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Abstract

Devices that harness the surprising properties of quantum systems at scale hold the possi-
bility of revolutionary advances in information technology. Algorithms for quantum com-
puters can take advantage of quantum parallelism to solve problems that are intractable
with classical hardware, including prime factorization and simulating chemical processes.
A quantum communication network that carries qubits instead of bits can leverage the
irreversibility of projective measurement to guarantee secure communication. Because
quantum states are fragile, building such devices requires exquisite control over many iso-
lated quantum systems. One of the most critical capabilities is the interaction of stationary
and flying qubits.

In this thesis we consider how to engineer atom-light interactions as an interface for
networked quantum systems. Quantum atom-light couplers require the e�cient and re-
versible interaction of atomic and optical qubits, but the natural interaction of atoms and
photons is weak. It is this very lack of interaction between light and its environment that
makes light such an excellent carrier of quantum information. There are three promis-
ing strategies for stronger coherent atom-light interactions. First, the light field may be
confined to a cavity so that it interacts with the atom over a longer time. Second, the
light field may be focussed to a small spot with high aperture optics and matched to the
natural atomic radiation pattern. Third, we may pass the light field through an ensemble
of many atoms and store the qubit in a distributed state. In practice, atom-light couplers
employ some combination of all three strategies. We will focus our research on the second
two approaches: first by coupling one and two trapped ions with high aperture optics,
and then operating a quantum optical memory with an ensemble of ⇡ 10 billion neutral
atoms.

Atoms that have been ionized and trapped in a common electromagnetic potential are
an advanced few-qubit computation platform. Qubit states are associated with an elec-
tronic excitation at each atom, controlled coherently with lasers, and made to interact in
two (or many) qubit gates by mutual Coulomb repulsion. One path to quantum supremacy
with ion-trap quantum processors is to scale small qubit registers by distributing entan-
glement with photonic interconnects. We consider the feasible e�ciency of free-space
atom light couplers for atomic dipole transitions, and derive the atomic image by common
free-space couplers.

We couple a trapped-ion register with high-aperture lenses and operate a single trapped
ion as a photon source. We model the dynamic character of the source and show spin-
orbit coupling in the single-photon spatial mode. Although the total collection e�ciency
is only ⌘ ⇡ 0.01, the source has exceptional photon-number purity A = (1.9± 0.2)⇥ 10�3

such that the higher-order quantum nature of the field persists even after most of the field
has been discarded. We derive an e�cient quantum non-Gaussian witness and surpass
it, the first such demonstration for a trapped-atom single-photon source. We entangle
two trapped atoms by single-photon detection, and observe an interference pattern in
the spatial mode of the bipartite state. Constructive interference between the entangled
components enhances the emission probability by up to 29%, an example of collective
enhancement with by a two-atom ensemble.

vii



viii

The e�ciency of free-space atom-light couplers is limited by our capability to engineer
high-precision, high-aperture optics. We fabricate ultra-precise hemispheric mirrors with
numerical aperture 0.996 by single point diamond turning. The mirrors are amongst the
smoothest hemispheric surfaces ever manufactured with root-mean-square (RMS) errors
consistently below 25 nm. The smoothest of our mirrors has a RMS error of 14 nm and
peak-to-valley error of 88 nm. A mirror with this surface is capable of suppressing or
enhancing the spontaneous emission of an atom into free space by 96% in a proposed
quantum electrodynamics experiment. We show how these mirrors, with a simple modifi-
cation, can shape the spatial mode of a trapped atom by similar vacuum-mode engineering.
We derive a near-hemispheric mirror coupling scheme that should be 72% e�cient with
mirrors as precise as ours. We design an ion trap for use with such high-aperture optics.

With careful conditioning and control, ensembles of many atoms can be made to store
and release photonic qubits on demand. Such optical quantum memories leverage the
collective interaction of a light field with many billions of atoms to achieve storage and
recall e�ciencies approaching unity. We show how stationary light fields for photonic
phase gates can be generated in optically deep ensembles, an e↵ect which has since been
observed.

We implement the gradient echo memory (GEM) scheme in an ultra-high optical depth
cold-atom ensemble. The performance of a practical quantum memory is contingent on the
chosen qubit encoding. We extend the GEM protocol to allow the simultaneous storage
of frequency separated signals and demonstrate that this ‘dual-rail’ memory is suitable
for high-fidelity frequency qubits. Dual-rail signals are recalled with 35% e�ciency, 82%
interference fringe visibility and 6� phase stability. We describe how the fidelity of the
scheme is limited by frequency-dependant polarization rotation and how this may be
addressed in an improved configuration. Finally, we demonstrate single-rail storage by
GEM with 87% e�ciency and 1 ms memory lifetime. Our memory surpasses the no-
cloning limit for up to 600 µs of storage, out-performing an optical fibre delay line by a
factor of six. This is the first quantum memory to beat this important benchmark.
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Chapter 1

Introduction and motivation

...nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.

– Richard Feynman, Simulating physics with computers (1981)

Devices that harness the surprising properties of quantum systems at scale hold the
possibility of revolutionary advances in information technology. Quantum bits, or ‘qubits’
can be prepared in a superposition of classical bit values 0 and 1. Multiple qubits may exist
in a combined superposition state that cannot be divided into separate, independent local
states. We call this type of correlated superposition an ‘entangled’ state. Algorithms for
quantum computers have the ability to solve problems that are intractable with classical
hardware, including prime factorization and simulating chemical processes. Furthermore,
a quantum communication network that carries qubits instead of bits can take advantage of
superposition states to guarantee secure communication. However, because superposition
states are fragile and ‘decohere’ under interaction with the environment, building such
devices requires exquisite control over many isolated quantum systems. One of the most
critical capabilities is the e�cient interaction of stationary atomic and flying optical qubits.

1.1 Superposition, entanglement and you

The classical information technology that is now ubiquitous operates by the storage and
manipulation of discrete, binary units of information: the bit, which can be in either
of two states that we choose to label 0 and 1. However, it is a property of quantum
mechanics that even binary systems with only two measurable configurations can exist
along a continuous spectrum of possible ‘superpositions’. That is to say, a quantum bit
(or qubit) can be in any combination of 0 and 1 simultaneously. When the superposed
qubit is measured, it will be found in either state 0 or 1 with probabilities determined by
the nature of the initial superposition. Extending the principle of superposition to systems
of multiple particles, a truly curious phenomena emerges.

Superposition states of multiple particles can be correlated in ways that are simply
impossible within the framework of classical physics. Measurements made on one qubit
depend on the outcomes of measurements on the second qubit. Two qubits, no matter
how far apart, may be in a combined state such that neither particle can be described
completely in isolation, and we say they are ‘entangled’. Entanglement is so counter to our
intuition of the natural world that Einstein, late in his life, was moved to repurpose a three
hundred-year-old criticism of Newtonian gravity and describe entanglement derisively as
“spukhafte Fernwirkung”—spooky action at a distance [9]. Indeed, any physical theory
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2 Introduction and motivation

that preserves both the locality and realism of classical mechanics is inconsistent with
not only quantum mechanics [10], but also with the outcomes of experiments [11–14].
Entanglement, and related quantum correlations, are not only startling, but potentially
very useful.

1.2 Quantum algorithms

An N -qubit register may be in a simultaneous superposition of all 2N classical configu-
rations. A quantum computer operating on such a register can take advantage of this
quantum parallelism to perform calculations that are intractable on a classical computer
[15]. The quantum circuit, in which qubits interact by a series of one and two qubit gates
including a complete set of single-qubit rotations and the controlled-not gate, is a univer-
sal quantum computer [16]. Quantum annealing [17] is an advanced alternative approach
that is not a means of universal computation, but may nevertheless provide an advantage
for specific classes of problems.

Peter Shor proposed one of the first useful algorithms for a universal quantum com-
puter, the factorization of large numbers [18]. Shor’s algorithm remains one of the most
startling applications for a quantum computer; easily factoring large numbers would un-
dermine the most common encryption algorithms, but the hardware requirements are
considerable. In order to factor numbers beyond the capabilities of existing supercom-
puters requires a quantum computer with qubits ⇥ gates = 1015[19]. Existing quantum
computers are a long way from out-factorizing classical supercomputers, but there are
applications that are within sight of existing devices. In particular, the most immediate
use for quantum computers may be closer to their first identified application [20], solving
outstanding problems in the chemical reactions of large molecules. Problems in quan-
tum chemistry are notoriously hard for exactly the same reason that quantum computers
are powerful, they involve many interacting quantum systems. E�ciently simulating a
complicated quantum process requires a quantum device [21].

A key achievement in the development of quantum computers will be ‘quantum advan-
tage’, the demonstration of a quantum computation that outperforms classical hardware
(even if the computation itself is not useful). To do so should not require outrageous
resources. The complete state of a 50-qubit register is already beyond the capabilities of
classical computers.

1.3 Decoherence

The challenge facing any quantum information device is that decoherence, the randomiza-
tion of a quantum state by interaction with its environment, limits the useful lifetime of
qubits. Decoherence turns the quantum ‘and’ to a classical ‘or’, the qubit to merely a bit,
and is the reason that superposition and entanglement are typically (but not only) seen
with small numbers of well-isolated particles. Decoherence is the problem that quantum
device engineers must overcome, and the coherence time is the critical metric for com-
paring physical implementations of qubits as quantum information platforms. The more
robust the physical qubit, the more operations can be performed in sequence during it’s
lifetime.

It is now possible to keep some physical qubits, such as qubits in the electronic state
of trapped ions as we investigate in Part II, well insulated from their environment on



§1.4 Quantum computers 3

timescales long enough for a computation. Moreover, control engineering techniques for
stabilising qubits against decoherence can improve in the passive robustness of quantum
systems [22–24]. For systems like these, imperfect gate operations are the critical source of
decoherence that must be considered. The theory of quantum error correction is directed
at combating the errors most common in gates.

1.4 Quantum computers

The approach most research takes to building a quantum computer described above be-
gins with building and controlling small numbers of material qubits with su�cient gate
fidelity for fault-tolerant universal quantum computing, before finding a means to scale
the number of qubits to out-perform classical simulators. The simultaneous requirements
that qubits are isolated from their environment but also controllable restrict potential
quantum hardware to a handful of microscopic systems, ranging from trapped atoms to
novel engineered qubits to photons.

1.4.1 Trapped-atom computers

The most natural stationary qubit is an individual atom. Atoms are standards, and
can be isolated in a vacuum so that they do not interact with background gases or
surfaces. At ultra-high vacuum (UHV) pressures background collisions occur ⇡1/hour.
With cryogenically-cooled vacuum chambers these collisions can be eliminated completely.
Trapped atoms are well isolated mechanical systems, a very good approximation of the
ideal harmonic oscillator, and may be laser-cooled to low temperatures, or even the mo-
tional ground-state [25].

The valence electron of hydrogen-like atoms may have Zeeman or hyperfine split ground
states, and metastable dipole-forbidden excited states. These narrow-linewidth transitions
have long coherence times suitable for quantum information. The state of a qubit encoded
into an atom’s electronic configuration can be controlled coherently with narrow-linewidth
laser fields.

Ion traps, which hold charged atoms in oscillating electromagnetic fields, are a well
developed few-qubit computation platform. In a linear ‘Paul’ trap of the sort we use in
Part II a hundred atoms may be confined in a one-dimensional string along the axis of
an harmonic potential. Macroscopic ion traps can have deep potentials, holding the same
atoms for months. The alkaline earth ions (Be+, Mg+, Ca+, Sr+ and Ba+) along with
some transition metals (Yb+) have strong closed optical transitions for cooling, preparing
and reading the state of the ion.

The mutual Coulomb repulsion between cold ions in the same trap provides a means
of coupling qubits by their shared, quantized motional modes. In contrast to the first
trapped-ion qubit gates proposed by Cirac and Zoller [26], recent trapped-ion gates do
not require ground-state cooling [27]. Trapped-ion two-qubit gates can be performed with
fidelities over 99% [28] at a rate of up to 100 kHz, currently limited by the period of the
ions oscillating in the trap potential. An ion-trap quantum computer of 11 qubits has
realized the Shor algorithm to factor the number 15 [29].

High fidelity operations have not been performed on larger ion chains because the
gate time scales with the square root of the number of ions. Controlling crystals of more
than 100 ions is considered to be infeasible [30]. Nevertheless powerful, high repetition-rate
pulsed lasers should provide a means of increasing the gate speed to GHz [31] at which point
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even a trapped-ion processor of 100 qubits can outperform existing classical computers at
certain tasks [32]. Prospects for further scaling trapped-ion processors include propagating
entanglement between separate registers by shuttling chosen ions between adjacent traps
[33] or optically coupling qubits in separate registers with optical gates [34].

1.4.2 Optically coupled qubits

One path to scaling ion-trap quantum processors to a useful size is the use of photonic
interconnects for distributing entanglement between smaller registers. This requires an
e�cient interface between the atoms in a trapped-atom processor and optical qubits,
ideally travelling in an optical fibre. If optical and stationary qubits can be coupled
e�ciently, then photon-atom gates can be a tool for generating and distributing quantum
information. This capability would go some way towards extending the size of linear ion
trap quantum computers into the realm of quantum advantage.

1.4.3 Artificial atoms

We can identify a class of solid-state qubits that mimic the electronic properties of atoms,
of which quantum dots (QDs) and vacancy centres are the most promising examples for
quantum information. Like atoms, these systems have confined electrons restricted to
discrete energy levels that may be configured and manipulated by optical fields. The
coherence time of these ‘artificial atom’ qubits is lower than the coherence time of atomic
qubits in a vacuum. Unlike clean atomic qubits, artificial atoms are embedded in a host
material which decoheres the qubit by interaction with the bulk. However, artificial atoms
may be designed with more convenient or manipulatable energy levels (for example, the
host material can be fabricated with electrical contacts for tuning the field around the
qubit) and, like solid state atomic systems, artificial qubits have an obvious path towards
scalability.

1.4.4 Photonic computers

Photonic quantum computing provides for an alternative computing paradigm to the atom-
based circuit processor. The photonic quantum computer replaces the deterministic gates
with probabilistic, measurement-based operations on photonic cluster states produced
passively by beam-splitter interference [35, 36]. There is an enormous overhead associated
with this approach because it requires hundreds of photons interacting by probabilistic
linear optical gates to produce a single computational qubit equivalent. Furthermore, this
architecture requires optical switches and phase shifters, and the losses and errors caused
by these active components are not negligible.

However, in contrast to the matter-based quantum computer architecture described
above, the architecture of a photonic quantum computer—being a precise, lossless, multi-
photon interferometer—is relatively easy to manufacture on-chip and scale. Today pho-
tonic integrated circuits are being built with thousands of components on chips 100s of
microns across, but recent advances indicate that much more complicated circuits can be
built with existing fabrication techniques [37].
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1.5 Quantum networks

Flying photonic qubits may be a challenging platform for quantum computing, but they
are the essential component of quantum communication networks. Today’s global com-
munication network operates by the distribution of bits encoded in light fields that travel
through optical fibres. Where necessary, we secure this communication by encryption.
However, the only way to guarantee unconditional cryptographic security between two
parties, we call them Alice and Bob, is to ensure they start with identical copies of a
secret key to use as a one-time pad [38]. Public-key cryptography relies on the assumed
di�culty of some asymmetric computation, such as factorization, and is vulnerable to
attack by a an eavesdropper (Eve) with su�cient computational power.

Quantum cryptography leverages the unique properties of quantum systems to guar-
antee cryptographic security by quantum key distribution (QKD). Measuring a quantum
system, as an eavesdropper must, irreversibly disturbs the system. Any information that
Eve might gain by intercepting a stream of qubits between Alice and Bob will measurably
distort the shared state. Alice and Bob can establish a one-time pad with any required
level of security by sharing a stream of qubits, some proportion of which will be used to
check for eavesdroppers. Alice and Bob can distil a secure key by classical error correction
and privacy amplification so long as the error rate on their communication link is below a
certain threshold [39].

1.5.1 Quantum key distribution

The first method of QKD to be proposed, the famous BB84 protocol [40], is an example
of a discrete-variable QKD scheme (DV-QKD). DV-QKD schemes utilize qubits encoded
on single photons to generate secure keys between Alice and Bob. The qubits may be
encoded on any photonic degree of freedom with two non-orthogonal bases, but qubits are
most commonly encoded in the polarization, time bins or orbital angular momentum.

In any network link there is some degree of signal attenuation and photon loss. In
principle, noiseless QKD schemes can handle any attenuation, but the presence of noise
limits the tolerable losses and sets an upper limit on the range of secure communication.
Noise sources can include crosstalk with bright signals and detector errors. For example,
dark counts are an unavoidable source of noise present in every realistic single-photon
detector.

Single-photon sources are required for QKD, much as they are required for photonic
quantum computation, because multi-photon pulses are not only a source of noise, they are
also vulnerable to photon-number splitting attacks by Eve [41]. The amount of common
secret key that can be distilled from each bit of raw key by error correction and privacy
amplification is called the ‘secret fraction’. Given a particular QKD scheme and well
characterized single-photon sources the secret fraction can be bounded for known attacks,
guaranteeing a certain rate of secure communication.

1.6 Single photon sources

Photon sources are devices for producing a single photon (and never more than one photon)
on demand, and they have various applications across the field of quantum information.
Prepare-and-measure DV-QKD schemes like BB84 leverage the indivisibility of single pho-
tons to guarantee security. Similarly, photonic quantum computers require sources of pure
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photons that can be entangled to produce cluster states for photonic computing. Moreover,
any atom-light interface for coupling qubits between registers of trapped-atom quantum
computers is necessarily a type of single photon source. The operation of a single-photon
source is an essential step in e�cient coupling of qubits between atoms and light. In
Chap. 5 we explore existing single-photon sources and quantum atom-light networks, and
compare their capabilities to performance benchmarks for QKD and photonic quantum
computing.

1.7 Quantum repeaters and memories

Signals travelling through telecommunications fibre are attenuated by at least 0.2 dB/km
[42], and this limits the range of direct, telecommunications fibre-based QKD to less
than 400 km [43]. Where classical signals are simply amplified periodically to travel long
distances, quantum signals cannot be amplified deterministically without decoherence, a
consequence of the no-cloning theorem. One dramatic way of circumventing this problem
is to use satellite-based QKD, as demonstrated recently in Ref. [44].

We need not give up on optical fibre quantum networks completely; quantum repeaters
have been proposed to create long-distance entanglement by entanglement swapping be-
tween nodes along a fibre network [45]. Qubits can be teleported between the remote
entangled pair, or the entanglement itself can be used to generate a cryptographic key
[46, 47]. An integral component of these repeaters is a quantum memory for storing
and retrieving quantum states of light on demand. Like single-photon sources, quantum
memories require e�cient atom-light interactions. In Chap. 14 we take a close look the
capabilities of existing quantum memories, and what more is required to build a useful
quantum repeater.

1.8 The structure of this thesis

In this thesis we consider how the atom-light interaction can be engineered to provide
an interface for networked quantum systems. Such an interface requires the e�cient and
reversible interaction of atomic and optical qubits, but the natural interaction of atoms
and photons is weak. It is this very lack of interaction between light and its environment
that makes light such an excellent carrier of quantum information.

There are three promising strategies for stronger atom-light interactions, shown schemat-
ically in Fig. 1.1. First, the light field may be confined to a high-finesse cavity so that it
interacts with the atom over a longer time. Second, the light field may be focussed to a
small spot with high aperture optics and matched to the natural atomic radiation pattern.
Third, we may pass the light field through an ensemble of many atoms and store the qubit
in a distributed state. In this thesis we explore experimental and theoretical approaches
to e�cient atom-light coupling using first free-space optics with one or two atoms and
then atom ensembles with about ten billion atoms (strategies (b) and (c) in Fig. 1.1).

The thesis is divided into three parts, in Part I we review the necessary physics for
understanding the interaction of quantum light fields and atomic qubits. In Chap. 4 we
introduce the optical field of an atomic dipole, and the image of this dipole by a number
of common free-space atom-light couplers.

In Part II we consider a free-space atom-light coupler for networking one or two trapped
ions in a qubit register. In Chap. 7 we demonstrate a trapped-ion single-photon source
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(a) (b) (c)

Figure 1.1: The interaction between photons and atoms is weak, but there are three broad

strategies for enhancing the interaction. (a) Resonators increase the atom-light interaction time by

holding the light field in a resonator mode. (b) Focussing the optical field into a small area increases

the field per photon. (c) The collective interaction strength between a light field and an ensemble

of atoms can be large. Most implementations involve some combination of these approaches. For

example, resonators can both confine the photon mode and increase the interaction time, and tight

focussing into an atomic ensemble increases the collective interaction strength.

coupled by high aperture lenses. We model the dynamic character of the source and
show manifestation of spin-orbit coupling in the single-photon spatial mode. Although
the total coupling e�ciency is low, the source has exceptional photon-number purity and
the higher-order quantum nature of the field persists even after most of it has been dis-
carded. In Chap. 8 we derive a quantum non-Gaussian witness and measure violation of
this witness, the first such demonstration for a trapped-atom single-photon source. The
same apparatus can be used to entangle two trapped ions by single-photon detection. In
Chap. 9 we observe spatial interference in single-photon emission from an entangled state.
Interference-enhanced emission from the collective excitation of this two-atom ensemble is
the first step towards coherent ensemble-light interactions with many atoms.

The availability of high-precision, high-aperture optics is one of the limits for e�cient
free-space atom-light coupling. In Chap. 10 we fabricate ultra-precise hemispheric mirrors
for experiments in quantum electrodynamics. We show that a mirror with this surface is
capable of suppressing or enhancing the spontaneous emission of an atom into free space
by 96%, and that a variation of these mirrors can be used to e�ciently couple the atomic
dipole mode to a fibre with only low aperture optics. In Chap. 11 we design an ion trap
for use in combination with such mirrors.

In Part III we trap and cool approximately 10 billion neutral atoms to demonstrate
the storage and retrieval of light in an atomic ensemble quantum memory. We show how
such ensemble quantum memories are able to leverage the simultaneous interaction of
light with many billions of atoms to achieve e�ciencies approaching unity in Chap. 13.
We demonstrate a gradient echo memory (GEM) in an ultra-high optical depth cold-atom
ensemble that equals the best demonstrated quantum memory e�ciency. In Chap. 16
we extend the GEM protocol to allow the simultaneous storage of frequency separated
signals and demonstrate that this ‘dual-rail’ memory is suitable for high-fidelity frequency
qubits. Finally, in Chap. 17 we increase the coherence time of our memory to surpass the
performance of an optical fibre delay line in the no-cloning regime.

Code samples for this thesis, including Mathematica scripts for simulating dipole im-
ages, Python scripts for simulating the eight-level atomic Bloch dynamics and XMDS2
scripts for simuating GEM, have been made available at the following GitHub repository:
https://github.com/dhigginbottom/thesis-appendices.git.
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31. J. J. Garćıa-Ripoll, P. Zoller, and J. I. Cirac, Speed optimized two-qubit gates with
laser coherent control techniques for ion trap quantum computing, Phys. Rev. Lett.
91, 157901 (2003).

32. R. L. Taylor, et al., A study on fast gates for large-scale quantum simulation with
trapped ions, Sci. Rep. 7, 46197 (2017).

33. D. Kielpinski, C. Monroe, and D. J. Wineland, Architecture for a large-scale ion-trap
quantum computer, Nature 417, 709–711 (2002).

34. I. L. Chuang, and D. Gottesman, Demonstrating the viability of universal quantum
computation using teleportation and single-qubit operations, Nature 402, 390–393
(1999).

35. E. Knill, R. Laflamme, and G. J. Milburn, A scheme for e�cient quantum compu-
tation with linear optics., Nature 409, 46–52 (2001).

36. P. Kok, et al., Linear optical quantum computing with photonic qubits, Rev. Mod.
Phys. 79, 135–174 (2007).

37. I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86,
153–185 (2014).

38. C. E. Shannon, Communication theory of secrecy systems, Bell Labs Tech. J. 28,
657–715 (1949).

39. C. A. Fuchs, et al., Optimal eavesdropping in quantum cryptography . I. Information
bound and optimal strategy, Phys. Rev. A 56, 1163–1172 (1997).

40. C. H. Bennett, and G. Brassard, Quantum cryptography: Public key distribution
and coin tossing, Theor. Comput. Sci. 175, 8 (1984).

41. G. Brassard, et al., Limitations on practical quantum cryptography, Phys. Rev. Lett.
85, 1330–1333 (2000).

42. G. P. Agrawal, Optical Fibers (John Wiley & Sons, Inc., Hoboken, 2011), pp. 24–78.

43. H.-L. Yin, et al., Measurement-device-independent quantum key distribution over a
404 km optical fiber, Phys. Rev. Lett. 117, 190501 (2016).

44. J.-G. Ren, et al., Satellite-to-ground quantum key distribution, Nature 549, 43–47
(2017).

45. H.-J. Briegel, et al., Quantum repeaters: The role of imperfect local operations in
quantum communication, Phys. Rev. Lett. 81, 5932–5935 (1998).

46. A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67,
661–663 (1991).
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Chapter 2

Quantum states of light

Wo viel Licht ist, ist starker Schatten.

– Johann Wolfgang von Goethe, Götz von Berlichingen (1773)

The purpose of the experiments in this thesis is to explore means of preparing, ma-
nipulating and storing quantum states of light. To describe these experiments we require
an understanding of the useful quantum states of light and the properties that distinguish
them from classical fields as described by Maxwell’s equations. In this chapter we intro-
duce a mathematical description of the discrete nature of light, and the ubiquitous concept
of an optical ‘mode’. For this we rely on the seminal work of Refs. [48–51] which provide
a more comprehensive discussion of these fundamental subjects than is feasible here.

A great deal of the work in this thesis will regard single-photon optical states, the
most fundamental demonstration of the discrete nature of light. In this chapter we relate
the photon-number field states to the coherent light fields produced by lasers, and to
the squeezed quantum light fields that may be produced parametrically from coherent
sources. Although the experiments in this thesis won’t generate any squeezing, we require
a description of squeezed states to distinguish the various quantum properties of squeezed
and photon-number fields. We describe the theory behind experiments for characterizing
quantum light fields including measurements of first and second-order coherence, and
consider how various illustrative fields perform under such measurements.

2.1 Quantizing the optical field

A quantum description of light begins with observing that the electromagnetic field may
be represented as an infinite set of independent harmonic oscillators with quantized excita-
tions [50]. Each independent oscillator is a ‘mode’ of the electromagnetic field: a solution
to Maxwell’s equations that comprises all of the classical properties of light, namely the
spatial and temporal distribution of the field (including polarization). This classical mode
becomes a framework in space and time for describing the excitation of quantum light
fields [48]. Associated with each mode is a harmonic oscillator with discrete energy levels
corresponding to its possible excitation amplitudes so that the electric field strength in
mode u(r, t) is

Ê = u(r, t)â + u⇤(r, t)â† (2.1)

where the c-number ↵ describing the phase and amplitude of the classical field has been
replaced by the Bosonic annihilation operator â. The non-Hermitian operators â and â† are
ladder operators for the associated quantum harmonic oscillator obeying the commutation

12
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relation
[â, â†] = 1 , (2.2)

and the Hermitian number operator

n = â†â (2.3)

gives the photon occupation of a given mode. The field strength per photon in a given
standing wave mode with a narrow frequency range about ! is

✏! =

r
~!
✏0V

, (2.4)

where ✏0 is the vacuum permittivity and V is the mode volume. By incorporating ✏!
into the mode definition we normalize u(r, t). We can separate the mode into vector and
scalar terms u(r, t) = e(r, t)u(r, t) where the vector e is the field polarization, which may
depend on position and time. For example, tightly focused beams may have a spatial
polarization dependence, and the field from a point source is best expanded in a basis of
spherical multipole moments with spatial polarization dependence. We treat the spatial
distribution of the dipole mode in Chap. 4.

2.1.1 Optical quadratures

In addition to the creation and annihilation operators, we can also introduce Hermitian op-
erators for field quadratures x̂ and p̂ corresponding to the real and imaginary components
of the complex field amplitude in a given mode

x̂ =
1p
2
(â† + â) (2.5)

p̂ =
ip
2
(a† � â) (2.6)

which, following from Eqn. 2.2, are canonically conjugate

[x, p] = i . (2.7)

These are analogous to the position and momentum operators of a harmonic oscillator.

2.1.2 Plane wave mode basis

The electromagnetic field exists in a Hilbert space that may be decomposed over any
arbitrary orthonormal basis of modes and single-mode quantum states. A natural mode
basis is usually suggested by the measurement being made. One basis of light modes that
we will use extensively in our analysis is the set of plane waves in a vacuum

u(r, t) = e

r
~!
✏0V

ei(k·r�!t) (2.8)

with fixed polarization e, frequency !, and wave vector k where k2 = !2/c2. Strictly
speaking, plane waves are not normalizable in R3 and are restricted to an ‘interaction
volume’ of size V for the purpose of constructing a valid Hilbert space. Although it
is included here for the sake of clarity, in practice we will avoid this slight of hand by
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considering only normalizable modes when applying the Born rule. We can write any field
as a sum of of plane waves inside a box of volume V with periodic boundary conditions

Ê =
X

k

r
~!k

2✏0V
ek
⇣
âke

i(k·r�!kt) + â†ke
�i(k·r�!kt)

⌘
, (2.9)

or as an integral in the continuous limit [50]

X

k

! V

(2⇡)3

Z
d3k (2.10)

Ê =
1

(2⇡)3

r
~V
2✏0

Z
d3k ek

p
!k

⇣
âke

i(k·r�!kt) + â†ke
�i(k·r�!kt)

⌘
. (2.11)

It will occasionally be convenient to separate the optical field into positive and negative
frequency components.

Ê = Ê+ + Ê�, Ê� = (Ê+)† (2.12)

where Ê+ is the sum of annihilation operator terms oscillating with frequency ei!t and
Ê� is the sum of creation operator terms oscillating with frequency e�i!t.

2.2 Quantum states of light

A great deal of this thesis concerns the design of quantum devices which, as the name
suggests, take advantage of the uniquely quantum properties of light fields. We have
already introduced technologies such as the single-photon source, quantum memory and
quantum computer in Chap. 1, albeit without the essential theory of their operation. In
the remainder of this chapter we will explore key properties of light which cannot be
explained in terms of classical fields: for instance the degree of anti-bunching, quadrature
squeezing and entanglement. To do so we will need to introduce the most elementary
single-mode, pure states of the light field and their properties.

2.2.1 Fock states

The Fock states |ni are eigenstates of the photon number operator with photon number n

|ni =
(â†)np

n!
|0i (2.13)

n̂ |ni = n |ni (2.14)

and form an orthonormal Hilbert space basis for single mode states of the quantum field.
Although a foundational concept for quantum optics and an elementary component of
proposed quantum technologies, pure Fock states are di�cult to generate in the lab (we’ll
explore this problem in some detail when we discuss single photon sources in Chap. 7).
Fock states of a fixed frequency mode, such as plane waves, are also energy eigenstates
with energy

Ĥ |nki = ~!k(n̂ + 1/2) |nki (2.15)

where the factor of 1/2 is the zero-point energy of the zero-photon Fock state, or ‘vacuum
field’, |0i. In this thesis we will usually consider energy exchange between atomic and
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optical systems, and in this context the constant factor can be neglected from the Hamil-
tonian, but it shouldn’t be forgotten that the vacuum is a meaningful optical state of a
mode. For example, the uncertainty in the electric field strength of the nth Fock state is
[50]

�E =
q
hEi2 � hE2i (2.16)

=
p

2u(r, t)
p
n + 1/2 . (2.17)

Even the field strength of the n = 0 ‘vacuum’ state fluctuates. These vacuum fluctuations
are responsible for both the spontaneous decay and energy level shifts of excited atomic
states. Importantly, even the vacuum fluctuations depend on the allowed mode amplitudes
u(r, t) such that the vacuum fluctuations may be shaped by surfaces with appropriate
boundary conditions. We will take advantage of this fact for the design of experiments
with precision fabricated mirrors in Chap. 10.

2.2.2 Coherent states

According to Eqn. 2.7, the amplitude and phase quadratures of the optical field do not
commute, so we can see that the product of phase and amplitude uncertainty has a lower
limit fixed by Heisenberg’s uncertainty relation. Coherent states are the optical states that
minimize this uncertainty product, they have the smallest possible quadrature fluctuations.
In this sense, they are the closest possible quantum state to the noiseless classical field.
They are eigenstates of the annihilation operator

â |↵i = ↵ |↵i (2.18)

and can be expanded in the Fock state basis

|↵i = e�
1

2

|↵|2
1X

n=0

↵n

p
n!

|ni (2.19)

which is to say that the coherent state |↵i is a Poissonian superposition of photons with
mean intensity ↵2 as shown in Fig 2.3(b). Coherent states have the same quadrature un-
certainty as the vacuum, and can be described as a displaced vacuum state with amplitude
|↵| and phase arg(↵)

D̂ = exp
h
↵â† � ↵⇤â

i
(2.20)

|↵i = D̂(↵) |0i . (2.21)

Coherent states are not mutually orthogonal, because they are not the eigenstates of
a Hermitian operator, but coherent states with �↵ > 2 are approximately orthogonal.
Because coherent states are not eigenstates of the creation operator, any physical opera-
tion (Hamiltonian or unitary operator) containing â necessarily changes the energy in a
coherent state. An ideal laser produces a coherent optical field in a single mode, usually
a Gaussian mode with a narrow bandwidth.
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2.2.3 Squeezed states

Squeezed states, like coherent states, have only the minimum quadrature uncertainty
necessary to satisfy Heisenberg’s relation. Unlike coherent states, the squeezed states
distribute this uncertainty asymmetrically between the two quadratures, reducing uncer-
tainty in one quadrature at the expense of a corresponding increase in the complementary
quadrature. We can write the set of single-mode quadrature-squeezed states in terms of
the operator Ŝ(⇣) [52]

|⇣,↵i = D̂(↵) Ŝ(⇣) |0i (2.22)

Ŝ(⇣) = exp
h
(⇣â2 � ⇣⇤â†2)/2

i
, (2.23)

where ⇣ = rei� is the squeezing parameter with magnitude r at angle �. The squeezing
operator contains only even powers of creation and annihilation operators, and may be
written as the action of a Hamiltonian

Ĥ = i~r(â2 � â†2)/2 (2.24)

that creates or annihilates photons in pairs. Applied to the vacuum state, the squeezing
operator produces pairs of photons with a Poissonian distribution as shown in Fig. 2.3(a).
For this reason, an early name for the squeezed-vacuum state was a ‘two photon coherent
state’.

In practice, any unitary Hamiltonian that is at least quadratic in the ladder operators
can generate some degree of squeezing. The most common means of generating squeezed
light is spontaneous parametric down-conversion (SPDC), in which a bright pump field
propagates through a medium with a second-order nonlinear optical response. Each pump
photon has some probability to be split into two photons of lower energy, with modes that
satisfy a phase-matching condition.

The squeezing operation Ŝ is best pictured as a Bogoliubov transformation of the
creation and annihilation operators, corresponding to compression and elongation of the
two quadratures by a factor R = er. The quadrature variances of a squeezed coherent
state are

�x2 = 1/(2R2) , (2.25)

�p2 = R2/2 , (2.26)

although the squeezing operator also changes the field amplitude ↵ for all |↵| > 0. This
operation may be visualized by stretching the plane of the Wigner quasi-probability dis-
tribution W (x, p) which we shall now introduce. We will make further use of these Wigner
functions by deriving the photon-number distribution of a general squeezed state.

2.3 The Wigner function

So far we have quantized the optical field and considered the elementary single-mode quan-
tum states of light, starting with the vacuum field, in terms of the photon-number basis.
The density operator of a general mixed state can always be written as a density matrix
in this basis. However it will now prove more convenient to work with an alternative rep-
resentation of the field, the so-called ‘Wigner function’ which is a phase space distribution
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for the field in the two quadrature values x and p.

We may write all physical density matrices in terms of a coherent state expansion

⇢̂ =

Z
d↵ P (↵) |↵i h↵| , (2.27)

where P (↵) is a normalized, real-valued function of the complex variable ↵. It represents
the relative weight of the coherent state |↵i with ↵ = (x + ip)/

p
2 in a coherent state

expansion of the field. The Wigner function is an integral transform of the P function

W (↵) =
2

⇡

Z
d� P (�)e�2|↵��|2 (2.28)

and therefore the Fourier transform of the symmetrically ordered characteristic function
C(�)

W (↵) =
1

⇡2

Z
d� e↵�

⇤�↵⇤�C(�) , (2.29)

C(�) = Tr
h
⇢̂ e�â

†��⇤â
i
, (2.30)

which is the expectation value of the displacement operator for state ⇢.

Because the quadratures are conjugate, the Wigner function cannot be construed as
a literal probability distribution. The Wigner function is normalized, but not positive-
definite; it may have negative values. However, a useful property of the Wigner function
is that the probability distributions for the quadratures x and p are the projection of the
Wigner function onto each axis

Px(x) =

Z
dy W (x, p) � 0 8x , (2.31)

Pp(p) =

Z
dx W (x, p) � 0 8 p . (2.32)

2.3.1 Squeezed state Wigner functions

The general, pure squeezed state is the product of squeezing and displacement operators on
the vacuum (Eqn. 2.22). We can write these operations as a series of coordinate transforms
of the vacuum state Wigner function

Wv(x, p) =
1

⇡
e�(x2+p2) . (2.33)

The squeezing operator Ŝ(⇣) at angle � is a Bogoliubov transformation of quadrature
coordinates x̂ and p̂ (illustrated in Fig. 2.1)

WR(x, p) = Wv(Rx,
p

R
) (2.34)

followed by a rotation with angle �

WR,�(x, p) = WR(x cos�+ p sin�,�x sin�+ p cos�) . (2.35)
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Figure 2.1: Action of the squeezing operator on a coherent state. The squeezing operator is a

Bogoliubov transformation of the quadrature phase space (streamlines) that both squeezes and

displaces (blue arrows) coherent states as shown.

Finally, the displacement operator D̂(↵) displaces the squeezed Wigner distribution x̂

coordinate by
p

2↵
Ws(x, p) = WR,�(x�

p
2↵) . (2.36)

Combining these transformations yields the Wigner distribution of a pure squeezed state
(up to a global phase)

Ws(x, p) =
1

⇡
exp

"
�R2

⇣
p sin�+

⇣
x�

p
2↵
⌘

cos�
⌘2 �

�
p cos�+

�p
2↵� x

�
sin�

�2

R2

#
.

(2.37)
The Wigner distributions of several squeezed states are plotted in the third column of
Fig. 2.3. The coherent (R = 1) and squeezed (R 6= 1) states are known collectively as
‘Gaussian states’ for the shape of their Wigner functions. The Gaussian states satisfy
Ws(x, p) � 08x, p. More generally, we’ll refer to any convex mixture of Gaussian states as
Gaussian.

2.3.2 Fock state Wigner functions

The Wigner function of the n-photon Fock state is [53]

Wn(x, p) =
(�1)ne�p2�x2

Ln

�
2
�
p2 + x2

��

⇡
, (2.38)

where Ln is the n-th order Laguerre polynomial. Fig. 2.2 shows the Wigner functions for
the first three Fock states. Although the Wigner functions themselves may be negative,
the x and p projections (Eqn. 2.31) are always positive. The overlap between an arbitrary
Wigner function and these n-photon ‘projectors’ gives the probability of finding the field
in an n photon state Pn = |cn|2.
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n = 3n = 2n = 1

Figure 2.2: Fock state Wigner functions Wn(x, p) for n = 1, 2, 3 as surface and contour plots.

The Fock states are phase symmetric, as required for energy eigenstates. Every Fock state n > 0

has negative values (blue).

2.4 Photon-number distribution of a general squeezed state

In Chap. 8 we will derive a statistical non-Gaussian witness for optical states using a
photon-number distribution for the general Gaussian states. In contrast to the photon-
number distribution of the single-mode squeezed-vacuum (two-photon coherent) state, the
general Gaussian state contains both odd and even photon numbers. The probability Pn

of measuring this general, pure squeezed state with photon number n is the overlap of the
state with projectors Wn for the n photon Fock state

Pn =

Z 1

�1
WnWV,�,r dxdp , (2.39)

which yields the vacuum and single photon probabilities

P0 =
2R

R2 + 1
e
�↵2

 
(R2�1) cos(2�)

R

2

+1

+1

!

, (2.40)

P1 = P0
2↵2

��
R4 � 1

�
cos(2�) + R4 + 1

�

(R2 + 1)2
, (2.41)

(2.42)

as plotted in Fig. 2.4.

The integral Eqn. 2.39 becomes a little involved for n � 1, we direct the interested
reader to derivations by G. S. Agarwal [54], and resign ourselves to simply reporting here
the photon-number distribution according to the more compact notation of V. V. Dodonov
[55]

Pn = P0
(T 2 � 4d)

n

2

(2T + 4d + 1)n

nX

k=0

✓
4d� 1p
T 2 � 4d

◆k n!

[(n� k)!]2 k!
|Hn (�)|2 , (2.43)

where

� =
(T + 1)↵+ (�pp � �xx � 2i�xp)↵⇤
p

2(T + 1)(�pp � �xx � 2i�xp)
(2.44)
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Figure 2.3: Squeezed states of the optical field. (a) The squeezed vacuum: ↵ = 0, R = 2.7. (b)

Coherent state: ↵ = 3, R = 0. The photon number distribution is Poissonian. (c) Phase squeezed

state: ↵ = 3, R = 0.6. The photon number distribution is super-Poissonian. (d) Amplitude

squeezed state: ↵ = 3, R = 1.7. The photon-number distribution is sub-Poissonian. Each state

is shown by its photon-number distribution (left), quadrature expectation values and uncertainty

in a stationary frame (centre), and Wigner distribution (right). The squeezed vacuum consists of

even number Fock states. Although the expectation value of each quadrature is zero, the energy is

non-zero. The coherent state photon number is Poissonian, and uncertainty is evenly distributed

between the quadratures. The phase squeezed state photon-distribution is super-Poissonian and

uncertainty is distributed unevenly between the quadratures. Compared to a coherent state with

same mean, the photon number uncertainty is larger, and quadrature uncertainty is low (high)

when the quadrature value is low (high). The amplitude squeezed state photon-distribution is sub-

Poissonian. Compared to a coherent state with the same mean, the photon number uncertainty is

low, and the quadrature uncertainty is high (low) when the quadrature value is low (high).
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Figure 2.4: The (a) vacuum and (b) single-photon probabilities of number-squeezed (� = 0)

Gaussian states as a function of displacement ↵. The coherent state (R = 1) single photon

probability is maximum at ↵ = 1. The squeezed state single-photon probability is maximum at

R = 1.73,↵ = 0.82. The single photon component is bounded, P
1

 0.48 8↵, R,�.

d and T are the determinant and trace of the Wigner function variance matrix M

d =
��M
�� , T = Tr[M ] , M =


�pp �xp
�xp �xx

�
. (2.45)

For pure states, d = 1
4 , and Eqn. 2.43 reduces to

Pn =
P0

2nn!

✓
T � 1

T + 1

◆n

2

|Hn (�)|2 (2.46)

and the variances become

�xx = �x2 =
1

2

✓
R2 sin[2]�+

cos2(�)

R2

◆
, (2.47)

�pp = �p2 =
1

2

✓
sin2(�)

R2
+ R2 cos(�)

◆
, (2.48)

�xp = �
r
�xx�pp � 1

4
, (2.49)

where the quadrature covariance �xp is given by the Schrödinger-Robertson uncertainty
relation for a pure Gaussian state. The photon-number distribution of various squeezed
states is shown in Fig. 2.3.

2.5 Optical correlation functions

So far we have quantized the optical field and considered the elementary quantum states
of light by their Wigner functions and photon-number distributions. In this section we will
introduce the first of several detection methods that we will use to identify and distinguish
these states in experiments: the optical correlation functions. These correlation functions
probe orders of ‘coherence’ of light fields. According to Glauber’s unifying treatment we
can define the general n-th order correlation function as the Heisenberg picture expectation
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value [56]

G(n)(r1, ..., r2n; t1, ..., t2n) ⌘
D
Ê�(r1, t1) ... Ê

�(rn, tn)Ê+(rn+1, tn+1) ... Ê
+(r2n, t2n)

E

(2.50)
where ⇢̂ is the density operator of the optical field. It will usually be more convenient to
work with the normalized correlation functions g(n), which are defined as follows

g(n)(r1, ..., r2n; t1, ..., t2n) ⌘ G(n)(r1, ..., r2n; t1, ..., t2n)p
G(1)(r1; t1)...G(1)(r2n; t2n)

. (2.51)

This is the most general form of the n-th order optical correlation function, but we will fre-
quently be able to make some simplifying assumptions. First, we will usually be interested
in the single-point correlation function

G(n)(r; t1, ..., t2n) ⌘ G(n)(r1, ..., r2n; t1, ..., t2n) (2.52)

for r1, ..., r2n = r. For single-mode fields we may replace the field operators Ê+ and
Ê� with the annihilation and creation operators for the field mode so that the spatial
dependence is removed entirely

G(n)(t1, ..., t2n) =
D
â†(t1) ... â

†(tn)â(tn+1) ... â(t2n)
E
. (2.53)

Finally, for stationary fields, meaning that
h
Ĥ, ⇢̂

i
= 0, we may integrate over one time

parameter and express the others as time di↵erences ⌧n�1 = tn � t1.

We’ll consider now the first and second-order (n = 1, 2) correlation functions, which
are pivotal concepts for the characterization of quantum light fields.

2.5.1 First-order coherence

The first order correlation function G(1) quantifies the capacity for the field at two di↵erent
points in space and time to interfere. This is the sense in which ‘coherence’ is used in
classical optics, for example in Young’s double slit experiment. A field with

��g(1)
�� = 1 is

coherent, and may interfere with unit visibility. An ideal photo-detector, with bandwidth
much broader than the incident field and negligible spatial extent, at coordinate r records
a count-rate proportional to G(1)(r; t, t) at time t. The two-time correlation function
G(1)(r; t1, t2) expresses the phase fluctuations of the light field. The power spectrum of
the field S(r,!) is therefore related to the first-order correlation function by the Wiener-
Khinchin theorem

S(r,!) =
✏0c

2⇡
lim
T!1

Z T

0
dt1

Z T

0
dt2 G

(1)(r; t1, t2)e
i!(t

2

�t
1

) . (2.54)

For stationary fields the spectrum becomes

S(r,!) =
✏0c

2⇡
Re

Z 1

0
d⌧ G(1)(r; ⌧)ei!⌧ (2.55)

where we have written the time-di↵erence correlation function G(1)(r; ⌧) ⌘ G(1)(r; 0, ⌧).
We will see in the following chapter that the first-order coherence of atomic fluorescence
is determined by competition between two internal atomic processes, elastic and inelastic
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scattering. This is a critical consideration for atom-light quantum networks. which require
the control of coherent, and suppression of incoherent, atom-light processes.

2.5.2 Second-order coherence

We can further elucidate the properties of the light field by extending the concept of
coherence to higher orders, and it is by doing so that the consequences of a quantized
optical field become clear. Given n ideal detectors we can measure the n-th fold coincidence
rate

G(n)(r1, ..., rn; t1, ..., tn) ⌘ G(n)(r1, ..., rn, rn, ..., r1; t1, ..., tn, tn, ..., t1) . (2.56)

In principle, a single broad-bandwidth, zero-deadtime and n-photon discriminating detec-
tor can measure the n-th fold, single-point coincidence rate G(n)(r; t1, ..., tn). Making the
typical assumptions outlined above, we can write the second-order, single-point normalized
coherence function for stationary fields

g(2)(⌧) =

⌦
â†(0)â†(⌧)â(⌧)â(0)

↵

hâ†(0)â(0)i2
. (2.57)

2.5.3 Hanbury-Brown and Twiss measurement

Hanbury-Brown and Twiss pioneered the use of the second-order correlation function in
an experimental configuration that now bears their names [57, 58]. The Hanbury-Brown
Twiss (HBT) configuration, shown schematically in Fig. 2.5(a), is a means of measuring
the second order coherence of a field with realistic detectors, below the detector dead time
limit. In a HBT measurement a beam splitter divides an optical field into two output
arms that are measured continuously and simultaneously by photon detectors. Let us
consider two stationary, single mode fields ⇢̂1,2 mode matched through a beam splitter.
The normalized Hanbury-Brown and Twiss (HBT) detector correlation function is

g
(2)
HBT(⌧) =

D
â†3(0)â†4(⌧)â4(⌧)â3(0)

E

D
â†3(0)â3(0)

ED
â†3(0)â3(0)

E , (2.58)

where we have reduced the field operators to the scalar single-mode annihilation operators
â3,4 for the orthogonal beam splitter output modes and the expectation value is taken over
the output state

⇢̂out = B̂ (⇢̂1 ⌦ ⇢̂2) B̂
† . (2.59)

We can write the beam splitter operation B̂ as a relationship between annihilation
operators in the input and output modes [48]

â3 = 1p
2
(â1 + iâ2) ,

â4 = 1p
2
(iâ1 + â2)

(2.60)

and with these substitutions the normalized HBT correlation function (Eqn. 2.58) is a
ratio of expectation values of the input state operators on the input states. When one of
the fields is the vacuum state ⇢̂2 = |0ih0| then the normalized HBT correlation function
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Figure 2.5: Schematic of the Hanbury-Brown and Twiss (HBT) measurement. (a) An input

field ⇢̂
1

is divided evenly between two output modes ⇢̂
3,4 by a balanced beam splitter. Photon

arrival times are measured independently and continuously at the two detectors D
1,2. In an ideal

HBT measurement the field at the second beam splitter input port is the vacuum, but to model

detector dark noise we can inject a thermal state at ⇢̂
2

. (b) Simulated photon arrival times at each

HBT detector given Poissonian (coherent), sub-Poissonian (anti-bunched) and super-Poissonian

(bunched) fields ⇢̂
1

with the same intensity. Coincidence events (⌧ = 0) are shown in blue.

reduces to the normalized correlation function of the non-vacuum input field [59, 60]

g
(2)
HBT(⌧) [⇢⌦ |0ih0|] = g(2)(⌧) [⇢] . (2.61)

A realistic detector has some detection noise which can be modelled as a thermal state
injected at the dark port of the beam splitter. Including this noise state produces a dark
count rate related proportional to the mean photon number of the thermal state n̄th.
When n̄th ⌧ hni the dark noise contributes a Poissonian coincidence rate proportional to
n̄th. Detector ine�ciencies can be modelled with an additional beam splitter before each
detector.

We can define the anticorrelation parameter of a field with measured HBT coincidence
probability Pc and individual detector rates P1,2

A =
Pc

P1P2
=

4Pc

P 2
s

(2.62)

where the single detection event probability Ps = 2P1 = 2P2 for perfectly balanced de-
tection. Even with ine�cient detectors (but neglecting detector noise) A ! g(2)(0) in the
weak-field limit.

2.5.4 Photon anti-bunching

We can consider how various elementary fields introduced above will perform under g(2)(⌧)
measurement at zero time delay. The single-mode coherent state is an eigenstate of the
annihilation operator, and so the operators in the correlation function simply factorize to
leave us with g(2)(0) = 1. In fact, the coherent state is coherent for all orders of coherence
n, g(n)(0) = 1 8 n 2 Z+.

In contrast, the second-order coherence of the n-photon Fock state is less than one
for all photon numbers n. We can expand a general pure state in the Fock basis with
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n-photon coe�cients an so that we have

g(2)(0) =

P1
n=0 hn|â†â†ââ|ni

�P1
n=0 hn|â†â|ni�2

(2.63)

=

P1
n=2 n(n� 1)a2n
(
P1

n=1 na
2
n)2

(2.64)

therefore the n-photon Fock state has

g(2)(0) = 1 � 1

n
< 1 (2.65)

The photons of the Fock state light field are less likely to arrive at a detector together
than you would expect for a classical light field. This so-called ‘anti-bunching’ is a strictly
quantum phenomenon, a direct consequence of the quantization of the light field.

For a single-photon Fock state the interpretation of the g(2) measurement is clear.
Because of the fundamental indivisibility of the photon the g(2)(0) of the n = 1 Fock state
is necessarily zero. A single photon may only register on only one detector at a time, and
given noiseless detectors the coincidence rate will be zero. A necessary (but not su�cient)
criteria for a single-photon source is therefore that the g(2)(0) of the source is su�ciently
close to zero, where ‘su�cient’ depends considerably on the application. In Sec. 8 we
explore how the number of nodes in a single-photon QKD network is constrained by the
g(2)(0) of available single-photon sources.

Fock states are not the only states which exhibit anti-bunching. We’ve already seen
that optical states may be amplitude-squeezed so that the photon-number distribution is
sub-Poissonian, Fig. 2.3(d). For a weak field hni ⌧ 1 we can write Eqn. 2.63 reduces to

g(2)(0) =
2|a2|2

|a1|4 + 2|a2|2
⇡ 2|a2|2

|a1|4
. (2.66)

For a sub-Poissonian distribution we must have g(2)(0) < 1, which implies that weak,
amplitude squeezed fields are also anti-bunched. Although squeezed states must have
g(2)(0) > 0, they can in fact be arbitrarily close to zero, even without an arbitrarily
high degree of squeezing. Consider the general, single-mode squeezed state |R,↵i =
D̂(↵)Ŝ(erei�) |0i. Fig. 2.6 shows the g(2)(0) as a function of ↵ and R for the phase, � = ⇡/2,
and amplitude, � = 0 squeezed states. There exists a set of low amplitude-squeezed states
close to the squeezed vacuum which are anti-bunched and can have arbitrarily low g(2)(0).

2.6 Homodyne and heterodyne measurements

Homodyne and heterodyne detection are alternatives to direct photon-number detection
in which the quadrature components are measured instead of the intensity [61, 62]. In
these schemes the signal field is mixed with a bright coherent reference field, called the
‘local oscillator’, at a balanced beam splitter. The intensity at each output is measured by
photodetectors, usually linear photodiodes. The signal and reference fields interfere such
that the output intensity in each arm depends on the amplitude and phase of the signal.
The output intensities are noisy because of fluctuations in the bright field, but taking the
di↵erence of the two measured intensities leaves only the interference term between the
two fields.
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Figure 2.6: (a) g(2)(0) of the phase-squeezed state, � = ⇡/2, as a function of the displacement ↵

and squeezing factor R. Blue regions are bunched, g(2)(0) > 1, and red regions are anti-bunched,

g(2)(0) < 1. Coherent states, R = 0, have g(2)(0) = 1. Squeezed vacuum, ↵ = 0, contains only

photon pairs and must be bunched. The general phase-squeezed state is super-Poissonian and

must also have some degree of bunching. (b) g(2)(0) of the amplitude-squeezed state, � = 0. Weak

amplitude-squeezed states are sub-Poissonian and there exists a region in ↵, R where the amplitude

squeezed states are anti-bunched.

The measured quadrature is the projection of the signal field onto the local oscillator
[48]. In this way the local oscillator is amplifying the input signal. Because the oscillator
(ideally) contributes no noise to the di↵erence signal, it is possible to amplify the signal
above the noise floor of the photodiodes and measure up to the standard quantum limit.
Because this is an interference e↵ect, the local oscillator defines the spatio-temporal mode
of the signal that is amplified and measured. For e�cient measurement the overlap be-
tween the signal and oscillator modes should be substantial. If the two fields are at the
same frequency (homodyne) this is a stable measurement of the generalized quadrature
component q̂✓ with reference phase ✓ defined with respect to the local oscillator. If the
signal frequency is detuned slightly (heterodyne) then the interference term is the beat
signal between the two.
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Chapter 3

Atom-light interactions

Ab ovo usque ad mala (trans.: from egg to apples, from soup to nuts, from
beginning to end)

– Quintus Horatius Flaccus, Horace’s Satire (35 BCE)

The most fundamental interaction between light and matter is the emission and ab-
sorption of single photons by single quantum emitters. This elementary process is the
essential physics underlying many phenomena, and controlling this interaction is the basis
for diverse applications in quantum technology. For these reasons, complete control of the
light-matter interaction at the single-quanta level is one of the central goals of quantum
optics.

Novel materials with coherent transitions are being manufactured for quantum tech-
nologies, but such transitions occur naturally in atomic systems. The valence electron of
hydrogen-like atoms may have Zeeman or hyperfine split ground states, and metastable
dipole-forbidden excited states. These narrow-linewidth transitions have long coherence
times suitable for quantum information. Dipole-forbidden transitions can be addressed
coherently with narrow-linewidth lasers, and Zeeman split transitions can be driven with
RF fields. Where the metastable state cannot be addressed directly, or where it is in-
e�cient to do so, we can couple two long-lived states via a two-photon Raman process
through a third, short-lived excited state.

The physics of atom-light interactions will be essential to the work of this thesis. In
this chapter we introduce the interaction between single atoms and light fields, which will
be su�cient for the trapped-atom experiments in Chaps. 7 and 8. Later in Chap. 13, we
will expand this theory to include the interaction of light fields and large atomic ensembles.
A complete and self-consistent description requires that we treat both the fields and atoms
quantum mechanically, but in many cases a ‘semi-classical’ approach, in which some or all
fields are classical will be su�cient.

3.1 The Jaynes-Cummings model

The simplest atom-light system is a single atom interacting with a single-mode field near
resonance. The dynamics of an atom-field system are given by solutions to the Schrödinger
equation with the system Hamiltonian

Ĥ = Ĥa + Ĥf + Ĥint (3.1)

comprising the atom, field and interaction Hamiltonians. We have already described the
quantum field in some detail in the previous chapter, and from Eqn. 2.15 we have the

28
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Hamiltonian for a monochromatic single mode field of frequency !,

Ĥf = ~!a†a (3.2)

where we have set the zero-point energy of the field to zero for convenience. Now to
understand the interaction of this field we must introduce the atomic configuration energy
and the corresponding operators as well.

3.1.1 Atomic operators

The energy eigenstates of hydrogen-like atoms consist of an infinite number of discrete
levels corresponding to the bound states of the atomic electron. The lowest energy config-
uration of electrons in the atomic potential is the ground state |gi. The simplest non-trivial
atomic system is the two-level atom with excited state |ei and ground state atomic transi-
tion frequency !0. For convenience, we will choose the zero-point energy half way between
the energy of the two atomic states. We introduce atomic spin operators for the two-level
system in terms of the Pauli spin matrices �x,y,z

�̂+ = 1
2 (�̂x + i�̂y) = |eihg| , (3.3)

�̂� = 1
2 (�̂x � i�̂y) = |gihe| , (3.4)

�̂z = |eihe|� |gihg| . (3.5)

The spin operators �̂± are also called raising and lowering operators because they represent
transitions between the two states of our spin-12 equivalent system. The Hamiltonian of
the atomic system is simply

Ĥa = 1
2~!0�z . (3.6)

It remains only to find the interaction Hamiltonian of the atom-field system.

3.1.2 Dipole approximation

In the classical dipole approximation the energy of the system is the energy of the electron-
nucleus dipole in an external electric field. The quantum dipole operator d̂ = er̂ is
proportional to the position operator r̂. The Coulomb potential about the atomic nucleus
is spherically symmetric, and therefore the electronic eigenstates |gi and |ei have no net
dipole moment. Writing the dipole operator in the spin-operator basis, the diagonal terms
hg|d̂|gi and he|d̂|ei are zero. The o↵-diagonal terms are he|d̂|gi = deg = d⇤

ge = d�̂�
where d is the transition dipole moment. The interaction Hamiltonian is therefore

Ĥint = �d̂ · Ê (3.7)

= ~g(�̂� + �̂+)(â + â†) (3.8)

where the atom-field coupling constant g is given by

g =
1

~ (u(r) · deg) (3.9)
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at the position r of the atom. For a plane wave the coupling constant g depends on the
mode volume V and polarization e

g =
✏!p
2~

(e · deg) =

r
!

2~✏0V
(e · deg) . (3.10)

Dipole transitions can involve the exchange of angular momentum. The angular mo-
mentum of the atomic configuration about the quantization axis is given by the magnetic
quantum number m. Dipole transitions with �m = 0 (⇡ transitions) do not change
the total angular momentum of the atomic system, but transitions with �m = ±1 (�±
transitions) involve the exchange of one unit of angular momentum from the field to the
atom (or vice versa). Higher order multipole transitions may involve the exchange of even
more angular momentum. We explore the particular spatial field associated with dipole
transitions and the way this field may carry angular momentum in Chap. 4.

3.1.3 The interaction picture

The atom and field are interacting subsystems, with their own internal configuration en-
ergies Ha and Hf . It is convenient to solve such problems in the interaction picture.
Compared to the Schrödinger picture, the interaction picture allows us to separate dy-
namics with di↵erent timescales. We define the total subsystem energy H0 = Ha + Hf .
In the interaction picture states and operators transform according to the free evolution
operator

Û = eiĤ0

t/~ (3.11)

˜| i = Û † | i (3.12)

ˆ̃o = Û † ô Û (3.13)

and these states evolve according to a system Hamiltonian given by the transformed in-
teraction Hamiltonian

ˆ̃H = Û †ĤintÛ , (3.14)

i~d ˜| i
dt

= ˆ̃H ˜| i . (3.15)

3.1.4 The rotating wave approximation

The optical and atomic subspaces commute, which allows us to decompose the unitary
transformation as follows

Û =

✓
e
1
2 i~!0 �̂gg + e�

1
2 i~!0 �̂ee

◆
⌦
⇣
e�i!â†â

⌘
. (3.16)

Transforming the dipole interaction Hamiltonian Ĥi into the interaction picture we
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have

ˆ̃H = Û †ĤiÛ (3.17)

= ~g
�
e�i!

0

t�̂+ + ei!0

t�̂�
�⌦

⇣
e�i!tâ† + ei!tâ

⌘
(3.18)

= ~g
⇣
â†�̂�e

i(!�!
0

)t + �̂+âe
�i(!�!

0

)t + â†�̂+e
i(!+!

0

)t + �̂�âe
i(!+!

0

)t
⌘
. (3.19)

This Hamiltonian has near-resonant terms â†�̂� and �̂+â that correspond to atomic re-
laxation and photon creation, and atomic excitation and photon destruction respectively.
These terms oscillate with frequency � = ! � !0 corresponding to the detuning of the
field from the atomic transition. For near-resonance fields |�| ⌧ !. The remaining terms
â†�+ and �̂�â describe non-resonant processes in which the atom and field gain or lose
excitations simultaneously. These terms do not conserve energy, and only contribute to
higher-order processes in which energy conservation may be violated at intermediate steps.

The non-resonant terms oscillate with frequency !0 + ! ⇡ 2! � |�|. We will be
interested in the dynamics of the system over timescales much longer that the optical
period such that the contribution of the non-resonant terms will quickly average to zero. In
the ‘rotating wave’ approximation we neglect these terms from the Hamiltonian completely

ˆ̃H = �~g
⇣
e�i�t�̂+â + ei�t�̂�a

†
⌘
. (3.20)

This approximation will remain valid so long as we describe weak interactions near reso-
nance. Transforming back into the Schrödinger picture by reversing Eqns. 3.11 leaves us
with the Jaynes-Cummings Hamiltonian

Ĥ = 1
2~!0�z + ~!â†â + ~g

⇣
�̂+â + â†�̂�

⌘
. (3.21)

3.2 Semi-classical atom-light interactions

The Jaynes-Cummings model above provides a complete description of the interaction
between a two-level atom and a monochromatic field, treating both the field and the atom
quantum mechanically. However, in this thesis we will often consider the interaction of
atoms with laser beams, and when the laser field is bright we can simplify the Hamiltonian
considerably. At optical frequencies, even a low power (1 µW) beam contains many orders
of magnitude more photons than the scattering rate of an atomic transition. In this
case, excitation and relaxation by the atom have a negligible impact on the energy of the
field, leaving it essentially unchanged by the interaction, and we can eliminate Hf from
the Hamiltonian completely. Additionally, the laser field is coherent (see Sec. 2.2.2) and
bright coherent states have the same e↵ect as a classical monochromatic wave. We can
therefore replace the quantum field of Eqn. 3.21 with a classical field, but continue treating
the atomic system as quantum, in the so called ‘semi-classical’ approach.

Replacing the quantum light field with a classical plane-wave field with polarization e,
complex amplitude E0 and phase  we have

E = 2e|E0| cos (!t�  ) = e
�
E0e

�i!t + E⇤
0e

i!t
�
. (3.22)
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The dipole interaction Hamiltonian (Eqn. 3.7) with this classical field becomes

Ĥi = �d̂ ·E (3.23)

= �~�̂+
�
⌦e�i!t � ⌦ei!t

�
+ h.c. , (3.24)

where we have introduced the Rabi frequency

⌦ ⌘ (deg · e)|E0|/~ , (3.25)

which is the semi-classical equivalent of the positive frequency quantum field and coupling
strength

gâ ! ⌦ . (3.26)

We can make the rotating wave approximation with classical fields, just as we did for
the quantized field in the Jaynes-Cummings Hamiltonian, or alternatively we can make
the above classical wave substitution directly to Eqn. 3.20. In the semi-classical limit we
therefore have the interaction picture Hamiltonian

ˆ̃H = �~
�
⌦e�i�t�̂+ + ⌦⇤ei�t�̂�

�
. (3.27)

To isolate only the slowly varying components of the system, we write the Schrödinger
picture Hamiltonian in a frame that rotates with the optical field. To move into a frame
rotating at frequency ! we make transformations

| i0 = Û † | i , (3.28)

Ĥ 0 = �i~Û †dÛ

dt
+ Û †ĤÛ , (3.29)

Û = ei!t . (3.30)

Leaving us with [50]
Ĥ 0 = �~��̂ee � ~ (⌦�̂+ + ⌦⇤�̂�) , (3.31)

where �̂ee = �̂+�̂� = |eihe|. This is the Hamiltonian that we will use to model the
interaction of atoms with coherent, bright light fields provided by laser systems.

3.3 Spontaneous emission and damping

To this point we have considered only the reversible unitary evolution of the atom-field
system given by the Schrödinger equation. In this description the field was restricted to
a single (unspecified) quasi-resonant mode. All possible degrees of freedom are included
in the atom-field state operator and so coherence is always maintained. However, in
realistic situations the atomic system is not perfectly isolated. The atom is almost always
interacting with a reservoir of infinitely many closely-spaced (or continuum) energy states.
To describe the interaction of an atom with such reservoir fields we must trace over the
external degrees of freedom (sometimes called the reservoir ‘bath’) and consider exclusively
the dynamics of our chosen subsystem. Information about the complete system is lost in
this process so that even pure initial states of the subsystem evolve to statistical mixtures.
The spontaneous decay of an atomic excited state, cavity field losses and other sources of
decoherence will be included in our model in terms of such reservoir interactions.
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The evolution of the reduced atomic density operator ⇢̂ is given by a master equation
[50]

@

@t
⇢̂ = � i

~

h
Ĥ, ⇢̂

i
+ L̂(⇢̂) . (3.32)

where the first term is the reversible Schrödinger evolution derived above, and the second
is the Liouvillian superoperator containing all dissipative system dynamics. In general the
Liouvillian has Lindblad form

L̂ =
X

i

1
2

⇣
2Ĉi⇢̂Ĉ

†
i � Ĉ†

i Ĉi⇢̂� ⇢̂Ĉ†
i Ĉi

⌘
, (3.33)

where the jump operator Ĉi that models the dynamics of the i-th decay process contains
relaxation rate �i. Since the Liouvillian is linear in the components of ⇢̂ we can write the
evolution as a system of coupled linear equations for the components of ⇢̂, these are the
optical Bloch equations.

Spontaneous emission is modelled with the atomic transition jump operator Ĉeg =p
�eg�̂�. The free-space atomic decay rate of a two level atom in the dipole limit is given

by [63]

�eg =
4!3↵|r̂eg|2

3c2
=

4!3↵d2eg
3e2c2

=
!3d2eg

3⇡✏0~c3
, (3.34)

where ↵ is the dimensionless fine structure constant

↵ =
1

4⇡✏0

e2

~c ⇡ 137 . (3.35)

The probability to find an atom initially prepared in the excited state decays as e��
eg

t. In
addition to this spontaneous decay term, the coupling between the atom and the vacuum
modes of the reservoir produces an atomic energy level shift called the Lamb shift [50,
64]. In the model described so far we incorporate the Lamb shift by assuming it is already
included in the atomic energy eigenvalues.

Solving the system for the steady state condition d
dt ⇢̂ = 0 yields the free space atomic

scattering rate under continuous excitation

�sc = 1
2�eg

I/Is

1 + I/Is + 4
⇣

�
�
eg

⌘2 , (3.36)

where Is is the saturation intensity Is = ~!3�
eg

4⇡c2
and the intensity and Rabi frequency are

related by I/Is = 2⌦2/�2. Without coherent control the mean excited state population
over time is bounded to h⇢eei  1

2 and �sc  1
2�eg.

Atomic coherences relax with rate �eg = 1
2�eg + 2�ee where �ee contains the contri-

butions of all possible decoherence mechanisms, for example by phase fluctuations of the
driving field or by elastic atomic collisions [50]. Decoherence terms are incorporated by
including jump operator Ĉee =

p
�ee�̂z where �ee is, for example, the linewidth of the

driving laser �!.
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Figure 3.1: (a) Energy level configuration of a ⇤-type three-level atom driven by two classical

fields. (b) Raman scattering a stokes photon from the ⇤-atom by driving with a single classical

field.

3.4 The ⇤ configuration

So far we have considered only a two-level atom interacting with optical fields. This is
a suitable model for cyclic transitions between ground and excited states driven by a
single near-resonant field, but in this thesis we will explore systems with multiple levels
and decay pathways, and drive those systems with multiple fields. Where necessary we
will use a complete many-level model of the atomic system, but most of the important
phenomena we will explore can be captured by a straightforward extension of the two
level atom: the three level atom in a ⇤ configuration. In this configuration, the excited
state |ei couples not only to the ground state |gi, but also to an additional low energy
state |si. The state |si couples only weakly (or not at all) to |gi (this transition may,
for example, be dipole-forbidden) and so we say the state |si is metastable. Two fields
addressing the atomic transitions |gi ! |ei and |si ! |ei together can drive a two-photon
‘Raman’ transition between the ground and metastable states shown in Fig. 3.1(a).

We introduce atomic operators �̂ij = |iihj| for the multilevel system analogous to
raising and lowering operators for the |ii ! |ji transition. The atomic Hamiltonian of the
three level system is

Ĥa = ~ (!g�̂gg + !e�̂ee + !s�̂ss) (3.37)

and the interaction Hamiltonian of the atom with two classical fields is

Ĥint = d̂ge ·E1 + d̂se ·E2 . (3.38)

Following the same method we took for the two-level atom above, we can write the
semi-classical Hamiltonian of the ⇤-configured atom with the rotating wave approximation,
but in the frame rotating with the optical fields [50]

Ĥ = �~ (��̂ee + ��̂ss) � ~ (⌦1�̂eg + ⌦2�̂es + H.c.) (3.39)

where H.c. stands for Hermitian conjugate, ⌦1,2 are the Rabi frequencies of the classical
fields addressing transitions |gi ! |ei and |si ! |ei respectively, and the two-photon
detuning is � = �1 � �2. The system also has jump operators corresponding to sponta-
neous emission into the two low-energy states Ĉeg =

p
�eg�̂eg and Ĉes =

p
�es�̂es, and

decoherence terms Ĉgg =
p

�gg�̂gg and Ĉss =
p

�ss�̂ss that are included in the Liouvillian
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Figure 3.2: Characteristic behaviour of the ⇤-atom. (a) Resonance fluorescence spectrum of

the atom near saturation showing the dark resonance at � = 0 with and without decoherence.

The parameters are �eg = �es = �/2, � = �, ⌦
1

= �, ⌦
2

= 0.7�. (b) Continuous driving

with � = 0 pumps the atom to the dark state. The atom is prepared in ground state |gi and

converges to the steady-state superposition |Di under continuous weak excitation. In this state

the excited population ⇢ee = 0 and the atom goes dark. Increasing the field powers beyond

saturation produces no improvement in pumping time, but may induce Rabi oscillations. The

parameters are �eg = �es = �/2, � = �, ⌦
1

= 0.3�, ⌦
2

= 0.1�, �ss = 0.

(Eqn. 3.33).

3.4.1 Dark resonances, optical pumping and Raman scattering

The two-photon Raman transition occurs when the two-photon detuning is small. With
� ⇡ 0 and � . ⌦1,2 the eigenstates of Eqn. 3.39 are

|Di =
1p

⌦2
1 + ⌦2

2

(⌦2 |gi � ⌦1 |si) ,

|B±i =
1q

⌦2
1 + ⌦2

2 + �2±

(⌦1 |gi � �± |ei + ⌦2 |si) ,
(3.40)

where �± = ±
p

⌦2
1 + ⌦2

2 + (�/2)2 � �/2 are the two non-zero energy eigenvalues. The
excited state population of the so-called ‘dark’ eigenstate |Di is zero, it is completely
decoupled from the two driving fields. So long as the only damping terms included are
spontaneous emission from the excited state, the dark state is the stationary state of the
⇤ system. Continuous driving with two-photon resonant fields prepares the atom in the
low-energy state superposition |Di and the atomic fluorescence goes to zero. Decoherence
between the states |gi and |si upsets the superposition |Di and in this case the excited
state population of the stationary state and the atomic fluorescence rate are non-zero. This
dark resonance is a distinctive feature of the resonance spectrum of multi-level atoms, in
Chap. 7 we use the depth, width and position of dark resonances in the atomic spectrum
to identify the driving parameters of a trapped-atom photon source. Fig. 3.2 shows the
resonance fluorescence spectrum of a ⇤-atom under continuous driving as a function of
the two-photon detuning � with and without decoherence between the low-energy states.

When one of the driving fields is zero the dark state is the bare atomic state |gi (for
⌦1 = 0) or |si (for ⌦2 = 0). In this configuration the atom is driven until it decays to the
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unaddressed bare state, in which it is trapped. Such optical ‘pumping’ is characteristic
of multi-level atoms. For example, atoms with multiple Zeeman-split ground states can
be prepared in one of the extremal Zeeman states by pumping with �± fields that drive
only �m = ±1 transitions. Throughout this thesis we will use optical pumping to prepare
atomic systems in a chosen pure state so that we may control the subsequent coherent
evolution of the system.

The same process can be used to control the emission of single photons from the ⇤ atom
system by Raman scattering. During Raman scattering, incident fields interact with an
atomic system to cause the generation of a field at a di↵erent frequency. For example, the
⇤-atom prepared in the ground state and driven only by field E1 will eventually Raman-
scatter a single-photon to the vacuum field Ê2 with energy di↵erence ~(!g �!s) as shown
in Fig. 3.1(b).

3.4.2 Stimulated Raman adiabatic passage

When the field amplitudes ⌦1,2 are allowed to vary in time, the instantaneous dark state
|Di follows. If the rate of change is slow compared to the dressed state energy splitting,
that is �����

.
⌦1⌦2 � ⌦1

.
⌦2

⌦2
1 + ⌦2

2

�����⌧ |�+ � ��| , (3.41)

then an atom prepared in one dark state will follow the instantaneous dark state adiabati-
cally such that ⇢ = |Di hD| and ⇢ee = 0 at all times. For example, an atom initially in state
|gi can be coherently transferred to state |si by two partially overlapping time-dependant
pulses, an ⌦2 pulse followed by an ⌦1 pulse because |gi is an eigenstate when ⌦1 = 0.
This coherent population transfer technique, called stimulated Raman adiabatic passage
(StiRAP) [65], is an essential technique of coherent control with atom-like systems. In
strongly coupled atom-light systems, the vacuum-StiRAP process can be used to generate
a photon coherently and deterministically from an atomic excitation.

3.5 Numerical modelling

Under some circumstances the optical Bloch equations of the ⇤-atom allow analytic solu-
tions. In this thesis we will prefer analytic solutions when they exist, but for many more
complicated scenarios we will resort to numerically solving the system dynamics. In this
case we will rely on the Quantum Toolbox in Python (QuTiP) [66] which is an open source
solver for open quantum systems that leverages the well-known Numpy, SciPy and Cython
libraries. QuTiP allows the numerical integration quantum systems with time-dependent
Hamiltonians and collapse operators given a Linblad master equation of the sort derived
in this chapter. QuTiP allows for an enormous amount of flexibility with ensemble and
Monte-Carlo solvers, steady-state solvers, correlation calculators and parallel processing
support.
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Chapter 4

Imaging atomic transitions

...some people make no e↵ort to look like their pictures.

– Salvador Daĺı

The quantum information protocols introduced in Chap. 1 require the e�cient and
reversible interaction of light with atomic systems as a prerequisite. One of the most
promising demonstrated approaches to this problem is to use protocols that reversibly
couple a photon into a collective excitation across an ensemble of atoms. We will explore
this in detail in Part III, but in general there is a trade o↵ between the number of entangled
components and the degree of isolation and control that is possible over the entangled
state. Single trapped atoms make excellent qubits, but have a small interaction cross-
section with travelling light fields. We’ve already discussed a second, and very successful,
strategy to enhance the coupling strength of optical qubits to single-atoms systems: the
use of optical resonators. However, in principle the resonator—and the accompanying
bandwidth compromise—are not necessary to achieve this single-photon ⇡ pulse.

The time reversal symmetry of Schrödinger’s and Maxwell’s equations implies that
there exist conditions for the perfect absorption of an incident photon by an atom in
free-space. Because the emission of a photon from an atom prepared in the excited state
happens with perfect e�ciency, it follows that the the inverse process is su�cient for
e�cient absorption. To realize this prediction of quantum optics it is necessary to engi-
neer photons with the time-reversed temporal wave-packet of the spontaneously emitted
photons [67], in a spatial and polarization mode matched to the radiation pattern of the
atomic transition. An atom at the centre of these converging, time-reversed fields produces
a non-propagating near-field by back-action until the travelling field converges to atomic
dimensions [68].

Therefore an optical network of free-space atoms requires collection optics that are not
only close to a complete 4⇡ steradian geometry, but the optics must also map the radiation
pattern of the atomic fluorescence to a convenient optical mode. We can impose these
criteria: we would prefer a spatial mode that is easy to manipulate with available optics
and travels well in fibre. Due to the symmetry of the atom-photon system, the problem
of optically networking atoms is intimately connected to the problem of accurately and
e�ciently imaging atoms, and indeed to the field of sub-wavelength optical microscopy
[69]. Even in the absence of an atomic emitter, the time-reversed far-field dipole radiation
pattern derived below converges until the wavefronts reach sub-wavelength dimensions,
surpassing the typical focal spot size resolution limits of Abbe and Rayleigh [70]. Such
tight focussing is desirable not only for atom-light coupling and imaging, but also for
optical trapping and tweezers.

In this chapter we will derive the spatial distribution of the atomic dipole radiation
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field using Bliokh’s vectorial method [71] and explore how this radiation field is coupled
by common imaging systems. Once we have derived the polarization associated with
each partial wave emitted from the source we will map these rays through the imaging
system to calculate the output field distribution. In particular, we derive the output field
for both a spherical lens and a parabolic mirror. We will compare the travelling photon
modes produced when each system images a single atom, and the feasibility of coupling
these modes to fibres for optical networks. These are key to understanding the limitations
of free-space ion-photon networks, and will be relevant specifically to this thesis when
we analyse results from the single ion-imaging apparatus in Chap. 7 and then when we
consider the design of the improved ion-imaging apparatus in Chap. 11.

4.1 Spatial distribution of the atomic dipole

The atomic transitions that couple most strongly to optical fields are dipole transitions,
either ⇡ transitions with internal angular momentum change �m = 0 or � transitions
with �m = ±1. For the purpose of this analysis we will exclusively consider the spatial
distribution of atomic dipole transitions, according to the method of [71]. The far-field
spatial mode udip(r) of a photon emitted from an atomic dipole transition with Heisenberg
picture dipole operator d̂ is the classical field emitted by the classical dipole oscillating
with corresponding dipole moment d1 [63]:

E+(r, t) =
1

4⇡✏0
[(d̂ · r̂)r̂� d̂]

..
d
+
(tr)

c2r
, (4.1)

where tr = t�r/c is the retarded time, d̂ is the unit vector of the dipole d with mangnitude
d and the dipole is at the coordinate origin. The far-field, or ‘radiation limit’, is the field
distribution after evanescent field terms have decayed, valid when d ⌧ �⌧ r. Because this
field consists of a narrow spectrum �|k| ⌧ |k| of plane waves with k-vectors spherically
distributed about the source, we can separate out the normalized angular component
expressed in the momentum space of k

Ẽ =

r
3

8⇡

⇣
k̂⇥ (k̂⇥ d̂)

⌘
(4.2)

where k̂ = r̂ for a source at the origin, we’ve neglected the time dependence, and we have
re-written the dot-di↵erence vector operation from Eqn. 4.1 as a double cross product. In
contrast to the common dot-di↵erence form, the double cross product is explicit that the
polarization and amplitude of the partial wave emitted by the atomic dipole in direction
k̂ is the spherical projection of the dipole d onto the unit sphere at position r̂. We can
therefore treat the dipole geometrically to derive the far-field intensity and polarization
distributions. To do so, it will prove convenient to write polarizations in the circular basis
[Rz, Lz, z] consisting of the Cartesian basis vector (ẑ) along the z-axis and the right (R̂z)
and left (L̂z) circular basis vectors about the ẑ axis, see Fig. 4.1(a). These basis vectors are
the unit dipole vectors associated with transitions between angular momentum eigenstates

1On the subject of hats: now that we have replaced the dipole and field operators with their classical
equivalents, and can safely proceed through this chapter without doing much further quantum physics, we
will use hats almost exclusively to denote unit vectors rather than quantum operators. The exceptions
will be limited and clearly marked. We will also distinguish between vector fields in momentum space and
position space by accenting momentum space fields with a tilde.
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Figure 4.1: (a) The coordinate system and polarization frames in this chapter. The laboratory

frame consists of ẑ and the two circular polarizations about z: R̂z and L̂z. When the quantization

axis is aligned with z these basis vectors are the unit dipoles associated with atomic transitions

between angular momentum eigenstates. The helical frame is associated with each partial wave

with wave vector k and consists of k̂ and the two circular polarizations about k: R̂k and L̂k. (b)

Plot of the dipole intensities I� (solid) and I⇡ (dashed) from Eqn. 4.10. The intensities are shown

as a radial function of the angle ↵ from the quantization axis (↵ = � when quantized along the z

axis).

of an atom quantized along the z axis.

The triple cross product projection in Eqn. 4.2 can be written as the operation of
a rotation operator U and the orthogonal plane projection operator P . The rotation
operator consists of a zenithal rotation by angle � and two azimuthal rotations by angle
✓ to transform the basis vector ẑ to the position vector on the unit sphere r̂ = r̂(�, ✓) in
spherical coordinates. Explicitly, the rotation operator U in the Cartesian polarization
basis is

UL(�, ✓) = Rz(�✓)Ry(��)Rz(✓) (4.3)

=

2

4
(a� b) cos2(✓) + sin2(✓) �b sin(2✓) cos(✓) sin(�)

�b sin(2✓) cos2(✓) + (a� b) sin2(✓) sin(✓) sin(�)
� cos(✓) sin(�) � sin(✓) sin(�) a� b

3

5 (4.4)

where substitutions a = cos2(�/2) and b = sin2(�/2) have been made for readability. To
convert U into our preferred circular polarization basis we apply the unitary transformation

V =
1p
2

2

4
1 1 0
�i i 0
0 0

p
2

3

5 , (4.5)

giving us

UC(�, ✓) = V †ULV (4.6)

=

2

4
a �be�2i✓

p
2abe�i✓

�be2i✓ a
p

2abei✓

�p
2abei✓ �p

2abe�i✓ a� b

3

5 . (4.7)
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The projection operator is
P = diag(1, 1, 0) . (4.8)

We can write the polarization associated with each partial wave propagation vector
k in either the laboratory reference frame defined above or the helicity frame [Rk, Lk, k]
consisting of circularly polarized vectors R̂k and L̂k about the propagation vector k̂ as
shown in Fig. 4.1(a). For TEM modes E · k is necessarily zero, so only two basis vectors
orthogonal to k are required in the helicity frame. These reference frames are related by
an additional operation of U , which means that the electric field of the dipole fluorescence
in the helicity basis and the laboratory reference basis are respectively

ẼH(k) / PU †d̂, ẼL(k) / UPU †d̂ . (4.9)

We note here that the ẑ component of ẼL(k) is non-zero (projection in the laboratory
frame is followed by a second rotation) which is to say that the dipole field is not paraxial.
This is consequential for applications in which the field interacts with inhomogeneous
materials, but in this thesis we will restrict ourselves to imaging systems that collimate
spherical waves without distorting polarization in the local frame (Sec. 4.3).

From Eqn. 4.9 we can derive the intensity distributions, illustrated in Fig. 4.1(b),
of fields due to ⇡ and � transitions quantized along the z axis. At an angle ↵ from
the quantization axis the normalized intensity of each transition are the familiar dipole
intensity distributions

I⇡ =
3

8⇡
sin2(↵), I� =

3

16⇡
(1 + cos2(↵)) . (4.10)

The projections of two perpendicular vectors onto the unit sphere are also perpendicular,
so I� can be derived directly from I⇡ by adding the distributions of two perpendicular
linear dipoles.

We can characterize the dipole field more completely by the spatial distribution of
Stokes parameters (S0 = I, S1, S2, S3) which are related to orthogonal field components in
the Cartesian (Ex, Ey), diagonal (Ea, Eb) and circular (ER, EL) bases and the polarization
ellipse parameters  and � by

I = E2
x + E2

y

S1 = hE2
xi � hE2

yi = Ip cos 2 cos 2�

S2 = hE2
ai � hE2

b i = Ip sin 2 cos 2�

S3 = hE2
Ri � hE2

Li = Ip sin 2� .

In Fig. 4.2 we plot the Stokes parameters of the spatial fields of two atomic dipoles
in the helicity basis. Each disk in this figure is an azimuthal equidistant projection of a
hemisphere � 2 [0,⇡/2] centred on the z-axis showing how the polarization of the dipole
field changes as a function of � and ✓.

With Eqn. 4.9 we can now derive the spatial distribution of an arbitrary atomic dipole
transition. Ultimately we will consider how best to image such transitions, but before we
move on it’s worth considering some noteworthy properties of the dipole fields.
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Figure 4.2: Stokes parameters of the optical field emitted by (a) ⇡ and (b) �+ atomic dipole

transitions. The Stokes fields are presented as azimuthal equidistant projections of the hemisphere

� 2 [0,⇡/2], ✓ 2 [0, 2⇡] such that the z axis is at the centre of the projection and the radial

displacement is equal to the zenithal angle �. The quantization axis is aligned with the x axis

for the ⇡ transition and along the z axis for the �+ transition such that the intensity distribution

peaks in each case at � = 0.

4.2 Optical angular momentum

The total angular momentum of the atom-photon system must be conserved in any photon
absorption or emission process. A photon emitted from a transition with internal angular
momentum change �m must carry the opposite angular momentum to compensate. In
an external magnetic field, the atomic energy eigenstates are also angular momentum
eigenstates, with angular momentum m about the quantization axis. A photon emitted
from a dipole transition between these states is also an angular-momentum eigenstate,
carrying precisely +~,�~ or 0 angular momentum about the quantization axis

Ĵz | i = ��m~ | i , (4.11)

where Ĵz
2 is the total angular momentum operator about the quantization axis and | i

is the photon state. We can therefore write the single photon field associated with the
transitions �̂± about the i-axis as

���⌥i
↵

= �⌥i (r) |1i, where �+i (r) is the spatial mode of
a right-handed circular dipole d = R̂i and |1i is the single-photon Fock state. Here we
follow the convention that the spin of a R̂ circularly polarized beam is positive. The
photonic angular momentum exists as some combination of spin ŝz (polarization) and
orbital angular momentum l̂z (spatial phase)

Ĵz = l̂z + ŝz . (4.12)

2Ĵ
z

l̂
z

and ŝ
z

are not unit, these are quantum operator hats
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The orbital angular momentum (OAM) operator and spin operator (in the circular basis
and laboratory frame) are [71–73]

l̂z = �i~ @
@✓

, ŝz = diag(~,�~, 0) . (4.13)

The spin ŝ may only carry angular momentum about the direction of propagation. These
are operators of the normalized photon spatial mode u(r).

4.2.1 Angular momentum per photon

Where we collect only a portion of the single-photon mode, it is pertinent to ask the
angular momentum per collected photon. Once again, we express the momentum as
a distribution in k. Because the plane-wave photon component of | i in direction k̂,
| ki = E(k) |ki is not normalized, asking the momentum per photon in this direction
requires renormalization. Formally, the local value of the angular momentum per photon
is the weak value [74]

Jk
z = Re

h k|Ĵz| i
h k| i =

Jz(k)

I(k)
, (4.14)

and the same renormalization can be performed to define local values of sz and lz.
If the total field is an angular momentum eigenstate, then | ki is also an eigenstate of

Ĵz and Jk
z = Jz 8 k(�, ✓). When the total field is not an angular momentum eigenstate,

interference between the components of superposed momentum eigenstate fields can pro-
duce spatial dependence in the momentum per photon (local wave vector) of the total field,
and even lead to local values of Jk

z that exceed the eigenstate spectrum where the field
intensity is weak. Such ‘supermomentum’ is an example of superoscillation in interfering
fields [74, 75]. We show how supermomentum manifests in dipole fields in Sec. 7.4.2 and
in Ref. [5].

4.2.2 Dipole angular momentum distribution

Even when the total field is an angular momentum eigenstate, the partial wave components
are not generally an eigenstate of l̂z and ŝz [75]. With operators l̂z and ŝz from Eqns. 4.13
and dipole field given by Eqn. 4.9 we can calculate the expectation value of the spin and
OAM of light from an atomic dipole quantized along the z axis [76]

D
l̂z

E
= ~�m

sin2(�)

1 + cos2(�)
(4.15)

hŝzi = ~�m
2 cos2(�)

1 + cos2(�)
. (4.16)

Conservation of angular momentum requires that the sum of these expectation values is
�~�m for every partial wave, that is 8k(�, ✓). Furthermore, this must also be true for
each polarization component of the field in any (laboratory) basis.

Let’s consider how the angular momentum is distributed for ⇡ and � transitions quan-
tized about the z-axis. Although the fields are not ŝz or l̂z eigenstates, they are a super-
position of simultaneous ŝz, l̂z eigenstates with eigenvalues lz and sz. The coe↵ecients of
these components in the total field are angle dependent, we can see their relative weights by
plotting R̂z and L̂z polarized components of the field in the laboratory frame. Fig. 4.3(a)
maps the field distribution of a ⇡ (d̂ = ẑ) transition in the laboratory and helicity frames.
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Figure 4.3: Optical field components of (a) ⇡ and (b) �
+

dipoles quantized along z. The fields are

shown as azimuthal equidistant projections of a hemisphere centred on the optical axis, directed

out of the page. Polarization components Ex=R,L,z are plotted with hue Ex according to the

colourbar and opacity |Ex|2. The third helicity frame component (ẼH
k ) is always zero.

The R̂z and L̂z polarized components of the laboratory frame field must have OAM op-
posite and equal to to their spin. This appears as a spiral phase e⌥i✓ ! lz = ±~ about
the z axis. Translating from the laboratory to helicity frames, the ⇡ transition emits a
superposition of R̂k and L̂k photons with lz = ±~ and equal intensity distributions.

Fig. 4.3(b) maps the field distribution of a �+ (d̂ = R̂) transition. The z component of
the field has a lz = ~ spiral phase to carry the necessary angular momentum. The spin of
the Lz component is sz = �~, and so this component has a steeper spiral phase gradient
lz = 2~. In the helicity frame, the circularly polarized dipole field is the superposition of
a R̂k field with lz = 0 and a L̂k field with an azimuthally dependent phase and lz = 2~.

The azimuthal phases are explicit in the o↵-diagonal vortex terms of UC (Eqn. 4.6).
Geometrically, they originate because the rotation operations that constitute U do not
commute. In the paraxial limit (�⌧ ⇡/2) the projection operation can be neglected, and
the o↵-diagonal phase is a Berry phase accumulated during the parallel transport rotation
U , but for larger angles this analogy breaks down.

4.2.3 Optical spin-orbit coupling

The mapping between the spin associated with the transition and the spatial mode of
the field described above manifests in a high numerical aperture imaging system as optical
spin-orbit coupling [77]. In the non-paraxial, tightly focused regime necessary for e�ciently
imaging sub-wavelength emitters, the spin and OAM of light become coupled and this gives
rise to phenomena in which the angular momentum associated with an atomic transition
determines the spatial distribution and propagation path of scattered light, so-called ‘chiral
quantum optics’, with applications for optical nano-devices and quantum networks [78].

Another manifestation of spin-orbit coupling in light emitted from an atomic dipole
can be seen if the quantization axis is instead oriented perpendicular to the optical axis. In



§4.3 Imaging beyond the paraxial limit 45

this configuration the component of the field circularly polarized about the quantization
axis shows a distinctive linear spatial phase that corresponds to a wave front tilt in the
collimated beam and a focal point shift in the focal plane. We measure this e↵ect for the
dipole single-photon field emitted by our source in Sec. 7.4.1 and Ref. [5]. In the following
section we will see how spin-orbit coupling manifests in realistic imaging systems, and how
it imposes an upper limit on the fibre coupling e�ciency of atomic � transitions.

4.3 Imaging beyond the paraxial limit

Perfect single-quantum atom-light transfer by focussing optics requires a travelling photon
field identical to the image of the atomic transition to be excited. This spatial-mode
maximizes the energy density at the focus. In Ref. [79] a Gaussian mode is optimized for
e�cient focussing with an aspheric lens, and in Ref. [80] a similar optimization procedure
is followed for focussing the radially polarized ‘doughnut mode’ with a parabolic mirror.
This experimental procedure is equivalent to matching the incident field to the image of
a dipole at the focus. Following Ref. [81], an atom-photon network with focussing optics
requires only that we know the image field of the atomic transition and match it with a
travelling photon mode (neglecting the temporal mode).

Consider an atom at the coordinate origin imaged by an axially symmetric collimating
optic of half-aperture angle �a and focal length f a distance f from the atom along the
optical axis z as shown in Fig. 4.4. An external magnetic field determines the quantization
axis of the atom at some angle � to the optical axis in the z, y plane, but we’ll continue
working in the basis of circular dipoles about z to take advantage of their axial symmetry
with respect to the imaging system. The collimating optic transforms spherical waves at
the origin to collimated plane waves with wave vector kc ⇡ k z at the Fourier plane. In
Sec. 4.1 we derived the dipole field in terms of the momentum space coordinates k̂. We can
describe the momentum transformation of any focussing optic by a bijection M : ⇢ ! k
that maps to this coordinate system from the polar Fourier plane coordinate system, with
an axially symmetric system the map M reduces to a function � = m(⇢) that is contingent
on the optic.

In this and the following sections we derive the field distributions of dipoles imaged
by high-NA optics, and feasible fibre-coupling e�ciencies for each optic. This problem
has been considered before, notably by Ref. [81]. We will expand on this work with an
emphasis on spherical lenses. We consider two important optical elements: a spherical
lens, which we take as a model of both the confocal lens objectives used in Chap. 7
and the aspheric lens for the system in Chap. 11, and a parabolic mirror, which is a
leading candidate for e�cient free-space atom-light coupling [82]. We will derive mapping
functions m, apodizations A and Fourier plane distributions E for these systems. We will
also consider the image plane field distribution E0 as a function of aperture and the fibre-
coupling e�ciency of various fields. However, for lossless optics the intensity collection
e�ciency ⌘I depends only on the half aperture angle �a, so we can derive ⌘I as a function
of � in general before considering the details of any particular system.

4.3.1 Intensity collection e�ciency

By integrating over the dipole intensity distributions from Eqn. 4.10 in a frame rotated
by angle � in the y,z plane we determine the intensity collection e�ciency of a dipole at
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Figure 4.4: Coordinates and frames for an atomic imaging scheme. In the text we consider

collimating the atomic dipole field with a spherical lens (shown) and a parabolic mirror (not

shown). Although the collimating optic NA should be large, we may image the collimated field

with a low-NA lens (f 0 � f) in which case the image field E0 is paraxial.

angle � from the optical axis on the y,z plane.

⌘I =

Z 2⇡

0
d✓

Z �
a

0
d� I(↵) sin(�), (4.17)

where the angle ↵ between the area element angle and the quantization axis is given by
↵ = arccos [cos(�) cos(�) + cos(✓) sin(�) sin(�)]. Evaluating this expression for each case
yields

⌘⇡I =
1

64

��3 cos(�a)
�
4 cos(2�) sin2(�a) + 11

�
+ cos(�a) + 32

�
, (4.18)

⌘�I =
1

128
(3(cos(2�) � 21) cos(�a) � (3 cos(2�) + 1) cos(3�a) + 64) , (4.19)

which we have plotted in Fig. 4.5. This shows the image intensity of a dipole at various
angles � between zero (darkest) and ⇡/2 (brightest). We have also plotted the collected
solid angle ⌦ = (1 � cos(�a))/2 and the solid angle advantage ⌘c � ⌦ which indicates
the advantage in collecting a directed dipole compared to a uniform spherical wave. The
� intensity distribution is less directional than the ⇡ distribution, but for NA< 1 the
optimally oriented detection scheme collects an equal amount from each transition. For
NA> 1 there is an advantage in collecting fluorescence from a ⇡ transition.

For applications in networks it is not enough to know the total collected intensity.
The closer a spatial mode is to Gaussian, the easier it is to manipulate and propagate
without distortion. Similarly, the closer a mode is to a fibre mode the easier it is to
transmit coherently over distances. For a fibre-coupled network then the more meaningful
parameter is the total collection e�ciency into the relevant fibre mode

⌘ = ⌘I ⌘c , (4.20)

which is equal to the product of the collected intensity ⌘I and the mode matching ⌘c.
In the following subsections we will consider the feasible coupling e�ciency between free-
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Figure 4.5: Proportion of total intensity collected from (a) ⇡ and (b) � transitions for various

collection angles ↵ as a function of aperture half-angle. The angle ↵ between the quantization and

optical axes varies from zero (darkest) to ⇡/2 (brightest). The top axis indicates the corresponding

numerical aperture and dashed lines identify key configurations from the body of this thesis. The

solid angle ⌦ at each aperture is plotted as a solid black line for reference. The di↵erence between

the collected intensity proportion and the solid angle is the ⌦ advantage plotted in the two bottom

figures with corresponding axes and colours. For NA < 1 the optimally oriented ⇡ and � transitions

have the same intensity collection e�ciency, but for NA > 1 the ⇡ transition may be collected more

e�ciently.

space trapped atoms and fibre communication networks. We will see that mode distortion
originating from optical spin-orbit coupling limits the advantage of ever higher aperture
imagining systems.

4.3.2 Apodization

Conservation of energy requires that atomic dipole field Ẽ(k) and the collimated field
distribution E(⇢) at the pupil of the imaging system are related by an ‘apodization’ factor.
Recall that the total power in the field is

P =

Z
d⌦ I =

c✏0n

2

Z
d⌦ E†E , (4.21)
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where d⌦ is the area element of the unit sphere about the atom. The area elements of the
unit sphere and the pupil aperture are

d⌦ = sin(�) d✓ d� , (4.22)

dA = ⇢ d✓ d⇢ . (4.23)

Therefore the field distributions must be related by the apodization factor A(⇢) where

E(✓, ⇢) =
p
A(⇢) Ẽ(✓,m(⇢)) , (4.24)

A(⇢) =
sin(m(⇢))

⇢

@m

@⇢
. (4.25)

The apodization factor depends on the design of the imaging system. Below we derive the
apodization factors for spherical lenses, thin lenses and parabolic mirrors.

4.3.3 Image field

For imaging lens focal length f 0 � f , the image plane field is paraxial, and

E0 = F [E] . (4.26)

With axially symmetric optics imaging a dipole on axis the azimuthal field dependence of
Ẽ is unchanged by the map m. We have already seen that U is ✓, � separable in the basis
of circular dipoles about z, with ✓ terms of the form eil✓. We can therefore reduce the
two-dimensional, complex Fourier transform to a one-dimensional, real Hankel transform
[83]. Writing the image plane field in terms of a Green’s function given by the Hankel
transform of E we have

E0(⌫, ✓) = F
hp

AM�1
h
PU †d

ii
(4.27)

= G(⌫, ✓)d (4.28)

G(⌫, ✓) =

2

664

H0

hp
Aa
i

�H�2

hp
Ab
i
e�2i✓ H�1

hp
2Aab

i
e�i✓

H2

hp
Ab
i
e2i✓ H0

hp
Aa
i

H1

hp
2Aab

i
ei✓

0 0 0

3

775 . (4.29)

4.4 Confocal lenses

Interferometrically stable confocal lenses are a common approach to single-pass atom-light
coupling [69] and the primary approach taken in this thesis. In the experiments described
in Chap. 7 we collect fluorescence from a trapped atom with confocal lens objectives, and
in Chap. 11 we design an improved apparatus that couples the atom to a collimated mode
with a high-NA asphere. Confocal lenses are also used in scanning two and three-photon
microscopy where the imaging resolution depends on the size of the focal spot. Although
immersion lenses can reach numerical apertures larger than one, free space lenses and lens
objectives are restricted by the limits of optical manufacturing to NA< 0.9, and di↵raction-
free lenses are unavailable beyond NA= 0.8. Nevertheless, a confocal lens system can take
advantage of the degree of direction in the dipole emission to outperform its solid angle
proportion, as we can see from Fig. 4.5, and achieve significant coupling.

We will model lenses according to the Debye-Wolf theory [84, 85] in which partial
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Figure 4.6: Collimating by (a) a spherical lens (b) a parabolic mirror. Beam paths are traced

at intervals of 15�. The path density at the Fourier plane is the apodization factor A. (c) The

apodization function of a spherical lens (red), a thin lens (green) and a parabolic mirror (blue).

waves retain their helicity through the lens. Real large-aperture objectives are necessarily
more complicated than this model; broadband anti-reflection coatings are less e↵ective
at large angles, and this contributes to Fresnel losses and polarization distortion in the
elements of any high-aperture objective [86] which we will neglect in this treatment.

4.4.1 Spherical lens apodization

Small-aperture collimating objectives can be approximated by a spherical lens, illustrated
in Fig. 4.6(a). A spherical lens relates the initial and collimated field coordinates by a
mapping function

� = ms(⇢) = arcsin(⇢) (4.30)

equivalent to an orthographic projection of the helicity frame field Ẽ scaled by the appro-
priate apodization according to Eqn. 4.24

Es(⇢, ✓) =
p
As Ẽ(arcsin(⇢), ✓) (4.31)

As =
1

cos(�)
=

1p
1 � ⇢2

. (4.32)

The spherical lens is a poor model at large angles; Fig. 4.6(c) illustrates how As diverges
at �a = ⇡/2, but because an exact map m depends on the details of the objective design,
we will take the spherical lens model as an indicative first-order illustration of collimating
lens systems in general (Fresnel lenses are a noteworthy exception that we will consider
below).

4.4.2 Spherical lens fields

The spherical lens Fourier plane fields calculated with Eqn. 4.31 are shown for illustrative
dipoles in Fig. 4.7. Each field is shown as an intensity distribution, and as weighted phase
plots in the appropriate basis. The parallel dipoles (a) d = R̂z and (b) d = ẑ are plotted
in the circular polarization basis and the perpendicular dipoles (c) d = x̂ and (d) d = R̂x

are plotted in the linear polarization basis. Of these, (a) and (c) have the best collection
e�ciency.

The collimated field distribution of the linear dipole perpendicular to the optical axis
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(d = x̂) has linear basis components

E⇡s =

r
3

2⇡

1

4(1 � ⇢2)
1

4

⇥
⇣
(1 +

p
1 � ⇢2 + (

p
1 � ⇢2 � 1) cos (2✓))Ĥ + (

p
1 � ⇢2 � 1) sin(2✓)V̂

⌘
, (4.33)

where we have chosen Ĥ parallel to the x-axis and V̂ parallel to the y-axis. A circular
dipole aligned with the optical axis is necessarily axially symmetric, and can be written
in the circular basis

E�s =

r
3

2⇡

1

4(1 � ⇢2)
1

4

⇣
(1 +

p
1 � ⇢2)R̂ + (

p
1 � ⇢2 � 1)e2i✓L̂

⌘
. (4.34)

A circular dipole imaged by a typical collimating lens and with the quantization axis
aligned with the optical axis produces an almost uniform intensity distribution over the
output pupil for NA < 0.8. For numerical apertures larger than this the field begins
to diverge, and the intensity distribution becomes concentrated far from the centre of
the beam. As with any high-NA image of the atomic dipole the optical spin and orbital
angular momentum of the output field are coupled. In the NA = 1 limit, 7/8 of the total
power is in the field with circular polarization aligned parallel to the atomic transition
sz = ~�m, but the remaining 1/8 is in the orthogonal polarization. The orthogonally
polarized light is produced in a spatial mode with lz = 2~�m in order to conserve angular
momentum. The polarization of the field changes smoothly from circular at the centre, to
azimuthally polarized at the extreme edge.

Fig. 4.7 also shows the image plane intensity distribution of each dipole for �a = 1
4

(NA= 0.7, dashed line on phase figures) and �a = 1
2 (NA= 1). In cases a,b and c the

intensity collected by a lens with NA< 0.7 is close to uniform, and so the image is close
to the point spread function of the aperture. In the case of d, d = R̂x, the centre of
the intensity distribution is displaced in order to conserve angular momentum about the
quantization axis [76].

4.4.3 A note on Fresnel lenses

Before we move on, we note for the sake of completeness that Fresnel lenses are another
method of atom-light coupling in use [79, 87]. The Fresnel lens may be modelled as an
ideal thin lens with map mt and apodization at

� = mt(⇢) = atan

✓
⇢

f

◆
, (4.35)

At = cos3(�) =
1

(1 + ⇢2)
3

2

. (4.36)

In contrast to a spherical lens above, the thin lens does not diverge and remains a relatively
accurate model of high-NA Fresnel lenses. The thin lens system is inconsequential to the
original work in this thesis, and we will not present this case in detail, but the same
method may be applied to calculate the Fourier plane and image fields of a Fresnel lens
coupler. We note only that the long tail of the thin lens apodization function At shown in
Fig. 4.6(c) produces fields which couple less e�ciently to fibre modes than the spherical lens
or parabolic mirror images derived in this chapter. Curious readers can find a comparable
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derivation of the thin lens dipole image in Ref. [81].

4.5 Parabolic mirror

Parabolic mirrors are being successfully pursued as a means of atom-photon coupling [82,
88, 89]. The defining characteristic of a parabolic mirror is that it perfectly focusses an
incident plane wave to a spherical wave converging at the focal point [90]. In contrast to the
spherical lenses above the parabolic mirror may have arbitrarily high numerical apertures
(although we will see in Chap. 10 that manufacturing such optics is challenging), and does
not diverge for any critical aperture. Parabolic mirrors are being pursued for strong atom-
light coupling. Spherical mirrors may be used in combination with aspheric correctors to
mimic the performance of a parabolic mirror [91].

The surface of an axially symmetric parabola is entirely specified by the distance f

from the vertex to the focus

z =
⇢2

4f
� f , (4.37)

and the aperture is

⇢a = f
sin(�a)

cos2(�a/2)
. (4.38)

4.5.1 Parabolic mirror apodization

Given that z = f2 cos(�) sec2(�/2) we can derive the coordinate map of the parabola mp

and, according to Eqn. 4.24, the associated apodization factor Ap

� = mp(⇢) = 2 atan

✓
⇢

2f

◆
(4.39)

Ap =

✓
cos2(�/2)

f

◆2

=

✓
4f

4f2 + ⇢2

◆2

. (4.40)

4.5.2 Parabolic mirror fields

In general the phase shift of a partial wave on reflection is a function of the incidence angle,
this introduces a radial phase shift to a parabolic mirror image that must be corrected
with a phase plate [92]. Although this correction isn’t trivial, we will take it for granted
that a radial phase may be corrected and neglect this term in our calculations.

Fig. 4.8 shows the Fourier plane fields calculated with Eqn. 4.39 for the same illustrative
dipoles and in the same polarization bases as Fig. 4.7. The field is collected most e�ciently
when a linear dipole at the focus is oriented parallel to the optical axis, Fig. 4.8(b).
The collected field at the pupil is the superposition of two circularly polarized angular
momentum eigenfields with lz = �sz = ±~. The total field is radially polarized with a
central dark spot

E⇡p =
⇢

f

r
3

⇡

0

@ 2
⇢2

f2

+ 4

1

A
2 ⇣

e�i✓R̂ + ei✓L̂
⌘

(4.41)

=
⇢

f

r
3

⇡

0

@ 2
⇢2

f2

+ 4

1

A
2

⇢̂ . (4.42)



52 Imaging atomic transitions

0 ⇡�⇡

(a)

(b)

Fourier Plane Image plane

0�

(c)

(d)

0.5 1.00.0

270�

90�

45�

180�

135�

225� 315�

✓

⇢/f

�

�

�

�

�

� 315�

270

90

45

180

135

225

✓

0 5 15100.0 0.5 1.0

ER ELI I’ (�a/⇡ = 1

2

)I’ (�a/⇡ = 1

4

)

EH EVI I’ (�a/⇡ = 1

2

)I’ (�a/⇡ = 1

4

)

⇥2

⇥2

⌫/f

Figure 4.7: Intensity and field distributions of atomic dipoles imaged by a spherical lens. Fields

are shown in both the Fourier and image planes (for two aperture sizes �a). Polarization compo-

nents Ex=R,L,H,V are plotted with hue Ex according to the colourbar and opacity |Ex|2. Some

weak field components are scaled with multipliers as shown for visibility. Image plane intensity

distributions are peak-normalized. (a) d = R̂z produces a R̂ polarized field along the optical axis

which becomes elliptical and finally azimuthally polarized as ⇢ ! f . A polarization vector field

is drawn over the Fourier-plane intensity distribution. (b) d = ẑ is the least e�ciently collected

dipole with intensity at the extreme edge of the Fourier plane field. The Fourier plane field is

radially polarized everywhere as indicated. (c) d = x̂ is the e�ciently oriented linear dipole. The

Fourier plane field is Ĥ polarized on the optical axis and azimuthally polarized at ⇢! f . The high

aperture image plane field is elongated along the quantization axis. (d) d = R̂x is the ine�ciently

oriented circular dipole. The Fourier plane field is V̂ polarized on axis with a phase gradient that

is approximately linear and equates to a vertical displacement in the image plane.
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Figure 4.8: Intensity and field distributions of atomic dipoles imaged by a parabolic mirror.

The Fourier plane fields are plotted to ⇢ = 4 (�a = 0.71⇡). Image plane intensity distributions

are peak-normalized. (a) the ine�ciently oriented circular dipole d = R̂z produces a central R̂

polarized field that transitions to first azimuthally and then L̂ polarization with increasing ⇢. A

polarization vector field is drawn over the Fourier-plane intensity distribution. The infinite aperture

image of this field is a radially polarized Bessel function of the second kind. (b) The e�ciently

oriented linear dipole d = ẑ produces a radially polarized mode similar to the doughnut mode.

A polarization vector field is drawn over the Fourier-plane intensity distribution. As the aperture

increases the image approaches another Bessel function. (c) The ine�ciently oriented linear dipole

d = x̂ produces a Fourier plane field that is Ĥ polarized on axis and azimuthally polarized for

large ⇢. (d) In the Fourier plane the e�ciently oriented circular dipole d = R̂x is predominantly

V̂ polarized with a phase gradient that corresponds to a displacement of the image.
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We will see in the following section that this field is similar to the so-called ‘doughnut
mode’, and that it couples e�ciently to a low-loss single-mode fibre.

If instead we consider a � transition in the same configuration, we see the following
distribution at the output pupil

E�p =

r
6

⇡

0

@ 1

4 + ⇢2

f2

1

A
2✓

4R̂� ⇢2

f2
e2i✓L̂

◆
. (4.43)

Like the confocal spherical lens image of the � transition, Eqn. 4.34, this is a circularly
polarized mode at �a = 0 and transitions smoothly to an azimuthal linear polarization at
�a = ⇡/2 before continuing to the opposite circular polarization with an orbital angular
momentum of lz = 2~�m as �a is increased further. While exactly half of the total power
is in each component, the peak intensity in the L̂ field is 0.12 and the peak intensity
in the R̂ field is 0.015. In the next section we derive fibre-coupling e�ciencies for these
two distributions and see that while the parabolic mirror image of ⇡ transition couples
e�ciently to fibre, the � transition is a more challenging proposition.

4.6 Fibre coupling e�ciency

To e�ciently network atomic photon sources we require that the spatial mode of our
imaging system is close to the propagation mode of a convenient single- or few-mode fibre
or waveguide and that the mode can be manipulated with typical Gaussian optics. That
is, for some normalized fibre mode Ef we require the mode overlap

⌘c =

����
Z
dA E†Ef

����
2

=

����2⇡
Z
d⇢ ⇢E†Ef

����
2

(4.44)

to be close to one. We will consider the best-match fibre mode for the optimally oriented
atomic transition images derived above and calculate the mode matching ⌘c possible for
each scheme. Although a complete survey of optical fibre engineering is outside the scope
of this chapter, it is necessary to introduce a few typical fibre modes. If the fibre has radial
symmetry, the propagation mode depends only on the radial refractive index profile. The
simplest case to consider is the step-index profile between the refractive index of the core
and the cladding. In this case the lowest-order guided (LPl

m) modes of the fibre are very
close to low order Laguerre-Gauss (LGl

m) modes with normalized transverse beam waist
profiles given by [93]

LGl
m =

s
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2
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where w is the beam waist size, and Ll
m the Laguerre polynomial with order m and topo-

logical charge l. These profiles join continuously with exponentially decaying fields in the
cladding. Optical quantum networks, being interferometers, require fibres in which inter-
mode dispersion is very low or —in the case of single-mode fibres—completely forbidden.
Typical single mode fibres have a core size on the order of a few � and a small refrac-
tive index di↵erence between core and cladding. In this case it is only the fundamental
mode LP0

0 that we need to consider, and it is almost perfectly Gaussian. The propagation
mode in the fibre is linearly polarized, but we can e�ciently map any uniform polariza-
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Figure 4.9: (a) Radial intensity distribution of three atom fluorescence images by spherical lens

and parabola (solid lines) and mode matched fibre modes (dashed lines). Only the intensity

in the polarization mode of the fibre is shown (see text for discussion) and each distribution is

peak-normalized. The spherical lens image distribution is shown only for NA= 0.8. The radial

distributions are matched over the collection aperture with dA = ⇢ d✓ d⇢, which produces an

apparent shift towards higher ⇢ in the radial profiles. (b) Total fibre collection e�ciency ⌘ (solid

lines) and mode overlap ⌘c (dashed lines) for various atomic fluorescence images by spherical lens

and parabola as a function of aperture angle.

tion distribution to the fibre mode with waveplates. However, the atom images derived
above are neither perfectly Gaussian nor uniformly polarized. We will calculate the mode
overlap with common Gaussian mode fibres as well as considering more exotic fibres with
non-uniform polarization and non-Gaussian irradiance profiles as necessary.

Fig. 4.9 summarizes the maximum possible fibre coupling e�ciency of the atomic
fluorescence images derived above for spherical lenses and parabolic mirrors as a function
of aperture. Fig. 4.9(a) shows the intensity distribution of the images (solid lines) and the
best-fit fibre mode (dashed lines) and Fig. 4.9(b) shows the mode matching ⌘c (dashed
lines) and the total coupling e�ciency ⌘ = ⌘I⌘c (solid lines) as a function of the collection
aperture angle �a. We will now proceed to consider each of the cases shown.

As we saw above (Sec. 4.4), at NA< 0.8 the image of a �z transition through a spherical
lens has uniform intensity and near-uniform circular polarization over the lens aperture.
The closest typical fibre mode is the fundamental Gaussian mode LG0

0 mapped to a fixed
circular polarization with waveplates. The radial profile of the L̂ polarized component
and the closest Gaussian mode are shown in Fig. 4.9(a) (red lines). Fig. 4.9(b) shows ⌘c
(dashed red line) and ⌘ (solid red line) as a function of aperture angle for spherical lens
images of atomic transitions. Because the perpendicularly polarized ⇡ transition can be
decomposed into the sum of two parallel � dipoles (compare Fig. 4.2(a) and (b), linear and
circular components) the perpendicular linear dipole fibre couples to linearly polarized,
radially symmetric modes with the same e�ciency that the parallel circular dipole couples
to the same, but circularly polarized, modes. For this reason coupling e�ciencies for
parallel � and perpendicular ⇡ polarized transitions are shown together on Fig. 4.9(b).

The Gaussian mode coupling e�ciency is the relevant fibre coupling e�ciency for the
experiments carried out with confocally imaged trapped ions in Chap. 7, but it is possible
to do better. Several techniques exist for engineering single mode, polarization maintaining
fibres that support a more uniform, ‘top hat’ irradiance profile [94–96], and free form
optics are also available for coupling top hat distributions into regular fibre modes [97–
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99]. With these it is possible to reach ⌘c > 0.99 for spherical lenses of up to NA= 0.8. To
e�ciently fibre-couple atomic fluorescence beyond this numerical aperture it is necessary to
correct the increasingly non uniform polarization as it becomes elliptical at the edge of the
image. In principle this can be achieved with either a spatially inhomogeneous wave plate
assembled from sections of birefringent crystal or a spatial light modulator [100]. However,
any such correction necessarily introduces further losses and disturbances. Without these
corrections the e�ciency approaches 85% as the confocal lens system approaches the total
solid angle.

The parabolic mirror image of a ⇡ transition is similar to a radially polarized dough-
nut mode D = 1p

2
(LG1

0 + LG�1
0 ), but with a long-tailed radial intensity distribution, see

Fig. 4.9(a) (blue lines). We note that the adapted doughnut mode matched to the distri-
bution here (dotted blue line) di↵ers from that presented in Ref.[101], in which the radial
profile was matched without radially weighting the area element. The peak of the appro-
priately matched mode doesn’t coincide with the peak of the image, instead it is shifted
by broadening the mode to overlap with the extended tail of the image. The mode overlap
between the mirror image of a large aperture parabola and LG1

0 is 0.92 with w = 2.36f ,
the total collection e�ciency and mode matching ⌘ are shown in Fig. 4.9 (blue lines). In
conventional step-index fibres the azimuthally and radially polarized doughnut modes are
near-degenerate and unstable to small perturbations, but an optical fibre with an annular,
high-index ring profile is able to lift this degeneracy so that the radial doughnut mode
can be coupled e�ciently and propagated purely [102] in a few-mode fibre. The parabolic
mirror is therefore a promising avenue for fibre-coupled ⇡ transitions.

Unfortunately the parabolic image of a � transition in the same configuration does
not couple to fibres so conveniently. The closest fibre mode to the � transition image is
the fundamental Gaussian mode LG0

0 with circular polarization orthogonal to the tran-
sition dipole orientation. The radial intensity distribution of the R̂ circular component
of the image (also plotted in Fig. 4.9(a) (green lines)) is close to Gaussian, albeit with
an extended tail. However because half of the fluorescence is mapped to the orthogonal
polarization, the mode overlap is considerably reduced; compare the intensity in the ap-
propriate polarization to the total intensity profile derived in Ref. [88]. For this reason
the � transition collection e�ciency of the parabolic mirror system tops out at 0.49 with
w = 1.88f , as shown in Fig. 4.9(b)(green lines). The spatial polarization variation can
in-principle be corrected using the same methods discussed for the case of the spherical
lens image.

4.7 Summary

We have now established all of the theory that we need to quantify the performance limits
of the atom imaging experiments used in this thesis, as well as the limits of even ideal
free-space atom-network links. The biggest challenge to e�ciently and coherently couple
a light field to an atom in free-space remains the di�culty of capturing a large proportion
of the total solid angle, and the simplest way to achieve this is a parabolic reflector [88,
101]. A parabolic mirror of infinite extent encloses the complete solid angle and captures
100% of the atomic fluorescence. But as we saw above, only 92% of the field collected from
a ⇡ transition overlaps with a useful fibre mode. The parabolic mirror is even worse at
coupling � transitions, as optical-spin orbit coupling produces a pupil field with spatially
inhomogeneous polarization that is di�cult to correct. The fibre coupling e�ciency of
a � transition, infinite-parabola image is only 0.49. Prof. Gerd Leuchs and his team
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Optic �a/⇡ NA ⌦/4⇡ ⌘I d̂ Matched mode ⌘c ⌘

Lens
0.13 0.4 0.04 0.06 �/⇡

LG0
0 0.81 0.1

Tophat 1.00 0.12

0.25 0.7 0.30 0.38 �/⇡
LG0

0 0.81 0.15
Tophat 0.99 0.19

Parabola 0.71 - 0.81
0.76 � LG0

0 0.65 0.49
0.90 ⇡ Doughnut 0.97 0.88

Table 4.1: Key figures of merit for imaging systems referred to in this thesis, including NA 0.4 and

NA 0.7 confocal lens systems and a parabolic mirror coupler of the same dimensions as Ref. [82].

For each system we calculate the total solid angle included ⌦, the total collected intensity ⌘I , the

matched mode for each transition image, the mode-matching ⌘c, and the total collection e�ciency

⌘.

have pioneered the use of parabolic mirror atom-light couplers and have the most e�cient
free-space atom-light collection yet demonstrated with a parabola of aperture �a = 0.71⇡
[82, 103]. The corresponding collection e�ciencies for an ideal parabolic mirror of those
dimensions are shown in Tab. 4.7.

In this thesis we will consider two variations of a confocal lens imaging system. In
Chap. 7 we will image trapped ions with a two-lens system of numerical aperture 0.4.
This system collects 12% of the total ion fluorescence, and couples at most 10% into the
single-mode fibre network, see Tab. 4.7. The improved imaging system we describe in
Chap. 11 combines an asphere with numerical aperture 0.7 and a hemispherical mirror to
collect 38% of the total fluorescence and will couple at most 30% into a step-profile single
mode fibre, although this could be improved to 38% with a top hat fibre mode. These
are critical figures for the e�ciency of atom-imaging with these systems and limit our
capacity to network these atomic qubits with optical links, but increasing the numerical
aperture of a lens system beyond 0.8 is a challenging proposition with diminishing returns.
In Chap. 10 we will consider an alternative means of e�ciently coupling atom light sources
to optical networks with near-hemispheric mirrors that shape the vacuum mode density in
the vicinity of an atom to favour e�ciently collected spatial modes. In this case it is not
necessary to collect a large proportion of the solid angle, but rather to suppress emission
outside of the collected aperture.
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Chapter 5

Single photon sources: a review

According to the assumption to be contemplated here, when a ray of light is spread-
ing from a point, the energy is not distributed continuously over ever-increasing
spaces, but consists of a finite number of energy quanta that are localized points in
space, move without dividing, and can be absorbed or generated only as a whole.

– Albert Einstein, Concerning the production of light (1905)

Evidence for the quantization of light has existed for over a hundred years [104, 105]
and photons have been detected individually for over 60 years [106], but devices capable
of producing photons on demand are a relatively recent innovation. Such definite, single-
excitation light fields are an elementary tool for quantum information and a key feature
in schemes for encoding, manipulating and communicating quantum information. There
are two broad applications for single-photon sources in quantum information: networking
stationary qubits and as a resource for photonic quantum computing (see Sec. 1.4.4)1. We
can draw a further distinction between two networking applications: interfacing modular
registers of qubits within a quantum computer, and as flying qubits for long-range quantum
key distribution (QKD).

In the following chapters we will implement a trapped-atom single-photon source and
consider its properties and limitations. Because trapped atoms are themselves excellent
stationary qubits, trapped-atom photon sources are a path to implementing quantum
memories, and to networking registers of trapped-atom qubits in a quantum computer as
described in Sec. 1.4.1. To put this work in its proper context, we will review in this chapter
the various demonstrated single-photon technologies, their advantages and disadvantages
as sources for quantum information networks and for optical quantum computing, recent
noteworthy results, and the future prospects of each.

5.1 Photon source performance criteria

An ideal single photon source emits on demand a single photon (and never more than
one photon) into a well defined spatio-temporal mode, with 100% probability and de-
sirably with high brightness (meaning the attainable single-photon rate) [106, 107]. We
can measure the photon-number purity with the second-order correlation function g(2)(0)
measured in a HBT experiment as introduced in Sec. 2.5.4. Multi-photon components
of the optical state contribute to the HBT coincidence rate, and in this sense the HBT
anti-correlation parameter A = 4Pc/P

2
s from Eqn. 2.62 is a measure of the photon-number

purity of states close to the single photon Fock state.

1Single-photon interferometry is another noteworthy application of single-photon sources, but we’ll
restrict this review to the broad applications of photon sources.
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The photon wave-packet should be Fourier-limited such that subsequent pulses from
the same source are indistinguishable and interfere with high visibility. We may measure
the indistinguishability M via Hong-Ou-Mandel interferometry. Linear optical quantum
computing further requires that photons produced by parallel sources are also indistin-
guishable [35], although a single source of su�cient brightness may be temporally mul-
tiplexed across a large number of modes to achieve the same result. Apart from any
technical limitations to our capacity to e�ciently multiplex sources, this necessarily re-
quires a trade-o↵ between the brightness of the source and the number of modes it is
required to multiplex.

The brightness of on-demand sources is a function of their repetition rate and e�ciency
⌘, which we may divide into two components: the generation and collection e�ciencies ⌘g
and ⌘I . Additionally, many sources are inherently multi-mode, producing (for example) a
mixture of polarizations, which caps the feasible single-mode generation e�ciency. Single-
mode sources are required for network applications, and we will only compare single-mode
e�ciencies below. Following the treatment of atom-light coupling e�ciencies given in
Chap. 4, we can write the total single-mode e�ciency

⌘ = ⌘g⌘I⌘c , (5.1)

where ⌘c is the mode matching parameter. Finally, because the repetition rate is funda-
mentally limited by the source bandwidth, we usually prefer the spectral brightness, the
ratio of brightness to bandwidth, as a more meaningful measure of comparative brightness
than the raw brightness.

We must treat the brightness of probabilistic sources a little di↵erently. The brightness
of probabilistic sources scales with the pump power, which can be large. Because lower
pump powers are more practical, and because multi-photon noise often scales with pump
power (as it does for spontaneous parametric down conversion and four-wave mixing based
photon sources, see Sec. 5.2) the brightness of probabilistic sources is often reported as
a ratio of spectral brightness and pump power, that is in units of photons s�1 mW�1

MHz�1.

5.2 Probabilistic sources

The most salient distinction between single photon sources is between on-demand and
probabilistic sources. Probabilistic sources produce pairs of correlated photons with low
probability. One half of the pair, the ‘idler’, is detected to herald the existence of the other
‘signal’ photon with some herald e�ciency ⌘h that may be improved by multiplexing sev-
eral identical sources [108]. Probabilistic sources are su�cient for QKD over low-loss
links, but are not scalable sources for photonic computers. Over communication chan-
nels with substantial losses, we require photon sources to be compatible with quantum
memories for storage and synchronization. In combination with a suitable quantum mem-
ory, probabilistic sources may be multiplexed to overcome the unpredictable generation
times. Multiplexing schemes are limited by the herald, switch and storage e�ciencies. The
most developed probabilistic photon sources are spontaneous parametric down conversion
(SPDC) and spontaneous four wave mixing (FWM) in a nonlinear optical medium.
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5.2.1 SPDC

The workhorse of current quantum information experiments [109] is spontaneous paramet-
ric down conversion (SPDC) which probabilistically produces correlated pairs of photons
across two modes, one of which can be used to herald a single photon in the other. A non-
linear crystal produces phase matched photon pairs from a pump beam, with conversion
e�ciency up to 5 ⇥ 10�6 [110]. Herald e�ciencies of about ⌘h = 0.75 recently allowed for
loophole-free Bell tests with polarization entangled photon pairs from SPDC sources [13,
14].

To operate on-demand, SPDC sources must be combined with a suitable quantum
memory, but the broadband photons produced by typical SPDC sources are incompat-
ible with leading memories. Memory schemes such as EIT, GEM and AFC2 in alkali
or rare-Earth ion ensembles store fields with bandwidth ⇡ 1MHz and resonant with an
atomic transition (in Chap. 14 we review quantum memory research in detail). Typical
SPDC sources have bandwidths on the order of 100s of GHz. To reduce the single-photon
bandwidth by filtering alone requires an impractical reduction in brightness.

Cavity-enhanced SPDC produces narrow linewidth photon pairs, usually across sev-
eral frequency modes, at the cost of total brightness. In most cases a chosen frequency
mode must be spectrally filtered by an additional external cavity [111], but two recent
cavity-SPDC sources have shown near-single mode operation by double-passing the pump
through the crystal [112, 113]. Ref. [113] is a noteworthy memory-compatible SPDC source
with pair generation rate 7.24 ⇥ 105 pairs s�1 mW�1 and bandwidth of 2⇡ ⇥ 6.6(6) MHz
for a spectral brightness of 1.06 ⇥ 105 pairs s�1 mW�1 MHz�1. This is, to our knowl-
edge, the spectrally-brightest single-mode SPDC source. With an external filter cav-
ity, Ref. [111] demonstrates single photon generation with bandwidth 2⇡ ⇥ 0.66(2) MHz,
g(2)(0) = 0.016(2) and heralding rate 5 kHz.

Even as a probabilistic source SPDC has important limitations. Unless e�cient photon
number resolving detectors are available to discriminate single-pair from multi-pair events
at the herald, SPDC sources produce fields with an intrinsic multi-photon component that
scales with the pair generation rate [114], therefore requiring SPDC sources to operate at
low brightness. For example, the telecom SPDC source in Ref. [115] produced photons with
bandwidth of 6.9 nm. For A = 0.01 the feasible heralding rate was only 403 kHz, yielding
a spectral brightness of less than 4 pairs MHz�1. For this reason quantum information
experiments with even small numbers of photons generated by SPDC can take hundreds
of hours [116, 117]. In Chap. 8 we compare the multi-photon rates of SPDC, quantum dot
and trapped-atom photon-sources and show that the intrinsic multi-photon rate of SPDC
sources is detrimental to performance in QKD networks. Finally, photon pairs produced
by SPDC are simultaneously entangled in several degrees of freedom. This entanglement
between the photon pairs limits indistinguishability [118, 119].

5.2.2 FWM

Correlated photon pairs can also be produced using four-wave mixing (FWM) in which
two pump photons are converted to correlated signal and idler photons. Because the
required nonlinearity is small, optically dense media are required. FWM in waveguides
and fibres is a source of broadband photons at telecom frequencies, although FWM sources
are typically noisier than SPDC due to Raman scattering processes that can be di�cult

2Although AFC delay lines are broadband, on-demand AFC storage is not.



§5.3 On-demand sources 65

to suppress and may require cryogenic cooling [120]. Fibre-based FWM sources have been
operated with herald e�ciency up to ⌘h = 0.26 [121] and A = 0.01 [122] at a spectral
brightness up to 104 pairs s�1 mW�1 MHz�1 [107]. FWM in optically dense cold-atom
ensembles is a source of narrowband photon pairs. Autonomous FWM sources have been
made to interfere with V = 0.83 [123].

5.3 On-demand sources

Natural or artificial single emitters are a means of producing single-photons on demand
such that a separate quantum memory becomes unnecessary. This simplifies the technical
overhead of optical quantum computing substantially. If the single emitters are themselves
suitable qubits for computation, then photon emission is a means of optically coupling
and entangling separate quantum registers. Similarly, well-coupled single emitters may
function as quantum memories for optical networks.

Atomic transitions are natural single emitters, and the focus of research in this thesis.
In the following section we review the leading techniques for achieving e�cient atom-
light interfaces including optical resonators and free-space couplers. Engineered systems
including semi-conductor quantum dots (QDs) and crystal defects replicate some of the
useful properties of atomic transitions, and are sometimes called ‘artificial atoms’. We will
also review recent advances with these leading engineered systems. Recent research on
solid-state photon sources has expanded to include novel two-dimensional materials and
carbon nano-tubes. Such less-developed sources are outside the scope of this review but
interested readers can see Ref. [124].

5.4 Trapped atoms

Single trapped atoms are a natural candidate for the nodes of a quantum network. We’ve
already seen how long-lived qubits can be implemented with the electronic configuration of
atoms in Chap. 3 and we will discuss our particular implementation with trapped Barium
ions in Chap. 6. Atoms of the same isotope are naturally identical in all respects and, if
the atoms are well insulated from their environment, photons scattered from atoms can be
made to interfere with high visibility. Experimental techniques for isolating, manipulating
and addressing single trapped atoms are well developed. Furthermore, although scaling
trapped-ion quantum computers is challenging, they are currently the most advanced
platform for universal quantum computation [29, 125]. Atom-light interfaces with trapped
atoms are a means of networking such systems, and perhaps a feasible path to scaling
trapped-atom processors by networking small quantum processors [30]. Apart from their
advantages as photon sources for quantum networks, this provides an additional motivation
for trapped-ion based atom-light couplers in particular.

However, the interaction cross section of atoms and photons in free space is small.
To couple atomic and photonic qubits deterministically requires an e�cient atom-light
interface. Enormous progress has been made towards this goal in the last decade, par-
ticularly in the field of cavity QED. In the sections below we will consider the relative
advantages of cavity and free-space based atom-light couplers, and review recent results
with rudimentary optical networks of trapped atoms.
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Figure 5.1: (a) Schematic of a resonator-coupled atom showing the important cavity parameters.

(b) Free space coupling by a parabolic mirror.

5.4.1 Coupling with optical resonators

Resonators can be used to couple atoms to either optical or microwave photons, but we will
restrict this review to atom-light couplers for optical photonic networks, which have longer
coherence times. When an atom is positioned at an anti-node of a cavity standing wave,
the atom-photon interaction strength can be much larger than in free space. Resonators
e↵ectively increase the interaction strength in two ways: by confining the photon to a small
resonator mode and by increasing the interaction time. We call the regimes dominated by
one or the other of these e↵ects the ‘Purcell’ and ‘strong’ coupling regimes respectively
[126].

The important cavity parameters are the coherent atom-field coupling constant for the
cavity field g, the free-space atomic emission rate � and the cavity decay rate , which
is inversely related to the cavity finesse F shown in Fig. 5.1(a). Together these give the
cooperativity C = g2/(�) and Purcell emission rate enhancement P = 1 + 2C. The
collection e�ciency in such a cavity is the product of three probabilities [127]

⌘ = T

✓
2C

1 + 2C

◆✓
2

2+ �

◆
, (5.2)

where T is the transmission of the cavity, the second term is the cavity capture proportion
and the third term is the cavity loss proportion of the atom-cavity system. Written in this
way, it becomes clear that e�cient atom-cavity coupling requires both large g and .

There are two typical strategies for designing resonator-based atom-light couplers.
First, improving the cavity finesse allows photons to interact with the atom over many
cavity round-trips or, equivalently, to interact with many mirror images of the atom at the
same time. This is the strong coupling regime, g > ,� and C � 1, typified by oscillatory
exchange between the atom and cavity field. In this regime the coupling strength g has
been increased so that it exceeds all the dissipative processes in the system, but at the
cost of lower cavity linewidth .

In practice many implementations fall short of strong coupling. However, high-finesse
cavity sources can be operated e�ciently with ⇤-atoms and Raman coupling schemes, even
when the free-space spontaneous emission rate � is faster than the cavity dynamics. This
is achieved by taking advantage of the di↵erent detuning dependence between the coherent
and incoherent Raman processes and is sometimes called the ‘intermediate’ regime [128].
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The e↵ective Raman atom-cavity coupling and spontaneous decay rates are

ge↵ = g
⌦e

2�
, (5.3)

�e↵ = �
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2�

◆2

. (5.4)

By choosing the excitation power ⌦e and detuning � such that  > ge↵ > �e↵ , the atomic
excitation may be e�ciently transferred to the field. However, the repetition rate of the
source is still restricted by the cavity decay rate . There is an implicit trade-o↵ in the
design of both strong and intermediate resonator coupled photon sources: the better the
cavity finesse, the lower the linewidth and the lower the speed of the network.

The second route to resonator-based networks is reducing the cavity mode volume. In
quantizing the electric field we saw that the field strength per photon depends on the mode
volume V , Eqn. 2.4. As the mode volume of a single photon decreases, the strength of the
field increases. Confining photons to a smaller mode therefore improves the interaction
strength according to g / 1/

p
V . With su�ciently small mode volume even leaky cavities

can be e�cient couplers. This is the Purcell regime of small, leaky cavities with � g � �
and C � 1. In this regime the cavity increases the atom-light coupling strength by shaping
the photonic spatial mode density in the vicinity of the atom. In Sec. 10.7.2 we consider
a single-pass approach to atom-light coupling which uses the same technique, and realizes
an extreme of the Purcell resonator regime.

As we described in Sec. 3.4.2, photons can be generated reversibly from ⇤-atoms in
cavities by vacuum StiRAP with the cavity mode. This has been performed with cold
neutral atoms falling through cavities [129, 130], neutral atoms in optical traps [131, 132]
and trapped ions [133]. Compared to electromagnetically trapped ions, optically trapped
atoms have limited trapping time and are less well localized, which compromises atom-
cavity coupling and is an additional source of decoherence. On the other hand, trapped
ions are restricted by the geometries of large ion traps (a problem that we will also face in
Chap. 11) and coupling ions to small cavities is di�cult because charged particles interact
strongly with nearby surfaces. To date no trapped-ion photon-source has been operated
in the strong or Purcell cavity QED regimes.

Here we will highlight recent experiments with resonator-based atom-light couplers.
Refs. [126, 134] contain a historical overview and further detail for readers interested in
the landmark results in this field. StiRAP has been performed with trapped ions in Fabry-
Pérot cavities with collection e�ciency ⌘I = 0.88 and total e�ciency ⌘ = 0.045 at a rate
of 2.4 kHz [135]. The source is essentially dark count limited, with A = 0.015. The photon
source may be operated as a unidirectional atom-light qubit interface with ⌘ = 0.01 and
fidelity F = 0.66[136] and to demonstrate atom-photon entanglement [137].

StiRAP has also been demonstrated with neutral atoms in large cavities with ⌘I = 0.56
and ⌘ = 0.15 at a rate of 100 kHz[138]. Once again, the number-purity of the source is
essentially dark-count limited, A = 0.02. Operated as a unidirectional atom-light qubit
interface the fidelity is F = 0.93[139]. The trapped atom source has been operated as a
deterministic quantum memory with e�ciency ⌘ = 0.17 and fidelity F = 0.93 [139, 140]
as well as a heralded quantum memory with ⌘ = 0.39 and F = 0.86[141].

To this point, a state of the art atom-light quantum network consists of two nodes
universally coupled (read and write) to a single network link. Teleportation has been
performed with neutral trapped atoms in Fabry-Pérot cavities in this configuration with
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fidelity F = 0.88 and success probability P = 0.001 at an attempt rate of 10 Hz [142].
The interference visibility in that experiment was limited by inhomogeneous transition
broadening to V = 0.64. Ground state cooling has since been demonstrated with trapped
neutral atoms in optical cavities [143] which would improve the source indistinguishability
considerably.

Although these elementary atom-light networks have been constructed from relatively
large cavities, miniaturization is the route to fast, high e�ciency single photons from
atom-resonator systems. To this end atoms have been coupled to fibre-based Fabry-Pérot
cavities [144, 145], microtoroidal resonators [146, 147] and photonic crystal cavities [148].
Fibre cavities are a promising path towards coupling trapped ions in particular because
the dielectric surface required can be small, and shielded using metal fibre sleeves [149,
150].

5.5 Free-space coupling

The operation of an atom-light quantum network does not, however, require optical res-
onators. In Chap. 4 we derived the free-space dipole field and the necessary optics for
e�ciently collecting and networking a photon in this dipole mode. As we noted at the
time, such free-space optics are not only capable of e�cient single photon collection, they
are also capable of the reverse process: e�cient single photon absorption by a single atom
[151–153]. Furthermore, a free-space coupled atom is also capable of e�ciently switching
or even phase shifting an input field by up to ⇡ [103, 154]. Confocal lenses have even ap-
plied the techniques of 4⇡-microscopy to achieve almost 40% extinction by a single atom,
and observed nonlinear atom-photon interactions in this regime. Free-space coupling may
be seen as an extreme limit of the cavity QED Purcell regime, in which the mode con-
finement is provided by tight focussing and the  ! 1. In this limit the discrete cavity
modes approach the continuum of free-space modes.

E�cient free-space atom-light coupling requires di↵raction-limited collection optics
capturing as close to the complete 4⇡-steradian solid angle as possible. Recent e↵orts
towards this goal have been reviewed in detail by Refs. [103, 155, 156]. Common ap-
proaches include high-aperture lenses and lens objectives [157–162], thin Fresnel lenses
[87, 163], spherical mirrors [164] and parabolic mirrors [82, 88] as shown in Fig. 5.1(b).
It is the parabolic mirror apparatus in Ref. [82] that is closest to collecting the complete
fluorescence from a single trapped atom. We calculated the collection e�ciency limit for
a parabolic mirror with the same dimensions in Sec. 4.7. For the optimally oriented ⇡-
transition the collection limit is ⌘I = 0.97. Ref. [82] demonstrates a collection e�ciency of
⌘I = 0.55, limited by the reflectivity of the mirror surface, for a total collection e�ciency of
⌘ = 0.031. As we discussed in the context of cavity-based trapped-atom photon sources,
trapped ions have the advantage of tighter confinement, but require novel trap designs
that allow su�cient optical access. We’ll consider this problem further in Chap. 11.

With su�cient atom-field coupling a single atom has been shown to extinguish more
than 10% of a field [157] and cause a phase shift of up to 75� [165, 166]. In this coupling
regime single atoms produce phenomena typically associated with optically dense ensem-
bles including electromagnetically induced transparency [167], coherent back-scattering
[168] and Faraday rotation [165].

Although high e�ciency free-space collection remains an outstanding challenge, many
of the rudimentary operations of a quantum network have already been demonstrated
with free-space coupled atoms. E�cient excitation of a trapped-atom free-space node



§5.6 Artificial atoms 69

requires not only high-aperture optics, but also perfect time reversal of the atomic decay
process. This means generating photons matching both the spatial and time-reversed
temporal modes. Free-space excitation has been performed with rising exponential pulses
and achieved an excitation probability of ⌘ = 0.05 by coherent pulses with hni ⇡ 3 [169].

Free-space coupled single-atom photon sources have been used to demonstrate atom-
photon entanglement [170] as well as atom-atom entanglement through photonic links.
Ref. [171] achieved an entanglement fidelity of F = 0.63, however this entanglement scheme
requires simultaneous detection of photons from each atom, and the success probability
is therefore limited by the collection e�ciency to P = 3.6 ⇥ 10�9 at an attempt rate
of 550 kHz. Similarly, heralded teleportation has been performed with free-space atom-
light couplers at an attempt rate of 75 kHz and fidelity F = 0.9 and success probability
⌘ = 1.9 ⇥ 10�8 [172]. A similar coincidence-based approach with neutral atoms achieved
fidelity F = 0.81, beating the Bell’s inequality threshold, with success probability 5⇥10�7

and rate 50 kHz [173]. Ref. [160] uses the single-photon entanglement herald proposed
in Ref. [174] to improve the success probability to P = 1.1 ⇥ 10�4 at an attempt rate of
2.3 kHz with fidelity F = 0.64. However, in the e�cient-collection limit the advantage of
single-photon detection schemes diminishes.

Finally, the same technique has been applied to entangle small trapped-ion registers
with a photonic entanglement rate faster than the observed decoherence rate [162]. In
this miniature of a distributed-computing scheme the motional entangling gates between
trapped ions in the same register can be used in concert with the optical remote entan-
glement operation. As with cavity-based networks, networks of free-space coupled atoms
are currently no larger than two nodes separated by a single link.

5.6 Artificial atoms

5.6.1 Quantum dots

Semiconductor quantum dots (QDs) are the most promising practical on-demand photon
sources because these ‘artifial atoms’ may be integrated into semiconductor technologies,
including high Q-micro-cavities, and because they may be triggered to spontaneously
scatter photons either optically or electrically [175]. While QDs are in principle single
emitters, multi-photon noise in these systems may be poor compared to trapped atoms
due to interactions with the bulk material or surface charge noise [176]. QDs must operate
at cryogenic temperatures (⇡ 4K) to suppress thermal bulk interactions. Currently, elec-
trically driven QDs are substantially noisier than optically driven dots with g(2)(0) � 0.08
[177].

Quantum dots may be integrated with optical microcavities [178–181] to improve col-
lection e�ciency and narrow linewidth by the Purcell e↵ect. The record collection e�-
ciency for QDs is ⌘c = 0.79 which was reached with low-finesse micro-pillar cavity and a
NA= 0.6 collection lens [182]. In Ref. [183] quantum dots in electrically-tunable micro-
pillar cavities are coupled with a single-mode collection e�ciency of ⌘c = 0.64(1). Under
pulsed, resonant excitation this QD produces single photons with generation probability
⌘g = 0.33, purity g(2)(0) = 0.002(1) and indistinguishability M = 0.995(5). Purity is,
however, reduced when operating at saturation , g(2)(0) = 0.015(3). Although this single-
photon source is an order of magnitude brighter than state-of-the-art SPDC in absolute
terms, the spectral brightness is lower at 4 ⇥ 104 phot MHz�1 due to the use of lower
cavity finesse. Operating QDs in a cavity with finesse comparable to SPDC sources is an
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outstanding technical challenge.
Quantum dots are not grown deterministically, and the spectral properties vary from

dot to dot such that their mutual interference is insu�cient for use in quantum networks
[184, 185]. Electrically tunable QD sources may be one avenue to improving parallel
indistinguishability [186]. Electrically tuned quantum dots have achieved mutual indis-
tinguishability M = 0.82(3) which was su�cient to teleport a photonic frequency qubit
from a QD source to a second QD spin [187]. This degree of indistinguishability was
achieved with low-collection e�ciency QDs in bulk and the necessary tunability is in-
consistent with QD microcavity systems. Photons from optically excited QDs have very
recently been made to interfere with mutual indistinguishability M = 0.41(5) by actively
stabilizing the frequency of each dot to an atomic resonance [188].

A single dot producing long streams of indistinguishable photons that can be demul-
tiplexed across many spatial modes may still be useful for photonic computation [189].
Active demultiplexing schemes look to outperform passively demultiplexed photons and
SPDC networks with feasible six-photon rates of ⇡ 0.01 /s [190]. This technology is
approaching the threshold for quantum advantage in (non-universal) photonic computing.

5.6.2 Diamond colour centres

Fluorescent crystal defects are solid-state qubits with coherence times that can be long
even at room temperature. Nitrogen-vacancy (NV) and Silicon vacancy (SiV) defects in
diamond have been well characterized as photon-sources, and Germanium vacancy centres
in diamond are a promising new alternative. Like QDs, NV colour centres must operate at
cryogenic temperatures or be coupled to high-finesse cavities to produce indistinguishable
photons.

Photons from independent cold NV centres can interfere with HOM visibility M = 0.66
[191]. It is di�cult to improve this indistinguishability further because the NV centre has
a non-zero dipole moment that couples to material strains and charges that are not yet
well-controlled. Nevertheless the mutual indistinguishability of NV centres is su�ciently
good for spin-qubit teleportation [192] and loophole-free Bell tests [12]. SiV centres are
better isolated, they benefit from an inversion symmetry, and have been shown to interfere
with visibility M = 0.72 [193]. SiV centres have comparatively low quantum e�ciency
because of competing pathways to the zero-phonon emission line. SiV centres have been
shown to be bright, but not spectrally bright [194]. Germanium vacancies are considered
a likely candidate for simultaneously narrow and bright transitions.

Most photons emitted from colour centres in bulk diamond are trapped inside the
high refractive index material by total internal reflection, and near the diamond surface,
dipole emission still prefers the high index material. To e�ciently collect photons from
defect transitions the optical mode in the diamond must be engineered. Strategies include
coupling to guided modes in pillar-like structures (which must in turn be out-coupled),
collection by solid immersion lenses on the diamond surface, and embedding defects inside
diamond micro-resonators (see the recent review [195]) and references therein). The best
collection e�ciency achieved by such methods is ⌘c ⇡ 0.3 [196] with a surface-etched
immersion lens of NA = 1.5. It is believed that surface etching of this sort introduces
crystal defects that degrade the transition spectrum.

Demonstrated colour-centre sources are noisy compared to QDs or trapped atoms. The
single-photon purity of colour centres in diamond is obscured by the collection of scattered
background light, with few results better than g(2)(0) = 0.1 [197].
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197. T. Schröder, et al., Ultrabright and e�cient single-photon generation based on
nitrogen-vacancy centres in nanodiamonds on a solid immersion lens, New J. Phys.
13, 1–9 (2011).



Chapter 6

Trapped-ion apparatus

How did I escape? With di�culty. How did I plan this moment? With pleasure.
– Alexandre Dumas, The count of Monte Cristo (1844)

This part of the thesis contains experimental and theoretical results regarding the
coupling of trapped atoms and travelling light fields with free-space optics. The atoms
are trapped with oscillating electric fields in an ion-trap. Trapped ions have many prop-
erties uniquely suited to the preparation and manipulation of non-classical atomic and
optical states. They are well isolated mechanical systems and a very good approximation
of the ideal harmonic oscillator. The ions can be well insulated from thermal e↵ects such
that the coherence time of their motional states is long. Furthermore, laser cooling tech-
niques for preparing the ions in the lowest motional state of the trapping potential are
well-established. For these reasons trapped ions are a well developed, albeit small-scale,
platform for quantum computation.

In this chapter we provide an overview of the trapped-ion apparatus used in the exper-
iments that follow in this part of the thesis. Its key components are a macroscopic Paul
trap for trapping Barium ions, lasers for ionising, cooling and manipulating the configura-
tion of the trapped ions, and a pair of high-aperture lens objectives (HALOs) for coupling
the atomic states to optical fields. The HALOs are configured with a remote mirror that
may couple either two adjacent atoms to a common optical mode or a single atom with
its own reflection.

6.1 The Barium ion

Alkaline earth metals like Barium are common in ion-trapping experiments because singly-
ionized alkaline earth metals have only a single valence electron and straightforward
hydrogen-like electronic structure. Barium (atomic number 56) is the heaviest stable
alkaline earth, considerably heavier than Calcium (atomic number 20) which is the ion
of choice for trapped-ion quantum computers. Light atoms are desirable for trapped-ion
processors that utilize shared motional modes as the basis of multi-qubit gates because
the time required for each gate scales like

p
Nm where m is the atomic mass and N is

the number of ions in the trap. However, we prefer Barium for these experiments be-
cause, conversely, heavier atoms can be better localized for coupling to to optical fields.
Other advanced ion trap quantum computers and simulators use singly ionized Ytterbium
(atomic number 70) which is the penultimate lanthanide [198].

In the following experiments we use the most common of Barium’s seven naturally
occurring isotopes, 138Ba. Since the nuclear spin of this isotope is zero, there is no hyperfine
splitting in the atomic spectra. The electronic ground state of 138Ba+, [Xe] 6 S1/2 is shown
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Figure 6.1: Electronic level structure of 138Ba+.

in Fig. 6.1 alongside the low-lying states we use in this thesis, and the corresponding
wavelength and natural linewdith of each transition.

The ‘blue’1 dipole transition 6 S1/2 $6 P1/2 with transition wavelength �b = 493.41 nm
and natural linewidth �b = 2⇡ ⇥ 15.1 MHz is used for Doppler cooling, optical pumping,
Raman scattering and state read-out. The excited state 6 P1/2 decays with branching ratio
⇡ 3:1 to the long-lived metastable state 5 D3/2. During cooling and pumping it is necessary
to repump out of this long-lived state by driving the 6P1/2 $5 D3/2 transition with an
additional ‘red’ field at �r = 649.69 nm. The red transition linewidth is �r = 2⇡⇥5.3 MHz.

In the experiments reported here we apply a weak magnetic field that determines the
atomic quantization axis and lifts the degeneracy of the Zeeman sub-levels. It is necessary
to impose a quantization axis in this way to optically drive � transitions between the
Zeeman states, otherwise continuous driving by the cooling and repump beams addresses
only ⇡ transitions and simply pumps the atom into an extremal 5 D3/2 state that is not
cooled any further. The Zeeman split ground states 6 S1/2, mj = ± 1

2 can be prepared
in a decoherence-free subspace with coherence times longer than 20 s [199]. These states
compose a microwave-addressable qubit basis.

The other natural qubit states in 138Ba+ are the dipole-forbidden transitions between
the 5 D and 6 S states. The lifetime of the metastable 5 D3/2 state is 80 s, amongst the
longest radiative lifetime of any trapped ion transition [200]. The motional sidebands
about these narrow quadrupole transitions are spectrally resolved, and can be addressed
directly for sideband cooling.

1In terms of nomenclature, 493 nm is an inconvenient sort of cyan. To keep things simple we’ll call this
transition ‘blue’, but reasonable people can disagree as to whether ‘green’ is the better choice.
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6.2 Ion trapping 101

For the purpose of this thesis, we require stationary qubits that are well isolated from
their environment, and localized su�ciently for optical control and coupling. A natural
way to isolate and separate charged particles such as atomic ions is to trap them using
electromagnetic fields. Unfortunately, no stationary electric field can confine a particle in
all three directions, such a field would violate the condition r · E = 0. However, charged
particles can be confined in free space with oscillating electromagnetic fields. The trap-
of-choice for trapped-ion quantum information experiments is the linear radio-frequency
(RF) trap, which creates an oscillating planar quadrupole potential between two pairs
of linear electrodes, one ground one RF at frequency ⌦ [201]. The quadrupole potential
averaged over RF period 2⇡

⌦ gives a near-radial harmonic trap pseudo-potential. A pair
of endcap electrodes provide a further axial static trapping potential. When the axial
potential is weaker than the radial potential, cold trapped particles form a linear crystal
along the axial ‘trap’ direction, separated by their mutual Coulomb repulsion. Typical
linear trap depths range from 0.1 to 10 eV. At UHV background pressure a heavy ion can
be kept trapped for months without cooling.

Following the comprehensive discussion of Paul traps in Ref. [25], the trapping potential
can be decomposed into static and dynamic parts with quadratic form and respective
amplitudes U and V

� =
1

2

X

i=x,y,z

(U↵i + V cos (⌦t)�i)x
2
i . (6.1)

The ideal linear trap has geometric factors ↵z = �(↵x+↵y), �z = 0 and �y = ��x. Because
the potential terms are not coupled we can write independent equations of motion for each
coordinate xi

d2xi
d⇠2

+ [ai � 2qi cos (2⇠)]xi = 0 , (6.2)

which is the Mathieu di↵erential equation with timescale ⇠ = ⌦t/2 and stability parameters

ai =
4|e|U↵i

m⌦2
, qi =

2|e|V �i
m⌦2

(6.3)

for a unit positive charged particle. The Mathieu equation allows stable solutions for
0 < ai < 0.7 and qi  ±a2i /2. When ai, qi ⌧ 1 the particle motion is close to the
lowest-order approximate solution

xi(t) / cos (⌫it)
⇣
1 � qi

2
cos (⌦t)

⌘
(6.4)

consisting of two superimposed harmonic motions: so-called ‘secular’ motion with fre-

quency ⌫i = ⌦
2

q
ai + q2i /2 and ‘micro’ motion at the RF trap frequency ⌦ with amplitude

smaller than the secular motion by a factor qi/2.

When the mean position of a single trapped particle is the minimum of the RF pseudo-
potential [25]

�̃RF =
q|r�RF|2

4m⌦2
, (6.5)

the micromotion can be made vanishingly small, however it is impossible to remove mi-
cromotion completely when more than one particle is trapped in the same potential. The
linear trap reduces the micromotion of trapped-ion crystals by aligning the linear crys-
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tal along a near-null pseudo-potential axis. In the secular approximation micromotion is
neglected and the motion of the trapped particle is simply a three dimensional harmonic
oscillator with oscillation frequencies ⌫i.

6.3 Motional states of harmonically trapped atoms

The complete energy configuration of the atom includes not only the internal electronic
configuration, but also the motional mode. The motional states of a trapped atom in a
harmonic potential are quantized with regularly spaced energy eigenstates

En = ~⌫
�
n + 1

2

�
. (6.6)

The eigenfunctions of the Schrödinger equation with a simple harmonic potential may be
expressed in terms of the Hermite polynomials Hn

 n(⇢) =
1p

2n�1(j � 1)!
p
⇡
Hn�1(⇢)e

�⇢2/2 , (6.7)

where the dimensionless parameter ⇢ is related to the atomic displacement x according to
⇢ =

p
m⌫
~ x. The position and momentum operators of the trapped atom can be written

in terms of ladder operators for the motional quanta

x̂ =

r
~
m⌫

1p
2

⇣
b̂ + b̂†

⌘
,

p̂ = i

r
~
m⌫

1p
2

⇣
b̂� b̂†

⌘
.

(6.8)

The combined motional and electronic eigenstates can be coupled with optical fields. The
interaction Hamiltonian for transitions that conserve motional energy is just the semi-
classical atom-light interaction derived in Eqn. 3.31. The interaction term for transitions
that remove a phonon (red sideband) is the Jaynes-Cummings Hamiltonian [51]

Ĥi = �i⌘~
⇣
⌦0b̂�̂+⌦⇤

0â
†�̂�

⌘
, (6.9)

where the electronic raising and lowering operators are coupled to creation and annihilation
operators for the motional modes instead of photonic modes. Transitions that add a
phonon (blue sideband) are similarly given by the anti-Jaynes-Cummings Hamiltonian. In
contrast to the interaction term in Eqn. 3.21, the vacuum Rabi frequency for the sideband
transition interaction is scaled by the Lamb-Dicke parameter2

⌘ = k cos�

r
~

2m⌫
(6.10)

where k is the wavenumber of the optical transition, � is the angle between the optical
and trap axes and ⌫ is the secular frequency along the relevant axis. The Lamb-Dicke
parameter quantifies the coupling strength between internal and motional states of the
atom. It is the overlap of the photon wavevector k with the ground-state root mean

square displacement extent z0 =
q

~
2m⌫ and also the square root of the ratio between

2Not to be confused with the collection e�ciency, also ⌘. This notation should be clear from context.
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the photonic recoil and trap frequencies. The vacuum Rabi frequency of n-th sideband
transitions scales like ⌘n. When ⌘ ⌧ 1, the probability of higher order phonon transitions
is vanishingly small.

Coherent coupling between the internal atomic configuration and travelling photonic
modes requires ⌘ to be very small. In such experiments the atomic motion is not measured,
and acts instead as a reservoir that must be traced over. Interactions that leave a complete
or partial record in the motional state are therefore a source of decoherence. Although
motional states of trapped ions can be harnessed coherently for quantum information
applications [26, 27, 125], and even prepared in exotic quantum states of fundamental
interest [202–204], in this thesis atomic motion is merely a problem to be minimized as
much as possible, and the ions will always be in a thermal motional state. The thermal
state with mean phonon number hni is a statistical mixture of phonons with probability
distributed according to

Pn =
hnin

(hni + 1)n+1
. (6.11)

Taking the weighted sum of position probability distributions Eqn. 6.7 with weightings
Eqn. 6.11 gives a Gaussian position distribution for the thermal motional state.

6.4 Experiment configuration

6.4.1 The linear Barium trap

The linear trap used in these experiments has been in operation for some time. Daniel
Rotter reports in detail the implementation of this linear trap in Ref. [205]. The design
itself is common to many trapped-ion experiments, and was modified from the Calcium
trap design of Stephan Gulde in Ref. [206]. The design of the trap is shown schematically
in Fig. 6.2 with the salient dimensions. The trap consists of four blade-shaped electrodes
spaced regularly around the trap axis. The tip of each blade is 0.7 mm from the trap
centre. One opposing pair of electrodes are at radio frequency (RF) and the other pair are
grounded. The trap operates with a radio frequency of ⌦ ⇡ 2⇡ ⇥ 15.1 MHz and powers
of 2-7 Watts. Two endcap electrodes with a static voltage of U ⇡ 400 � 1000 V lie on
the trap axis 2.2 mm from the trap centre. Typical trap potentials and frequencies for
trapping one or two ions are given in Tab. 6.1 .

The trap is loaded from a beam of thermal, neutral Barium atoms ejected from an oven
inside the vacuum chamber. In contrast to shallow optical traps, which are typically only
a few mK deep, ion traps do not need to be loaded with pre-cooled atoms. The neutral
atoms are photo-ionized via a resonant two-photon process with a continuous 413 nm
photo-ionization beam from a Toptica DL100 diode laser system. The photo-ionization
beam co-propagates with cooling and repump beams to provide simultaneous ionization
and cooling at the same location. A detailed analysis of the loading scheme and feasible
loading rates is provided in Ref. [205].

6.4.2 Laser systems

In addition to the photo-ionization beam described above, four laser systems provide
control over the electronic configuration shown in Fig. 6.1. The 493 nm beam addressing
the 6 S1/2 $ 6 P1/2 transition used for cooling, pumping and excitation pulses is generated
by frequency doubling 986 nm laser light from a Toptica DL Pro. The 986 nm source is
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Figure 6.2: Schematic of the linear radio-frequency ion-trap used in the following experiments,

with the relevant cooling, pumping and quadrupole beams as well as the detection axis (also shown

as a beam, although with reduced divergence). The trap dimensions are shown in mm. Angles

between each beam and the trap axes x̂, ŷ and ẑ are given in Tab. 6.1.
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Parameter Single ion Ion pair

DC potential, U (V) 1,000 400
RF potential, V (V) 1,300 1,000

x y z x y z

Secular frequency, ⌫ (MHz) 1.81 1.84 0.97 1.45 1.47 0.49

Cooling angle �c (deg.) 75.69 48.56 44.95 75.69 48.56 44.95
Lamb-Dicke cooling, ⌘c 0.014 0.038 0.056 0.016 0.042 0.078

Pumping angle, �p (deg.) 74.30 74.30 22.50 74.3 74.3 22.50
Lamb-Dicke pumping, ⌘p 0.016 0.015 0.073 0.017 0.017 0.102

Detection angle, �d (deg.) 45.00 45.00 90.00 45.00 45.00 90.00
Lamb-Dicke detection, ⌘d 0.040 0.040 0.000 0.045 0.045 0.000

Quadrupole angle, �q (deg.) 49.21 49.21 67.50 49.21 49.21 67.50
Lamb-Dicke quadrupole, ⌘q 0.011 0.010 0.008 0.012 0.012 0.012

Table 6.1: Key parameters of the linear RF trap. Typical voltage configurations and corre-

sponding trap frequencies are shown for trapping one or two ions. Beam angles and Lamb-Dicke

parameters are listed for each beam and each trapping axis.

Pound-Drever-Hall (PDH)[207, 208] locked to an external reference cavity with a finesse
of 1200. This reference cavity is stabilized with respect to a Tellurium line by modulation-
transfer spectroscopy in a Tellurium vapour cell with the frequency-doubled 493 nm output
light [209]. The source is doubled in a KNbO3 crystal inside a ring cavity. About 20 mW
of 493 nm light with a linewidth of �!b ⇡ 2⇡ ⇥ 100 kHz is available at the output of the
system. Details of this scheme are available in Ref. [209].

A 650 nm beam addressing the 6P1/2 $5 D3/2 transition is used as a repump during
cooling and pumping, and as an excitation beam. It is provided directly by a Toptica
DL100 diode laser PDH locked to an external reference cavity. The reference cavity is not
stabilized, and instead we monitor the frequency on a High Finesse, WS7 wavemeter. This
system provides 8 mW of 650 nm light with a short term linewidth of �!r ⇡ 2⇡⇥100 kHz.

A quadrupole excitation beam addressing the 6 P1/2 $5 D5/2 transition at 1762 nm
is derived from a ‘Koheras Adjustik’ Thulium doped fiber laser. This field can be used
for sideband cooling, direct manipulation of the quadrupole qubit and shelving operations
on the RF qubit. The laser frequency is stabilized to a high-finesse reference cavity as
described in detail in Ref. [210]. This scheme produces 4 mW of power with a linewidth
of �!q ⇡ 2⇡ ⇥ 1 kHz. The quadrupole transition addressed with this laser is therefore
Zeeman and sideband resolved.

Because the quadrupole transition is so long-lived, it is sometimes necessary to pump
the ion out of the 5 D5/2 states with a 614 nm beam addressing the 6P3/2 $5 D5/2 dipole
transition. This beam is derived from a Toptica, DL-DFB diode laser at a wavelength
of 1228 nm that is PDH locked to an external cavity and monitored on the wavemeter.
The output of this laser drives a Toptica DL-SHG doubling cavity to produce the 614 nm
quenching beam with an available power of 300 µW.



84 Trapped-ion apparatus

6.4.3 Magnetic field and pumping

The quantization axis B̂ is fixed by three orthogonal pairs of Helmholtz coils attached
to the exterior of the vacuum chamber. In this configuration the coils are capable of
compensating ambient static fields, such as the Earth’s magnetic field, and fixing an
arbitrary static field at the location of the trapped ions. The magnetic field shifts each
level by an amount

�E = mJgJµB|B| , (6.12)

where the Lande factors gj are given by

gj =
J(J + 1) + S(S + 1) � L(L + 1)

2J(J + 1)
(6.13)

and S, L and J are the electron spin, orbital angular momentum and composite angular
momentum numbers respectively and µB = e~/(2me) is the Bohr magneton.

The experiments reported here are performed with a static field in the range of B =
1 � 5 G which produces a ground-state splitting of 2.8 � 14 MHz. The quantization axis
will be chosen to lie on a plane containing the detection axis, cooling and repump beams
that is 22.5� from the trap axis, see Fig. 6.2(b). For applications requiring pumping we
will choose B̂ to lie along the projection of the trap axis onto this plane so that the
detection and quantization axes are perpendicular. As shown in Fig. 6.2, the pump beam
lies along the same axis and drives simultaneous �+,� transitions in some proportion and
with relative phase depending on the optical polarization. When circularly polarized, and
used in combination with a repump beam (not necessarily co-propagating), the pumping
beam prepares the ion in one of the Zeeman-split ground states.

The Zeeman-split ground state transition can be driven coherently by RF magnetic
fields. For this purpose a 8.5 cm diameter, 1 mm thick, single-loop coil is arranged 6 cm
below the trap and outside the vacuum chamber. The coil and trap capacitance form an
LC circuit at a frequency of 11.5 MHz. Details of the driven RF qubit transition can be
found in Ref. [210]

6.4.4 Doppler cooling

For strong optical coupling we must localize the trapped ions to within regions much
smaller than the optical wavelength. In practice this means cooling the ions to within a
score of motional quanta of the ground state. With laser cooling it is possible to prepare
trapped atoms and ions at temperatures from milli- to micro-Kelvin, more than su�cient
for this work. In the following experiments we will Doppler cool the trapped ions with a
493 nm cooling beam addressing the 6 S1/2 $6 P1/2 dipole transition and 650 nm repump
beam addressing the 6 P1/2 $5 D3/2 dipole transition. The cooling and repump beams
co-propagate along either the pumping or cooling axes, see Fig. 6.2, so that they overlap
with each independent motional degree of freedom.

The cooling beam is red-detuned from the atomic transition by �, such that momentum-
exchange in scattering from this transition produces a viscous force opposing the ion’s oscil-
lation and an associated cooling rate [211]. However, each photon scattering event consists
of absorption followed by random scattering (usually into the dipole mode). Because the
scattering is undirected, the associated photon recoil is di↵usive with an associated heating
rate. Doppler cooling reaches an equilibrium at the Doppler temperature limit TD when
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Figure 6.3: Zeeman splitting of the 138Ba+ cooling manifold showing (a) possible ⇡ transitions

and (b) possible �+ (blue) and �� (red) transitions. Each level is shown with the corresponding

Lande factor gs,p,d.

the heating and cooling rates are identical. On a cyclic transition

TD =
~
�
(1 + s) �2 + 4�2

�
(1 + ✏)

16�kB
, (6.14)

where s is the resonant saturation parameter s = ⌦2/�2 and ✏ is a geometry factor
associated with the scattering mode (✏ = 2/5 for ⇡-dipole radiation oriented away from
the motional axis, ✏ = 1 for uniform emission) [25]. At the optimal Doppler detuning

�D = 1
2�

p
1 + s , (6.15)

but random dipole orientation, and with low power s ⇡ 0, the limit becomes

TD =
~�(1 + ✏)

p
1 + s

4kB
, (6.16)

⇡ 1

2

~�
kB

, (6.17)

the same as for atoms in free-space. The micromotion of the trapped ion complicates this
picture slightly, but for trapping parameters a,q ⌧ 1 the scalar potential approximation
above holds well [212].

In our experiments the cooling transition is not cyclic and requires a repump. Ignoring
Zeeman splitting for now, the cooling configuration is the ⇤-atom of Sec. 3.4 and the
scattering rate goes like the excited state population. The optimal final temperature is
reached when both beams are configured to cool and approaches Eqn. 6.17 with � =
�b + �r = 2⇡ ⇤ 20.4 MHz which gives TD = 489 µK. Because each of the levels in this
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cooling manifold are Zeeman split, the actual system dynamics are more complicated, and
in practice we often configure the repump for maximum fluorescence rather than optimal
cooling, but the Doppler limit above remains a good rule of thumb for the temperature
of our trapped ions. In Fig. 6.4(a) the standard deviation from the trap centre is shown
as a function of temperature for the single-ion trap configuration from Tab. 6.1. The ion
position probability distributions according to Eqn. 6.11 are shown in Fig. 6.4(b) at the
Doppler limit temperature TD. At this temperature the spatial extent along the trap axis
and in the radial plane are about 29 nm and 16 nm respectively.

Initially, cooling on a fast transition is desirable because it yields a faster cooling rate.
However, we’ve seen that the cooling temperature limit generally scales with the transition
decay rate. Once the atom is su�ciently cool it is advantageous to continue cooling on a
narrower transition. Cooling to the ground state would reduce the standard axial atomic
displacement from 29 nm to 6 nm. In our experiment this is possible using the narrow
quadrupole transition 6 S1/2 $5 D5/2 (see Sec. 6.4.2) for sideband cooling, but this process
is too slow to apply in any of the experiments presented here. Sideband cooling with this
quadrupole transition is capable of cooling a single trapped ion to a mean phonon number
of hni = 0.03 (or ground state probability P0 = 0.97) in 10 ms [210].

A faster alternative is EIT cooling. As described in Refs.[213–215], EIT cooling is a
technique that tailors a narrow EIT window induced by a ⇤-driven atom to favour red-
sideband absorption. An EIT cooling stage following the Doppler cooling would improve
many of the results shown here, and will be introduced to the apparatus in the near future.

6.4.5 Collection and Detection

Fluorescence is collected from the trapped ions by two high-aperture lens objectives (HA-
LOs) positioned inside the vacuum chamber. The HALOs are identical three-lens objec-
tives (Linos Halo 25/04) with a numerical aperture of 0.4, focal length 25.0 mm, and total
peak-to-valley wavefront distortion below 50 nm [216]. The objectives H1,2 are configured
near-confocally along the detection axis shown in Fig. 6.2. H1 is well focussed on the
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Figure 6.5: Detection configurations of the linear ion trap with one and two ions. Two high

aperture lens objectives (HALOs, each objective shown here as a single lens) collect fluorescence

from the trapped ions along one direction of the detection axis. (a) In the symmetric configuration

each HALO collects one side of the ion fluorescence and both modes are measured. (b) In the

reflected configuration one side of the ion fluorescence is returned by a distant mirror such that

the ion is coupled to it’s own reflection. The single combined mode is measured, interference is

possible between the two combined fluorescence fields. (c) In the coupling configuration the remote

mirror may be used to couple two di↵erent ions (adjacent or otherwise). The ions share a common

fluorescence mode with relative phase determined by the mirror distance d. For clarity the forward

and backwards travelling fluorescence are shown with di↵erent colours.

ion, and produces a collimated field from the atomic fluorescence. H2 is configured with
focal plane ⇡ 0.4 mm short of the trapped ions such that atomic fluorescence is imaged
at a plane 34 cm from the objective. Light collected by each HALO can be measured
with either fibre-coupled avalanche photodiodes (Laser Components, COUNT blue) or an
intensified CCD camera (Andor iXon). The APDs have a quantum e�ciency of ⇡ 0.7 and
a photon echo at a delay of ⇡ 100 ns which we remove by introducing a 100 ns dead-time
following detection with counting electronics. The CCD quantum e�ciency is ⇡ 0.9. De-
tection events at the APDs are time tagged using a photon counting module (Picoquant,
PicoHarp 300) with a time resolution of 4 ps on detection channels and 1 ns on marker
channels. The APDs have a specified dark count rate of 10 counts/s.

A remote mirror outside the vacuum chamber at a distance of 30 cm from the trapped
ions can be used to return the collimated field through one lens. Single-ion detection may
therefore be configured for ‘symmetric’ two-mode or ‘reflected’ single-mode detection,
Fig. 6.5(a) and (b). The vacuum chamber viewport has been measured to distort the
wavefront by less than 50 nm or �/10 for the blue cooling transition. In the reflected
configuration the ion fluorescence self-interferes with 90% visibility when sideband cooled
to near the ground state [217] and 70% visibility when Doppler cooled to near TD [218]. It
is possible to lock the ion-mirror path length such that constructive interference enhances
the detection e�ciency [217]. With two or more trapped ions, the remote mirror may be
used to couple selected atoms to a single mode as per Fig. 6.5(c).

As we derived in Sec. 4.3.1, two confocal spherical lenses with a NA of 0.4 are capable
of collecting a proportion ⌘I = 0.12 of the fluorescence from an optimally oriented dipole,
meaning a ⇡ (�) transition quantized perpendicular (parallel) to the detection axis. This
is why the detection and pumping axes are perpendicular in the configuration shown
in Fig. 6.2. The fibre coupled photodiodes (APDs) are coupled with single-mode fibres
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to reduce the detection of stray light fields. In Sec. 4.7 we derived the optimal Gaussian
mode fibre coupling e�ciency for spherical lenses with NA = 0.4, ⌘c = 0.81. The maximum
fluorescence photon detection e�ciency in this experiment is therefore 10% with APDs
and 12% on the CCD camera given optimally oriented transition dipoles.

6.5 Summary

We have described the details of the ion-trap apparatus to be used in the following chap-
ters, as well as the necessary ion-trapping theory. The required properties and optical
transitions of 138Ba+ are given, and we introduced the quadrupole and RF qubits avail-
able with such a system. The key trapping and cooling parameters of the linear RF trap
we use were given, and typical motional states derived. We further detailed the laser
systems and magnetic fields available for manipulating our trapped-atom qubits. In the
next chapter we perform experiments to characterize the atom-field coupling with one or
two ions trapped in this system.
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217. L. Slodička, et al., Interferometric thermometry of a single sub-Doppler-cooled atom,
Phys. Rev. A 85, 043401 (2012).

218. J. Eschner, et al., Light interference from single atoms and their mirror images,
Nature 413, 495–498 (2001).



Chapter 7

Trapped-atom single-photon source

Intellect: By convention there is sweetness, by convention bitterness, by conven-
tion color, in reality only atoms and the void. Senses: Foolish intellect! Do you
seek to overthrow us, while it is from us that you take your evidence?

– Democritus, Surviving fragment (approx. 400 BCE)

Single atoms or atom-like emitters are the purest source of single photons; they are
intrinsically incapable of multi-photon emission. To demonstrate this degree of photon
number-state purity we have realized a single-photon source with a single atom coupled
to travelling photon modes by free-space optics. The atomic and photonic states are
coupled with a pair of high aperture lens objectives as described in Chap. 6. Despite
the limited collection e�ciency of this system, we’re able to demonstrate several useful
properties of the trapped-atom light source. In this chapter we develop and characterize
two experimental schemes for the generation of low-noise single photons.

We produce a stream of single photons under pulsed excitation with either blue (493 nm)
or red (650 nm) excitation beams. In each case we fit an eight-level Bloch model of the
138Ba+ cooling manifold dynamics to dark resonance spectra, and this model then ac-
curately predicts both the arrival time distribution of pulsed photons and the g(2)(⌧)
dynamics of photons produced by continuous excitation. This model captures features
including Rabi-oscillations on the 6 S1/2 $6 P1/2 cooling transition and quantum beats
caused by the interference of absorption pathways.

In the optimal configuration our trapped-ion source produces single-photon pulses
with g2(0) = (1.9 ± 0.2) ⇥ 10�3 without any background subtraction. After subtracting
detector dark counts the residual g2(0) is less than 3⇥10�4 (95% confidence interval). An
analysis demonstrates that our source produces a single-photon light field with critically
low noise su�cient for scalable networks or coupling between multiple qubit registers.
As noted in Chap. 4, the outstanding challenge for trapped atom quantum information
networks remains the e�cient coupling stationary atomic and travelling photonic qubits.
In Chaps. 10 and 11 we consider methods of improving the atom light coupling in such
systems and develop the necessary optics.

7.1 Preparing the trapped ion

For these experiments a 138Ba+ ion is trapped and cooled in a linear Paul trap at the
common focus of two high aperture lens objectives (HALOs) in the reflected configuration
as described in Chap. 6. The complete configuration used here is shown in Fig. 7.1. The
ion is Doppler cooled to within the Lamb-Dicke regime using a 493 nm cooling beam and a
repump beam at 650 nm to close the 6S1/2 - 6P1/2 - 5D3/2 cycle. The cooling and repump
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beams are combined on a beam splitter and co-propagate to the ion along the cooling
axis with a common polarization. The quantization axis is configured perpendicular to
the detection axis, such that photons from � and ⇡ transitions can be separated near-
perfectly by a waveplate-polarizing beamsplitter pair in the detection path.

In this configuration, photons from the ⇡ (�) transitions are Ĥ (V̂) polarized along the
detection axis. However, as we saw in Chap. 4, the dipole image field is not isotropic over
the entire aperture. As the collection aperture increases, the ability to separate transitions
by filtering linear polarizations with a PBS decreases, but in our case the numeric aperture
is small enough to provide substantial extinction. An ideal PBS that selects V̂ polarized
photons paired with the NA = 0.4 objective used here removes 99.998% of photons from the
⇡ transitions and 2.7% of photons from the � transitions. The ratio between transmitted �
and ⇡ photons is ⇠ 10�4, more than su�cient to neglect contributions from the undesired
⇡ transition in our calculations.

The detectors are configured for a Hanbury Brown-Twiss (HBT) measurement per
Sec. 2.5.3; two low-noise fibre-coupled APDs with quantum e�ciencies of 70% and 73% on
either arm of a 50/50 beamsplitter sample a single spatial and polarization mode of the
ion fluorescence collected by one of the HALOs. A remote mirror returns one half of the
collected fluorescence past the ion. Because of losses along the reflected path, the reflected
field intensity is only 66% of the directly collected intensity. Depending on the mirror-ion
distance d ⇡ 30 cm, the two fields may interfere constructively or destructively. When we
require high-visibility interference it is necessary to align the collection such that the two
components are balanced, essentially discarding some of directly collected photons. Given
the measured visibility of our Doppler-cooled ion interference fringe, we could enhance the
collection e�ciency by a factor of ⇡ 1.4 if the mirror position were locked constructively.

The cooling fluorescence signal of single-photon schemes presented here isn’t su�cient
to lock the mirror position to an interference fringe at high repetition rates. Instead, the
mirror-ion distance drifts freely and each measurement is an average over the interference
fringe. An extended cooling stage would increase the fluorescence but slow the repetition
rate, so although a cooling stage long enough to lock the fringe would increase the detection
e�ciency, it would lower the total collected photon rate. An independent interferometer
would provide a means of stabilizing the atom-mirror distance at low flux. A partially
mirrored trap surface is desirable so that one arm of the interferometer can be reflected
from the blades of the trap.

Because a single atomic transition is incapable of multi-photon emission, the fluorescent
field from a single atom1 under continuous driving is antibunched. Antibunching in atomic
fluorescence was first demonstrated with a neutral atomic beam [59] and later with trapped
ions [219]. Similarly, the fluorescence field of our trapped atom under continuous excitation
by the cooling beams shows a pronounced antibunching dip in the observed g(2) correlation
function, see Fig. 7.2. g(2)(⌧) is near zero for ⌧ smaller than the relaxation time of the atom,
before rising to a remission peak. This is the most likely interval ⌧ between consecutive
photon detection events. The correlation function is symmetric up to statistical noise,
and is modulated by the trapping frequency due to residual micromotion. In the following
sections we will model the finer details of correlation functions such as this using the
eight-level Bloch equations.

1In fact from any number of atoms, see Sec. 2.5.4
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7.2 Blue-triggered single photons

In addition to generating a continuous field of antibunched photons, the trapped atom
can be operated to produce a stream of on-demand, single-photon pulses with a scheme
similar to [220, 221]. First we shall consider photons scattered from the RF-qubit states
6 S1/2, mj = ± 1

2 by blue (493 nm) excitation pulses. The experimental sequence is shown
in Fig. 7.3. We begin with 10 µs of Doppler cooling with a vertically polarized cooling
beam that drives both blue �+ and �� transitions equally, followed by 10 µs of pumping
with either a L̂ or R̂ circularly polarized field along the quantization axis. The vertically
polarized repump beam along the cooling axis drives the four red �+ and �� transitions
and remains on during both cooling and repump stages, Fig. 7.4(a) and (b). Depending
on the choice of polarization this sequence prepares the atom in either of the RF qubit
states 6 S1/2, mj = ± 1

2 . A subsequent 493 nm pulse along the quantization axis, but
with the opposite circular polarization, transfers the atomic configuration to the opposite
ground state and emits a single photon, Fig. 7.4(c). Simultaneous with the excitation
pulse, the APDs are gated and begin detecting for a window of 4.5 µs. A time tagging
synchronization pulse is sent to the PicoHarp photon counter to mark the beginning of
the detection window, and photon arrival times are recorded with respect to this marker.

7.2.1 Single-mode detection e�ciency

A photon source is most useful if it produces photons with a single spatial, temporal
and polarization mode, however several decay paths exist for our trapped atom operated
with this scheme. The single-mode fibre, in conjunction with wavelength and polarization
filtering, isolates a single detection mode and only photons scattered into this mode are
detected, reducing the overall e�ciency. First, because of the branching ratio between
blue and red decay paths, there is a 26% probability that this process scatters a single
red photon that is subsequently filtered out. Second, two decay pathways exist for blue
photons, a ⇡ and � transition with probabilities given by the Clebsch-Gordon coe�cients
Cb,r. Two thirds of scattered blue photons are emitted from the � transition and 1/3
are emitted from the ⇡ transition. We choose to collect photons along the perpendicular
detection axis, and along this axis the probability of detecting photons from the ⇡ and �
transitions are

⌘i = ⌘iI⌘
i
c⌘d(C

i)2
�b

�r + �b
(7.1)

⇡ 0.017

where i = �,⇡, ⌘iI is the collection e�ciency at angle � = ⇡
2 from Eqns. 4.18 and 4.19,

⌘ic is the corresponding coupling e�ciency, ⌘d is the quantum e�ciency of the APDs at
493 nm and �b and �r are the free-space decay rates of the blue and red transitions
respectively. Compared to the ⇡ transition, photons are twice as likely to be scattered
from the � transition, but half as likely to be detected, so that the total e�ciency for each
transition is equal. This is the maximum end-to-end e�ciency of the scheme, not including
absorption and scattering losses from optics along the detection path or sub-optimal fibre
coupling. We collect horizontally polarized photons, corresponding to emission from either
� transition.

We note here that the most e�cient single-mode detection configuration is to collect
photons from the � transition along the quantization axis, which improves ⌘� from Eqn. 7.1
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� transitions with equal Rabi frequency ⌦b and a single 650-nm repump beam perpendicular to

the quantization axis drives four red � transitions with equal Rabi frequencies ⌦r. A magnetic

field splits each level into Zeeman states with magnetic quantum number mj . Detunings �b,r are

defined with respect to the unsplit energy levels. (b) Pumping configuration. A �
+

polarized pump

beam with detuning �
+

and Rabi frequency ⌦
+

and a 650 nm repump beam (not shown) prepare

the atom in state 6 S
1/2

, m
j

= 1

2

. (c) Excitation configuration. A �� polarized excitation beam

with detuning �� and Rabi frequency ⌦� pumps the atom to state 6 S
1/2

, m
j

= – 1

2

and scatters

a single photon.

by a factor of two. To reduce contamination, the excitation beam in this case should be
linearly polarized along the quantization axis. Alternatively, with small-aperture detection
optics the quantization axis and detection axis can be separated by a slight angle and the
excitation beam can be circularly polarized. In our case the detection axis is fixed by the
position of the HALOs, and we have not configured any pumping beam along this axis, so
we are restricted to the chosen configuration.
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7.2.2 Photon-source dynamics

To completely characterize the photons produced by this scheme we need to understand the
atomic dynamics during the cooling, pumping and excitation stages. For this purpose we
take continuous excitation spectra. The resonance fluorescence under continuous driving
is recorded as a function of one laser detuning, in this case we choose to scan �r. The
scan is slow enough that the fluorescence at any time is the steady-state fluorescence rate.
Fig. 7.5(a) and (b) show the resonance fluorescence spectrum of a single trapped ion under
continuous driving by (a) the cooling and repump beams and (b) the pump, excitation
and repump beams.
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Figure 7.5: Blue-triggered 138Ba+ single-photon source with corresponding Bloch

model. (a) Dark-resonance spectrum of the trapped atom with cooling and repump beams (black)

and fitted model (orange). (b) Dark resonance spectrum with the same repump beam and inde-

pendent pump and excitation beams driving �± transitions (black) and fitted model (orange).

(c) g(2)(⌧) of the source driven continuously by the same �± polarized pump beams (black) and

model (orange) with parameters fixed from (c). (d) Single-photon arrival time histogram from the

source pulsed according to Fig. 7.3 with the pump and excitation beams configured according to

Fig. 7.4(b) and (c) (�� - red) and also with pump and excitation beams swapped (�
+

- blue). The

corresponding models are shown (solid lines) with parameters fixed from (c). The shaded region

around each measurement indicates the 2-� Poissonian uncertainty region. All parameters in MHz.

We may also measure the g(2)(⌧) of the source by taking the auto-correlation of the
photon arrival times measured by our HBT apparatus under continuous excitation in either
configuration. The g(2)(⌧) of the source driven by the pump, excitation and repump beams
is shown in Fig. 7.5(c). Finally, we can consider the photon arrival time histograms when
the source is operated to produce pulsed photons from either the �+ or �� transition
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by swapping the polarizations of the pump and excitation beams. Figure 7.5(d) shows
the arrival time histograms recorded with the source configured for each polarization.
Both photons triggered by the pump and excitation beams have wavepackets shorter than
500 ns, but this shouldn’t be confused with the pumping time. E�cient pumping to a
single ground state requires several decay and excitation cycles.

Although the 6 S1/2 $ 6 P1/2 $ 5 D3/2 cooling and repump transition forms a typical
⇤ system, each level is Zeeman split in the presence of magnetic field. The system dynamics
of the trapped atom under excitation by cooling and repump beams are therefore given by
a more complicated model taking each of the eight Zeeman levels and all possible dipole
transitions into account. In the following section we develop such an eight-level master
equation model and show how it predicts the observed behaviour.

7.3 Eight-level Bloch equations

We can extend the three level ⇤-atom model we derived in Sec. 3.4 to describe the eight
level 6 S1/2 $ 6 P1/2 $ 5 D3/2 cooling and repump manifold relevant to the blue-triggered
single photon source. We begin by labelling the atomic eigenstates |1i � |8i according to
the scheme in Fig. 7.4(a). The Zeeman-split atomic Hamiltonian in this basis consists of
common optical detuning and Zeeman splitting terms. When we address only � transitions,
as in the cases above, we can write the atomic Hamiltonian

Ĥa = ~ (�+�̂11 + ���̂22 + �r (�̂55 + �̂66 + �̂77 + �̂88))

+ ~µB|B| ���̂11 + �̂22 � 1
3 �̂33 + 1

3 �̂44 � 6
5 �̂55 � 2

5 �̂66 + 2
5 �̂66 + 6

5 �̂88
�

(7.2)

where �r is the repump detuning and �± are the cooling/excitation detunings of the �±

transitions. As shown in Fig. 7.4, each detuning is defined with respect to the unsplit
transition frequency.

The interaction Hamiltonian is the sum of repump, pump and excitation interaction
Hamiltonians

Ĥr =
~⌦rp

2
(C53�̂53 + C73�̂73 + C64�̂64 + C84�̂84) + H.c. , (7.3)

Ĥ+ = ~⌦+C14�̂14 + H.c. , (7.4)

Ĥ� = ~⌦�C23�̂23 + H.c. , (7.5)

(7.6)

where Cij and �̂ij are Clebsch-Gordon coe�cients and raising operators for the |ii ! |ji
transition, and ⌦r,+,� are the resonant Rabi frequencies associated with each beam. And
the Liouvillian consists of collapse operators corresponding to decay by all ten transitions
|ii ! |ji shown in Fig. 6.3

Ĉij =
p

�b,rCij �̂ij (7.7)

and decoherence terms
Ĉii =

p
�!b.rCii�̂ii (7.8)

corresponding to laser linewidths �!b,r for each beam.
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⌦c �c ⌦r �r ⌦+ �+ ⌦� ��

Cool. spectrum 23(1) -24(1) 14.7(3)
Pumps spectrum 14.2(5) 18(1) -36(2) 17(1) -30(2)
Pumps g(2)(⌧) 14.20 -10.0 18.0 -36.0 17.0 -30.0
Emm. flux �+ 18.0 -36.0
Emm. flux �� 17.0 -30.0

Table 7.1: Bloch model parameters of Fig. 7.5(a)-(d). The relevant parameters are shown for

each measurement, with free parameters in bold. Parameters for the g(2)(⌧) and single photon

emission flux measurements are fixed according the appropriate spectrum fit. All parameters are

given in units of 2⇡⇥ MHz.

Solving the master equation from Eqn. 3.32 under the steady-state condition

@

@t
⇢̂ = � i

~

h
Ĥ, ⇢̂

i
+ L̂(⇢̂) = 0 , (7.9)

gives the equilibrium density matrix ⇢̂. The ⇡-polarized resonance fluorescence rate is pro-
portional to the total excited state population ⇢̂33 + ⇢̂44, therefore finding the equilibrium
solution as a function of one detuning allows us to calculate an expected resonance fluores-
cence spectrum. Because the spectrum is sensitive to many parameters, fitting a resonance
fluorescence model to the measured spectrum allows us to identify free parameters quite
precisely. Having fixed these parameters by fitting the most sensitive measurement, we
can use them predictively in the model.

We follow this process for the blue-triggered single-photon data presented in Fig. 7.5.
Figure 7.5(a) shows the above model fitted to a resonance fluorescence taken under con-
tinuous excitation by the cooling and repump beams, while scanning the repump detuning
�r. This corresponds to the common blue beam case ⌦+ = ⌦� = ⌦c, �+ = �� = �c.
The magnetic field magnitude (|B|) is calibrated by spectroscopy of the quadrupole tran-
sition 6 S1/2 $ 5 D5/2 using the narrow-linewidth 1.7µm laser, see Sec. 6.4.2. We scan
the repump laser frequency by changing the reference cavity length. A portion of the re-
pump beam is sent to a wavemeter (High Finesse, WS7) to measure the repump frequency
range. The fitted model has three free physical parameters: the cooling detuning �c and
the cooling and repump Rabi frequencies ⌦c,r, all shown on the figure. Both the measured
and modelled fluorescence are normalized such that the flux rate ranges from zero to one.

Figure 7.5(b) shows the model fitted by the same method to a spectrum taken with the
same repump beam used during cooling, and excitation and pump beams with opposite
circular polarizations. In this case the blue detunings and Rabi frequencies are independent
for a total of six free parameters. Given that the spectra in Fig. 7.5(a) and (b) were
taken with the same repump beam, we expect agreement between the fitted repump Rabi
frequency ⌦r, and indeed the values agree to within the uncertainty of the fitting process.

The model shows close agreement with the measured spectra, matching the resonance
width, and the location and width of the four dark resonance peaks, albeit with some
discrepancies. Increasing the complexity of the fit by, for example, freeing the line width
or magnetic field or including a small excitation of the red ⇡ transitions, removes these
remaining di↵erences. However, with any more free parameters the match to subsequent
measurements deteriorates, presumably due to overfitting. By limiting the number of free
parameters we reduce the closeness of the fit but improve the predictive power of the
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model. Sec. 7.3 demonstrates how the values from the spectrum fits are subsequently used
in the g(2)(⌧) and single photon emission flux models.

The g(2)(⌧) correlation measurement in Fig. 7.5(c) was recorded with the pump and
excitation beams from Fig. 7.5(b) and �r = 10 MHz chosen at the fluorescence peak.
The correlation measurement was taken over 30 minutes. Resonance fluorescence spectra
were taken immediately before and after to ensure limited parameter drift. Taking the
steady state solution with parameters from the fit to Fig. 7.5(b), and time evolution given
by the master equation, we can calculate the model correlation function between two-
time detection operators for ⇡ polarized photons (�̂31 + �̂42) /

p
2 . The measured and

modelled correlation functions match well with parameters entirely fixed by the resonance
fluorescence spectrum.

Finally, we can apply this model to predict blue-triggered photon arrival time his-
tograms. Starting from the pure initial state |1i or |2i with only the pump or excitation
interaction term Ĥ+ or Ĥ� the master equation predicts single-mode fluorescence rates
proportional to the single-photon detection probability density. Because the beams are
switched by an AOM with rise time comparable to the excited state decay time, we must
consider a time-dependant Hamiltonian

Ĥ = Ĥa +

s
I(t)

I0
Ĥ± , (7.10)

where I0 is the maximum beam intensity and I(t) is the AOM intensity switching function.
We measured an AOM switching function well approximated by an error function with
time constant ⌧r = 15 ns. Again, taking the pump beam parameters from the resonance
fluorescence fit in Fig. 7.5(b) and the measured rise time gives area-normalized photon
arrival time distributions consistent with our measurement, including a weak Rabi-flop on
6 S1/2 $6 P1/2 by the strong excitation beam.

In summary, we have extended the ⇤-atom model to an eight-level model for the 6 S1/2

$6 P1/2 $5 D3/2 cooling and repump manifold excluding atomic motion. By fitting this
model to observed resonance-fluorescence spectra under two driving conditions (but with
a common repump beam) we identify cooling, repump, pump and excitation beam Rabi
frequencies and detunings. With parameters taken from these fits the model matches
the g(2)(⌧) correlation function and single photon arrival time distributions taken under
the same conditions without any further fitting. This model is a decent match for the
observed dynamics, albeit with some discrepancies, under a variety of conditions, and
accurately predicts the single-photon shape from our blue-triggered photon source. The
strong agreement suggests our simulations are a realistic model of the complex atom-
photon dynamics.

7.4 Single-photon mode images

By replacing the APDs used above with an imaging system, we can measure the dipole
transition images we derived in Chap. 4. Photons generated by continuous excitation
are imaged onto an intensified CCD camera (ICCD, Andor iStar A-DH334T-18H-63).
The CCD pixel size is 13 µm, and we use a second imaging lens with a focal length of
f 0 = 150 mm to provide a magnification of M = 5.40± 0.072. Due to misalignment of the

2If the in-vacuum optics are perfectly focussed then the magnification should be M = f 0/f = 6.0.
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Figure 7.6: (a) Precision of vertical (y-axis) image centroid estimation as a function of accumula-

tion time, as measured by the Allan variance. (b) Integrated y-axis intensity for images of the �±
x

atomic transitions (blue and red). Data points represent each row of pixels, and Gaussian fits to

each distribution are shown with dashed lines. The di↵erence between the fits (orange) is shown

with an uncertainty region corresponding to the Poissonian uncertainty of the raw count data.

Measurement and figure by Gabriel Araneda. (inset) Total accumulated image of the �+

x photon

field.

in-vacuum optics and aberrations of the imaging lens, the dipole image is not di↵raction-
limited and has a x(y)-axis width of 15.6 ± 0.2 µm (14.2 ± 0.2 µm).

Despite the size of the image, the dipole image centroid reaches a minimum uncertainty
of only 3.3 ± 0.7 nm after 74 s of total accumulation time under continuous excitation,
Fig. 7.6(a). This compares well to the best atom-position measurements [161, 222] and
is, for example, better than the atom’s localization at Doppler temperatures as derived in
Sec. 6.4.4. For shorter times the uncertainty is dominated by shot noise, and for longer
times the uncertainty is dominated by slow drifts of the imaging system.

7.4.1 Imaging single-photon angular momentum

This precision is su�cient to measure small displacements of the image centroid caused by
optical spin-orbit coupling in the photon field. As introduced in Sec. 4.2.3, the image of
a circular dipole taken perpendicular to the quantization axis is displaced relative to the
emitter’s actual position by the circular dipole’s spiral wavefront. We perform the first
measurement of these displacements, and demonstrate that the e↵ect has consequences
for sub-wavelength optical microscopy with chiral fields. As we shall see, even small
polarization imperfections can lead to large apparent displacements.

As before, we generate single photons �±x from the blue �⌥ transitions, such that each
photon carries angular momentum Ĵx |�±x i = ±~ about the quantization (x) axis. Along
the detection (z) axis this angular momentum manifests not as spin ŝx, but instead as
orbital angular momentum l̂x = ±~. This, in turn, projects onto the perpendicular linear
momentum p̂y according to l̂ = r⇥ p̂. Finally, we have the operator for displacement in
the image plane

ŷ =
f 0

~k p̂y =
f 0

f

1

~k l̂x =
M�

2⇡~ l̂x . (7.11)

This projection only holds along the detection axis, but remains a reasonable approxima-
tion in the small-aperture limit �a ⌧ ⇡/2. The aperture selects photons by their position
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in the Fourier plane, a weak position measurement, and therefore introduces uncertainty
onto the image-plane position distribution according to the conjugate measurement rule.
However, because |�±i are p̂y eigenstates along the detection axis, the centroid (or mean)
displacement is una↵ected by the aperture and we are left with displacement

�y = hŷi =
M�

2⇡~

D
l̂x

E
= ⌥M�

2⇡
, (7.12)

in the small-aperture limit.

To measure this displacement, blue-triggered single photons are produced according
the scheme of Sec. 7.2 and the photo-intensifier is gated electronically to suppress detection
during the cooling and excitation pulses. We can measure this displacement in the �±x
single photon field because, as discussed in Sec. 7.1, the lens aperture is su�ciently small
that polarization filtering allows us to collect only photons from the two �⌥ transitions
with negligible distortion to the transition image.

The detection rate of blue-triggered single photons is considerably lower than the
photon rate under continuous excitation, only ⇡ 1600 phot./s. Because the imaging system
drifts at the same rate, the pulsed-single photon centroid estimation is considerably lower.
However, we measure relative displacements of the single photon field with comparable
precision by alternating test and reference images. We alternate images of the �±x dipoles
with a cooling fluorescence reference, exposing each image for 0.5 s and measuring the
relative displacement between the two circular dipole images. The relative vertical (y-
axis) displacement after three hours of measurement is �y/M = 158 ± 4 nm, consistent
with the expected small-aperture image displacement �y/M = �/⇡ = 157.1 nm. The
measured distributions and their di↵erence are shown in Fig. 7.6(b).

7.4.2 Displacement of general dipoles

The �x dipoles are a special case of the general dipole

d = cos(↵)y + I sin(↵)z , (7.13)

corresponding to ↵ = ±1
4 , the dashed lines Fig. 7.7. Along with the linear dipoles d(↵ =

0, ±1), these are the eigenstates of l̂x in this subspace. In Fig. 7.7 the centre-of-mass
displacement is calculated for images of the dipole d as a function of the mixing angle ↵
for imaging systems with varying numeric aperture according to the method of truncated
Hankel transforms developed in Sec. 4.4.2. The collimated and image fields of d(↵) are
shown in Fig. 7.8.

Remarkably, although the |�±i dipole fields are extremes of the angular momentum
eigenspectrum, they are not the maximally displaced states. Dipoles near to |⇡zi, but
with a small degree of ellipticity | i =

p
1 � ✏ |⇡zi+

p
✏ |�±x i are displaced by considerably

more than �y = M�/(2⇡) in the small-aperture limit, which is to say that Eqn. 7.12
doesn’t hold in general. The measured displacement is, more strictly, the average over the
aperture of the momentum per detected photon pky

�y =
M�

2⇡~

Z �
a

0
d�

Z 2⇡

0
d✓ pk(✓,�)y , (7.14)
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Figure 7.7: (a) Centre of mass of the dipole d = cos(↵)y + I sin(↵)z imaged by spherical lens

with various numeric apertures. Elliptical dipoles like may be displaced by an amount �y that is

larger than the eigenmode spectrum and that scales inversely with the collected field proportion

⌘
I

according to the weak value amplification rule. This weak value amplification is an example of

supermomentum in single-photon field. Several dipoles from Fig. 7.8 are labelled.

which we already defined for Eqn. 4.14

pky = Re
h k|p̂y| i
h k| i =

py(k)

I(k)
. (7.15)

where  is the total photon mode and  k is the plane wave mode with wavevector k.
The momentum per measured photon is the weak value of the momentum conditioned on
emission angle. As such, it exhibits weak value amplification. States that are not angular
momentum eigenstates violate Eqn. 7.12 and may be displaced by an amount inversely
proportional to the collected portion of the dipole field, ⌘I from Eqn. 4.17, and take on
values outside the eigenspectrum of the field. In fact, the displacement can be arbitrarily
large as the aperture vanishes. This ‘super-momentum’ is typical of symmetry-broken spin
orbit systems [74, 77, 223, 224]. Unfortunately, generating such ‘elliptical’ single-photon
states from a trapped atom requires an alternative level scheme, but coherent elliptical
fields have been generated with gold nano-particles in a companion experiment in the
group of Arno Rauschenbeutel to be published alongside these results in Ref. [5].

7.4.3 But is it quantum?

We defined the momentum per photon pk above in terms of the operators on the single
photon field for the sake of completeness, however it bears noting that the displacement
phenomena isn’t strictly quantum. Like optical spin-orbit coupling more generally, this
displacement is due to conservation of momentum in the classical field mode, and not the
quantization of the field itself.

The image-plane intensity distributions and centroid displacements in Fig. 7.7 are
calculated by taking the Fourier transform of classical dipole fields according to the method
of Sec. 4.3, which is an entirely classical Fourier-optics operation. The centroid is the
ensemble average of photon position at the image plane. Although we took this average
over many distinct single photon states, it could just as easily be taken by measuring bright
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coherent or thermal states, so long as the spatial mode was the same. The above single-
photon state measurement simply illustrates a startling consequence of this classical field
transformation: that the angular momentum per photon may, in general, be arbitrarily
large in an area of the field that is vanishingly small [74].

7.5 Red-triggered single photons

In the blue-triggered scheme, the excitation beam is the same frequency as the collected
photons. This can lead to contamination between the photons from the source, and
excitation-beam photons scattered from the trap electrodes, vacuum chamber windows or
other optics. We can reduce scattered-photon noise from our source by using an excitation
beam that can be e�ciently filtered from the desirable source photons. We produce red-
triggered photons by pulsing the cooling and repump beams according to the scheme shown
in Fig. 7.9, at an attempt rate of 2⇥105 s�1. Once again, the experimental sequence begins
with Doppler cooling by both the cooling and repump beams, we have reduced the Doppler
cooling time to 2 µs to improve the attempt rate and we have also removed the pumping
stage. In this case the ion is prepared in a statistical mixture of the D3/2 shelving states
by 1 µs of driving with only the cooling beam. Both beams are o↵ for 500 ns before the
repump is switched back on to trigger the spontaneous emission of an unpolarized 493 nm
photon.

7.5.1 Single-mode e�ciency

The repump remains on throughout the detection window such that some photons are
scattered after first decaying on the 6 P1/2 $ 5 D3/2 transition some number of times.
This increases the total e�ciency limit to ⌘⇡,� ⇡ 0.023 by removing the dependence on
the branching ratio between the blue and red transitions, but at the cost of decreasing
coherence at the tail end of the photon arrival-time distribution. The measured end-to-end
e�ciency is ⌘ = 0.0054, or 24% of the limit. The di↵erence likely consists of absorption
and scattering losses from the collection and filtering optics, which is not accounted for in
Eqn. 7.1, and sub-optimal fibre coupling.

The initial state mixture produces frequency mixed photons with a corresponding
increase in distinguishability proportional to |B|. For applications requiring a high degree
of indistinguishability it is necessary to prepare a well-defined state, but as we saw in
Sec. 7.2.1 single photons scattered from the 6 S1/2 $ 6 P3/2 transition have competing
decay channels that produce a mixed polarization even when the initial state was pure.
A similar Raman scheme using the 6 S1/2 $ 6 P3/2 $ 5 D5/2 cycle (for example) would
produce perfectly polarized photons at 455 nm if the ion were first prepared in a single
extremal 5D5/2 Zeeman state, because at the chosen wavelength only a single transition is
possible (the Clebsch-Gordon coe�cient is one). This alternative scheme would produce
frequency and polarization pure photons from a � transition, increasing the collection
e�ciency by a factor of two to ⌘ = 0.046 in the current configuration, or by a factor of
three to ⌘ = 0.07 in a configuration collecting photons along the quantization axis - limited
only by the collection optics and detectors.

7.5.2 Photon-source dynamics

In Fig. 7.10(a) we show arrival time histograms of Raman scattered single photons as the
repump power is steadily increased past the transition saturation point. As before, we
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Figure 7.9: Experimental sequence for red-triggered single photons showing the wavelength and

transitions addressed by each excitation pulse.
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Figure 7.10: Red-triggered 138Ba+ single-photon source and corresponding Bloch

model. (b) Area normalized histograms of red-triggered single-photon arrival times. The mean

arrival time decreases as the repump beam power ⌦r is increased to the transition saturation point.

The eight-level Bloch model of our system predicts corresponding single photon shapes shown by

dashed lines. For each trace the model parameters are calibrated using a resonance fluorescence

spectrum taken under the same driving conditions. The corresponding fitted repump power is

shown in units of MHz. (b) A typical example of the resonance fluorescence spectrum with the

measured fluorescence rate (black) and fit (orange).

can fit the eight-level Bloch model to measured resonance fluorescence spectra to infer the
cooling and repump beam powers ⌦c,r and detuning �c, see Fig. 7.10(b). The same param-
eters can then be used to calculate the dynamic single-photon scattering rate as a function
of time after the repump is switched on under the driving scheme in Fig. 7.10(a), with
repump beam parameters (⌦r, �r) inferred from the continuous-driving resonance fluo-
rescence spectrum. This dynamic simulation takes into account the intensity profile of the
repump beam as measured after the switching/shaping AOM, which is well-approximated
by an error function with time constant of 50 ns. The initial state for this model is a
mixed state with probabilities equally distributed between the four 5D3/2 levels and with
no coherences within that manifold.

The arrival time distribution features a distinctive oscillation at a frequency inde-
pendent of the repump beam power. These quantum beats are caused by interference
between 6P1/2 $ 5D3/2 absorption amplitudes that enhances and suppresses the emis-
sion of Raman-scattered 6S1/2 $ 6P1/2 photons in the detection mode with frequency
determined by the D state energy splitting, as first observed in Ref. [225].
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Figure 7.11: Intensity auto-correlation of the red-triggered single-photon operated at a rate of

7 ⇥ 104 s�1. The data is presented without background subtraction and shows g2(0) = (1.9 ±
0.2) ⇥ 10�3.

7.5.3 Photon-number purity

The second order intensity correlation function g(2)(⌧) of the red-triggered source is shown
in Fig. 7.11. The source is pulsed according to the scheme of Fig. 7.9 but at one third of
the trigger rate in order to collect a statistically significant amount of background events
during an extended 20 µs detection window. Cooling fluorescence has been removed by
gating the detectors during the cooling stage. The detection events, recorded separately
by each detector, are sorted into time separation bins of 300 ns duration. Because photon
emission is triggered by the excitation pulse, the observed intensity correlation forms a
sequence of spikes separated by the excitation pulse period with width determined by the
pulse shape shown in Fig. 7.10. The peak at ⌧ = 0 contains only coincidence events.
The anticorrelation parameter we infer from this measurement is A = (1.9 ± 0.2) ⇥ 10�3,
which violates the coherent state condition A  1 by 104 standard deviations. This A is
calculated without dark-count subtraction, and corresponds precisely to the stated and
measured dark count rate of our two detectors, 10 ± 2 s�1 per detector. Subtracting the
measured dark count rate from the yields an intrinsic coincidence rate of our source is
below A = 3 ⇥ 10�4 (95% confidence), amongst the lowest A measured.

In numerical models of discrete-variable quantum repeater networks the possible net-
work size is critically bounded by the multi-photon component. In Ref. [226] the au-
thors consider the entanglement-based QKD network of [227] and show that even a small
multiple-pair probability can be extremely detrimental. An otherwise ideal network of
e�cient photon sources with ⌘ = 0.9 and A = 0.01 becomes useless for QKD at any rate
after only seven concatenated network links (even if the links are lossless). In contrast, an
e�ciently coupled trapped-atom photon source with the same A and dark noise-rate as our
source may support high QKD rates over up to thirty network links. The same analysis
applies to networks for computation. Because the information in a quantum network is
stored between entangled nodes, the state space for networks of small quantum registers
increases exponentially with the number of entangling links. Photon number purity is
therefore also a critical parameter for scaling small quantum processors towards useful
quantum information processing by optical links.
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7.6 Summary

In this chapter we implemented and characterized two schemes for the operation of an
on-demand 138Ba+ trapped-ion single-photon source. The blue-triggered scheme produces
polarization and frequency mixed photons, even after pumping to a pure initial state. How-
ever, with polarization filtering we isolate photons from a single ⇡ transition, eliminating
frequency mixing from competing transitions. However, the excitation pulse remains on
throughout the detection window which increases generation probability by a factor of
two, at the cost of power-broadening the scattered photons. The red-triggering scheme
also produces frequency and polarization mixed photons, however we start from a mixed
initial state and each polarization-filtered photon is scattered from one of two possible ⇡
transitions. The photons are therefore frequency mixed by the D-state splitting even after
polarization filtering.

We introduced the eight-level Bloch model to describe the dynamics of the source,
and by fitting this model to resonance fluorescence spectra we accurately predicted the
intensity correlation function under continuous excitation and single-photon arrival time
histograms of the photon-source. With the blue-triggered photon source we are able to
observe a weak Rabi oscillation in the single-photon wave packet under strong excitation.
We do not observe any evidence of Rabi flops in the red-triggered photon arrival times,
but we do see a beat signal caused by absorption-path interference.

We measured spin-orbit coupling in the single-photon field of the blue-triggered pho-
ton source with an imaging apparatus, and showed theoretically that the same e↵ect gives
rise to arbitrarily large displacements when the dipole source is elliptical and the imaging
aperture is small. Although this ‘supermomentum’ is an example of weak value amplifi-
cation, it is strictly a property of the classical dipole field mode discussed extensively in
Chap. 4. Because this e↵ect is a property of dipole fields generally, it should be considered
in super-resolution imaging experiments when ellipticity is in the excitation field.

For a wide range of driving conditions, the red-triggered photon source produces a
pulsed light field with coincidence rates indistinguishable from an ideal single-photon Fock
state measured with our detectors. Single-atom photon sources of this sort are therefore
su�ciently pure for applications in even large quantum networks, without the need for
highly multimode quantum memories, photon number discriminating detectors or entan-
glement distillation [226, 228]. However, the e�ciency of the source is limited by the
collection proportion of the two HALOs, polarization mixing and filtering, APD detection
e�ciency, and fibre coupling e�ciency so that the end-to-end e�ciency is ⌘ = 0.0054 com-
pared to an ideal e�ciency limit of ⌘ = 0.023. The alternative level scheme for polarization
and frequency pure photons from 138Ba+ we discussed in Sec. 7.5.1 would increase the de-
tection e�ciency by (at most) a factor of 3, reaching the limit imposed by the collection
proportion and fibre-mode coupling as discussed in Chap. 4. E�cient free-space atom-light
coupling requires higher aperture coupling optics of the sort considered in Chap. 4. How-
ever, even with this imaging apparatus the single photons retain surprising higher-order
quantum behaviour. In the following chapter we derive a new quantum-non Gaussian
witness and apply the witness to photons from our trapped-ion source.
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Chapter 8

Quantum non-Gaussian photons

The quantum theory...has had only a fraction of the influence upon optics that op-
tics has has historically had on quantum theory... To the extent that observations
in optics have been confined to the measurement of ordinary light intensities, it
is not surprising that classical theory has o↵ered simple and essentially correct
insights.

– Roy Glauber, The quantum theory of optical coherence (1963)

To meaningfully compare the performance of single-photon sources it is necessary to
have a measure of quantum behaviour that captures the useful properties of the sin-
gle photon field. Ideal single photons are the optimal carrier for DV-QKD, but how do
we best measure the performance of realistic near-single photon states? The security of
entanglement-based QKD protocols may be verified by checking the violation of Bell in-
equalities [46, 47], which is an essential requirement for device-independent QKD schemes.
In contrast, conventional prepare-and-measure schemes are considerably simpler to imple-
ment because they do not require long-distance interference, but do require Alice and Bob
to trust their state preparation and measurement devices. In these schemes security is
verified by measuring a quantum signature of photons arriving at the receiver.

In the previous chapter we quantified the photon-number performance of our trapped-
ion photon-source by the degree of photon anti-correlation. Anti-correlation is a non-
classical witness and a ubiquitous metric for photon sources because in addition to being
a noise source, multi-photon pulses are vulnerable to photon-number splitting attacks,
which can be error-free (although decoy-pulse methods are able to improve the secret
fraction achievable with a multi-photon source [229, 230]). Anti-correlation is a necessary
criterion for single photon sources in quantum networks, even very weak coherent pulses
(WCP) are insu�cient for DV-QKD [41]. However anti-correlation alone is not su�cient
to establish a secure, shared key. We will see that this is just the first in a hierarchy of more
stringent quantum state witnesses that capture the performance of single photon sources
in realistic QKD networks [231]. In particular, anti-correlation measurements neglect the
vacuum component of the optical state, which determines the acceptable noise-threshold
of and key rate over a secure channel [226]. SPDC sources (for example) can achieve
arbitrarily high degrees of anti-correlation, but only by increasing the vacuum probability.
To accurately judge such a trade-o↵ and meaningfully compare sources we require a metric
that considers both the multi-photon and vacuum components of the single-photon field.

In this chapter we will introduce the concept of quantum non-Gaussian (QNG) optical
states, and how a statistical witness for QNG of the type first proposed in Ref. [232] can
function as a superior single-photon source metric. In contrast to anti-correlated photon
states, QNG states are known to be su�cient for secure QKD [233]. We derive such a

109
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Figure 8.1: Illustrative states in the quantum hierarchy, as shown by their Wigner

functions. The space of classical states consists of convex mixtures of pure coherent states that

can be generated by a unitary linear bosonic Hamiltonian. The basic non-classical states are the

squeezed states, which are generated by a unitary quadratic bosonic Hamiltonian. Convex mixtures

of pure classical and squeezed states compose the space Gaussian states, named for their Wigner

function distribution. Every state with a unitary generating Hamiltonian that is tertiary bosonic

or higher, such as Fock states, is quantum non-Gaussian.

witness and measure the performance of our trapped-ion single-photon-source under this
new metric. Our source surpasses the threshold even after 20 dB of attenuation. We briefly
review the performance of single-photon-sources including SPDC and quantum dots under
similar tests.

8.1 Quantum non-Gaussian states

No convex mixture of coherent states can be photon anti-correlated. In this sense, anti-
correlation is a non-classical witness: a signature of quantum behaviour that cannot be
replicated by classical fields. However, we saw in Sec. 2.5.4 that for certain squeezing pa-
rameters R and displacements ↵, the number-squeezed state |R,↵i may be anti-correlated.
Even Gaussian states with only a small degree of squeezing R are capable of arbitrarily
high anti-bunching so long as the displacement ↵ is small. To certify higher-order quan-
tum behaviour, see Fig. 8.1, we need a similar witness that cannot be reproduced with
any convex mixture of Gaussian states- a quantum non-Gaussian (QNG) witness. QNG
is a su�cient criteria for security in realistic models of measure and prepare DV-QKD
networks [233] and a necessary resource for quantum computation [234]. So how may we
e�ciently certify QNG states for use in quantum information networks?

8.1.1 Phase space QNG witnesses

Wigner function negativity is a distinguishing property of all pure QNG states [235], and
a necessary quantum computational resource [234]. However, not all mixed QNG states
are Wigner non-negative. A single photon field is QNG for any degree of attenuation,
but the Wigner function is negative only for attenuation by less than 50%. For quantum
networks we require a test to certify even QNG states that are mixed or very attenuated.
Furthermore, reconstructing the complete Wigner function requires quantum-state tomog-
raphy by measuring marginal distributions along multiple axes in quadrature phase space.
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n Pmax
n R ↵ n Pmax

n R ↵

1 0.478 1.73 0.816 6 0.262 2.31 2.26
2 0.381 1.93 1.22 7 0.245 2.37 2.46
3 0.333 2.06 1.54 8 0.238 2.43 2.64
4 0.301 2.16 1.81 9 0.228 2.48 2.82
5 0.280 2.24 2.05 10 0.220 2.52 2.97

Table 8.1: The Gaussian state photon number probability Pn is bounded for n > 0. The maximum

possible probability Pmax

n is attained by a pure number squeezed state (� = 0) with squeezing

parameter R and displacement ↵ as shown. All numbers given to three significant figures.

Reconstructing single photon states to su�cient certainty by this method is a demanding
process. A non-classical test does exist for single marginal distributions [236], and there is
a QNG test that requires W (x, p) at only four coordinates [237], but neither of tests are ef-
ficient for attenuated single-photon sources. To find an e�cient an unambiguous QNG test
for quantum networks we must turn to statistical (photon number) field measurements.

8.1.2 Statistical QNG witnesses

In Ref. [232] the authors proposed a novel class of QNG witnesses that requires only
photon correlation measurements. In this picture the typical anti-correlation threshold is
merely the first in a hierarchy of statistical quantum field tests [231]. Even in very simple
configurations, these witnesses are an e�cient means of quantifying useful higher-order
quantum behaviour. Ideal single photon states, in particular, are robust QNG states by
such measures and remain so for any degree of attenuation [238, 239].

Although the principle behind these witnesses is straightforward, the derivation of the
witness we use in this chapter is a little involved. In order to guide readers that have not
seen such QNG witness derivations before, we will first consider some illustrative examples
that introduce the necessary concepts.

The probability Pn of finding a general, mixed Gaussian state with n photons is given
by Eqn. 2.43. The single photon probability P1 of pure squeezed states is bounded, as we
can see from Fig. 2.4(b), and in fact Pn is bounded for all n > 0. We can maximize Pn

over the Gaussian state free parameters R,↵ and � to find photon number bounds Pmax
n

shown in Tab. 8.1.2. The boundary states are pure number-squeezed states (� = 0), with
R and ↵ increasing with n.

Any state with Pn > Pmax
n is necessarily QNG. We might therefore perform a QNG

test with an e�cient photon-number resolving detector. Alternatively, HBT experiments
are a means to make indirect photon-number measurements without number-resolving
detectors. Without number-resolving detectors we must take into account the probability
of ‘false’ single photon measurements in the HBT apparatus, in which two photons arrive
simultaneously at the same detector. The success1 and coincidence probabilities Ps and

1Single detection events are the only outcome consistent with a single-photon field. In this sense they
are a ‘success’ in common jargon.
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Pc in a HBT measurement are related to the photon number probabilities Pn by

Ps =
1X

n=1

Pn

2n�1
, (8.1)

Pc =
1X

n=2

Pn

✓
1 � 1

2n�1

◆
. (8.2)

The single photon component P1 causes only success events, but with larger photon number
n the coincidence probability increases and the success probability goes to zero.

Bright Gaussian fields cause almost no success events. Although Pc is unbounded
on this set of optical states, we can bound the single photon event probability using the
bounds Pmax

n and Eqns. 8.1 and 8.2

Pmax
s 

1X

n=1

Pmax
n

2n�1
, (8.3)

 0.83 . (8.4)

This illustrative bound shows how to apply the relationship between measured prob-
abilities Ps,c and the photon number probabilities Pn to derive a QNG test for the HBT
apparatus, but it is very ine�cient. A tighter bound can be found by maximizing Ps

directly over the Gaussian state free parameters, which yields Ps < 0.6. This is an im-
provement, but a single-photon state attenuated by 41% will fail this test, even though
it remains Wigner-function negative. To construct a statistical bound measurable with a
HBT apparatus that is more e�cient that Wigner-function negativity we must consider
contingent probabilities.

The more beam-splitters you can concatenate in an expanded HBT scheme, the more
information about the photon number distribution you can infer, and the more e�cient the
witness you can construct. With a concatenated HBT apparatus it is possible to construct
QNG test for arbitrarily large ensembles of single-photon sources [240]. However, for single
photon sources hni < 1, higher order correlations are negligible, and the typical HBT
experiment is su�cient. In the following section we derive an e�cient QNG witness that
requires only a HBT apparatus.

8.2 Deriving an e�cient QNG threshold

We saw above that the same HBT configuration as a typical g(2)(⌧) measurement is su�-
cient for estimating a QNG witness that distinguishes light fields from any convex mixture
of coherent and squeezed states. More importantly, it is possible to perform an e�cient
QNG test with the same apparatus. In this section we derive a QNG witness according to
the method of Refs. [232, 238]. In contrast to those works, this witness will be constructed
in terms of the directly measured HBT probabilities Ps,c to produce a tighter bound in
the measurement space. It has since appeared in this form in Refs. [2, 233].

We will distinguish optical QNG states by the conditional success event probability
Ps:Pc with a given coincidence probability. To derive the conditional QNG threshold for
these HBT experiment probabilities we consider the linear functional

F (a) = Ps + aPc (8.5)
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where a is a free parameter and Ps,c are given by Eqns. 8.1 and 8.2. The Gaussian states
that maximize this linear, unconstrained function are the border states forming the QNG
threshold in the Pc, Ps parameter space. For a given Pc these states have the maximum
or minimum possible Ps over the set of Gaussian states.

The maxima and minima of the functional satisfy @F
@R = 0 and @F

@↵ = 0 giving us

@Ps

@R
= �a

@Pc

@R
, (8.6)

�a
@Pc

@↵
=
@Ps

@↵
, (8.7)

which can be combined to yield the condition

@Ps

@R

@Pc

@↵
=
@Ps

@↵

@Pc

@R
. (8.8)

It remains only to find the Gaussian states satisfying this condition. Like the maximum
Pn Gaussian states of Tab. 8.1.2, the states that maximize Ps and Pc are pure. We can
therefore take the pure squeezed state photon-number probabilities from Eqn. 2.46. In
this equation the angle � between the squeezing and displacement directions appears only
in the argument of the cosine. Ps and Pc are positive weighted sums over Pn, so F (a) is
necessarily maximized by � = 0. The border states are, unsurprisingly, number-squeezed.
We can therefore reduce the photon number probabilities Pn to

Pn =
21�nR

⇣
R2�1
R2+1

⌘n
e
�

2↵

2(R4

+R

2)
(R2

+1)2 Hn

⇣p
2↵R2

p
R4�1

⌘
2

R2n! + n!
. (8.9)

With these probabilities the equivalence in Eqn. 8.8 is a rather involved relationship ↵(R)
for the Gaussian boundary states in terms of products of infinite sums over n.

To find closed-form solutions we will make a weak-field approximation with photon-
number cut-o↵ m. We can take the limit of this approximation as m increases, but even
low-order approximations will provide an e�cient QNG witness.

8.2.1 Weak-field approximation

We impose a photon-number threshold m � 2 and assume that photon-numbers above
this threshold make a negligible contribution to the field, Pn ⇡ 0 8n > m. Given this
approximation the m-th probability term must be

Pm ⇡ 1 �
m�1X

n=0

Pn (8.10)

so that the total probability sums to one. The HBT measurement probabilities are given
by reduced versions of the sums in Eqns. 8.1 and 8.2 with only m terms

Ps ⇡
mX

n=1

Pn

2n�1
, (8.11)

Pc ⇡
mX

n=2

Pn

✓
1 � 1

2n�1

◆
. (8.12)
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Figure 8.2: (a) Displacement of pure squeezed states on the Gaussian boundary as a function of

squeezing. Multiple order solutions are shown and brightness indicates increasing photon-number

threshold m. The solution approaches an approximate analytic function of R (dashed line) given

in the text.

With the above measurement probabilities and Pn given by Eqn. 8.9, the condition
Eqn. 8.8 gives ↵(R) as the root of an m-th order polynomial. Figure 8.2 shows the solutions
↵(R) for the lowest five orders of the weak-field approximation. Each approximation is
valid to increasingly high R, and they converge to an approximate analytical function

lim
m!1

↵ ⇡ 0.94R� 0.54 � 0.4e�2.85(R�1)0.52 (8.13)

that is linear in the limit of large R. The lowest-order approximation gives the least
e�cient QNG bound, but because it may be written concisely we will expand on this
particular case in the following section.

8.2.2 Lowest-order approximation

The lowest-order approximation, m = 2, treats all multi-photon fields P2+ as two-photon
fields. Therefore, following Eqn. 8.10, we require only the single-photon and vacuum
probabilities from Eqn. 2.40

P0 =
2R

R2 + 1
e
�↵2

 
(R2�1) cos(2�)

R

2

+1

+1

!

, (8.14)

P1 = P0
2↵2

��
R4 � 1

�
cos(2�) + R4 + 1

�

(R2 + 1)2
, (8.15)

P2+ = 1 � P0 � P1 , (8.16)

and we have single and coincidence HBT measurement probabilities approximated from
Eqns. 8.11 and 8.12

Ps ⇡ P1 + (P2+/2) , (8.17)

Pc ⇡ P2+/2 . (8.18)
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Figure 8.3: (a) Photon number probabilities Pn of the Gaussian boundary states as a function

of squeezing parameter R according to the weak-field approximation with photon-number cuto↵s

m = 2 (dashed lines) and m = 10 (solid lines). (b) The corresponding success probability Ps

(black) and coincidence probability Pc (orange) measured with a HBT apparatus with m = 2

(dashed lines) and m = 10 (solid lines). In the lowest-order (m = 2) approximation, Pc is always

underestimated and Ps is overestimated for large R.

In this lowest-order approximation our pure squeezed state functional condition reduces
to

e
� 4↵

2

R

�2

+1

�
R�4 + 4↵2R�2 � 1

�

(R�2 + 1)6
= 0 (8.19)

which is satisfied when

↵ =
±p

R4 � 1

2R
. (8.20)

The positive root is the solid black line in Fig. 8.2.

The positive root of this lowest-order ↵-R relation gives the maximum threshold Pc,
Ps values of the approximate pure Gaussian boundary states. These can be reduced to
a pair of equations parametrized by R 2. The parametric equations for the approximate
upper bound are

Ps =
1

2
+

R
�
R4 � 2R2 � 1

�
e

1

2

(1�R2)
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, (8.21)
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e
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Any state with conditional single photon probability Ps:Pc above this threshold is certi-
fiably QNG within this lowest-order approximation. However, for the weak-field approx-
imation of any order to yield an unambiguous witness we require that the approximate
boundary is conservative. We shall see below that it is.
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Figure 8.4: Pure Gaussian state boundaries calculated with photon-number threshold m. Bright-
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upper bound is a QNG witness, and even the lowest order calculation is reasonably e�cient.

8.2.3 Comparing bounds

Because the contribution to Ps by the n-photon term Pn only decreases with n, the weak-
field approximation overestimates Ps for any given field and any cut-o↵ m. However, ↵m <

↵m+1 8m and so the weak-field approximation underestimates P1 for small squeezing.
Figure 8.3(a) shows the probability terms Pn of the approximate upper threshold Gaussian
states as a function of R for m = 2 (dashed) and m = 10 (solid) and Fig. 8.3(b) shows the
corresponding HBT measurement probabilities Ps,c for each approximation order. Where
the weak-field approximation underestimates Ps, it underestimates Pc by a proportionally
more. Therefore the conditional probability Ps:Pc is always an overestimate. Taking this
approximation therefore yields a conservative upper bound on Ps:Pc for our QNG witness.

The negative root of Eqn. 8.20 gives an approximate lower bound on Ps:Pc over the
pure Gaussian states. In contrast to the upper bound, this lower bound is not conservative.
We must take the limit of higher order approximations to find a meaningful lower bound
on the Gaussian pure state statistics.

Upper and lower bounds are plotted in Fig. 8.4 for several approximation orders m. As

2This derivation is published in Ref. [2] with an alternative notation consistent with the broader body of
work on statistical QNG witnesses [231–233, 238]. To save the interested reader some time: the parameters
V and r in these works are related to our parameters R and ↵ by V = R�2 2 [0, 1] and r = 4↵2 2 [0,1].
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we expect, the upper bound is a true conservative bound that gets tighter as the photon-
number cut-o↵ is raised, and the lower bound approaches a true bound only in the high
m limit. Together these bounds define a quantum-Gaussian region of Ps:Pc combinations
possible when measuring pure Gaussian states (blue hatched region). However, by mixing
Gaussian states it is possible to decrease Ps:Pc further. In fact, there is no lower bound on
Ps:Pc over the set of mixed Gaussian or coherent states. For example, although a bright
coherent state mixed with vacuum has vanishing success probability Ps, it may have any
desired coincidence probability Pc depending on the mixing ratio.

It is not possible to increase Ps:Pc by mixing Gaussian states, so the upper bound
is a true bound over the set of mixed Gaussian states. The Gaussian state boundaries
are shown alongside the classical state boundaries in Fig. 8.5(a). Any measurement of
Ps above this boundary is a QNG witness. Importantly, the upper bound is the relevant
QNG witness for single photon sources, which operate in the region Ps � Pc. For very
attenuated fields (the operational region of our photon-source) the lowest-order QNG
witness in Eqn. 8.21 may be reduced to

Pc  P 3
s /3 , (8.23)

or, taking the limit of higher-order approximations,

Pc  P 3
s /2 . (8.24)

The operational region of our source, where this approximation holds, is shown in Fig. 8.5(b).
This reduced boundary is the e�cient QNG witness we will use to characterize our trapped-
ion photon-source in the next section.

8.3 QNG photons from a trapped-ion source

Because our trapped-ion photon-source is low noise, it beats the QNG threshold despite
substantial attenuation. The performance of our red-triggered source (see Sec. 7.5) in a
HBT experiment is compared to the classical and Gaussian boundaries in Fig. 8.5(b). The
source is prepared in a mixture of 5D3/2 states so that 493 nm photons may be emit-
ted by triggering with a 652 nm pulse. The magnetic field is oriented perpendicular to
the detection axis, such that confocal lenses map the two 6P1/2 ! 6S1/2 ⇡ transitions to

uniform Ĥ polarized fields. The probabilities of success and coincidence events Ps,c are
determined in a 200 ns detection window from the beginning of the photon trigger. Data
is shown for weak and bright trigger pulses, where trigger intensity increases e�ciency at
the cost of coherence. Each measurement is between 20 and 180 minutes of operation at
200 kHz repetition rate depending on the time required to collect a statistically significant
number of coincidence events. Pc and Ps are conservative estimators of the true probabil-
ities [241], given the measured probabilities and an e↵ective beam splitter transmittance
T = 0.495(5) that includes all detection imbalances.

Red circles show the source measured in the reflected configuration, in which a dis-
tant mirror recombines the two collimated fields to a single polarization-filtered mode as
described in Sec. 7.1. Even without interference enhancement, the trapped-ion source
beats the QNG threshold by 6 standard deviations, Fig. 8.5(b)(red circles). Performance
is limited solely by the overall single-photon collection e�ciency and detector dark counts.
A perfect, but attenuated, single-photon source measured with the same APDs and a
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ability space and (b) in the operational region of our source (arrow A). Classical light coincidence

rates cannot be reduced below the NC threshold (red diagonal) and Gaussian light fields are

similarly restricted to coincidence rates above the QNG threshold (blue hatched). Light fields

with coincidence rates beyond this threshold (green horizontal) are unambiguously QNG. Circles

correspond to measurements of our red-triggered single-photon source in the reflected (red) and

symmetric (black) configuration with a 200 ns detection window. The black cross is a measurement

under optimal conditions with a 500 ns detection window. Error bars indicate 95% confidence in-

tervals. The performance of an ideal single-photon source measured with our APDs is shown for

200 ns (dotted line) and 500 ns (dashed line fragment) detection window.

200 ns detection window will perform according to the dotted line in Fig. 8.5(b), which
is consistent with the measured data. This result confirms the single-photon purity of
our trapped-ion photon-source. However, we must also be confident that we can maintain
number-purity as the collection e�ciency is improved.

The typical approach to improving collection e�ciency from low-e�ciency single pho-
ton emitters employs combinations of high numerical aperture optical elements [82, 87,
216, 242–244]. This corresponds to simultaneous emission of a light field into several
spatial modes. Such a multi-mode source is useful so long as the purity of emitted single-
photons is not compromised. Simultaneous enhancement of spurious background light
collection, spatial restrictions on excitation beams, excitation beam scattering into the
photon collection modes and other processes could make enhancing collection e�ciency a
source of additional photon-number noise. To estimate this e↵ect, we measure the same
QNG witness for a light state emitted coherently by a single-photon source into two spatial
modes.

We apply this measure to our trapped-ion photon-source configured symmetrically
according to Fig. 8.6. The fluorescence is detected in two spatial directions by fibre-coupled
APDs positioned behind confocal HALOs. In the reflected configuration, the collected
photons were combined into the same spatial mode prior to detection. In the symmetric
setup they are emitted into two, in principle independent, directions. As demonstrated in
[217, 218], ion fluorescence emitted in two opposite directions remains phase coherent and
can be e�ciently transferred into a single spatial mode, for example by recombination on
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Figure 8.6: In the ‘symmetric’ configuration fiber-coupled APDs sample separate spatial and

polarization modes from opposite sides of the ion simultaneously.

a beamsplitter. The single ion in the symmetric configuration thus comprises both the
emitter and perfect unitary beamsplitter of the typical HBT measurement configuration.
The QNG measurements presented for our source emitting into a single spatial mode can
be compared to a two-mode coincidence measurement evaluated to yield the same measure.

Measurements made in the symmetric configuration with a detection window of 200 ns,
Fig. 8.5 (black circles) suggest that fluorescence collected across two modes remains very
close to an ideal single-photon Fock state, more than 20 s.d. from the QNG threshold.
Optical losses are lower in this configuration and the fibre coupling is more e�cient,
improving end-to-end e�ciency ⌘ = 0.0089. Increasing the detection window to 500 ns,
Fig. 8.5 (black x), further improves the e�ciency to ⌘ = 0.0104 compared to the detection
apparatus e�ciency limit of ⌘ = 0.023, see Sec. 7.5.1, albeit with commensurate increase
in coincidence rate. In combination these measurements suggest that the only noise source
present is the detector dark count rate and that the field from our source is certifiably
QNG for up to 24 dB of attenuation. This is the ‘QNG depth’ of our source.

8.4 Comparing QNG photon sources

Although most single-photon sources that we reviewed in Chap. 7 have not been explicitly
compared to a QNG threshold, it is possible to infer QNG from the reported source
e�ciency. Several cutting-edge sources are plotted against the QNG threshold in Fig. 8.7.
Of these the three photon sources in Ref. [239] merit specific comparison to our source
(black circles). In this paper the authors optimize quantum dot and SPDC photon-sources
for QNG depth, and test the performance under attenuation as we did above for the
trapped-atom source. Fig. 8.7 includes the attenuation models (dashed lines) of these
low-noise sources alongside the performance of our trapped-ion photon-source (dashed
black line).

Although above-band excitation is too noisy to achieve substantial QNG depth with
a quantum dot photon-source (green squares), resonantly driven quantum dots (purple
squares) have narrowly beaten the QNG limit with a similar depth to our source. The
measurement was limited by a detector dark count rate that was large compared to the
collection e�ciency of the source [239, 245] and it was not possible to measure how the
performance of the source scaled with attenuation. Attenuation tests performed with the
above-band source show intrinsic noise that scales quadratically with Ps.
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A clearer QNG state violation has been demonstrated for both pulsed and continu-
ously driven spontaneous parametric down conversion (SPDC) sources. The SPDC source
in Refs. [239, 241] is pumped continuously (cw) to produce photons probabilistically with
herald e�ciency Ps in a 2 ns detection window. At very low pump powers (blue tri-
angles), the QNG depth is the largest yet reported for any source. As pump power is
increased (yellow triangles) QNG depth decreases. A pulsed SPDC source in Ref. [246]
(red triangles) is unable to outperform cw sources of the same heralding e�ciency without
multiplexing [247]. Compared to these SPDC sources, detector dark counts are two orders
of magnitude higher at the bandwidth of our source and limit the measurable QNG depth.
However, at any gain SPDC is intrinsically multi-photon. In the above measurements the
coincidence rate Pc is substantially above the dark-count contribution, and Pc scales faster
than proportionally with Ps.

8.5 Summary

We derived an e�cient QNG witness for HBT experiments and applied this test to our
trapped-atom photon-source. In both symmetric and reflected configurations, and for a
wide range of trigger-pulse powers, the trapped-ion photon source produces a pulsed light
field with coincidence rates indistinguishable from an ideal attenuated single-photon Fock
state measured with our detectors, see Fig. 8.5(b - dashed line). Even the low e�ciency
source presented here is demonstrably QNG, the first such demonstration for a trapped-
atom photon-source, and therefore su�cient for secure QKD [233]. Although trapped
atoms are a spectrally bright source of indistinguishable photons and have already been
used in rudimentary quantum networks [160, 172, 248] it remains to be seen whether they
can be coupled e�ciently to network links. However, our work suggests that e�cient
collection is possible across multiple spatial modes without any detriment to the single-
photon number state. Our source has a comparable QNG depth to resonant quantum-dot
sources, and although it is surpassed by very low gain SPDC, it scales favourably with
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e�ciency compared to both these single-photon sources.
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245. A. Predojević, et al., E�ciency vs. multi-photon contribution test for quantum dots,
Opt. Express 22, 4789–98 (2014).
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Chapter 9

Two-atom, single-photon interference

In the usual treatment of spontaneous radiation by a gas, the radiation process is
calculated as though the separate molecules radiate independently of each other...
This simplified picture overlooks the fact that all the molecules are interacting
with a common radiation field and hence cannot be treated as independent.

– Robert H. Dicke, Coherence in spontaneous radiation processes (1954)

By increasing the number of atoms in our trap, we can begin to explore the collective
optical properties of ensembles in the few-atom limit. Part III of this thesis concerns the
interaction of light and large ensembles of neutral atoms, containing up to 10 billion atoms.
The total number of atoms in these ensembles fluctuates, and the state of individual atoms
is not precisely controlled. However, with a chain of trapped ions we can realize small
ensembles of definite atom number, and manipulate the state of each atom individually.
The collective interaction of entangled emitters is particularly interesting for its application
to quantum networks.

Optical interactions with few-atom ensembles have been made possible by advances in
isolating, controlling and e�ciently coupling atoms. Previous work has relied upon the
interaction between the ensemble and a resonator mode. Ref. [249] demonstrated how
the collective interaction of two atoms within an optical resonator enhances the e�ciency
of a quantum interface. Ref. [250] considered the same e↵ect with two superconducting
qubits decaying into a shared microwave resonator. In this chapter, we demonstrate the
single-photon emission pattern of a two-atom entangled state in free space, which shifts
continuously between constructive and destructive interference as a function of path-length
di↵erence. In doing so, we take our first step from coupling single atoms to coupling atomic
ensembles.

This experiment was proposed and primarily carried out by Gabriel Araneda, and will
be covered in some detail in his own thesis as well as our pending publication Ref. [5].

9.1 Preparing atom-atom entanglement

To study the emission pattern of an entangled state, we must first trap two ions according
to Chap. 6 and then prepare an entangled state. As we discussed in Sec. 1.4.1, atoms in
a common trap can be entangled by laser-mediated motional gates [26, 27]. Atom-light
couplers can also be used to establish entanglement between atoms, even when they are in
remote traps. Remote atoms have been entangled by the detection of coincident photons
[248], and also by the detection of a single photon scattered into a common mode [160,
174].
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Given that we already have the apparatus for coupling single photons out of our ion
trap, we choose to entangle the two atoms by the scheme of Cabrillo [174], which was first
demonstrated with this same apparatus [160]. The details of our entangling operation and
verification are identical to this earlier work, so we provide only a cursory overview of
these preliminary steps here.

Two atoms, A and B, are coupled indistinguishably to a common detection mode
using the two high-aperture lens objectives (HALOs) and a remote mirror, as shown in
Fig. 9.1. The atoms are first prepared in a ground state |gi by optical pumping, step one
in Fig. 9.2. We then scatter a photon from the atoms by Raman excitation, exactly like
operating the blue-triggered photon source in Sec. 7.2 and shown as step 2 in Fig. 9.2. We
pump and excite with opposite circular beams at 493 nm and along the quantization axis
and detect photons scattered into the common optical mode, which is perpendicular to
the quantization axis and Ĥ polarized. Photons in this mode are scattered almost entirely
from ⇡ transitions (see Sec. 7.1). An atom that scatters a photon from the ⇡ transition
is left in state |si and goes dark. This is the origin of the photon-number purity in our
blue-triggered single-atom single-photon source.
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Now that we have a second atom in the trap, and coupled to the same spatial mode,
detected photons could come from either atom. Detecting a single ‘herald’ photon from
the two-atom system therefore projects the atom onto the entangled state[160]

| i =
1p
2

⇣
|g, ei + ei� |e, gi

⌘
, (9.1)

which is an equal superposition of every permutation of a single excitation over our two-
atom ensemble. This is the simplest (N = 2) case of the general N -atom Dicke state
[251]. Because we collect each photon with low e�ciency, the probability of heralding this
entangled state is

p = 2pe(1 � pe)⌘ , (9.2)

where pe is the single-atom transition probability for our excitation pulse (pe ⇡ 1 for our
single-photon source in Chap. 7) and ⌘ is the total collection e�ciency. The state |ssi is
prepared with probability

p|ssi = 2p2e⌘ . (9.3)

Heralding a pure entangled state requires p /(p + p|ssi) = 1. There is therefore a trade
o↵ between heralding probability and state purity when the detection e�ciency is low.

We operate with pe = 0.06 ± 0.01. We therefore expect the herald to prepare the
state | i with 94% probability, but the corresponding success probability yields a very
low success rate. We measure only 5 herald photons per second.

Detector dark counts also produce a false herald that prepares the state |ggi with
probability proportional to the herald detection window, which is 500 µs. We perform
population measurements of the two-atom state prepared by our herald by measuring
fluorescence on the 6 S1/2 $6 P1/2 transition following shelving ⇡ pulses addressed to the
6 S1/2, mj = – 1

2 (|gi) $5 D5/2, mj = – 5
2 transition with the narrow linewidth quadrupole

transition laser (see Sec. 6.4.2). We measure 3% of the population in |ggi, 6% of the
population in |ssi and 91% of the population in | i.

The phase of the entangled state

� = (�L
B

� �L
A

) + (�D
B

� �D
A

) (9.4)

has two components: the di↵erence in excitation laser phase, and the di↵erence in detection
phase at the atom positions A and B. The detection path phase di↵erence �D

B

��D
A

= kd

where d is the path length di↵erence from atoms A and B to the detector. We measure
parity oscillations on the two atom state according to the method of Ref. [160] and estimate
a fidelity F = 0.65 ± 0.02 with state | i.

The fidelity is limited by the atom temperature. Photon scattering leaves a spatial
phase on the position distribution of the atoms. The worse localized the atoms, the
better we can distinguish the location of the scattering event (atom A or B). Once again,
ground-state cooling significantly reduces this e↵ect, but sideband cooling reduces the
source repetition rate by a factor of 100 and the repetition rate of our measurement drops
commensurately.

9.2 Spatial interference

Now that we have prepared our entangled state, we may investigate its optical properties.
We scatter a second photon from the entangled pair by a second excitation pulse, step 4
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in Fig. 9.2. This time our excitation probability can high and we choose pe = 0.80± 0.02.
After the second scattering event, the joint atom-photon system is

�� 0↵ =
1p
2

⇣
|0, 1i + ei(���

0) |1, 0i
⌘
⌦ |s, si , (9.5)

where the photon states |0, 1i and |1, 0i correspond to a photon in the emission mode of
atoms A and B, respectively, and �0 depends on the exciting laser phase and path length

di↵erence �0 =
⇣
�0L

B

� �0L
A

⌘
+
⇣
�0D

B

� �0D
A

⌘
. Detecting a photon in a mode where atoms

A and B are indistinguishable projects the state | 0i to

�� 0
p

↵
=

1p
2

⇣
1 + ei���

0
⌘
⌦ |s, si . (9.6)

The photon detection probability is therefore

P / ��⌦ 0
p

�� 0
p

↵��2 = 1 + cos
�
�� �0

�
. (9.7)

The probability of detecting a photon scattered from | i in a common mode depends on
the entanglement phase � and the observation phase �0. At an observation point a distance
d � �, rB�rA from the atom pair the spatial modes are indistinguishable. The atom-atom
entanglement therefore causes a spatial interference pattern in the detection probability
of photons scattered from | i, enhancing the detection probability when �� = ���0 = 0
and suppressing it when �� = ⇡. In particular the visibility of the interference fringes in
radiation from a pair of two-level emitters with a single excitation should be equal to the
concurrence of the bipartite quantum state [252, 253].

This spatial interference pattern has not been measured before this work, the photon
detection probability is simply too low to image the pattern directly. However, we can
e�ciently sample the same distribution with our near-confocal lens apparatus. By moving
the mirror position as shown in Fig. 9.1 we tune the path length di↵erence between atoms
A and B in the common detection mode, equivalent to changing the position of detector
in the spatial interference pattern.

Because the atom-mirror path length also appears in the Cabrillo entanglement phase
�, we must displace the mirror between the entangling and measurement steps, step 3
in Fig. 9.2. Assuming that the interatomic distance is fixed, the interference term is
�� = k�d where �d = d0 � d is the path length change between entanglement and
measurement. After receiving an entanglement herald we displace the mirror with a piezo
in a time that depends on ��. For ��/⇡ = 2.5 (the largest displacement we measure)
the displacement time is ⌧ = 220 µs.

Figure 9.3 shows the detection probability P for several two-atom states as a function of
the path length phase di↵erence ��. The maximum and minimum measured probabilities
for the entangled state | i are P (�� = 0) = (2.10 ± 0.07) ⇥ 10�3 and P (�� = ⇡) =
(1.17 ± 0.12)⇥10�3. Fitting an interference fringe amplitude to the data gives a visibility
of V = 0.27 ± 0.03, consistent with the concurrence C = 0.31 ± 0.10 calculated from our
parity-reconstructed state and the prediction V = C [252, 253].

For comparison, we measure the interference pattern of two separable states. These
states are prepared by a combination of optical pumping, shelving to the 5D5/2, mj =
– 5

2 Zeeman state with the 1.76 µm quadrupole transition beam, and global RF pulses
on the |gi $|si transition. The state |⇣i = |e, gi is the separable single-excitation state,
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Measurement by Gabriel Araneda.

corresponding to an excitation on a definite atom,A or B.

Scattering a photon under the same conditions used for | i shows no dependence
on the path length di↵erence. The interference visibility is ⇡ 0, consistent with the
C(|⇣i) = 0 for a separable state. The single-photon detection probability P (|⇣i) is used to
define a relative detection probability R = P/P (|⇣i), the right-side axis in Fig. 9.3. The
constructive (destructive) interference enhancement (suppression) factor of the entangled
state is Rsup = 1.29 (Rsub = 0.72). Because the states | i and |⇣i each contain a single
excitation, we expect their mean detection probability over the entire emission mode to
be equal, and indeed, the mean of the R(| i) interference fringe is 0.99 ± 0.08.

Separable states with more than one excitation can also produce interference patterns.
Single photons scattered from the most general bipartite state

|�i = a |g, si + b |s, gi + c |g, gi + d |ssi , (9.8)

interfere with visibility

V|�i =
2|ab|

|a|2 + |b|2 + 2|c|2 , (9.9)

even though the state has concurrence C|�i = 2|cd� ab|. From Eqn. 9.9 we can see
that even separable bipartite states with a mean excitation greater than one have an
interference pattern; the rule V = C holds only for d = 0. However the visibility of even
general separable states is bounded by V  1/2. We prepare the separable state

|⇠i =
1

2
(|gi + |si) ⌦ (|gi + |si) (a = b = c = d =

1

2
) , (9.10)

using global RF pulses. |⇠i maximizes the interference over the set of separable states.
We observe an interference fringe visibility of V|⇠i = 0.15 ± 0.08, also shown in Fig. 9.3.
As expected, this is approximately half of V| i.
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9.3 Summary

We have demonstrated how interference between the entangled components of an atomic
ensemble can selectively enhance or suppress single-photon emission into free-space modes.
We prepared a bipartite entangled state by coupling two trapped ions to a common optical
mode. The spatial interference pattern of our two-atom ensemble varies depending on the
mean excitation, the degree of entanglement, and the path length di↵erence between the
two atoms and an observer. We detect photons from the ensemble with high aperture lens
objectives and tune the path length di↵erence using a remote, piezo-mounted mirror to
measure the continuous interference pattern.

For bipartite states with a single excitation the interference visibility is equal to the
concurrence. An interference measurement of this sort is therefore an entanglement witness
for states with no |ssi component. In Part III we extend this theory to consider excitations
that are distributed amongst many more than two atoms. As the number of atoms in-
creases, emission from the entangled ensemble becomes increasingly directed [254]. In the
many atom limit, such collective states are a means of e�ciently and reversibly coupling
optical qubits into atoms, even without high aperture optics.

As with the previous chapters on our trapped-atom single-photon source, the success
probabilities of both our photonic entanglement gate and second photon scattering event
are limited dramatically by the collection e�ciency of our high-aperture lens atom-light
couplers. In the following chapters we turn our attention to a new strategy for e�ciently
coupling trapped atoms with single-pass optics and demonstrate some of the necessary
components.
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Chapter 10

Precise hemispheric mirrors

I am a plain, old-fashioned mirror from a bygone age, made of good white metal
that stays clear without being polished... I am going to discuss serious matters
now. Pay close attention, everyone.

– Unknown, Okagami, the Great Mirror (1119)

Useful quantum networks, be they large scale communication networks or distributed
entanglement computing networks, require the e�cient interaction of optical fields with
material quantum systems. To reach the required e�ciency, free-space atom-light cou-
plers require optics with larger apertures than the lens objectives used in Chaps. 6 to 8.
High precision, high numerical aperture mirrors are one means of mediating su�ciently
strong atom-light coupling. In Chap. 4 we saw that the ideal mode converter for a point
source emitting spherical waves is a deep parabolic mirror [88, 101]. This single-pass
coupling approach requires high numerical aperture (NA) reflectors with sub-wavelength
surface precision [82]. However the fabrication of high-NA mirrors with su�cient surface
smoothness and form precision remains a technological challenge [255–257].

Whereas a parabolic mirror is the desired reflector for converting spherical waves into
plane waves, a hemispheric mirror maximizes the self-interaction of a source by returning
spherical waves from the source to their origin. The hemispheric mirror is an intriguing
special case for high-NA atom-light couplers that bridges the gap between single-pass
optics and cavity quantum electrodynamics. Like an optical resonator, a single hemispheric
mirror may enhance atom-light interactions by shaping the vacuum mode density around
an emitter, but unlike an optical resonator the hemisphere-mediated atom-light interaction
is single-pass. It has been predicted [258] that the spontaneous emission rate of an atomic
electron at the centre of curvature (CoC) of a spherical mirror may be suppressed or
enhanced depending on the radius of the mirror, even when the mirror radius is much
larger than the atomic wavelength. A previous attempt to measure such an e↵ect with
spherical optics measured emission rate fluctuations of 1% [218]. An ideal hemisphere
that covers exactly half of the atomic emission solid angle will achieve the greatest possible
modification, enhancing the spontaneous emission rate by a factor of two when the radius is
R = n�2 + �

4 where n is a positive integer and � is the transition wavelength, and completely
suppressing spontaneous emission when the radius is R = n�2 . Because deviations from an
ideal hemisphere reduce the degree of suppression and enhancement, demonstrating this
e↵ect requires the fabrication of hemispheric mirrors with great surface precision.

The fabrication of ideal reference optics is also of interest to the broader optics com-
munity. The hemisphere retro-reflects an incoming spherical wavefront and could be used
as a reference null for characterizing high-NA focusing optics [86]. Optical-reference mi-
croscopy requires reference surfaces considerably better than the surface to be measured.
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The roundest manufactured objects are convex spheres made for NASA’s Gravity Probe
B rotors, which deviate by 17 nm from perfect spheres (peak to valley) [259, 260], closely
followed by the Avogadro spheres, which are 89 nm from perfect [261, 262] 1. Such out-
standingly spherical spheres are produced by randomly rotating the sphere between two
conical grinding/polishing tools for periods of several days. It is di�cult to polish concave
surfaces to comparable precision because no equivalent symmetric mounting process is
possible, and there is an unmet demand for reference optics in this regime.

In this chapter we demonstrate the fabrication of highly-precise hemispheric mirrors.
We diamond turn a nm-precise hemispheric mirror from an aluminium substrate and de-
scribe the challenges encountered when cutting such high NA concave optics. The mirror
surface quality is verified by complementary measurements including single-shot optical
interferometry with a reference sphere, multi-shot interferometry with a reference flat and
contact probe measurements. We demonstrate the capacity to cut concave hemispheres
that surpass the requirements for single-pass QED experiments, and characterize five con-
secutively manufactured mirrors as a test of consistency and reproducibility. Much of this
work is published in Ref. [4]

10.1 Diamond turning hemispheric mirrors

Single point diamond turning (SPDT) is an established tool for manufacturing ultra-fine
optics with geometries accurate below optical wavelengths and smooth surface finishes.
With SPDT it is possible to achieve both high material removal rates and low subsurface
damage, making it an appealing technique for generating spheric and aspheric surfaces
as well as rotationally asymmetric free-form elements for telescopes and head-up displays
[256, 257, 263]. State-of-the-art diamond turning can produce low-NA optical surfaces 50
mm in diameter with peak-to-valley surface deviations of 150 nm [255] and local surface
roughness below 0.4 nm [264]. This sub-wavelength precision has been utilized in quantum
optics applications such as laser mode converters [265–267], monolithic microcavities [268],
and other resonators [269].

We diamond turn hemispheres on a CNC nano-lathe, the Nanotech 250UPL from
Moore Precision Tools, the configuration of which is shown in Fig. 10.1(a). The lathe
has four precision controlled degrees of freedom: an aerostatic spindle that rotates the
work-piece at 2,000 RPM around the spindle axis (C); two perpendicular linear axes (X
and Z) for positioning the cutting tool and spindle on fully-constrained oil hydrostatic
bearings; and an additional axis (B) that rotates the tool post on a groove-compensated
air bearing. The final degree of freedom (Y) is the height of the cutting edge compared to
the centre of the spindle, over which we have limited manual control. The X, Z, C and B
axes are interferometrically stabilized with control resolution 1 nm (X, Z), 1 arc second (C,
B) and feedback resolution 1 pm (X, Z), 0.01 arc seconds (C, B). The B axis rotates with
radial and axial displacement error less than 50 nm over the full 360�, of which we require
90�. The Y axis is manually adjusted with µm resolution and not actively stabilized. The
spherical coordinate system for the cut surface is shown in Fig. 10.1(b) with zenithal and
azimuthal angles � and ✓ related to the rotational axes B and C of the lathe respectively.

The hemispheres are cut from a cylindrical aluminium 6061 substrate with outside
diameter 30 mm and height 13.5 mm. Because of their two-fold rotational symmetry,

1We understand from personal correspondence with the NMI and from the science media (see
http://nautil.us/blog/the-most-symmetrical-objects-in-the-world) that the Avogadro project has since im-
proved their spheres to within 25 nm (peak to valley) of perfect.
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Spindle axis (C)

Tool axis (B)
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(a)
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Figure 10.1: (a) Top view of the diamond turning lathe showing the two linear axes X and Z, two

rotational axes B (tool) and C (spindle), and tool height axis Y (out of plane). The cutting tool is

shown in its initial (black) and final (orange) position. Also shown are the counter-clockwise (CP1)

and clockwise (CP2) contact points used for fine-calibrating the axes as described in the text. (b)

Hemisphere with surface coordinate system: radial distance (r) from the centre of curvature (CoC),

zenithal angle (✓) and azimuthal angle (�).

hemispheres may be cut by a single rotation of the B axis through 90� from the edge
to the centre of the hemisphere, repeated at increasing depths by iterating the tool post
towards the spindle along the Z axis. This technique uses a single point on the diamond
tool edge to cut across the entire surface with two key consequences: the surface form
is insensitive to the exact shape of the cutting tool edge, and the relative cutting force
direction and magnitude is constant over the cut [270]. The mirror radius of curvature
(RoC) is determined by the distance from the most remote point on the cutting tool edge
to the B axis centre of rotation (Rc) and by the o↵set between the two rotating axes. We
determine Rc by measuring the tool edge position as a function of B-axis angle with an
optical microscope fixed above the lathe. In the limit of many measurements this approach
should determine Rc to within 1 µm, although in practice we performed this calibration
only to a measurement uncertainty of 10 µm.

10.1.1 Tool spiral

In contrast to the finely polished mirrors used for high-finesse cavities, SPDT produces a
finished surface with a turning spiral that tracks the passage of the tool across the part.
The groove spacing is s = 2⇡ !B

!
C

Rc where !B and !C are the rotational speed of the tool
and spindle axes respectively. Assuming the mirror radius R(✓,�) ⇡ Rc is much larger
than the tool edge radius r, the peak-valley height of the grooves h is h = r�pr2 � ( s2)

2.
Together these parameters determine a minimum cut time

Tmin =
⇡Rc

4!C

p
hmax(2r � hmax)

(10.1)

for a surface with maximum groove height hmax. The time to cut a hemisphere with sub
nm grooves in our case (Rc = 12.4 mm, r = 0.6 mm, !C = 2000 rev/min) is 5 minutes.

It is feasible to cut mirrors larger than those demonstrated here (our lathe is capable
of cutting mirrors with RoC up to 250 mm) so long as the temperature of the lathe
environment is stable over the duration of the cut. Temperature variations of just 0.5 K are
enough to significantly degrade form accuracy due to the thermal response of aluminium.
At the other end of the scale, the mirror size cannot be made smaller than available
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(a) (b)Spindle axis (C)
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B
2

Spindle axis (C)

Figure 10.2: (a) Schematic of an exaggerated X-o↵set error profile and the corresponding calibra-

tion procedure as described in the text. The B-centre is o↵set from the C-centre by �x and produces

an aspheric surface (black). The spherical fit to this surface (blue) has RoC Rf = Rc + �R and

CoC o↵set by �z. To correct this X-o↵set we cut two grooves with the tool at positions X
1,2, B1,2

where X
2

= �X
1

and B
2

= 180� � B
1

. (b) A white-light interferogram showing two calibration

grooves of equal depth.

diamond tool heads and so it would prove challenging to manufacture precise hemispheres
with RoC < 1 mm by this technique.

10.2 Calibration error profiles

High-NA optics manufactured with SPDT are critically sensitive to the relative rest po-
sitions of the lathe axes. Any o↵set between the spindle rotation axis and the tool path
symmetry axis causes a ✓ symmetric, � dependent deviation that scales poorly with NA
and quickly comes to dominate the error profile. When the X-axis is configured such that
the rotational centres of the C and B axes are aligned, the B rotation cut describes a
perfect circle with constant RoC. However when the C-axis centre is slightly past (before)
the spindle centre C the tool will cut a slightly larger (smaller) radius and produce a dis-
tinctive radial error profile re(�) with a single minimum (maximum) at the zenithal angle
� = 54.5�.

10.2.1 X-o↵set error profile

During the cut the tool describes a near-perfect circle with radius Rc given by the distance
from the cutting edge to the centre of rotation, limited by the radial and axial displacement
of the lathe’s B-axis over 90� rotation (both specified as less than 50 nm over 360�).
However, the actual profile cut in the X-Z plane depends on the o↵set �x between the
tool rotation (B) axis and part rotation (C) axis (see Fig. 10.2a). In Cartesian coordinates
the cut profile is

zc =
p
R2

c � (|x|� �x)2 . (10.2)

We are interested in how closely this profile matches a circle with radius Rf and CoC
displaced from the B-axis centre by distance �z (the blue circle in Fig. 10.2(a)) given by

zf =
q
R2

f � x2 + �z . (10.3)
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To find the radial displacement between these two surfaces we transform the Cartesian
curves zc and zf into radial profiles in spherical coordinates

rc(�) = Rc

s

1 � 1

2

✓
�x

Rc

◆2

(1 + cos 2�) + �x sin� , (10.4)

rf (�) = Rf

s

1 � 1

2

✓
�z

Rf

◆2

(1 � cos 2�) + �z cos� . (10.5)

In the limit Rc, Rf � �x,�z the square-root terms approach one and the error profile,
the di↵erence between the cut and fit radial profiles, simplifies to

re(�) = rf (�) � rc(�) = �R� �z cos�� �x sin� , (10.6)

where �R = Rf �Rc. We can integrate over the surface area of a sphere with NA = sin�a
to find the RMS error

ERMS =

sZ �
a

0
r2e sin� d�/(1 � cos�a) , (10.7)

where the area element is weighted by sin� and the integral over ✓ yields a normalization
factor 1 � cos�a. For a complete hemisphere (NA = 1, �a = ⇡/2) this reduces to

ERMS =

r
�R2 +

2

3
�x2 +

1

3
�z2 +

⇡

2
�x�R + �z�R +

2

3
�x�z . (10.8)

The best-fit spherical surface is given by the parameters �Rxfit and �zxfit that minimize
the RMS error for a given �x

�Rxfit(�a = ⇡/2) = (⇡ � 2)�x , (10.9)

�zxfit(�a = ⇡/2) =
1

2
(3⇡ � 8)�x , (10.10)

which are plotted in Fig. 10.3 (red and green lines) as a function of �x. With these
optimal parameters the radial error profile is

re = ��x[(
3⇡

2
� 4) cos�+ sin�+ (2 � ⇡)] . (10.11)

This whole-hemisphere X-calibration error profile is plotted in Fig. 10.3(a) where the
radial deviation from a perfect hemisphere is given as a function of the zenithal angle �
from the mirror centre. We will use this model to infer the residual o↵set of the finished
hemispheres from their measured surface profile, and therefore the accuracy of our o↵set
calibration technique.

We can calculate the RMS error and PV error from this profile (Fig. 10.3(b) black and
blue lines) to give an X-calibration error budget rule of thumb

ERMS = |�x|
r

3⇡(⇡ � 4) � 8

12
⇡ |�x|

11
, (10.12)

EPV =
|�x|

2
(8 � 3⇡ +

p
68 � 48⇡ + 9⇡2) ⇡ |�x|

2
. (10.13)
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Figure 10.3: (a) Radial error re from a positive (solid) and negative (dashed) X-axis o↵set as a

function of zenithal angle �. (b) The PV (black) and RMS (blue) aggregate error of a surface with

error profile re measured over a central region as a function of the aperture. (c and d) Form errors

and fit parameters from an X-axis (c) and a Y-axis (d) o↵set. The PV error (black) and RMS error

(blue) are proportional to the X-o↵set but insensitive to a Y-o↵set. In each case a spherical fit to

the cut surface di↵ers from the tool arc by a change in the RoC by �R (red) and CoC position

shift �z (green).
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The above expressions are true for a complete hemisphere (NA = 1), but in general
the best-fit sphere parameters �Rxfit and �zxfit depend on the numerical aperture of
the surface section being measured. For a spherical surface with NA = sin�a < 1 the
parameters �R and �z that satisfy

@ERMS

@�R
=
@ERMS

@�z
= 0 (10.14)

are

�Rxfit(�a) =
�x

4
csc6

✓
�a
2

◆✓
3�a
2

� sin�a + sin 2�a + �a cos�a +
�a
2

cos 2�a

◆
,

(10.15)

�zxfit(�a) =
�x

32
csc8

✓
�a
2

◆
sin2 �a

⇣
6�a � 8 sin�a + sin 2�a

⌘
, (10.16)

which are very closely approximated by their first order Taylor expansions in �a about
�a = 0

�Rxfit(�a) ⇡ �x

✓
8

5�a
+

8

105
�a

◆
, (10.17)

�zxfit(�a) ⇡ �x

✓
8

5�a
� 4

21
�a

◆
. (10.18)

By substituting these parameters into the general equation of the radial error profile,
Eqn. 10.6, and integrating over the surface area as in Eqn. 10.7 we can find the aggregate
errors over any measured NA as a function of the X-o↵set error profile. The RMS error
and PV error as a function of the measured aperture are shown in Fig. 10.3(b). A partial
measurement of the surface, such as the single-shot, high-NA interferometry measurements
we perform, underestimates the total error. However, if the error is dominated by an X-
o↵set, we may infer the total error from this model.

As a consequence of X-axis misalignment, the CoC position along the optical axis of
the hemisphere is corrected to match the new best-fit RoC. Fig. 10.3c shows how the RoC,
CoC, RMSE and PV error scale with the size of an X-axis o↵set.

10.2.2 Y-o↵set error profile

In contrast to the X-axis, the Y-axis lies outside of the plane of B-rotation, and makes
no contribution to the final form of the mirror outside of a small central defect. A Y-axis
o↵set �y produces a circular defect at the centre of the mirror with corresponding radius
�y. This defect is either a cone or a pillar depending on the sign of �y, and can be
measured and corrected directly using the on-lathe white light interferometer. Example
interferograms of Y-axis defects are shown in Fig. 10.4. Once the defect has been identified
and measured with the interferometer it can be corrected by an adjustment of the Y-axis.
The small defect makes no contribution to the RMS error because it covers a negligible
region of the surface.

Outside of the central defect, a Y-o↵set makes a small contribution to the final form
by increasing the distance of the cutting edge to the centre of the C (part rotation) axis

rc(�) =
p
R2

c + �y2 . (10.19)
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Figure 10.4: Central region of the hemisphere surface with Y-axis miscalibration

defects. Tool below C-axis centre (�y < 0) yields a pillar of uncut at aluminium with radius

�y and a jagged top, shown by (a) microscope image and (b) red-light interferogram. Tool above

C-axis centre (�y > 0) yields a cone with base radius �y, shown by (c) microscope image and

(d) red-light interferogram. The two interferograms show the curvature of the surface, which also

contains a deep turning spiral.
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In the limit Rc � �y this reduces to

rc(�) = Rc +
�y2

2Rc
, (10.20)

which is a spherical surface with RoC increased by

�Ryfit =
�y2

2Rc
. (10.21)

By the same logic we see that for a combination of X and Y o↵sets, and for any measure-
ment aperture, the fit parameters from Eqn. 10.15 become simply

�Rfit(�a) = �Rxfit(�a) + �Ryfit(�a) , (10.22)

�zfit(�a) = �Rxfit(�a) (10.23)

with no increase in the aggregate errors compared to an X-o↵set. This is illustrated
in Fig.10.3(d) where a Y-o↵set results in a quadratic increase in the RoC but does not
contribute to the aggregate error.

10.3 Interferometric calibration

To align the two rotational axes of the lathe, small calibration cuts are performed on the
outer surface of the aluminium substrate. The cuts are performed on alternating sides of
the the substrate, using alternating spindle rotation directions. Between each of the cuts,
the B axis is rotated by 180� and, by measuring the depth of subsequent cuts, �X can be
inferred.

The depth measurement is performed using a white-light interferometer that is mounted
directly on the lathe. The instrument consists of a 20X Nikon Mirau interferometry objec-
tive mounted to a fixed-focal length video microscope with in-line white-light illumination.
This in-situ surface metrology provides a depth resolution of 0.4 nm by fitting a complete
interference fringe. To reduce the duration of the calibration procedure, however, we used
a quick estimate of the relative cut depths by observing the fringe pattern while varying
the position of the interferometer. This method provided a resolution of approximately
10 nm, which is su�cient to achieve our target form accuracy.

The o↵set �x between the B and C axes centres is removed by an interferometric
calibration process. Two 1 µm deep grooves are cut on the outer surface of the aluminum
substrate with the tool at coordinates X1, B1 and X2, B2 shown in Fig. 10.2(a). The spindle
rotation direction is reversed between the two positions. With coordinates X2 = �X1 and
B2 = 180� � B1 the di↵erence in depth between the two grooves is equal to 2�x. By
measuring the depth di↵erence we determine and correct the o↵set.

The depth of the grooves is measured with an in-situ white-light interferometer. The
interferometer is fixed stably to the tool post in order to take advantage of the lathe
axes’ precise positioning control. Central-fringe identification provides a relative position
measurement between the interferometer objective and the mirror surface. The X-axis
displacement required to shift the central fringe from the bottom of one groove to the
other is the depth di↵erence between the two grooves. After shifting the centre position to
X 0

0 = X0 + �x the depth of two subsequent calibration cuts is equal. Fig. 10.2(b) shows
an interferogram of two equal-depth calibration cuts made following an calibration step,



140 Precise hemispheric mirrors

Figure 10.5: Hemispherical mirror, part E, with one Euro coin for scale. The mirror radius of

curvature is 12.578(1) mm. This mirror was turned from a substrate with pre-drilled beam ports,

which are visible in the photo. Also visible on the exterior surface of the mirror are shallow grooves

cut during the lathe calibration process.

the central maxima is simultaneously aligned with the bottom of both grooves.

Although the central-fringe maxima identifies the mirror surface position with sub-
nm precision, and the lathe can be positioned with nm control precision, we infer from
repeatability tests an alignment precision of 10 nm. This is consistent with the radial
displacement error of the B-axis under rotation, which is specified as less than 50 nm.
Furthermore, we expect additional uncertainty due to the di�culty of cutting under iden-
tical conditions at B1 and B2, from which we infer that the real radial uncertainty of
B-rotation is less than 10 nm. This is the PV lower limit of hemispheres cut using this
technique.

10.4 Surface interferometry

A finished hemisphere cut with the above technique is shown in Fig. 10.5. Two com-
plementary interferometric measurements are used to verify the finished surface profile.
The primary measurement is a large area surface profile by optical interferometry with
a ZYGO interferometer. This measures the mirror surface against the optical wavefront
produced by a reference sphere with PV error 20 nm. The size of the available reference
sphere restricts these measurements to a NA of 0.7 (half angle 44.4�). To profile a com-
plete mirror surface it is necessary to ‘stitch’ together separate scans that cover the entire
surface, which requires at least eight scans of NA 0.7 [271]. However a single NA 0.7
interferogram taken at 45� to the optical axis of the hemisphere is su�cient on its own to
measure the complete zenithal profile of an axially symmetric part, which is typically the
largest component of the error profile of the hemispheres.

The partial profiles measured by reference-sphere interferometry are in agreement with
stitched surface profiles taken by Meopta - optika. These complete surface profiles are
stitched from a hundred small interferograms taken against a reference flat. Two complete
surface profiles are shown in Fig. 10.6(a) and (c). The circular density map is an azimuthal
equidistant projection of the hemisphere onto the plane. Because the mirrors retain a
degree of azimuthal symmetry it is illuminating to plot the same data as a function of
zenithal angle � to see the mean zenithal radius dependence, as shown in Fig. 10.6(b) and
(d). For clarity these zenithal plots are shown with reduced resolution, every 40th pixel
of the stitched interferograms is plotted. The scatter plot density scales with the value of
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Total form error Zenithal form error Azimuthal form error

Part PV RMS PV RMS PV RMS

A 146.2 22.1 89.4 19.5 91.9 10.4
B 87.8 13.5 59.1 11.4 68.6 7.1
C 144.7 18.3 52.7 14.1 114.2 11.6
C* 215 27.4 47.5 14.2 207.7 23.4
D 317.3 51.2 219.4 44.7 193.2 23.0
E 116.5 18.1 76.2 15.8 73.8 8.7

Table 10.1: Comparison of five diamond-turned hemispheres, all quantities in nm. The total form

error is the typical (RMS) and maximal (PV) radial deviation from an ideal hemisphere over the

complete mirror surface. The zenithal profile (orange trace in Fig. 10.6) is used to separate the

zenithal and azimuthal contributions to the form error.
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Figure 10.6: Surface detail of two hemispheric mirrors. (a) Radial error profile of part B as an

azimuthal equidistant projection. The complete surface is reconstructed from stitched interfer-

ograms. (b) The radial error profile of part B as a function of zenithal angle (�) with reduced

resolution, every 40th pixel of the stitched interferogram is plotted. A Savitsky-Golay filter of the

radial error (orange line) separates zenithal and azimuthal components. (c) Radial error profile of

part E by the same method, the two beam ports are shown. (d) Radial error profile of part E as a

function of zenithal angle including Savitsky-Golay filter (orange). The X-o↵set model er (purple)

from Fig. 10.3(a) shows the contribution of an inferred residual X-o↵set �x = 150 ± 10 nm.
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the di↵erential area element dA/d� ⇡ sin(�). A 3rd-order, 200 point Savitsky-Golay filter
of the scatter plot separates the azimuthal and zenithal components of the form error.
The zenithal radius function reconstructed in this way is consistent with contact probe
measurements taken along an arc through the mirror centre.

10.5 Mirror surfaces

In Tab. 10.4 we compare five hemispheres. The results demonstrate the consistent fabrica-
tion of hemispheres with RMS error under 25 nm and as good as 14 nm. For each mirror
the results are separated into zenithal and azimuthal components by the method described
above. Parts A, B, C and D are consecutive attempts to cut the same hemisphere. Of
these, part D is an outlier that is included for the sake of completeness. Its error profile
indicates an abrupt and unusual shift in the position of the lathe during the cut that
remains unexplained. Each profile features a peak at 0� as the cutting force vanishes
towards the centre of the spindle that may be compensated by a progressive adjustment
of the Z position over the final few degrees of the cut.

By fitting the X-o↵set model (Fig. 10.3(a)) to the measured surface profile we can
infer the residual X-o↵set that remains after our on-lathe calibration technique. Part B,
the best part yet measured, has a residual o↵set of 29 ± 3 nm, which accounts for only
20% of the total form error and which is largely spurious fitting to unrelated temperature
fluctuations. However the typical residual o↵set is larger, as illustrated by the X-o↵set
model fit to part E plotted in Fig. 10.6(d) which implies a residual o↵set of 150± 10 nm.
Although this is the largest measured residual o↵set (excluding part D), the typical o↵set
is considerably larger than the tolerance of the calibration process. The source of this
shift, a gradual tilt due to a deflating vibration isolation airbag, has been identified and
removed so that subsequent hemispheres should be more consistently similar to part B.

10.6 Experiment capability

In proposed QED experiments with hemispherical mirrors [258], a neutral or ionized atom
would be confined to a region much smaller than the transition wavelength at the hemi-
sphere CoC by either an optical or electromagnetic trap. In either case, UHV conditions
are required to isolate the trapped atom from background collisions, and optical access
from several directions is required for cooling. Two further measurements were made to
test the suitability of these hemispheres for such experiments.

10.6.1 Bake-out test

Part C was measured before and after bake-out in vacuum as preparation for UHV ex-
periments. As the temperature is increased and decreased, strains within the material
substrate relax and produce volumetric changes that deform the spherical surface. These
strains may be due to the temper of the aluminium, or may be produced by the manufac-
turing process. To reduce this e↵ect the mirror substrates are temperature cycled before
the surface is turned on the nano-lathe, essentially undoing the material temper. All the
parts presented here were cycled from room temperature to 300�C for one hour, three
times before finishing.

The bake-out test was performed by heating part C to 200� C in vacuum for two
hours. Table 10.4 and Fig. 10.7 compare the before and after measurements of the part.
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Figure 10.7: Deformation of part C during bake-out as an azimuthal equidistant projection.

To produce Fig. 10.7 the after image is translated, rotated, and translated again until it
has the maximum possible overlap with the before image. The residual di↵erence is taken
to be the distortion of the part. The final image is smoothed with a Gaussian filter (width
10 pixels) to remove artefacts of the fitting process. The bake-out induced deformation
has distorted the surface by up to 60 nm, and the RMS error is correspondingly increased
from 18.3 to 27.4 nm, an increase of 50%. This is a considerable distortion, although
an order of magnitude smaller than the measured deformation of mirrors which were not
temperature cycled before cutting.

10.6.2 Beam ports

Part E was cut to demonstrate the feasibility of diamond turning hemispheres from sub-
strates with pre-drilled holes for beam ports. Proposed measurements with these hemi-
spheres require on- and o↵-axis laser access to the mirror CoC through the mirror. Two
beam ports with 3 mm diameter were drilled through the substrate of part E before the
surface was lathed, one along the rotational axis and one at �port = 62� from the cen-
tre. The two ports are visible in the complete surface profile of part E in Fig. 10.6. The
ports introduce cutting force variations visible at the zenithal angle of the port, and this
degrades the form accuracy slightly as seen by comparing part E (RMS error 18 nm) to
parts A, B and C (22, 14 and 18 nm).

10.7 QED experiments with spherical mirrors

10.7.1 Vacuum mode suppression

Part of our motivation for this work is to develop free-space QED systems. Armed with
detailed metrology of our surface quality we can now calculate how our mirror would
modify the emission of a dipole placed at the CoC. Following the plane-wave decomposition
made in Ref. [258], the relative vacuum mode density (⇢r = ⇢/⇢0) at position r is

⇢r =
1

2⇡

Z
d� sin(�)

Z
d✓ (1 � cos [2(krc(✓,�) + k · r)]) , (10.24)

where rc(✓,�) is the radial profile of the hemisphere. Fig. 10.8 shows how the relative
vacuum mode density at the CoC (r = 0) is altered by retro-reflection with spherical optics
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Figure 10.8: (black) Relative vacuum mode density ⇢r at the CoC of a spherical mirror as a

function of NA (top axis shows the corresponding half-aperture in radians). The CoC is a node

(anti-node) of the vacuum mode density at wavelength � for R = n�
2

(R = n�
2

+ �
4

). (blue)

The relative spontaneous emission rate �r of a linear dipole at the node/anti-node emitting at

wavelength �. Dotted lines are the result of an ideal spherical mirror [258], dashed lines are the

result of a perfectly reflective sphere with the surface of part B (to a given NA), and solid lines

are the same result including the known reflectivity of aluminium at �=493 nm. Also shown are

the NAs of (a) previous attempts to measure such an e↵ect [218] (b) the best available di↵raction-

limited focusing optics and (c) this work. Considering its NA, reflectivity and form; part B is

modelled to reduce or enhance both ⇢ and � by 88%.

(dotted black line). The spontaneous emission rate of a dipole at the CoC is given by the
same integral, weighted by the dipole emission profile as derived in Sec. 4.1. For a linear
dipole perpendicular to the optical axis the relative spontaneous decay rate (�r = �/�0)
is

�r =
3

2⇡

Z
d� sin(�)

Z
d✓ sin2(⇡/2 � �) (1 � cos(2krc(✓,�))) . (10.25)

Whether this QED e↵ect enhances or suppresses the vacuum mode density depends
on the RoC. We do not, however, need to machine a hemisphere with an RoC calibrated
to within a fraction of a wavelength. Like spheres, hemispheres expand uniformly about
the centre of curvature. The coe�cient of thermal expansion of aluminium 6061 at room
temperature is 23.5 ⇥ 10�6 K�1 [272]. A temperature change of 0.42� K is enough to
switch between enhancement and suppression of spontaneous emission at the focus of
our mirror. So provided we achieve suitable form accuracy, the average radius can be
actively tuned. The radius of the mirrors should be su�ciently tunable to scan over
several spontaneous emission fringes. Resistively heating the mirror under the single-
shot, white-light ZYGO interferometer shows tunability over the desired range, and no
indication of surface distortion due to thermal expansion.

The key to a strong QED e↵ect is maximizing the NA. The experiment of Ref. [218]
used a multi-element lens and planar mirror combination with NA=0.4 (arrow a in Fig. 10.8).
According to the model, the density of modes is reduced by 8% giving suppression of spon-
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Figure 10.9: Illustration of the stepped-hemisphere mirror showing suppressed and enhanced

modes.

taneous emission by 24% at this NA. The highest NA lens one could realistically hope to
use is about 0.7, limited by the geometry of the experiment. This point is shown by ar-
row b and reduces the density of modes by 30% and decay rate by by 65%. Our work
has shown the machining of a spherical mirror with NA=0.996 (arrow c). The model
allows us to include the reflectivity of aluminium (0.92 at � = 493 nm [273, 274]) and the
measured form error (Fig. 10.6) to predict the vacuum mode density dipole fluorescence
enhancement, this is shown as a function of NA by solid lines in Fig. 10.8. Using the data
for part B, we predict suppression of the density of modes and spontaneous emission rate
of 88%. This figure is dominated by the reflectivity of the surface. A perfectly reflective
surface with the same form error would give 96% suppression of mode density and emis-
sion. High-reflectivity surface coatings are one approach to improving reflectivity. Metallic
coatings can improve on the reflectivity of aluminium at some wavelengths, and can be
deposited over high-aperture surfaces without introducing substantial surface distortion.
However, multi-layer dielectric coatings, which can be very close to perfectly reflective on
low-aperture mirrors, require a higher degree of uniformity. Typical sputtering techniques
are too directional to produce a high-reflectivity dielectric coating over a hemisphere.

10.7.2 Spatial mode shaping

In the above section we explored how ultra-precise hemispheric mirrors can be used to
tune the overall mode density and spontaneous emission rate as proposed by Ref. [258].
We now turn to a novel extension of the same idea. Near-hemispheric mirrors may have
an error profile re, by design, that preferentially enhances and suppresses some vacuum
modes over others depending on the wave vector k(✓,�). This, in turn, can be used to
shape the spatial mode of an emitter at the mirror CoC, enhancing emission into chosen
modes and suppressing others.

We shall consider first an illuminating example originated by Yves Colombe. An atom
may be trapped at the CoC of a near-hemispheric mirror, and imaged by a lens with
aperture half angle �a. The hemisphere di↵ers from a perfect hemisphere, it has a �/4
step at the same angle angle �a such that

rc(✓,�) =

(
n
2� � > �a�
n
2 + 1

4

�
� �  �a

. (10.26)
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(a) (b)

�r = 0.22

Free space, ✓ = 0

Modified, ✓ = 0,⇡/2
Free space, ✓ = ⇡/2

✓ = 0
✓ = ⇡/2

Figure 10.10: (a) The rotationally asymmetric mirror profile re yields a Gaussian mode from a

linear dipole emitter at the CoC, oriented perpendicular to the optical axis. (b) Intensity profiles

of the free-space and mirror-modified fourier plane field distributions, as collimated by a spherical

lens. The unmodified distribution is the same as the perpendicular linear dipole collimated by a

spherical lens shown in Fig. 4.7(c). The intensity is shown along two cut sections at ✓ = 0, ⇡ as a

function of normalized radial displacement ⇢/f . The modified profile is a Gaussian, and therefore

rotationally symmetric. The mirror profile width has been chosen such that the Gaussian mode

can be collected e�ciently by realistic high-aperture lenses. The relative spontaneous emission

rate of the modified dipole is �r = 0.22.

As illustrated in Fig. 10.9, the step-hemispheric mirror surface suppresses emission into
those modes outside of the collection angle of the lens, and enhances emission into the
modes that are collected. In this way the mirror increases the collection e�ciency beyond
the covered solid angle, outperforming the dipole mode collection e�ciencies derived in
Sec. 4.3.1.

With only slightly more complexity, the near-hemispheric mirror surface can be tailored
to produce a desirable optical mode in the imaging plane. Weighting the dipole mode
(Eqn. 4.2) by the momentum distribution of the modified vacuum mode density (the
integrand of Eqn. 10.24) and applying the spherical lens transformation (Eqn. 4.30) gives
the image field distribution as imaged by a spherical lens. The spatial mode of a linear
dipole at the mirror CoC, perpendicular to the optical axis, can be modified with the
mirror profile shown in Fig. 10.10(a) to give a linearly polarized Gaussian mode that is
smaller than readily available optics and can be e�ciently manipulated and fibre-coupled.
The asymmetric profile is shown along two cut sections at ✓ = 0, ⇡ where ✓ is the azimuthal
angle from the dipole orientation.

As shown in Fig. 10.10(b), a large proportion of the natural emission must be sup-
pressed to shape the dipole mode into a Gaussian mode. The free-space and modified
mode intensities in the Fourier plane are shown along two cuts at ✓ = 0, ⇡ as a function
of normalized radial distance ⇢/f . The relative emission rate of the emitter in this config-
uration is only �r = 0.22. Any scheme that requires substantial suppression requires high
reflectivity surfaces, and will be sensitive to imperfections in the mirror profile. Given the
demonstrated reflectivity and precision of the diamond turning technique developed in this
chapter, if the same process were used to produce the mirror profile in Fig. 10.10(a), we
could realistically expect the dipole to emit into the Gaussian mode with total two-sided,
single-mode e�ciency ⌘ = 0.72, substantially outperforming the single-mode collection
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e�ciency of the NA = 0.7 spherical lens on its own (see Sec. 4.7) and in a more convenient
spatial mode. With high-reflectivity mirrors it becomes feasible to e�ciently couple emit-
ters to even smaller Gaussian modes. In the extreme limit, this mode-shaping technique
is an atom-light coupling approach that could e�ciently couple trapped atoms to paraxial
photons, what we might call ‘paraxial atoms’, without the need for deep parabolic mirrors
or high-NA lenses.

10.8 Summary

We have demonstrated the fabrication of high-NA hemispheric optics for quantum optics
experiments and metrology by single-point diamond turning. Our best sample achieves
NA = 0.996, PV error 88 nm and RMS error 14 nm. These deviations from spherical
are within a factor of five of the roundest manufactured spheres [260, 262], even without
polishing. This accuracy meets the requirements for experiments that seek strong free-
space atom-light coupling. An ideal hemispheric mirror can reduce the vacuum mode
density, and therefore the atomic fluorescence rate of an atom at the mirror CoC, to zero
[258]. Our best mirror (part B) is close enough to spherical to reduce or enhance the
vacuum mode density by 96%. With this degree of reservoir engineering it is possible to
investigate QED e↵ects with free space optical modes, and tune the emission spectra and
spatial mode of emitters at the mirror CoC. We derived mirror profiles that enhance the
collection e�ciency of a given lens, and shape the atomic dipole image into a Gaussian
mode.

Four consecutively cut hemispheres demonstrate that this technique reliably produces
surfaces with RMS error below 25 nm and further measurements show the suitability of
these mirrors for proposed experiments, with the capacity to turn a comparable surface
over a substrate with pre-drilled beam ports and minimal disturbance by bake-out for
use in UHV. A crucial part of our setup was the development of an on-lathe white-light
interferometer that was applied to measure a series of calibration cuts made immediately
before the precision machining of a mirror. This calibration process has made possible
the production of hemispheric reference surfaces with precision previously feasible only for
reference flats and could be applied similarly for the diamond turning of high-NA parabolic
and axially asymmetric reflectors and optics.
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Chapter 11

A new ion trap for high aperture optics

Visibility is a trap.
– Michel Foucault, Discipline and Punish: The Birth of the Prison (1975)

The typical linear ion trap of the sort described in Chap. 6 is incompatible with
high aperture optics, the trap electrodes simply obstruct too much of the solid angle
for the ion to emit freely over a large aperture. In fact, the high-aperture lens objectives
(HALOs) that we used to collect atomic fluorescence in Chaps. 7 and 8 are already at
the limit of the optical clearance between the trap electrodes. This poses a problem not
only for atom-light networks, the primary interest of this thesis, but also for trapped-ion
quantum processors. In these processors qubit state readout is performed by a fluorescence
measurement to separate bright and dark atomic states, with readout speeds limited by
the atomic fluorescence rate and collection/detection e�ciency.

To improve free-space coupling with trapped ions therefore requires specialized trap
designs featuring improved optical access, as close as possible to the complete 4⇡ steradian
solid angle access for e�cient atom-light coupling. Noteworthy ion traps designed for this
purpose include the ‘stylus’ trap consisting of staggered concentric cylinders [275] and the
‘tack’ trap comprising needle, hemispheric mirror, and ring electrodes [276]. Planar traps,
in which the electrodes lie on (or very close to) a single surface, are also a path to improved
collection e�ciency, although typically only one hemisphere of the ion’s fluorescence is
unobstructed [277]. Palanar traps are now operating with collection lenses up to NA
= 0.8.

In this chapter we introduce a new design for an ion trap to be used in combination with
the hemispherical mirrors produced in Chap. 10 to perform free-space QED experiments
of the sort described in Ref. [258]. It has a simple structure and allows collection of 69%
of trapped-atom dipole fluorescence. Like the linear ion trap described in Chap. 6 and
those used as trapped-ion quantum processors [29], it traps ions along a linear string with
trapping frequencies su�cient for ion-ion motional gates.

11.1 Trap design

Low profile, point-like ion traps can be made with electrodes wrapped about a narrow
cylinder, this is the philosophy behind the stylus ion trap of Ref. [275] and the tack trap
of Ref. [276]. The ion is trapped at some distance from the stylus and the entire solid
angle outside of the small portion obstructed by the stylus may be collected. However,
point-like ion traps are not well suited to motional gates of the sort used in linear-trap
quantum computers. Weaker axial trapping encourages trapped ions to form linear crystals
along the axis of a two dimensional trap, however when multiple ions are loaded into a
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ẑ

Figure 11.1: Schematic of the aperture-wire radio frequency ion-trap proposed for use with

high aperture optics, in particular with a hemispheric mirror per Chap. 10. (a-c) Trap electrodes
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point-like trap they form an asymmetric three-dimensional crystal. It is impossible to
simultaneously compensate for the micromotion of all ions in such a trap. Although
such traps aren’t much use as motional-gate quantum processors, they are of interest for
quantum simulations [278].

An alternative design strategy is to have the electrodes lie on a single plane. Although
such planar traps obstruct too much of the reflected field to e�ciently collect fluorescence
with 4⇡ steradian parabolas, they are well suited to two-sided collection by confocal optics
so long as the trap electrodes have an aperture about the trap site. The most e�cient
coupling with such a scheme is achieved by quantizing the trapped atoms along an axis in
the electrode plane such that fluorescence from ⇡ transitions can be collected e�ciently.
However, optically pumping the ions in this configuration requires a beam parallel to the
electrode plane. For this reason the trap site must be displaced from the electrode plane,
allowing a beam perpendicular to the electrode plane to intersect trapped ions without
scattering o↵ the electrodes themselves.

We consider an electrode geometry consisting of a planar RF electrode with an elon-
gated circular aperture, as shown in Fig. 11.1, perpendicular to the optical (z) axis. This
aperture electrode is analogous to the pair of radial RF electrodes in the typical linear
trap (see Chap. 6). The role of the ground electrodes is played by a remote ground on
one side of the aperture, and by two wire electrodes running parallel to the long (x) axis
of the aperture on the other. The wire electrodes are displaced symmetrically about the
long axis of the aperture (in the y direction) such that they do not obstruct collection
from the aperture side of the trap centre. In Fig. 11.1 the remote ground is provided by
a hemispherical mirror, but it could just as easily be a grounded mount for a second col-
lection lens. The trap electrode cross section is shown in white in Fig. 11.2. The aperture
is su�ciently long that the axial pseudo-potential is negligible, �z ⇡ 0. As in a typical
two-dimensional trap, additional endcap electrodes on the same plane as the wires provide
an axial DC trapping potential.

11.2 RF pseudo-potential

We simulate the trapping potential due to such a configuration using finite element meth-
ods provided by the COMSOL simulation package. As introduced in Sec. 6.2, the ion
motion is close to that of ion in a pseudo-potential �̃RF (eqn. 6.5) that is related to elec-
tric field norm of the static RF electrode potential by [25]

�̃RF =
q|r�RF|2

4m⌦2
, (11.1)

where q and m are, respectively, the charge and mass of the trapped particle, and ⌦ is the
trap drive frequency. The pseudo-potential due to the RF electrode of the aperture-wire
trap configuration is shown in Fig. 11.2 as a cut plane perpendicular to the long (x) axis
of the aperture.

As planned, the asymmetry between ground electrodes on either side of the aperture
displaces the RF trap centre from the aperture plane towards the remote electrode (neg-
ative z). Complete optical access is available from this side, but fluorescence collection
from the opposite (+z) side is restricted by the width of the aperture and the trap centre
displacement d.

This aperture-wire electrode configuration produces two undesired trapping sites in
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Figure 11.2: RF pseudo-potential about the aperture-wire trap in (a) the region around the

electrodes and (b) in the proximity of the trapping site. The trap site is displaced from the

aperture plane by a distance d. Also shown are design parameters a = 70 µm and w = 300 µm

and the unobstructed collection angle �a = 45�. This potential was calculated for 138Ba+ with RF

potential amplitude V = 1500 V and frequency ⌦ = 16 MHz. These are the RF parameters used

in all subsequent simulations.

addition to the central trapping site, as shown by the red contours in Fig. 11.2(a). These
additional sites are substantially shallower than the central trap, and can be removed by
an additional small negative potential at +z. We discuss this further in Sec. 11.3.

We may, somewhat arbitrarily, impose an unobstructed collection half-angle require-
ment of �a = 45� (or NA = 0.7). This corresponds to the di↵raction-limited asphere we
intend to use for collection in this new trap, provided by Asphericon, which has a working
distance on 9.6 mm. We will see that �a may be increased, but only at the cost of relaxing
other requirements. Having imposed that constraint, and apart from an overall scaling
factor, the free parameters of this design are the additional aperture width a (additional
in that this is further to our �a condition) and the aperture-wire distance w, both shown
in Fig. 11.2(b). We’ll now consider how the two dimensional RF trapping potential above
changes with these design parameters.

In Fig. 11.3 we compare two key trap parameters as a function of the design parameters
w and a. Fig. 11.3(a) shows the ion-aperture displacement and Fig. 11.3(b) shows the
secular motion frequency along the optical axis. The larger the displacement the easier it
is to address the ion with beams parallel to the aperture plane. However, as the ion moves
further from the aperture, the aperture must also be wider to allow the desired optical
access. This, in turn, lowers the trap frequency. Fig. 11.3 shows this design trade-o↵.
Shifting the ion from the plane of the aperture is largely opposed to increasing the trap
frequency. However, some optimisation can be achieved by reducing w and a as much
as possible within manufacturing constraints. The dashed lines in Fig. 11.3 show the
parameter pair used in Fig. 11.2 and for further simulations.



154 A new ion trap for high aperture optics

200 300 400 500 600 700
0

25

50

75

100

125

150

175

200

200 300 400 500 600 700
0

25

50

75

100

125

150

175

200

60 120 180 240 300 360 420 480

(a) (b)

0.60 1.05 1.50 1.95 2.40 2.85 3.30 3.75

Trap frequency, ⌫z (MHz)Ion-aperture displacement, d (µm)

(µw m)

(µ
a

m
)

( m)w µ

(µ
a

m
)

Figure 11.3: Design constraints of the aperture-wire ion trap. (a) Displacement of the ion from

the aperture plane d as a function of wire-aperture displacement w and additional aperture width

a as defined in Fig. 11.2. (b) The trap frequency ⌫z as a function of the same parameters. The

black line on each plot shows the 250 µm ion-aperture displacement contour, and dashed lines

show the parameter values taken for Fig. 11.2 and further simulations.

2 4 6 8

r

250

260

270

280

290

d
 

(µ
m

)

2 4 6 8

r

0.5

1.0

1.5

⌫ i
(M

H
z)

(a) (b) (c)

⌫z
⌫y
⌫x

2 4 6 8

r

1.9

2.0

2.1

2.2

D
ep

th
(e

V
)

Figure 11.4: RF pseudo-potential trap parameters as a function of aperture aspect ratio. (a)

Displacement of trap centre from the aperture plane, d. (b) Trap frequencies ⌫x,y,z. (c) Trap depth

in eV.



§11.3 DC potentials 155

Until now we have neglected the length l of the aperture along the x axis. We can
consider the length as given by the aperture length/width aspect ratio r. The key trap
parameters are plotted as a function of r in Fig. 11.4. Figure 11.4(a) shows the displace-
ment of the trap centre from the aperture plane, d. Starting from r = 1 (circular aperture)
the trap centre displacement first increases, before decreasing again after r = 1.6 until it
reaches the limit d = 250 µm as r ! 1. Figure 11.4(b) shows the trap frequencies along
each of the primary axes (x,y,z) as a function of r. At r = 1 ⌫x and ⌫y are near-degenerate,
this is the three-dimensional trap limit. As r increases ⌫x drops rapidly, and ⌫y and ⌫z
converge until reaching the two-dimensional trap regime at r ⇡ 4. Finally, Fig. 11.4(c)
shows the trap depth as a function of r. As r ! 1 the trap depth approaches 1.8 eV. For
the following simulations we take r = 6. The degeneracy between ⌫y and ⌫z will be lifted
by the DC fields.

11.3 DC potentials

To complete the trap potential we apply DC potentials to two endcap electrodes. The DC
endcap electrodes in this design lie in the same plane as the wire electrodes, aligned along
the long axis of the aperture and displaced symmetrically from the trap site along the x

axis such that they protrude only 200 µm past the edge of the aperture. Because the ion
is displaced from the wire and endcap electrode plane, we also require a compensating
potential on the mirror to keep the RF pseudo-potential and total potential minima coin-
cident. In combination, these DC potentials increase ⌫x and ⌫z, and reduce the ⌫y ending
the ⌫z, ⌫y degeneracy of the RF pseudo-potential. The potential configuration and trap
frequencies are given by the table below.

Electrode potential (V) Secular frequency (MHz)

Cap 1 Cap 2 Wire 1 Wire 2 Mirror Lens ⌫x ⌫y ⌫z

500 500 0 0 15.13 -50 0.43 1.20 1.45

Table 11.1: DC potential configuration used in trap simulations and resultant trap frequencies.

These are the DC potentials used in all subsequent simulations.

The complete time averaged potential �̃ = �DC + �̃RF for this configuration is plotted
in Fig. 11.6. The two undesired trapping sites on the +z side of the wire electrodes have
been pushed outwards by the endcap potential, and then removed by a remote negative
potential at +z. This potential can be applied, for example, to the imaging lens mount.
This is the ‘lens’ voltage listed in Table 11.1.

Examining the trapping region, we can explore how closely the total potential approxi-
mates the ideal quadratic potential well from Eqn. 6.1. Figure 11.6(a) shows the potential
along each trap axis in a region 50 µm about the trap centre. Along the x and y axes
the potential is near perfectly quadratic, but the z-axis asymmetry yields an additional
component linear in z. Figure 11.6(b) shows how the �̃ minimum shifts as a function of
a potential o↵set applied to particular electrodes in the configuration of Table 11.1. Each
potential o↵set induces a shift along only one of the primary axes. Such shifts can be
used to neutralize disturbances from stray charges or misalignment, and to compensate
for micromotion by aligning the static and oscillating potential minima.

Despite the z-axis trap potential asymmetry, the trap is stable for a wide range of
driving conditions. We verify the stability by numerically integrating the trajectory of
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Parameter x y z

Cooling angle �c (deg.) 33.80 72.39 62.17
Lamb-Dicke cooling, ⌘c 0.248 0.054 0.076

Pumping angle, �p (deg.) 43.90 46.10 90.00
Lamb-Dicke pumping, ⌘p 0.215 0.124 0.000

Detection angle, �d (deg.) 90.00 90.00 0.000
Lamb-Dicke detection, ⌘d 0.000 0.000 0.163

Quadrupole angle, �q (deg.) 46.10 43.90 90.00
Lamb-Dicke quadrupole, ⌘q 0.058 0.036 0.000

Table 11.2: Optical parameters of the aperture-wire radio frequency ion trap. Beam angles and

Lamb-Dicke parameters are listed for each beam and each trapping axis.

trapped particles given the total time varying potential �(t). The static, DC potential is
produced by the voltage configuration in Table 11.1, and the time-varying RF potential
oscillates with amplitude V and drive frequency ⌦. Each potential is calculated separately
according to finite-element simulations of the trap design in COMSOL, and the particle
motion along each axis is integrated in the combined potential independently. Stable
driving conditions V , ⌦ are shown by the white region in Fig. 11.7. Where the trap is
unstable, we have indicated the growth rate � defined by

|x(t)| = |x(0)|e�t (11.2)

according to the colourbar. The RF parameters used in Fig. 11.2 and subsequent calcula-
tions, ⌦ = 16 MHz and V = 1500 V, are shown with dashed lines.
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Figure 11.8: The aperture-wire trap operating with a hemisphere and NA = 0.7 collection as-

phere. The hemisphere and lens are mounted on positioning stages for alignment.

11.4 Summary

We have introduced an aperture-wire ion trap design with optical access su�cient for
performing QED experiments with hemispheric mirrors as proposed in Ref. [258] and
Sec. 10.7.2. The trap is designed to be used with the hemispheric mirrors produced in
Chap. 10. Compared to noteworthy traps with near 4⇡ steradian access, such as the
stylus [275] and tack traps [276], the trapping potential is deeper, the trap frequencies
are higher, and (because this is a two-dimensional trap) multiple ions may be trapped
in a linear crystal along the RF potential symmetry axis. Feasible trap frequencies, see
Table 11.1, are comparable to the linear trap of Chap. 6, and su�cient for ion-ion motional
gates used by ion-trap quantum processors. In this respect the trap is most like planar or
surface ion traps, with an aperture to allow optical access from two hemispheres.

The primary design trade-o↵ is between, on one hand, the ion-aperture distance d that
is required for pumping perpendicular to the detection axis, and, on the other hand, higher
secular frequencies ⌫x,y,z and a larger unobstructed angle �a. The presented design is a
compromise predicated on the condition that d � 250 µm is required for pumping, and
that the available collection optic has only �a = 45�, or NA = 0.7. As shown in Fig. 11.3,
reducing the wire-aperture distance w improves the trap frequencies slightly. This suggests
a two-layer segmented electrode design as a promising alternative to the wire-trap design.

The ion-aperture displacement d = 250 µm reduces the fluorescence collection e�-
ciency to 69% of the total dipole emission, substantially worse than the tack and stylus
traps, but suitable for hemisphere-based QED experiments because one hemisphere of the
ion’s emission remains completely unobstructed. The proposed experimental configuration
is shown in Fig. 11.8. According to Sec. 10.7.2, it will therefore be possible to improve col-
lection e�ciency from the aperture-wire trap to near unity by shaping the spatial emission
mode of a chosen transition to favour collection.

The optical beam access is designed to be consistent with beams perpendicular to the
ports of the Kimball 8” extended spherical octagon vacuum chamber (MCF800-ExtOct-
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G2C8A16), allowing for cooling, pump, and quadrupole beams as well as detection along
the primary optical axis. Lamb-Dicke parameters for each beam are listed in Table 11.2,
given the secular frequencies we derived from the simulated trap, see Table 11.1. Each
beam has 150 µm of clearance from the electrodes and (indicative) mount shown in
Fig. 11.1. In contrast to the linear trap we used earlier, the quadrupole beam is per-
pendicular to the detection axis. A plausible alternative, if quadrupole-detection beam
overlap is required, is to use the high-NA collection lens o↵-axis and in combination with
a corrective lens to provide another quadrupole beam direction. Because the quadrupole
beam diverges rapidly, any quadrupole beam that is tightly focussed and overlaps with
the detection axis will impinge on the mirror, and light scattered from the mirror will be
detrimental to quadrupole operations. These considerations aside, the design presented
here is a feasible means of performing QED experiments with a hemispheric mirror and
either one or a string of many trapped ions.
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Chapter 12

Free-space couplers: conclusions and
outlook

From hence your eye takes in a wider expanse of snow; here tossed into ridges
resembling breakers just about to plunge; there sunk in mazy furrows; there smooth
slopes and level plains of exquisite purity.

– Walter White, On Foot Through Tyrol (1855)

We have demonstrated atom-light couplers for trapped-ion qubits using high-aperture
lenses as free-space couplers. Free-space couplers are single pass, the interaction time
bandwidth is limited by the atomic transition and not a cavity bandwidth. Nevertheless
they can approach unit interaction e�ciency in the limit of high apertures. We derived the
images of atomic dipole fields for spherical lens, thin lens and parabolic mirror couplers
and calculated their fibre-coupling e�ciency depending on the dipole orientation.

The free-space coupled trapped ion is a source of exceptionally pure single photons.
We demonstrated alternative methods of operating the photon source, and characterized
the photon-emission behaviour. We showed that an eight-level Bloch model fitted to
the dark-resonance spectrum of the ion successfully predicts the single-photon arrival
time distribution and correlation function. We also showed that spin-orbit coupling in
the single-photon spatial mode produces wavelength scale displacements in the single-
photon image. This is fundamental to the atomic dipole mode, and will only become
more consequential as free-space atom-light couplers approach high apertures and unit
collection e�ciency. However, even for ine�cient collection, spin-orbit coupling in the
field of dipoles that aren’t angular momentum eigenstates can produce arbitrarily large
displacements.

Although the lens-based atom-light couplers we use are ine�cient, the single photon
field is su�ciently pure that its higher-order quantum character persists. We derived
an e�cient witness for quantum-non Gaussian states and demonstrated that our single-
photon source beats the witness under a wide range of conditions. The source is therefore
su�ciently pure to operate a large quantum network, or equivalently to network a large
number of quantum computer registers. However, improving the e�ciency of our free-space
couplers is necessary to provide a useful, spectrally bright photon source for networks or
trapped-atom quantum computers.

We entangled a pair of trapped ions by single-photon detection, and then measured
path-dependent spatial interference patterns in the emission mode of the two-atom en-
tangled state. This is the small ensemble limit of Dicke enhancement, which will prove
fundamentally important to ensemble-based atom-light couplers in Part III. The interfer-
ence fringe visibility was limited by the entangled state fidelity, which is in turn limited by
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the temperature of our atoms. The atoms could be ground-state cooled without a great
time penalty by EIT cooling [215, 279].

We proposed a new method of e�cient coupling with high aperture optics that com-
bines the QED engineering typical of optical resonators in a single-pass configuration.
Perfect hemispheric mirrors can enhance, or entirely suppress, the spontaneous emission
of an atom trapped at the centre of curvature. Like all high-aperture, di↵raction limited
optics, making hemispheres su�cient for this task is a considerable challenge. We manu-
facture hemispheres with typical surface deviations as low 14 nm. To our knowledge the
roundest concave surfaces ever produced, and within a factor of five of the roundest man-
ufactured objects. Such round mirrors can reduce or enhance the vacuum mode density
by 96%. By a slight modification, we could make near-hemispheric mirrors that enhance
the emission of an atom into a high aperture lens, and suppress the emission outside of
the collection angle. By shaping the dipole mode in this way, an atom can be e�ciently
coupled to a travelling photon mode without 4⇡ optics. A calculation based on the mirrors
we manufactured and our trapped ions shows feasible coupling e�ciencies higher than the
best existing free-space couplers.



Part III

Many atoms
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Chapter 13

Ensemble-light interactions

If I had the misfortune to know the laws of these phenomena, I could not succeed
except by inextricable calculations, and I should have to give up the attempt to
answer you; but since I am fortunate enough to be ignorant of them, I will give
you an answer at once. And, what is more extraordinary still, my answer will be
right.

– Henri Poincaré, Science and Method (1908)

At the outset of this thesis we described three broad strategies for e�ciently coupling
qubits from travelling photons to stationary atomic systems: increasing the interaction
time using resonators, decreasing the mode volume with focussing optics, and increasing
the number of atoms interacting with the field. Atom-light couplers typically employ
some combination of these approaches, for example the coupling of ensembles to resonator
modes. So far we have explored only the first two, which concern the coupling of optical
qubits to single-atom qubits, like the atomic qubits in a linear ion-trap quantum processor,
but now we will turn our attention to the third, ensemble, method. Although the free-space
interaction of atoms and photons is weak, ensembles of identical atoms have a collective
interaction strength that can be very large.

It is obvious that the optical depth of N atoms should be N times larger than a single
atom, but quantum couplers with ensembles require N atoms that cooperate coherently.
In his seminal paper, Ref. [251], Dicke identified that emissions from the individual atoms
in an ensemble are correlated by their common radiation fields. Even spontaneous decay
from an excited ensemble can initiate directed coherent emission, so-called ‘collective spon-
taneous emission’. Under the right conditions, the dipole moments of spatially separated
atoms in an uncorrelated, population-inverted ensemble may spontaneously correlate over
the course of an emission process to produce a coherent field [280]. The correlated emis-
sion rate is faster than the natural spontaneous emission rate by a factor N . Additionally,
the shape of the ensemble determines a preferred emission direction; an elongated cylin-
drical ensemble emits preferentially into the on-axis mode. The ensemble fundamentally
enhances and directs the atom-light interaction.

The ‘Dicke superradiance’ discussed above is a transient coherent process that arises
spontaneously, but we can engineer coherent ensemble-photon interactions by imposing
the same phase coherence externally. In fact, we have already done this with a (very
small) atom ensemble. The spatial interference pattern of the bipartite entangled states
we prepared in Chap. 9 is an example of how the collective atomic state can enhance
the atom-light interaction in particular modes. In order to understand these techniques
with larger ensembles, we will expand the theory of atom-light interactions developed in
Chap. 3 beyond isolated atoms to the coherent interaction of light with atomic ensembles.
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Atoms are the subject of the experimental work in this thesis, and we’ll continue to
discuss atoms exclusively in the following chapter, although, once again, what is true of
atoms is true of emitters more broadly, and the same ensemble techniques can be performed
with the ‘artificial atoms’ we covered in Sec. 5.6.

We will introduce techniques for reversibly mapping quantum light fields to and from
atomic ensembles, the essential capability of an optical quantum memory. In particular we
introduce the ‘gradient echo memory’ scheme, which we employ to great e↵ect in Chaps. 16
and 17 using clouds of cold, trapped Rb atoms. We will also show how the optical field
can be trapped inside an ensemble to create strong, stationary light fields that may be
a mechanism for ensemble-mediated photon-photon gates. This last work is part of the
theory published in Ref. [8].

13.1 Ensemble states

In the ideal case, a single photon coherently absorbed into an ensemble of identical emitters
creates an entangled Dicke state: a single excitation delocalized and distributed equally
amongst each emitter in the ensemble [281]. Each excitation has a position-dependent
phase so that the total ensemble state is

 Dicke =
1p
N

NX

j=0

eik0

·r
j �̂j+ |Gi , (13.1)

where |Gi is the ensemble ground state |Gi =
NN

j=1 |gij , �j+ is the raising operator for
the j-th atom, rj is the position of the j-th atom, and k0 is the wave vector of the input
photon field. The factor of

p
N appears due to the N permutations of a single excitation

amongst N atoms. The two-atom entangled states we produced by single-photon detection
in Chap. 9 are the limiting case of a Dicke state as the ensemble shrinks to N ! 2. In
that case, we observed spatial interference in the single-photon field of the two-atom Dicke
state as the two superposition components combine constructively or destructively. As N

increases the interference pattern focusses along the direction of the exciting photon k0. In
the limit of very large N , the photon is emitted such that k = k0. In the rotating reference
frame of the exciting wave this lowest-order Dicke state is the N -atom W state. Compared
to other multi-atom entangled states the entanglement of the W state is robust, retaining
entanglement after atom-loss. In this way such distributed states can be the basis of
robust quantum memories, indeed the operation of a quantum memory can be construed
as a multi-atom entanglement witness [282].

The interaction Hamiltonian of the ensemble-light system is simply the sum of inter-
action Hamiltonians for each constituent atom. Following Eqn. 3.19 we have

Ĥint = ~g
NX

j=1

�̂j+âk0

eik0

·r
je�i(!

j

�!
0

) + h.c. , (13.2)

where we have allowed the detuning �j = !j�!0 to vary from atom to atom. The interac-
tion Hamiltonian comprises the bare-state basis elements h Dicke|Ĥi| Dickei = hG|Ĥi|Gi =
0 and h Dicke|Ĥi|Gi = ~g

p
N , which is equivalent to the single-atom Jaynes-Cummings

interaction Hamiltonian Eqn. 3.21 with g ! g
p
N [283]. The role of an N -atom ensemble

in this sort of coherent absorption and remission process is therefore to enhance the inter-
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action strength by a factor of
p
N . With this evidence alone, we can see that interactions

between optical fields and large atomic ensembles is a promising means of e�ciently cou-
pling travelling photonic and stationary atomic qubits, although the atomic qubit is no
longer localized in a single atom, but distributed amongst many atoms. To conveniently
describe such distributed excitations we must introduce collective operators.

13.1.1 Collective operators

Until now we have considered only a single excitation in the ensemble, which allowed us
to write the state as a straightforward permutation. To describe a more general state,
containing any number of excitations, we will introduce collective operators [63]. In the
limit of large N the ensemble can be approximated as a continuous distribution of atoms.
We may therefore divide the interaction region into non intersecting volumes of size Vi

1

about points ri su�ciently small that the detuning �j is constant 8 j | rj 2 Vi but large
enough to contain a macroscopic quantity of atoms Ni = Vini, where ni = n(ri) is the
local density at point ri. We’ll limit ourselves to describing only ensembles of uniform
density ni = n, although this is not strictly true in the cold atom systems we experiment
with.

We define locally average operators on the volume Vi according to

Âi =
1

N

X

j|r
j

2V
i

Âj , (13.3)

which approach the continuous operators Â(r) in the continuum limit. By applying this av-
eraging to the atomic operators �̂± we subsume the sum from Eqn. 13.2 into the definition
of the new collective atomic operators themselves2. The Heisenberg-Langevin equations for
the atom-light interaction are linear, which means that the local collective atom-ensemble
Hamiltonian is identical to the Jaynes Cummings atom-light Hamiltonian of Eqn. 3.21,
but with the ensemble interaction Hamiltonian

Ĥens
int =

X

i

Vini(Hint)i(ri) . (13.4)

In the continuous limit this becomes

Ĥens
int =

Z
dV n(r)Ĥint(r) . (13.5)

13.1.2 Field propagation

For the first time in this thesis we have an atom-light interaction that is spatially dis-
tributed, and so we need to describe how the light field propagates through the atom
ensemble. Classically, this is the Maxwell equation for an electric field pulse propagating
in a dielectric medium [50]

r2E� 1

c2
@2E

@t2
= µ0

@2P

@t2
, (13.6)

1Here we use the index j for a sum over atoms, and the index i for a sum over volumes.
2We are not going to draw any notational distinction between single-atom and collective operators,

since we will be almost exclusively concerned with collective atomic operators from this point forward.
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where P is the polarization of the dielectric. For slowly varying (!k ⇡ !0), paraxial
(|k| ⇡ kz = !0/c) envelopes E and P of uniform polarization e

E(r, t) = eE(z, t)ei(kz�!t) + h.c. , (13.7)

P(r, t) = eP(z, t)ei(kz�!t) + h.c. , (13.8)

Eqn. 13.6 reduces to the first order di↵erential equation

(@t + c@z) E = i
!

2✏0
P , (13.9)

where the paraxial approximation has simplified the spatial derivative to a single propa-
gation direction that we take to be ẑ.

To find an analogous equation for the quantum field from Eqn. 2.1, we first define
slowly varying and paraxial envelopes for an e-polarized quantum field pulse in terms of
the positive frequency operator

Ê+ =
1

(2⇡)3

r
~!0V

2✏0

Z
d3k

r
!k

!0
âke

i(k·r�!kt) . (13.10)

= ✏!Êe . (13.11)

The Heisenberg equation of motion for the wave packet operator is

d

dt
Ê = � i

~

h
Ĥ, Ê

i
+ @zÊ . (13.12)

By calculating the partial derivatives of Ê , making paraxial and slowly-varying approxima-
tions, substituting the collective Jaynes-Cummings dipole interaction Hamiltonian from
Eqn. 3.21, and rearranging (see, for example, Ref. [284]) we arrive at the propagation
equation for the envelope operator

(@t + c@z) Ê = � i

~

h
Ĥi, Ê

i
. (13.13)

Substituting collective operators for �̂± in Eqn. 3.21 and taking the ensemble interac-
tion Hamiltonian from Eqn. 13.5 gives us the propagation of Ê in terms of the collective
excitation operator for a resonant transition, �̂+,

(@t + c@z) Ê = igN �̂+ . (13.14)

where g is the interaction strength between each photon and atom in the interaction region
and N is the total number of atoms in the interaction region. This is equivalent to the
classical expression Eqn. 13.9, where the polarizability P has been replaced by the the
collective bulk polarization operator

P̂ = N (d · e) �̂+ , (13.15)

Ê has been scaled by ✏! and we assume that the dipole moment d and polarization e are
aligned.
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Figure 13.1: Level scheme for the ⇤-atom ensemble used in the following chapters. We work

exclusively in the weak-probe limit gÊ ⌧ ⌦ and typically with branching rate 1

2

, such that �eg =

�es = �/2.

13.1.3 Bloch equations for ⇤ ensembles

The atom-ensemble experiments in this part of the thesis will concern ensembles of ⇤-
atoms that are driven by a weak field Ê addressing the transition |gi ! |ei and a strong
control field with Rabi frequency ⌦ that drives a transition between the excited state |ei
and a further, metastable ground state |si, as shown in Fig. 13.1. The equation of motion
for the collective atomic density matrix ⇢ is given by the ⇤-atom Hamiltonian (Eqn. 3.39)
[63]

@t⇢̂ = � i

~

h
Ĥi, ⇢̂

i
+ L̂(⇢̂) , (13.16)

where the Liouvillian contains three components in Linblad form: the spontaneous decay
and dephasing terms with collapse operators as introduced in Sec. 3.3

Ĉspon =
p

�spon (�̂eg + �̂es) , (13.17)

Ĉdeph =
p

�deph (�̂gg + �̂ss) , (13.18)

and an additional population exchange term corresponding to, for example, population
exchange in inelastic collisions, with collapse operator

Ĉcoll =
p

�coll (�̂gs + �̂sg) . (13.19)

and corresponding collision rate �coll. We will consider a ⇤-ensemble with equal decay
rates �ge = �se = �/2 where � is the excited state linewidth.

We write the evolution of ⇢̂ in terms of six coupled di↵erential equations for the local
collective atomic operators �̂ij

@t�̂gg = �igE �̂eg + igE†�̂ge + �
2 �̂ee + �coll (�̂ss � �̂gg) , (13.20)

@t�̂ss = �i⌦�̂es + i⌦⇤�̂se + �
2 �̂ee + �coll (�̂gg � �̂ss) , (13.21)

@t�̂ee = igE �̂eg + i⌦�̂es � igE†�̂ge � i⌦⇤�̂se � ��̂ee , (13.22)

@t�̂es = i⌦⇤ (�̂ee � �̂ss) + igE†�̂gs � (�es � i(� � �)) �̂es , (13.23)

@t�̂ge = igE (�̂gg � �̂ee) + i⌦�̂gs � (�ge + i�) �̂ge , (13.24)

@t�̂gs = i⌦⇤�̂ge � igE �̂es � (�gs + i�) �̂gs , (13.25)
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where the polarization and spin coherence terms relax at rates

�ge = �se =
�

2
+ �deph + �coll , (13.26)

�gs = �deph + �coll . (13.27)

It is worth noting that the collective atomic state is the ensemble average over many atomic
states, so we may properly associate the expectation value of the collective operator with
the ensemble state.

13.1.4 Weak-field limit

Fortunately, we can eliminate most of these equations in the weak-field limit gE ⌧ ⌦
where the steady state population is almost entirely in the ground state [63]

�̂gg ⇡ 1 , �̂ee ⇡ 0 , �̂ss ⇡ 0 , �̂es ⇡ 0 . (13.28)

Only two equations for the atomic state remain: one for the atomic polarization �̂ge and
one for the atomic coherence �̂gs,

@t�̂ge = igE + i⌦�̂gs � (�ge + i�) �̂ge , (13.29)

@t�̂gs = i⌦⇤�̂ge � (�gs + i�) �̂gs . (13.30)

Finally, the bright control field induces an AC Stark shift on the transition |ei$|si, chang-
ing the resonant frequency of the two-photon transition by an amount

�Stark =
�|⌦|2

�2 + �2
. (13.31)

In practice, however, we are concerned only with the detuning about the true, shifted,
resonance, and never with the unshifted resonance. We therefore redefine our two-photon
detuning � ! ���Stark to compensate for the AC Stark shift and give Stark-independent
equations of motion.

13.1.5 ⇤-ensemble Maxwell-Bloch equations

Including the field propagation equation Eqn. 13.40, we have three coupled di↵erential
equations for the combined light field and ⇤-ensemble system under the rotating wave,
pure state and slowly-varying envelope approximations

@t�̂ge = igE + i⌦�̂gs � (�ge + i�) �̂ge , (13.32)

@t�̂gs = i⌦⇤�̂ge � (�gs + i� � i�Stark) �̂gs , (13.33)

(@t + c@z) Ê = igN �̂+ . (13.34)

By moving into a reference frame travelling at the speed of light we further reduce
Eqn. 13.34 to a first order di↵erential equation in space alone

⌧ = t� z/c (13.35)

@zÊ(z, ⌧) = igN �̂+(z, ⌧) . (13.36)
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13.1.6 Optical depth

The interaction strength g and atom number N depend on the field mode u(r) and en-
semble density distribution n(r), which are not straightforward to determine precisely in
experiments. We will therefore make some transformations in order to arrive at simplified
equations of motion in terms of directly measurable experimental parameters. We intro-
duce the on-resonance optical depth for a collimated beam with cross section A travelling
through a uniform density ensemble of length L [63]

d =
d2egN!

2c~✏0A�
=

g2NL

�c
. (13.37)

where N is the number of interacting atoms, and we assume that the ensemble is larger
than the probe beam so that the attenuation is even over the spatial extent of the beam.

The intensity of a weak on-resonance field will be attenuated by a factor e�d on passing
through the ensemble. In contrast to the interaction volume V and atomic density n(r),
the optical depth is directly observable by a probe attenuation measurement (although it
may be necessary to make such a measurement o↵-resonance when the optical depth is
very high). Writing the equations in terms of d will give us an experimentally verifiable
equation of motion.

We first replace z with the dimensionless ‘depth proportion’

⇠(z) =
1

N

Z
dx

Z
dy

Z L

0
dz n(r) , (13.38)

that ranges from 0 to 1 along the length L of the ensemble along the propagation direction.
For an ensemble of uniform density n, cross section A, and length L, the propagation
equation may be written terms of this transformed spatial coordinate

⇠ = z/L , (13.39)

@⇠Ê 0(⇠, ⌧) = i
p
dP̂ 0(⇠, ⌧) , (13.40)

where Ê 0 is Ê with a dimensionless scaling

Ê 0 =

r
c

�L
Ê , (13.41)

and we have introduced scaled envelope operators for the polarization and spin coherences

P̂ 0 =
p
N �̂+ , Ŝ 0 =

p
N �̂� . (13.42)

Applying these transformations and making these substitutions to Eqns. 13.32, 13.33
and 13.36 we arrive at the transformed equations of motion

@⌧ P̂ 0 = i
p
d�Ê 0 + i⌦Ŝ 0 � (�ge + i�) P̂ 0 , (13.43)

@⌧ Ŝ 0 = i⌦⇤P̂ 0 � (�gs + i� � i�Stark) Ŝ 0 , (13.44)

@⇠Ê 0 = i
p
dP̂ 0 . (13.45)

Compared to Eqns. 13.32, 13.33 and 13.36, these equations of motion have the advantage
of being written in terms of the directly measurable optical depth d. From this point on we
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will work with these transformed equations and make the direct notational substitutions
Ê 0 ! Ê , P̂ 0 ! P̂, Ŝ 0 ! Ŝ in order to save on apostrophes. These are the essential equations
describing atom-light interactions in a ⇤ ensemble, and we will return to them many times
in the following chapters.

However, there remain two further levels of approximation that we will make when
appropriate: the adiabatic and far-detuned (Raman limit) approximations.

13.1.7 Adiabatic approximation

We may adiabatically eliminate the polarization in order to reduce Eqns. 13.43 to 13.45
to only two di↵erential equations. When the single-photon detuning is considerably larger
than the two photon detuning � � �, the polarization envelope P̂ develops only slowly
compared to the electric field and spin envelopes. We adiabatically eliminate P̂ by taking
@tP̂ ⇡ 0, after which equation Eqn. 13.43 gives

P̂ =

p
d�Ê + ⌦Ŝ
� � i�ge

. (13.46)

By substitution back into the remaining Maxwell-Bloch equations we have the two adia-
batic approximation equations of motion

@⌧ Ŝ 0 =
⌦⇤pd�

�ge � i�
Ê � (�gs + �scat + i�) Ŝ , (13.47)

@⇠Ê =
d�

�ge � i�
Ê +

p
d⌦

�ge � i�
Ŝ . (13.48)

These are the equations that we will use most frequently to model our system. The AC
stark shift that we subtracted from � in Eqn. 13.33 has cancelled out of Eqn. 13.47 as we
intended. The coherence relaxation rate is increased by the control field scattering

�scat =
�ge⌦2

�2ge + �2
, (13.49)

due to power broadening of the excited state. This is the mechanism by which the con-
trol field relaxes the spin coherence, and is important to understanding the operation of
gradient echo memories, with which we will soon be concerned. In Eqn. 13.47, the term

d�

�ge � i�
Ê (13.50)

comprises real and imaginary parts corresponding to, respectively, absorption and disper-
sion caused by the excited state.

13.1.8 Raman limit

In the far-detuned (Raman) limit we have � � �ge, and therefore the polarization becomes
real

P̂ ⇡ ⌦

�
Ŝ +

p
d�

�
Ê , (13.51)
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which further reduces the Maxwell-Bloch equations to

@⌧ Ŝ = i
⌦⇤pd�

�
Ê � (�gs + �scat + i�) Ŝ , (13.52)

@⇠Ê = i
d�

�
Ê + i

p
d

⌦

�
Ŝ . (13.53)

In this far detuned limit, o↵ resonant absorption is zero. The dispersion is also negligible,
so long as � � gÊ . In any case, we can incorporate dispersion into the envelope mode so
that the Raman limit equations become simply

@⌧ Ŝ = i
⌦⇤pd�

�
Ê � (�gs + �scat + i�) Ŝ , (13.54)

@⇠Ê = i
p
d

⌦

�
Ŝ . (13.55)

These Raman-limit equations are identical to the equations of motion for two-level atoms,
with e↵ective two-photon coupling strength, optical depth and decoherence rate

ge↵ =
g⌦

�
, de↵ =

g2N

c�

✓
⌦

�

◆2

, �e↵ = �ge + �scat . (13.56)

As we’ve seen, the Raman limit neglects some important physics, and we will not always
be able to take it. Dispersion, in particular, will play an important role when the field
strength is large, as it will be when we consider stationary light fields in Sec. 13.3. For
this reason we will usually work with the adiabatic, and not Raman limit, Maxwell-Bloch
equations of motion.

In the remainder of this chapter we illustrate first the operation of a gradient echo
memory and second the generation of stationary light fields in the ensemble. Generating
stationary light requires including counterpropagating fields in this model, to which we will
turn in time. In Chap. 16 we further extend the model to describe two frequency separated,
copropagating field modes such that the ensemble can be operated as a dual-rail memory
for frequency qubits.

13.1.9 Numerical modelling

We simulate the propagation of light in atomic ensembles by solving the above equations
of motion numerically with the open-source numeric and stochastic partial di↵erential
equation solver XMDS2 (the eXtensible Multi-Dimensional Simulator)[285, 286]. XMDS2
compiles C++ code to solve systems of ordinary di↵erential equations, like our equations
of motion for the ensemble. The solver is compiled according to an XML document
that dictates the dimensions and boundary conditions of the problem, along with the
numerical integration algorithm to be used. XMDS and XMDS2 were developed jointly
at the University of Queensland and the Australian National University by G. Dennis, G.
Collecutt, P. D. Drummond M. Johnsson and J. Hope.

For the problems in this thesis, we will use only simple solvers. By assuming an
ensemble of uniform cross section and density we have reduced to equations of motion to
two first-order di↵erential equations in ⇠ for the polarization and ground-state coherence
envelopes, and a single first-order di↵erential equation in ⌧ for the electric field envelope.
We can therefore solve this problem on a two dimensional ⌧ -⇠ (or t-z) grid. The input fields
are specified by a boundary condition applied at one end of the grid and the local ODEs are
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solved by a method-of-lines approach. The spatial equation Eqn. 13.45 is integrated with
a non-adaptive 4th-order Runge-Kutta algorithm, and the temporal equations Eqns. 13.43
and 13.44 are integrated by an adaptive 4th-order Runge-Kutta algorithm.

13.2 Gradient echo memory

Gradient echo memory (GEM) is a technique for reversibly storing and recalling quantum
optical fields inside an ensemble of emitters [287, 288]. It is an instance of the broader
category of memories that operate by controlled reversible inhomogeneous broadening
(CRIB) [289, 290]. GEM is a promising candidate for real-world optical quantum memo-
ries, as we demonstrated in Chaps. 16 and 17 with cold atomic vapours. In this section we
consider the relevant theory of operation, using the Maxwell-Bloch equations developed
above. The operation of a GEM may be described analytically in the appropriate limits,
and this problem has been considered extensively over the last decade [288]. A great deal
of this detail lies outside the scope of this thesis, and interested readers should see, for
example, the thesis of Geo↵ Campbell, Ref. [291].

In a GEM the resonant transition of an atomic ensemble is broadened by the applica-
tion of external fields such that the resonant frequency, and therefore the signal detuning
�(⇠), varies across the ensemble (where we are using the scaled length ⇠ = z/L). Each
spectral component of the signal is resonant with a separate section of the ensemble. Once
absorbed, the optical pulse is mapped to a spatial coherence that evolves according to the
local resonant frequency. GEM, like other CRIB memories [289, 290], works by reversing
this evolution such that the ensemble reconstitutes its original polarization under exci-
tation. Once returned to this state, the ensemble spontaneously and coherently emits
back into the exciting mode. Because the Maxwell-Bloch equations are linear under weak
excitation, this operation maps the complete quantum state of the field- be it a coherent
state, single-photon state, or any other exotic quantum state- onto the collective polar-
ization coherence, and then maps it back again. Under ideal conditions this operation
reconstitutes the original state exactly.

The time evolution of the coherence is reversed by switching the applied fields such
that the local detuning inverts across the ensemble, �(⇠) ! ��(⇠). This neatly avoids
the need for rotations by ⇡-pulses, on which photon-echo (the photonic analogue of spin
echo [292]) and some CRIB memories rely [293, 294]. To operate e�ciently, it is necessary
that reemission occurs without any subsequent reabsorption. This is ensured so long as
the the detuning function �(⇠) is monotonic along the propagation direction ⇠. Because
the ensemble at each position ⇠ is resonant with only one frequency component, the GEM
operation maps the spectrum of the excitation pulse to a spatial distribution. When
the detuning varies linearly along the direction of propagation, �(⇠) = �⇠⇠, the stored
coherence in ⇠ is exactly the Fourier transform of the input field in ⌧ . This makes GEM
a natural platform for spectral operations with quantum fields [295, 296].

13.2.1 ⇤-GEM

Although GEM is possible with a two-level ensemble, the storage lifetime will be limited
by the relaxation rate �ge / � of the polarization coherence P̂. In the ⇤-GEM scheme,
a strong coupling field forms an o↵-resonant Raman transition between the ground and
metastable states |gi$|si. The signal pulse is stored not in the polarization P̂, but in the
spin wave Ŝ. The linewidth of the Raman transition is not limited by the excited state
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lifetime, approaching the spin decoherence rate �gs in the far-detuned limit, as shown by
Eqn. 13.54. �gs depends only in the elastic dephasing and inelastic depopulating terms
according to Eqn. 13.27. The coherence time of the spin wave Ŝ can therefore be much
longer than the coherence time of the polarization P̂ so long as these �coll and �deph are
small. For an ideal ensemble of stationary atoms addressed with narrow linewidth lasers,
both terms are zero. Unfortunately such a perfect ensemble is hard to engineer, but in
Chap. 17 we will get quite close with a free-falling cloud of cold rubidium atoms.

From Eqn. 13.56, the e↵ective optical depth decreases with � according to de↵ / �⌦�
�
.

Therefore in order to operate with a large detuning, the resonant optical depth of the
ensemble must be very large. In practice, the optical depth is constrained by the size and
density of the ensemble in an experiment. Simultaneously achieving high optical depths
and long coherence times is challenging. Real experiments usually operate with a control
field that produces control field scattering at rate �scat / � (|⌦|/�)2 such that Ŝ relaxes
at rate �gs + �scat that is not negligible.

Applying a field gradient further broadens the two-photon resonance. For successful
operation GEM requires �⇠ > �gs+�scat. This further reduces the optical depth de↵ / ��1

⇠ .
From this relationship we can see that the required resonant optical depth is proportional
to the bandwidth of pulses to be stored. GEM is usually, but not necessarily, operated
with a broadened linewidth that is still small compared to the excited state linewidth,
�⇠ < �.

13.2.2 The ensemble polariton

The signal field enters the ensemble and drives a spin wave, but is not itself absorbed com-
pletely. The system is a superposition of Ê and Ŝ that we call a ‘polariton’. The polariton
is best described, in the spatial Fourier domain. Transforming the spatial di↵erential of
the Raman-limit equations of motion Eqn. 13.55 with the assumption gives us

kÊ =
p

de↵ Ŝ . (13.57)

We can define bright and dark modes of the combined system in the adiabatic limit

B̂ = sin ✓Ê + cos ✓Ŝ , D̂ = cos ✓Ê � sin ✓Ŝ , (13.58)

where the mixing angle ✓ = arctan
�
k/

p
de↵
�
. The polariton adiabatically follows the dark

state D̂, therefore the evolution of the polariton has two key characteristics. Firstly, the
spatial momentum of the polariton k increases while the gradient is on, and decreases
when the gradient is reversed according to

k(t) = k0 + �⇠(t)t , (13.59)

where the initial spin wave momentum depends on the di↵erence of the probe and control
fields k0 = kp�kc. The spatial phase coils and uncoils during storage and retrieval. Second,
the larger the momentum the lower the proportion of the polariton that is contained in
the optical field. Until the gradient is reversed, the polariton momentum k grows and the
optical field amplitude drops.

In general, storage and recall by GEM may distort the phase front of Ê , particularly
when the signal and memory bandwidths are comparable. Switching �z reverses the evo-
lution of the Ŝ but not Ê, and the evolution is therefore not perfectly symmetric [297].
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Integrating the equations of motion Eqn. 13.57 yields a transfer function for the recalled
pulse that incorporates phase and frequency distortion [291].

In many GEM experiments, including the ones in Chaps. 16 and 17, the atoms in the
ensemble are not stationary. They may be warm atoms di↵using through a vapour cell, or
cold atoms expanding ballistically out of a magneto-optical trap, but however the atoms
move they will carry their local coherence with them, breaking the field reversal symmetry
of �⇠ ! ��⇠. This has the e↵ect of washing out the phase of Ŝ over a characteristic distance
D that increases with time. When the ratio D/k is large, the proportion of the polariton
that can be recalled coherently is low.

13.2.3 GEM operation example

Figure 13.2 shows the theoretical operation of a ⇤-GEM in an ideal atomic ensemble.
Figure 13.2(a) and (b) show, respectively, the propagation of Ê and Ŝ. P̂ is not plotted.
The fields are shown by phase-intensity figures, in which the opacity and hue represent,
respectively, the intensity and phase of the field3. In Fig. 13.2(a) we see a Gaussian
envelope Ê enter at ⇠ = 0 and propagate through the ensemble, simultaneously increasing
k and losing amplitude as the optical component of the polariton drops. Meanwhile, the
spin wave Ŝ shown in Fig. 13.2(b) increases both k (visible as a coiling of the spatial
phase- the wavefronts in ⇠ become closer) and amplitude. The spatial coherence in ⇠

is the Fourier transform of Ê in ⌧ , which in this case is simply another Gaussian. The
dashed line in Fig. 13.2(b) indicates the point at which the gradient �⇠ is reversed, and
the coherence begins unwinding. As k decreases again, the proportion of the polariton
in the optical field increases until the original wave packet is reconstituted and exits the
ensemble at ⇠ = 1. Just like the Dicke state in Eqn. 13.1, the ensemble spontaneously and
coherently emits a field when the coherence is phase-matched to the optical mode, in this
case a two-photon Raman transition between the control ⌦ and probe Ê .

Figure 13.2(c) shows the input and output pulse intensities as a function of time. No
dephasing or depopulating terms are included in this simulation, so loss during storage is
entirely due to control field scattering. Two output pulses are shown, corresponding to
storage performed with a constant control field ⌦(⌧) = ⌦c and storage performed with
⌦c = 0 when the polariton is mostly spin wave. Switching o↵ the control field during
this part of the storage reduces total control field scattering and increases the memory
e�ciency from 0.67 to 0.79. The envelopes Ê and Ê shown in Fig. 13.2(a) and (b) are
actually the envelopes under switched-control GEM. The dashed lines in Fig. 13.2(a)
indicate the switching points according to

⌦(⌧) =

8
>><

>>:

⌦ ⌧/� < 300

0 300 < ⌧/� < 700

⌦c 700 < ⌧/�

. (13.60)

When �scat is not negligible, it is advantageous to switch the control field o↵ during
storage, but control field scattering during the read and write stages can only be limited
by simultaneously increasing d and �. The switch sequences for �⇠ and ⌦ are included
at the bottom of Fig. 13.2(c). When ⌦ = 0, |Di = Ŝ. Removing the control field
instantaneously immediately suppresses the optical component of the polariton. This
process is not adiabatic, and may produce further changes to the phase and frequency of

3This is the same method we used to plot dipole field images in Figs. 4.7 and 4.8.
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Figure 13.2: Storage and recall by ⇤-GEM. Propagation of (a) the electric field envelope Ê
and (b) the spin wave Ŝ through the ensemble. The fields are plotted with hue Ê according to the

colour wheel (inset) and opacity
���Ê
���
2

. (c) Field intensity at the input (dashed) and output (solid)

of the ensemble for two operation methods: continuous (black) and switched (orange) control. In

either case the detuning gradient �⇠ reverses at time ⌧
s

= 500/�. The pulse scheme for �⇠ both

continuous and switched ⌦ are shown at bottom. These simulations are performed with d = 1000.

the output pulse. This is visible in Fig. 13.2(a) as a slight angle to the output phase front
that is not present without control field switching.

This simulation is performed without including any atomic motion. With atomic
motion, it is advantageous to keep the polariton at low k. This may be achieved simply
by turning the field gradient o↵ after the signal is absorbed. Like the control field, the
gradient is only necessary during read and write operations. Following Eqn. 13.57, the
spatial evolution freezes while �⇠ = 0.

We will often choose to use a control field at a slight angle ✓ to the probe beam, this
makes it easier to separate the beams after the memory. However, the angle increases the
initial spin wave momentum k0. This spatial frequency causes accelerated decoherence in
the presence of atomic motion. Ideally the momentum k should be kept low by limiting
both �⇠ and ✓.

13.3 Stationary light

Atom ensembles are a non-linear optical medium. In addition to storing and recalling
light fields, they may also be used to generate an interaction between light fields that are
stored or travelling in the ensemble. Interactions of this sort are the basis of ensemble-
mediated two-qubit optical phase gates [298]. The total phase shift is the product of
the interaction strength and time, and so nonlinear optics usually involves high intensity
fields. For photonic qubit gates it is necessary to show a large phase shift for fields down
to the single photon level. The key to a large optical nonlinearity with low-light fields is
therefore to localize two fields within a small region of an ensemble such that the electric
field per photon ✏! is large, and then to hold the fields inside that region for long enough
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to produce a conditional phase shift. The optical component of the polariton is inversely
proportional to its velocity under normal GEM operation. As a result, GEM cannot (on
it’s own) enhance the non-linear interaction between optical qubits.

Another (older) optical quantum memory is based on the phenomena of electromag-
netically induced transparency (EIT), which exists in ⇤-ensembles configured identically
to Fig. 13.1 [299–301]. The bright control field opens a narrow transparency for a weak
probe Ê in an ensemble that would otherwise be opaque. At this two-photon resonance
the probe and control excitations interfere such that the resonant probe is unable to drive
the excited state |ei. The two-photon transparency window reduces the group velocity
of the probe in proportion to its linewidth, which is determined by the control field Rabi
frequency ⌦. The slow light also exists as a polariton superposition [302]. A resonant
probe field may be slowed and then stopped inside the ensemble by adiabatically reducing
the control field power to zero once the probe has been absorbed. However, once again,
the optical field intensity is in inverse proportion to its velocity such that the possible
interaction between EIT slowed light fields is normally weak.

However, an alternative scheme has been proposed to generate large stationary fields by
the addition of a counter-propagating control field [303]. In this scheme, which was quickly
realized in experiments[304, 305], counter-propagating control fields drive a non-zero opti-
cal field that is not just slow, but completely stationary. The control fields simultaneously
propel the polariton in opposite directions, and it becomes unable to propagate. This
approach was used to demonstrate the first interaction of two stopped light pulses in an
atomic medium [306].

In this section we introduce a new technique for the generation of bright, stationary
fields inside a ⇤-ensemble by an extension of GEM that includes counterpropagating con-
trol fields. The atomic coherences that drive these stationary light fields have been directly
and dynamically imaged [8], confirming the theory presented here. In contrast to previ-
ous work with stationary light in EIT, the spin wave and optical field need not coincide.
This opens the possibility of engineering more exotic stationary light distributions. This
theoreticl work is published in Ref. [8].

13.3.1 Counter-propagating fields

To describe our stationary light e↵ect, we first introduce counter propagating fields and
revisit the Maxwell-Bloch propagation equations, Eqns. 13.47 and 13.48. Many of the
assumptions we made to arrive at these equations don’t strictly hold with two counter-
propagating reference frames, however we will derive equivalent expressions and state the
conditions under which they are valid. We follow the same method as Ref. [283] and write
the Jaynes-Cummings interaction Hamiltonian for counterpropagating probe fields â± and
control fields ⌦± with the spatial dependence of each field separated explicitly from the
operators such that we have

Ĥint = ~
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The control fields are at definite frequencies !+
c and !�

c , so we may separate both the
time and space dependence of the control fields. The control field frequencies !±

c are not
necessarily equal.

We define positive frequency forward and backward propagating envelopes with fre-
quencies !±

p within a narrow bandwidth about !p. This is similar to Sec. 13.1.2, incorpo-
rating the temporal (but not spatial) dependence

Ê±
p =

r
L

2⇡c
ei!p

+(t⌥z/c)

Z

!±
p

d! â!e
i±!z/c , (13.62)

We now, once again, define slowly-varying envelope operators at position z for the local
atomic state, but this time we define two envelope operators for each atomic transition
operator, one in each of the forward and backward propagating frames of the addressing
field

�̂±eg =
1

Nz

N
zX

i

�̂ege
�i!±

p

(t⌥z/c) , (13.63)
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(13.66)

where Nz is the number of atoms in the slice at position z. The definition of our ground
state population envelope operators is unchanged,

�̂gg =
1

Nz

N
zX

i

�̂gg , �̂ss =
1

Nz

N
zX

i

�̂ss , (13.67)

but we define separate excited state operators

�̂±ee =
1

Nz

N
zX

i

�̂eee
�i!±

p

t , (13.68)

in the reference frame of each probe field.

Substituting these envelope operators in to the interaction Hamiltonian yields cross-
terms of the form ⌦±�̂⌥eg with spatial dependence e�i[!±

c

(t�z/c)�!⌥
c

(t+z/c)] and Ê±�̂⌥eg with

spatial dependence e�i[!
p

(t�z/c)�!
p

(t+z/c)]. These beat-note terms have large spatial fre-
quencies and cause, respectively, a rapid AC Stark shift oscillation and high spatial fre-
quency coherences. For � � �!±

p , these fast spatial terms average to zero and so we
neglect them here.

This interaction drives two spin waves �̂±gs with momentum k±
s = k±

p �k±
s . So long as

the control fields are phase matched, we have k+
s = k�

s and we can take �̂+gs = �̂�gs = �̂gs.
Phase matching can be achieved with counterpropagating control fields of equal detuning,
but unfortunately we’re about to see that the more useful case concerns control fields of
equal and opposite detuning �+ = ��� = �. Phase matching may still be achieved with
this two-colour control field by introducing equal and opposite angles ✓+ and ✓� between
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each control and it’s corresponding probe field. For the purpose of this derivation, we’re
going to assume that the phase matching condition is met. The forward and backward
propagating fields therefore drive a common spin wave �̂gs.

Making the usual weak-probe approximation, we’re left with the following equations
for counter-propagating probe and control fields

@t�̂
±
ge = igÊ± + i⌦±�̂gs �

�
�ge + i�±� (13.69)

@t�̂gs = i⌦+⇤
�̂+ge + i⌦�⇤

�̂�ge � (�gs + i� � i�Stark) (13.70)

(@t ± c@z) Ê± = igN �̂±ge , (13.71)

where �Stark contains contributions from both control fields.
Again, because we have two fields Ê± travelling in opposite directions, we cannot

move the equations into a single frame travelling at the speed of light. However, so long
as L/c ⌧ ⌦,�,�, the time derivative in is negligible. We may discard this term without
changing frames under reasonable experimental conditions.

Making the same ‘optical depth’ transformations as in Sec. 13.1.6 and the adiabatic
approximation as in Sec. 13.1.7 we have

@tŜ =
⌦+⇤p

d�

�ge � i�+
Ê+ +

⌦�⇤p
d�

�ge � i�� Ê� � (�gs + �scat + i�) Ŝ , (13.72)
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p
d

�ge � i�± Ŝ
!

, (13.73)

where �scat now contains contributions from both the control fields.

13.3.2 Reverse-recall GEM

Armed with these equations of motion for counter-propagating fields we can simulate the
operation of a GEM with forwards and backward control fields with equal detuning �+ =
�� = �. For example, by recalling a foward-stored pulse with a backward-propagating
control field we may restore the quantum light field in the backwards mode, as shown in
Fig. 13.3. This reverse-recall GEM has complete time reversal symmetry, and introduces
less phase distortion than the typical operation.

13.3.3 Stationary light simulations

The imaginary part of the the first term in Eqn. 13.73 is the dispersion. Stationary light
requires that these dispersion terms are symmetric in Ê±, which is true for �+ = ��� = �
(as we signposted earlier). Under this two-colour control configuration, shown in Fig. 13.4,
the equations of motion are symmetric in Ê± up to the assumptions we made above.

Because of this symmetry, simultaneous two-colour control of a probe pulse stored by
GEM may amplify the optical component of the polariton, without pushing the polariton
out of the ensemble. Integrating Eqn. 13.73 over ⇠ in the Raman limit and substituting
into Eqn. 13.72, we see that the spin wave is static under two-colour control so long as
the spatial integral of the spin wave is zero. If

R
d⇠Ŝ 6= 0 then Ê± (⇠ = 0, 1) 6= 0 and the

probe fields evolve, and perhaps leak from the ensemble, until the spinwave reaches an
eqilibrium state with zero mean. At equilibrium Ê± circulate in the centre of the ensemble,
the divided spin wave having reached a relative phase such that Ê± interfere destructively
to arrest any further evolution.
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Figure 13.3: Storage and reverse recall by ⇤-GEM. Propagation of (a) the electric field

envelope Ê and (b) the spin wave Ŝ through the ensemble. The fields are plotted with hue Ê
according to the colour wheel (inset) and opacity
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. (c) Field intensity at the input (dashed)

and output (solid) of the ensemble for forward (blue) and backward (red) propagating fields. The

field is recalled into the backward propagating field by recalling with the backward propagating

control according to the pulse scheme at bottom. These simulations are performed with d = 1000.
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Figure 13.4: Level scheme for generating stationary light fields in a ⇤-atom ensemble with GEM.

Counter-propagating probe and control fields couple to a common spin coherence. The forward

and backward propagating fields have equal and opposite single-photon detuning �+ = ��� = �.

Phase matching is achieved by introducing equal and opposite angles between each control field

⌦± and weak probe fields Ê±.
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We’ll consider two examples of this two-colour stationary light field: first, the e↵ect
of the control on a typical Gaussian pulse stored by GEM, Fig. 13.5(a–d), and second
the e↵ect on a coherence that has been chosen to produce stable stationary light fields,
Fig. 13.5(e–h).

In Fig. 13.5(a–d) a Gaussian pulse is stored in the ensemble by GEM. The second stage
in this stationary light sequence (high k) is the application of two-colour control fields to
the stored polariton. The counter-propagating control fields drive counter-propagating
probe fields that inherit the momentum of the polariton and circulate back and forth over
the coherence. For k � 1,

R
d⇠Ŝ ⇡ 0 zero, and the light fields are stationary. However,

control field scattering increases alongside the optical field amplification. Including this
e↵ect, the control fields required to generate a large field at high k quickly reduce the
coherence (and the field it drives) to zero.

The third stage (k ! 0) of the sequence in Fig. 13.5(a-d) is the evolution of Ê+ and
Ŝ under two-colour control fields as k ! 0. The control fields drive counter-propagating
probe fields in proportion to ⌦±, and inversely with k. Even with lower control power, the
probe fields are much brighter than they were at high k. However, the unmodified spin
wave is unstable. As k ! 0 the mean of Ŝ becomes non-zero and the counter-propagating
probe fields split Ŝ and push each half towards the edge of the ensemble until the fields
escape at the edge as shown by the leakage in Fig. 13.5(d). At each time ⌧ the remaining
spin wave is an equilibrium state satisfying

R
d⇠Ŝ = 0, and the remainder may be recalled

as usual.

Reaching staionary light equilibrium by the absorption of a Gaussian pulse, as in
Fig. 13.5(a-d), without leakage requires very high de↵ so that the coherence is displaced
without reaching the edge. However, we can manufacture the equilibrium spin wave by
absorption of a modulated pulse. This is the second scheme, shown in Fig. 13.5(e-h). The
input pulse is modulated such that

Ê+
in =

⇣
ei!m

t + e�i!
m

t+�
⌘
et

2/�2

(13.74)

where � is the pulse width, !m is the modulation frequency and � is an arbitrary phase.
GEM creates a spin wave that is the Fourier transform of the input pulse. In this case
the side bands of the pulse create a spatially divided spin wave. It so happens that the
chosen modulation produces a temporal shape that looks like two divided pulses, but this is
only a coincidence. The modulation frequency could well be higher than the initial pulse
bandwith, in which case the pulse would clearly show a fast modulation of a Gaussian
envelope.

We may choose the phase � such that
R
d⇠Ŝ = 0 and the divided spin wave is stable

under simultaneous two-colour control fields. In this simulation the stationary light fields
are brighter than the input pulse even with only ⌦± = 5� and the control field scattering
(not shown) is not considerable. The remaining leakage is due to o↵-resonant absorption,
and vanishes in the Raman limit.

In contrast to all previous stationary lights schemes, the stationary light fields in this
scheme do not need to coincide with the coherences. In the implementation explored here,
and performed experimentally by my colleagues in Ref. [8], the stationary light field is
strongest where the coherence is near zero. This approach is therefore a more flexible
means of optical-qubit XPM with stationary light than the EIT-based schemes which had
been demonstrated prior.
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Ê+
out

Ê�
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13.3.4 Summary

We have now considered the third of our three broad strategies for engineering strong
atom-light interactions. Ensembles with su�ciently stationary atoms, and also su�ciently
long coherence times, may host long-lived, collective excitations or coherences in a gener-
alization of the single excitation Dicke state. These many-atom entangled states can be
generated by absorption of quantum fields, and also made to reconstitute the exciting field
on demand. The spatial distribution of the collective excitation or coherence may cause
coherent emission in a mode that is very di↵erent to the natural atomic dipole mode.
We derived the equations of motion for quantum light fields propagating in an atomic
ensemble, and from the Bloch equations for ⇤ atoms we derived the equations of motion
for atomic polarization and spin coherences in the limit of large detuning.

With these optical Bloch equations for atom ensembles we demonstrated the opera-
tional theory of gradient echo memories (GEMs). GEM is one of the most accomplished
quantum memory schemes, and in Chaps. 16 and 17 we will demonstrate the capabilities
of a GEM in a cold-atom ensemble.

Further to the operation of GEM as an optical quantum memory, we showed theo-
retically that a modified system with counter-propagating control fields produces a new
type of stationary light field. The most interesting property of this stationary light is
that the light field and spin wave may be spatially separated. Theoretical calculations
by Jesse Everett and published in Ref. [8] show that stationary light in the apparatus of
Chap. 17 should be capable of producing a cross-phase modulation of 1 mrad between two
single-photon pulses.

In the following chapter we consider the leading quantum memory schemes and plat-
forms, in order to provide some context for our work with gradient echo memories.
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Chapter 14

Ensemble quantum memories: a review

...when information is encoded in non-orthogonal quantum states... one obtains
a communications channel whose transmissions in principle cannot be read or
copied reliably by an eavesdropper ignorant of certain key information used in
forming the transmission. The eavesdropper cannot even gain partial information
about such a transmission without altering it in a random and uncontrollable way
likely to be detected by the channel’s legitimate users.

– Charles Bennett and Gilles Brassard, Quantum cryptography: Public key
distribution and coin tossing (1984)

A universal optical quantum memory is a device for coherently storing and recalling
unknown quantum states of light, ideally on demand. We’ve already discussed how such
a memory may be used to convert a photon source from probabilistic to deterministic in
Sec. 5.2. More generally, optical quantum memories are desirable for two applications in
quantum information: as repeaters for long-distance QKD and for synchronizing oper-
ations in optical quantum computers [307]. Each of these applications imposes its own
unique challenges.

Long-distance quantum communication networks based on optical fibres are a means
of guaranteeing cryptographic security, as we’ve seen, and perhaps also enhancing the
capabilities of distributed quantum processors [308]. However, long distance communica-
tion through fibres is lossy. Even in the 1.5 µm telecommunications band losses are still
no better than 0.2 dB/km [42]. In contrast to classical signals, quantum states cannot
be amplified deterministically without adding noise that results in decoherence, a con-
sequence of the no-cloning theorem. Repeater protocols have been proposed that create
long-distance entanglement from short-distance entanglement by entanglement swapping
[309]. These repeater protocols require quantum memories capable of storing and recalling
entangled photonic qubits at nodes distributed along a communication link. The memo-
ries in repeaters must have storage times longer than the optical travel time of the total
link distance: about 1 ms for a 200 km fibre link.

Quantum memories may also be used for synchronizing operations in optical quantum
computers, bu↵ering probabilistic entanglement operations between the photonic register
in much the same way that memories may be used for bu↵ering entanglement swapping
operations between repeater nodes. Linear optical quantum computing (LOQC) requires
operation synchronization to scale beyond tens of qubits and tens of gates [36]. Memories
for optical quantum computers require a high bandwidth because this defines the clock
time of any memory-based processor.

Incredible progress has been made towards the goal of engineering useful quantum
memories across a wide range of platforms, and using several protocols. Important land-
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marks include the storage and retrieval of entangled qubits[310–317] and squeezed light
fields [318–320], and the entanglement of remote ensembles [321, 322]. In this chapter we
review the state of ensemble-based quantum memory research and the capabilities and
deficiencies of existing quantum memory devices. We divide this research by protocol to
emphasize the operational physics of ensemble-based memories. The key protocols are
electromagnetically induced transparency, o↵-resonant Raman, atomic frequency comb
and gradient echo. The most promising platforms to date are cold-atom ensembles like
the one we present in Chap. 17, atomic vapours and rare-earth ion doped crystals (REICs).
Beyond storage, quantum memories have demonstrated capabilities for the manipulation
and interaction of qubits. For more detailed reviews of the same subject, see Refs. [309,
323–325].

14.1 Quantum memory performance criteria

The ultimate performance metric for a quantum repeater network is the secure key rate.
Similarly, a memory-based LOQC will be judged by the number of consecutive operations
it can perform beyond the required fault tolerance. Each of these is a complicated function
of many parameters, only some of which are depend on the memory. We must break these
goals down to some important fundamental performance criteria for quantum memories.

• E�ciency - The entanglement rate of a repeater network increases exponentially
with the storage and recall e�ciency

⌘ = ⌘s⌘r =
Iin
Iout

. (14.1)

An important e�ciency benchmark is ⌘ > 0.5. This is the threshold at which a
quantum memory without post-selection outperforms prepare and measure schemes
[326]. Below this threshold no degree of entanglement can be distilled from pure
entangled states stored in the memory. E�ciencies greater than 90% are required
before repeater networks have any advantage over direct transmission at all [309].

• On-demand readout - In this thesis we draw a distinction between quantum
memories and quantum delay lines. A true quantum memory can recall stored
states on demand. A length of optical fibre is a good quantum optical delay line,
but cannot (on it’s own) operate as a quantum memory. A delay line is, for example,
no use for converting single-photon sources from probabilistic to determinsitic.

• Fidelity - An ideal quantum memory returns the exact input field, perfectly re-
constructed. In practice, the operation of storing and recalling the quantum state
introduces noise from various sources. The overlap fidelity for a given state ⇢̂in is

F (⇢̂in) = Tr
hp

⇢̂out⇢̂in
p
⇢̂out

i
. (14.2)

Fidelity is contextual, it depends on the input state. The memory may be for single-
photon qubits, in which case the fidelity depends on how the qubit is encoded (photon
number, time, polarization, frequency, spatial mode) and also the set of qubits to be
stored. A typical demonstration of an optical memory for qubits consists of storing
and recalling the four two-qubit Bell states, and the reported memory fidelity is the
minimum of F over this set.
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An essential threshold for quantum memories (for any application) is that the storage
fidelity outperforms an ideal classical prepare and measure scheme. Simply measur-
ing one qubit projectively and preparing another based on the result already has
F = 2/3[327], this is the performance limit of a classical memory. More stringently,
single qubit storage with F > 0.854 is required to maintain entanglement when one
half of an entangled pair is stored in the memory [324].

In contrast to single emitter memories, ensemble quantum memories can store not
only single-photon qubits, but also more general quantum states with correlated
continuous degrees of freedom. In this respect ensemble quantum memories are uni-
versal. The state may be, for example, a two-mode squeezed state or a superposition
of weak coherent states of opposite phase. Again, the fidelity is contingent on the set
of relevant states. Generalizations of the prepare-and-measure and entanglement-
preserving bounds exist for continuous variable quantum states as well [328].

• Storage time - The recall e�ciency and fidelity of real-world memories are func-
tions of the storage time. Typically, the storage e�ciency of ensemble schemes like
those below decays exponentially with a storage lifetime ⌧s that is limited by the
decoherence rate of the atomic ensemble, but other relaxation mechanisms can lead
to alternative decay profiles. Another important benchmark is the time at which
the e�ciency drops below 50%. Beyond this storage time the memory no longer
outperforms prepare and measure schemes without post-selection [326].

• Bandwidth - The repetition rate of the network is limited by the bandwidth of the
memory �!. The higher the bandwidth the faster the network.

• Time-bandwidth product - Uniting the above two criteria, we arrive at the time-
bandwidth product (TBP) ⌧s�!. This is the limit of simultaneously stored pulses,
or the number of network operations that can be carried out during the storage time.
This metric is most useful for comparing memories operating at di↵erent timescales;
a memory with ⌧s = 1 s is not terribly useful if �! < 1Hz.

• Multimode capacity - The multimode capacity N is the number of optical modes
(be they spatial, temporal or spectral) that can be stored in the memory simul-
taneously. Each mode may carry an independent qubit, and those modes may
be selectively recalled and multiplexed to increase the success rate of probabilis-
tic operations. Multiplexing increases the bit rate of repeater networks dramatically
[Simon2007a, 329]. For spectral modes the multimode capacity is the bandwidth.
In this review we mean multimode capacity excluding spectral modes, given that we
already consider the bandwidth independently.

• Wavelength - A useful memory must operate at an appropriate wavelength for its
application. For repeater networks, that means memories that either operate in the
low loss telecommunicatins band at about 1, 550 nm, or at a wavelength that can be
converted coherently and e�ciently to 1, 550 nm.

14.2 EIT

Slowing light fields by electromagnetically induced transparency (EIT) [300], which we in-
troduced in Sec. 13.3, can be the operating mechanism of a quantum memory. The narrow
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transparency window opened at the two-photon resonance by a control field applied to a
⇤-ensemble correspondingly reduces the group velocity of the signal light field. A signal
pulse traversing the ensemble is delayed, and this delay can be tuned by the brightness
of the control. As the control power drops, the transparency window at the two photon
resonance narrows and the pulse is slowed. EIT has been used to reduce the speed of light
in atomic ensembles by up to seven orders of magnitude [330, 331].

When the control field drops to zero, the transparency vanishes and the slow light
polariton is stopped and transferred to the distributed atomic state. This process is
coherent, and can be reversed by restoring the original control field. This initial observation
that light could be stopped and restored by EIT has since prompted a great deal of research
into EIT quantum memories [332]. In order to operate an EIT memory with ⌘ = 1 the
optical depth must be su�ciently large that the pulse delay is longer than the pulse width,
in this regime the pulse may be contained entirely within the ensemble [333].

EIT storage and recall e�ciency has reached 78% with cold atomic vapours [334]. EIT
lifetimes are limited by decoherence, atomic motion and inhomogeneous broadening of the
atomic resonance. Atomic vapours have naturally narrow linewidths su�cient for EIT,
but solid-state ensembles such as rare-earth ion doped crystals are typically too inhomo-
geneous. Although inhomogeneous broadening may be overcome by spectral hole burning,
the useful optical depth after this process is a small fraction of the total. Nevertheless,
spectral hole burning techniques have been used to store pulses with ⌧s = 40 s in rare-earth
ion doped crystals by EIT [335]. The bandwidth depends on the control field power, at
high powers the e↵ect transitions smoothly between two distinct phenomena: EIT and
Autler-Townes splitting [336, 337], although both can be used as a memory. In general
the time-bandwidth product of EIT memories is poor. EIT with a TBP of 3.7 was used
to store two pulses simultaneously with 50% e�ciency in the course of this doctorate [7].

Entangled polarization qubits have been stored by EIT in warm [312, 313] and cold
[314–317] atomic vapour ensembles with e�ciencies up to ⌘ = 0.68[338]. Squeezed light
fields have also been stored and recalled by EIT [318–320].

14.3 Raman memory

O↵-resonant Raman memory is similar to EIT in that a bright control field is used to couple
a weak probe onto a spin coherence but, unlike EIT, the control field is far detuned from
the excited state and opens a two-photon Raman absorption line instead of a transparency
window. Raman memory does not rely on a slow light, but instead scatters the signal onto
a spin coherence directly by a two-photon transition.

In order to absorb a broad spectrum signal, the control field itself must be broad
spectrum. The key to Raman memory is therefore to shape the control field temporally
in a way that is matched to the signal pulse. Reversing this process with a second control
pulse at a later time recalls the stored field from the spin wave [339, 340]. Typically the
control field is a pulse train with a comb-like spectrum that opens a coherent comb of
two-photon Raman resonances. The Raman condition with an ensemble is � � d� rather
than � � �[283]. Operating with such large detuning allows bandwidths in the range 1
- 1000 GHz with Raman memories in warm atomic vapours [340, 341]. To date, Raman
memories are most suited to synchronizing LOQC, for which these enormous bandwidths
are necessary.

Raman memories are most e�cient when recall happens in the opposite direction,
restoring a perfect time symmetry. They do work in with forward recall, albeit in a
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reduced fashion. Four-wave mixing is an important noise source for both EIT and Raman
memories. Raman memories in leaky, birefringent cavities are able to suppress FWM
noise substantially [342]. Entangled polarization qubits have been stored and recalled by
Raman memory with F = 0.97 [343].

14.4 AFC

Atomic frequency comb (AFC) is a memory protocol that begins with the preparation
of a comb-like absorption profile in an inhomogeneously broadened atomic ensemble. An
optical field is absorbed by the comb, and the atoms in each tooth dephase at integer
multiples of the comb spacing �. At time t = 2⇡/� the teeth are once again in phase and
spontaneously emit a coherent, directed echo of the input field. This process is similar
to the controlled rephasing that we described as part of the operation of a gradient echo
memory in Sec. 13.2.

AFC is an appealing memory protocol for use with rare-earth ion crystals because
it can utilize the entire inhomogeneously broadened ensemble linewidth. The frequency
comb is prepared by spectral hole burning, and because the comb uses more of the en-
semble than the single resonance that must be prepared for EIT, the available optical
depth is much larger. Moreover, large inhomogeneous linewidths can provide exception-
ally large bandwidths for AFC memories [310, 344]. AFC memories typically operate with
a bandwidth of �! ⇡ 2⇡ ⇥ 1 GHz.

The absorption comb itself provides only an optical delay line; recall occurs at a time
predetermined by the absorption spectrum. To operate on demand the excitation must
be transferred to and from a long lived spin state |si using adiabatic control pulses on a
⇤-ensemble [345]. This control must be carefully crafted to form a ⇡-pulse for the entire in-
homogeneously broadened resonance. Even with such a pulse, the available bandwidth for
storage is typically much narrower than the bandwidth for delay. The memory bandwidth
cannot be larger than the spacing between |si and adjacent levels, else the inhomoge-
neously broadened excitation will be scattered to di↵erent spin coherences. To date, AFC
quantum memories have much lower time-bandwidth products than delay line AFCs.

AFC delay line with a rare-earth ion crystal in a resonant cavity has achieved e�ciency
⌘ = 0.56 [346]. The maximum storage time achieved with AFC delay line is 5 µs [347].
An AFC memory has been demonstrated with a similar rare-earth ion crystal and cavity
apparatus [348, 349]. This memory operated with ⌘ = 0.12 and storage lifetime ⌧s =
500 µs, but a bandwidth of only 5 MHz. Entangled time-bin qubits have been stored
in a REIC AFC memory with fidelities as high as F = 0.97 [310, 350], and entangled
polarization qubits have been delayed with F = 0.995 [311].

14.5 GEM

The experimental work with ensemble memories in this thesis will focus on the operation
of a gradient echo memory (GEM) [287, 288], first extending the GEM protocol to store
frequency-encoded qubits and then demonstrating a GEM in a cold atom ensemble with
⌘ = 0.87±0.02 and ⌧s = 1 ms. We already considered the operational theory of a gradient
echo memory in some detail in Sec. 13.2.1, in this section we will review the capabilities
and potential of existing GEMs.

A key advantage of GEM compared to some other CRIB or Raman memory schemes is
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that GEM doesn’t require optical ⇡-pulses to control the atomic dynamics. Control fields
in GEM are switched, but not pulsed, and coherent control is provided by magnetic field
or AC Stark gradients, which is considerably simpler. Unlike Raman memories, forward
recall is not a great detriment to the memory e�ciency. Also, where EIT is a first-in, first-
out memory protocol, simple GEM is a first-in, last-out process. Repeatedly changing the
control field gradient allows GEM to recall pulses from a train selectively [351].

GEM was first realized in a hot atomic vapour with ⌘ = 0.87, and this is still the
highest demonstrated quantum memory e�ciency [352]- although now tied with the cold-
vapour memory we present in Chap. 17. Storage of coherent fields in hot-vapour GEM
was shown to be not only e�cient, but essentially noiseless, with F = 0.98 such that the
memory unambiguously beats the no-cloning limit [353]. However coherence times in hot
vapours are limited by atomic motion: di↵usion as well as collisions between atoms and
with the cell walls. Coherence times in cold vapours are considerably longer. Before the
work of this thesis, the best demonstrated e�ciency and storage time for GEM in a cold
atomic vapour was ⌘ = 0.80 and ⌧s = 200 µs [354]. We improve the storage lifetime to
⌧s = 1 ms in Chap. 17. A two-level GEM in rare-earth ion crystal achieved ⌘ = 0.69
and ⌧s = 5 µs. ⇤-GEM in solid state could conceivably have very long storage times, but
requires a crystal with low inhomogeneous broadening in order to combine high coherence
time and optical depth (just like EIT with REIC). This remains an area of active research.

In contrast to AFC, GEM stores the frequency components of the signal in a spatially
structured way. As we saw in Sec. 13.2.1, a linear detuning gradient leads to a polarization
or spin coherence that is the Fourier transform in ⇠ of the input pulse in ⌧ . GEM therefore
lends itself to spectral processing by spatial control [296, 351]. Recalled pulses can be
stretched or compressed with respect to the input, and spectral components of the signal
can be stored and recalled independently.

GEMs also support spatial-multimode storage [355], which means that GEM is com-
patible with spatially encoded qubits [356]. In this thesis we further extend GEM to to
achieve simultaneous dual-rail storage, so that GEM becomes a memory for frequency
encoded qubits as well.

Unlike AFC and EIT memories, entangled qubits have not yet been stored and recalled
by a GEM. The primary challenge is engineering single-photon sources compatible with
the narrow linewidth of existing GEMs and at an appropriate wavelength. As we saw in
Chap. 5, this is a challenge has been surmounted very recently, and entanglement storage
by GEM is likely to be achieved in the coming years. Similarly, squeezed light has yet to
be stored and recalled by GEM.

14.6 Summary

Quantum memory devices have come a long way in the last decade. We’re now approach-
ing laboratory devices that meet several of the requirements for repeater-based quantum
networks, including e�ciencies near 90% [352, 359], bandwidths of several GHz [360], and
storage times approaching 1 m [335]. These achievements are summarized in Table 14.1.
At present, no single device achieves these benchmarks simultaneously, but they are getting
closer.

One of the most challenging outstanding requirements for repeater networks is a mem-
ory that operates near the telecommunications band. One of the leading candidates for a
telecommunications compatible memory is Er3+, which has a transition at 1, 538 nm, and
recently demonstrated coherence times of 1.3 s in a REIC [361].
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⌘ F ⌧s �! Multimode

Benchmark 0.9 [309] 0.9 [324] 1 ms 1-10 GHz [357] High

Protocol

EIT 0.78 [334] 0.99 [338] 40 s [335] 100 MHz Low
Raman 0.30 [358] 0.97 [343] 10 µs 1 THz [341] Low
AFC delay 0.56 [346] - 5 µs [347] 1 GHz [346] High
AFC storage 0.12 [348] 0.95 [344] 1 ms [349] 5 MHz [349] Moderate
GEM 0.87† [3, 352] 0.98 [353] 1 ms† [3] 1 MHz Moderate

Table 14.1: Summary of ensemble quantum memory results (this work: †). Reported fidelities

depend on the chosen state, and comparisons should be made cautiously. For example, the fidelity

listed for GEM is the fidelity of weak-coherent storage. The fidelities listed for AFC and EIT are

for entangled two-qubit single-photon states, postselected on successful reemission.

Moving beyond proof-of-principle laboratory experiments, quantum memories have yet
to be made robust, small or simple enough for real-world applications. Cold-atom vapours
are one of the most successful laboratory platforms, but no practical quantum memory will
involve the apparatus necessary for magneto-optical atom trapping. Hot atomic vapours
may prove more promising, improving coherence times in hot-atom vapours is a problem of
restricting atomic motion and collisions. Anti-relaxation coated microcells are a plausible
avenue towards su�ciently coherent memories and remain simpler than existing cold-atom
experiments.

Solid-state memories are preferred over vapours of either sort for robust and integrated
memories, and rare-earth ion doped crystals have shown enormous progress towards our
quantum memory benchmarks [362]. Most of the existing REIC memories use variants
of AFC and, unfortunately, AFC storage does not necessarily inherit the bandwidth of
AFC delay. For this reason, inhomogeneous broadening is still a barrier to REIC memo-
ries, and must be overcome by crystal engineering- perhaps by moving to stoichiometric
REICs. More fundamentally, REIC memories operate at cryogenic temperatures ⇡ 3 K.
For integration with other cryogenic quantum information devices this poses no additional
challenge, but for repeater networks it is a substantial overhead.

Finally, miniaturization is an important goal for scalable memories. In many cases,
miniaturization requires increasing the optical depth of a small ensemble by resonator or
waveguide enhancement, combining two of our broad strategies for e�cient atom-light
interactions.
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300. K.-J. Boller, A. Imamoğlu, and S. E. Harris, Observation of electromagnetically
induced transparency, Phys. Rev. Lett. 66, 2593–2596 (1991).

307. A. I. Lvovsky, B. C. Sanders, and W. Tittel, Optical quantum memory, Nat. Pho-
tonics 3, 706–714 (2009).

308. H. J. Kimble, The quantum internet., Nature 453, 1023–30 (2008).

309. N. Sangouard, et al., Quantum repeaters based on atomic ensembles and linear
optics, Rev. Mod. Phys. 83, 33–34 (2011).

310. E. Saglamyurek, et al., Quantum storage of entangled telecom-wavelength photons
in an erbium-doped optical fibre, Nat. Photonics 9, 83–87 (2015).

311. Z.-Q. Zhou, et al., Realization of reliable solid-state quantum memory for photonic
polarization qubit, Phys. Rev. Lett. 108, 190505 (2012).

312. Y.-W. Cho, and Y.-H. Kim, Atomic vapor quantum memory for a photonic polar-
ization qubit., Opt. Express 18, 25786–93 (2010).

313. C. Kupchak, et al., Room-temperature single-photon level memory for polarization
states., Sci. Rep. 5, 7658 (2015).

314. K. S. Choi, et al., Mapping photonic entanglement into and out of a quantum
memory., Nature 452, 67–71 (2008).

315. S. Riedl, et al., Bose-Einstein condensate as a quantum memory for a photonic
polarization qubit, Phys. Rev. A 85, 22318 (2012).

193



194 BIBLIOGRAPHY - ENSEMBLE QUANTUM MEMORIES

316. H. Zhang, et al., Preparation and storage of frequency-uncorrelated entangled pho-
tons from cavity-enhanced spontaneous parametric downconversion, Nat. Photonics
5, 628–632 (2011).

317. Z. Xu, et al., Long lifetime and high-fidelity quantum memory of photonic polariza-
tion qubit by lifting zeeman degeneracy, Phys. Rev. Lett. 111, 240503 (2013).

318. D. Akamatsu, K. Akiba, and M. Kozuma, Electromagnetically induced transparency
with squeezed vacuum., Phys. Rev. Lett. 92, 203602 (2004).

319. J. Appel, et al., Quantum memory for squeezed light, Phys. Rev. Lett. 100, 093602
(2008).

320. K. Honda, et al., Storage and retrieval of a squeezed vacuum., Phys. Rev. Lett. 100,
4 (2008).

321. I. Usmani, et al., Heralded quantum entanglement between two crystals, Nat. Pho-
tonics 6, 234–237 (2012).

322. N. Maring, et al., Photonic quantum state transfer between a cold atomic gas and
a crystal, Nature 551, 485–488 (2017).

323. C. Simon, et al., Quantum memories, Eur. Phys. J. D 58, 1–22 (2010).

324. F. Bussières, et al., Prospective applications of optical quantum memories, J. Mod.
Opt. 60, 1519–1537 (2013).

325. T. Chanelière, G. Hétet, and N. Sangouard, Quantum optical memory protocols in
atomic ensembles, arXiv Prepr. (2018).

326. F. Grosshans, and P. Grangier, Quantum cloning and teleportation criteria for con-
tinuous quantum variables, Phys. Rev. A 64, 010301 (2001).

327. S. Massar, and S. Popescu, Optimal extraction of information from finite quantum
ensembles, Phys. Rev. Lett. 74, 1259–1263 (1995).

328. S. L. Braunstein, and P. van Loock, Quantum information with continuous variables,
Rev. Mod. Phys. 77, 513–577 (2005).

329. O. A. Collins, et al., Multiplexed memory-insensitive quantum repeaters, Phys. Rev.
Lett. 98, 060502 (2007).

330. D. Budker, et al., Nonlinear magneto-optics and reduced group velocity of light in
atomic vapor with slow ground state relaxation, Phys. Rev. Lett. 83, 1767–1770
(1999).

331. L. V. Hau, et al., Light speed reduction to 17 metres per second in an ultracold
atomic gas, Nature 397, 594–598 (1999).

332. M. Fleischhauer, S. Yelin, and M. Lukin, How to trap photons? Storing single-
photon quantum states in collective atomic excitations, Opt. Commun. 179, 395–
410 (2000).

333. A. V. Gorshkov, et al., Photon storage in ⇤-type optically dense atomic media. II.
Free-space model, Phys. Rev. A 76 (2007).

334. Y.-H. Chen, et al., Coherent optical memory with high storage e�ciency and large
fractional delay, Phys. Rev. Lett. 110, 083601 (2013).

335. G. Heinze, C. Hubrich, and T. Halfmann, Stopped light and image storage by elec-
tromagnetically induced transparency up to the regime of one minute, Phys. Rev.
Lett. 111, 033601 (2013).



BIBLIOGRAPHY - ENSEMBLE QUANTUM MEMORIES 195

336. P. M. Anisimov, J. P. Dowling, and B. C. Sanders, Objectively discerning Autler-
Townes splitting from electromagnetically induced transparency, Phys. Rev. Lett.
107, 163604 (2011).

337. L. Giner, et al., Experimental investigation of the transition between Autler-Townes
splitting and electromagnetically-induced-transparency models, Phys. Rev. A 87,
013823 (2013).

338. P. Vernaz-Gris, et al., Highly-e�cient quantum memory for polarization qubits in a
spatially-multiplexed cold atomic ensemble, Nat. Commun. 9, 363 (2018).

339. J. Nunn, et al., Mapping broadband single-photon wave packets into an atomic
memory, Phys. Rev. A 75, 011401 (2007).

340. P. S. Michelberger, et al., Interfacing GHz-bandwidth heralded single photons with
a warm vapour Raman memory, New J. Phys. 17, 043006 (2015).

341. P. J. Bustard, et al., Toward quantum processing in molecules: A THz-bandwidth
coherent memory for light, Phys. Rev. Lett. 111, 083901 (2013).

342. D. J. Saunders, et al., Cavity-enhanced room-temperature broadband Raman mem-
ory, Phys. Rev. Lett. 116, 090501 (2016).

343. D. G. England, et al., High-fidelity polarization storage in a gigahertz bandwidth
quantum memory, J. Phys. B 45, 124008 (2012).

344. E. Saglamyurek, et al., Broadband waveguide quantum memory for entangled pho-
tons., Nature 469, 512–5 (2011).

345. M. Afzelius, et al., Demonstration of atomic frequency comb memory for light with
spin-wave storage, Phys. Rev. Lett. 104, 40503 (2010).

346. M. Sabooni, et al., E�cient quantum memory using a weakly absorbing sample,
Phys. Rev. Lett. 110, 133604 (2013).

347. N. Maring, et al., Storage of up-converted telecom photons in a doped crystal, New
J. Phys. 16, 113021 (2014).

348. P. Jobez, et al., Cavity-enhanced storage in an optical spin-wave memory, New J.
Phys. 16, 083005 (2014).

349. P. Jobez, et al., Coherent spin control at the quantum level in an ensemble-based
optical memory, Phys. Rev. Lett. 114, 230502 (2015).
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Chapter 15

Cold atomic vapour apparatus

Bees have to move very fast to stay still.

– David Foster Wallace, Brief Interviews with Hideous Men (1999)

The neutral atoms in an atomic vapour barely interact apart from atomic collisions,
which are a source of elastic decoherence and inelastic relaxation, and are therefore an
appealing ensemble of well-isolated emitters. Although the density of vapours is not
naturally high, it improves with increasing temperature. Hot vapours are one means
of achieving an optically deep atomic ensemble. Increasing temperature does, however,
simultaneously increase the collision and di↵usion rates along with the atomic density.
The storage lifetime of quantum memories in hot vapours is ultimately limited by atomic
motion.

Cold atomic vapours can also be made very dense, so long as they are confined in a
trapping potential somewhat like the trapping potential at the centre of our ion trap in
Chap. 6. Magneto-optical traps are a means of trapping neutral atoms, without the RF
electric fields we used to trap charged ions. Laser cooling lowers the vapour temperature,
and the density may be reduced down to the Bose-Einstein condensate limit, although
not in this instance. Laser-cooled atomic vapours are one of the most advanced platforms
for coherent ensemble-light interactions because they can combine high optical depths
and long coherence times. In this chapter we describe the magneto-optical trap (MOT)
apparatus that we use for preparing cold atomic vapour quantum memories in Chaps. 16
and 17.

This cold-vapour apparatus was first built by Ben Sparkes, Julien Bernu and Nick
Robins and details of that work are available in Refs. [354, 363]. In the sections below
we give a brief overview of the apparatus to provide context for the new experiments.
Noteworthy changes since the previous works include new, lower noise laser systems, a
mains-line trigger, an additional polarization gradient cooling stage, and lifting the vacuum
chamber from the optical bench to reduce eddy currents from magnetic field switching.
The combined e↵ect of these changes has been to improve the optical depth and coherence
time of the ensemble considerably, making the results of Chap. 17 possible.

15.1 The Rubidium atom

The experiments in these chapters are performed with a laser-cooled rubidium atom
vapour. Neutral alkali metals such as rubidium are appealing for quantum information
experiments because, like singly ionized alkaline Earths, they have a single valence electron
with a simple hydrogen-like energy level structure. However, in contrast to 138Ba+, with
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which we’ve worked up until this point (see Sec. 6.1), almost all stable or long-lived alkali
metals have nuclear spin, and therefore a hyperfine electronic level structure.

Of the alkali metals, we choose to work with rubidium because it has optical transi-
tions between low-lying states with accessible wavelengths, low angular momentum ground
states, and high vapour pressures at low temperatures. In addition to the cold rubidium
vapour, we’ll use rubidium vapour cells extensively as frequency references. Rubidium has
two naturally occurring isotopes: 85Rb (which is stable) and 87Rb (which is a long-lived
radio-isotope), and both can be used for quantum information experiments. The rubidium
dispensers in our apparatus contain a natural mixture of rubidium: 72% 85Rb and 28%
87Rb. Our magento-optical trap can be configured to cool and confine either isotope, but
in the experiments presented here we work exclusively with 87Rb. Of the two isotopes 87Rb
has the lower ground-state angular momentum, with nuclear spin 3/2, which simplifies the
hyperfine structure.

The level structure of 87Rb is shown in Fig. 15.1. The transitions that concern us are
the the two lowest energy optical transitions, the D1 and D2 lines, with central wavelengths
and linewidths shown. The spin relaxation time of the two ground states can be more than
one second in all-optical traps [364]. This spin coherence is therefore su�ciently long-lived
for use in quantum memories. Once again, we apply a weak magnetic field that determines
the atomic quantization axis and lifts the degeneracy of the Zeeman sub-levels mF . It is
necessary to impose a quantization axis in this way to optically drive � transitions between
the Zeeman states and prepare the ensemble in an extremal mF state. Modifying equation
Eqn. 6.12 for the hyperfine levels, the Zeeman splitting is

�E = mF gFµB|B| (15.1)

where the Lande factors gF are shown in Fig. 15.1.

We use hyperfine and Zeeman split levels of the D1 transition to form a ⇤ transition
for our quantum memories. We identify one of the magnetically sensitive F = 1 Zeeman
levels as our ground state |gi. Either of the mF = ±1 levels are adequate, but for single-
rail memory we choose mF = 1. In Chap. 16 we use the mF = ±1 levels simultaneously
to form parallel ⇤ schemes for probes at separate frequencies. This is the basis of our
dual-rail memory for frequency qubits.

The corresponding metastable state |si is the F = 2 state with matching Zeeman
number mF = 1 so that the combined two-photon transition has �m = 0. As indicated
in Fig. 13.1, we choose the probe and control field to be blue-detuned, in which case the
preferred excited state is in the F 0 = 2 manifold. The probe and control fields are aligned
with the quantization axis and drive only � transitions. In the simplest configuration,
shown in Fig. 15.2(a), the �̂gs coherence is driven via a single excited state m0

F = 2 by
probe and control beams with same-circular polarizations. This is the configuration we
use in Chap. 17.

Alternatively, we can choose probe and control with orthogonal linear polarizations and
drive the coherence by a combination of ⇤ transitions via both of the excited states m0

F = 2
and m0

F = 0 as shown in Fig. 15.2(b). This configuration is less straightforward, and can
rotate the polarization of the probe as described by the model we derive in Sec. 16.2.
However, in the orthogonal-linear configuration we can combine and separate the beams
by PBS. In Chap. 16 we use an orthogonal-linear configuration in order to balance the
optical depth of the mF = ±1 transitions.
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Figure 15.1: Electronic level structure of 87Rb. All values from Ref. [365].

15.2 Magneto-optical trapping

Magneto-optical traps (MOTs) combine laser cooling and magnetic field gradients to both
cool and trap neutral atoms. The techniques of magneto-optical trapping are well known,
and so we provide only a brief description here. The first trapping mechanism at work
in a MOT is a variation of the Doppler cooling we presented in Sec. 6.4.4 called ‘optical
molasses’. Atoms travelling at the intersection of three orthogonal counter-propagating
pairs of red-detuned optical fields preferentially absorb photons from the field opposing
their direction of travel, which is Doppler shifted closer to resonance compared to its
counter-propagating partner. The net e↵ect of many absorption and scattering cycles is
to cause a force opposing the direction of motion, an e↵ective viscosity. The excited state
linewidth of the 87Rb D1 line is � = 2⇡⇥ 5.75 MHz, about 1/4 the excited state linewidth
of 138Ba+ on the cooling transition. The Doppler temperature limit for our 87Rb vapour,
defined in Eqn. 6.14, is therefore commensurately lower: TD = 138 µK.

Although this molasses cools thermal atoms within a small capture velocity range, it
doesn’t provide any restoring force equivalent to the time-averaged electric fields in our
ion traps of Chaps. 6 and 11. An additional e↵ect is required to form a trap for our atomic
vapour.

Introducing a quadrupole magnetic field about the beam intersection point provides a
restoring force [63, 366]. The trapping site is the magnetic field zero, and atoms experi-
ence a Zeeman shift relative to the trap centre that depends on their displacement. The
counter-propagating trapping fields have the same circular polarization, such that they
drive opposite �± transitions. The beams address transitions with opposite Zeeman shifts
and therefore atoms displaced from the centre preferentially absorb photons from one of
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Figure 15.2: The Zeeman-split 87Rb D
1

line and the ⇤ schemes we use for gradient echo memory.

The Zeeman levels are split by a static magnetic field B such that the Zeeman transitions are spec-

trally resolved. (a) The same-circular configuration used in Chap. 17. (b) The orthogonal-linear

configuration used in Chap. 16. The coherence �̂gs is driven simultaneously by two Raman transi-

tions, one for each of the circularly polarized probe and control components. Interference between

the two Raman transitions defines orthogonal ‘coupled’ and ‘uncoupled’ probe polarizations, see

Sec. 16.2.

the two counter-propagating beams. Correctly choosing the polarization of the beams,
this preferential absorption favours the beam travelling inwards and produces a restoring
force towards the centre of the trap. In contrast to the molasses, this restoring force is
proportional to the atom displacement and not to the velocity, and therefore compresses
the atomic vapour about the trap site until this trapping force is balanced by the vapour
pressure of the ensemble.

This trapping configuration has been shown to prepare vapours with temperatures
below the Doppler limit by an e↵ect called polarization gradient cooling [366, 367]. The
combined e↵ect of the counter-propagating circular fields and atomic motion is to produce
a population di↵erence among the Zeeman sublevels in the standing wave and, conse-
quently, a large motion-sensitive radiation pressure imbalance from the two fields. A
slightly di↵erent mechanism e↵ect exists for sub-Doppler cooling with counter-propagating
orthogonal linear fields. In principle, the temperature of the vapour under polarization
gradient cooling can approach the recoil-limit temperature [368]

TR =
~2k2
kBm

, (15.2)

where kB is the Boltzmann constant and m is the atomic mass. TR = 0.37 µK for 87Rb
on the D2 transition.

Because the transition we use for trapping is not cyclic, the atom may decay to the
unaddressed hyperfine ground state after each excitation. To trap and cool continuously
therefore requires a repump beam to return the atoms to the cooling-trapping manifold,
much as the repump beam facilitated continuous Doppler cooling for our trapped ion in
Chap. 6.
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15.3 Atomic motion

Memory experiments must be performed with the MOT fields o↵; the near-resonant trap-
ping fields cause too much decoherence for a functional memory and the magnetic trapping
field gradients are 10 G cm�1. During memory operations the vapour is no longer trapped,
and both falls under gravity and expands ballistically. The gravitational displacement is
only 5 µm in 1 ms, and common to every atom in the MOT, so we can safely neglect it.
However, the ballistic motion will prove to be very important, and we must consider its
impact on storage time. In contrast to a hot atomic vapour, the collision rate is su�-
ciently low that redirecting collisions are negligible. Rather than di↵using, each atom in
our vapour expands essentially unimpeded in a direction and at a rate determined by its
velocity.

Assuming thermal equilibrium, the velocity of atoms in our vapour is Maxwell-Boltzmann
distributed everywhere. Given an initial atom density distribution n0, the distribution at
time t later is given by convolution with the displacement function for each coordinate

n(t) = n0 ⇤Dx(t) ⇤Dy(t) ⇤Dt(t) (15.3)

Dx(t) =

r
m

2⇡mkBT

1

t
e
� m

2k

B

(x

t

)2
, (15.4)

where T is the ensemble temperature. We can apply the same convolution operation to
the collective atomic operators Ŝ and P̂ to give their evolution under atomic motion so
long as the operators are otherwise static. Radial and longitudinal motion impact the
GEM spin wave in distinct ways.

Radial motion distorts the memory by increasing the radial size of the coherence with
respect to the input signal. Eventually atoms may leave the interaction region altogether.
If the initial coherence is Gaussian in x and y with waist w0 given by the beam waist of the
signal beam, then the overlap between the recalled and signal modes is the overlap between
a Gaussian with width w0 and a Gaussian with width w0 + hvit where hvi =

p
kBT/m.

The characteristic time of this Gaussian overlap decay is ⌧r = w0/hvi. The decoherence of
spin waves with transverse structure is faster, this was considered under di↵usive motion
in Ref. [284].

Longitudinal motion washes out the phase fringes of the spin wave. For a static spin
wave with spatial wavelength k the coherence is mostly lost when hDz(t)i > ⌧l where
⌧l = 1/(khvi) is the characteristic time for longitudinal di↵usion over a static spin wave
[369]. The decoherence of a static spin wave under longitudinal di↵usion is exponential in
t.

Combining the equations for Gaussian radial and exponential longitudinal decays we
arrive at the recall e�ciency of a static spin wave [369]

⌘(t) = ⌘0
1

1 + (t/⌧r)
2 exp

"
� (t/⌧l)

2

1 + (t/⌧r)2

#
, (15.5)

where ⌘0 is the recall e�ciency at zero and includes losses due to control field scattering.
However, we saw in Sec. 13.2 that the GEM polariton spatial frequency is not fixed,

but instead increases and then decreases during storage and recall. The trajectory of
the polariton may be quite complicated depending on the magnetic field switch scheme.
The decoherence of this dynamic spin wave under longitudinal di↵usion was considered
analytically for several operation schemes in Ref. [370]. To describe the same process in
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a cold-atom vapour it is only necessary to replace the di↵usion distribution in Ref. [370]
with the ballistic distribution from Eqn. 15.3. We can incorporate the di↵usion numeri-
cally in our XMDS2 scripts by adding di↵erential ballistic convolution at every time step,
or equivalently by multiplying the Fourier components by the convolution function. Nev-
ertheless, Eqn. 15.5 is a reasonable approximation of cold-atom GEM e�ciency when the
spin wave is kept stationary during storage and the storage is long compared to the read
and write stages. In this case we define the typical spin wave momentum

k = �zt/2 + (kp � kc) , (15.6)

where �z = �⇠/L is the spatial magnetic field gradient and t is the total time the polariton
evolves under �z.

Generally, to operate a GEM with atomic motion it is optimal to freeze the polariton
evolution at low k for as long as possible, and to use co-propagating control and probe
beams so that ✓ = 0 and the initial spin wave momentum k0 = kp � kc is small.

15.4 MOT apparatus

15.4.1 Rubidium sources

Our rubidium vapour is held in a rectangular glass cell connected to a vacuum system
maintained at 10�10 Torr by continuous ion pumping. The vapour is produced by heat-
ing dispensers containing rubidium salts. The initial dispensers manufactured by SAES
expired during the course of Chap. 16, and we briefly replaced them with rubidium alloy
based dispensers from Alvatec before returning to SAES dispensers for Chap. 17, due to
contamination problems with the Alvatec sources.

A large MOT requires a high background vapour pressure to trap from, however if
the background pressure is too high then collisions with thermal atoms will limit the size
of the MOT. We optimize the dispenser current, and all trapping parameters, for the
preparation of high optical depths.

15.4.2 Trap and repump lasers

The trapping and repump fields are generated by temperature-stabilized MOGlabs diode
lasers and amplified. Tapered amplifiers increase the laser field power from ⇡ 10 mW to
up to 1 W.

The trapping and repump lasers are frequency locked to one of the 87Rb D2 hyperfine
transitions by Doppler-free saturated absorption spectroscopy. A bright circularly polar-
ized pump and a weak circularly polarized probe derived from the same beam counter-
propagate through the Doppler-broadened ensemble. Only atoms moving perpendicularly
to the direction of propagation are simultaneously resonant with both beams. The pump
therefore opens a transparency window in the centre of the Doppler broadened absorption
feature of each hyperfine transition [371]. In the limit of weak probe fields, this trans-
parency window is limited by the natural linewidth of the transition. The laser is locked
to this feature by modulating the magnetic field about vapour cell. The absorption signal
is demodulated in a process similar to Pound-Drever-Hall locking [207]. An AOM is used
to shift the locking beams so that the trap and repump lasers can be locked anywhere
within 220 MHz of any of the hyperfine lines.
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15.4.3 MOT coils

Ultimately we want our cold rubidium vapour to provide an e�cient gradient-echo memory
platform. As we discussed in Sec. 13.2, ⇤-GEM only approaches unit e�ciency in the
Raman limit. The e↵ective optical depth (Eqn. 13.56) decreases in proportion to the
single-photon detuning �, and although we may compensate by increasing the control field
power, this in turn reduces the memory e�ciency by control field scattering (Eqn. 13.49).
An e�cient GEM therefore requires a very high resonant optical depth to start with, which
we achieve by compressing our vapour into an elongated cigar shape.

The optical depth (from Eqn. 13.37) is

d =
g2NL

�c
. (15.7)

Since g / 1/
p
V , we have d / 1/A for a collimated beam and fixed atom number N . We

can therefore optimize the depth by compressing as many atoms as possible into a narrow
region along the optical axis of a narrow, but still collimated, beam.

Our magneto-optical trap is designed to prepare a cold atomic vapour with an elongated
cigar shape. This provides a high optical depth for the signal beam along the direction of
propagation. The 2D radial magnetic quadrupole field is produced by an anti-Helmholtz
pair of rectangular coils. The vapour cloud is trapped radially and concentrates along the
long axis, this type of MOT was first pioneered by Y. Lin in Ref. [372]. We also have
capping coils that provide axial confinement near the edges of the ensemble. The resulting
cloud contains ⇡ 1010 atoms and has a length of 5 cm. Three further pairs of coils mounted
around the optical table are used to compensate static ambient magnetic fields.

GEM must be performed with the MOT magnetic coils switched o↵, but switching
the MOT coils causes eddy-currents in neighbouring conductors. These eddy-currents
produce, in turn, magnetic field variations that decohere the stored spin wave. We lifted
the vapour cell and vacuum chamber by ⇡ 50 cm from the optical table to reduce fields
due to eddy currents.

15.4.4 Preparing the ensemble

The cold atomic vapour is assembled during a 170 ms ‘loading’ phase. During this stage,
the trap and repump fields continuously trap and cool thermal rubidium atoms from
the dispensers until the vapour in the trap reaches an equilibrium temperature, size and
density. During the loading phase, the trapping laser is red detuned by 35 MHz from the
D2 F = 2!F 0 = 3 transition and the repump laser is resonant with the D2 F = 1!F 0 = 2
transition.

After loading we further increase the MOT density with a radial compression phase.
We increase the 2D MOT coils current smoothly over a period of 20 ms to ramp up the
radial magnetic field gradient. At the same time, we ramp up the red detuning of the
repump laser by � = 25 MHz. This type of compression phase has been shown to achieve
transient increases in atomic density of up to an order of magnitude [373].

The MOT coils are then switched o↵ in order to conduct the memory experiment, at
which point the vapour begins falling under gravity and expanding ballistically. Recording
the optical depth of the vapour over time, we estimate that the equilibrium temperature
is T = 95 µK, slightly under the Doppler temperature limit. The corresponding mean
velocity is hvi = 0.095 m/s. Ideally, we should operate the memory immediately after
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the trap is dropped, before ballistic expansion has a chance to reduce the density too
dramatically. Unfortunately, we first need to wait for stray magnetic fields due to the trap
coils to stabilize.

The decay of the magnetic trapping fields and eddy currents induced in nearby metallic
objects was found to have a time constant of ⇡ 0.7 ms. We wait for 1 � 2 ms before
performing any measurements. During this drop time the trapping lasers remain on, and
we detune the trapping field by a further 63 MHz to further cool the falling vapour by
polarization gradient cooling and limit the ballistic expansion. If we desire the ensemble
to be prepared in a single extremal Zeeman state then we apply a circularly polarized
pump beam along the optical axis on the D1 F = 1$F 0 = 2 transition for 0.5 ms after
this final cooling stage. This pump beam is accompanied by a linearly polarized repump
beam on the D1 F = 2$F 0 = 2 transition.

Once the eddy currents have died down and all optical and magnetic MOT fields are
switched o↵ we are prepared to perform a memory experiment. We measure the OD at this
point in the cycle by absorption measurements with an o↵-resonance probe. The highest
resonant OD we measured on the D1 F = 1 !F 0 = 2 probe transition was d ⇡ 600, with
which we took the high e�ciency GEM data for Chap. 17. After each experiment we bring
the trapping fields back up and recapture the falling atoms in the next loading phase.

15.5 GEM apparatus

15.5.1 Probe and control lasers

The probe and control fields at 795 nm are derived from a single, continuous-wave Ti:Sapphire
laser, the M2 SolsTiS. The SolsTiS is pumped at 532 nm by a frequency doubled 1064 nm
DPSS source. The SolsTiS provides a maximum of 2 W of power with a linewidth of
⇡ 50 kHz.

The probe and control fields need to be separated by the ground-state splitting ⇡
6.8GHz. As the control requires the most power, we lock the source laser to a cavity
reference ⇡ 200 � 300 MHz blue detuned from the D1 F = 2 $F 0 = 2 transition, and
produce the probe field by modulation. A fibre-EOM modulates one arm of the source at
⇡ 6.8 GHz and one of the sidebands is selected using a mode-cleaning cavity, PDH locked
with another modulator.

The probe field is focussed into the centre of the ensemble with a beam waist of
wp
0 = 110 � 200 µm. The control field is collimated and telescoped up to wc

0 = 7 mm so
that it illuminates the ensemble uniformly. The probe and control beams are combined on
a 50:50 beam splitter at a slight angle ✓ so that they can be separated after the ensemble.
However, the angle ✓ imprints a longitudinal phase onto the ensemble spin wave. The
larger the angle, the more rapidly the spin wave dephases under atomic motion. We
operate with ✓ = 0 for long storage times.

The polarization, fine-detuning and amplitude of the probe and control beams are set
independently with waveplates and acousto-optic modulators. Depending on the ⇤-scheme
to be used, we choose the probe and control to have either same circular or orthogonal
linear polarizations.

15.5.2 Detection

The control field is orders of magnitude brighter than the probe, and so we require sub-
stantial filtering to suppress control light at the detectors. This filtering is achieved by a
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combination of methods. First, a knife edge takes advantage of the propagation angle ✓
to remove most of the control after the ensemble. Second, the probe is focussed through
a 100 µm pinhole which removes any remaining or scattered control. This spatial filtering
suppresses the control field by 50 dB and the probe field by only 0.9 dB.

The input and output probe pulses are measured with either a balanced heterodyne
detector, photodiode or APD. Input amplitude reference pulses are measured in the ab-
sence of a MOT, and every signal pulse is preceded by a phase reference pulse that passes
through the MOT without a control field.

15.5.3 GEM coils

A pair of axial Helmholtz coils generate a magnetic field gradient along the direction of
propagation for operating a gradient echo memory. Independent current sources powered
by Apex Power PA107 op-amps drive the coils, providing 5 A and 100 V with a rise-time
of less than 1 µs. This is the limit of the the gradient switch time.

The magnetic field is nearly, but not perfectly, linear between the two coils. The
common current determines the uniform magnetic field bias B0 and the current di↵erence
determines the magnetic field gradient �B. The field gradient is switched by reversing the
current di↵erence. In gradient echo memory experiments with hot vapours we have used
cylindrical coils with a winding density gradient to produce more homogeneous magnetic
field gradients. Unfortunately, such coils obstruct too much of the optical access for use
with a MOT. Magnetic field inhomogeneity is one of the remaining decoherence sources
in our memory.

15.6 Summary

We have described the relevant details of the magneto-optical trap apparatus for cooling
and trapping cold rubidium vapours. The electrical configuration and optical transitions
of 87Rb were given, and we described how the hyperfine-split ground-state spin coherence
can be used for storing qubits in the ensemble. We detailed the laser systems and mag-
netic field coils available for trapping and manipulating our cold rubidium vapour, and
the experimental sequence we use for preparing a cold, dense ensemble as a platform for
gradient echo memory. We also detailed the laser systems and magnetic field coils used
to operate our GEM. In the following two chapters we report results with this quantum
memory, first by extending GEM to support frequency-encoded qubits, and then by push-
ing the e�ciency and coherence time of our memory into a regime that outperforms, for
the first time, a fibre delay line in the no-cloning regime.
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Chapter 16

Dual-rail optical gradient echo memory

I am at one with my duality.
– G. K. Chesterton

In this chapter we introduce a scheme for the parallel storage of frequency separated
signals in an optical quantum memory and demonstrate that this dual-rail storage is a
suitable memory for high fidelity frequency qubits. The two signals are stored simultane-
ously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient
echo memory techniques. Analysis of the split-Zeeman storage shows that the memory
can be configured to preserve the relative amplitude and phase of the frequency sepa-
rated signals. In an experimental demonstration dual-frequency pulses are recalled with
35% e�ciency, 82% interference fringe visibility, and 6� phase stability. The fidelity of
the frequency-qubit memory is limited by frequency-dependent polarization rotation, our
analysis describes how these can be addressed in an alternative configuration. This work
has been published as Ref. [1].

16.1 Frequency qubits

The performance of a practical quantum memory for qubits is contingent on the way those
qubits are encoded in the single-photon field. Any linear, single-mode memory is capable
of storing photon number qubits, however ine�ciency and loss in the memory or other
network elements will decrease output state fidelity. For this reason an alternate encoding
is often used, such as the polarization, orbital angular momentum, path, or arrival time
(time-bin) of a single photon. Memories for polarization qubits have been demonstrated
using electromagnetically induced transparency (EIT) [312, 313, 315], atomic frequency
comb (AFC) [374] memories, and Raman absorption [343]. EIT has also been used to
store orbital angular momentum qubits with high fidelity [375]. Temporally multimode
memories, such as AFC [344] and gradient echo memories (GEM) [351], are also suitable
for time-bin qubits.

Here we present work based on the three-level GEM protocol [287, 288, 376] towards a
quantum memory for frequency qubits [377, 378]. We extend the GEM protocol to make
use of Zeeman sub-levels to store and recall two frequency channels, this provides a basis
to store frequency qubits with a high fidelity. These split Zeeman levels have previously
been used to store matched pulses with EIT [379].

As per the gradient echo memory protocol from Sec. 13.2, the atomic resonances in
our ⇤-atom ensemble are prepared by applying a tailored magnetic field along the optical
propagation axis. A bias magnetic field B0 lifts the degeneracy of the Zeeman sub-levels
by introducing a Zeeman shift given by �E = mF gFµBB0/h, where mF is the Zeeman

207
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Figure 16.1: A simplified energy diagram of atomic levels mF = �1, 0, 1 under constant uniform

bias field B
0

and reversible gradient field Bz illustrating the operation of the dual-rail gradient

echo memory.

level number, gF is the Landé factor for hyperfine state F , µB is the Bohr magneton and
h is the Planck constant. For the D1 line of 87Rb atoms the Landé factors are respectively
g1 = �1/2 and g2 = 1/2. A single coupling field detuned from the F = 2 ! F 0 = 2
transition will produce three Raman absorption lines for a weak signal field on the F =
1 ! F 0 = 2 transition, corresponding to signal field detunings of 0 (insensitive line) and
±�0 relative to the unsplit Raman transition, where �0 is given by

�0 =
µB

~ B0 ' 2⇡ ⇥ 1.4MHz/G ⇥B0 . (16.1)

A reversible magnetic field gradient Bz(z) is applied along the ensemble in addition to
the uniform bias field B0 to broaden the two magnetically sensitive lines around ±�0 for
light storage using the GEM protocol, as illustrated in Fig 16.1. Our GEM in Chap. 17,
and all previous GEM experiments, used only one of these two magnetically sensitive lines
to store and recall pulses. In this chapter we show that the sub-levels responsible for the
two absorption lines can be utilized to store pulses of light at frequencies ±�0 in parallel
such that the two lines form a memory for frequency encoded qubits. The same scheme
readily extends to higher mode frequency states in atomic ensembles with high ground
state angular momentum. For example, the four magnetically sensitive Zeeman levels of
the 85Rb ground state (F=2) could be used to store four mode frequency states using the
same approach that we demonstrate here with 87Rb.

To achieve high fidelity frequency qubit storage in such a dual-rail GEM it is necessary
to balance the e↵ective optical depth of the two Raman lines shown in Fig. 16.2(b) and
match the output polarization of each frequency rail. The optical depth of each line
depends on the dipole matrix elements associated with the transitions for the coupling and
signal fields involved in the relevant two-photon transitions, as well as the polarization of
the two beams. In general, for an ensemble of atoms that has a population distributed
uniformly across the Zeeman sub-levels, this results in unequal optical depths for the ±�0
Raman transitions. To balance the e�ciencies of the two frequency rails we use linear
polarizations for the coupling and signal fields which, by symmetry, ensures equal optical
depths. In this configuration, however, frequency dependent polarization rotation will
produce output modes that are not matched and limit our qubit fidelity.
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Figure 16.2: (a) Zeeman levels of the 87Rb D1 line split by a bias magnetic field B
0

. The control

and signal laser fields couple the two ground states F=1 and F=2 via multiple ⇤-type Raman

transitions. (b) Split Raman absorption lines for the dual-GEM scheme. Non-degenerate lines at
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0

are produced by the bias magnetic field B
0

according to the level scheme above, and broadened

by an additional field gradient Bz that is applied to the atom ensemble for GEM. Free-induction

decay can be seen in the centre line. Inhomogeneous broadening by the magnetic field suppresses

free induction decay on the two magnetically sensitive lines.

16.2 Polarization rotation

Polarization rotation occurs as a result of interference between coherences driven by the
�+ and �� components of each signal field. To examine the e↵ect of this rotation, we
consider below the level structure of the Rb87 atoms, shown in Fig. 16.2(a). O↵-resonant
dispersion of �+ and �� will further rotate the signal fields, but the relative Faraday
rotation between signals 1 and 2 is negligible so long as their splitting, �0, is much smaller
than the detuning, �.

We assume that the population initially rests entirely in the F = 1 ground state,
evenly distributed between Zeeman sub-levels, and that there are no coherences within
that manifold. These assumptions are valid provided that the probe field is weak and
that the splitting, �0, is large compared to the Raman linewidth. We proceed by treating
each of the signals independently, starting with the signal 1. Referring to Fig. 16.2(a),
signal 1 will produce a coherence, �̂1, between the |F = 1,mF = 1i and |F = 2,mF = 1i
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states via three ⇤ systems with excited states |F 0 = 2,mF = 0i, |F 0 = 2,mF = 2i and
|F 0 = 1,mF = 0i. This last ⇤ system reduces the absorption asymmetry between �+ and
�� components of the signal. Consequently the �+/�� absorption ratio approaches unity
as the detuning � is increased.

The ⇤ system formed by |F = 1,mF = 0i, |F 0 = 2,mF = 1i and |F = 2,mF = 2i makes
a small contribution to the memory process due to weak e↵ective coupling strength. We
neglect this contribution in the analysis below because the optical depth associated with
this process is ⇡ 19 times smaller than the optical depth of the three ⇤ schemes contribut-
ing to the |F = 1,mF = 1i ! |F = 2,mF = 1i coherence.

16.3 Equations of motion

Following Eqns. 13.32 to 13.34, the equations of motion for signal 1 are1

@t�̂1 = �(�00 + i�0)�̂1 + ig�1 Ê�
1 + ig+1 Ê+

1 , (16.2)

(@t + c@z)Ê±
1 = ig±1 N �̂1 , (16.3)

with e↵ective coupling strengths

g+1 / ⌦+

�22
µ(1,1;2,2)µ(2,1;2,2) , (16.4)

g�1 / ⌦�

�22
µ(1,1;2,0)µ(2,1;2,0) +

⌦�

�21
µ(1,1;1,0)µ(2,1;1,0)) , (16.5)

where µ(m,n;p,q) is the dipole matrix element corresponding to the |F = m,mF = ni !
|F 0 = p,mF = qi transition, ⌦± are the Rabi frequencies associated with the right and
left circularly polarized components of the control field, �22 = � is the control field
detuning from the |F = 2i ! |F 0 = 2i transition and �21 = � + 2⇡ ⇥ 816.7 MHz [365] is
the control field detuning from the |F = 2i ! |F 0 = 1i transition. We can further simplify
this system by introducing the signal 1 coupled mode Êcp

1

gcp1 Êcp
1 ⌘ (g�1 Ê�

1 + g+1 Ê+
1 ) , (16.6)

gcp1 ⌘
q
|g�1 |2 + |g+1 |2 . (16.7)

From Eqs. (16.2) and (16.3) we derive Eqs. of motion for the coupled mode

@t�̂1 = �(�00 + i�0)�̂1 + igcp1 Êcp
1 (16.8)

(@t + c@z)Êcp
1 = igcp1 N �̂1. (16.9)

The component of the input perpendicular to the coupled mode polarization is not
stored in the memory. Given a horizontally polarized signal and vertically polarized con-
trol, g�1 and g+1 determine the signal 1 coupled mode polarization |P cp

1 i = 0.51 |Li +
0.86 |Ri. Analogous equations exist for signal 2; by symmetry (assuming detunings �21

and �22 are approximately the same for signals 1 and 2, and given the same beam polariza-
tions) the coupled mode polarization for signal 2 is |P cp

2 i = 0.86 |Li+ 0.51 |Ri. The input
and output polarizations of both signals are indicated schematically in Fig 16.3. The por-

1In this section superscripts ± denote the circularly polarized components of each signal, as distinct
from their use in Sec. 13.3, where we used them to denote forward and backward propagating fields.
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Figure 16.3: The experimental layout for dual-frequency GEM in an ensemble of cold 87Rb

atoms. A root signal beam is produced from the control by 6.8 GHz sideband generation (EOM)

followed by frequency filtering (cavity). The beam is then split to allow independent gating and

frequency control of signals 1 and 2 (AOMs). The two signal beams are recombined and sent to

the atomic ensemble through an optical fibre. The 87Rb atoms are cooled and held in a magneto-

optical trap setup similar to that in [7, 359]. The signal and control polarizations are indicated

schematically before and after storage in the atom ensemble. The output signal polarizations |P cp

1

i
and |P cp

2

i(defined in the text) are elliptical with major/minor axes ratio 0.97/0.24. After passing

through the atom ensemble the coupling field is spatially filtered using a pinhole and razor.

tion of the input orthogonal to the coupled mode is not stored in the memory, therefore the
highest e�ciency possible in this memory configuration is |Hi · |P cp

1 i = |Hi · |P cp
2 i = 0.94.

The interference fringe visibility between the two output modes is limited to the coupled
mode overlap |P cp

1 i · |P cp
2 i = 0.88.

To eliminate the polarization rotation described above and improve fidelity the memory
can be configured with circularly polarized signal and control beams. In this alternative
configuration the memory fidelity is limited by recall e�ciency asymmetry between the
rails, which goes to zero in the high optical depth limit. With low optical depth one
could still balance these e�ciencies directly by preparing an ensemble population unevenly
distributed between the Zeeman sub-levels of the ground state.

16.4 Dual-rail storage

The experiment is carried out in a cold atomic cloud of 87Rb produced by a magneto-
optical trap prepared according to Chap. 15. The ensemble is initially prepared in the
F = 1 hyperfine ground state with a resonant optical depth of d ⇡ 300 on the unsplit D1

F = 1 ! F 0 = 2 transition. Eddy currents induced in the optical bench when the MOT
coils switch o↵ are allowed to die away for 1 ms before the memory experiment begins.
The coupling field is turned on 400 µs before the writing stage to pump the atoms to the
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Figure 16.4: Storage and recall of the two signal fields independently and simultaneously. (a) A

typical input signal (black, recorded without the atomic ensemble) and echo pulse (red, also with

light that has leaked through the memory during the write process) of signal 2 in isolation. (b)

A typical input (black) and echo (blue) of signal 1 in isolation. (c) Temporally matched input

pulses of both signals (black) and simultaneously recalled echoes (purple) demonstrating parallel

frequency rail storage. Inset (d) shows the relative phase and fringe visibility between the two

echo signals as an angle and radial displacement respectively. The first set of data has a phase

stability of only 15� and visibility of 82%. The black dotted arc is the visibility limit imposed by

the polarization distinguishability of the signal outputs. The phase stability of the second set was

improved to 6� by mains line triggering, but not optimised for high visibility interference.

F = 1 hyperfine ground state and remains on during the writing and reading stages.

The experimental setup is shown schematically in Fig 16.3. The coupling and signal
fields are derived from a Ti:Sapphire laser that is 200 MHz blue-detuned from the 87Rb
D1 F = 2 ! F 0 = 2 transition. The signal fields are produced by a fibre-coupled phase-
modulator followed by a locked cavity. The modulator generates sidebands at ⇡ ±6.8 GHz
relative to the coupling field and the cavity is used to select only the correct sideband,
which is then split into the two signal fields. All three fields pass through separate acousto-
optic modulators to allow for fine frequency adjustment as well as gating and pulsing. The
signal fields are combined with the same linear polarization (horizontal), passed through
an optical fibre and focused to match the size of the atomic cloud (beam waist = 200 µm).
The coupling field is polarized orthogonally to the signal fields and is collimated to a larger
diameter of 7 mm so that it illuminates the entire ensemble uniformly. The coupling field
propagates with a small angle relative to the signal beams and after passing through the
cell it is extinguished by ⇡ 45 dB using a razor blade and a pinhole. This spatial filtering
incidentally reduces the signal field e�ciency by 1 dB.

The results of the dual-rail storage and recall experiment are shown in Fig. 16.4. Panels
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(a) and (b) show independent storage and recall of each of the signal fields in the absence
of the other. Panel (c) shows storage of the two signal fields simultaneously. The input
signal pulses have a Gaussian profile with 10 µs width. We record reference traces of the
inputs (black) in the absence of the atomic ensemble. Traces showing storage and recall
in the atom ensemble (red, blue, purple) are produced by reversing the magnetic field
gradient across the MOT as per the GEM scheme described in Sec. 13.2 such that the
pulse is stored for approximately one pulse width. The polarization of the control field
is tuned to balance the e�ciencies of the echoes to compensate for misalignment of the
magnetic gradient relative to the optical axis and polarization errors caused by the glass
vacuum cell walls.

The recall e�ciencies are 39% and 32% for signal fields 1 and 2 respectively. We
demonstrate dual-rail storage by sending both signal pulses into the memory simultane-
ously with matched temporal profiles and amplitudes. The combined signals are recalled
with 35% e�ciency and the interference fringe visibility between the recalled pulses is
82%, compared to an expected visibility of 85% given the output mode overlap derived
earlier (0.88), the measured rail e�ciencies (0.32,0.39) and the input temporal matching
(0.97). The relative phase between the echo signals is measured by comparing the beat
signal phase of the recalled pulses to earlier reference pulses that are not stored and not
shown in Fig. 16.4. The storage process produces an overall shift in the phase di↵erence
between the two signals with a standard deviation of 15�, Fig. 16.4(d). This variation is
due to magnetic field background noise. By triggering the experimental sequence from
the mains power supply, which improves the magnetic field stability, this phase noise was
later reduced to 6�, Fig. 16.4(d). Unfortunately the output visibility in this second mea-
surement was reduced by an unrelated experimental consideration, namely the exhaustion
of our Rb source.

16.5 Summary

These results demonstrate that the dual-rail gradient echo memory can be used to store
and recall two frequency separated signals in parallel while preserving the relative phase
and amplitude of the optical states. This technique is therefore a suitable memory for
frequency qubits with fidelity limited by the frequency-dependent polarization rotation of
two signals and the magnetic field stability of the atom ensemble. The alternative circular
polarization scheme described above is free of polarization rotation. Instead, the fidelity
in this configuration is limited by unbalanced absorption of the two signals, which goes
to zero as the optical depth increases and could be addressed even in a low optical depth
ensemble by preparing asymmetric initial populations. Achievable improvements to the
atom ensemble optical depth and ambient field isolation promise to improve both the
e�ciency and fidelity of such a frequency-qubit memory.

The optical depth available for this experiment was limited by the exhaustion of our
rubidium dispensers. We have since replaced the dispensers, and improved the optical
depth available for quantum memory to d ⇡ 600 on the 87Rb D1 F = 1 !F 0 = 2
transition. With this improvement we are able to substantially improve the e�ciency of
our memory, which is the subject of the following chapter.
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Chapter 17

High e�ciency GEM

A memory is what is left when something happens and does not completely un-
happen.

– Edward de Bono

The most e�cient quantum memories demonstrated to date operate by gradient echo,
with e�ciencies of 69% in rare-earth ion crystals [380], 87% in hot vapours [352] and 80%
in cold vapours [354] (before this work). The e�ciency of cold-atom gradient echo memory
has been limited primarily by the available optical depth (OD) [354]. In this chapter we
report the operation of a cold-atom GEM with atom number N ⇡ 1010 and optical depth
d = 600 that improves the e�ciency to 87±2%, equalling the best demonstrated quantum
memory e�ciency. The optical depth is improved by a combination of optical pumping
and compression stages.

The storage time of our cold-atom GEM is limited by magnetic field noise and atomic
motion to well below the best measured coherence times of the rubidium hyperfine ground
states. Ref. [354] found the memory e�ciency to decay exponentially with storage lifetime
⌧s = 117 � 195 µs. In this chapter we improve the memory lifetime to ⌧s = 1 ms by
improved cooling and the reduction of eddy currents. We lifted the MOT from the optical
bench, the biggest source of eddy currents due to MOT field switching, and drop the
vapour for longer before operating the memory to let eddy currents die down completely.

The e�ciency and storage time of our memory are now such that we can recall stored
pulses with 50% e�ciency after 600 µs, surpassing the 50% lifetime of of an ideal fibre-loop
delay line by a factor of six. Until now no quantum memory has beaten this time-e�ciency
limit. This work has been published as Ref. [3].

17.1 Pumped Raman lines

We operate our GEM according to the description in Chap. 15 with same-circular probe
and control polarizations, single photon detuning � = 325 MHz, and after pumping
the ensemble into the F = 1,mF = 1 ground state |gi. Pumping our vapour into the
ground state is considerably less e�cient than the single-atom pumping we performed in
Chap. 7; inelastic collisions between atoms relax the populations at a rate that determines
an equilibrium spin under continuous pumping. Figure 17.1 shows the Raman absorption
resonances of the mF = �1, 0,+1 lines after pumping and show residual populations in the
other two Zeeman states. In contrast to the unpumped absorption lines in Fig. 16.2(b),
the mF = �1 and mF = 0 lines are considerably suppressed and the mF = +1 line is
enhanced. Figure 17.1(a) shows the unbroadened Raman lines under the bias field B0.
The optical depths of the mF = �1, 0,+1 lines are, respectively, 6.3, 38 and 488.
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Figure 17.1: (a) The Raman lines after pumping and without broadening by a magnetic field

gradient. (b) The pumped Raman lines with magnetic field gradients for the write and recall

operations �
in

(blue) and �
out

(red).

During the write and recall memory operations we apply an additional field gradient
Bz to broaden the Raman lines by �⇠ as shown in Fig. 17.1(b). The lines are shown for
both the read (blue) and write (red) magnetic field configurations. From this measurement
we determined input and output gradients of �in = 2⇡⇥197 kHz and �out = 2⇡⇥210 kHz,
or �⇠ ⇡ ±0.035�. We calibrated the control field Rabi frequency ⌦ and atom number
N by fitting an analytic model to broadened and unbroadened Raman lines recorded at
various control beam powers.

17.2 High e�ciency storage

We stored and recalled a Gaussian probe pulse with width 6.66 µs by gradient echo mem-
ory. The control field and magnetic field gradient remain on for the entire operation, with
the magnetic field gradient switched at the half-way time. The storage and recall magnetic
field gradients were unbalanced slightly, as we can see in Fig. 17.1(b), in order to preserve
the shape and frequency of the recalled pulse, which would otherwise distort due to the
close match between the pulse and memory bandwidths.

Figure 17.2(a) shows the input and recalled pulses as measured on a balanced het-
erodyne detector. The local oscillator was mode matched to the input signal recorded in
the absence of any rubidium vapour. Figure 17.2(b) shows the demodulated heterodyne
signals averaged over 15 pulses. The output pulse is only slightly distorted, its envelope
overlaps 99.3% with the input pulse. The shot to shot phase drift is 5�, consistent with
the phase stability of our dual rail memory in Sec. 16.4 after we introduced mains-line
triggering. Including this phase fluctuation the mode overlap is still 99.1%. The e�ciency
is the square of the ratio of the input and output pulse areas, ⌘ = 0.87 ± 2. This high-
e�ciency storage was taken with control field ⌦ = 2⇡ ⇥ 7.06 MHz determined from the
Raman line control field calibration.

The heterodyne-measured e�ciency is consistent with the intensity e�ciency as mea-
sured by an APD. However, the control-field intensity noise at the APD is large when
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Figure 17.2: Gradient echo memory with a high OD ensemble. (a) The balanced het-

erodyne trace of the input (black) and recalled (orange) pulse stored for one pulse width. (b)

Demodulated heterodyne input (black) and output (orange) signals, averaged over 15 traces. One

� uncertainty shown by shaded region. (c) Recall e�ciency as a function of storage time for several

angles ✓ between the probe and control beams. The e�ciency is compared to two benchmarks: the

e�ciency of a fibre loop (dashed) and the no-cloning limit (dot-dashed). Fits and data processing

by Young Wook Cho.

the angle ✓ between probe and control beams is small, due to the increased di�culty of
spatial filtering as ✓ ! 0. Numerically modelling the memory by integrating Eqns. 13.47
and 13.48 with parameters from the Raman line fits to Fig. 17.1, we predict a theoretical
e�ciency of ⌘ = 0.89, consistent with the measured e�ciency.

Noise may be present in the recalled pulse in the form of an idler field produced by
FWM. Numerically integrating Eqns. 13.47 and 13.48 with an additional idler field and
the same parameters predicts an idler field that is 0.9% of the input power. This FWM
analysis was performed by Geo↵ Campbell, and a detailed explanation is available in his
thesis, Ref. [291]. An analysis of FWM in a hot-vapour GEM with similar storage e�ciency
showed the same result [353].

17.3 Long coherence time storage

Storing the same Gaussian pulse with the control field and magnetic field gradient o↵,
we measure a storage time that is limited by atomic motion. The bias field remains on
to reduce dephasing by ambient magnetic field fluctuations. Figure 17.2(c) shows the
storage e�ciency measured by heterodyne detection as a function of storage time. When
the probe and control fields are co-propagating (✓ = 0�) the memory lifetime is ⌧s = 1 ms.
The e�ciency remains above ⌘ = 0.5 until t = 600 µs.

Given the temperature of our ensemble, T = 100 µK, the waist of our signal beam
w0 = 100 µm, and a maximum spin wave momentum k = k0+�⇠t/(2L) where t is the total
time the field gradient is on, we predict radial and longitudinal motional time constants



§17.4 Storage lifetime limits 219

from Sec. 15.3 of

⌧r = w0/hvi = 1.15 ms , ⌧l =
1

hvi (�⇠t/(2L) + (kp � kc))
= 71 ms . (17.1)

We therefore expect that longitudinal di↵usion is inconsequential at ✓ = 0� and decoher-
ence is entirely due to atomic motion out of the signal mode. Fitting the atomic motion
storage e�ciency model from Eqn. 15.5 to the measured storage e�ciency curve at ✓ = 0�,
Fig. 17.2(c), we derive ⌧r = 1.24 ms, close to the estimate from our vapour tempera-
ture. Fixing ⌧r by this measurement and assuming a temperature T = 100 µK, the model
of Sec. 15.3 fits the measured data well for every measured probe control angle ✓. The
measured data is consistent with temperatures in the range 90 � 110 µK.

Because ks, kc � ks � ks even small angles significantly reduce the storage lifetime.
At ✓ > 0.06�, ⌧l < ⌧r and longitudinal motion is the dominant decoherence mechanism.
At ✓ = 0.84� the storage lifetime is already less than 88 µs. However, when ✓ = 0�

the longitudinal motion time constant is almost two orders of magnitude larger than the
storage lifetime. So long as the memory operates with co-propagating beams the e↵ect of
longitudinal atom motion is negligible.

Taking a conservative telecom loss rate of 0.15 dB/km [42] and group velocity of
vfibre = 2⇥108 km/s, a passive fibre delay line has a loss of 0.03 dB/µs. This is the dashed
line in Fig. 17.2(c). Given that the purpose of a quantum repeater network is to extend
the range of a lossy fibre network, surpassing the performance of a fibre loop delay line is
an essential benchmark for quantum memories. The optical fibre delay line drops below
the no-cloning limit (dot-dashed line in Fig. 17.2) after 100 µs. Our cold atom GEM beats
this performance by a factor of six, surpassing the no-cloning limit up to 600 µs of storage.
A comparison to other published ensemble memories is available in Ref. [3].

17.4 Storage lifetime limits

The coherence time is limited by the temperature of the cold-atom vapour and the waist
of the signal beam. In principle, the temperature can be further reduced towards the
Bose-Einstein condensate limit at temperatures < 1 µK. At a temperature of 1 µK the
characteristic radial motion time constant is 11 ms. Alternatively, a larger ensemble
supporting a signal beam with a larger waist would improve the storage time in proportion
to w0. The challenge, however, is to maintain the MOT density and temperature as the
cross section increases. Beyond storage times of 3 ms, the gravitational acceleration of the
atoms begins to matter. After 5 ms half of the vapour will have fallen out of a beam with
w0 = 240 µm. This problem is overcome with a vertical MOT; in this configuration the
atoms fall together along the propagation axis and stay inside the interaction region [381].

Perhaps more importantly, the feasible storage time falls as the number of stored
pulses increases. Each pulse being written and read requires a control field that scatters
more of the coherence. This can be reduced only with higher depth and greater detuning.
Furthermore, the magnetic field gradient is required to be on for every read and write
operation. Magnetic field imperfections reduce the e�ciency in proportion to the time
the gradients are on. Our Helmholtz GEM coil configuration produces fields with a slight
nonlinearity, the e↵ect of which is analysed by my colleagues in [3, 291].
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17.5 Summary

We have increased both the storage e�ciency and storage time of our cold-atom GEM,
achieving a recall e�ciency of ⌘ = 0.87 ± 0.02 and storage time of ⌧s = 1 ms. This is
the first quantum memory to beat the no-cloning limit for storage times that surpass the
performance of an ideal fibre delay line. A simple model of atomic motion in the vapour
explains the measured coherence times well. The coherence time of the spin wave is largest
when the angle between the probe and control, ✓, is zero. However at this angle the control
field filtering is insu�cient to perform single-photon level measurements. To operate in
the single-photon, long coherence time regime we require an alternative control filtering
method. The control could be filtered spectrally by concatenated etalons, as in Ref. [342],
although this is a technically demanding solution. A promising alternative is to use a
narrow atomic absorption line, perhaps on one of the 85Rb lines, in a hot vapour cell in
combination with a larger single photon detuning to filter control field.

Improving the e�ciency further requires higher optical depths so that the memory
can operate at larger single photon detuning �. Subsequent work by Aaron Tranter has
improved the optical depth with the same apparatus by machine learning [382], making
still further improvements possible.

Heterodyne measurements of single-photon level coherent pulses have been used by my
colleagues to perform a T-V characterization [383, 384] of noise and loss in this memory,
and show that the memory is unambiguously in the no-cloning regime, even for storage
times longer than 100 µs [3]. The noise performance has not been verified out to 600 µs
of storage. This T-V measurement requires a slight probe-control angle to reduce control
field noise at the detector, which is inconsistent with the operation of our longest-lived
memory. The memory noise is due to shot-to-shot phase fluctuations caused by varying
MOT parameters, much as in the dual memory of Chap. 16, and does not depend on
storage time. Despite this unambiguous demonstration of e�cient, long-lived quantum
storage by GEM, no entangled state has yet been stored in this memory. However, new
photon sources operating near our GEM bandwidth promise imminent advances in this
space [111].
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Chapter 18

Ensemble-light couplers: conclusions and
outlook

Those who have hitherto pursued science, have in general no very reasonable
grounds of complaint; they knew, or should have known, that there was no demand
for it, that it led to little honour, and to less profit.

– Charles Babbage, Reflections (1830)

As a quantum memory platform, cold-atom vapours have the advantage of long coher-
ence times and high optical depths. We demonstrated a cold-atom gradient echo memory
that matches the performance of the most e�cient quantum memories, with e�ciencies up
to 87 ± 2%, while simultaneously improving the memory lifetime to 1 ms. This quantum
memory beats the 50% e�ciency no-cloning limit after 600 µs of storage. An ideal optical
fibre delay line, with conservative losses, loses 50% of the input field after only 100 µs.
Until this work, no universal quantum memory had surpassed the performance of a fibre
delay line in the no-cloning regime.

The storage lifetime of our memory is well predicted by numerical simulations, and by
a simple model that accounts for atomic motion, control field scattering and magnetic field
non-linearities. To further improve the coherence time for single-mode storage requires
either colder atoms, or a larger MOT to support a larger signal beam. Conceivably, the
coherence time of cold-atom gradient echo memory could reach 6 ms by doubling the size
of the MOT and cooling the vapour to 10 µK. The peak e�ciency is limited by control field
scattering and magnetic field inhomogeneity. To reduce control field scattering requires
still higher optical depths allowing large detunings, which have since been achieved.

Subsequent work has demonstrated that the memory is unambiguously quantum, but
gradient echo memory is yet to demonstrate the storage of entangled qubits. This remains
an important hurdle for GEM to clear before it can be used for any sort of quantum
repeater. The best prospect for practical quantum memories are solid-state memories,
with recent advances in rare-earth ion crystal engineering, a REIC GEM could likely
surpass the performance of our cold-atom memory.

In addition to improving and characterizing the performance of our gradient echo mem-
ory, we have extended the protocol to store frequency qubits in a dual-rail configuration.
We recalled dual-rail signals with 35% e�ciency and 82% interference fringe visibility. The
visibility is limited by frequency-dependant polarization rotation, for which we derived an
analytical model that well-characterizes our memory. The same circular-configuration we
used for our high e�ciency GEM is rotation free, but the same-circular dual rail memory
has asymmetric optical depths. The e�ciency of each rail can be balanced by optical
pumping, so that the same-circular dual-rail memory should be a high fidelity memory for
frequency qubits with this preparation. The fidelity of such a memory is limited only by
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ambient magnetic field noise, which produces 5�6� of phase fluctuation for both the dual
and single rail memories.

We also introduced a stationary-light e↵ect that can be generated in GEM using
counter-propagating, two-colour control fields. This is a means of engineering the spa-
tial distribution of bright fields in an atomic ensemble. These stationary light fields have
since been produced and measured, matching the expectations of our model [8]. Such
work extends the prospects of gradient-echo techniques not only as memories, but also as
a platform for qubit operations and two-qubit gates.

In combination, these results show gradient echo quantum memories inching towards
the benchmarks required for useful repeaters [309] for time-bin, polarization, frequency
or spatial mode qubits, albeit in the laboratory and not the field. The gradient echo
memory is approaching useful e�ciencies, leveraging the enhanced interaction strength
between photonic qubits and atom ensembles to not only store, but manipulate optical
qubits. Using a cold, trapped vapour we limit the decoherence typical of atom ensembles
and achieve storage lifetimes su�cient for short-range repeaters.

We’ve now considered atom-light couplers that operate by two very di↵erent mech-
anisms: tight-focussing by high-aperture optics and collective interactions with atomic
ensembles. By addressing single atoms in trapped-ion registers, tight focussing allows us
to couple single-atom qubits almost noiselessly. Feasible coupling e�ciencies, however,
remain limited by the availability of precise, high aperture optics. In contrast, ensemble-
based atom-light couplers are approaching unit e�ciency, but compared to a single trapped
atom the ensemble introduces new noise sources and decoherence mechanisms. Each ap-
proach lends itself to di↵erent middle-term applications; tight-focussing to networking
trapped-ion quantum processors and atom-ensembles to repeaters for optical fibre QKD
networks. Although there remains considerable work to be done, the capabilities demon-
strated and prospects explored in this thesis light a clear path towards useful quantum
devices.


