the annihilation operators

ag=+Man—+/1-nay, (11.22)
ag =+ 1-naa+hav, (11.23)

wheren is the beam splitter transmission coefficient. When we haveharent

state|aa) going through the first inpuA and a second coherent stég) through
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the second input, the output state can be obtained from the input stateslas/fol

o) alav)y (11.24)
Da a—kA) Dv ( ) 0) (11.25)
exp(uAaA aAaA) exp(avav CXVa\/) |0) (11.26)

— exp(aay/Mab +aay/1-nat - oay/Mag — aiy/I- nae)

><exp(av\/ﬁaé—av\/l—naé—ai‘/\/ﬁaﬁa@ l—naa) 0) (11.27)
—Dg (ma‘\_ > 1= ”GV) De ( Vi~ ”af ﬁav) 0) (11.28)

:‘\/ﬁaA_\/ﬁav>B)\/ﬁaA+\/ﬁav>E. (11.29)

The beam splitter affects a rotation of the input quadratur@he output

guadratures in terms of the input would be

Xg Ji 0 —yI-m 0 Xa
Y 0 0 —+/1— Y,

B | _ VN i A1 @1.30)
Xg 1-—n 0 \/ﬁ 0 Xv
Ye 0 1—r] 0 \/ﬁ Yv

For the Gaussian states that we shall be considering herdetdim splitter will

displace the coherent amplitude 153(: Mxp and rotate the covariance matrix
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= MCMT where

according taC’

(11.31)

are the coherent amplitudes of the input and output staspectively andC is the

covariance matrix for the input state

(11.32)

while C' is the covariance matrix for the output state

(11.33)
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An operator with an over-line denotes the fluctuations ofdperator from its

mean valueQ = O — (O). M is the beam splitter matrix

NG 0o -vyI-q O
0 0 —yI-

M — vn 1 (11.34)
-n O NG 0
0 -5 0 NG

11.2 Wigner function and general Gaussian states

We introduce another two bases for the single-mode infiniteedsional Hilbert
space. The first basis is comprised of the ketsthe eigenstates of the amplitude
quadrature operatof corresponding to the eigenvalues R. The second basis

is comprised of the kety), the eigenstates of the phase quadrature operators with
eigenvaluey € R.

We define the Wigner function of a single-mode sfathough these bases by

dx K| X o

p(x.y) :/?rh<x_§ P |X+ §>exp(|yx) (11.35)
) VD IS S -

[ (v-3ply+ 3 ) expiis (11.36)

The second equality follows by using the inner product

{xly) = \/le[hexp(ixy) .

(11.37)
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The symboli = 202 so that the commutation relation betwe¢mandY reads
X,Y] =ih. (11.38)
The marginal distribution fop to be in the statéx) is then
04pbo = [ pixy)dy (11.39
and for it to be in the statgy) would be

Wil = [ pixy)ax. (11.40)

The normalisation condition optranslates to

/ dxdyp(x,y)=1. (11.41)

The overlap between two statgesandp; is given by
Tr{p1p2} = Zm//dx dyp1(X,y)p2(X,y) . (11.42)

11.2.1 n-mode Gaussian states

For ann-mode stat, the Wigner function is defined as

p(Z)— /W<X1—E,...,Xn—5

Xl Xn
X —_— ... -
1+ 2 7Xn+2

; )
(11.43)
x exp(iy1Xy) . .. exp(iyn¥n)
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where

Z=(XL,Y1,. .- X, ¥n) - (11.44)

If the statep is a Gaussian state, then its Wigner function can be writtdarms

of its meanXy and the covariance matrix as

o0 - ————op{-@-wclz-n), 14
(2m 2V C|
where
%= (<X1> ) <yl> RRER) <Xn> ) <yn>)T . (11-46)
and
Gij = (22) (11.47)

for {i,j} € {1,2,...,2n}. The overlap between two-mode state; andp; is

given by

Tr{p1pa)} = (210)" / d42p1(2)p2(2) . (11.48)

A unitary Gaussian operatdf acting on the Hilbert spacé/ corresponds
to a symplectic transformatio on the phase space of the Wigner function. A
symplectic transformation would evolve the covariancerimad C — SCS and

the mean become® — S%. A symplectic transformation is one that preserves
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the commutation relations{Sz,S%| = [zj,z/]. In other wordsSE“"ST = 5N
where

0 1
S = : (11.49)

-1 0
Any symplectic transformation can be realised by a commmnatf three op-

erators. The first is the rotation operagu:(0)

cosH —sinB
Sot(8) = (11.50)
sin®@ cosB
which rotates the quadratures by an artijl&@he second operator is the squeezing
operatorSsqAg)

Ssq9) = (11.51)

O «lk

This squeezes the amplitude quadrature by the factdhe last operatoByix(n)

is the mixing operator between two modes

S 0 —yIm o
0 0 —v/1—

Six() = vh i (11.52)
Tn o0 A 0
o vi-n o0 A

where 0< n < 1 determines the mixing ratio.
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These three operators can be realised in the lab by the passmponents
phase shifters, squeezers and beam splitters respectivelyarticular, a local
unitary Gaussian operation on a two-mode systém U; ® U2 maps to the lo-
cal symplectic operatioB= S @& $. This locality restriction removes the beam
splitter from our set of operations.

Williamson'’s theorem states that any covariance matrix wamrought into
a diagonal form with diagonal entrigg1,K1,K2,K2,...,Kn,Kn) via a symplectic
transformation. In this form, the phase space variablesaireorrelated to each
other, meaning that there always exist a bi-partition incltan n-mode Gaussian
state becomes separable. This also means that any zero raeasi@ state can
be created in the lab by our set of three passive componenitstiatly uncorre-
lated thermal states. In this form the uncertainty relabienomex; > 0\2, for all

ie{1,2,...,n}[53].

11.3 Example 1. Single-mode Gaussian states

For a single-mode Gaussian state, we can visualise its \Wfgnetion as an el-
lipse in a two dimensional plane. The centre of this ellipdeasrrespond to the
mean amplitude. The semi-major and semi-minor axis is ptap@l to the stan-
dard deviation of the amplitude outcome when measured dalwsg quadratures.
The coherent statgg + iyo) will have a mean amplitudg = (xo,Yo), and the
covariance matrix
o5 0

C= . (11.53)
0 og
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For example, the following ball on stick figure is used to es@nt the coherent

state|6+ 2i):

Y quadrature

o b e e b e e b e e b e b e e b
0 1 2 3 4 5 6 7
X quadrature

The ball is centred &6, 2) and has radius 1 in units of,. Applying the squeezing

operator with a squeezing factgre= 1.2, the new state now has a mean amplitude

1
& 0 6 5
u=| 2 — , (11.54)
0 12 2 2.4

The covariance matrix becomes

1 2 1
o | 2 0 o 0 45 0
0 12 0 o2 0 12
(11.55)
0.69444% 0
0 1.440%,

The variance in th& quadrature is less than the vacuum noise. But this is at the
expense of a noisiéf quadrature. The ball on stick representation of this state i

shown in the following figure:
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Y quadrature

S S S S T S S [T Y [ S S
0 1 2 3 4 5 6 7
X quadrature

There is no correlation between thkeandY quadratures as seen by the diagonal
covariance matrix and the also by the axis of the ellipsedparallel to thex and
y axes.

Finally if we apply the rotation operator with andde= 11/6 to this state, the
mean amplitude would be

cosg — sing 5 3.13013
n= = . (11.56)

sing cosg 2.4 457846
The covariance matrix becomes

cosf —sing 0.694445 O cosf  sing

int n 2 ink 118
sing  cosg 0 14409 —sing oSy

0.88083%% —0.32283%57

~0.32283%% 1.253610%

(11.57)

This state is represented by the following figure:
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Y quadrature

T S T T I T S (T S TS R S S MY
0 1 2 3 4 5 6 7
X quadrature

If we were to measure thé quadrature repeatedly, the outcomes will show a
Gaussian distribution having a mean of valug3®13 and variance. 8808333 .
There would be some correlation betweenXhandY quadratures as seen by the
non zero off diagonal elements in the covariance matrix.

Suppose we measuretl and obtained the outcome= 5.4, if we were to
measure th& quadrature (not that we could actually measure both quaest

simultaneously), the conditioned outcomeill have its mean given by

M1 = K2 +C21Cp i (X— )
—0.322835

— 4 543, 11.58
457846+ oo mn(5.4—3.13013 (11.58)

= 3.74653.
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The conditional variance is given by

Copp = Co2—C21C1{'Ca2

0.322835 (11.59)

= 1.1352%57% .

We note that since these symplectic transformations eealgtary transfor-
mations, the purity of the transformed state remains theesdimis can be quanti-
fied by the determinant of the covariance matrix which remaimchanged under

a symplectic transformation.

11.4 Example 2: Two squeezed states at arbitrary
angle

This example illustrates the correlations in a two-modest&im-Podolsky-Rosen
(EPR) state. The EPR state is created by shining two squetted through the
two inputs of a beam splitter.

We begin with an uncorrelated two-mode system. The first medee vac-
uum state which is first squeezed in teguadrature with a squeezing facmr

and then rotated by an andde This state will have a meai®, 0) and covariance
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matrix
oz 0
v T T
C1 = Sot(8)Ssq2(9) S5449)S0t(0) (11.60)
0 o2
03y O .
= Sot(6) Sot(8) (11.61)
0 Oq

, , 2 _ o2 \ai
034C0S 0+ OfqSint'0 (03— 0%g) SinBcosd (11.62)

(024 — 03¢g) SINBCOSH 0SB + 03,COS 6

Here,0%,= 0% /g andos,= god where the subscripts denote squeezed and anti-
squeezed respectively. They are the variances oktardY quadratures respec-
tively before the rotation. This state will be the state tlglo the first input of a
50/50 beam splittea; as shown in figure 11.2.

The second mode also starts in the vacuum state but it isdustezed in the
X quadrature with a squeezing factofgland then rotated by an angde This

state will have a meafD,0) and covariance matrix

1\[ oG O 1
Co=Sa®Sar(3) | | () Sul® (11.69
02,4 O
=Sa(®) [ Sot(®) (11.64)
0 o3
035qCOS 0+ 03,SIPB  — (0%, — 035,) SiNBcosH

(11.65)
— (02— 025g) SINBCOSH  02¢SiP B + 02,c0 6

This state is then passed through the second input of the bplitteray.
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The two input states are shown in the ball on stick representen figure 11.2.
As we shall see, each of the two output modes turns out to beharaal state
when examined individually.

The covariance matrix for the output modes with- 1/2 will be:

Cout = Smix(N)CinSmix(N) "

oL o —Hlf{a || o H 0 %

% 0 \/% 0 O2x2 & _% 0 % 0

o L o L 0 —% 0
1(CitC GG
20 a+o

02 0 —02c0g20) —02sin(20)

- 0 o3, —02sin(20)  02cog26)
- —0Zcog20) —02sin(20) o3, 0

—02sin(20)  02cog26) 0 of,

(11.66)

whereo? = (03sq— 03) /2 andag, = (05,4 03sg) /2. From the diagonal blocks,
we see that both of the outpwds anda, of the beam splitter are in a thermal state
with a variance obtzh. There is no correlation between thg andY; quadratures
or between the&, andY, quadratures.

But the outputg is correlated t@4. We want to find out what happens to the
output ataz given that a measurement ¥jf gives the outcome&a. The variable

x3 andys will follow a Gaussian distribution and we denote its mearpbyand
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Oasq
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6 2 0Osq &1 a

R
3 NP

a

\\ﬁoasq

Figure 11.2: Creation of an EPR state by shining two orthotipsqueezed input

states through a 580 beam splitter. The output states are two thermal states
which are correlated to each other.

covariance matrix b)flg;lz. The reduced state will have mean

M2 = P12+ C12,4C53 (Xa — Ha)

0 —02c0s(20 1
= + Cos(29) — (Xa—0)
0 —o?sin(28) | th (11.67)

oﬁ XpC0S20)

XaSin(20)
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and its covariance matrix is

1212=Ciz;10— C12,4C53Cs:12
(034— Osg) COS(26)
(02— 03sg) SIN(26)

1| 0%+ 03 0 -
2
0 034+ O4sq
2
__c 2 _ 52 2 52 \ai
0%+ 0%y ( (034— 03sq) COS(20) (02— 02,) SINP(26) )

—gco§(29>+o$hsin2(2e) (oth "V)sm(ze)cos(ze)

NI =

<0th %Y )sm(ze)cos(ze) g—ésmz(26)+othcosz(26)

(11.68)

Writing 512;12 as

S

S(—28) (11.69)

2
Oth

S12:12= Sot(—20) [ &

o

we see that the reduced state is a squeezed state with a rMminuawiance of
oy /03, This state is represented in the ball on stick represemtatifigure 11.3.

The X quadrature has a mean value of

2
asq q)x cog26) (11.70)

asq)

and variance

4
3—:2:]0052(26) + 0%,Sin?(29) . (11.71)
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/ 20

Figure 11.3: Ball on stick representation of a reduced EPR .sta

For a fixed squeezing factgr> 1, the magnitude of the mean value is maximum

whilst the variance is minimum wheth= 0. For such a state, the two outputs are

said to be EPR entangled.
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Chapter 12

Introduction to continuous variable

guantum key distribution

Continuous variable quantum key distribution uses a coatisudegree of free-
dom to distribute secure keys between Alice and Bob. Typictile amplitude
and phase quadratures of a Gaussian beam are used to casiyrais.

In single photon implementations of quantum key distritmitiwhen no pho-
tons arrive at Bob’s detector, the signal is simply lost anesdwt contribute to the
key generation protocol. This is a form of post-selectiod Hre missing events
do not give the eavesdropper any information.

However in continuous variable quantum key distributiothvé lossy trans-
mission line, when Alice sends a certain coherent state, Bmlddastill detect a
coherent state, but having a smaller amplitude. The loskldmidue to Eve in-
tercepting some photons and keeping them to herself. Térertfss would mean

that Eve now has some information regarding the state the¢ Abnds.
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In this chapter, we will look at how loss affects the secuafyone of the
first and simplest continuous variable quantum key distigiouprotocols. In sec-
tion 12.1, we will introduce the protocol. Section 12.2 gsak its performance
in a perfect lossless channel. Finally, in section 12.3 vgeudis how loss in the

channel affects the protocol.

12.1 3 dB loss limit without post-selection

The early continuous variable key distribution protocaiffes from the 3 dB loss
limit. When the loss in the channel is greater than 50% no sekey can be
distributed. We recap one such protocol, presented by Ganssand Grangier in
2002 [23].

In that protocol, Alice picksN pairs of real numbers{x,&,yjA} for
j €{1,2,...,N}. Both x}; andyjA are picked from a Gaussian distribution with

varianceo and zero mean:

pa (%) ~7((0.0n) . (12.1)

PA (yi\) ~ N(0,Gp) . (12.2)

Alice then prepares a sequencé\btoherent state}$1j> with the complex ampli-
tudesal = xJ, +iyk.
Bob will choose to measure each coherent state with eitheartipitude op-

eratorX or phase operatof.
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12.2 Perfect lossless channel

In alossless and noiseless channel, Bob will receive the sxaictly as what Alice
sent without corruption. Together with a perfect measurdrdevice, the proba-
bility of Bob’s outcomexg when he measures the amplitude quadrature given that

Alice sends the coherent state with amplituxgder- iya will be

Pe(Xs[Xa) ~ N (Xa,0v) - (12.3)

Bob’s outcome given Alice’s signal, will be normally distuted with mearxa

and variancej\z,. So when Bob measures the amplitude quadrature, he will get
some information about the value ®f, but no information about the value of
ya. In this sense there are no mismatched bases; each of Bob&iraesents
gives correlated data. However half of the signals thateAkncodes remains
unmeasured.

The joint probability between Alice and Bob will be

PAB (XA, XB8) = PB(XB|XA) PA (XA) (12.4)
1 1

=~ exp( -—ZxC1x 12.5

2m/detC p( 2 ) ( )

whereX = (Xa,xg). This is a Gaussian with medra,Xg) = (0,0) andC is the

covariance matrix

o= . (12.6)
0% 0%+04
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This describes the raw data between Alice and Bob. The maxiamaunt of bits
that Alice and Bob can extract from the raw data using the nfbstent encoding

algorithm is given by the mutual information between Alicel@ob

PaB (Xa, XB)
PA (Xa) P& (X8)

=S +SB—Ss. (12.8)

|AB :/ dxa dxg pas(Xa,xg) log (12.7)

Herepg (xg) denotes the probability of Bob’s measurement outcomes

pe (XB) = / dXa PaB(Xa, X8) (12.9)

~ N (0,05 +03) , (12.10)
and$, is the relative entropy of Alice’s data

Sa=— [ dxa pa () og Pa (%0 (12.11)

= % [1+log (2r0Z)] - (12.12)

The relative entropy of Bob’s dats is

S=- /dXB Ps (Xs) log ps (X8) (12.13)

= % [1+log (2n(af +03))] (12.14)
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while the joint relative entropy between Alice and Bob is

S = —/ dxa dxg PaB (XA, X8) 109 paB (XA, XB)

(12.15)
1
=5 [2+1log ((2m?detC)] (12.16)
=3 [2+log (2r0Z) +log (2103 - (12.17)
Putting this together, the mutual information between &bnd Bob is
1 0% + 014
lag= =1 vV_ A 12.1
aB = 3 log ( 2 ) (12.18)
1 oz
=5 log <1+ %) (12.19)
= %Iog(1+ 2) . (12.20)

In the last equality, we write the net mutual information émnbs of the average
signal to noise ratio

12.21
= (12.21)

(12.22)

Wherex,i/cr\z, is the signal to noise ratio when Alice sends the signand Bob’s
measurement has a variarsg.

At this point Alice and Bob share a correlated set of contirsudata and can
in theory get up to 12 x log(1+ X) bits of information for every measured data

point. In fact the sliced reconciliation protocol can gebitarily close to the
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theoretical limit[12,55]. A bigger variance of Alice’s sigl will result in a higher
amount of shared bits between Alice and Bob.

We have analysed the case when Bob measures the amplitudaiguex.
The net information when Bob measures the phase quadraturd Yadiow in a

similar manner.

12.3 Alossy channel

We now consider the effects of transmission losses in tharedetween Alice
and Bob. We characterise the loss by the transmission ceeffigi The loss can
be modelled by a beam splitter with transmissiprAlice’s coherent state enters
the first port of the beam splitter while the vacuum statersritee second port as
in figure 11.1.

From section 11.1.1, the output of the beam splitter wouldebated to the

input by

o) 5|00y — |\/ﬁa)B’\/l—r]a>E . (12.23)

That is, Bob will still receive a coherent state, but its artoole is attenuated to
y/Na. Bob’s outcome is less correlated to the signal Alice sendsrvthere is

loss. The conditional probability of Bob to get the outcoxges now

PB(X/Xa) ~ AL (v/NXA,0v) , (12.24)
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and the covariance matrix between Alice’s and Bob’s @ais

02 02
C= A Vhon o (12.25)

VNO& OF +noj

The mutual information between Alice and Bob is then

1 o
1 %A
=5 log (1+r]%) . (12.27)

12.3.1 Eve’s information

From the other port of the beam splitter, Eve receives therott stat¢\/1 — r]or>.

The conditional probability between Alice and Eve is

pe(xaxa) ~ N (VI-xa,0v ) - (12.28)

The mutual information between Alice and Eve would be

1 oz
|AE=§|OQ <1+(1—r])—2) . (12.29)
Oy

Figure 12.1 shows the mutual information between Alice and Rg and Eve’s
information Ig as a function of the transmission The information between
Alice and Bob will always be greater than the information kestw Alice and Eve
as long as) > 0.5. In this region, Alice and Bob can still extract a secure key.

Providedn > 0.5, Alice and Bob can get arbitrarily large information by nraki
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mutual information

L L L L L L 1 L L 1 L L L L L L
0.0 0.2 0.4 0.6 0.8 1.
transmission ratg

Figure 12.1: Plot of Alice—Eve’s mutual information (in Bluand Alice-Bob’s
mutual information (in red) for a coherent state protocahwut post-selection as
a function of the transmission ratg The two curves intersect at= 0.5. For
n > 0.5, Eve always has more information than Alice and Bob. Thespot re-
produced for three different values of Alice’s variarae= {03, 1003,10003 } .
For example at) = 0.3 andcr,i = 10002, the mutual information between Alice
and Bob is 3075 bits per signal while Alice and Eve has a mutual infororatf
2.477 bits per signal. Since Alice and Bob has more informatham tAlice and
Eve, secure communication is still possible at this point.

the variancezr,i large. However oncg < 0.5, Eve will gain too much information

and the protocol is no longer secure. This is the origin of3tlad limit.
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Chapter 13

Introduction to the protocol

The protocol that we shall study was first presented by Sillyer, Ralph, litken-
haus and Leuchs in 2002 [52]. In this protocol, Alice sendsteecent staté) to
Bob. Bob measures either the real or imaginary pacd.ddob will announce the
measurement basis he used as well as the absolute valueroédsirement re-
sult. Alice subsequently announces the absolute valueeatid or imaginary part
of a depending on which measurement Bob performed. With thignmdtion,
Alice and Bob will share a binary symmetric channel with somiereprobability
that they can estimate.

Alice and Bob can also estimate the transmission and noisadeaistics of
the channel. From this, they can estimate how much infoonath eavesdropper
can gain. Alice and Bob then perform post-selection. If thesdropper has more
information than Bob, then the data point is discarded, otlserit is kept. By
doing post-selection, Alice and Bob can overcome the 3 dB bifthe Grosshans

and Grangier 2002 protocol [23].
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In the perfect channel with transmissign= 1, this protocol would be less
efficient than the Grosshans and Grangier 2002 protocol.highgrotocol, ev-
ery coherent state Alice sent can give at best just one bitfofmation. In the
Grosshans and Grangier 2002 protocol, if the transmissaraater than half,
Alice can choose a large varianog of the Gaussian distribution of the coher-
ent states to send and potentially extract an arbitrarityeldength of key from a
single coherent state.

However if the transmission is less than half, the Grosshad<Grangier 2002
protocol would fail to yield any key whereas this protocollwstill give a positive
key rate up to certain noise threshold.

In section 13.1, we give a formal description of the prot@lvell as how Al-
ice and Bob estimate the channel parameters. Next, sectidmyi@s the protocol
for extracting the keys from the raw data. Finally, in setti®.3, we shall calcu-
late the mutual information between Alice and Bob as a functibthe channel

parameters.

13.1 The protocol

In this protocol, Alice pickaN pairs of numbers{x};,yk} for j € {1,2,...,N}.
Both Xj_\ and yjA are picked from a Gaussian distribution with variareeand

mean zero

Pa(Xa) ~ N (0,04) , (13.1)

Pa(ya) ~ N (0,04) . (13.2)
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Alice then prepares a sequenceé\btoherent statebd} with the complex ampli-
tudesal = x, +iyk.

Bob will then choose to measure each coherent state withr ¢itb@mplitude
operatorX or the phase operatdf. If the transmission channel between Alice
and Bob was perfect, then when Bob measutagven that Alice sendga, the
outcome of Bob’s measurement will have a Gaussian distabutiith meanxa
and variance? .

However with a lossy and noisy transmission channel with asSian noise,
the outcome of Bob’s measurement will have a mean/gks and a variance
(1+8)0Z wheren characterises the loss abdharacterises the excess noise. The

conditional probabilities are drawn from the following nwal distributions

Pa(Xa|Xa) ~ A <\/ﬁxA, Vit 5ov) , (13.3)
pe(yelya) ~ A (vlya, v/1+30v ) - (13.4)

Before proceeding with the key generation, Alice and Bob wsk some mea-
surement results to characterise the channel. They chatkir data is indeed
consistent with the expected probability distributiond@mpome confidence level.
They check that for the amplitude quadrature, their joitbaibility pas (Xa,Xs)

is Gaussian with meafxa,xg) = (0,0) and covariance matrix

o3 o2
C— A \/ﬁ A (135)

VNoz (148)aZ +noi
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so that

1 1
=~ exp| —=xC I 13.6
PAB (XA, XB) /deC XIO( > ) (13.6)

whereX = (xa,xg). Otherwise the protocol fails and is aborted. If the proligbi
is consistent, the three parameters of the chanogl-r andd—can be obtained

from the three covariance equations

(Xa) =04, (13.7)
(XaXg) = /N0A , (13.8)
(x§) = (1+8)0G +nos . (13.9)

Alice and Bob will repeat the same characterisation for theesphquadrature.

In the next step of the protocol, Bob announces the quadrah@eneasured,
eitherX or Y as well as the absolute value of his measurement result. If Bob
announces that he measurgd Alice will reveal the absolute value ofy and
if Bob announces that he measuhéedAlice will reveal the absolute value gh.
Each pair of absolute valu¢xa|, [xs|) and(|yal, |ys|) constitute a binary channel

between Alice and Bob.

13.2 Key extraction

When Bob measures in th€ quadrature, for a given signal that Alice sends
and measurement outcorrg, the raw key between Alice and Bob is given by

the parity ofxa andxg. We denote the absolute valuesxafandxg by sa = |Xa|
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andmg = |xg| respectively. If Bob measures in the phase quadrature, theéh i
be the imaginary parts that we shall be interested in. Indase, using the same
symbols, we denotg, = |ya| andmg = |yg|. The following table gives an example
of a set of ten signals and outcomes from a hypothetical éxpet withn = 0.5,

&= 0.2 andoZ = 4a? in units wheres = 1.

Alice’s Bob’s Bob’s Alice/Bob’s

signal,a guadrature outcome e S bits
0.87+0.90i X 1.16 116 087 (+,+)
1.81+1.89i Y 016 016 189 (+,+)
—1.574+4.23i X -0.70 070 157 (—,—)
—1.23-1.30i Y —-057 057 130 (—,—)
0.80+0.60i X —0.30 030 080 (+,—)
—2.90+ 2.68i Y 1.03 103 268 (+,+)
1.98— 1.03i Y 0.09 009 103 (—,+)
~1.37-0.21i Y ~1.34 134 021 (—,-)
1.16+0.67i X 060 060 116 (+,4+)
3.77—3.11i X 360 360 377 (+,+)

In this example, the fifth and seventh data points contaworerr

Even in a perfect transmission channel with= 1, this binary channel will
not be perfect. There will be error when Alice sends a pasgignalsy but Bob
measures a negative outcomeg or when Alice sends a negative sigrasa but

Bob measures a positive outcommg. The probability of error would be

Perror(Sa, Mg) (13.10)

_ p(mB7 _SA) + p(_vasA) (1311)
p(Mg,sa) + P(—Me,Sa) + P(Me, —Sa) + P(—Mp, —Sa)

! (13.12)

ZfsAmB
1+exp< 119, )
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which is 1/2 when the productamg = 0 and goes to zero for larggamg. This
means that the channel is better for larger valuesok. The probability distri-

bution between Alice and Bob for the channel is given by thievahg table.

_ _ Outcome of Bob’s measurement
Alice’s signal
mg —Mg
1—
Sa gerror Perror
1—
—sa Perror %ror

13.3 Mutual information between Alice and Bob

From the binary symmetric probability table between Alicel 8ob, we can cal-

culate the mutual information between Alice and Bob for aipaldr value ofsy

andmg
Perror p%ror 1 — Perror 2= ferto 2‘””
laB(Sa, MB) =2 < > > log <5 +2 > log—5 (13.13)
22 22
= 1+ Perrorl0g Perror+ (1 — Perror) 109 (1 — Perror) (13.14)
= ®(1— 2Perror) (13.15)

where®(x) = [(1+x)log(1+x) + (1—x)log(1—x)] /2. Depending on whether
the information between Alice and Bob is greater or the infatiomn that Eve can
gain is greater, the channel will be selected or not sele€@ed) the data from the
selected channel will be used in the key generation.

The final key rate between Alice and Bob is obtained by intaggahe differ-
ence between Alice and Bob’s information and Eve’s infororatig(sa, ms) —

le(sa, mg) weighted by the probabilitiepag(sa, mg) over the post-selected re-
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gion. For a givem andd, this net information would depend on the post-selected
region as well as the distribution of Alice’s signal.

The regions to be post-selected are those in which Alice adhee a higher
mutual information than Alice and Eve or Bob and Eve. To prdoge shall need

to calculate Eve’s information or at least put a bound on it.
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Chapter 14

Eve’s information without thermal

noise

Before proceeding to the general case with transmissionailedshoisy channel,
we recap and elaborate some results for the case of transnsigs lossy channels
without excess noise as presented in [52].

Section 14.1 introduces the scenario we will be analysimgsection 14.2,
we calculate the mutual information between Alice and Bobrgfbst-selection
for a channel with vacuum noise. Section 14.3 analyses th@ise of the pro-
tocol under individual attacks. Finally, section 14.4 rasehe same analysis for

collective attacks.

14.1 Post-selection without thermal noise

We are going to study the security of the protocol in a lossgnfum channel

between Alice and Bob. Alice sends the coherent gtatevith o = xa +iya. In
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a lossy but not noisy channel, when Bob repeatedly measugesnbplitude and
phase quadratures on different copies of the state thatesieé/es, the outcome
of Bob’s measurement will still have varianag but the mean values will now be
(X} (V)a) = (VNXa,v/NYA).-

The channel between Alice and Bob is modelled by a beam spiiite trans-
mittivity n where a vacuum staté) enters through the unused port of the beam
splitter. For everya, because the variance of Bob’s measuremene,lsBob is
certain that he has a pure state. Bob knows that he has theecbiseatd /o)
and not something else.

However, in the noisy case, when the variances of Bob’s quadraneasure-
ments are greater thasf,, Bob will not know for certain the state he received
because, by only measuring tkeandY quadratures, he is not doing a complete
tomography of the state. For example, he would not be ableambiguously
reconstruct the state’s Wigner function. To do that he wdade to measure all
guadrature angles.

We attribute the loss in the channel to the actions of an advgiEve. In the
beam splitter model, the second output of the beam spldtezpt by Eve. Hence,

for the input statéa), Eve will keep stat¢\/1— r]0(> in her record.

14.2 Mutual information between Alice and Eve

As the protocol goes, Bob will then announce the quadratateiameasures and
the absolute value of his measurement result. Suppose Bae theX quadra-

ture as his measurement basis. Then he will annoogce |xg|. Subsequently
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Alice announces the absolute value of her signal correspgrid the measured
quadrature. In this case, Alice will announce the valug\cf |xa|.

Eve would like to gain as much information as she can reggrttia value of
Alice’s signal in the chosen quadrature, in this caseXdlguadrature. She would
not be interested in thé quadrature value as that value will not be used in the key
generation at all.

After Alice’s announcement afa, Eve will know that Alice encoded either
Sa Or —sp onto the amplitude quadrature. The parity of this encodirgyides
the raw key. Since Eve does not know the value of Alice’s eimgpoh the phase
quadratureya, her input states are then two mixed states obtained byratiag

Alice’s input states oveya

pe(Esa) = [ dya Palya) [v/I N (s iya) ) (V1= (Esa-+iyw)|
(14.1)

Here pa(ya) is the probability for Alice to encode the signgl in the phase
guadrature. To obtain an upper bound on Eve’s informati@pmvide Eve with
the actual value oya. Clearly, we are providing Eve with more power than she

originally has. In this case, Eve’s input state will be the fpure states

|PE (£S5a,YA)) = ’\/ 1-n(£sa+ iyA)>- (14.2)

For this input state, we shall find the amount of informatiwe Ean obtain by
doing individual attacks (in section 14.3) and collectitiaeks (in section 14.4).

Both values depend only on the overlap between the two inptestThe overlap
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between the two states is

f = |(We (+5a) |We (—Sa))| = exp(—254 (1 - 1)) (14.3)

which does not depend o as one would expect.

14.3 Post-selection: Individual attack, without ther-
mal noise

In this section, we consider the case where Eve carries andandual attack.

14.3.1 Information difference

The maximum information Eve can learn when she performs @dimidual attack
is given by the accessible information of Eve’s input stabieshis case Eve’s input
state that she can measure to attack Alice or Bob wouldpeé+sa)), which
does not depend on Bob’s measurement results. Using the fesakcessible
information for two pure input states in section 2.4.1, we timat Eve’s accessible

information is

|ind (s4) :CD<\/1— f2> (14.4)

wheref = exp(—2s3 (1—n)) is the absolute value of the inner product between
Eve’s input states. Figure 14.1 plots Eve’s informationiagfaxa for transmission

n = 0.5. When Alice announces that the valuesgfis very large, Eve is very
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Eve’s informationl "
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Figure 14.1: A bound for the mutual information between Alend Eve for a
noiseless coherent state protocol with channel transomissi= 0.5 as a function
of Alice’s signal when Eve is limited to individual attackBhe information does
not depend on Bob’s measurement outcome.

confident that she can guess correctly Alice’s bit. Howevieems, is close to
zero, Eve has very little information on Alice’s bit.

From equation (13.15), we found that the mutual informabetween Alice

and Bob was

|AB = q)(l — 2perr0r) (145)

where for noiseless transmission wétk= 0, the probability of error is

1
1+exp (—ZVT,SzAmB ) .
\Y%

(14.6)

Perror =

A contour plot for the mutual information between Alice andbBis shown in

figure 14.2.
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Bob’s outcomexg

Alice’s signalxa

Figure 14.2: Mutual information between Alice and Bob arevalmas contours
for a noiseless coherent state protocol with channel tresssomn = 0.5 as a
function of Alice’s signal and Bob’s measurement result.
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14.3.2 Post-selection region

The regions to be post-selected are those in which Alice arnd3we more in-
formation than Eve. The difference between the informa#isra function ofka
andxg is plotted in figure 14.3. This difference gives the theawadtlimit for the
key rate. Data points that fall in the post-selected regionla contribute to the
raw key generation. We see that the points having very laafiees ofxg and rel-
atively small values oka give Alice and Bob a high information advantage over
Eve. However, as the joint probability distribution is faorin its maximum here,
we don’t expect that the majority of the data points to faliehe

The post-selected region is defined as the region where

Iag > 11Nd (14.7)
— ®(1— 2Perror) > D <\/1— f2> (14.8)
— 1— 2perror> V 1— f2 . (149)

The boundary of the post-selected region is obtained byrsplv

1—

1+exp(2f 3 = \/1-exp(~45;(1-1)) (14.10)

which gives

2
Vv

mg = log -1].

2,/Nsa ( \/1 exp(—4%%(1—n)) )

The post-selected region is shown in figure 14.3.

(14.11)
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Bob’s outcomexg

Alice’s signalxa

Figure 14.3: Contour plot of the difference in informationveeen Alice—Bob
and Alice—Eve for a noiseless coherent state protocol wiinnel transmission
n = 0.5 when Eve does individual attacks. The difference in infation is plot-
ted as a function of Alice’s signal and Bob’s measurementamu& The post-
selected regions, coloured in green, are those in whichiffexahce is positive.
The red and blue dots are 5000 randomly simulated data pwititsAlice send-
ing randomly distributed coherent states having mean zsdovariance 8\2,. In
the protocol, those data points lying outside the posteseteregion will not be
included in the key-extraction scheme. The gradient of the line gives the ratio

0B/0A.
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14.3.3 Alice’s distribution

Now that we know the key rate that each effective chafggeimg) provides, we
want our distribution of data points to be such that it giveghe maximum key
rate. We want a lot of points to fall in the high key rate regand not too many
in the discarded region.

Alice can decide what states to send to Bob. For a particulaeat x that
she sends, Bob will obtain an outcomeg with a probability ps (xg|Xa), Which
is normally distributed with meag/nxa and variancg1+ 8)o3. For a given

sa = |Xal, the key rate between Alice and Bob would be

rind (sp) = dmg (IAB— I,iE”d> pg (Mg|sa) (14.12)

Q>0

whereQ,~¢ is the post-selected region. The key rate is plotted as diumof sy
in figure 14.4. From the plot, we find that the key rate is maxmwhen Alice’s
signal has the valugy = 0.71.

In principle, Alice could just send the coherent states wih= +0.71 and
this would give a key rate rate between Alice and Bob 4260 bits per signal.
But in practice it would be easier for Alice to send cohereatest with a Gaussian
distribution rather than switching between some discret@kcoherent states.

To maximise the key rate, Alice will choose the variance af@aussian dis-

tribution such that

rd— [ dsdms (1ae—1E) paa(sn.me) (14.13)
1>0

= / dsar(sa) Pa(sa) (14.14)
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Figure 14.4: A plot of the key rate between Alice and Bob for seless coherent
state protocol with channel transmissign= 0.5 after doing post-selection as a
function of Alice’s signal when Eve does an individual akaclhe maximum
key rate occurs when Alice sends = 0.71 for which the maximum key rate
extractable would be.0260 bits per signal.

is maximum. Herepa is Alice’s signal distribution having mean zero and vari-
ancecr,i. This integration can be computed numerically. Some vadxﬂe?,?d cor-
responding to some chosen values of the variarfcare given in the following

table:

2 ind
op Key rater,

0.25 0.06080
0.50 0.06644
1.00 0.06198
4.00 0.03972

These values are plotted in figure 14.9 which shows the vamiaf r, as a func-
tion of the variancecr%. The maximum key rate is.06644 bits per signal when

04 = 0.51. This is the variance that Alice should use to maximisekbgrate.
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Figure 14.5: A plot of the key rate between Alice and Bob for seless coherent
state protocol with channel transmissign= 0.5 after doing post-selection as a
function of Alice’s signal varianceZ when Alice sends a Gaussian distribution.
This figure is for individual attacks by Eve. The x-axis is matised so that the
vacuum state has a variangg = 0.25. The maximum is wheo4 = 0.51 for
which the attainable key rate isG$644 bits per signal.

14.3.4 Optimal variance and key rate

For different values of transmissian the optimal variances for Alice and the

maximum key rates Alice and Bob can get are summarised in tlosviog table.
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n o% Keyrater™

0 - 0

0.1 0.19 0.00005
0.2 0.30 0.00268
0.3 0.38 0.01332
0.4 0.44 0.03433
0.5 051 0.06644
0.6 0.58 0.11077
0.7 0.68 0.17028
0.8 0.84 0.25247
09 1.22 0.38074
1 00 1

The key rate goes to zero as the transmisgigoes to zero. But in principle, it is

always positive for alh > 0.

14.4 Post-selection: Collective attack, without ther-
mal noise

In this section, we repeat the same analysis done in thequegection but for a

collective attack.

14.4.1 Information difference

When Eve does a collective attack, the maximum informatios cdn gain is
given by the Holevo bound. After providing Eve the additiobnéormation about
Alice’s signal in the unmeasured quadrature, Eve’s inpatestare just two pure

states. For these two pure state inpuig (+sa)), we found from section 2.4.2
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Figure 14.6: A bound for the mutual information between Alend Eve for a

noiseless coherent state protocol with channel transomissi= 0.5 as a function

of Alice’s signal in a collective attack. The informationegonot depend on Bob’s
measurement outcome.

that the Holevo bound gives Eve’s maximum information to be
19 (sp) = 1— D (f) (14.15)

wheref = exp(—Zsi(l— r])) is the overlap between Eve two inputs. Figure 14.6
plots Eve’s information againsty for transmissiom = 0.5. When Alice an-
nounces that the value &f is very large, Eve is very confident that she can guess
correctly Alice’s bit. However wheBsa is close to zero, Eve has very little infor-
mation on Alice’s bit.

The information between Alice and Bob depends only on the rélgraram-
eters. It does not depend on the type of attack that Eve dosdorfy as these
parameters are the same, the mutual information betweee Ahd Bob is still

lag = P(1 — perror), the same as in section 14.3.1 when Eve does an individual
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attack. This mutual information between Alice and Bob fonsmaissiom = 0.5

was plotted in figure 14.2.

14.4.2 Post-selection region

The difference between the mutual information betweene?dind Bob and Eve’s
information is plotted in the contour plot in figure 14.7. Riwe values of this

difference gives the maximum theoretical limit for the keyerat that point. The
points with positive key rate would be post-selected. Omdiagoints that fall in

the post-selected region would contribute to the raw keyegaion.

The post-selected region is defined by the region with

lag > IE” (14.16)

14.4.3 Alice’s distribution

Now that we have the key rate that each effective chafsging) provides, we
want our distribution of points to be such that it give us theximum net key rate.
We want a lot of points to be in the high key rate region and aothany in the
discarded region.

Alice can decide what states to send to Bob. For a particulaevat xa that
she sends, Bob will obtain an outcome with a probability pg (Xg|Xa), which

is normally distributed with meag/nxa and variance(1 + 6)0\2,. For a given
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Bob’s outcomexg

Alice’s signalxa

Figure 14.7: Contour plot of the difference in informatiortveeen Alice—Bob

and Alice—Eve for a noiseless coherent state protocol witinnel transmission
n = 0.5 when Eve does collective attacks. The difference in infdrom is plotted

as a function of Alice’s signal and Bob’s measurement outcorhe post-selected
region, coloured in green, are those in which the differaaqeositive. The red
dots are 5000 randomly simulated data points with Alice sencandomly dis-

tributed coherent states having mean zero and variangel8 the protocol, those
data points lying outside the post-selected region willb®tncluded in the key-
extraction scheme. The gradient of the blue line gives ttie & /0.
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Figure 14.8: A plot of the key rate between Alice and Bob for seless coherent
state protocol with channel transmissign= 0.5 after doing post-selection as a
function of Alice’s signal when Eve does a collective attatke maximum key
rate occurs when Alice sendg = 0.67 for which the key rate would be@819
bits per signal.

sa = |xa|, the key rate between Alice and Bob would be

r(sn) = [ dms (1as—1€”) pa(melsy) (14.18)

QI>0

where Q|- is the post-selected region. The key rate is plotted in figur 8.
From the graph, we see that the key rate is maximum vghRen0.67.

In principle, Alice could just use the value sf = 0.67 and send the signals
havingxa = +0.67. This would give a key rate rate of03819 bits per signal.
But in practice it would easier for Alice to send coherentestatith a Gaussian

distribution rather than switching between some discret@scoherent states.



209

Alice’s Gaussian distributiopa(sa) has mean zero and the variance is chosen

so that

i = [ dsvdms (Ia— 1) pas(sa,me) (14.19)
1>0
:/dsqrﬁo'(sA) PA(Sa) (14.20)
is maximum. This integration can be computed numericalym8& values ofﬁOI

corresponding to some chosen values of the variag@e given in the following

table:

0% Key rater®!
0.25 0.02281
0.50 0.02443
1.00 0.02235
4.00 0.01401

These values are plotted in figure 14.9 which shows the vamiadf rﬁo' as a
function of the variance3. The key rate attains a maximum value 002445
bits per signal whem3 = 0.46. This is the variance that Alice should use to

maximise the key rate.

14.4.4 Optimal variance and key rate

For different values of transmissian the optimal variances for Alice and the

maximum key rates for Alice and Bob are summarised in thevioiig table:
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Figure 14.9: A plot of the key rate between Alice and Bob for seless coherent
state protocol with channel transmissigrn= 0.5 after doing post selection as a
function of Alice’s signal variancez when Alice sends a Gaussian distribution.
This figure is for collective attacks by Eve. The vacuum stes a variance
05 = 0.25. The maximum is whea = 0.46 for which the attainable key rate is
0.02445 bits per signal.

n o% Keyraterf

0o - 0
0.1 027 <10°
0.2 0.33  0.00018
0.3 0.38 0.00225
0.4 0.42 0.00935
0.5 0.46  0.02445
0.6 0.52  0.05054
0.7 059  0.09197
0.8 0.71  0.15777
0.9 0.99 0.27469
1 00 1

The key rate goes to zero as the transmissjogoes to zero. But it remains

positive for all values ofy > 0.
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Chapter 15

Post-selection with thermal noise

We now return to the case when the transmission channel betiéce and Bob

is both lossy and noisy. In the previous chapter, we have gedrihe coherent
state post-selection protocol can tolerate loss in theratlamhen there is no ex-
cess noise. However in any practical implementations optiogocol, there will

be some excess noise in the channel.

By a noisy channel with excess noise, we mean that when Alicgssine co-
herent statéa) with a = xa +iya, Bob will not receive a coherent state. Instead,
when Bob measures the amplitude and phase quadratures,| fi@aavihe mean
values to b&(Xg), , (YB)y) = (v/NXa,+/NYa) and both measurements to have vari-
ances vaiXg)q = var(Ys)q = (1+8) 03 whered > 0 is the excess noise ands
the channel transmission. In this analysis, we assumeltbaixcess noise in the
amplitude and phase quadratures are equal. If they are nat Bg to some tol-
erance, Alice and Bob abort the protocol. Precisely whatttilatance should be

would depend on the security level Alice and Bob desire anditioertainties in
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parameterising their channel. The details of these coraides would require
further studies beyond the scope of this thesis.

In this chapter, we want to study the performance of the ptm the pres-
ence of excess noise. Some results from this chapter havepuddished else-
where [1, 54]. The effects of excess noise on the securitpbéent state quan-
tum cryptography were also discussed by Heid aitkénhaus [25].

Section 15.1 gives the input states that Eve receives tieavghuse to learn
something about Alice and Bob’s communication. Section §&s bounds on
Eve’s information for individual and collective attacks étice. Section 15.3
looks at the case when Eve does her attacks on Bob. Sectiondiss4sses
whether it would be advantageous for Alice and Bob to do fodwaiconcilia-
tion or reverse reconciliation. Section 15.5 gives the ediseshold for secure

key distribution in both individual and collective attacks

15.1 Eve’s input states

We want to bound Eve’s information on Alice and Bob’s bits wienrestrict Eve
to a Gaussian attack. Before doing that, we shall find out wiesthe restrictions
on Eve’s input states. Once again, we model Eve’s eavesmthgpmma a beam
splitter with a mixed state entering through one of the poitée situation is
depicted in figure 15.1.

The checks that Alice and Bob do would impose some restritam the
Gaussian state that enters through the vacuunegoriSince the state that Bob re-
ceives abg must have the same variances in the amplitude and phaseatjuadr,

the state entering througly,, must also have equal variances in both quadratures
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g,

Figure 15.1: Beam splitter loss model for Eve’s eavesdrappinthe coherent
state protocol with thermal noise. Alice sends a coherete&t) = |Xa+iya)
into ap, the first port of a beam splitter with transmissign A Gaussian state
from Eve enters the second portag},. This state has varianag, in both theX
andY quadratures. The state Bob receives at the owpus another Gaussian
state with variancegl + 8)a2 in the X andY quadratures and a mean amplitude

of /NXa+iy/MNYa.



214

with mean zero. We denote the variances inXhandY quadratures oy, by
var(Xy,) = var(¥y,) = 03,
The variance of the thermal state throuagh is related to the excess noise at

Bob’s output by
2 2 _ 2
noy +(1—n)og, = (1+ )0y, (15.1)
from which we get
03 = 1+i 0% (15.2)

From section 11.4, the variances alongXhandY quadratures are related to vari-
ance of the minimum-variance-quadratafe and the variance of the maximum-

variance-quadrature?, . by

var(Xy,) = 0%_ C0S Bin + 0%, Si’ 6in = o7, , (15.3)
var(¥y,) = 0%_ Si’8in + 02, cos 6in = o7, , (15.4)
whereb;, is the quadrature angle corresponding to minimum variane€igture.
Solving these two equations, we @at = 11/4 for which

1
> (0% +0f.) =0f . (15.5)

Additionally, in order to satisfy the Heisenberg uncertairelation, we must have
Oin-Gint > 05. The acceptable range of,_ ando?,, is shown as the black line

in figure 15.2. This line can be parametrised by an eccetytpeirametee with
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Og a3, 203,

minimum variance quadrature,

Figure 15.2: Plot showing the acceptable Gaussian staae&tle can send into
the vacuum port of the beam splitter loss model in the cohetate protocol with
thermal noise. The black line denotes states that are addepib Bob where
% (oﬁ], +0ﬁ]+) = otzh. The quadrature squeezing angles for these states must be
Bin = 1/4. The blue line corresponds to pure states wbigreoi,+ = 0\2,. The two

blue dots corresponds to Eve injecting a 45 degrees purezgdsstate through

the vacuum port. At the red dot, Eve injects a thermal statachwcould be
entangled to a second thermal state. The area shaded yedatates that are not

physical as they would violate Heisenberg uncertaintyticria
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o = (1—¢€)ag,, (15.6)
05, = (1+€)03,. (15.7)

This line intersects the Heisenberg uncertainty limit when

Gin—Oiny = 07 (15.8)

— /(1—€2)of, =07 (15.9)

g4
= =4 [1-—F (15.10)
Oth
giving the valid range fog as
ol oy
—J1- = <e<|1- L. (15.11)
Oth Oth

The two end points of the line correspond to two pure squesiads. Ate =
0, the noise corresponds to that of a true thermal state wjtialenoise in all
guadratures. Eve would be restricted to using states gpdlms if Alice and Bob

could do a complete characterisation of the channel.

15.1.1 The input and output states

We let Eve create the thermal state entering the quantummehatay;, by mixing
two orthogonally squeezed states through &88heam splitter. The thermal state
created will be correlated to another thermal state whioh iEviree to keep and
measure later on. The whole setup with three inputs and taiipushown in

figure 15.3.
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Figure 15.3: Beam splitter model for the creation of Eve’'sssavopping thermal
state in the coherent state protocol with thermal noise. 'sBbermal state is
created by injecting two pure squeezed state througty&®beam splitter. The
rest of the model remains the same. Alice sends a coherdntista aa, the
first port of a beam splitter with transmissign Eve’s noisy Gaussian state with
variancecrtzh in the amplitude and phase quadratures enters the secadrat agy.
The state Bob receives at the outpygtis another noisy Gaussian state.
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The three inputs are Alice’s coherent stategand Eve’s two squeezed states

atay, anday, . The Wigner function for Alice’s coherent state is centred a

Xa = (Xa,YA) (15.12)
and has the covariance matrix
10
Ca= ) (15.13)
0 1

We take both of Eve’s inputs to be pure squeezed states deatt{@ 0) and with
covariance matrix
03_co$6,+07, sif; (0% —02,)sind;cosdy

Cv, = (15.14)
(07_—02,)sinBicosB; 02_sinfB; + 07, cosh;

and

02 co$0,+02, sifd, (02 — 02, )sinB,cosd
Cy, = 2— 2T 024 2 ( 2— 2+) 2 2 (15.15)

(03_ — 02, )sinBycosB, 03_si’ 6, + 03, cos6,

whereo; 01, = 0\2, andoy_ 0y, = 0\2, and the angle8; and0, are the squeezed
quadratures. As Bob checks that the variances in both higgumds are equal,

this imposes the two constraints

%[(o%_ co 0, + 0%, sirf0;) + (03_cog0,+ 03, sinzez)] —=0%  (15.16)
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+ +

For a fixed value 081 and8,, these constraints determine a unique value (up to
permutations) of the squeezed varianges ando,_.

Sincexa andya are not correlated, it is reasonable to choése- 0 andf, =
/2 and treat the two quadratures independently. With thigcehove haves, . =

o, and the input covariance matrix becomes

Chn O O
C= 0 G, O (15.18)
0 0 Gy

62 0 0 0

(15.19)

0
0
0 0 0 o O
0
0

Since theX andY quadratures are uncorrelated throughout the protocol, we
restrict the analysis to only th¢ quadrature. That is, we assume that Bob mea-

sured theX quadrature. The action of the two beam splitters ondltgiadrature
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is described by the following matrix

vi —vI=n o 1 0 O
M= 1—n v 0 0 %2 _\% (15.20)
0 0 1 0 % %
NIV
_ - \@ —/1 (15.21)
0 1 L
V2 V2

Hence, when Alice sends the coherent state with real amdpbiigthe output state

will have a mean

Ve NV Y
e | =] vien \/g _\@ 0 (15.22)
VXA
=| VI—hxa (15.23)
0
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and covariance matrix

Vi 5 5T [ef 0o
2= | vI-n \/g —\/g 0 o2 O (15.24)
0 Ve NG 0 0 o2,
T
VUi Ve
x| vI=n \@ _\/g (15.25)
0 1 1
V2 V2
nog + (1—n)og, 1-n)n (02 —a?) I—no?
=| V@-nn(cf-0i) (1-njof-noi - Nog
vI-nog — /Mot a2,
(15.26)
where
1
Ofh =5 (0. +07) (15.27)
and
1
of = > (03, —0i). (15.28)

Now in the protocol, Bob will announce the absolute value sfreasurement
result. At this point, we can find out what is Eve’s reducedesifaBob measured
the outcomexg by taking the conditioned Gaussian state after conditgmin

Bob’s outcome. But it turns out the computation will be eadiar not do so yet.
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We shall keep the output state as a three-mode Gaussiarbstateen Eve and

Bob.

15.1.2 Eve’s reduced input

After Alice announces the absolute value of her signat [xa| and Bob an-

nounces the absolute value of his measurement outensme |xg|, Eve knows

that the reduced state she holds will be in one of the fouriblesstates

{IWe (+sa,+mg)) , [We (+Sa, —MB)) , |WE (—SA,+MB)) , [WE (—Sa, —MB)) }

with probabilities we denote by

{pE(+7+)7 pE(+7 _)7 pE(_7+)7 pE(_7 _)} :

For example, the probability that Eve has the sfditg+sa, —mg)) would be

Ps (—Mg| +Sa)
N

PeE(+,—) = (15.29)

where pg(Xg|Xa) is the probability density corresponding to Bob measurirgy th
outcomexg given that Alice sent the sign&l which is given in section 13. 1N is
the normalisation

N = pg (+mg| +sa) + Pa (+Mg| —Sa)
(15.30)

+ pe(—mg|+Sa) + P (—Mg| — Sa)

so thatpe (+,+) + pe(+,—) + pe(—,+) + pe(—,—) = 1.
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We normalise the states that Eve receives with

(We (%, X8) |WE (Xa, X8) ) = P8 (XB|XA) - (15.31)
The overlap between any two of Eve’s input states can be ctedfny evaluating

‘<UJE (X2, XB) |WE (Xa, X,B)>‘2
= Tre {Tra {pee(xa) |x8) (X8|} Tra { PBE(XA) |X8) (X8|} } -

(15.32)

The details of the integration can be found in appendix E ek just collect the

results for the inner products. The normalisation is

——(XB_\/ﬁXA)ZI . (15.33)

(We (Xa,%8) |We (Xa,%8)) = (11 0)7 p[ 2(1+8)ag,

The terms that differentiate Eve’s inputs for attackingcalifrom attacking Bob

are
1 [ (148)22 + %2
<llJE (XA7XB)‘L|JE (XA, —XB)>: exp _( ) B 2r] A 7
on1+8)03 | A1+9)0y
1 [ G+ (1+3)%3
<qJE (XA, X8) NJE (—Xa, XB)> = exp _LLA
on(1+8)0d L 20+9)ay

(15.34)
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Finally the inner product between the cross terms for matam unmatched

Alice’s and Bob’s data is

(WE (%A, X8) |WE (—Xa, —X8))
(X2 — 2,/MxaXs + (1 + )% (15.35)
203 '

— ! exp [—
21(1+8)0d

These inner products define the structure of Eve’s inpuestahich will be given

in the next two sections.

15.2 Bounding Eve’s information when Eve attacks
Alice

To attack Alice, Eve’s input states would be the two states

PE(+58) = (W (+58,+mB)) (W (+5n, +5)

(15.36)
+ Ve (+54, —MB)) (We (+5a, —MB)|)
and
1
Pe(—Sa) = §; (|We (=Sa, +Me)) ((—Sa, +Me)|
(15.37)
+[We (—sa, —mg)) ((—Sa, —mM8)|)
with equal probabilities and where the normalisation
N = pg (+mg| +8a) + Ps (+Mg| —Sa)
(15.38)

+ ps(—mg|+Sa) + pa(—Mg| —Sa) -
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The two states are normalised such that

Tr{pe(+sa)} = Tripe(~s)} = (15.39)
Each of these states are of rank two and together they occiquy dimensional
space. To represent the input states in some numerical basiseed to evalu-
ate the inner products between the constituérts(xa, xs) |We (Xa, Xg)). Once
we have a representation for the states, it is easy to cédcthla Holevo quantity
to get an upper bound on Eve’s information for collectivaeits or somewhat
harder, the accessible information to get a bound on Evésrration for indi-
vidual attacks.
While these quantities would give a tight bound on Eve’s infation, here we
are interested in a bound that can be easily computed. Foptinpose, we shall
give Eve some additional information. We tell Eve whetheicAland Bob have

matching parity or mismatched parity. With this informatiovith probability

_ pa(me[sa) + pe(—me|—sa)  2ps(mg|sa)
P1= N - N

(15.40)

Eve would have to distinguish between the two equally likplyre states

|We (+sa, +mg)) and|Pe (—sa, —mg)). Also, with probability

Pe (—M.|sa) + Ps (Ms| —Sa) _ 2Ps (—Me[Sa)
N N ’

P2=1-p1= (15.41)

Eve would have to distinguish between the two equally likplyre states
|We (+sa, —me)) and|Pe (—sa, +mg)). Now that Eve only distinguishes between

two pure states, the information she gains can be writtemdaxplicitly. From
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section 2.4, we find that for individual attacks, Eve's imi@tion will be bounded

by

IEA (S, MB) < p1® (x/l— ff) + po® (,/1— f22) : (15.42)

while for collective attacks, Holevo’s bound gives
1€ (sp, MB) < Pr(1— D (1)) + P2 (1— D (F) (15.43)

wheref; and f; are the normalised overlaps

_ | (We (sa,Me) |We (—sp, —MB)) |
(WE (s, Me) |WE (sa,MmB))
_ [{We (sa,—m8) |WE (—Sa,Me)) |

~ (We (sa, —M.) [E (Sa,—MB))

f1 , (15.44)

fa

(15.45)

The inner products in the numerators and denominatoifg ahd f, were quan-
tities that are given in section 15.1.2. THah is an upper bound is clear since
this is the maximum amount of information Eve can obtain & sises the par-
ity match—mismatch announcements. Ignoring these aneougats would only
reduce Eve’s ability to gain information.

Eve’s information bound depends on the channel excess aoéransmis-
sion. For excess noige= 0.2 and transmission = 0.5, this bound for individual
and collective attacks are plotted in figures 15.4 and 15peadively. In both
cases, Eve’s information becomes progressively larges, and mg increases.
When eithesy or mg is larger than 2, Eve’s information is already very close to

1 for both the individual and collective attacks.
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Figure 15.4: Contour plot of Eve’s information bound for widual attacks in the
coherent state protocol with excess noise. The amount @fssxtoise i® = 0.2
and the channel transmissiomjs= 0.5. Eve’s information is plotted as a function
of Alice’s signal and Bob’s measurement outcome.
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Figure 15.5: Contour plot of Eve’s information bound for eglive attacks in the
coherent state protocol with excess noise. The amount afssxtoise i = 0.2
and the channel transmissiomis= 0.5. Eve’s information is plotted as a function
of Alice’s signal and Bob’s measurement outcome.
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15.3 Bounding Eve’s information when Eve attacks

Bob

Instead of attacking Alice, Eve could instead choose tacktBob. In this case,

Eve’s input states would be

pE("’mB) = % (|l.|JE (‘I‘SA, +mB)> <lIJE (+SA7 +mB)| (15 46)

+|We (—sa, +m8)) (We (—Sa, +M8)[)

and

PE(—Mg) = = (| (+Sa, —mB)) {(+S, —m)|
N (15.47)

+|We (—sa, —mB)) ((—sa, —Mg)|)

both having equal probability. By repeating a similar analysat was done for
the case when Eve attacks Alice, we can get a bound on Evesmation for
attacking Bob. It turns out that for individual attack, the@ssible information is

bounded by

159 (sa,me) < P (\/1— ff) + po® <\/1— f22> , (15.48)

while for collective attacks, Holevo’s bound gives

1% (sa,mB) < p1(1— P (1)) + p2(1— D (f2)) (15.49)
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which are the same expressions that were obtained when fagkatlice. So
with the additional information on whether Alice and Bob’sshinatch or not, it

does not matter whether Eve attacks Alice or Bob.

15.4 Direct or reverse reconciliation

However in practice, Eve does not have the parity match—atisminformation
and the actual accessible information or Holevo quantitgmBve attacks Alice
and when Eve attacks Bob would in general be different. Theyldvonly be

the same when Eve’s inputs for both cases are unitarily agnt. This happens

when
{(WE (sa,Me) |We (sa, —me) ) = (WE (Sa, Me) |WE (—Sa, MB) ) (15.50)
C(A+3Pmansk] [ Mg+ (1+9)si
— P T 2082 _eXp[ 2(1+3)02 (15.51)
_ 1+0-n

Along this line Eve can get exactly the same information fralice as she can

from Bob. In the region

| 14+0— [ 14+0—
— ﬁ&\ < < ﬁSA , (1553)

Alice would announce a relatively big value §f compared to Bob’s announced
mg. In that case Eve shares more information with Alice thamBibb. Hence
it would be more advantageous if Alice and Bob do reverse m@tation. That

is, we use Bob’s raw key as a reference and Alice corrects hey tktematch
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Bob’s. The one way post-processing is done by Bob sendingcdhgsformation
through the public channel.

Outside this region, Eve has more information about Bob’skeywthan about
Alice’s raw key. So direct reconciliation, where now Alisgaw key is used as a
reference, would give Alice and Bob a higher key rate.

For the bounds derived in this thesis, we recall that Evdisrmation with
Alice is the same as her information with Bob. Hence the resuitthe bounds
on the key rates will be valid regardless of whether Alice &udb do a direct

reconciliation or a reverse reconciliation.

15.5 Noise threshold

As long as there are some valuesgandmg such that Alice and Bob share more
information compared to Eve’s information, there will a rempty post-selection
region and in principle the key rate would be positive.

For a fixed transmission rate, as the excess noise increéhseize of the post-
selection region will reduce. Beyond some noise threshaold'sinformation will
become greater than Alice and Bob'’s information for all valaésy andmg. For
example, whe > 2n, the state between Alice and Bob becomes separable. In
this case, Eve can do a classical intercept and resend &taskich Iz > g for
all values ofsy andmg [38].

To find the noise threshold, we shall solve for the curve whigeebound on

Eve’s information is equal to Alice and Bob’s information

lg = lag. (15.54)
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Since at the noise threshold, Eve’s information will be tge@han Alice and
Bob’s for all values oks andmg, we can consider the case wh&is large.

Forsa > 1, as long asng # 0,

B 2 2
PL_ exp| - Mo VNS | (e — VNS (15.55)
P2 2(1+9d)a§ 2(1+9)ay
2\/ﬁmBsA
_ 1 15.56
eXp[(Hé)o@] o (15:56)
= p1>pP2. (15.57)

This means that whespy > 1, Alice and Bob will most likely get correlated bits.
Eve practically just has to distinguish between the two Etages We (Sa,Ms))

and|Wg (—sa, —mg)). Eve’s information for individual attacks will be
1nd ~ (\/1——132) (15.58)
and for collective attacks, it will be
1€ ~ 1— D (fy) (15.59)

wherefy is the properly normalised inner product between Eve’s titaly input

as given in equation (15.44). The approximation gets betitbrlargersa.
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15.5.1 Individual attacks

Equating Eve’s information to Alice and Bob’s informatione find that for indi-

vidual attacks, the post-selection boundary for lagges

30 (, /1— ff) = ®(1— 2perror) (15.60)

= /1— f2=1—2perror. (15.61)
Sincef; < 1, we make the approximation

1
1-3 f2 ~ 1 — 2Perror (15.62)

— ff — 4perror. (1563)

Substituting the expression fdt from equation (15.44) and fQ¥error from equa-

tion (13.12), we get

expl— 2(s§—2msArrB+(1+5)rr§)]
2 2
il _ 4exp{——2\/ﬁs’*m231 . (15.64)
ex {_ Z(mB—\mSA)Z:| (1+9)og
Pl = 217502

Taking log on both sides and dropping constant terms, warobta

2(K-2/Nsame+ (L+3)ME)  2(me—/Asa)®  2,/Msame
2032 2(1+8)02 ~  (1498)a?

(15.65)

— (26+ )M —2,/N(1+38)samg+(1—n+8)sz =0. (15.66)
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Solving formg gives two solutions

_VA(+8) £ VN(1+872-8(2+8)(1-N+9)
o (26+52) SA .

(15.67)

For largesa, the post-selection boundary would asymptote to these ines.|
When the term under the radical is zero, the two lines will Inee@ne and the
post-selection region becomes empty. Therefore the nwisstoldy is obtained

by solving fordg in the cubic equation

N(1+4 80)% —30(24 8)(1—nN+8) =0 (15.68)
— —55+33(2n—3)+30(4n—2)+n=0. (15.69)

Solving this equation, we find that for every value of @ < 1, there exist exactly
one solution fog that is greater than or equal to zero. This solution is pdbitte
figure 15.6 as a function af. For channels with excess noise above this line, no

secure communication is possible.

15.5.2 Collective attacks

To find the noise threshold for collective attacks, we eq&ates information to

Alice and Bob’s information

1— ®(f1) = O (1 - 2Peror) - (15.70)
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Figure 15.6: Plot of the excess noise threshtgdor secure communication as
a function for the channel transmissignfor the coherent state protocol with
thermal noise. The threshold is obtained by solving equdtis.69). Atn = 0.5,
the excess noise threshold ig516.

Since bothf; and perror are small whersa is large, if we keep only first order

terms, we obtain the approximation

1_ ff %1+1—perror|n(l_p >+perror|np (15.71)
2In2 2 error) - 5~ N Perror )
1
= ) fl2 = (1— Perror) IN (1 — Perror) + PerrorlN Perror (15.72)
1 2 pgrror
== 5 f1 ~ (1— Perror) | — Perror— 5 + PerrorlN Perror (15.73)
1
= —5 2~ —perror- (15.74)

After substituting the expressions fér and perror, taking log and dropping con-
stant terms, we find that this equality gives the same asytiofitehaviour of the

post-selection region as the individual attacks

(25+8%)mg —2,/MN(1+3)same + (1—n+3)s2 =0. (15.75)
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Hence the noise threshold for the collective attacks isdineesas the noise thresh-

old for the individual attacks.
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Chapter 16

Effects of excess noise at

transmission = 0.5

In this chapter, we look in greater detail at the key rategvbeh Alice and Bob
when their channel is contaminated by various degrees a#ssxnoise. Sec-
tion 16.1 studies the case when Eve does an individual atthdk section 16.2
gives the results for collective attacks. Both are done fdnanoel transmission
rate of 50%. For a single-mode fibre with an attenuation.bfdB/km at a fre-

guency of 1550 nm, this would correspond to a fibre length ah6 k

16.1 Individual attack

Using the bound on Eve’s accessible information that we haajuation (15.42)
of the previous chapter, we can now find the key rate betwere Ahd Bob after

post-selection.
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16.1.1 EXxcess noise =0.2

We work out the details for a particular value of excess néise0.2. This is
a large excess noise compared to that typically seen in be¢hspace and fibre
based quantum key distribution experiments which is ugldls than M1 even
for large transmission losses [30, 36]. A large excess n@fig was chosen in
this sub-section so that its effects would be more prominent

Figure 16.1 gives a contour plot of the key rate at each pdiitioe’s sig-
nal and Bob’s measured result with excess ndise0.2. The key rate is given
by the difference in Alice—Bob’s mutual information, equati(13.15), and Eve’s
information, equation (15.42), for each value of Alice'grsls, and Bob’s mea-
surement outcomeg.

For each value of Alice’s signah, the key rate between Alice and Bob is ob-
tained by integrating the individual key rate weighted agaBob’s measurement

outcome probabilities

rind(gy) = [ dmg<|AB—|iE”d> Pe(Mesa) (16.1)
1>0

whereQ) ¢ is the post-selection region. The key rate is plotted in 8gl8.2 as
a function ofsa. For values ofsy below a certain thresholghg = 0.6613, the
key rate is exactly zero since the post-selection regiomiptye For all values
of sa > sag, the key rate will remain positive. But it becomes very smébrasa
becomes too large.

In our protocol Alice’s signals follow a Gaussian distrilot. The final key

rate will depend on the variance of this distribution. Theeledence of the key
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Figure 16.1: Contour plot of the key rate and post-selectgion for individual
attacks in the coherent state protocol with excess noise@ affount of excess
noise isd = 0.2 and the channel transmissiomis= 0.5. The key rate is plotted as
a function of Alice’s signal and Bob’s measurement outcontee post-selection
regions, coloured in green, are those in which the key rgtesgive. The dotted
black line marks the point where Eve can gain the same amduntasmation
from Alice as she can from Bob. For regions below (above) thes [Eve can get
more information from Alice (Bob). The post-selection regesymptotes to the
two solid black lines.
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Alice’s signalsa

Figure 16.2: Plot of the key rate between Alice and Bob as atiomof Alice’s
signal for the coherent state protocol with excess noisenive does individual
attacks. The plot is for excess noide= 0.2 and transmissiom = 0.5. The
maximum key rate occurs when Alice sergis= 0.98 for which the key rate
would be 001191 bits per signal. For values gf < 0.6613, the post-selection
region is empty and the key rate becomes exactly zero.

rate on Alice’s variance is plotted in figure 16.3. It has a mmn value of

rind = 0.0029990 bits per signal wheag = 1.15 in units wheresg = 0.25.

16.1.2 Different values of excess noise

At n = 0.5, we find from figure 15.6 that the noise threshold for posikey rate

is & = 0.4516. As the amount of excess noise increases, the postiselezgion
becomes smaller. Only large valuesspfandmg would yield a positive key rate.
But for large values o$a andmg, the key rate is very low. Hence we can expect
Alice’s optimal variance would increase with excess noisdenthe final key rate

would decrease.
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Figure 16.3: Plot of the net key rate as a function of Alicexsianceo,i in the

coherent state protocol with excess noise when Eve doeslaidinal attack. The
amount of excess noise &= 0.2 and the channel transmissioms= 0.5. The

vacuum state is normalised @ = 0.25. The maximum key rate is@2999 bits
per signal abz = 1.15.

Repeating the analysis done in the previous section forrdiftevalues of
excess noise up by, the optimal variances and net key rates are summarised in

the following table:

5 0% key raterd

0 0.51 0.0664407
0.05 0.66 0.0345575
0.10 0.80 0.0174171
0.15 0.96 0.0079142
0.20 1.15 0.0029990
0.25 1.42 0.0008229
0.30 1.83 0.0001199
0.35 2.61 0.0000038
0.40 4.84 3Bx1010
0.45 - <1010

0.45161 - 0
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In theory, the key rates are always positive widen &qg. But from a practical
point of view, for example whedis 0.40, the key rate is already so small that the
protocol becomes impractical.

In an actual experiment, the amount of excess noise wouldaly not be
larger thand = 0.05. At this value of excess noise, if Alice’s variance is @ms
to be near its optimal value, the key rate is reduced by apmately half. This

means that the protocol would still be practical despitestteess noise.

16.2 Collective attack

We repeat the analysis of the previous section for colleaitacks. Everything is
similar except that we now use the Holevo bound (15.43) tonddtve’s informa-
tion. With this, we can once again find the key rate betweeoefdind Bob after

post-selection.

16.2.1 EXxcess noise =0.2

Again, we work out in greater detail for the case widen 0.2. Figure 16.4 gives
a contour plot of the key rate at each point of Alice’s signad 8ob’s measured
result when the excess noide- 0.2 for a collective attack.

For each value of Alice’s signah, the key rate between Alice and Bob is ob-
tained by integrating the individual key rate weighted agaBob’s measurement

outcome probabilities:

I’EOl(SA) :/Q| odm<IAB—I,‘§°') pB(mB]sA) (16.2)
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Figure 16.4: Contour plot of the key rate and post-selectigion for collective
attacks in the coherent state protocol with excess noise@ affount of excess
noise isd = 0.2 and the channel transmissiomis= 0.5. The key rate is plotted as
a function of Alice’s signal and Bob’s measurement outcontee post-selection
regions, coloured in green, are those in which the key rgtesgive. The dotted
black line marks the point where Eve can gain the same amduntasmation
from Alice as she can from Bob. For regions below (above) thes [Eve can get
more information from Alice (Bob). The post-selection regesymptotes to the
two solid black lines.
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Figure 16.5: Plot of the key rate between Alice and Bob as atiomof Alice’s
signal for the coherent state protocol with excess noisenive does individual
attacks. The plot is for excess noide= 0.2 and transmissiom = 0.5. The
maximum key rate occurs when Alice sergis= 1.23 for which the key rate
would be 0000372 bits per signal. For valuessf< 0.9625, the post-selection
region is empty and the key rate becomes exactly zero.

where Q- is the post-selection region. The key rate is plotted in 8gl8.5.
We see in this plot that for all values gf below the thresholdag = 0.9625, the
key rate is exactly zero since the post-selection regiomiste For all values of
Sa > Sao, the key rate remains positive but the actual value becomgssmall as
sa becomes very large.

In our protocol Alice’s signals follow a Gaussian distrilomt. The final key
rate will depend on the variance of this distribution. Thepdndence is plotted
in figure 16.6 and it has a maximum vaIuer@‘P' = 0.0000632 bits per signal at

0% = 1.73 in units wheres = 0.25.
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Figure 16.6: Plot of the net key rate as a function of AIiceésiatnceoﬁ in the

coherent state protocol with excess noise when Eve doedexinge attack. The
amount of excess noise &s= 0.2 and the channel transmissionjs= 0.5. The

vacuum state is normalised &§ = 0.25. The maximum key rate is@00632
bits per signal abz = 1.73.

16.2.2 Different values of excess noise

At n = 0.5, we find from figure 15.6 that the noise threshold for posikey rate
is &g = 0.4516. Repeating the analysis done in the previous sectiodiffier-
ent values of excess noise updg the optimal variances and net key rates are

summarised in the following table:
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3 0% key raterf

0 0.46 0.0244538
0.05 0.75 0.0072922
0.10 0.99 0.0021343
0.15 1.30 0.0004753
0.20 1.73 0.0000632
0.25 2.39 0.0000032
030 357 20x108
0.35 6.38 &Bx1013
040 819 13x10°1
0.45 - <101

0.45161 — 0

In theory, the key rates would always be positive as lonly<a®g. However in
practice, when the key rates becomes too small the protamalidie impractical.
Whend = 0.30, the key rate is already of the order£0

In an actual experiment, the amount of excess noise wouldaiyp not be
larger thand = 0.05. At this value of excess noise, if Alice’s variance is amos
to be near its optimal value, the key rate is reduced by afatt®4. This means

that the protocol would still remain practical despite theess noise.



247

Chapter 17

Conclusion and outlook for part two

In the second part of the thesis, we studied the securityshiotds as well as
the key rates for the coherent state continuous variablatgoakey distribution

protocol in the presence of Gaussian excess noise. By pngyigve with the

additional information on Alice’s unmeasured quadrature whether Alice and
Bob’s raw bits match or not, we derived an upper bound on Em&smation. We

found that the protocol can remain secure even in the pressgiexcess noise in
the channel.

The upper bound for collective attacks can be made tightidaowt giving Eve
the match—mismatch bits information. Applying Holevo’sibd directly on Eve’s
input states given in sections 15.2 and 15.3 would give ughdet upper bound
on Eve’s information. It is worth investigating how the keate will improve if
we use this tighter bound.

This thesis proves the security in the limit of an infinite keggth where the
parameters of the channel can be found with arbitrary poetidn practice, to

do the post-processing from the raw data to the final secket &e a very large
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string of raw bits is computationally intensive. This sefgractical limit on the
key length. Within this statistical limit, the distributicthat Alice and Bob see
when they characterise their channel will never be pesfegdussian. The final
key rates after accounting for the finite key length woulddeebe investigated.

The Gaussian attack that was considered in this thesistisnesspecial attack
that Eve can perform while still ensuring a Gaussian joistribution between
Alice and Bob in the measured quadratures. More generally,dan perform a
Gaussian attack by inserting a 45 degrees squeezed stai@ding a thermal state
through the empty port of the beam splitter in figure 15.1etbhains to be seen if
this will provide Eve with more information.

Eve need not be restricted to doing a Gaussian attack. [Redping a non-
Gaussian attack, she may still simulate a thermal noisedrckiannel between
Alice and Bob as long as she can engineer her attack such ¢hatrtplitude and
phase quadratures of Bob’s state remains Gaussian. To s$lisdttack, it is not
enough just to keep track on the means and covariances aijgbéstates as we
have done in the thesis. A more general approach would have tsed. One
way to do this would be to express the input and output statesme continuous
quadrature basis.

The effects of practical imperfections when conductingekgeriment would
also reduce the actual secure key rate. For example if thetgymasource from
Alice to Bob was not a single propagating spatial mode, ancesointhe Alice’s
signal is found in other modes of the channel, then Eve migtalse to tap those
channels to gain additional information about Alice and Balwmmunications.

In the current protocol, we say that Alice and Bob will aboe @rotocol if

the joint distribution that they check for is not Gaussiamweéver we can ask if
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the protocol remains secure if the noise that Alice and Bolisseet Gaussian. In
which direction and by how much will the key rate change ifcgliand Bob get
a skewed joint distribution? This would correspond to Eveng@n asymmetric

attack.
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Appendix E

Inner products between the

constituents of Eve’s input states

In this appendix, we shall evaluate the inner products betvive’s reduced states
given Alice’s signal and Bob’s outcome. These states areelkfimsection 15.1.2
and make up Eve’s input states. The situation is depictedyirdi E.1. Eve’s
four reduced sub-normalised states when Alice seadsnd Bob measures the

outcomexg are
{IWE (+Xa, +X8)) , [WE (+Xa, —XB)) , |WE (—XA, +XB)) , |WE (—XA, —XB)) } -
We normalise the states according to
(WE(xa,X8) |WE (XA, %8) ) = PB (XB|XA) (E.1)

wherepg (xg|Xa) is the probability for Bob to obtain the outcomg when Alice

encodes the signah onto the amplitude quadrature. To attack Alice, Eve’s two
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Figure E.1: The beam splitter model for the output and inpates in the coher-
ent state protocol with thermal noise when Alice inputs aetceht state and Eve
creates an EPR state.
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sub-normalised inputs are

Pe(a) = o (10 (+a,+8)) (W (+30,+76)

(E.2)
+|We (+Xa, —X8)) (Ve (+Xa, —X8)|)
and
Pe(—x0) = - (W (~Xa, +46)) ((—¥n, )
(E.3)
+ [We (—Xa, —XB)) ((—Xa, —X8)|)
where the normalisation
N = pg (+xB|+Xa) + P (+X8| — Xa)
(E.4)

+ pe (—xg|+Xa) + Ps (—XB| — Xa)

and Tr{pe (£xa)} = 1/2 is the probability for Eve to get either state after Alice
announcesxa| and Bob announcesg|. All other states will be properly nor-
malised. In this appendix, we shall evaluate the inner prtedbetween the four

pure reduced states for Eve. Consider

|(We (xXa,%8) [ We (Xa,X5) )|

= pa (xg|Xa) P& (Xa|Xa) Tr { P (Xa, XB) PE (XA XB) } »

(E.5)

wherepg (Xa, Xg) is Eve’s reduced state when Alice seng@sand Bob obtains the

outcomexg. The state is properly normalised with

Tr{pe (xa,Xg)} = 1. (E.6)
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Now since the partial trace can be expressed as

Tre {Pee (Xa) [X8) (X8|} = P8 (X8[XA) PE (XA, XB) (E.7)
the inner product can be written as the trace

(e (xa, %e) | We (%0 %6) )
= TI’E {TI‘B {f)BE (XA) |XB> <XB|}TI’B {ﬁBE (X/A> ‘X/B> <X’B‘ }} .

(E.8)

Here pge (xa) is the joint state between Bob and Eve which is the output state
of the beam splitters in figure E.1. We can evaluate this ipneduct using the

Wigner function

Tre {Tra {Pee (xa) X8) (*a|} Tre {Pee (Xa) %) (Xa|} }

= (ZTW)Z/d?E dye (/ dxg dyg PBE (Xa; X8, Y8, XE,YE)O(XB—XB)  (E.9)
X /dXB dys pPBE (Xa: X8, Y8, XE,VE) 3 (X8 — X,B))
with X = (Xg,,Xg,)" andVe = (Ye,,Vg,)'. We write the phase space variables

in bold in order to distinguish them from the parametgtsand xg. Also

PBE (Xa; XB,YB, XE, YE) Without the hat is the Wigner function corresponding to
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statepge (Xa)- It is given by

PBE (XA; XB, YB, XE, YE)

L el d
(2ro2)3 2
1
X exp
(2rmog)3

and

XB — /NXaA !
Xg, — vVI—"Xa
XE,
T -
yB YB
_% ve, | Gt | ve
YE, YE,

% 0 0
Cl=M %5 0 M
1
0 0 %
% 0 0
C,l=M 5 0 M

XB—\/ﬁXA
o Xg, —v1—NXa

XE,

(E.10)

(E.11)

(E.12)
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with

v vI-n 0
\/g (E.13)
_/n

ML= _\/@
%

M is the beam splitter matrix (15.20)02 is the squeezed variance for Eve’s

Sk Sk

squeezed state that makes up her EPR sui;tés the variance in the orthogonal

quadrature where ;o = o2 (see figure E.1). Putting this together and integrat-
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ing overxg, we arrive at

[(We (xa,xe) |WE (X0 Xp) )|

= 2Tl'ﬁ/dXEl dXE2
_ T ;
Xg — /NXa Xg — /NXaA
1 1 4
exp|—= Y - Y -
(2r02)° Pl=5| xe.—vVI-mx%a | &7 | Xg —vI-Nxa
XE, XE,
— - _I_ - -
Xy — /X, Xy — /X,
xexp| =5 | xg —vI=m4 | G| xg - vIShX,
XE2 XEZ
i _ o )
yB yB
/ 1 1
X 21 / dyg, dyg, dys dyp 22y expl—>| v | S| vE
YE, YE,
— T — - -
YB Ve
1 ~1
xexpl—5 1 ve | G| Ve
yE2 yE2
(E.14)

The integration is broken up into a product of two independergrations and we
shall perform thexintegration and thg integration separately. Thgntegration is

a constant that does not dependxaror xg. The integrations are straight forward

but tedious.
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E.1 yintegration

We start with they integration for which we have

yB vnys++vI—-nyg
_]_ _
M Ye, | = _\/QVB T \/gyEl T \/iéyEz
YE, \/ 177”)/5 - \/QYEl + \/%YEZ

(E.15)



261

and hence thg integration can be written as

2100 / dyg, dyg, dyg dyg
Ys
1
X exp | Ve
YE,

21 .
g | 9 0|

YE,

(VAye + vVITYe)®  (VAve+ vI=Tye,)

ex
(21'[0\2,)3

202

-
(—\/ 1_TrlyB + \/QYEl + %y&)

X exp | —

X exp | —

2
204

)
(—\/ 0yt Bye, + %an)

X exp | —

2
204

.
(\/ 1_TnyB - \/gyE1 + \%ya)

202

-
Qﬁ?%—J@a+%%J

X exp | —

202

o [ L o
:m/dy exp[-Y Myy]

202

(E.16)
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where

yB
S| ve
V= . (E.17)
YE
yE2
The covariance matrikly is
N4 1% 0 VI _ VAN%h W%
Eg 2 0'6 20v 2 0-6 2 0-6
0 N4 A% v V%, JA%
20 ' 20; 205 2 o; 20
My = , ) a ) ) (E.18)
VI VIN%h YN V% Ay %k
202 2 g4 202 2 ot 02 ol ol
VA% V9% _ o
2 of 2 of ncré oy

wheren = 1—n. The two intermediate varianceg ando?, introduced above are

2
Oth 1

2 2
O

(62 +0?) . (E.19)

The determinant dfly turns out to be

1+90

a0t (E.20)

det(My) =
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With this, the Gaussian integration works out to be

o

/ dy exp[—yTMyy] = T (E.21)
21°0%

- T (E.22)

Putting everything together and replacihg= 202 (see section 11.2), we finally

arrive at

21 1
———— [ dy exp[-Y"Myy| = E.23
(21'[0\2,)3/ y exp[-y My V1+0 (E.23)
for they integration.
E.2 xintegration
For thex integration, we first evaluate an intermediate vector
XB — \/ﬁXA
X = M1 Xg, —vI—NXa (E.24)
XE,
VNXe ++v/1—NXg, —Xa
=1 —/ PTHXB + %XEl + \/AEXE2 . (E.25)

1-n n 1
\/ > XB— \/;XEl + ﬁXEz



264

With this thex integration can be written as

2T[ﬁ/dXE1dXE2
@ 00 L 0 0
1 LT X 1 g LoT : 1 3/
ooz TN 0 O (R 0 0 X
\"
0 0 % o o %
z

2110V /d

_ (v 1*nXE1+ﬁXBfXA)2 _ (\/1anEl+ﬁx’fo",\)2
202 202
2 2
exp (\/—XEl N \/QXBJ <\/_XE1+ 5XEy — \/TXB)
20'2 20—2
2 2
(Ve e Fr) (VB /%)
L 202 - 207 |
CWiexa? (V)
o1 200 20y
- _@npg (1—n)><’B2
 (2m02)3 oXp 402 402
@ (1-n)xg
407 407
X /d?( exp[—X"MyX — €TX]
(E.26)
with the covariance matrix
o2 o?
v L[ E=Hngd Vg (E.27)
X ? 02 02 )
\Y k th
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and

1 VAAGE )~ )~ VN (6 %)

_ (E.28)
2 2
o VT (0 +)

The vectoX = (xEl,xEZ)T. The remaining Gaussian integral can be evaluated by

diagonalisingMy and the resulting expression is

/di(’ exp[—X"M& —TTX] = s exp L + L (E.29)
detMy a4\1  4\o

where

A1 1

(" (2(1—n) +(14n)d+ \/8(1—n)n5+(1+r1)252)

(E.30)
are the eigenvalues My. Theb'’s are obtained from
b C
Yles| Tt (E.31)
b2 C2
where
1 1
S=/2n(2+d—2n) | VWt VWY (E.32)

. 1
vW-y VWY
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with

W =8n(1—n)+3(1+n)? (E.33)

Y = (1-n)Va,/8n(1—n) +5(1+n)2. (E.34)
Sis the unitary matrix that diagonalis&s

MO
sms = | . (E.35)

0 A

The termb? /41 + b3/4\; can be simplified to get

bf B3 (14+5-n)(atxp)° | 3(2+9) (xe+xp)°

A A 4(1+3)02 4(1+ )02 (E.36)
2N (X +Xg) (Xa+Xp)
4(1+9d)0? '
The determinant ofly is
detv, — =2 (E.37)

\
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Putting all this together, theintegration becomes

. (\mXB;XA)Z _ (WX’B;XA)Z
205 20§
g oe| s
2 2 2
_ (g (1)
407 404
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_ (Vxe—xa)®

(Vig—%)°

=€
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210y
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25,M

_|_
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1
=—————&exX
2105v/1+ 0 P
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_ (14+3-n)
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2+6
1+6 02

o
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(XB+XB>

(E.38)

(E.39)

In the last equality, we write_ ando,. in terms ofn andd using the relation

(1—-n)of,+nog =

This completes th& integration.

(1+ )02

(E.40)
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E.3 Putting them together

Combining the results for theintegration and th& integration, the inner product

| (We (Xa,X8) |WE (X3, X5)) {2 works out to be

[(We (%a,X8) |We (X, X'E_a)>\2

T o1+ 0) P

(y/M¥e—xa)? (\mX/B—XZ)Z
- 202 o 202
(40—
i (1 +x3)
1+5
4(1+3)02 ” ( T XA)
2+5
1+6 (XB + XB)
SR

TR (XB +Xg) (Xa+X)

(E.41)
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