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Abstract

In the past decade, quantum communication protocols based on continuous variables
(CV) has seen considerable development in both theoretical and experimental aspects.
Nonetheless, challenges remain in both the practical security and the operating range
for CV systems, before such systems may be used extensively. In this thesis, we present
the optimisation of experimental parameters for secure randomness generation and pro-
pose a non-deterministic approach to enhance amplification of CV quantum state.

The first part of this thesis examines the security of quantum devices: in particular,
we investigate quantum random number generators (QRNG) and quantum key distribution
(QKD) schemes. In a realistic scenario, the output of a quantum random number gen-
erator is inevitably tainted by classical technical noise, which potentially compromises
the security of such a device. To safeguard against this, we propose and experimentally
demonstrate an approach that produces side-information independent randomness. We
present a method for maximising such randomness contained in a number sequence
generated from a given quantum-to-classical-noise ratio. The detected photocurrent
in our experiment is shown to have a real-time random-number generation rate of 14
(Mbit/s)/MHz.

Next, we study the one-sided device-independent (1sDI) quantum key distribution
scheme in the context of continuous variables. By exploiting recently proven entropic
uncertainty relations, one may bound the information leaked to an eavesdropper. We
use such a bound to further derive the secret key rate, that depends only upon the
conditional Shannon entropies accessible to Alice and Bob, the two honest communi-
cating parties. We identify and experimentally demonstrate such a protocol, using only
coherent states as the resource. We measure the correlations necessary for 1sDI key
distribution up to an applied loss equivalent to 3.5 km of fibre transmission.

The second part of this thesis concerns the improvement in the transmission of a
quantum state. We study two approximate implementations of a probabilistic noise-
less linear amplifier (NLA): a physical implementation that truncates the working
space of the NLA or a measurement-based implementation that realises the trunca-
tion by a bounded postselection filter. We do this by conducting a full analysis on the
measurement-based NLA (MB-NLA), making explicit the relationship between its var-
ious operating parameters, such as amplification gain and the cut-off of operating do-
main. We compare it with its physical counterpart in terms of the Husimi Q-distribution
and their probability of success.

We took our investigations further by combining a probabilistic NLA with an ideal
deterministic linear amplifier (DLA). In particular, we show that when NLA gain is
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strictly lesser than the DLA gain, this combination can be realised by integrating an
MB-NLA in an optical DLA setup. This results in a hybrid device which we refer to as
the heralded hybrid quantum amplifier. A quantum cloning machine based on this hybrid
amplifier is constructed through an amplify-then-split method. We perform probabilis-
tic cloning of arbitrary coherent states, and demonstrate the production of up to five
clones, with the fidelity of each clone clearly exceeding the corresponding no-cloning
limit.
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Chapter 1

Introduction

Background

Throughout the history of human civilization, while being at war against enemies, we
have learned to communicate with our allies, by artfully hiding information from our
enemies during transmission. These techniques are referred to as cryptography, in fact,
the word crypto has its origin in ancient Greek, means “hidden” or “secret”. With the
rise of the internet and recent trends to the Internet of Things, an unbelievable amount
of information makes is way through the internet every day. Such information includes
not only our personal information such as financial or health data but also commercial
dealings and military secrets. It is thus imperative to ensure the encryption remains
secure, even with the advent of future technology.

There are various sets of encryption standards used in modern-day communication,
such as advanced encryption standard (AES) and Rivest, Shamir and Adleman (RSA)
ciphers. Though being efficiently implementable, most schemes rely on computational
assumptions in order to achieve security. For example, the RSA cipher depends on the
assumption that factorization of large numbers is a hard mathematical problem [2, 3].
Such encryptions, though safe against classical computer for most practical purposes,
are however prone to attacks with the future advances of hardware and algorithm, in-
cluding the construction of a large-scale quantum computer and Shor’s algorithm [4]1.

Encryption can, in principle, be more reliable: information theoretic security does
not rely on any such computational assumptions, and therefore poses a desirable alter-
native. A particular candidate that fulfil this is the one-time pad (OTP), wherein 1949, it
was proven by Shannon that an OTP provides unconditional security. In such a scheme,
the plaintext (message) is paired with a set of uniform random keys of equal length via
simple modular operations. Provided the key is truly random, the only way to decipher
the plain text is through the inverse application of the key, thus eliminating all potential
vulnerability in mathematical assumptions.

Two questions follow from this discussion: How can we generate a truly random
key? And how can we distribute this random key in the first place? The answer to

1We note the development of novel classical ciphers that would be invulnerable to quantum computer,
known as post-quantum cryptography.
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2 Introduction

these questions lies in quantum communication technology or quantum cryptography.
In particular, high-quality random number generators can be designed, and key dis-
tribution can be achieved by manipulating quantum systems or using them to encode
information. This conforms with our intuition: fire against fire, quantum against quan-
tum. Quantum random number generators (QRNGs) are devices that harness quantum
mechanical effects to provide information-theoretically random bits. Quantum Key Dis-
tribution (QKD), on the other hand, is the sharing of such random keys over commu-
nicating parties by the encoding and transmission of quantum states. Owing to the
quantum no-cloning theorem, unlike classical signals, an eavesdropper is unable to per-
fectly duplicate a quantum signal without being undetected [5]. These technologies,
due to their simplicity and robustness, are already mature enough to leap out of the lab.
For example, there are already several commercial QRNG products in the market [6]
offered by quantum technology companies such as ID Quantique [7] and Quintessence
Labs [8]. The effort runs worldwide: in Europe, there is the SECOQC QKD network
demonstration [9], while in Tokyo, a QKD network is already running at the metropoli-
tan scale [10]. With the recent demonstration of satellite-to-ground QKD in China [11],
intercontinental quantum communication is now one step closer to the reality.

Alice Bob

QRNG QRNG

Encoding DecodingQuantum Channel

(A)

(B)

(C)

(A)

(C)

Authenticated Classical Channel

Figure 1.1: Conceptual diagram of a generic quantum cryptographic scheme. Alice and Bob
share a set of information-theoretically secure one-time pad by communicating through both
quantum and classical channels. Three components of a quantum communication protocol stud-
ied in this thesis are: (A) QRNG (B) the quantum channel and (C) the encoding and decoding
stages.

A generic quantum cryptography channel is depicted in Fig. 1.1. Here, Alice, who
controls the source, encodes random bits from the QRNG onto the quantum state. The
quantum signal will then be sent to Bob through a (lossy) quantum channel, which
could be attacked by an eavesdropper Eve. When the signal arrives at Bob, he measures
the received quantum state, in a randomly chosen measurement basis determined by
his QRNG. Through an authenticated classical channel, Alice and Bob compare part of
their bits and decide whether the quantum channel is safe enough to proceed with the
extraction of a secret key . Should the protocol succeed, Alice and Bob will share a pair
of unconditionally secure key for secret communication.



3

The protocol above works well if we assume that Eve only has the ability to tap into
the quantum channel. In reality, this is actually not quite the case. First, Eve might be
monitoring the classical information produced within the QRNG, such as current fluctu-
ations, thus obtaining further information about the random encodings. There is also no
guarantee whether the devices used by Alice and Bob are trustworthy, especially when
the devices were bought off-the-shelves, instead of being built by the in-house experi-
mentalist. Eve could have been involved in the manufacturing process, and hence holds
partial information of either the encoding or the decoding phase. Imagine an extreme
case, where Eve is the one giving Alice and Bob the device. These devices could be sim-
ulating the entire QKD process, and Eve has access to the entire information without
the need to intercept the channel at all 2. This leads to investigations of device indepen-
dent QKD, which eliminates the need for such assumptions, at a price of conducting
a loophole-free Bell test. This, however, turns out to be a heroic task, as only a few
experimental groups have managed to perform such a feat recently [12, 13, 14].

Another problem/challenge for QKD would be the transmission distance. This is
because unlike classical signal, quantum states are much more fragile and prone to
losses [15]. The longest transmission record with standard telecom fibre and avalanche
photodiode to date is a mere 300 km [16], impressive by quantum standards but prim-
itive when compared to classical communication. This transmission was demonstrated
by using discrete-variable (DV) quantum systems. On the other hand, continuous-
variable (CV) systems offer higher speeds, but the maximum transmission distance so
far is 100 km [17]. This greatly hinders the applicability of QKD, not to mention the
larger goal of having a global quantum internet.

In this thesis, we study how CV quantum communication may be improved. In
particular, we seek to contribute towards in the following aspects:

• Security of Quantum Devices
We propose an information-theoretic way to quantify the randomness in a QRNG,
which allows us to evaluate and maximise the amount of secure random bits in a
CV-QRNG. On the other hand, if only one side is untrusted in a quantum commu-
nication protocol, the stringent requirement for a device independent QKD can
be relaxed. In fact, we show that it is possible to generate secret keys in a one-
sided device independent fashion by using only coherent states, which are readily
available in the lab.

• Transmission of the quantum state
A noiseless linear amplifier (NLA) can mitigate the transmission problem at the
expense of allowing probabilistic events. Such devices can be expensive to pro-
cure, but we show that the desired effect may be achieved through a measurement-
based approach instead. In the context of cloning, we also show that you can

2During the QKD protocol, it is always an assumption that Alice’s and Bob’s labs are isolated from the
outside world, and therefore Eve may not access their equipment. Otherwise, an easy practical hack would
be to install transmitters in the devices.
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improve the cloning fidelity beyond deterministic bound with reasonable success
rate by combining a probabilistic NLA with a deterministic linear amplifier.

1.1 Thesis plan

Part I: The Quantum Mechanic’s 

Toolbox

Part II: Securing the Quantum 

Devices

Part III: Enhancing the Quantum 

Ampli!er

Secure Quantum Random 

Number Generator

Maximisation of Extractable 

Randomness in CV-QRNG

One-sided Device Independent 

QKD with Coherent State

Deterministic & Probabilistic 

Linear Amplifer

Measurement-based 

Linear Ampli!er

Hybrid Linear Ampli!er-based 

Quantum Cloner

Theoretical Quantum Optics
Experimental Techniques & 

Models

Conclusion & Future Outlook

Introduction

Figure 1.2: The structure of this thesis.

In Fig. 1.2, we present the structure of this thesis. It can be divided into three
parts: The quantum mechanic’s toolbox, securing the quantum device and enhancing
the quantum amplifier.

In Part I, we cover the theoretical and experimental background involved in the the-
sis. In the theory chapter, we first give a brief review of continuous variable quantum
optics formalism, followed by a discussion on quantum information. For the experi-
mental part, we introduce the essential linear optical components and digital control
used for the experiments in this thesis.

We move on to the security of the quantum devices in Part II. In Chapter 4, we
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present the notion of quantum randomness, and further review and propose methods
to quantify the randomness to guarantee its secrecy. Several techniques to extract uni-
form randomness from an otherwise bias entropy source is surveyed too. In Chapter 5,
we propose a method to maximally harness randomness secure against classical eaves-
dropper and experimentally demonstrate it upon a CV-QRNG. In the last chapter of
this part (Chapter 6), we introduce entropic uncertainty relations in CV and show how
it unlocks the possibility of distilling secret keys, even when either of the communica-
tion parties may be using communication devices which are not secure. This possibility
is proved with an experimental demonstration of one-sided device independent QKD
protocol using only coherent states.

The Part III of the thesis discusses how quantum amplification can be enhanced
by the adoption of a probabilistic approach. In Chapter 7, after a brief discussion
on the deterministic amplification, two probabilistic amplifiers: physical-based and
measurement-based amplifiers are compared and contrasted. We proposed a new type
of amplifier, called the heralded hybrid linear amplifier. This novel amplifier brings the
deterministic and probabilistic amplifier together as a unit, which is capable of generat-
ing propagating clones surpassing the deterministic approach.

We have also included two research projects in the appendix, which are related to
a more general form of quantum correlations called quantum discord, which I have
contributed.

1.2 Publications

The majority of the contents of this thesis have been published in international peer-
reviewed journals or conference proceedings. Publications resulting from this thesis are
as follows:

1. S. Hosseini, S. Rahimi-Keshari, J. Y. Haw, S. M. Assad, H. M. Chrzanowski, J.
Janousek, T. Symul, T. C. Ralph, and P. K. Lam.
”Experimental verification of quantum discord in continuous-variable states.”
Journal of Physics B: Atomic, Molecular and Optical Physics 47 (2), 025503 (2014).

2. S. Hosseini, S. Rahimi-Keshari, J. Y. Haw, S. M. Syed, H.M. Chrzanowski, J.
Janousek, T. Symul, T. C. Ralph, P. K. Lam and M. Gu et al.
”Experimental verification of quantum discord and operational significance of discord con-
sumption.”
In CLEO: QELS Fundamental Science, pages FTh3A–6. Optical Society of America
(2014).

3. H. Chrzanowski, N. Walk, J. Y. Haw, O. Thearle, S. Assad, J. Janousek, S. Hosseini,
T. C. Ralph, T. Symul, and P. K. Lam.
”Measurement-based noiseless linear amplification for quantum communication.”
In Proc. SPIE 9269, Quantum and Nonlinear Optics III, 926902 (2014).
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4. J. Y. Haw, S. M. Assad, A. Lance, N. Ng, V. Sharma, P. K. Lam, and T. Symul.
”Maximization of extractable randomness in a quantum random-number generator.”
Physical Review Applied 3 (5), 054004 (2015).

5. N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J.
Janousek, T. C. Ralph, T. Symul et al.
”Experimental demonstration of Gaussian protocols for one-sided device-independent
quantum key distribution.”
Optica 3 (6), 634-642 (2016).

6. J. Y. Haw, J. Zhao, J. Dias, S. M. Assad, M. Bradshaw, R. Blandino, T. Symul, T. C.
Ralph, and P. K. Lam.
”Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent
states.”
Nature Communications, 7, 13222 (2016).

7. M. Bradshaw, S. M. Assad, J. Y. Haw, S. H. Tan, P. K. Lam and M. Gu.
”The overarching framework between Gaussian quantum discord and Gaussian quantum
illumination.”
Physical Review A, 95 (2), 022333 (2017).

8. J. Zhao, J. Y. Haw, S. M. Assad, T. Symul, and P. K. Lam,
”Characterisation of measurement-based noiseless linear amplifier and its applications.”
Physical Review A 96 (1), 012319 (2017).

9. J. Zhao, J. Dias, J. Y. Haw, T. Symul, M. Bradshaw, R. Blandino, T. Ralph, S. M.
Assad, P. K. Lam. ”Quantum enhancement of signal-to-noise ratio with a heralded linear
amplifier,”
Optica 4 (11), 1421-1428 (2017).

10. J.Y. Haw, J. Zhao, J. Dias, S.M. Assad, M. Bradshaw, R. Blandino, T. Symul, T.C.
Ralph, and P.K. Lam.
”Surpassing the no-cloning limit with a heralded hybrid linear amplifier.”
2017 Conference On Lasers and Electro-Optics Pacific Rim (Cleo-Pr), IEEE (2017).

11. J. Zhao, J. Dias, J. Y. Haw, T. Symul, M. Bradshaw, R. Blandino, T. Ralph, S. M.
Assad, P. K. Lam.
”Quantum Enhancement of Signal-to-noise Ratio for Arbitrary Coherent States Using
Heralded Linear Amplifiers.”
2017 Conference On Lasers and Electro-Optics Pacific Rim (Cleo-Pr), IEEE (2017).

Other works published during the course of my PhD are

1. X. Yuan, S. M. Assad, J. Thompson, J. Y. Haw, V. Vedral, T. C. Ralph, P.K. Lam, C.
Weedbrook and M. Gu.
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”Replicating the benefits of Deutschian closed timelike curves without breaking causality.”
NPJ Quantum Information, 1:15007 (2015).

2. Y. Wang and J. Y. Haw.
”Bridging the gap between the Jaynes–Cummings and Rabi models using an intermediate
rotating wave approximation.”
Physics Letters A, 379(8):779–786 (2015).
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Chapter 2

Theoretical Quantum Optics

“And God said, ‘Let there be light,’ and there was light.”
– Genesis 1:3, The Bible

Overview

This chapter comprises a short summary of the background knowledge underlying the
scientific contributions of this thesis. We first give a few examples of quantum states
that are relevant to this thesis, in particularly Gaussian states. We introduce briefly the
covariance matrix formalism and provides examples of Gaussian states in this formal-
ism, together with a selected number of Gaussian operations. After establishing the
framework for continuous variable quantum states, we explain how (Gaussian) quan-
tum measurements are performed, followed by a discussion on different approaches
on visualising quantum states via quasi-probability distributions. Finally, we describe
several ways to quantify information encoded in the quantum state.

2.1 The quantum optical field

The classical theory of the electromagnetic (EM) field as brought together in Maxwell’s
equations provides a highly accurate description of an astounding array of physical
phenomena. Since the emergence of quantum physics, it was realized that classical elec-
tromagnetism had to be revised in order to explain more phenomenon in the quantum
regime, in particular, the interaction of light and matter. This led to a full quantisation
of the EM field, which was initially constructed by Paul Dirac [18], and further devel-
oped with Glauber’s analysis of detection and coherence [19]. This theory, known as
the quantum field theory, or sometimes referred to as second quantization, describes a
broader range of phenomena that have no counterpart in the theories which are classical
or semi-classical.

There are many excellent quantum optics books [20, 21, 22] out there that explain the
topic of quantisation, so we will not reproduce them here. Colloquially, this involves
taking the relevant physical observables, and putting “hats” on them, thereby changing

11
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them into physical operators. The quantisation of EM field can be done by realising
that such fields may be elegantly described as a collection of independent harmonic
oscillators, i.e., they share a similar Hamiltonian form. Therefore, one may perform
a direct mapping between canonical variables of the radiation oscillator, and the non-
commutative quantum-mechanical operators of the EM field.

The quantised EM field for a particular spatial mode is described by

Ê = i
∑
k

(
~ωk
2ε

) 1
2

(âke
−iωkt − â†ke

iωkt), (2.1)

where k denotes the frequency and polarization modes of the light, ε is the permittivity
of free space and ω is the frequency of the field. The symbols âk and â†k are referred to
as creation and annihilation operators respectively, for reasons we shall observe later.
These operators obey the bosonic commutation relations for a quantum harmonic oscil-
lator, i.e.

[âk, âk′ ] = [â†k, â
†
k] = 0; [âk, â

†
k′ ] = δkk′ . (2.2)

Since these operators are non-Hermitian, they cannot be observed or measured directly
in the lab. In other words, they do not correspond to a physical quantity associated with
the system. It is hence more relevant to consider the Hermitian, so-called quadrature
operators,

X̂k = âk + â†k and P̂k = i(â†k − âk). (2.3)

Substituting this back to Eq. 2.1, we obtain

Ê =
∑
k

(
~ωk
2ε

) 1
2

(X̂k sin(ωkt)− P̂k cos(ωkt)). (2.4)

We see that the quadratures correspond to the in-phase and out-of-phase components
of the EM field. Conventionally, X̂ is known as the amplitude quadrature, and P̂ is
the phase quadrature. Following from the commutation relation [âk, â

†
k] = 1, one can

show that [X̂, P̂ ] = 2i1. This is in agreement with the Heisenberg’s Uncertainty Princi-
ple (HUP) of quantum mechanics, which states that it is impossible to simultaneously
determine two non-commuting observables precisely. Analogous to the position and
momentum in a classical harmonic oscillator, these quadrature operators are conjugate
observables, and thus cannot be known perfectly at the same time.

We stress that HUP refers to the minimum spread of the non-commuting measure-
ments over an ensemble, rather than the disturbance on the value of B̂ caused by the
prior measurement of Â [23]. For the quadratures, HUP thus dictates that any attempt

1Throughout the thesis, we choose ~ = 2, which corresponds to a variance of the vacuum ∆X̂θ
v = 1.
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Mathematical formulation of the Heisenberg Uncertainty Principle: given the com-
mutator relation between two arbitrary observables Â and B̂,

∆Â∆B̂ ≥ 1

2
|
〈

[Â, B̂]
〉
|2, (2.6)

where ∆Ô =

√〈
Ô2
〉
−
〈
Ô
〉2

is the standard deviation of the observable Ô and the

square root of the variance ∆2Ô = (∆Ô)2.

to simultaneously determine X̂ and P̂ is limited by

∆X̂∆P̂ ≥ 1. (2.5)

This implies that when measuring the quadratures of the optical field, any attempt to
increase the precision of one quadrature can only be done at the expense of the other
conjugate quadrature.

The choice of using X̂ and P̂ here is simply one of convenience for demonstration.
One may also consider a generalised quadrature operator formed by a linear combina-
tion of quadratures

X̂θ = cos θX̂ + sin θP̂ , θ ∈ [0, 2π]. (2.7)

Such an operator also satisfies the HUP with its orthogonal quadratures, namely
∆X̂θ∆X̂θ+π/2 = 1 holds for any θ. We will now review several common quantum
states, in particularly Gaussian states where its statistics can be fully characterized by
the mean and variance of X̂ and P̂ . We discuss how HUP can be used to unlock certain
applications, which have an advantage compared to classical states due to their inherent
quantum properties.

2.2 Optical quantum states

In this section, we limit our discussion to single mode states. For convenience of nota-
tion, we drop the subscript k for modes.

2.2.1 Number or Fock states

Given a particular quantised EM field described by a Hamiltonian

Ĥ = ~ω(â†â+
1

2
), (2.8)

a commonly used state, known as the Fock state, |n〉, is the eigenstate of Ĥ . Intuitively,
if the system is in a particular Fock state |n〉, this implies that there are a number of n
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photons in the system. The corresponding eigenvalues, En = ~ω(n+ 1
2), shows that the

energies of the oscillator are discretized and evenly spaced. In other words, each quanta
of light contains the same amount of energy.

The creation (annihilation) operators act on |n〉, by adding (subtracting) a quanta of
energy ~ωk, or otherwise represented as a single photon in the mode of interest:

â† |n〉 =
√
n+ 1 |n+ 1〉 and â |n〉 =

√
n |n− 1〉 . (2.9)

Together, the creation and the annihilation operators form the number operator n̂ = â†â.
The ground state, or the vacuum state, |0〉 is defined as

â |0〉 = 0. (2.10)

This allow us to rewrite the Fock states as successive applications of the creation opera-
tor on the vacuum state:

|n〉 =
(â†)n√
n!
|0〉. (2.11)

Being linearly independent and normalised eigenstates, Fock states form a complete
orthonormal basis for the Hilbert space of the quantum state. For example, any optical
mode can be expanded as

ρ =
∑
n,m

cn,m |n〉 〈m| , (2.12)

where ρ is the density matrix of the quantum state, and cn,m is a complex number.
In terms of the quadrature, one can verify that 〈n| X̂θ |n〉 = 〈n| P̂ θ |n〉 = 0 for all n.

This means regardless of the number of excitation in the mode, the amplitude and phase
quadratures averages to zero. However, the uncertainty (or rather, the variance) in the
amplitude quadrature in turn, scales as 2n,

∆2X̂θ
n = 〈n| (X̂θ)2 |n〉 − 〈n| X̂θ |n〉2 = (2n+ 1). (2.13)

2.2.2 Vacuum state

The zero-photon state of the quantum optical field, |n = 0〉, is one of the most ubiquitous
states in a quantum optics lab. This vacuum state exists throughout the electromagnetic
spectrum, and more counter-intuitively, its energy is non-zero, i.e. 〈0|H|0〉 = ~ω/2.
Since the electromagnetic spectrum is continuous, there can in principle be an infinite
number of zero-state photons, coexisting even in a finite volume 2.

Due to this non-zero ground state energy, the vacuum exhibits dynamical quantum
fluctuations in the field. These quantum vacuum fluctuations lead to uncertainty in both
the quadratures of the vacuum state according to ∆X̂ = ∆P̂ = 1, thus saturating the
uncertainty principle seen in Eq. (2.5). In other words, the vacuum state is a state of min-

2Of course, this poses no significant technical problem since all energies may be evaluated relative to
this infinite background.
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Figure 2.1: Ball-on-stick diagram for (a) vacuum state, coherent state, squeezed state and (b)
thermal state. ∆X = ∆P = 1.

imal uncertainty. The noise which arises from measuring such a vacuum state is often
referred to as the “quantum noise” or “shot noise”. Meanwhile, its variance constitutes
a reference in quantum optics, termed as the quantum noise limit (QNL). Despite the
fact that quantum noise presents a fundamental limit to the precision of quantum mea-
surements, we show that it is also the enabler of several quantum technologies, such as
quantum random number generation (Chapter 5) and quantum cryptography (Chap-
ter 6).

2.2.3 Coherent states

The coherent state, first introduced by Roy Glauber in 1967 - a result which in part
constituted his Nobel prize - is the quantum mechanical state that most closely approx-
imates the output of a laser light. It is defined as the eigenstate of the annihilation
operator:

â |α〉 = α |α〉 . (2.14)

As â is a non-Hermitian operator, the eigenvalue α can be complex. A coherent state is
simply a displaced vacuum state,

|α〉 = D̂(α) |0〉 , (2.15)

where

D̂(α) = exp
(
α â† − α∗ â

)
(2.16)

is a unitary displacement operator that shifts |0〉 by a coherent amplitude α. In the
picture of a quantum mechanical version of phasor, a coherent state can be represented
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by a ball-on-stick diagram (Fig. 2.1). The ball is associated to the inherent quantum noise
(∆X̂ and ∆P̂ ) while the sticks is proportional to |α|.

A coherent state can be expanded as the superposition of number states as

|α〉 =
∑
n

|n〉 〈n|α〉 = e−|α|
2/2
∑
n

αn

(n!)1/2
|n〉 . (2.17)

For α = 0, we see that the vacuum state holds a unique position of simultaneously a
number state and a coherent state. From this representation, it can also be shown that
the coherent states are not pairwise orthogonal, with |〈α|β〉|2 = exp

(
−|α− β|2

)
. This

feature of overlapping between coherent states allows the possibility of prepare-and-
measure quantum communication (See Sec. 6.3.2). When |α− β| gets large, the overlap
diminishes and the states are nearly orthogonal.

Given any coherent state |α〉, there exists a useful relation between the expectation
value of X̂ and P̂ quadratures. In particular, they give the real and imaginary parts of
α:

〈X̂〉α = 2 Re{α}, and 〈P̂ 〉α = 2 Im{α}. (2.18)

Since coherent state is a displaced minimum uncertainty state, it also minimises all the
quadrature variances simultaneously. In this regard, a coherent state is considered as
the “most classical” state since it is closest to the case where both amplitude and phase
are known exactly.

The mean number of photons contained in a coherent state is given by 〈α|n̂|α〉 =

|α|2. It is spread according to a Poissonian distribution

P (n) = |〈n|α〉|2 =
|α|2n e−|α|2

n!
, (2.19)

with a standard deviation of ∆n̂ = α.

2.2.4 Squeezed states

As mentioned in Sec. 2.1, the amount of uncertainty in one quadrature can be reduced
provided the orthogonal quadrature is larger than the QNL. Such states are called
squeezed states. The operation of the squeezing operator Ŝ(s) = exp

{
s(â2 − â†2)/2

}
upon the vacuum state gives rise to a squeezed state |s〉 = Ŝ(s) |0〉, with a squeezing
level S3. By further acting a displacement operator D̂(α) on the squeezed state, a dis-
placed squeezed vacuum |α, s〉 can be obtained.

The uncertainty in the quadratures of a squeezed vacuum state |s〉 can be derived as

∆Xs = e−s and ∆Ps = es. (2.20)

3Here the squeezing parameter s is assumed to be real. A squeezed state along the quadrature axis θs
can be considered by having a complex squeezing parameter ξ = seiθs .
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Ideal (amplitude) squeezing is achieved in the limit of infinite squeezing, s → ∞. In
this limit, the squeezed amplitude quadrature will be known precisely, while the anti-
squeezing quadrature will be fully unknown. The mean photon number for a displaced
squeezed state is given by

n̄s = |α|2 + sinh2 s. (2.21)

We observe that even for a squeezed vacuum (α = 0), there are still photons in the state
as long as the squeezing is finite (s > 0).

2.2.5 Thermal states

We now depart from pure states, and introduce a common type of mixed states encoun-
tered in the lab - thermal states. Such states are produced by thermal sources, such as a
light bulb or a discharge lamp. It is diagonal in the Fock basis,

ρth =
1

1 + n̄th

∞∑
n=0

(
n̄th

1 + n̄th

)n
|n〉〈n| , (2.22)

or in other words, such state do not contain quantum coherences/superpositions rela-
tive to the Fock basis.

In the phase space, the thermal state is centered at zero (〈X̂θ〉 = 0) and is symmetrical
in all directions. In fact, it can be seen as the statistical mixture of the coherent state,

ρth =

∫
d2α

1

πn̄th
e−|α|

2/n̄th |α〉〈α| , (2.23)

Unlike coherent states, the variance scales with the mean number of photon n̄th, i.e.
∆2X̂θ = 2n̄th + 1.

2.2.6 Two-mode squeezed state

Another significant quantum state in CV quantum optics is the two-mode squeezed
state or EPR state. A two-mode vacuum squeezed state can simply be generated by
interfering two squeezed vacuum states upon a beam splitter (Sec. 3.2.2). The Gaussian
unitary, known as two-mode squeezing operator, acts on the two-mode vacuum to give,

|s〉EPR = Ŝ2(s) |0, 0〉

= exp
{
s(âb̂− â†b̂†)/2

}
|0〉a |0〉b

=
√

1− λ2

∞∑
n=0

(−λ)n |n〉a |n〉b . (2.24)

where λ = tanh (s) denotes the strength of the correlation between the two modes. Such
a highly correlated state, when considered locally, is actually a fully mixed, or a thermal
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state. This can be illustrated performing partial trace over a mode, say mode b

ρa = Trb(|s〉 〈s|EPR) =
1

cosh2 s

∞∑
n=0

(tanh (s))2n |n〉a 〈n|a

=
1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n
|n〉a 〈n|a , (2.25)

which is equivalent to the thermal state ρth defined in Eq. 2.22. Here, we have used
n̄ = sinh2 s. Although the individual state inherits the properties of a thermal state, and
hence is classical, the correlation between the quadratures is distinguishably quantum.
Consider the the joint quadrature operators X̂− = (X̂a−X̂b)/

√
2 and P̂+ = (P̂a−P̂b)/

√
2.

Their variances can be shown to be

∆2X̂− = ∆2P̂+ = e−2s, (2.26)

which beats the QNL of ∆2X̂ = ∆2P = 1.

2.3 Gaussian states and Gaussian operations

The Gaussian state is a class of CV states where the first two moments are sufficient for
complete characterisation [24]. The first moment, namely the mean value, is defined as

r̄ := 〈r̂〉 = Tr(r̂ρ̂), (2.27)

where r̂ = (X̂1, P̂1, ..., X̂N , P̂N ) for a N mode states, while the second moment, called
the covariance matrix γ, is defined as

γij :=
1

2
〈{∆r̂i,∆r̂j}〉. (2.28)

For any physical covariance matrix, the HUP imposes a fundamental constraint,

γ + iΩ ≥ 0, (2.29)

where Ω = ω⊕N , with ω = ((0, 1), (−1, 0)). We summarise the Gaussian states described
in Sec. 2.2 in the Table 2.3. These Gaussian states can be transformed by Gaussian uni-
taries by the following relations:

r̄ → Sr̄ + d, γ → SγS†. (2.30)

Here, S is a sympletic transformation, i.e. SΩS† = Ω that preserves the Gaussianity of
the state. A few useful transformations deployed throughout the thesis are summarized
in Table 2.3. It is often useful to note that any single-mode Gaussian state can generally
be expressed as γ = (2n̄+ 1)R(θ)S(2s)R(θ)†.
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Gaussian states r̄ γ

Vacuum state
(

0

0

) (
1 0

0 1

)
Coherent state

(
x

p

) (
1 0

0 1

)
Thermal state

(
0

0

) (
2n̄+ 1 0

0 2n̄+ 1

)
Displaced squeezed state

(
x

p

) (
e−2r 0

0 e2r

)

Two-mode squeezed vacuum state


0

0

0

0


(

cosh(2r) · I sinh(2r) · I
sinh(2r) · I cosh(2r) · I

)

Table 2.1: The first and second moments of several commonly used Gaussian states.

Gaussian operations

Displacement d(α) =

(
x

p

)
, α = x+ip

2

Squeezing S(s) :=

(
e−s 0

0 es

)
Phase rotation R(θ) :=

(
cos θ sin θ

− sin θ cos θ

)
Beam splitting B(T ) :=

( √
T I

√
1− T I

−
√

1− T I
√
T I

)
, I =

(
1 0

0 1

)
Two-mode squeezing S2(s) :=

(
cosh(s)I sinh(s)Z
sinh(s)Z cosh(s)I

)
, Z
(

1 0

0 −1

)
Table 2.2: Several Gaussian operations utilised throughout the thesis. α is the displacement
amplitude, s is the squeezing parameter, θ is the rotation angle, and T is the transmission ratio
of a beam splitter.

2.4 Measuring the quantum state

We move on to introducing the theoretical description of how one measures a quantum
state. In quantum mechanics, measurements are represented by a set of linear opera-
tors, denoted as {Mm}, acting upon the state space of the system under observation.
The indices “m” denote the possible outcomes of the measurement process. Consider a
particular state vector |ψ〉 that describes a quantum system before the observation, the
probability of obtaining a particular result “m” from the measurement can be calculated
with the following equation, known as the Born rule:

p(m) = 〈ψ|M †mMm |ψ〉 . (2.31)
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After the measurement has been performed, the system is now described by the post-
measurement state instead, which is given by

∣∣ψ′〉 =
Mm |ψ〉√

〈ψ|M †mMm |ψ〉
. (2.32)

Besides, the measurement operators should meet the completeness criterion as∑
m

M †mMm = I, (2.33)

since this guarantees that for any state |ψ〉, the sum of all the probabilities is equal to
one: ∑

m

p(m) =
∑
m

〈ψ|M †mMm |ψ〉 = 1. (2.34)

2.4.1 Positive operator-valued measure (POVM)

POVM operators form the most generalized description of quantum measurements. In
particular, they are described by a set of POVM operators denoted by {Em}. The prob-
ability of a particular measurement outcome m is given by

p(m) = 〈ψ|Em |ψ〉 . (2.35)

Since p(m) has to be non-negative for any state |ψ〉, it follows that Em ≥ 0, or in other
words, Em is a positive operator. Similarly to the completeness relation in Eq. (2.33), we
also need

∑
mEm = I.

Looking back to the picture of having measurement operators {Mm}m, we see that
the POVMs corresponding to such a measurement scheme is given exactly by

Em = M †mMm. (2.36)

The complete set of POVM operators {Em} (without using measurement operators
{Mm}) are already sufficient to evaluate the probability values p(m). However, given a
particular POVM {Em}, it may correspond to many different sets of measurement op-
erators, and this is why POVM operators do not provide sufficient information for one
to reconstruct the post-measurement state.

2.4.2 Gaussian measurement

For a continuous variable systems, the measurement outcomes are no longer discrete,
i.e. m ∈ R, and the probability p(m) in Eq. (2.35) is replaced by a probability density
instead. In a continuous variable system, a Gaussian measurement is defined as a quan-
tum measurement that produces Gaussian statistics upon measurement on the Gaussian
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states. The two most common Gaussian measurements in a CV experiments are the ho-
modyne and heterodyne measurements.

From a theoretical perspective, a homodyne measurement projects a Gaussian state
to an arbitrary quadrature X̂θ. In other words, its measurement operators consists of
projections M(xθ) :=

∣∣xθ〉〈xθ∣∣ over the quadrature basis
∣∣xθ〉, i.e. the infinitely squeezed

states along quadrature angle θ. When θ is 0 (π/2), the state is projected to the amplitude
(phase) quadrature. Meanwhile, in a heterodyne measurement, the state is projected
onto coherent states via the POVMs M(α) := π−1/2 |α〉〈α|. The experimental realisation
of these measurements will be described in Sec 3.3.2.

2.5 Visualising the quantum state

While any quantum state can be adequately described by its density operator ρ, this
representation does not provide an intuitive picture of states lying on an infinite dimen-
sional Hilbert space. The phase space formulation of quantum optics, on the contrary,
allows one to access features and properties of the quantum states without resorting to
the notion of density matrices or Hilbert spaces. The mapping of operators in a Hilbert
space to function in a complex phase space leads to an entire family of quasi-probability
distribution. We now present three most commonly used representation: The Wigner
representation, the Husimi Q representation and the Glauber-Sudarshan P representa-
tion, which are all linked by Gaussian convolution [25].

2.5.1 The Wigner representation

The representation of the Wigner function seems contradictory at first glance since it de-
scribes both the amplitude and phase information of the quantum state on equal footing.
However, as dictated by HUP, simultaneous exact measurements of the amplitude and
phase quadratures are impossible. This paradox is resolved once we realise that unlike
classical statistical mechanics, a Wigner representation does not allow the construction
of a joint probability distribution. Rather, negative values are permissible in this quasi-
probability representation due to the non-commutativity of the quadratures. The pro-
jections, or the marginals of the Wigner function, nonetheless, describe the quadrature
measurements of the quantum state, and always yield a positive definite probability
distribution.

The Wigner distribution, or Wigner function, for the quantum state described by ρ is

W (x, p) =
1

π~

∫ ∞
−∞

dq 〈x− q|ρ̂|x+ q〉 eipq, (2.37)

where x and p are the eigenvalues of the quadrature eigenstates |x〉 and |p〉 respectively.
We see that the Wigner function maps the density matrix to a real function in phase
space. The key feature of the Wigner function is that the marginalised distribution across
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any quadratures will return the probability distribution of the corresponding measure-
ment outcome:

P (x) =

∫ ∞
−∞

dpW (x, p) and P (p) =

∫ ∞
−∞

dxW (x, p). (2.38)

In practice, the corresponding Wigner function for a continuous variable quantum state
can be constructed from homodyne measurement of X̂θ over multiple angles θ, together
with the application of quantum tomography techniques such as inverse radon trans-
formation or maximum entropy principle [25].

Several important features of the Wigner function are as follows: firstly, the trace of
an operator Ô is the integral of its Wigner function∫ ∞

−∞

∫ ∞
−∞

dx dp WO(x, p) = Tr(Ô). (2.39)

This property also implies that Wigner function of a quantum state is normalised, since
Tr(ρ) = 1. Meanwhile, the trace between two Hermitian operators Ô1, Ô2 can be simply
calculated by

Tr
(
Ô1Ô2

)
= 4π

∫ ∞
−∞

∫ ∞
−∞

dx dp WO1(x, p)WO2(x, p) . (2.40)

This useful property allows us to directly calculate several important quantities, includ-
ing expectation values of an operator, purity of the state and the transition probability
between two pure states, without invoking the density matrix formalism.

In this thesis, we focus mostly on Gaussian quantum states, whose Wigner functions
are positive everywhere and the marginals distribution are of a Gaussian form. As dis-
cussed in Sec. 2.3, these Gaussian states are fully characterized by the first and second
moments of the amplitude and phase quadratures,

WG(x, p) =
1

2π∆X∆P
exp

(
(x− 〈X〉)2

2∆2X
+

(p− 〈P 〉)2

2∆2P

)
, (2.41)

which corresponds to a two-dimensional Gaussian distribution with variances ∆2X and
∆2P displaced by (〈X〉 , 〈P 〉) in the phase space.

For non-Gaussian quantum states that have no classical counterpart, such as num-
ber states, the corresponding Wigner functions will exhibit negativity. Since negative
probabilities have no classical explanation, the “negativity” of Wigner function often
serves as a signature of non-classicality.

2.5.2 The Glauber-Sudarshan P function

Another widely used phase space distribution is the P representation, also known as
the Glauber-Sudarshan P function [26, 27]. It is closely related to coherent states, and is
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famously expressed as the optical equivalence theorem

ρ̂ =

∫
d2α P (α) |α〉〈α| , (2.42)

where P (α) is the Glauber-Sudarshan P distribution corresponding to the quantum state
ρ̂. This equation shows that the density operator ρ̂ of a quantum state can sometimes
be written as a statistical mixture of coherent states. The thermal state, as mentioned in
Eq. (2.23), is such an example. Interestingly, the P function for any coherent state |α0〉, is
in fact a Dirac delta function δ2(α− α0), representing a single point in the phase space.

For quantum states that cannot be decomposed into coherent states, their P func-
tions will exhibit negativity. This implies that even for states that have a positive Wigner
function, such as squeezed states, the P function will be able to reveal its inherent quan-
tumness. Upon first glance, such non-classical P functions can have a very strange
behaviour, for example, they may contain derivatives of Dirac delta function, rendering
them inaccessible experimentally. However, recent work [28] showed that it is possi-
ble to regularize the P function without compromising its sensitivity towards the non-
classicality of its corresponding quantum state. This allows for the reconstruction of
negative P quasi-probabilities via experimental techniques [29].

2.5.3 The Husimi Q representation

Unlike the previously introduced distributions, the HusimiQ function is a non-negative
distribution,

Q(α) =
1

π
〈α| ρ̂ |α〉 ≥ 0, (2.43)

since ρ is a positive operator. Consisting of the diagonal elements of the state ρ in the co-
herent state basis, it is bounded from above (Q(α) ≤ 1/π), and can be directly measured
via a coherent state projection, or a dual-homodyne detection (see Sec. 2.4.2 and 3.3.2).

The Q function relates to the P function by taking the diagonal element of ρ in
Eq. (2.42)

Q(α) =
1

π

∫
P (β) exp

(
−|α− β|2

)
d2β. (2.44)

This can also be interpreted as the Gaussian convolution of the P function. It follows
that the Q function for a coherent state |α0〉 is

Qα0(α) =
1

π

∫
δ2(β − α0) exp

(
−|α− β|2

)
d2β =

1

π
exp
(
−|α− α0|2

)
, (2.45)

which agrees with definition of Eq. (2.43) by having ρ = |α0〉〈α0|.
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2.6 From classical to quantum information theory

2.6.1 Classical entropy

Shannon entropy

With his seminal work published in 1948 [30], Claude Shannon laid down the cor-
nerstone of information theory. In this work, he introduced the Shannon entropy as
a uniquely well-behaved measure of unpredictability. This quantity, often denoted as
H(X), is assigned to a piece of information X , which mathematically can simply be
viewed as a random variable associated with some probability distribution PX . It is
defined as

H(X) := −
∑
i

PX(xi) logb PX(xi), (2.46)

where PX(xi)
4 is the probability of obtaining outcome xi, and b is the base of the loga-

rithm5. Eq. (2.46) quantifies the unevenness of PX .

Consider the elementary example of a fair die toss: there are six possible outcomes,
each occurring with equal probability. For integers i = {1, 2, · · · , 6}, let X = i denote
the event where the die toss outcome is i. If nothing else is known, the best we can do is
make a guess at the outcome, and we will be correct with probability 1

6 no matter what
we guess. In other words, for all possible values of i, we have PX(i) = 1

6 . The Shannon
entropy is then given by H(X) = −6 · 1

6 log2
1
6 = log2 6 ≈ 2.58.

Should the die be a biased one, certain outcomes would be more favourable. One
may intuitively see that the unevenness of PX increases, and indeed this is reflected by
the Shannon entropy. Whenever the uncertainty is symmetrically distributed between
all possible outcomes, the entropy of the system is uniquely maximal.

Joint entropy

Consider the case where we have multiple random variables, {Xi} = X1 · · ·Xk, where
the outcomes are associated with a joint probability distribution PX1···Xk . These vari-
ables may be inter-correlated: taking an extreme example, let k = 2, and X2 to be an
exact copy of X1, hence PX1X2(i, j) = δijPX1(xi), where δij is the Kronecker delta func-
tion. By treating {Xi} as a single joint random variable, we may also write down its
entropy

H({Xi}) = −
∑
x1

. . .
∑
xn

P{Xi}(x1, . . . , xk) log2 P{Xi}(x1, . . . , xk). (2.47)

4To deal with probability values equal to zero, one also needs to specify that 0 log 0 = 0 is taken.
5Conventionally, b = 2 is used, to match the basic unit of information, i.e. a 2-outcome random variable

called a bit. The Shannon entropy is also used in statistical physics, where b = e is more often used.
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Let us return to our example of X2 being an exact copy of X1, or in other words, X1 and
X2 are completely correlated. In such a case, we see that

H(X1, X2) = −
∑
x1

∑
x2

δx1x2PX1(x1) log2 δx1x2PX1(x1) (2.48)

= −
∑
x1

PX1(x1) log2 PX1(x1) = H(X1). (2.49)

What is observed is that the random variable X2 does not contribute further to increase
the entropy, since all information contained in X2 is obtained already from X1. There-
fore, the joint entropy reflects, to some degree, the amount of correlation between ran-
dom variables, as we will see more explicitly later on. A useful inequality to note is that
the joint entropy can be bounded below and above by a function of individual entropies,
i.e. max(H(X1), . . . ,H(Xk)) ≤ H({Xi}) ≤ H(X1) + . . .+H(Xk).

Conditional entropy

Suppose we have 2 random variables X,Y , and the outcome of Y is revealed. The
entropy of X , further conditioned on the outcome of Y (averaged over all possible out-
comes y) is denoted as the conditional entropy:

H(X|Y ) := −
∑
y

PY (y)
∑
x

PX|Y (x|y) log2 PX|Y (x|y) (2.50)

=
∑
y

PY (y)H(X|y). (2.51)

Here H(X|y) = −
∑

x PX|Y (x|y) log2 PX|Y (x|y) is the entropy of X conditioned upon a
particular outcome y. Again, we look at the example where Y is an exact copy of X .
Upon knowing X , we also immediately gain full knowledge of Y , hence H(Y |X) = 0.
Similarly, H(X|Y ) = 0, although the conditional entropy is not symmetric in general.
More interestingly, one may readily derive its relation with the joint entropy:

H(X,Y ) ≡ H(Y ) +H(X|Y ) ≡ H(X) +H(Y |X). (2.52)

For classical random variables, the conditional entropy, like any other entropy, is non-
negative.

Mutual information

To quantify the amount of shared information existing between two random variables,
one defines the mutual information

I(X :Y ) := H(X) +H(Y )−H(X,Y ). (2.53)
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It is easy to see that this quantity is symmetric, i.e. I(X :Y ) = I(Y :X). Using Eq. (2.52),
we may also understand the mutual information in a different light:

I(X :Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X). (2.54)

This also implies that for classical random variables, the mutual information is always
bounded by the individual entropies, i.e. I(X :Y ) ≤ min(H(X), H(Y )). Intuitively one
may understand this as saying that the amount of information shared between X and
Y cannot exceed the amount of information containable in the individual variables.

2.6.2 Quantum entropies

Until now we have introduced several entropic quantities in the framework of classi-
cal information theory. In quantum information theory, these quantities were extended
from random variables to describe quantum states. The von Neumann entropy is the
quantum counterpart of the Shannon entropy, which is defined with respect to a quan-
tum system A described by density operator ρA,

S(A) = S(ρA) := −tr(ρ log2 ρ) = −
∑
i

λi log2 λi, (2.55)

where λi are the eigenvalues of ρA. Since a density operator is a positive semi-definite
matrix with trace equal to 1, its eigenvalues {λi} form a normalised probability dis-
tribution, and hence the von Neumann entropy inherits all properties of the Shannon
entropy. For example, S(ρA) = 0 if and only if ρA = |ψ〉〈ψ|A is pure. On the other hand,
if the dimension of the system is given by dim(A) = dA, then S( id

dA
) = log dA, where the

density operator id
dA

is also known as the maximally mixed state.

Given a bipartite system ρAB , the joint entropy is simply S(AB) = S(ρAB) =

−tr(ρAB log2 ρAB). However, to evaluate the individual entropies, one has to first com-
pute the reduced states on A and B: ρA = trB(ρAB), and likewise ρB = trA(ρAB). The
entropy of the reduced subsystems is then given by S(ρA) and S(ρB). The von Neu-
mann entropy satisfies

S(AB) ≤ S(A) + S(B), (2.56)

with equality only when A and B are completely uncorrelated, i.e. ρAB = ρA ⊗ ρB is of
tensor product form.

One may also consider quantum versions of the conditional entropy

S(ρA|ρB) ≡ S(ρAB)− S(ρB), (2.57)
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and mutual information

I(ρAB) = S(ρA) + S(ρB)− S(ρAB) (2.58)

= S(ρA)− S(ρA|ρB) (2.59)

= S(ρB)− S(ρB|ρA). (2.60)

Despite having similar forms as the classical version, these quantities behaves differ-
ently from them, and this is a result of strong quantum correlations between systems.
Consider, for instance, a pure two-mode squeezed state (Sec. 2.2.6). While the entropy
of the joint system is zero, the individual subsystems are simply locally thermal states
with a large amount of entropy, and therefore according to Eq. (2.57), S(ρA|ρB) < 0! In
other words, this means sometimes we can be more certain about the joint system when
compared to the individual systems. 6

Lastly, we note a very useful inequality given by the Holevo’s bound [31], which
is one of the landmark results in quantum information. It gives the maximum possi-
ble amount of information that can be known upon measuring a quantum state. Its
significance is best illustrated by considering a following state-discrimination problem
between two parties, Alice (A) and Bob (B). Alice has a classical random variable X
from which she draws values x with a probability px. Based on her outcome x, Alice
prepares a quantum state ρx which she transmits to Bob. The density matrix describing
this piece of quantum information is given by the mixture

ρ =
∑
x

pxρx. (2.61)

Upon receiving ρ, Bob’s goal is to determine which state ρx was transmitted in the first
place, or in other words, guess the outcome x. To do this, he performs a measurement
on ρ, obtaining a classical outcome denoted by a random variable Y . Holevo’s bound
says that the mutual information between X and Y is given by:

I(X :Y ) ≤ S(ρ)−
∑
x

pxS(ρx). (2.62)

2.7 CV quantum information

For the transmission of information using a continuous quantum source, a continuous
version of the Shannon entropy has to be considered. For a continuous variable X with
probability density pX(x), it is defined as [32]

h(X) = −
∫
pX(x) log2 pX(x)dx (2.63)

6We also note an alternate measurement-based definition of the conditional entropy, as describe in C.2.1.
Such a definition actually leads to a mismatch between Eq. (2.58) and Eqs. (2.59) and (2.60), known as
quantum discord.
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This definition, which is also known by the name of differential entropy, is maximized
by a normal distribution with a given variance. Let us now consider a case where a
sender (Alice) is transmitting information to a receiver (Bob) by encoding her data onto
the quadrature of a CV quantum state with variance ∆2X̂N . Alice’s data is a random
number S drawn from Gaussian distributions with zero mean and a variance of ∆2SA.
This forms an additive white Gaussian noise (AWGN) channel, allowing the signal that
Bob receives in a lossless channel to be written as X̂B = SA+X̂N in terms of quadrature.
Since both the signal and the noise are from independent normal distributions, X̂B has
a variance of ∆2X̂B = ∆2SA + ∆2X̂N . Given the fact that a Gaussian signal maximises
the differential entropy for a given variance, the differential entropies for Alice and Bob
can be expressed as

h(A) =
1

2
log2

(
2πe∆2SA

)
, (2.64)

h(B) =
1

2
log2

(
2πe(∆2SA + ∆2X̂N )

)
. (2.65)

where e is the exponential constant, and the Shannon entropy is in units of bits/symbol.
The information transmission rate between Alice and Bob through the quantum channel
is given by Alice’s mutual information with Bob:

I(A :B) = h(B)− h(B|A) (2.66)

= h(B)− h(N) (2.67)

=
1

2
log2

(
1 +

∆2SA
∆2X̂N

)
, (2.68)

Here, we have used the fact that h(B|A) = h(A + N |A) = h(A) since the encoding
signal is independent from the quantum noise. Hence, by encoding Gaussian signals on
the quadrature of the light field, Alice and Bob can transmit information at the Shannon
capacity of a continuous quantum channel, where the information capacity is dependent
on the ratio between the variance of the Gaussian signal ∆2SA and the variance of the
quantum noise ∆2X̂N .



Chapter 3

Experimental Techniques & Models

“You cannot go on ’seeing through’ things for ever. The whole point of seeing through
something is to see something through it.”

– C.S. Lewis, The Abolition of Man

Overview

In this chapter, we briefly discuss the necessary experimental techniques and methods
to perform and model the experiments conducted in this thesis. By extending discrete
mode of light to continuous representation, we described the encoding of information in
the quantum sidebands. We also introduce several elementary components of a typical
CV experiment, including the laser system, a beam splitter, and electro-optical modu-
lators. Quantum measurements (direct, homodyne and heterodyne) are discussed in
continuous mode description. Finally, we explained how the digital locking and sam-
pling is done in a CV quantum experiment. We refer our reader to the PhD thesis of
ANU Quantum Optics group for more details, in particularly the thesis of Lam [33] and
Bowen [34].

3.1 From discrete to continuous mode

In the last chapter, we introduced the quantization formulation, which is motivated by
the scenario of having an electromagnetic field confined within a hypothetical cavity
with a finite length L. Each quantized mode is identified as eigenmodes separated by
frequency ∆ω = 2πc/L. While some experiments do assume a real cavity or confined
space, in most cases, quantum opticians deal more often with travelling light. Most
typically, light is emitted from a source, and passes through certain kinds of interaction
regions such as those induced by optical elements, and finally arriving at detectors. For
such situations, it is thus desirable to consider the quantisation of freely propagating
electromagnetic waves with eigenmodes characterized by a continuous wave vector.
As the length of the quantisation cavity L tends to infinity, the mode spacing ∆ω tends
to zero, while the sums we see over discrete wave numbers in Eq. (2.1) become integrals

29
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over continuous frequencies [35]

∑
k

→ 1

∆ω

∫
dω. (3.1)

The continuous mode operators transform from their discrete mode counterparts by

âk →
√

∆ω â(ω) and â†k →
√

∆ω â†(ω). (3.2)

Similarly, the discrete Kronecker and the continuous Dirac delta function are related by
δk,k′ → ∆ω δ(ω − ω′), which leads to the continuous-mode commutation relation,[

â(ω), â†(ω′)
]

= δ(ω − ω′). (3.3)

The integration of Eq. (3.1) is strictly from 0 to∞. However, for most experiments, since
the frequency bandwidth is much smaller than the central frequency, we can extend the
lower limit of integration to −∞ without significant error. This allows us to write the
Fourier-transformed operators as

â(t) =
1√
2π

∫ ∞
−∞

dω â(ω) exp{(−iωt)} (3.4)

â†(t) =
1√
2π

∫ ∞
−∞

dω â†(ω) exp{(iωt)}, (3.5)

with the definition â†(t) = [â(t)]†. It can be shown that [â(−ω)]† = â†(ω) through inverse
Fourier transform. The amplitude and phase quadrature operators in frequency domain
are thus given by

X̂(ω) = â(ω) + â†(ω) = â(ω) + [â(−ω)]† (3.6)

P̂ (ω) = i
(
â†(ω)− â(ω)

)
= i
(

[â(−ω)]† − â(ω)
)
. (3.7)

In the rotating frame of the carrier frequency ω0, these expressions can be interpreted as
the positive and negative sidebands of ω centred around ω0.

3.1.1 Sidebands and modulation of light

In the sideband picture, the quantum noise can be treated as beating with the carrier
mode at all frequencies. These sidebands are due to non-zero ground state energy of the
vacuum state. All modes are uncorrelated, and hence appear as a random fluctuation of
amplitude and phase along the positive and negative frequency axis (Fig. 3.1 (a)).

An amplitude modulation is a direct modulation of the light intensity at certain mod-
ulation frequency, ω. The upper and the lower sidebands are correlated with each other
at all time (Fig. 3.1 (b)). Assuming a small modulation depth ζ � 1, the positive part of



§3.1 From discrete to continuous mode 31

R
e
a
l

Imag

Freq

(a) (b) (c)

Figure 3.1: Sideband picture for (a) a vacuum state. (b) A phase-modulated coherent state and
(c) an amplitude-modulated coherent state around the carrier frequency ω0, with sidebands at
±ω.

the quantized field reads as

âAM(t) = â0(t)(1 + ζ cos(ωt)) = â0(t)

[
1 +

ζ

2
(eiωt + e−iωt)

]
. (3.8)

It can be seen that modulation ζ distributes the energy from the carrier to the two gen-
erated sideband modes. Changing our frame to frequency domain gives

âAM(ω0) = â0(ω0) +
ζ

2
[â(ω0 + ω) + â(ω0 − ω)] , (3.9)

and from this we observe that the field is modulated at sidebands ω0 ± ω, with a real
amplitude of depth ζ.

The phase modulation, on the other hand, modifies the phase component of the field,

â(t) = â0(t) eiζ cosωt. (3.10)

Again, for ζ � 1, the first order expansion gives

â(t) = â0(t)(1 + iζ cosωt)

= â0(t)

[
1 +

iζ

2
(eiωt + e−iωt)

]
. (3.11)

Repeating similar steps as before, the annihilation operators in frequency domain are

âPM(ω0) = â0(ω0) +
iζ

2
[â(ω0 + ω) + â(ω0 − ω)] . (3.12)

Comparing Eq. (3.12) and (3.9), we note that the phase modulation modifies the imagi-
nary component of the field (Fig. 3.1 (c)). Together with the amplitude modulation, the
vacuum state at the sidebands can be excited to arbitrary amplitude and phase.

In continuous variable systems, information can often be encoded onto the quan-
tum state by modulating the sidebands of the carrier light. A typical scenario is the
generation of coherent states via the amplitude and phase modulation.
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3.1.2 Linearised decomposition of the operators

Most quantum optics experiments operate in the regime where the fluctuations of the
field are negligible when compared to the average intensity of the field. In this case,
good approximation of the experiment can be obtained in analytical form via the lin-
earization of the operators. The essence of linearization is to expand an operator Ô
around its steady state value, and keep only the first order fluctuating terms. Applying
the linearization procedure over the creation and annihilation operator gives

â(t) = α+ δâ(t) and â†(t) = α∗ + δâ†(t). (3.13)

where 〈â〉 = α and 〈â∗〉 = α∗. The operators have been decomposed into a steady
state time-independent term, plus a contribution from the fluctuation throughout the
spectrum in the frequency picture. To this end, it has been assumed that

〈δâ(t)〉 = 〈δâ†(t)〉 = 0 and |δâ(t)| � α. (3.14)

That is, the fluctuation term, which has zero mean, is much smaller compared to the
steady-state amplitude α. This allows us to simplify the expression by neglecting higher
order product terms of the quantum fluctuations. For example, under linearisation, the
quadrature variance can be written as

∆2X̂(t) = 〈(δâ†(t) + δâ(t))2〉 = 〈(δX̂(t))2〉 , (3.15)

∆2P̂ (t) = 〈(i(δâ†(t)− δâ(t)))2〉 = 〈(δP̂ (t))2〉 . (3.16)

3.2 Experimental system

3.2.1 Laser system

Apart from Chapter 5, the laser source for the experiments throughout the thesis is an
Innolight Diabolo ND:Yag continuous wave laser at 1064nm. It is also capable of pro-
ducing 532nm light via an internal frequency doubler. The natural relaxation oscillation
of the laser, which induces intensity fluctuations, can be suppressed by 30 dB with an
internal noise eater option.

Immediately after the laser system is a Faraday isolator, which prevents optical dam-
age due to unintended backscattering of light from the experimental optics. In order to
stabilise the laser frequency and to generate a well-defined, single TEM-00 spatial mode
for the experiment, the laser is passed through and locked to the resonant frequency
of a high finesse optical cavity, or mode cleaner (MC). Our mode cleaner is a 3-mirror
triangular ring resonator, featuring a piezoelectric transducer actuated end mirror. It
has an optical path length of 800mm and linewidth of 0.4 MHz. The MC also further
suppresses laser intensity fluctuations at a low frequency regime, thus providing a shot
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Figure 3.2: The schematic diagram of a PID controlled laser system. MC: mode cleaner, LPF:
low-pass filter, HV: high voltage amplifier. PID: Proportional-Integral-Derivative.

noise limited laser field with a frequency above 4 MHz.

To control the MC, we use Pound-Drever-Hall (PDH) technique [36], which utilises
phase modulation to determine the locking point. First, the phase modulation is ob-
tained directly from the internal phase modulation of the laser unit for frequency dou-
bling. Sidebands at a frequency of 40 MHz are used, which is well above the cavity
linewidth (0.4 MHz). After an analog demodulation with a synced signal generator,
an error signal is obtained. This error signal is then fed into a digital PID (Proportional-
Integral-Derivative) controller, which is implemented using software written in National
Instruments LabView developed by Ben Sparks and Thomas Symul. More details on this
control can be found in [37]. Finally, the cavity length is kept in resonance with the op-
tical field according to the amplified feedback signal. A schematic of the laser system is
depicted in Fig. 3.2.

3.2.2 Beam splitter

A beam splitter (BS), as naive as it may seem, plays an indispensable role in day-to-day
quantum optics lab. As an elementary linear optical element, this 4-port BS mixes two
input modes â and b̂ with identical frequency, polarization and spatial profile. Assum-
ing a beam splitter with transmissivity η, the transmitted and the reflected modes of the
BS, denoted by ĉ and d̂, are given by

ĉ =
√
ηâ+

√
1− ηb̂,

d̂ =
√

1− ηâ−√ηb̂. (3.17)

A π phase shift is required between the output modes to honour the energy conserva-
tion rule. When mode b̂ takes the role of an empty mode, it becomes an effective tool to
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model many linear processes, such as optical attenuation, imperfection in photodetec-
tion and mismatch in spatial mode. They can be modelled as an 100% effective process
coupled to a vacuum mode by a BS. The transmittivity parameter of the BS then gov-
erns the efficiency of the concerned process. For example, let us consider the amplitude
quadrature of the transmitted field with the input X̂in coupled to the vacuum X̂v:

X̂out =
√
ηX̂in +

√
1− ηX̂v. (3.18)

The mean and the variance of X̂out are given by

〈X̂out〉 =
√
η 〈X̂in〉 , (3.19)

∆2X̂out = 〈δX̂2
out〉 = η 〈δX̂2

in〉+ 1− η, (3.20)

where we have invoked 〈X̂v〉 = 0 and 〈δX̂2
v = 1〉. Under linear loss, the mean is re-

duced by a factor of
√
η. Meanwhile, depending on the magnitude of 〈δX̂2

in〉, lossy
detection can either underestimate ( 〈δX̂2

in〉 > 1) or overestimate ( 〈δX̂2
in〉 < 1) the input

variance. If the input is a coherent state ( 〈δX̂2
in〉 = 1), the variance remains unaffected.

Therefore, in order to ensure accurate inference of the input’s variance, it is important
to take into account losses in the detection process.

In a discrete variable picture, the balanced beam splitter is treated as a fair die, dis-
tributing quantized photons to either port with 50% probability. As we have seen, in a
continuous variable picture, such a random process is due to vacuum fluctuations cou-
pled to the unused port of the beam splitter. These pictures allow us to utilize a BS as
the building block of an optical source of entropy.

3.2.3 Electro-optical modulation

Figure 3.3: The electro-optical modulators. The phase modulator (PM) is followed by the am-
plitude modulator (AM), where the waveplates in between changes the light from linearly po-
larised light to circularly polarised light before entering the AM.

The sideband modulations discussed in Sec. 3.1.1 are usually achieved in the lab
through the electro-optical effect (Fig. 3.3). By sinusoidally changing the electric field
applied across crystals such as lithium niobate, the refractive index along a particular
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optical axis can be modulated. This in turn modifies the optical path length, and hence
the phase of the exiting field.

To achieve amplitude modulation, the field first has to be prepared as circularly
polarized light. The beam is then passed through a birefringent electro-optical crystal,
where only the polarized component at the slow axis of the crystal is modulated. The
output field, which is now modulated in polarization, is fed into a series of polarising
optics, consisting of Glan-Thompson prism and polarising BS to select only the fast axis
component of the light. This results in a purely amplitude modulated light.

Several precautions have to be taken in order to ensure proper sidebands modula-
tion. First, to ensure high quality mode matching at the detection stage, the modula-
tors have to be aligned carefully to prevent clipping and distortion of light. Secondly,
to minimize cross-quadrature modulation, i.e. unwanted amplitude modulation from
phase modulator and vice versa, the crystal axis and the beam polarization have to be
matched as closely as possible.

3.3 Quantum measurements

3.3.1 Direct detection

A direct measurement of light can be done with a photodiode, which converts photons
into electrons. The detection efficiency is thus given by the ratio of electrons and pho-
tons, ηDet = Ne/Nph. This measurement probes the intensity of the light, i.e. â†â. After
an internal gain, the output photocurrent, i(t), which is proportional to the number of
photons in the optical field, is given by

i(t) ∝ â†(t) â(t) ≈ |α|2 + α δX̂+(t). (3.21)

Here, we have performed linearization (Eq. (3.14)) and assumed α to be real. Rewriting
this expression in Fourier representation,

i(ω) ∝ â†(ω) â(ω) ≈ |α|2δ(0) + α δX̂(ω). (3.22)

We note that this expression consists of a DC term linked to the optical intensity, and an
RF fluctuating amplitude quadrature amplified by the DC field amplitude.

3.3.2 Homodyne and heterodyne detections

In order to interrogate the phase information of the quadrature, it is necessary to intro-
duce a phase reference. By interfering two optical fields (signal and probe) differing by
phase θ with a balanced BS, an arbitrary quadrature amplitude X̂θ can be extracted from
the difference of the photocurrents from the two BS output ports (Fig. 3.4(a)). This tech-
nique, which allows the suppression of probe noise during measurement, was termed
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(a) (b)

Figure 3.4: Schematic of CV quantum measurements. (a) Balanced homodyne detection. The
difference current is proportional to the quadrature observable of X̂θ. (b) Dual-homodyne or
heterodyne detection, where two conjugate quadratures X̂θ and X̂θ+π/2 of the input beam are
probed by dividing the signal strength by half.

as an two-port optical homodyne detection [38].

Let us consider two optical fields, signal â and probe b̂ interfering on a 50 : 50 beam
splitter (η = 0.5). Following Eq. 3.17, the photon numbers n̂c and n̂d at the output ports
are given by

ic ∝ n̂c = ĉ†ĉ =
1

2
(â†â+ b̂†b̂+ â†b̂+ âb̂†),

id ∝ n̂d = d̂†d̂ =
1

2
(â†â+ b̂†b̂− â†b̂− âb̂†). (3.23)

The photocurrent difference, i− is proportional to the difference between the photon
numbers,

i− ∝ n̂c − n̂d
= â†b̂+ âb̂†. (3.24)

Depending on the presence of a linearized input mode â = α + δâ, we may consider
different cases as detailed below. 1

Self homodyne detection

In the absence of the input signal at mode a, i.e. only vacuum fluctuations are present,
â = δv. The difference in the current i− becomes

i−v ∝ (β + δb̂†)δv + (β + δb̂)δv†

= β(δv + δv†) = βδX̂v. (3.25)

1Without loss of generality, we assume the steady state amplitudes to be real.
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We see that this measurement reveals the amplitude quadrature of the vacuum field,
magnified by a factor of α. The variance of this current is ∆2i−v ∝ β2, since 〈δX̂2

v〉 =

∆2X̂v = 1. This is also the measured variance of the Gaussian probability distribution
associated with the amplitude quadrature of the vacuum state.

Balanced homodyne detection

When the signal field is not blocked, we have â = α + δâ. We now require the probe
beam b to be an intense coherent beam (β � α). This beam, termed as a local oscillator,
has a phase difference of θ relative to the signal field, i.e. b̂ = βeiθ. This angle θ can
be controlled by adjusting the path difference between the beams with a piezoelectric
transducer mirror. Subtracting the photocurrents from the signal and the probe gives

i− ∝ 2αβ cos θ + βδX̂θ. (3.26)

Here, we have δX̂θ = δa†eiθ+δae−iθ. Setting the phase to 0 and π/2 allows us to sample
the amplitude (X̂) and phase (P̂ ) quadrature of the input signal respectively. By diving
the variance of the signal’s photocurrent, ∆2i− ∝ β2∆2X̂θ, with that of vacuum’s, we
get the quadrature amplitude normalized to the quantum noise limit,

∆2i−

∆2i−v
= ∆2X̂θ. (3.27)

We thus see that cancellation of classical steady state amplitude grants us the access to
intricate quantum features, such as the vacuum fluctuation. By simply blocking and un-
blocking the signal, measurement normalised to the quantum noise can be achieved. In
practise, however, the beam splitter might not be perfectly balanced, and the detectors
might have different electronic gain as well. These imperfections can be mitigated by
means of electronic attenuation of photocurrent in one port. Meanwhile, the homodyne
detection efficiency, ηHD is equal to the product of the detector efficiency and the mode-
matching efficiency: ηHD = ηDet × ηvis. When the steady state amplitudes of the inputs
are equal, the mode-matching efficiency is related to the visibility as [39]

ηvis = VIS2 =

(
imax − imin

imax + imin

)2

. (3.28)

Through careful design of the experimental optical path lengths and lens arrangements,
together with the help of beam steering mirrors and polarising optics, typically we can
achieve mode-matching efficiencies up to 99%.

Heterodyne detection

While it is impossible to precisely determine the amplitude and phase of a quantum
state, as dictated by the Heisenberg’s uncertainty principle, simultaneously measuring
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the conjugate quadrature of the light field is not forbidden by the laws of quantum
physics, as we will now demonstrate below [40].

Here, we consider an attempt to simultaneously measure the conjugate quadrature
amplitudes of our input signal with homodyne detections. We split the input mode âin

into modes â1 and â2, followed by two homodyne detections sampling the orthogonal
quadratures X̂θ and X̂θ+π/2. The modes after splitting are given by

â1 =
1√
2

(âin + v̂),

â2 =
1√
2

(âin − v̂). (3.29)

Strictly speaking, we are actually probing two different modes â1 and â2. Hence, there is
no compatibility issue with the HUP. Repeating similar calculations as before in Eq. 3.26,
the variances of the homodyne detections normalised to the vacuum are

∆2i−1
∆2i−v

∝ 1

2
(∆2X̂θ + ∆2X̂v),

∆2i−2
∆2i−v

∝ 1

2
(∆2X̂θ+π/2 + ∆2X̂v). (3.30)

We see that our information regarding the quantum state is contaminated by the shot
noise coupled in through the first beam splitter, which is akin to the case of a lossy detec-
tion in Eq. (3.20) with η = 0.5. This detection, though noisy, turns out to be a projection
on coherent state basis, thus allowing the reconstruction of Husimi Q distribution.

3.4 Interefometric locking and control

A typical routine in a quantum optics lab is the locking of pairs of optical fields. This is
usually done by interfering two beams via a beam splitter. As discussed in Sec. 3.3.2, we
can choose to measure either the amplitude or the phase quadrature of the input signal
by locking the phase difference between the interfering fields. This can be done via
PDH technique, which relies upon sidebands modulation to generate the error signal
for locking.

In this thesis, the experiments that require locking are controlled digitally by field
programmable gate arrays (FPGA) system. A digital control system offers the capacity
to integrate the control loops and the data acquisition together. The National Instrument
LabView codes deployed in these systems were developed previously in our group by
Sparkes et al. [37], and further modified by Dr. Syed Assad.

In order to lock the homodyne station to the desired quadrature, sinusoidal signals
at two distinct frequencies are applied on the phase and amplitude modulators respec-
tively. In order to ensure a clear detection band, analog or manual switching of the band
pass filters is used prior to digital demodulation of the error signal. Finally, the demod-
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ulated signal is fed into a digital PII (proportional-double integral) controller. This ap-
proach thus allows us to easily switch between the quadratures without requiring any
changes to the electronic hardware. More details on other types of locking techniques,
such as offset locking can be found in [34].

3.5 Optical quantum state measurements

A spectrum analyzer (SA) allows us to measure the power spectrum of the a signal in
the frequency domain. In conjunction with a homodyne detector, SA measures the fluc-
tuations of the optical field with some bandwidth W about the optical carrier frequency
ω0. For a general quadrature measurement of an optical field X̂θ(ω), the normalized
power spectrum can be expressed as

V (ω) = 〈X̂θ(ω)〉2 + ∆2X̂θ(ω), (3.31)

consisting of both the variance and the mean squared of the quadrature. For example,
the power spectrum for a vacuum state is V (ω) = 1. We can also perform our measure-
ment in the time domain using a digital oscilloscope. For a sampling time interval of
T = 1/(2W ), Shannon’s sampling theorem dictates that

X̂θ(t) =

∫ W/2

−W/2
X̂θ(ω)eiωtdω, (3.32)

thus allowing us to infer the mean and the variance of the quadrature in time domain.
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Chapter 4

Secure Quantum Random Number
Generator (QRNG)

“Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin.”

– John von Neumann, Various techniques used in connection with random digits

Overview

In this chapter, we come to discuss the topic of quantum randomness, which has the
uniqueness of being inherently unpredictable, solely due to the laws of physics. We be-
gin the chapter by giving a general introduction on randomness, highlighting its defin-
ing characteristics, and briefly reviewing the current state of art in randomness genera-
tion.

The rest of this chapter is divided into two main parts: randomness source charac-
terization and post-processing methods. The aim of this chapter is, however, to provide
a sufficiently general overview, in order to put the results of this thesis into perspec-
tive. For a detailed review of quantum random number generators and randomness
quantification, we refer the reader to recent review papers and surveys [6, 41, 42].

A subset of this chapter is published in the following paper:

• J. Y. Haw, S. Assad, A. Lance, N. Ng, V. Sharma, P. K. Lam, and T. Symul.
”Maximization of extractable randomness in a quantum random-number generator.”
Physical Review Applied, 3(5), 054004 (2015).

4.1 Quantum randomness

From a philosophical point of view, the notion of randomness has always been an in-
triguing concept. It is inherently linked to the understanding of whether our world is
deterministic, and also whether free-will is possible or not. From a pragmatist’s per-
spective, however, randomness can be simply seen as the result of subjective ignorance,

43
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i.e. when an observer does not have a complete description of the particular physical
system. For example, the outcome of a coin toss can be seen as random since we do not
know, with infinite precision, all the parameters involved, such as the angle of toss, the
force applied and so on.

Randomness is a vital resource in many information and communications technol-
ogy applications, such as computer simulations, statistics, gaming, and cryptography.
To ensure the integrity of these applications, a high-quality entropy source which pro-
duces good randomness, i.e. uniform and unpredictable, is paramount. The unbreak-
able security of the one-time pad in cryptography is also based on the assumption of
availability of uniformly random bits, unpredictable by any eavesdropper.

There exists also applications which are not concerned with matters of security, and
therefore do not have a high demand on perfect randomness. In such cases, a sequence
of uniformly distributed numbers mostly suffices. Such sequences can be generated us-
ing a pseudorandom number generator (PRNG) that works via certain deterministic al-
gorithms. Although PRNGs can offer highly unbiased random numbers, they cannot be
used for applications that require information-theoretic security for two reasons: Firstly,
PRNG-generated sequences are unpredictable only under limitations of computational
power, since PRNGs are inherently based on deterministic algorithms. One famous ex-
ample is randu, a type of linear congruential generators which generates numbers by
recurrence relations. Though being widely used in the 70s for Monte Carlo simulations,
this generator actually fails the spectral test due to the correlation between the triplets
in the sequence [43], thus rendering the aforementioned simulations questionable. Sec-
ondly, the random seeds, which are required to define the initial state of a PRNG, limit
the amount of entropy in the random-number sequences they generate. This compro-
mises the security of an encryption protocol.

For cryptographic applications [44], a random sequence is required to be truly un-
predictable and to have maximum entropy. To achieve this, intensive efforts have been
devoted to developing high-speed hardware RNGs that generate randomness via phys-
ical noise [45, 46, 47, 48, 49]. Hardware RNGs are attractive alternatives because they
provide fresh randomness based on physical processes that are extremely hard to pre-
dict. Moreover, they also provide a solution to the problem of having insufficient en-
tropy. Because of the deterministic nature of classical physics, however, some of these
hardware generators may be only truly random under practical assumptions that can-
not be validated.

All PRNGs and hardware RNGs can be categorised as processes that are apparently
random. Ultimately, the produced randomness arises from a lack of full knowledge of
the system, such as the seed or the initial condition of the system. On the other hand,
RNGs that rely on quantum processes (quantum RNG, or QRNGs), offer guaranteed
indeterminism and entropy, since quantum processes are intrinsically random [50, 51].
This is the implication of Born’s rule in quantum mechanics [52], where the measure-
ment outcome of a quantum state is inherently probabilistic – and not just because the
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(a) (b)

Figure 4.1: Randu, an ill-conceived pseudo RNG. The three-dimensional scatter plot of the
triplets of three consecutive numbers, while seemingly random from an arbitrary perspective
(a), turns out to be falling on 15 2-dimensional plane (b) due to correlations between the triplets.
Generated from codes in [54].

observer is ignorant. Meanwhile, the Heisenberg’s uncertainty principle, which bounds
the precision of the outcome of two non-commuting measurements, necessitates unpre-
dictability in the statistics of quantum measurement. Previously, it was still debatable
whether such randomness may still simply be apparent by means of a hidden vari-
able model, i.e. there exist unknown parameters that dictate the evolution of the sys-
tem deterministically. However, recent loophole-free Bell experiments [12, 13, 14] have
sufficiently refuted this possibility. These experiments have put such a deterministic
model to test by observing the measurement statistics of two correlated spacelike sep-
arate devices. Such space-separated devices allow the invoking of no-signalling from
relativity, which implies no faster-than-light communication is allowed. However, the
experiments are able to produce measurement statistics that feature correlations much
stronger than allowed by a deterministic no-signalling model. This means that the mea-
surement outcomes cannot be pre-established in advance, and therefore are intrinsically
indeterministic 1.

The very first quantum entropy source was conceived in 1956, which was based
on the radioactive decay counts [55]. Contemporary QRNG realisations are usually in
favour of optical systems, owing to the ease of implementation and affordability of the
source. For optical QRNGs, two major camps can be identified: photon(s) detection
and coherent detection. The simplest example in the former camp is the detection of
paths taken by a single photon after a beam splitter, assigning say ‘0’ for a particu-
lar detector and ‘1’ for the other [56, 57]. More sophisticated realisations are based on
photon detection including photon arrival time [58, 59, 60] and the Poissonian distri-
bution of coherent light [61]. The generation rate of these RNGs is generally limited
by the speed of the photon detectors (either single photon detectors or photon number

1An alternative would be to abandon the no-signaling principle and embrace definite predefined state
properties instead, for instance as advocated by the Bohmian interpretation [53]
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Figure 4.2: Block diagram of a QRNG. During measurement (denoted by “M”), the statistics
of the quantum state is inevitably mixed with the entropy of classical origin. By sacrificing
partial random bits, the postprocessing stage, or the randomness extractor (denoted by “Ext”)
transforms the distribution into an almost uniform and unpredictable output.

resolving detectors). One can overcome this bottleneck by means of coherent detection,
where highly efficient detectors are used to measure continuous variable properties of
light encoded in the quadratures (see Sec. 3.3.2), such as quantum phase fluctuations
[62, 63, 64, 65, 66, 67, 68], spontaneous emission noise [69, 70, 71], stimulated Raman
scattering [72] and vacuum fluctuations [73, 74, 75].

These QRNGs resolve the shortcomings of apparent RNGs. Theoretically, it would
always be desirable to have quantum randomness. However in practice, in order to dis-
til randomness from quantum-mechanical sources, we inevitably need to manipulate or
measure the quantum state. Therefore, the final output is often a mixture of genuine
quantum randomness and classical noise. The distillation of good quality randomness
from such a mixture is, therefore, a question of utmost importance. Without proper
characterization, the security of the generator may be compromised if the noise is com-
promised, or even untrusted. For example, a malicious vendor can supply a detector
with predetermined values that may be added on top of the measurement signal, caus-
ing the output bits to be less unpredictable (for the vendor). By modelling the physical
devices adequately, the effect of these noise contributions can be minimised or elimi-
nated.

In cases where the internal working of the devices is either unknown or inaccessi-
ble, genuine randomness based on quantum physics can still be obtained in a device
independent fashion. In particular, certification of randomness based on observing the
violation of fundamental inequalities such as Bell-inequalities will guarantee that the
randomness produced has no classical counterpart, and is genuinely random indepen-
dent of the working principle of the measurement devices [76]. If only either the source
or the measuring device is untrusted, an intermediate approach called semi self-testing
is conceivable [41]. We will discuss these further in Sec. 4.4.3.

4.2 Block description of a QRNG

As shown in Fig. 4.2, a QRNG can be divided into two segments: the entropy source
and the post-processing procedures [6]. The entropy source produces an amount of raw
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randomness, as a direct result of certain physical processes in the source. Such a raw
randomness may possibly contain uncertainty of both quantum and classical origin.
The classical entropy includes noise from classical devices such as from the measuring
devices and from the analog-to-digital converter (ADC). In order to access the intrin-
sically secure randomness, both the classical entropy and the noise of quantum origin,
which may be untrusted, have to be treated as side-information.

The second block in Fig. 4.2 indicates post-processing, which transforms a non-
uniform raw randomness into a bias-free, side-information-independent randomness.
The ratio of extraction is dependent on the amount of truly unpredictable entropy in the
source. We will now briefly describe several ways to quantify this extractable random-
ness via an information-theoretic approach (Sec. 2.6), and how it may be made indepen-
dent of side-information (classical or quantum).

4.3 Quantifying the randomness

Defining randomness is by no means trivial. Inspired by Kolmogorov complexity [77],
Martin-Lof put forth an algorithmic definition [78]: a random sequence should pass all
possible statistical tests and should be incompressible. In this context, incompressibil-
ity means that the random sequence cannot be generated by a program shorter than its
length. This definition, however, is only applicable for infinitely long sequences. More-
over, its shortcomings become more apparent because the algorithmic complexity for
a sequence is generally incomputable [79]. Meanwhile, statistical test suites, such as
NIST [80] and Diehard [81] tests, consist of a series of hypothesis tests to determine if
the generator involved output identically and identically distributed (iid). though able
to detect inherent patterns in a random sequence, do not guarantee its privacy. For ex-
ample, a random sequence possessed by a user may pass all conceivable statistical tests,
yet can be fully predictable by a malicious provider who might own an exact copy of
the sequence.

This predicament can be resolved by anchoring our definition on the process that
generates this randomness. Instead of relying on the sequence itself, the randomness is
guaranteed as long as the process that generates it is inherently probabilistic. Such is
the case for QRNGs, whose randomness is guaranteed by the law of quantum physics
(Sec. 4.1). In practice, bias cannot be avoided in implementation due to the inherent mea-
surement outcome distribution, as well as the classical noise accompanying the mea-
surement process. A properly designed QRNG always comes with a post-processing
stage to ensure that the final output is (almost) uniformly distributed and uncorrelated
with existing information, such as all previous device settings or side information. This
ensures that the final output of the QRNG is genuinely random.

To perform source characterization, we explain several different measures of entropy
that have been commonly used in the literature to quantify randomness. We also see
how one may account for randomness in the eyes of an observer who potentially has
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(a) (c)(b)

Figure 4.3: The Shannon entropy of an uniform distribution is maximal (a), and decreases when
the the distribution deviates from uniformity (b). For an extremely skewed distribution (c), the
Shannon entropy is no longer sufficient to quantify the unpredictability of the outcomes.

access to some side information. This is particularly important whenever randomness is
used for cryptographic purposes, and needs to be kept private from a malicious eaves-
dropper. When such side information is classical, depending on physical assumptions
of the eavesdropper, we show that variants of the conditional min-entropy quantify the
maximum amount of bits produced by the source which are fully random conditioned on
the eavesdropper. This will be the main quantity of interest for the setting of our QRNG
described in Chapter 5. In the case where side information is quantum, for example,
when the eavesdropper may be entangled with the quantum source itself, a quantum
version of the conditional min-entropy must be used instead, which we briefly mention.

4.3.1 Shannon entropy

Shannon entropy, H(X) (Eq. 2.46) tells us about how much information we gain on av-
erage once we have learned about the outcome of X . In fact, it can also be seen as how
uncertain we are, on average, about X . This quantification is sufficient if we want to
gauge the uncertainty in a particular distribution used over many instances, but it is in-
adequate for single-shot tasks, especially those of a cryptographic setting. As an exam-
ple, consider the distributions shown in Fig. 4.3. The uniform distribution in Fig. 4.3(a)
describes an event with 23 equally probable outcomes. In this case, the Shannon entropy
of the distribution is maximal and is equal to log2(23) = 3. As the distribution departs
from being uniform (Fig. 4.3(b)), the Shannon entropy becomes smaller. This can be in-
terpreted as a case where some outcomes are more likely to occur, hence less ”surprise”
there is upon obtaining a particular outcome on average. In an extreme case, where the
distribution is particularly skewed, Shannon entropy ceases to be a good indicator of the
unpredictability. For example, in Fig. 4.3(c), we plot a distribution with 2q+1 outcomes,
where there is an extreme outlier, with the rest of the outcomes being equally likely, i.e.
PX(xi = 1) = 1/2, PX(xj) = 1/2q+1 and j 6= 1. In the limit of q � 1, H(X) → q/2.
In this case, even though the Shannon entropy of the distribution is large, the outcome
of the event is highly predictable, since with a very good chance the outcome x1 is ob-
tained. The moral of this example is that the Shannon entropy is an inadequate measure
when it comes to quantifying randomness. In fact, it is at best an upper bound of the
randomness [42, 79].
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4.3.2 Min-entropy

With the definition of randomness as unpredictability, the guessing probability emerges
naturally as a figure of merit. This quantity tells us what is the best chance we have
in predicting the outcome of a random variable X . In the unit of bits, this quantity is
linked to the min-entropy, which is defined as [82, 83]:

Hmin(X) := − log2

[
max
xi∈X

PX(xi)

]
. (4.1)

Operationally, this corresponds to the entropy associated with the optimal strategy for
an eavesdropper to guess X , which is to bet on the most likely outcome. The min-
entropy also gives a common lower bound on all the Rényi entropies 2. For a uni-
form distribution, the min-entropy coincides with the Shannon entropy. For exam-
ple, the min-entropy for Fig. 4.3(a) is log2 23 = 3. Remarkably, for the distribution in
Fig. 4.3(c), the min-entropy is always the logarithm of the bin with highest probabil-
ity, i.e. − log2 0.5 = 1, regardless of the number of outcomes. Contrary to the Shannon
entropy, min-entropy thus is more robust against skewness of a distribution. The min-
entropy is also a crucial parameter for the randomness extractor mentioned in Sec. 4.2. It
quantifies the maximum amount of (almost) uniform randomness that can be extracted
out of the distribution PX(xi) (See sec. 4.5.4).

4.4 Side-information

In the existing literature of QRNG development, usually, the side information is not
accounted for since the lab is assumed to be trusted. However, such an assumption is
inapplicable when it comes to stringent circumstances such as those in quantum cryp-
tography. Moreover, knowing the source of the randomness is paramount for choosing
measurement settings in fundamental physics tests [84]. For example, in experiments
that are aimed at investigating fundamental physics, such as those of a Bell test, the
choice of measurement settings has to be genuinely random for the collected data to
be even considered as valid. As such, the main goal of entropy evaluation of a secure
QRNG is to quantify the amount of randomness available in the measurement outcome
M , conditioned upon side-information E. This side-information might be accessible by,
controllable by, or correlated with an adversary.

The concept of side-information-independent randomness, which includes privacy
amplification and randomness extraction, is well established in both classical and
quantum information theory [82, 85, 86, 87]. This security aspect of randomness
generation started to get considerable attention recently in the framework of QRNG
[57, 66, 72, 74, 79, 88, 89, 90]. In particular, Ref. [90] examines the amount of randomness

2The Rényi entropy is defined as Hα(X) = 1
1−α log2

[∑
xi∈X PX(xi)

α
]
, with respect to a real-valued

parameter α ≥ 0. Min-entropy comes from taking the limit α→∞.
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extractable under various levels of characterisation of the device and power given to the
adversary.

We will now review several approaches for dealing with untrusted side informa-
tion, focusing on classical side information, while seeing that conditional min-entropy
best accomplishes the task. Finally in Sec. 4.4.3 we briefly discuss device independent
randomness generation.

4.4.1 Classical side-information

Classical side information arises from various sources of classical origin, such as tech-
nical electronic noise and thermal noise (Fig. 4.2). Since these sources are not from the
desired quantum source, it could be known by the adversary either due to monitoring
or direct manipulation. For example, imagine a malicious detector which contaminates
the measurement result with pre-established values known to the detector. The raw ran-
domness, though is still correlated to the quantum source, has its security compromised
since it is also correlated to the eavesdropper. Hence, unless the lab is completely secure,
classical side-information has to be taken into account. Also, this step is necessary if we
want to call our device a bona fide QRNG. For example, say that the detector is noisy or
has low efficiency. Without any form of calibration, the randomness is then more likely
to be of classical origins, such as from dark counts.

Mutual information between measured data and quantum entropy

One way of getting randomness of quantum origin would be to quantify the correlation
between the measured data M and the quantum data Q. These quantities are related to
each other by M = Q + E, where E is the electronic noise. From a cryptographic per-
spective, E can be viewed as any classical noise generated by a malicious party. This ap-
proach is used in [75] for a QRNG based on the quantization of self-homodyning detec-
tion (Sec. 3.3.2). The statistics follow a channel with additive Gaussian noise introduced
in Sec. 2.7. The mutual information between M (m ∼ N (0, σ2

M )) and Q (q ∼ N (0, σ2
Q))

is considered 3:

I(M :Q) = H(M)−H(M |Q) (4.2)

=
∑

all bins

P (mi) log2 P (mi)−
∫

dqP (q)H(M |q). (4.3)

Maximum entropy for H(M) can be achieved by partitioning the measured bins with
N = 2n bins of equal area, thus giving H(M) = n. With this binning method, there
will be more bins near the origin. As a result, the conditional entropy H(M |q) is largest
when evaluated at q = 0. This is actually equivalent to the entropy of the measured
data without any quantum fluctuation contributions H(E). We can then derive a lower

3Here for brevity we omit the subscripts for the distributions.
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Figure 4.4: (a) Shannon entropy for the measured signal H(M) and the electronic noise H(E).
(b) The mutual information between the measured signal and the quantum entropy I(M : Q),
together with the difference between H(M) and H(E). The dashed line is the upper bound for
I(M :Q) at the infinite binning limit. The SNR is 15 dB.

bound for I(M :Q) by having:

I (M : Q) ≥ n−H(M |q = 0)

= n−H(E). (4.4)

This equation can also be reinterpreted as H(M) −H(E), the entropy of the measured
signal subtracted the noise entropy. This approach, as shown in Fig. 4.4 for signal-to-
noise ratio (SNR) of 15 dB 4 , however does not allow us to extract more randomness
even if we increase the number of bins, which is contradictory to what we would expect.
Upon observation of Fig. 4.4(a), the entropy of the electronic noise increases at almost
the same rate as the measured signal after a threshold binning value. Due to equal
area binning of the measured signal, the bin width around the centre is smaller. As the
number of bins increases beyond a threshold, the electronic noise will also be binned,
and increases as the binning further increase. Hence increasing the number of bins does
not lead to any further increase in the effective number of bits, as reflected in Fig. 4.4(b).

The mutual information I(M :Q) can be calculated exactly (for arbitrary amounts of
partitioning) once we obtain the joint probability table between M and Q. This is done
using the formula

I (M :Q) =
∑

all bins(Ai,Bj)

P (m ∈ Ai, q ∈ Bj) log2

P (m ∈ Ai, q ∈ Bj)
P (m ∈ Ai)P (q ∈ Bj)

. (4.5)

On the other hand, in the limit of infinitely many bins n → ∞, we can calculate the
maximum value of I (M : Q) with Eq. (2.68)

I (M : Q) =
1

2
log2

(
1 +

σ2
Q

σ2
E

)
, (4.6)

4SNR is defined as 10 log10(σ2
M/σ

2
E), where M is the measurement signal and E is the noise.
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where σ2
E = σ2

M − σ2
Q. We see that the exact amount of I(M :Q) approaches the asymp-

totic value, and does not increase with further binning. This is rather undesirable, as it
unnecessarily limits the extractable randomness, and ultimately the speed of the QRNG.

To understand this approach in more detail, note that the quantity I(M :Q) is actu-
ally the channel capacity of the QRNG, i.e. it can tell us how easy it is to recoverQwhen
given M . However, for the purposes of an RNG, it is actually not our goal to recover
the quantum signal. Consider an example of M = Q + E mod 2, where both Q and E

represent a single random bit and an eavesdropper Eve has access to E. Therefore, the
measurement outcome M is also one random bit. This means M and Q are not corre-
lated at all, implying that the mutual information vanishes, i.e. I(M :Q) = 0. However,
the eavesdropper Eve cannot learn the value of M since I(M :E) is also zero. The mea-
sured signal conditioned on the electronic noise, in this case, is H(M |E) = H(M) and is
hence 1 bit. Therefore, even if I(M :E) is zero, one can still hope to extract random bits.
Hence, the channel capacity does not seem to have the desired operational significance
in terms of quantifying extractable randomness.

This motivates the detailing of our next approach, where we consider H(M |E), the
entropy of M conditioned on the classical side-information E.

Entropy of measured data conditioned on classical noise

In order to evaluate H(M |E), we need to figure out the amount of correlation between
M and E. As before, given the joint probability table between the measured data and
the electronic noise, we can calculate the mutual information I(M : E). To obtain an
upper bound for this, we assume that Eve has a continuous noise source to grant her
infinite measurement precision

I (M : E) =
∑

all bins(Ai)

∫
deP (M ∈ Ai, E = e) log2

P (M ∈ Ai, E = e)

P (M ∈ Ai)P (E = e)
. (4.7)

This quantity is plotted in Fig. 4.5(a) for various bin sizes, with an 15dB of SNR. It is
bounded from above,

I (M : E) ≤ 1

2
log2

(
1 +

σ2
E

σ2
Q

)
, (4.8)

and approaches the bound as the number of measurement bins goes to infinity. For
equal area binning of the measured data, the quantity H(M |E) is evaluated via the
following relation:

H(M |E) = n− I(M :E). (4.9)

We plot this in Fig. 4.5(b). In contrary to what we see in the case of I(M :Q), as we have
more binning, the effect of the electronic noiseE is actually bounded rather than increas-
ing. In this case, increasing the binning allow us to continuously increase the conditional
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Figure 4.5: (a) The mutual information between the measured and the electronic noise I(M :E).
Dashed line represent the upper bound at infinite binning limit. (b) The effective number of bits
quantified by the conditional Shannon entropy H(M |E). (c) The ratio between I(M : E) and
H(M |E) decreases as the binning increases. The SNR is 15 dB.

Shannon entropy H(M |E). As shown in Fig. 4.5(c), the ratio of I(M : E)/H(M |E) re-
duces by 5 times from a 1-bit to an 8-bit binning.

For the case of infinite binning, we can adopt the use of differential entropy h(X),
which is an extension of the Shannon entropy for continuous variables (Sec. 2.7). In this
case, we have

h(M |E) = h(M)− I(M :E)

=
1

2
log2(2πeσ2

M )− 1

2
log2

(
1 +

σ2
E

σ2
Q

)
=

1

2
log2(2πeσ2

Q) = h(Q), (4.10)

where we see that h(M |E) is actually equal to the continuous Shannon entropy of the
quantum signal Q alone. This is expected as h(M |E) = h(Q + E|E) = h(Q|E) = h(Q),
given the fact that quantum noise and the classical noise are independent of each other.
The variance σ2

Q is inferred by subtracting the σ2
E from σ2

M .

Despite the advantage of being useful in utilising the binning methods, this quantifi-
cation based on conditioning of measured data over classical noise seems to be overly
generous. For example, in the case of finite binning, in Fig. 4.5(b), 99.72% of 8 bits is



54 Secure Quantum Random Number Generator (QRNG)

considered as effective entropy independent of the eavesdropper. Ultimately, as the
number of bits increases, the bits to be subtracted is bounded too. Also, we remind the
reader that in Sec. 4.3, we have seen that the min-entropy is the appropriate candidate,
instead of the Shannon counterpart.

Estimating the amount of quantum contribution to raw randomness

More recently, Ma et al. [88] proposed a framework to obtain randomness that is inde-
pendent of classical noise. By using min-entropy as the quantifier for randomness, they
extracted a higher rate of random bits of 6.7 bits per sample from 8 bits (approximately
84%), where the quantum contribution of the randomness was obtained by inferring
the signal-to-noise ratio. Similar to the previous case, the quantum entropy is inferred,
however, it is evaluated upon min-entropy instead. This method, though provides a
more realistic description, calls for a more rigorous mathematical treatment. For exam-
ple, the min-entropy version for Eq. (4.10) might not work here, i.e. the relation between
Hmin(M |E) and Hmin(Q) is unclear. We will explore this in the next section. Further-
more, as we will demonstrate in the Chapter 5, this approach misses the opportunity
to maximise the randomness, since there are no parameters (such as the bounding of
electronic noise and the choice of dynamical range) left to be optimised.

Conditional min-entropy

Given a random variableX potentially correlated with some other classical information
K, the worst-case conditional min-entropy Hmin(X|K) is defined as [91]

Hmin(X|K) := − log2

[
max

kj∈supp(PK)
max
xi∈X

PX|K(xi|kj)
]
, (4.11)

where the support supp(f) is the set of values xi such that f(xi) > 0. It tells us the
amount of (almost) uniform and independent random bits that one can extract from a
biased random source, with respect to untrusted parameters.

For the purpose of illustration, let us consider the two extreme cases:

• I(X : K) = 0, i.e. the random variable does not depend on the classical informa-
tion K. In this case, we get PX|K(xi|kj) = PX(xi), and Hmin(X|K) = Hmin(X)

which is the typical formula for randomness extraction (Eq. 4.1).

• X = K, i.e. we are only detecting the untrusted classical information. In this
case PX|K(xi|kj) = δ(xi − kj), and maxPX|K(xi|kj) = 1, hence Hmin(X|K) = 0,
implying that there is no randomness remaining to be extracted.

Applying this quantity in the case of randomness quantification of a QRNG, Eq. 4.11
takes the form of Hmin(Mdis|E), where Mdis is the discretized measured signal, and E is
the classical noise. The worst-case conditional min-entropy is a very stringent quantifier
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for randomness, since it assumes that the malicious party has full control over E. As we
will describe in Sec. 5.2.1, without a bound on the range of E, one cannot extract any
secure randomness at all! However, if we assume that an adversary can only eavesdrop
on E (or compute it), but has no control over it, we can estimate the average chance
of successful eavesdropping with the average guessing probability of Mdis given Edis

[82, 83, 92],
Pguess(Mdis|Edis)

=

 ∑
ej∈Edis

PEdis
(ej) max

mi∈Mdis

PMdis|Edis
(mi|ej)

 , (4.12)

which denotes the probability of correctly predicting the value of discretized measured
signal Mdis using the optimal strategy, given access to discretized classical noise Edis.
Here PEdis

(ej) is the discretized probability distribution of the classical noise. The ex-
tractable secure randomness from our device is then quantified by the average condi-
tional min-entropy

H̄min(Mdis|Edis) = − log2 Pguess(Mdis|Edis). (4.13)

4.4.2 Quantum side-information

Analogous to classical side-information, a random variable X can also be correlated
with another quantum system R. An observer with access to system R can, by measur-
ing or performing quantum operations on R, gain knowledge about X . In this case, a
generalisation of the conditional min-entropy to the quantum regime is warranted.

Let us first understand how the joint state of X and R looks like. Since X is classical
and R is quantum, such states are also known as cq-states:

ρXR =
∑
x∈X

PX(x)|x〉〈x| ⊗ ρxR , (4.14)

where one thinks of the classical value x ∈ X as encoded in mutually orthogonal states
{|x〉}x∈X on a quantum system X . The conditional min-entropy of X given R is then
defined as [93]

Hmin(X|R) := max
σR∈HR

sup{λ : 2−λIX ⊗ σR − ρXR ≥ 0;σR ≥ 0, tr(σR) ≤ 1} . (4.15)

Here, IX is the identity matrix of the Hilbert space HX and the maximisation is per-
formed over the reduced density matrix σR of the subsystem R. Conditional min-
entropy tells us how much we know about X , inferred from measurements on R alone.
It has been shown that this corresponds to the maximum probability of guessing X

given system R [82], and therefore naturally generalises the classical conditional min-
entropy defined above in Eq. (4.13).
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4.4.3 Source and device independent randomness

The quantification of the entropy in the QRNG we discussed so far made the assump-
tions that the underlying quantum physical process and measurement device can be
characterized and calibrated. This type of device falls under the category of practical
QRNG, where effect from the unwanted classical (or quantum) noises can be isolated
with appropriate modelling. In situation such as a black-box scenario, where the source
and the measurement devices are unknown, it is hard to pinpoint whether the “QRNG”
produces fresh random bits. The worst case would be the scenario where the device is
merely a pseudo-random number generator in disguise, which could be correlated to
the malicious provider.

To overcome these restrictions, certifiable randomness based on a violation of fun-
damental inequalities has recently been proposed and demonstrated [76, 92, 94]. These
self-testing devices do not rely on the assumption of a trusted device. For example, con-
sider a device independent QRNG based on the violation of Bell correlations. Even if the
output randomness is tainted with spurious noise, genuine randomness can be certified
and bounded based on the measured correlations alone; it is thus independent from the
internal structure of the generator [76]. However, achieving a high generation rate with
such devices is experimentally challenging, since a large amount of the raw output has
to be used for statistical analysis instead. Moreover, for the generated randomness to
be considered fully device-independent, all the loopholes in the experiments have to
be addressed simultaneously too. And this milestone has only been checked off very
recently with state-of-the-art devices [13, 14, 12].

As described in the block description of QRNG (Fig. 4.2), the entropy source com-
prises a quantum source plus measurement devices. In a practical scenario, usually
either part is accessible to the user. This opens up the possibility of an intermediate so-
lution known as semi-self-testing. By making realistic assumptions on either the source or
the measuring devices, a semi-self-testing QRNG offers a trade-off between the practical
QRNGs and self-testing QRNGs. The key idea is that by using some initial randomness,
the measurement basis or the quantum state can be chosen according to some random
variables, in order to bound the effect of untrusted parties. We refer our reader to [41]
for a more detailed exposition of these three regimes.

4.5 Randomness extraction

Lastly, we explain the notion of randomness extraction, and its role in distilling fully
random bits out of raw, non-uniform randomness. We discuss how randomness ex-
traction is achieved via post-processing methods, and provide a review of the different
approaches used to date.

Most of the times, quantum sources are not ideal sources of randomness, in the sense
that the distribution is often biased, while uniform randomness is required for applica-
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tion purposes. In our situation, the quantum vacuum state measured by our CV QRNG
exhibits a Gaussian distribution. To generate ideal randomness, postprocessing of the
raw output is necessary to produce shorter, yet almost uniformly distributed random
strings. Therefore, an important phase in postprocessing is randomness extraction. Ran-
domness extractors are functions that take raw, imperfect randomness as input, while
outputting a random sequence of shorter length, leaving most of the unpredictability
intact, in a condensed form.

4.5.1 Algorithm extractor

Ad hoc algorithms such as the Von Neumann extractor, XOR corrector, and least sig-
nificant bit operation are widely used [95, 71, 47, 96, 97, 70]. These methods, although
simple in practice, might fail to produce randomness at all if non-negligible correlations
exist among the raw bits [98].

4.5.2 Cryptographic extractor

Another attractive alternative for secure randomness extraction is the use of crypto-
graphic hashing functions [99, 100, 101, 102]. While these cryptographic hashing func-
tions are not information-theoretically proven to be secure, they are still suited for many
cryptographic applications and settings where the adversary is assumed to be computa-
tionally bounded. The reason for utilizing them over universal hashing functions is that
they can have high throughput due to efficient hardware implementation. Previously,
cryptographic hashing extractors have been deployed in [66, 75, 64, 59], with functions
such as SHA-512 and Whirlpool. Most of the implementations keep a number of bits
exactly equal to the min-entropy, which might not be fully secure (see Section 4.5.4).

4.5.3 Information theoretic extractor

From an information-theoretic standpoint, universal hashing functions are desirable
candidates for randomness extraction [85, 88]. These functions act to recombine bits
within a sample according to a randomly chosen seed, and map them to truncated, al-
most uniform random strings. They constitute a strong extractor which implies that the
seed can be reused without sacrificing too much randomness. In recent development
of QRNGs [72, 88, 103, 89, 79], they have been used to construct hashing functions such
as the Toeplitz-hashing matrix. These constructions require a long (but reusable) seed
[104]. A different implementation of an information-theoretic randomness extractor, the
Trevisan extractor, [86, 87, 88] has also received considerable attention. This particular
construction of a strong extractor has been proven secure against quantum side informa-
tion, and, furthermore, it requires a relatively short seed. Despite so, the complexity of
the algorithm imposes a very stringent limit on the extraction speed (0.7 kb/s achieved
in Ref. [88] and 150 kb/s in Ref. [87]).
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4.5.4 Notes on the Leftover Hash Lemma

From an information-theoretic standpoint, the most prominent advantage of universal
hashing functions described in Sec. 4.5 is the randomness of the output guaranteed un-
conditionally by the leftover hash lemma (LHL). More specifically, LHL states that for
any real-valued parameter ε > 0, if the output of a universal hashing function has length

l ≤ t− 2 log2(1/ε), (4.16)

where t denotes the (conditional) min-entropy, then the output will be ε-close in terms of
statistical distance to a perfectly uniform distribution [93]. Moreover, a universal hash-
ing function constructs a strong extractor, where the output string is also independent
of the seed of the function [85, 88].

Meanwhile, the quantum leftover hash lemma is a extension of its classical coun-
terpart, proven only recently in [93], where the statistical distance ε is replaced by the
trace distance of the global state, while the uniform distribution is represented by a
maximally mixed state on the system encoding the random variable of interest.

On the other hand, for a strong cryptographic extractor, the output is ε′-
computationally indistinguishable from the uniform distribution (see Refs. [101, 100]
for formal definitions). It is shown in Refs. [93, 102] that LHL can be generalized to take
into account almost universal functions (functions statistically ξ-close to being universal
hashing functions). This generalized LHL takes the form of l = min(t, log2 (1/ξ)) − 2s,
where s is an integer related to ε′. Under suitable parameter constraints and operating
modes, an ε′-cryptographic extractor can be treated as a ξ-almost universal function,
and, hence a strong randomness extractor [102, 101]. Hence for a cryptographic extrac-
tor, it is necessary to sacrifice some bits according to the desired security parameter s to
ensure the security and uniformity of the output.



Chapter 5

Maximisation of Extractable
Randomness in Continuous Variable
QRNG

“If you know the enemy and know yourself you need not fear the results of a hundred
battles.”

– Sun Tzu, The Art of War

Overview

Intrinsic uncertainty is a distinctive feature of quantum physics, which can be used to
harness high-quality randomness. However, in realistic scenarios, the raw output of
a quantum random-number generator is inevitably tainted by classical technical noise.
The integrity of the device can be compromised if this noise is tampered with, or even
controlled by some malicious party. In this chapter, we propose and experimentally
demonstrate an approach that produces side-information independent randomness that
is quantified by min-entropy conditioned on this classical noise. We present a method
for maximizing the conditional min-entropy of the number sequence generated from a
given quantum-to-classical-noise ratio. The spectral response of the detection system
shows the potential to deliver more than 70 Gbit/s of random numbers in our experi-
mental setup. The majority of work in this chapter has been published in the following
article:

• J. Y. Haw, S. Assad, A. Lance, N. Ng, V. Sharma, P. K. Lam, and T. Symul.
”Maximization of extractable randomness in a quantum random-number generator.”
Physical Review Applied, 3(5), 054004 (2015).

5.1 Continuous Variable QRNG

Following the previous work of ANU Quantum Optics group in [74], our source of ran-
domness is the based on the continuous variable (CV) homodyne measurement of the

59
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vacuum state (Sec. 3.3.2). Our CV-QRNG exploits the uncertainty principle to harness
entropy from quantum states. The projection of the Wigner function, or the distribution
of the amplitude quadrature X̂ , follows a Gaussian random distribution. There are sev-
eral distinct advantages of this approach. First, the resource of quantum randomness,
the vacuum state, can be easily prepared with a high fidelity. Second, the performance
of the QRNG is insensitive to detector loss, which can be simply compensated by in-
creasing the local oscillator power.

5.1.1 Characterization of noise and measurement

- R  Rδ
0 2n-1-121-2 -1-2n-1 ... ...

P
Mdis
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i
)

m
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δ/2

i:

Figure 5.1: Model of the n-bit ADC, with analog input in the ADC dynamical range [−R +

δ/2, R−3δ/2] and bin width δ = R/2n−1. We choose the central bin centred around 0, the lowest
bin imin = −2n−1 centered around −R, and the highest bin imax = 2n−1 − 1 centered around
R− δ.

We first discuss the model for our CV QRNG. A homodyne measurement of the vac-
uum state gives Q, the quadrature values of the vacuum state. The theory of quantum
mechanics states that these values are random and have a probability density function
(PDF) pQ which is Gaussian and centred at zero with variance σ2

Q. In practice, these
quadrature values cannot be measured in complete isolation from sources of classical
noise E. The measured signal M is then M = Q+ E. Denoting the PDF of the classical
noise as pE , the resulting measurement PDF, pM is then a convolution of pQ and pE . As-
suming that the classical noise follows a Gaussian distribution centred at zero and with
variance σ2

E , the measurement PDF is

pM (m) =
1√

2πσM
exp

(
− m2

2σ2
M

)
, (5.1)

for m ∈ M where the measurement variance σ2
M = σ2

Q + σ2
E . The ratio between the

variances of the quantum noise and the classical noise defines the QCNR, i.e. QCNR=

10 log10(σ2
Q/σ

2
E). The sampling is performed over an n-bit ADC with dynamical ADC

range [−R+δ/2, R−3δ/2]. Upon measurement, the sampled signal is discretized over 2n

bins with bin width δ = R/2n−1. The range is chosen so that the central bin is centered
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at zero. The resulting probability distribution of discretized signal Mdis reads

PMdis
(mi)

=


∫ −R+δ/2
−∞ pM (m)dm, i = imin,∫mi+δ/2
mi−δ/2 pM (m)dm, imin < i < imax,∫∞
R−3δ/2 pM (m)dm, i = imax,

(5.2)

as shown in Fig. 5.1 and mi = δ × i, where the i are integers ∈ {−2n−1, ..., 2n−1 − 1}.
The two extreme cases i = imin and i = imax are introduced to model the saturation on
the first and last bins of an ADC with finite input range, i.e. all the input signals outside
[−R+ δ/2, R− 3δ/2] will be accumulated in the first and last bins. Figure 5.2 shows the
discretized distribution PMdis

(mi) with different R. We see that an appropriate choice of
dynamical ADC range for a given QCNR and digitization resolution n is crucial, since
overestimating or underestimating the range will either lead to excessive unused bins or
unnecessary saturation at the edges of the bins [97], causing the measurement outcome
to be more predictable. However, in designing a secure CV QRNG, R should not be

Figure 5.2: Numerical simulations for the measured distribution probabilities PMdis
(mi) versus

quadrature values, with different dynamical ADC range parameters R = (a) 5, (b) 2 and (c) 8.
Without optimization, one will have either an oversaturated or unoccupied ADC bins, which
will compromise both the rate and the security of the random-number generation. The parame-
ters used are n = 8 and QCNR= 10 dB.

naively optimized over the measured distribution PMdis(mi) but over the distribution
conditioned on the classical noise. The conditional PDF between the measured signal
M and the classical noise E, pM |E(m|e) is given by

pM |E(m|e) =
1√

2π(σ2
M − σ2

E)
exp

[
− (m− e)2

2(σ2
M − σ2

E)

]

=
1√

2πσQ
exp

[
−(m− e)2

2σ2
Q

]
. (5.3)

This is the PDF of the quantum signal shifted by the classical noise outcome e. By setting
σ2
Q = 1, we normalize all the relevant quantities by the quantum noise. From Eq. (5.2),
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the discretized conditional probability distribution is, thus,

PMdis|E(mi|e)

=


∫ −R+δ/2
−∞ pM |E(m|e)dm, i = imin,∫mi+δ/2
mi−δ/2 pM |E(m|e)dm, imin < i < imax,∫∞
R−3δ/2 pM |E(m|e)dm, i = imax.

(5.4)

With these, we are now ready to discuss how R should be chosen under two different
definitions of min-entropy, namely worst-case min-entropy and average min-entropy.

5.2 Maximising the min-entropy

5.2.1 Worst-case min-entropy

Figure 5.3: Numerical simulations of: (a) conditional probability distributions PMdis|E(mi|e),
with e = {−10σE , 0, 10σE} (from left to right) and R = 5. Without optimizing R, when e =

±10σE , saturations in the first and last bins affect the maximum of the conditional probability
distribution. Inset: PMdis|E(mi|e), with e = {−100σE , 0, 100σE} (from left to right). Unbounded
classical noise will lead to zero randomness due to the oversaturation of dynamical ADC. (b)
Optimized PMdis|E(mi|e), with e = {−10σE , 0, 10σE} (from left to right). From Eq. (5.9), the
optimal R is chosen to be 5.35. The saturations do not exceed the maximum of the conditional
probability distribution whenever −10σE ≤ e ≤ 10σE . The parameters are n = 8, QCNR= 10

dB. Dashed lines indicate mi = ±10σE .

In the case of Gaussian distributions, the support of the probability distribution will
be R. Following Eq. (5.4), upon discretization of the measured signal M , the worst-case
min-entropy conditioned on classical noise E is

Hmin(Mdis|E) = − log2

[
max
e∈R

max
mi∈Mdis

PMdis|E(mi|e)
]
. (5.5)

Here we assumed that from the eavesdropper’s perspective, the classical noise is known
fully with arbitrary precision. Performing the integration in Eq. (5.4), the maximization
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over Mdis in Eq. (5.5) becomes

max
mi∈Mdis

PMdis|E(mi|e)

= max


1
2

[
1− erf

(
e+R−δ/2√

2

)]
,

erf
(

δ
2
√

2

)
,

1
2

[
erf
(
e−R+3δ/2√

2

)
+ 1
]
,

(5.6)

where erf(x) = 2/
√
π
∫ x

0 e
−t2dt is the error function. We note that we have

maxe∈R maxmi∈Mdis
PMdis|E(mi|e) = 1, achieved when e → −∞ or e → ∞. This re-

sults in Hmin(Mdis|E) = 0 [see inset of Fig. 5.3 (a)]. Indeed it is intuitive to see that in
the case where the classical noise e takes on an extremely large positive value, the out-
come of Mdis is almost certain to be mimax with large probability. However, this scenario
happens with a very small probability. Hence for practical purposes, one can bound the
maximum excursion of e, for example −5σE ≤ e ≤ 5σE , which is valid for 99.9999% of
the time. With this bound on the classical noise, we now have

max
e∈[emin,emax]

max
mi∈Mdis

PMdis|E(mi|e)

= max


1
2

[
1− erf

(
emin+R−δ/2√

2

)]
,

erf
(

δ
2
√

2

)
,

1
2

[
erf
(
emax−R+3δ/2√

2

)
+ 1
]
,

(5.7)

and when emin = emax,

Hmin(Mdis|E) = − log2

[
max

{
1

2

[
erf

(
emax −R+ 3δ/2√

2

)
+ 1

]
; erf

(
δ

2
√

2

)}]
, (5.8)

which can be optimized by choosing R such that

1

2

[
erf

(
emax −R+ 3δ/2√

2

)
+ 1

]
= erf

(
δ

2
√

2

)
. (5.9)

This optimized worst-case min-entropy Hmin(Mdis|E) is directly related to the ex-
tractable secure bits that are independent of the classical noise. As shown in Fig. 5.3(a),
when Eq. (5.8) is not optimized with respect to R, the saturation in the first (last) bin
for emin/max = ±10σE becomes the peaks of the conditional probability distribution,
hence compromising the attainable min-entropy. By choosing the optimal value for R
via Eq. (5.9), as depicted in Fig. 5.3(b), the peaks at the first and last bins will always
be lower than or equal to the probability within the dynamical range. Thus, by allow-
ing the dynamical ADC range to be chosen freely, one can obtain the lowest possible
conditional probability distribution, and hence produce the highest possible amount of
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Figure 5.4: Model of the n-bit ADC, with analog input in the ADC dynamical range [−R +

δ/2, R − 3δ/2] and bin width δ = R/2n−1. Offset of the distribution is modeled by another
reference frame m′ centered at offset ∆. In the original frame m, the lowest and highest bins are
now centered around −R−∆ and R− δ −∆.

secure random bits per sample for a given QCNR and n-bit ADC.

In a realistic scenario, the mean of the measured signal’s probability distribution is
often nonzero. It is possible that such an offset might be induced by a malicious party
over the sampling period. The model is depicted in Fig. 5.4, where the offset ∆ of the
distribution is captured by another reference frame m′ centered at ∆. In this model,
Eq. (5.4) can now be rewritten as

P
(∆)
Mdis|E(mi|e) =
∫ −R−∆+δ/2
−∞ pM ′|E(m′|e)dm′, i = imin,∫m′i−∆+δ/2

m′i−∆−δ/2 pM ′|E(m′|e)dm′, imin < i < imax,∫∞
R−3δ/2−∆ pM ′|E(m′|e)dm′, i = imax.

(5.10)

Following the similar procedure as before and bounding ∆, we finally arrive at the
generalization of Eq.(5.8),

Hmin(Mdis|E) = − log2 max(c1, c2). (5.11)

Here c1 = 1
2

[
erf
(
emax+∆max−R+3δ/2√

2

)
+ 1
]

and c2 = erf
(

δ
2
√

2

)
. The results are tabulated

in Tables 5.1 and 5.2.

In Fig. 5.5(a), we show the extractable secure random bits for different digitization n
under the confidence interval of 5σE ≤ |e + ∆| ≤ 20σE . At the high QCNR regime, the
classical noise contribution does not compromise the extractable bits too much. As the
classical noise gets more and more comparable to the quantum noise, although more
bits have to be discarded, one can still extract a decent amount of secure random bits.
More surprisingly, even if the QCNR goes below 0, that is, classical noise becomes larger
than quantum noise, in principle, one can still obtain a nonzero amount of random
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Table 5.1: Optimized Hmin(Mdis|E) (and R) for an 8-bit ADC

QCNR (dB)
|e+ ∆|

0 5σE 10σE 15σE 20σE

∞ 7.03 (2.45) 7.03 (2.45) 7.03 (2.45) 7.03 (2.45) 7.03 (2.45)
20 6.79 (2.90) 6.58 (3.35) 6.40 (3.81) 6.23 (4.27)
10 6.37 (3.88) 5.91 (5.35) 5.55 (6.85) 5.26 (8.36)
0 5.50 (7.10) 4.75 (11.92) 4.25 (16.82) 3.88 (21.75)
-∞ 0 0 0 0

Table 5.2: Optimized Hmin(Mdis|E) (and R) for a 16-bit ADC

QCNR (dB)
|e+ ∆|

0 5σE 10σE 15σE 20σE

∞ 14.36 (3.90) 14.36 (3.90) 14.36 (3.90) 14.36 (3.90) 14.36 (3.90)
20 14.20 (4.38) 14.05 (4.85) 13.91 (5.33) 13.79 (5.81)
10 13.89 (5.40) 13.53 (6.92) 13.25 (8.46) 13.00 (9.99)
0 13.20 (8.70) 12.56 (13.59) 12.12 (18.51) 11.77 (23.45)
-∞ 0 0 0 0

Figure 5.5: (a) OptimizedHmin(Mdis|E) and (b) normalizedHmin(Mdis|E) as a function of QCNR
for different n-bit ADCs. Shaded areas: 5σE ≤ |e + ∆| ≤ 20σE . The extractable bits are robust
against the excursion of the classical noise, especially when the QCNR is large. A non-zero
amount of secure randomness is extractable even when the classical noise is larger than the
quantum noise. The extractable secure randomness per bit increases as the digitization resolu-
tion n is increased.

bits that are independent of classical noise. From Fig. 5.5(b), we notice the extractable
secure randomness per bit increases as we increase the digitization resolution n. This
interplay between the digitization resolution n and QCNR is further explored in Fig. 5.6,
where normalizedHmin(Mdis|E) is plotted against n for several values of QCNR. We can
see that for higher ratios of quantum-to-classical-noise, a lesser amount of digitization
resolution is required to achieve a certain value of secure randomness per bit. In other
words, even if QCNR cannot be improved further, one can achieve a higher ratio of
secure randomness per bit simply by increasing n.
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Figure 5.6: Normalized worst-case conditional min-entropy Hmin(Mdis|E) as a function of n-bit
ADC for different QCNR values. |∆| = 0 and |e| ≤ 5σE . The interplay between the QCNR and
digitization resolution n is shown, where one can improve the rate of secure randomness per
bit either by improving the QCNR or increasing n. Inset: Zoom in for Hmin(Mdis|E)/n ≥ 0.85

(dashed line). Even when the classical noise is more dominating compared to the quantum
noise (QCNR= −3 dB), 85 % of the randomness per bit can be recovered by having at least
approximately 22 bits of digitization.

5.2.2 Average conditional min-entropy

As described in Section 5.2.1, without a bound on the range of classical noise, one cannot
extract any secure randomness. However, if we assume that an adversary can only listen
to, but has no control over the classical noise, the extractable secure randomness from
our device is then quantified by the average conditional min-entropy

H̄min(Mdis|Edis) = − log2 Pguess(Mdis|Edis). (5.12)

where Pguess(Mdis|Edis) is defined in Eq. 4.12.

Binning of electronic noise - from eavesdropper’s perspective

From Eq. (5.2), the discretized electronic noise distribution on the eavesdropper’s ADC
with dynamical range Re and digitization ne is given by

PEdis
(ej) =


∫ −Re+δe/2
−∞ pE(e)de, j = jmin,∫ ej+δe/2
ej−δe/2 pE(e)de, jmin < j < jmax,∫∞
Re−3δe/2

pE(e)de, j = jmax,

(5.13)

where δe = Re/2
ne−1 is the corresponding bin width. In order to achieve the lower

bound of the average conditional min-entropy described in Eq. (5.12), we imagine that
the eavesdropper possesses a device with infinite dynamical ADC range and digitiza-
tion bits, i.e. Re →∞ and ne →∞. As Re →∞, the first and last cases in Eq. (5.13) can
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be discarded, and we are left with

PEdis
(ej) =

∫ ej+δe/2

ej−δe/2
pE(e)de. (5.14)

To evaluate the expression for the discretized conditional probability distribution, we
make use of the mean value theorem stated below:

Theorem 1 Mean value theorem: For any continuous function f(x) on an interval [a, b],
there exists some x̄ ∈ [a, b] such that,∫ b

a
f(x)dx = (b− a)f(x̄). (5.15)

By invoking Theorem 1, there exists ēj ∈ [ej − δe/2, ej + δe/2] such that Eq. (5.14) can be
written as

PEdis
(ej) = pE(ēj)δe. (5.16)

Substituting this back to Eq. (4.12), we end up with

Pguess(Mdis|Edis)

=

 ∑
ej∈Edis

pE(ēj)δe max
mi∈Mdis

PMdis|Edis
(mi|ej)

 . (5.17)

Assuming an infinite binning δe → 0, the sum becomes an integral,

Pguess(Mdis|E)

= lim
δe→0

Pguess(Mdis|Edis)

=

[∫ ∞
−∞

pE(e) max
mi∈Mdis

PMdis|E(mi|e)de
]
.

(5.18)

Together with Eq. (5.6), we finally arrive at

Pguess(Mdis|E)

=

[∫ ∞
−∞

pE(e) max
mi∈Mdis

PMdis|E(mi|e)de
]

=
1

2

(∫ e1

−∞
Pe(e)

[
1− erf

(
e+R− δ/2√

2

)]
de

+

[
erf

(
e2√
2σE

)
− erf

(
e1√
2σE

)]
erf

(
δ

2
√

2

)
+

∫ ∞
e2

Pe(e)

[
erf

(
e−R+ 3δ/2√

2

)
+ 1

]
de

)
,

(5.19)

where e1 and e2 are chosen to satisfy the maximization upon Mdis for a given R. The
optimal R is then determined numerically. This result can be easily generalized to take
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into account a DC offset with the steps described in Sec. 5.2.1, giving

Pguess(Mdis|E)

=
1

2

(∫ e1

−∞
pE(e−∆)

[
1− erf

(
e+ ∆ +R− δ/2√

2

)]
de

+

[
erf

(
e2 −∆√

2σE

)
− erf

(
e1 −∆√

2σE

)]
erf

(
δ

2
√

2

)
+

∫ ∞
e2

pE(e−∆)

[
erf

(
e+ ∆−R+ 3δ/2√

2

)
+ 1

]
de

)
.

(5.20)

Here, we again assume that the eavesdropper can measure the full spectrum of the
classical noise, with arbitrary precision. This gives the eavesdropper maximum power,
including an infinite ADC range Re → ∞ and infinitely small binning δe → 0. As
detailed in Appendix 5.2.2, under these limits, Eq. (5.12) takes the form of

H̄min(Mdis|E)

= lim
δe→0

H̄min(Mdis|Edis)

= − log2

[∫ ∞
−∞

PE(e) max
mi∈Mdis

PMdis|E(mi|e)de
]
.

(5.21)

The optimized result for the average min-entropy H̄min(Mdis|E) with the corresponding

Table 5.3: Optimized H̄min(Mdis|E) (and R) for 8- and 16-bit ADCs

QCNR (dB) n = 8 n = 16

∞ 7.03 (2.45) 14.36 (3.90)
20 6.93 (2.59) 14.28 (4.09)
10 6.72 (2.93) 14.11 (4.55)
0 6.11 (4.33) 13.57 (6.48)
-∞ 0 0

dynamical ADC range R is depicted in Table 5.3. Similar to the worst-case min-entropy
scenario in Sec. 5.2.1, one can still obtain a significant amount of random bits even if the
classical noise is comparable to quantum noise. On the contrary, a conventional unop-
timized QNRG requires high operating QCNR to access the high-bitrate regime. When
QCNR→ ∞, the measured signal does not depend on the classical noise and the result
coincides with that of the worst-case conditional min-entropy. In fact, the worst-case
conditional min-entropy (Eq. (5.5)) is the lower bound for the average conditional min-
entropy (Eq. (5.12)). In the absence of side-information E, both entropies will reduce
to the usual min-entropy Eq. (4.1) [92]. Compared to the worst-case min-entropy, the
average conditional min-entropy is more robust against degradation of QCNR; hence, it
allows one to extract more secure random bits for a given QCNR. This is expected, since
in this case, we do not allow the eavesdropper to influence our device, which is a valid
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assumption for a trusted laboratory.

5.3 Experimental implementation

5.3.1 Physical setup and characterization

Quantum Entropy
n-bit

ADC

Classical Entropy

AES-128

FPGA Raw

Data

Random data

Laser

Block

Mixer VCO 1 VCO 2 Low Pass Filter
Sum-

Di!erence

Rejected Data
Seed

Figure 5.7: Schematic setup of CVQRNG, where a continuous-variable homodyne detection is
performed on the quantum vacuum state, followed by mixing down at 1.375 GHz and 1.625
GHz. The mixing signals are generated by voltage-controlled oscillators. The dynamical ADC
range of the ADC is chosen appropriately according to the QCNR and ADC digitization res-
olution n to maximize the extractable randomness. The raw output, which consists of both
quantum and classical contributions, will be post processed by field-programmable gate array.
A cryptographic hashing function (AES-128) is applied to extract secure randomness quantified
by conditional min-entropy.

As depicted in Fig. 5.7, our CV-QRNG setup consists of a homodyne detection of the
quantum vacuum state, or a self-homodyning (Sec. 3.3.2) followed by post-processing.
We now segment our setup according to the block diagram picture (Sec. 4.2). In the
quantum entropy block, a 1550-nm fibre-coupled laser (NP Photonic Rock) operating at
60 mW serves as the local oscillator of the homodyning setup. This local oscillator is
sent into one port of a 50:50 beam splitter, while the other one is physically blocked and
serves as the vacuum input. Entering to the classical entropy domain, the outputs are
then optically coupled to a pair of balanced photodetectors with 30 dB of common-mode
rejection. The intensity of the output ports are recorded over a detection bandwidth of
3 GHz. Since the local oscillator’s amplitude α is significantly larger than the quantum
vacuum fluctuation, the difference of the photocurrents from the pair of detectors is pro-
portional to |α|Xv, where Xv is the quadrature amplitude of the vacuum state. Hence,
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the contribution of quantum noise is essentially amplified via the balanced homodyne
detection.

In order to sample the vacuum field at the spectral range where technical noise is
less significant and where the laser is shot-noise limited (Fig. 5.8(a)), the electronic out-
put is split and mixed down at 1.375 GHz and 1.625 GHz (dashed lines in Fig. 5.8(b)).
The QCNR clearances are about 13 dB for both channels, which are sampled at 250
MSamples per second. The shaded region between the measured signal and classical
noise indicates the available quantum randomness in our broadband 3-GHz photocur-
rent detectors, with an average QCNR of approximately 10 dB. The peaks in the classical
signal are due to technical noise and pick-up signals from radio stations. The peak at
2.4 GHz is due to the Wi-Fi transmissions. Afterwards, low-pass filters with cutoff fre-
quency at 125 MHz are used to minimize the correlations between the sampling points
[73] (Fig. 5.8(c)). The signal is then amplified (Fig. 5.8(d)) before digitization to choose
the optimal dynamical ADC range parameter R. The measured signal from two side-
bands (channel 0, 1.25-1.50 GHz), and (channel 1, 1.50-1.75 GHz) are recorded using
two 16-bit ADCs (National Instruments 5762) at 250 MSamples per second. Finally, the
data processing is performed using a National Instruments field-programmable gate ar-
ray. The average QCNR clearances for channel 0 (ch 0) and channel 1 (ch 1) are 13.52

and 13.32 dB, respectively. The noise measurements for both channel with local oscilla-
tor on (off) are depicted in Fig. 5.9. Taking into account the intrinsic dc offsets, which is
−0.02σQ for both channels, we quantify our conditional min-entropies using the method
described in Sec. 5.2. For our ADC with 16 bits of digitization, the worst-case conditional
min-entropies are 13.76 bits (ch 0) and 13.75 bits (ch 1), while the average conditional
min-entropies are 14.19 bits for both channels. Here, by assuming that the eavesdropper
cannot manipulate the classical noise, we evaluate our entropy with average conditional
min-entropy and set R as 4.32σQ according to Eq. (5.20).

5.3.2 Upper bound of extractable min-entropy

The extractable randomness of our QRNG is limited by the sampling rate and the dig-
itization resolution, which is defined by Nyquist’s theorem on maximum data rate C,

C = 2H log2 V, (5.22)

where H is the bandwidth of the spectrum and V = 2n is the quantization level for dig-
itization resolution n. For our 16-bit ADC, the shot-noise-limited and technical-noise-
free bandwidth is around 2.5 GHz out of 3 GHz. With an average of 10 dB of QCNR
clearance, one can extract 14.11 bits out of 16 bits (Table 5.3). Putting these values into
Eq. (5.22), with a fast enough ADC, we can potentially extract up to 70 Gbit/s random
bits out of our detectors.

The maximum bitrate is ultimately upper bounded by the photon number within a
given detection time window. In our setup, a 1550-nm fibre-coupled laser with a power
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Figure 5.8: Spectral power density from the CV-QRNG at various physical stages. The resolution
and video bandwidth are both 1 MHz.

of 60 mW and detection bandwidth of 3 GHz is used. This corresponds to a mean of
1.6× 108 photons per sampling. Given a perfect photon-number-resolving detector, the
maximum min-entropy is given by − log2(1/

√
2π × 1.6× 108) ≈ 14.9 bits. In principle,
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(a)

(b)

Figure 5.9: Noise measurements of (a) channel 0 and (b) channel 1 for a typical record of 5× 105

consecutive samples. The quasi-continuous measurement outcomes of the local oscillator (blue)
and electronic noise (red). Right: the resulting histograms of the LO and the electronic noise.

one can send more power to extract more random bits, however, this bound can increase
only logarithmically with laser intensity.

For a finite coherent state |α〉, the maximum value ofHmin(Mdis|E) is bounded by the
number of photons available in |α〉. This limit is attained when the ADC discretization is
fine enough such that events between n and n+ 1 photons at the homodyne output can
be distinguished (regardless of the amount of classical noise). The probability density
function pM |E(m|e = 0) is then a probability mass function having support (n1 − n2)δ0

where n1 and n2 are non-negative integers with a Poissonian distribution with mean
|α|2/2. The normalization constant δ0 = 1/|α| sets the variance to 1. For large |α|, the
distribution pM |E(m|e = 0) tends to a discretized Gaussian distribution with zero mean
and unit variance,

PMdis|E(m|e = 0) =
δ0√
2π

exp
(
−m2

)
, (5.23)

for m ∈ {0,±δ0,±2δ0, . . .}. This function has a maximum value of δ0/
√

2π at m = 0.

For an ADC discretization with bin size δ less than δ0 and with range large
enough such that the probabilities of the two end bins given e, PMdis|E (mmin|e), and
PMdis|E (mmax|e) are less than δ0/

√
2π, the most likely bin given e will have a probability
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of δ0/
√

2π. The min-entropy of this distribution is then

Hmin(Mdis|e) = − log2

[
max
m∈Mdis

PMdis|E(m|e)
]

= − log2

(
δ0√
2π

)
= − log2

(
1√

2π|α|

)
. (5.24)

Averaging over e, this gives the bound to the average conditional entropy as
H̄min(Mdis|E) ≤ − log2

(
1/
√

2π|α|
)
. Hence, the maximum amount randomness for a

homodyning CV-QRNG is subjected to the power of the local oscillator.

5.4 Randomness Extraction with AES

Here, we demonstrate randomness extraction with the Advanced Encryption Standard
(AES) [105] cryptographic hashing algorithm of 128 bits. In our QRNG, randomness
extraction is performed with an AES [105] cryptographic hashing algorithm of 128 bits
seeded with a 128-bit secret initialization vector. Four most significant bits of the 16-
bit samples are discarded before randomness extraction to ensure low autocorrelation
among consecutive samples (Fig. 5.10) before hashing. The resulting output is concate-
nated with partial raw data from the previous run, forming a 128-bit block for crypto-
graphic hashing. The hashing implementation was done by Dr. Syed Assad. Since a
complete cryptoanalysis of the cryptographic hashing is intricate and is out of the scope
of our work, we simply discard half of the output to ensure uniformity of the generated
random sequence [80]. We further strengthen our security by renewing the seed of our
AES extractor with these discarded bits.

After post-processing, the final real-time guaranteed-secure random number gener-
ation rate of our CV QRNG is 3.55 Gbps. If all the available bandwidth from our detector
(approximately 2.5 GHz) can be sampled, with sufficient resources, we can achieve up to
35 Gbit/s (cf. Sec. 5.3.2). This corresponds to a rate of 14 Mbps/MHz in term of bits per
bandwidth. Our random numbers consistently pass the standard statistical tests (NIST
[106], DieHard [81]) and the results are available on the Australian National University
Quantum Random Number Server [107].

5.4.1 Summary

In this work, we propose a generic framework for secure random-number generation,
taking into account the existence of classical side information, which, in principle could
be manipulated or predicted by an adversary. If the adversary is assumed to have ac-
cess to the classical noise, for example, the detectors’ noise can be originating from pre-
established values, the worst-case conditional min-entropy should be used to quantify
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the available secure randomness. Meanwhile, if we restrict the third party to passive
eavesdropping, one can use the average conditional min-entropy instead to quantify
extractable randomness. By treating the dynamical ADC range as a free parameter, we
show that QCNR is not the sole decisive factor in generating secure random bits. Sur-
prisingly, one can still extract a nonzero amount of secure randomness even when the
classical noise is comparable to the quantum noise. This is done simply by optimiz-
ing the dynamical ADC range via conditional min-entropies. Such an approach not
only provides a rigorous justification for choosing the suitable ADC parameter, but also
largely increases the range of QCNR for which true randomness can be extracted, thus
relaxing the condition of high QCNR clearance in conventional CV QRNGs. We also
notice that we can increase the min-entropy per bit simply by increasing the number
of digitization bits. We apply these observations to analyze the amount of randomness
produced by our CV QRNG setup. Efficient cryptographic hashing functions are then
deployed to extract randomness quantified by average conditional min-entropy.
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Figure 5.10: Probaility distribution, autocorrelation and p-values of the Diehard test suite for (a)
raw data, (b) data with 4 MSB dropped, and (c) final hashed data, respectively for 107 samples.
Dashed lines show the theoretical standard deviation of truly random 107 points. For each test
in Diehard, the p-values are the result of a Kolmogorov–Smirnov test of 100 p-values. Dashed
lines indicate the threshold to pass the test (0.01 ≤ p ≤ 0.99.)
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Chapter 6

Experimental One-sided
Device-Independent CV-QKD with
Coherent States

“To live effectively is to live with adequate information.”

– Norbert Wiener, The Human Use of Human Beings

Overview

In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and
measurements, here we present a one-sided device independent protocol that requires
only coherent states. A direct link between the relevant EPR steering inequality and
the secret key rate is established, further strengthening the relationship between these
asymmetric notions of nonlocality and device independence. We experimentally im-
plement a coherent-state prepare-and-measured protocol, and measure the correlations
necessary for 1sDI key distribution up to an applied loss equivalent to 3.5 km of optical
fiber transmission. The new protocols we uncover apply the cheap and efficient hard-
ware of CVQKD systems in a significantly more secure setting. The construction and
operation of this experiment was a joint work between Sara Hosseini, Syed Assad, Jiao
Geng and myself. The theoretical part was developed by Nathan Walk and Timothy
Ralph from the University of Queensland and Howard Wiseman from Griffith Univer-
sity. The work in this chapter has resulted in the following paper:

• N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad, J.
Janousek, T. C. Ralph, T. Symul, H. Wiseman, and P. K. Lam.
”Experimental demonstration of Gaussian protocols for one-sided device-independent
quantum key distribution.”
Optica, 3(6), 634–642 (2016).

77
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6.1 Introduction

Quantum mechanics promises many new opportunities for the design of communica-
tion networks, providing highly correlated resources such as entangled or even non-
local states as well as stringent restrictions on the possible knowledge of observables,
as exemplified by Heisenberg’s uncertainty principle. By considering entropic versions
of these uncertainty relations [108, 109] the intimate connection between entanglement
and uncertainty, first uncovered in the seminal work of Einstein, Podolsky and Rosen
(EPR) [110], has since begun to be formalised and quantified [111].

Both these features are of value to the would-be cryptographer as they enable pro-
tocols in which security is grounded in the laws of quantum physics, instead of the
algorithmic complexity, with the most celebrated example being quantum key distribu-
tion (QKD) [112]. The earliest, and most conceptually simple, QKD schemes encode a
discrete variable (DV) key in a 2-dimensional Hilbert space, as exemplified by the BB84
and Ekert 91 protocols [113, 114]. Since efficient optical implementation of these pro-
tocols involves sophisticated techniques such as the generation and detection of single
photons, considerable attention has also been devoted to schemes that instead utilise
the quadratures of the optical field [115, 116, 117, 118, 119] where one has access to de-
terministic, high-efficiency broadband sources and detectors. However, this approach
is more theoretically involved, as the secret key is now a continuous variable (CV) that
is encoded in states living in an infinite dimensional Hilbert space.

The challenge of realising the full promise of QKD - physically guaranteed security
with minimal additional assumptions - has crystallised into two fronts. In one camp, we
desire a lower bound on the extractable secret key length that allows for an arbitrarily
powerful eavesdropper (Eve), with the goal of including the effects of a finite number
of transmitted symbols, [120, 121, 122, 123]. In the second place, we would like to close
any gaps that may exist between a theoretical QKD protocol and its practical realisation.
This can equally be cast into the problem of whether or not the honest parties (Alice and
Bob) have correctly characterised their experimental devices. One might expect that
these gaps can only be closed on a case-by-case basis. Indeed, as various loopholes due
to mischaracterised devices have been pointed out, they have usually been followed
by straightforward methods for their closure. Remarkably, however, it is in principle
possible to rigorously surmount even this challenge by harnessing non-local quantum
correlations, and it is this second problem we tackle for the entire Gaussian family of
CVQKD protocols. We have identified all protocols which can be proven secure in a
one-sided device-independent (1sDI) setting, i.e. independent of the devices of either
Alice or Bob (but not both), and provide a proof-of-principle experimental demonstra-
tion several protocols. Here, we will focus on one of the most practical protocols - a
coherent state prepare-and-measure scheme.
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6.2 Entropic uncertainty relations

Entropic relations have received a great deal of attention as a convenient and powerful
information theoretic tool for investigating uncertainty in quantum systems. Originally,
entropic uncertainty relations were derived assuming one starts without any additional
information or at most only classical information describing the system in question, i.e.
the density matrix [108, 109]. In either case, since classical information can be shared
perfectly amongst arbitrarily many parties, there is little sense in thinking about these
relations as applying from the perspective of one observer or another. Conversely, if ob-
servers were to share quantum correlations with the measured system, one expects the
uncertainty relations to be strongly observer dependent and potentially exhibit reduced
levels of uncertainty.

A generalised relation, allowing for this so-called quantum side information, was de-
rived in [111] although only for finite dimensional Hilbert spaces and observables with
a discrete spectrum. Consider a pair of observables {X̂A, P̂A} with a complementar-
ity c = maxpA,xA | 〈xA|pA〉 |2 where {|xA〉 , |pA〉} are the eigenvectors of the observables.
These observables are to be measured on a state A which is potentially entangled with
another state, B, leading to the the following relation for the uncertainty in the pair of
observables given access to B [111],

S(XA|B) + S(PA|B) ≥ log
1

c
+ S(A|B). (6.1)

Here S(X) and S(A|B) are the von-Neumann entropy and conditional entropies de-
fined in Eq. (2.55) and Eq. (2.57), respectively. S(XA|B) is the conditional von Neumann
entropy of the random variable, XA upon the measurement of the observable X̂A given
knowledge of system B. This is defined as

S(XA|B) = H(XA) +
∑
xA

p(xA)S(ρxAB )− S(B), (6.2)

withH(XA) the Shannon entropy (Eq. (2.46)) and ρxAB describing Bob’s state conditional
on Alice obtaining outcome xA. The presence of the conditional entropy S(A|B) in
Eq. (6.1), which is negative for entangled states, demonstrates both the observer de-
pendence and effect of entanglement in reducing uncertainty, as discussed briefly in
Sec. 2.6.2.

Preempting applications to quantum key distribution (QKD), one can also consider
that a bipartite state ρAB could have suffered some decoherence, which may be purified
by an environment, or eavesdropper, such that ρAB = trE (|ABE〉 〈ABE|). Using the
purity of the overall state ρABE , we have S(AB) = S(E), since S(ABE) = 0 [23]. We
can recast Eq. (6.1) to find [111],

S(XA|B) + S(PA|E) ≥ log
1

c
. (6.3)
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However, these results are only valid for measurements with a finite number of dis-
crete outcomes made on states living in a finite-dimensional Hilbert space. For the pur-
poses of continuous variable (CV) QKD, we will require an uncertainty relation valid for
infinite-dimensional Hilbert spaces and continuous-valued measurements. In particu-
lar, we are interested in homodyne measurements of the canonically conjugate quadra-
tures X̂ and P̂ . Just such a relation has been recently developed, building on an earlier
result for discrete and finite measurements on infinite dimensional Hilbert spaces [124].
This was first extended to countably infinite measurements which could then be applied
to a discretised version of a homodyne detection [125]. This lead to the following en-
tropic uncertainty relation for homodyne detection upon infinite dimensional Hilbert
spaces

S(XA|B) + S(PA|E) ≥ log 2π~. (6.4)

We refer our reader to Refs. [126, 125, 127] for detailed derivation.

6.3 Continuous variable quantum key distribution

The goal of quantum key distribution (QKD) is to allow two communicating parties, Al-
ice and Bob to generate unconditionally secure secret keys. These keys can often be used
in conjunction with cryptographic protocols, such as the one time pad. Unlike conven-
tional cryptography, the secrecy of the protocol is guaranteed by the law of quantum
physics, rather than algorithmic complexity. Before we move on, let us have a small
digression on QKD.

6.3.1 A generic QKD protocol

A typical QKD protocol can be divided into two stages:

1. Quantum communication
The goal of this stage for Alice and Bob is to exchange a large number of quantum
states over a quantum channel. In each round, Alice encodes a classical random
variable α onto a quantum system, which is sent to Bob. Bob then performs a
quantum measurement on the received quantum state, thus extracting another
random variable β, which is correlated with α. At the end of the quantum phase,
Alice and Bob end up with a set of correlated raw data, or raw keys.

2. Classical post-processing
The objective of this phase is to map the raw keys into shared key known only to
Alice and Bob. This phase is further divided into several steps: parameter esti-
mation, information reconciliation and privacy amplification. First, in parameter
estimation, the quantum channel is characterized by having Alice and Bob pub-
licly declare and compare a random subset of their data. This in turn allows them
to bound the advantage any potential eavesdropper has. The second phase of
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Entanglement-Based

EPR
To Bob

Prepare-&-Measure

To Bob

RNG

AM PM

(a)

(b)

Alice

Alice

Figure 6.1: An entanglement-based scheme (with heterodyning) is equivalent to a prepare-and-
measure scheme (with coherent states).

information reconciliation is essentially error correction. By having either Alice
or Bob sending corrections to the other party, the communicating parties can es-
tablish bit strings with an arbitrarily high correlation. However, such a bit string
might still be known partially by Eve. Therefore, in the last step, Alice and Bob
perform privacy amplification, which is based on universal hashing functions to
distil the final secret key, which is shorter in length, but has the advantage that
Eve now knows almost nothing about the key.

6.3.2 CV-QKD protocols

The most common CV-QKD protocols are Gaussian protocols which encode informa-
tion in the quadratures of the optical field. In a prepare-and-measure scheme (P&M),
one can prepare squeezed [115, 116] or coherent [119] states, and measure with either
homodyne detection (switching between quadratures) or heterodyne detection [128]
(where both quadratures are measured simultaneously). Alternatively, one could also
use entanglement-based (EB) schemes where two squeezed beams are used to create
Gaussian EPR-correlated states (EPR states) [117]. An equivalence between these EB
schemes and the P&M approaches has been established in a device-dependent sce-
nario [129]. Here, we now discuss briefly such a case for coherent state.

For the entanglement-based scheme, consider a two mode EPR state with symmet-
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ric noise variance Vx = Vp in Alice’s station (Fig. 6.1 (a)). By measuring the conjugate
quadratures X̂ and P̂ simultaneously on one arm with heterodyne detection (Sec. 3.3.2),
Alice projects the state over the other arm into a Gaussian state with a conditional co-
variance matrix [24]

γB|xA1
,pA2

=

(
1 0

0 1

)
, (6.5)

and mean vector

dB|xA1
,pA2

= dB =

( xA1
κx
pA2
κp

)
. (6.6)

Here, κx =
√

Vx+1
2(Vx−1) and κx = −κp. We thus see that upon Alice’s measurement, the

quantum state to be sent to Bob is projected into a coherent state. This is equivalent to a
P&M scheme in Fig. 6.1(b), where Alice modulates a pair of electro-optical modulators
by picking up the pair (xA1/κx, pA2/κp) from a bivariate Gaussian distribution of vari-
ance VS = Vx − 1. Alice further rescales her data by multiplying the modulating signal
κx(p), thus keeping a set of (xA1 , pA2) as record. The variance of the mean of the coherent
state dB is

〈∆2d〉 = Vx − 1 = VS , (6.7)

which is indeed the variance of the modulation signal for the P&M protocol. A similar
analysis can be done for squeezed state by having a homodyne detection for the EB
scheme. Since the EB representation is a powerful theoretical tool to study many other
QKD protocols, while the P&M protocol is easy to implement, the equivalence between
them is extremely convenient.

In CV-QKD, for the information reconciliation phase, Alice and Bob can use either
a direct reconciliation (DR) scheme where Alice sends corrections to Bob; or a reverse
reconciliation (RR) [118], where Bob sends corrections to Alice. However, only the RR
protocols allow for losses above 50%, although one can also achieve this loss-tolerance
via post-selection, which discards some of the keys in order to retain a more correlated
subset [130].

6.4 CV-QKD using entropic uncertainty relations

Previous works have proved the security of Gaussian CV-QKD in the asymptotic limit
up to the level of collective attacks, via the Gaussian extremality of relevant quantities
[131, 132]. The proofs were eventually raised to the level of the most general coherent
attacks by use of the de Finetti theorem adapted to infinite dimensions [133], which
shows that collective attacks are in fact optimal. Consequently, one can asymptotically
lower bound the secret key rate by considering only Gaussian collective attacks.

In the following, we conduct our analysis in the EB picture, and the variances ap-
pearing are those that would be directly measured in an EB implementation. We will
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calculate the key rate encoded in the x̂ basis on a particular run. Overall, the total key
rate will be the average of the quantities derived here and the analogous expression for
encoding in the p̂ basis.

We consider a DR for coherent state protocol discussed in Sec X, which in the EB pic-
ture involves Alice making a heterodyne detection upon her arm of an EPR pair. Thus
she first mixes her mode with vacuum resulting in two modes A1 and A2 upon which
she measured x̂ and p̂ respectively. Bob then makes a homodyne detection, randomly
switching between the quadratures. We will consider the case where Bob measures X̂ ,
with the other case following straightforwardly. The DR key rate is then bounded by
[131, 132],

K� ≥ I(XA1 : XB)− χ(XA1 : E), (6.8)

where I(XA1 : XB) = h(XA1)−h(XA1 |XB) denotes the classical mutual information be-
tween Alice and Bob (Eq. (2.54)), with h(X) = −

∫
dx p(x) log p(x) being the continuous

Shannon entropy of the measurement strings and

χ(XA1 : E) = S(E)−
∫

dxA1 p(xA1)S(E|xA1) (6.9)

is the continuous Holevo bound (Eq. 2.62).

Expanding Eq. 6.8 and comparing with the continuous conditional von Neumann
entropy

S(XA1 |B) = h(XA1) +

∫
dxA1p(xA1)S(ρ

xA1
B )− S(B), (6.10)

we have

K� ≥ h(XA1) +

∫
dxA1 p(xA1) S(ρ

xA1
E )− S(E)− h(XA1 |XB)

= S(XA1 |E)− h(XA1 |XB), (6.11)

which is what one would expect from the Devetak-Winter relations [134]. The entropic
uncertainty relation derived in Sec. 6.2 now comes to play. Using Eq. (6.4), we can bound
the eavesdropper’s information on the relevant observable as follows:

S(XA1 |E) ≥ log 2π~− S(PA1 |E). (6.12)

It can be shown that S(PA1 |B) ≤ S(PA1 |PB) = h(PB|PA1). We thus can write

S(XA1 |E) ≥ log 2π~− h(PA1 |E). (6.13)

Substituting Eq. (6.13) into Eq. (6.11), and setting ~ = 2, we can write

K� ≥ log 4π − h(XA1 |XB)− h(PA1 |PB). (6.14)

Now this formula might pose a problem, in that we do not measure P̂ upon mode A1.
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Figure 6.2: Conceptual picture of a 1sDI-CVQKD protocol. From the perspective of Alice (Bob)
the local devices are known and allow a secret key to be extracted from a direct (reverse) recon-
ciliation protocol, even though the other party exists only as an unknown red (blue) box.

Nevertheless, this can be circumvented if we can trust the devices, specifically the beam
splitter in Alice’s station, i.e. Alice is performing a true dual-homodyning. Further-
more, one can show via a variational calculation that for any probability distribution
p(x), the corresponding Shannon entropy is maximised for a Gaussian distribution of
the same variance. In other words, Alice and Bob can bound their secret key rate for
this protocol by measuring Bob’s conditional variances. Thus, we can substitute the
Shannon entropy for a Gaussian distribution, i.e. hG(XB|XA1) = log

√
2πeVXB |XA1

,

where VXB |XA1
= VXB − 〈XA1XB〉2 /VXA1

is Bob’s variance conditional on Alice’s
measurement. By trusting Alice’s beam splitter, we have VPA1

|PB = VPA2
|PB , hence

hG(PA1 |PB) = hG(PA2 |PB) which is directly measured. We therefore have,

K� ≥ log 4π − log
√

2πeVPA2
|PB − log

√
2πeVXA1

|XB

= log
2

e
√
VXA1

|XBVPA2
|PB

, (6.15)

where the key rate is now bounded only by the conditional variances. Note that for
positive key we now require the condition VXA1

|XBVPA2
|PB ≤ 0.55. Equation (6.15) can

be generalised to include imperfect reconciliation efficiency β (Appendix B), giving

K� ≥ β log

√
VXA1

VXA1
|XB

+ log
2

e
√
VXA1

VPA2
|PB

. (6.16)

6.5 One-sided DI CV-QKD protocol for P&M scheme

An important benefit of utilising entropic uncertainty relations in QKD proofs is that
they lend themselves towards one-sided device-independent (1sDI) protocols [135, 136].
These are relaxed versions of fully the DI schemes [137, 138, 139] in which all devices
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are untrusted and the security is guaranteed via a detection-loophole-free Bell violation.
In the following, we will discuss briefly the notion of device independence in QKD, and
its connection to EPR steering, an asymmetric form of non-locality.

6.5.1 One-sided device-independent QKD

A fully device-independent (DI) protocol operates under the assumption that an eaves-
dropper, Eve, has full access over all the experimental devices. The security of such
protocol is guaranteed by the concept of Bell non-locality and the exclusion of local hid-
den variable (LHV) models [140, 137, 138, 139, 141, 142]. While a tamper-proof protocol
is desirable, these schemes are extremely experimentally challenging as they require the
implementation of a detection-loophole-free Bell test [143, 144, 14, 12]. This implies that
they are also beyond the reach of purely Gaussian protocols as it is impossible to violate
a Bell inequality utilising only Gaussian resources [145].

More recently, an intermediate, asymmetric form of non-locality quantifier known
as EPR-steering has been identified. This which allows Alice or Bob to exclude an LHV
explanation of their correlated measurement outcomes [146]. A natural question to ask
is whether there exist analogous cryptographic results, where only one party’s devices
are untrusted. This possibility, first noted in Ref. [135] was subsequently developed
to prove the security of experimentally difficult, but feasible, proposals for one-sided
device-independent (1sDI) DVQKD protocols which were explicitly linked to the corre-
sponding EPR steering inequality [136].We note that this should not be confused with
the distinct concepts of measurement-device-independent QKD, in which both Alice
and Bob use trusted sources to generate a key via an untrusted measurement in the
middle [147, 148, 149, 150, 151].

For 1sDI-QKD protocols only one side, Alice or Bob, is untrusted and regarded as a
black box while the other is assumed to involve a particular set of quantum operations
(Fig. 6.2). The 1sDI nature of these entropic proofs is manifested in the secure key rate
(Eq. (6.15)), in that it depends only upon measuring a known observable upon one side.
For instance, in deriving Eq. (6.15), only the knowledge of Bob’s measurement (X̂B or
P̂B) is required in order to apply the entropic uncertainty relation. Even though we have
the conditional expressions such as VXB |XA in the key rate equation Eq. (6.15), Alice
could be making any measurement and the aforementioned bound will still holds.

As such, in the EB picture, any positive key predicted via the entropic uncertainty re-
lation involving homodyning of EPR states is by definition 1sDI, independent of Alice
for RR and Bob for DR [122, 123]. However this device-independence does not nec-
essarily extend to the protocols involving heterodyne detection as that would amount
to the characterisation of the devices used in the detection. Therefore, employing a
heterodyne detection on the supposedly untrusted side immediately invalidates the
device-independence. Nonetheless the remaining protocols, with the heterodyne de-
tection taking place in the trusted station, are still implementable with high-efficiency
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sources and detection opening the way to several 1sDI-CVQKD protocols with current
technology. This means that for EB protocols both DR and RR may be 1sDI provided all
parties are homodyning, while Bob may safely heterodyne for an RR protocol and Alice
may heterodyne for a DR protocol. Finally, for DR protocols where Alice (who controls
the source) is trusted, we may also safely make the equivalence between P&M and EB
schemes. Remarkably, this means that for direct reconciliation it is possible to generate
1sDI key using only coherent states. We summarise which of the 16 possible Gaussian
protocols are potentially 1sDI in Table inset in Fig. 6.3.

Alice Hom Het
Bob Hom Het Hom Het

DR P&M
EB

RR P&M
EB

Figure 6.3: Summary of 1sDI-CVQKD protocols where subscript A (B) indicates independence
of Alice’s (Bob’s) devices.

6.5.2 Connection to EPR steering

In the earlier discrete variable work, a clear conceptual link was made between DI DV
protocols and Bell non-locality [137]. Our intuition that the 1sDI DV protocols should
be analogously related to the corresponding asymmetric form of non-locality, EPR steer-
ing, was confirmed by Branciard et al.Ṫhey showed that the condition for their protocol
achieving a positive key was indeed equivalent to a steering inequality [136].

For continuous variable, where Gaussian states and Gaussian measurements are in-
volved, steering is traditionally demonstrated by a violation of a condition on the con-
ditional variances. In particular, we must violate the so called EPR paradox criteria
proposed by Reid [152]

EI := VXB |XAVPB |PA ≥ 1, (6.17)

for Alice to provably steer Bob as indicated by the right black triangle and similarly with
A and B interchanged [146] and the arrow reversed. Comparison with Eq. (6.15) shows
that we can write the key directly in terms of the steering parameter,

K� ≥ log

(
2

e
√
EJ

)
, (6.18)

where EJ = VXA1
|XBVPA2

|PB for our DR key rate with Alice heterodyning and Bob ho-

modyning. We see that K� > 0 if and only if EJ <
(

2
e

)2 ≈ 0.55, with the identical
relation between the DR key rate and EJ following straightforwardly. In other words,
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the condition for a positive one-sided device-independent key is more stringent than
the violation of EPR steering EJ ≥ 1, similarly to the case for 1sDI-DVQKD [136].

Remarkably, this connection hence gives us an operational interpretation for the
Reid product of conditional variances [152] as being directly related to the number of
secure 1sDI bits extractable from Gaussian states with Gaussian measurements. This
is a particularly pragmatic cryptographic interpretation, in addition to previous work
highlighting the links between steering and one-sided device independence in quantum
teleportation [153] and secret sharing [154].

6.5.3 Experimental implementation

In this section, we discuss the experimental details, imperfections and modelling of the
experiment with coherent states and homodyne measurements.

Experimental setup

A quantum noise limited 1064 nm laser was used in the experiment. A small portion of
it was passed through a pair of phase and amplitude electro-optic modulators (EOMs).
EOMs were used to provide a Gaussian distributed modulation on both amplitude and
phase quadrature. Each EOM was driven by an independent function generator, pro-
viding a broadband white noise signal up to 10 MHz. The magnitude of white noise was
set to provide almost the same displacement on each quadrature, i.e. the noise variance
Vx = Vp. Outputs of function generators were divided into two. One part was sent to
drive the EOMs and the other was recorded. This modulation record, after calibration,
was Alice’s data since she had control over the source 1.

The modulated beam was then sent through a lossy channel to Bob. To model the
lossy channel, a vacuum state was introduced to the system and was mixed with the
Bob’s mode on a beam splitter of transmission T (Eq. (3.18)). Upon receiving his mode,
Bob performed a homodyne measurement, alternating between conjugate quadratures.
An electronic delay was introduced to Alice’s and Bob’s data to gain the maximum
correlation between them at 3.5-4.5 MHz.

When the homodyne detector was locked to the phase (amplitude) quadrature, there
was 30 (37) dB suppression of cross correlation between orthogonal quadratures, indi-
cating that our modulators were well aligned. Our pair of detectors, both with dark
noise clearance of 18 dB, were balanced electronically, providing 30 dB of common mode
rejection. Our homodyne efficiency was around 95% with fringe visibility of 98%, lim-
ited by the mode distortions introduced by the EOMs. The photodiode’s quantum effi-
ciency was estimated to be around 98.5%. 4× 106 data points were sampled at 25× 106

samples per second utilizing a digital data acquisition system. The process was repeated

1Here, calibration means determining the relationship between the function generator output and the
phase space displacement as measured before transmission.
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Figure 6.4: Schematic diagram of P&M coherent state experiment: AM and PM are electro-optic
modulators (EOMs) driven by function generators (FG), which in turn provided a Gaussian
distributed displacement of the vacuum state in amplitude and phase quadratures. The resulting
coherent states were then sent to Bob through a lossy channel (simulated by a half waveplate
followed by a polarising beam splitter) where he performed a homodyne measurement X̂θ.

five times in order to provide sufficient statistics for each data points. These data were
then digitally filtered to 3.5-4.5 MHz.

In order to find the maximum range over which the protocol provides secure com-
munication, the optimal modulation variance for each value of the channel transmission
has to be identified. This is done by scanning the modulation variance over a range of
2 to 19 times the shot noise. As discussed in Sec. 6.3.2, by rescaling Alice’s recorded
signal, the key rates can be calculated using Eq. (6.16) with reconciliation coefficient set
to 0.95.

Modelling

To highlight the relative advantages of the coherent state source, consider the covariance
matrix of the equivalent two mode EPR state:

EPR(s) =


cosh(2s) 0 sinh(2s) 0

0 cosh(2s) 0 − sinh(2s)

sinh(2s) 0 cosh(2s) 0

0 − sinh(2s) 0 cosh(2s)

 , (6.19)

where s is the squeezing parameter which is related to the modulation variance via
cosh(2s) = VS + 1. To model the prepare & measure experiment, we remain in the
equivalent EB picture and begin with γin = EPR(s). We recall that this equivalent pic-
ture consists of Alice heterodyning a part of the EPR state, and send the other part to
Bob through a lossy channel (Sec. 6.3.2). Although being more robust, the coherent
state P&M setup naturally still suffers from imperfections, which in turn effect the op-
timum modulation. These imperfect correlations arise partly from the cross correlation
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between orthogonal quadratures and partly from our limited ability to maximize the
correlation between Alice and Bob’s modes using electronic delay. Both phenomena can
be regarded as an unknown rotation in the system. To model these deviations from ideal
case, a rotation operator with small angles is applied to the X̂ and P̂ quadratures of the
second mode (Bob’s mode).

The channel transmission, T , can be determined directly by taking the ratio of the
correlation at a particular setting with the correlation at full transmission. Technically,
the experimental channel would also introduce a small amount of excess noise, however
this is negligible compared to the excess noise coming from the effects described above.
The final simulated covariance matrix hence is

γout = S[γin ⊕ Vχ(B)⊕ diag(1, 1)]ST , (6.20)

where S is given by

S = R2(θx, θp)B1,4(1/2)B2,3(T ). (6.21)

Here, Vχ = diag(1 +χx, 1 +χp), where χx(p) is the excess noise in X̂(P̂ ) quadrature. Bi,i
is the beam splitter matrix defined in Sec. 2.3 that acts on mode i and j. The rotation
matrix on Bob,

R2(θx, θp) =

(
cos θx sin θx

− sin θp cos θp

)
, (6.22)

serves as the fitting parameter to model the unknown rotation due to aforementioned
experimental imperfection.

6.5.4 Results

In each protocol, Alice and Bob are connected by a lossy channel of transmission T . The
lossy channel is constructed using a half wave plate and a polarizing beam splitter as
detailed in Fig. 6.4. We express the applied loss as the equivalent transmission distance
through a standard telecom optical fibre with a loss of 0.2dB/km. Ideally, the secret key
rate could be computed directly from the expressions in Supplement 1. However, in
practice we must modify these expression, multiplying Alice and Bob’s mutual infor-
mation by a factor β < 1 to account for finite information reconciliation efficiency (see
Supplement 1 for explicit calculations). Reconciliation efficiencies for CVQKD have in-
creased substantially in the last few years [155, 156], with efficiencies of between 94 and
95.5 percent recently reported [157]. Here, we choose β = 0.95. The inclusion of β < 1

will reduce the final calculated key rate. This makes the condition EJ < 0.55 necessary
but no longer sufficient for a positive key when β is included.

To evaluate the key rate Eq. (6.16), we neglect the excess noise in the channel by set-
ting χx(p) = 0. The variation of key rates versus the equivalent modulation squeezing
parameter for 5 different transmissions is shown in Fig. 6.5(a). As the modulation is
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Figure 6.5: (a) Variation of key rates versus effective modulation squeezing parameter for 5 dif-
ferent transmissions. A theory line with the average transmission of the channel is fitted on
the experimental data points with 1 s.d. error bars. Data points surrounded by dashed circles
correspond to the optimum modulation squeezing parameters which result in the highest key
rate for each transmission. The key rates resulting from these optimum modulation variances
are shown separately in (c). Inset (b) demonstrates the gap between the theoretical cross-talk
free model and the realistic model which captures the experimental imperfections. (c) Predicted
improvement of secure transmission distance through the optical fibre for the coherent state
protocol with an improved experimental setup (red curve). The model for the current system
(blue curve) is plotted along with experimental data (blue points) for comparison. In the actual
experiment, the optimal modulation variance is reduced due to unwanted cross-quadrature cor-
relations. In the improved setup, the cross-talk has been eliminated and the optimal modulation
variance is now determined by the reconciliation efficiency, which is chosen to be 0.95 for both
cases.

increased, so too is the detrimental effect on the correlations, leading to a smaller value
for the optimal modulation parameter. Meanwhile, for an ideal experiment, this opti-
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mal modulation depends only upon β and the channel loss. In inset (Fig. 6.5(b)) the
gap between the ideal case without cross correlation and the realistic case is shown for
the case of perfect transmission. For each transmission value, the modulation squeez-
ing parameters that provide the highest key rate are chosen and plotted in Fig. 6.5(c).
The theoretical lines in the plot are produced using the model described in section 6.5.3
and Eq. (6.16). The value of the unknown rotation, (θx, θp), was estimated to be about
≈ (6π/180, 3π/180). We show that secure key remains possible after an equivalent trans-
mission distance of 3.47±0.46 km (approximately 15% applied loss). This is in good
agreement with our theoretical model, which predicts our current setup would be se-
cure up to a maximum of 4.5 km.

As is clear from Fig. 6.5(a), using coherent states provides a much greater range over
which to tune the equivalent squeezing. Our model also predicts that if the cross corre-
lation between Alice and Bob’s modes was zero, the range of secure communication for
this protocol would extend from 4.5 km to 6.5 km as depicted in Fig. 6.5(c).

6.6 Summary

To summarise, we have shown that it is possible to achieve a 1sDI CVQKD using only
coherent states. That such an exotic quantum communication protocol is possible with
these relatively mundane quantum states is a surprising result in itself. Under ideal con-
dition, our model shows that the asymptotic range of the coherent state scheme could
be increased to around 4.5 km. This, together with the fact that such states are readily
available, makes them an especially attractive candidate for short range metropolitan
networks.
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Chapter 7

Measurement-Based Noiseless
Linear Amplification

“We must become more comfortable with probability and uncertainty.”
– Nate Silver, The Signal and the Noise: The Art of Science and Prediction

Overview

In this chapter, we describe several different approaches in amplifying a continuous
variable (CV) quantum state: a deterministic noisy amplifier, a probabilistic noiseless
amplifier and a measurement-based implementation of such noiseless amplifier. We
compare and contrast the performance of a heralded measurement-based noiseless lin-
ear amplifier (MB-NLA) with its physical counterpart through the Husimi Q distribu-
tion and its working probability. Relevant publication to the work in this chapter are:

• H. Chrzanowski, N. Walk, J. Y. Haw, O. Thearle, S. Assad, J. Janousek, S. Hosseini,
T. C. Ralph, T. Symul, and P. K. Lam.
”Measurement-based noiseless linear amplification for quantum communication.”
SPIE/COS Photonics Asia, pages 926902-926902. International Society for Optics
and Photonics. (2014)

• J. Zhao, J. Y. Haw, S. M. Assad, T. Symul, and P. K. Lam,
”Characterisation of measurement-based noiseless linear amplifier and its applications.”
Physical Review A 96 (1), 012319. (2017).

7.1 Introduction

Signal amplification is a procedure in communication which aims to preserve the signal-
to-noise ratio. It is desirable for a signal to be first amplified before entering a lossy or
noisy channel. Classically, there is no fundamental limit to the amplification process,
since the amplitude and phase of the signal could in principle be determined exactly. In
the quantum domain, the incompatibility of the conjugate quadrature not only forbids
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such a perfect amplification, but also imposes a noise penalty of 3 dB at large power gain
limit. The impossibility of such a deterministic noise-free amplification of an arbitrary
state was first realised by Haus and Mullen [158] in 1962. It was further developed and
clarified by Caves [159], where the ultimate limits imposed by quantum mechanics on
amplifiers was pointed out. Although this serves as the crucial basis for secure quan-
tum communication, it imposes unavoidable limits on signal processing and quantum
metrology.

The first ingenious idea to evade this noise penalty was proposed by Lund and Ralph
[160] and, independently, by Fiurasek [161]. By renouncing the need for a deterministic
amplification outcome, they identified a device which can amplify the amplitude of an
input state while preserves its noise characteristics, known as noiseless linear amplifier
(NLA). Of course, even should one sacrifice some events, a perfect implementation of
such transformation for any state would still necessitate a vanishing success probabil-
ity. Nevertheless, practical benefits of noiseless amplification can be retained with high
fidelity and reasonable success probability, if one further abandons the exactness of the
NLA implementation, or restrict the set of input states [162].

Proposals and physical implementations of such approximate NLA includes meth-
ods such as quantum scissors [160, 163, 164, 165, 166], photon addition-subtraction
[167, 168, 169] and noise addition [170]. We designate these realisations as physical NLAs
(P-NLA), for they take an input state and transform it into an amplified propagating
output. P-NLAs have been studied theoretically in several aspects, with a large fo-
cus on the optimality of its architecture [171, 172]. These developments open up many
promising applications in quantum computing and communication, such as quantum
key distribution [173, 174, 175, 176, 177, 178], quantum cloning [179], entanglement dis-
tillation [164, 180], the construction of quantum repeaters [181], phase estimation [170]
and error correction [182]. However, most of these experiments are not only challenging
to perform, but also suboptimal in terms of the success probability [172, 171].

If one does not require access to an output quantum state that is an amplified version
of the input state, which is the case for point-to-point QKD, technical complexities can be
alleviated. Refs. [183, 184] proposed the possibility of implementing a non-deterministic
measurement-based NLA (MB-NLA) that allows one to transfer the difficulty of hard-
ware implementation to a software-based protocol. This measurement-based protocol
has recently been realised by Chrzanowski et. al. in an entanglement distillation exper-
iment. Given a non-maximally entangled resource transmitted through a lossy channel,
the authors have demonstrated distilled entanglement using the MB-NLA. Subsequent
to the distillation, the entanglement level is beyond that achievable by a maximally en-
tangled resource subjected to the same conditions of loss. The result was further applied
to secret key extraction from an otherwise insecure regime.

In this chapter, we will first briefly review deterministic linear amplification, and
show that by adopting a probabilistic approach, a physical NLA that circumvents the
constraint set by HUP is possible. We then introduce the MB-NLA, which is the post-
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selective version of NLA. While it has been shown in [183, 185] that MB-NLA is equiv-
alent to an ideal NLA as long as the amplification directly precedes an informational-
complete (IC) POVM, it is unclear to what extent they are interchangeable. We will
thus examine the relationship between P-NLA and MB-NLA from the perspective of
Q-function and success probability.

7.2 Deterministic noisy linear amplifier

7.2.1 The impossibility of deterministic noiseless amplification

The origin of the limitation in quantum amplification is that adding extra noise is in-
evitable for the output field to obey Heisenberg’s uncertainty relation. For a phase in-
sensitive, or phase preserving amplification, it is necessary to extract the information
of the conjugate quadratures, amplitude X and phase P . As elucidated in Sec. 3.3.2, a
simultaneous measurement of both quadratures would incur a degradation of signal-
to-noise ratio, i.e. mean squared X̂θ divided by variance ∆2X̂ due to the coupling of
vacuum in the unused port of a heterodyne detection. As we shall illustrate, it is also
connected to the impossibility of realizing perfect copies of an unknown quantum sig-
nal [5], which is the consequence of quantum mechanical systems evolving according to
linear and unitary operations.

Noiseless amplification is typically defined as the ability to increase the amplitude
of an arbitrary coherent state without adding any noise, i.e.

|α〉 amplification−−−−−−−−→ |gα〉 , (7.1)

with real amplification gain g > 1. For such a phase-insensitive transformation, one
requires âout = gâin and â†out = gâ†in. By considering the annihilation and creation
operators describing a boson mode, it becomes obvious that such transformation does
not preserve the canonical commutation relations (Eq. (2.2)), since [âout, â

†
out] = g2 [159].

7.2.2 No-cloning theorem

The prohibition of deterministic noiseless amplification can also be illustrated in a more
intuitive manner through the no-cloning theorem [5]. This theorem states that it is im-
possible to deterministically clone an unknown quantum state. It can be simply proven by
linearity and unitarity of quantum mechanics, which we will briefly sketch below.

No cloning theorem: It is impossible to copy an unknown quantum state perfectly.
Let us assume that such a unitary transformation exists

|ψ〉 |φ〉 Uc−→ |ψ〉 |ψ〉 , (7.2)
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where a blank state |φ〉 copies the target state |ψ〉. For a simple qubit sytem, this
implies that under Uc, |0〉 |φ〉 → |0〉 |0〉 and |1〉 |φ〉 → |1〉 |1〉. For a linear combination
of |0〉+ |1〉, one would expect an outcome of (|0〉+ |1〉)(|0〉+ |1〉) under the cloning
operation Uc. However, the linearity in QM requires the output to be |0〉 |0〉+ |1〉 |1〉,
which is not the desired copy. Hence by reductio ad absurdum, there exists no such
unitary transformation. An alternative proof based on the invariance of inner prod-
ucts under unitary transformations also leads to the conclusion that non-orthogonal
states cannot be cloned.

It is straightforward to show that if perfect cloning is prohibited, deterministic am-
plification is also prohibited [186]. For example, if one is allowed to deterministically
amplify an unknown coherent state, a perfect clone could be obtained simply by adjust-
ing their noiseless amplifier to a gain of g =

√
2, and then splitting the output on a 50:50

beam splitter:

|α〉 |0〉 amplification−−−−−−−−→
∣∣∣√2α

〉
|0〉 beam−splitter−−−−−−−−−→ |α〉 |α〉 . (7.3)

Hence for an ideal quantum limited amplifier, additional noise is unavoidably de-
manded by the laws of quantum mechanics. Next we will examine what is the best
limit allowed by quantum mechanics.

7.2.3 Phase insensitive ideal linear amplifier

The theoretical description of an ideal deterministic linear amplifier (DLA) operating at
quantum limit was originally discussed by Haus and Mullen [158], further reformulated
in terms of fundamental theorems by Caves [159]. As mentioned in the previous section,
in order to preserve the commutator relations Eq. (2.2), we require

âout = gDLAâin + F̂. (7.4)

Here, gDLA is a real-value gain of the ideal DLA, while F̂ is an operator associated with
the internal modes of the amplifier, which contribute to the additional quantum noise.
Depending on the underlying physical processes, This noise will have different origins.
Since the noise are uncorrelated with the input, i.e. [F̂, âin] = [F̂, â†in] = 0, insisting
[âout, â

†
out] = 1 yields

[F̂, F̂†] = 1− g2
DLA. (7.5)

We note that for amplification, where g2
DLA > 1, the RHS of Eq. 7.5 is negative. Hence

the simplest form for F̂ is

F̂ =
√
g2

DLA − 1b̂†int, F̂† =
√
g2

DLA − 1b̂int, (7.6)
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where b̂int(b̂
†
int) represents the additional bosonic internal mode. Putting all these to-

gether, we end up with the well known formula for a phase-insensitive amplifier work-
ing at the quantum noise limit:

âout = gDLAâin +
√
g2

DLA − 1b̂†int. (7.7)

Numerous proposals show, in principle, ideal phase-insensitive amplification is feasi-
ble [187, 188]. Such amplification at the quantum limit was partially demonstrated using
optical parametric amplifier [189, 190], limited chiefly by the coupling efficiency.

A recent demonstration [191], using only linear optics and homodyne detection, ap-
proaches the quantum noise limit. Consider the setup depicted in Fig. 7.1. After the
beam splitter, the X quadrature of a coherent state generated by a pair of modulators at
the transmitted and reflected modes are given by

AM PM

A
M

P
M

r
t

v
2

v
1

T~1

Figure 7.1: Optical implementation of an ideal deterministic linear amplifier via feedforwarding.
AM and PM: Amplitude modulation and Phase modulation, t (r): transmitted (reflected) mode,
ge: electronic gain.

X̂t =
√
TX̂in +

√
1− TX̂v1 , (7.8)

X̂r =
√

1− TX̂in −
√
TX̂v1 , (7.9)

where we have used Eq. (3.17) to describe the coupling of the vacuum mode v1. At the
measurement stage, the reflected modes is detected together with a vacuum input by a
heterodyne detector

X̂m =
1√
2

(√
1− TX̂in −

√
TX̂v1 + X̂v2

)
. (7.10)

The feedforward is completed by amplifying X̂m by electronic gain ge before interfering
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it with the transmitted mode X̂t over a highly reflective beam splitter. This results in

X̂out = X̂t + geX̂m

=

(
ge

√
1− T

2
+
√
T

)
X̂in +

(
√

1− T − ge

√
T

2

)
X̂v1 +

ge√
2
X̂v2 . (7.11)

By setting ge =

√
2(1−T )
T , the vacuum mode contribution v1 is cancelled out. The equa-

tion further simplifies into

X̂out =
1√
T
X̂in +

√
1

T
− 1X̂v2 . (7.12)

By identifying gDLA as 1/
√
T , and using the fact that X̂out = âout + â†out, we recover

Eq. (7.7) with the vacuum introduced at at the dual-homodyne measurement as the
additional internal bosonic mode. We thus see that such an amplification indeed pays
only the noise penalty of measuring the quadratures simultaneously. The mean and the
variance of the output are given by

〈X̂out〉 = gDLA 〈X̂in〉 , (7.13)

∆2X̂out = g2
DLA∆2X̂in + (g2

DLA − 1), (7.14)

where we have used ∆2X̂v2 = 1. If the input is a coherent state (Sec. 2.2.3), ∆2X̂in = 1,
thus the variance becomes 2g2

DLA − 1. The performance of the amplifier can be deter-
mined in terms of the signal transfer coefficient, which is defined as

Ts = SNRout/SNRin. (7.15)

For the DLA, this is equal to

Ts =
g2

DLA

2g2
DLA − 1

, (7.16)

which we see that, at large gain limit, Ts → 1/2, implying that the noise will be dou-
bled upon amplification (and hence the 3dB SNR reduction). We refer our reader to the
review [192] for more details on other applications of quantum feed-forward control.

7.3 Probabilistic noiseless linear amplifier

While it is impossible to amplify noiselessly in a deterministic fashion, one can forgo
determinism in favour of a probabilistic transformation [160],

|α〉 〈α| → P |gα〉〈gα|+ (1− P ) |0〉〈0| , (7.17)
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in which amplification succeeds with probability P , and fails otherwise. If the success
is heralded, one can then enjoy the benefits of noiseless amplification at least for some
of the time [172]. As discussed in Refs. [160, 167], this transformation is carried out by
the operator gn̂, where n̂ = â†â is the number operator. In the amplification regime
(g > 1), the operation gn̂ is unbounded, and as such could only be implemented exactly
with a success probability equal to zero. However, for any particular input state and
gain, one can always devise an approximation of gn̂ by truncating it, thus allowing
amplification with a fidelity that is nearly indistinguishable from a perfect NLA [172,
171] (See Sec. 7.5.1).

We first recall that an ideal NLA is a device that amplifies the coherent state without
amplifying its quantum noise [160, 161]. The ideal (unbounded) NLA operation can be
represented by the operator gn̂ with g > 1, which transform a coherent state |α〉 to an
amplified state |gα〉 via the following operation [160, 167]:

gn̂ |α〉 = e
1
2

(g2−1)|α|2 |gα〉 , (7.18)

where n̂ is the photon number operator. As discussed in [175, 185], the statistics of
a positive-valued operator measurement (POVM) (Sec. 2.4.1) set upon the transformed
state can be obtained by instead considering a transformed POVM set acting on the orig-
inal state. This is permissible provided the POVM set is informationally complete (IC).
A dual-homodyne measurement, which is essentially a coherent state projection, is in
fact IC-POVM [185]. The ideal unnormalised probability distribution, or Q-distribution
(Sec. 2.5.3), of this measurement upon an input state ρin is given by [175]:

pideal (α) =
1

π
〈α|gnρing

n|α〉

= exp
[(
g2 − 1

)
|α|2

] 1

π
〈gα|ρin|gα〉 . (7.19)

Performing a change of variable, α = αm/g, we get

pideal (αm) = exp

[(
1− 1

g2

)
|αm|2

]
1

π
〈αm|ρin|αm〉 . (7.20)

As a prelude to a measurement-based approach, this equation allows us to determine
the particular probabilistic filter and the necessary rescaling to be applied after the dual-
homodyning to emulate the measurement statistics of an NLA (Fig. (7.2).

7.4 Measurement-based noiseless linear amplifier

For the case where the amplification directly precedes the measurement, for example
in quantum key distribution, probabilistic NLA can be emulated by conditioning upon
the measurement records via a classical filter function [175, 185, 176]. This post-selection
scheme, which we term as measurement-based NLA (MB-NLA), is shown to be equiva-
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NLA Detection

Post SelectionDetection

Quantum State
(a)

(b) Quantum State

Figure 7.2: (a) When a ideal NLA is immediately followed by an informationally complete
POVM, such as a heterodyne measurement, it can be faithfully emulated (b) by applying Gaus-
sian post-selection of the classical data.

lent to its physical counterpart as long as the measurement that follows the amplifi-
cation is informationally complete [185]. It is demonstrated experimentally that such
post-selection scheme permits distillation of entanglement beyond that accessible with
a perfect entangled resource experiencing the losses up to an equivalent of 100km [185].
In the same work, it was shown that that secret key extraction from an otherwise inse-
cure regime is possible via MB-NLA. Recently, it is also proposed that MB-NLA can be
integrated into a CV quantum teleportation scheme [193] for channel purification. Com-
pared to its physical counterpart, MB-NLA has the advantage of easy implementation,
but also allows one to achieve near optimal probability of success.

In ref. [175, 176], it was shown how noiseless amplification can be achieved virtually
through a Gaussian post-selection. Comparison of Eq. (7.19) and (7.20) provides a three-
step recipe for emulating an ideal NLA with gain g via a measurement-based algorithm:

1. First, an input state ρin is directly measured via a dual homodyne detection to get
a probability distribution

p (αm) =
1

π
〈αm|ρin|αm〉 . (7.21)

2. Second, the pre-factor exp
[(

1− 1
g2

)
|αm|2

]
in Eq. (7.20) can be realised by a prob-

abilistic filter. In order to ensure the convergence of the filter probability, this pre-
factor is approximated by a probabilistic filter function

pF (αm) =


1
M exp

[
|αm|2

(
1− 1

g2

)]
if |αm| < αc,

1 otherwise,
(7.22)
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where M = exp
[
α2

c

(
1− 1/g2

)]
is the normalisation term that ensures the filter

probability pF ≤ 1. We note that this filter has an inverse Gaussian profile and
is parametrized by the NLA gain g and a real cut-off αc ≥ 0. All data points
with magnitude less than αc are selected with probability specified by the filter
function while all data points with magnitude greater than the cut-off αc are kept.
Due to this finite cut-off, the resulting distribution of MB-NLA will differ from
that of an ideal NLA. In practice, the emulation can be deployed with high fidelity
provided a large enough cut-off value αc is chosen. However, choosing an overly
large αc will lead to a vanishing probability of success. Hence, a compromise
between the fidelity of the MB-NLA and the probability of success has to be made
for each application. The data points that passes through the filter will exhibit a
distribution

p̃ (αm) =
1

p
(mb)
S

p (αm) pF (αm) , (7.23)

where p(mb)
S , the probability of success is given by

p
(mb)
S =

∫∫
d2αm p (αm) pF (αm) . (7.24)

3. The third step in emulating an ideal NLA is a linear rescaling that maps αm to gα.
The output after this step will be distributed according to Q(mb)(α), where

Q(mb)(α) = p̃ (gα) g2 , (7.25)

by requiringQ(mb)(α)d2α = p̃ (αm) d2αm. As we shall illustrate in the next section,
this last step ensures that the variance of the vacuum is preserved.

7.5 Comparing the physical and measurement-based amplifiers

While an MB-NLA can approximately emulate a noiseless amplification process, it is not
apparent when one concerns with the limits on effective parameters of MB-NLA when it
is substituted for a P-NLA. For instance, analogous to the truncation of operating regime
of P-NLA, we see that an MB-NLA also require a cutoff on the quantum filter to enact
an approximate NLA. Since increasing this cutoff will deteriorate the probability of suc-
cess, one might conclude that it resembles the truncation of the amplification operator
in P-NLA. However, as we shall demonstrate, the truncation and the cutoff actually act
in a different manner. In fact, only when one takes into account all of the relevant ef-
fective parameters (input amplitude, NLA gain, cut-off), such equivalence between the
measurement-based emulation and the physical implementation can be drawn.

In the following sections, we provide a more detailed analysis on the MB-NLA and
study its effect on arbitrary coherent input states. We compare the performance of MB-
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NLA with a P-NLA scheme based on an optimal POVM implementation [171, 172] that
maximizes the probability of success and the fidelity.

7.5.1 Physical NLA

To investigate the equivalence between P-NLA and MB-NLA, it is instructive to look
at how well they can be realised physically from a general theoretical framework. For
P-NLA, we look particularly at a theoretical model that realizes the NLA optimally with
both working probability and fidelity saturating the theoretical bound [171, 172]. Am-
plification with a gain of g in this architecture is realised by a two-outcomes POVM,
where the successful outcome is specified by the operator [172]

MS =
1

gNc

bNcc∑
n=0

gn |n〉 〈n|︸ ︷︷ ︸
MS,1

+

∞∑
n=dNce

|n〉 〈n|

︸ ︷︷ ︸
MS,2

. (7.26)

Here, the photon number cut-off Nc specifies the maximum photon number Fock state
that will be amplified. This cut-off amounts to the truncation on the ideal but un-
bounded amplification operator Eq. (7.18). For an input state ρin, we can calculate the
probability of success

p
(phy)
S = Tr

(
MSρinM

†
S

)
, (7.27)

and the resultant output state of the NLA will be

ρS =
MSρinM

†
S

p
(phy)
S

. (7.28)

Performing a dual homodyne measurement on ρS reveals its Husimi Q distribution
(Eq. (2.43))

Q(phy)(α) =
1

π
〈α|ρS |α〉 . (7.29)

7.5.2 Q distributions

To compare the NLAs, we consider coherent input states, since they have symmetric
minimum-uncertainty noise. To elucidate the action of MB-NLA upon the coherent
state, we shall elaborate the three steps involved in the amplification. First, a input
state |α0〉 is directly measured with a dual homodyne measurement to get a distribution
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Figure 7.3: Probability distributions of Re[αm] involved in MB-NLA action upon the input co-
herent state |α0〉. (a) Direct measurement with dual-homodyne detection, resulting in a Gaus-
sian distribution with mean Re[αm]. (b) With an appropriate cut-off αc, the probabilistic filter
(Eq. (8.14)) shifts the mean to ≈ g2Re[αm]. (c) The final rescaling leads to the target distribution
with mean of increased by a factor of g.

(Eq. (7.21))

p (αm) =
1

π
exp

(
− |αm − α0|2

)
. (7.30)

The real part of this distribution is centred at Re(α0) and has variance Var[Re(αm)] =

Var[Im(αm)] = 0.5. The real part of the distribution is plotted in Fig. 7.3(a). In the
second step, we apply the filter function Eq. 7.22. As a result, the mean and the variance
of the distribution is amplified by a factor of g2 (Fig. 7.3(b)). Lastly, we rescale the αm
by a factor of 1/g to obtain Eq. (7.25). This procedure reduces the mean to gα0 while the
variance is reverted back to original. The net effect on the statistics of a coherent input
state of the MB-NLA is hence to increase the mean approximately by g while keeping
the variance unchanged (Fig. 7.3(c)). The effect of finite cut-off αc can be observed in
Fig. 7.3(b) and (c), where a discontinuity of the distribution occurs at the cut-off value.

Explicitly, the Q distribution of MB-NLA for a coherent state is

Q(mb)(α) =
1

p
(mb)
S


g2

π exp
(
− |α− gα0|2

)
exp

[(
g2 − 1

) (
|α0|2 − α2

c
g2

)]
if |α| < αc

g ,

g2

π exp
(
− |gα− α0|2

)
otherwise,

(7.31)

which is a concatenation of two Gaussian distributions joined at the circle |α| = αc/g.
The probability of success p(mb)

S will be discussed in the section 7.5.3. This distribution
is plotted in Fig. 7.4 for a coherent input state with amplitude α0 = 0.5 and filter cut-off
of αc = 4, 6 and 8. The performance of the MB-NLA is examined with respect to the
ideal NLA when varying gains are set. In these figures, only (e), (i) and (j) resembles the
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output of an ideal NLA. As the gain increases, a larger cut-off is needed for the output
to remain close to the ideal output. In the limit g →∞, the output distribution tends to
a Dirac delta function centred at the origin.

f

k

Figure 7.4: Output distribution of a measurement based NLA. Blue dashed line gives the dis-
tribution of the coherent state input with amplitude α0 = 0.5. Black dotted line gives the output
distribution of an unbounded ideal NLA. Red solid line is the distribution of the outcome of
measurement-based NLA with different cut-off and amplification gain. The output distribution
consists of two Gaussian distribution joined at the green circle with radius |α| = αc/g. The
spacing of contour levels is 0.1.

For comparison, in Fig. 7.5, we plot Q(phy)(α) with same input amplitude α0 = 0.5

and truncation in the photon number Nc = 1, 3 and 5. Just as the case in MB-NLA, we
see that P-NLA implements the ideal NLA faithfully only when the truncation point
Nc properly accommodates |α0| and g (Fig. 7.5 (e), (i) and (j)). However, we do notice
that the cut-offs αc and Nc do have a different effect on the distribution of the amplified
coherent state. We also note that for MB-NLA, its output distribution does not necessar-
ily represent a valid Husimi Q-distribution of a physical quantum state, in particularly
when the cut-off is not sufficiently large. Lastly, We emphasize that the MB-NLA is
not an emulation of the P-NLA, but rather the measurement statistic of an ideal NLA
(Eq. 7.20).

7.5.3 Probability of success

In a MB-NLA setup, the probability of success is given by Eq. (7.24) which is a function
of the NLA gain g, cut-off αc and the amplitude of the input states. For a coherent state
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Figure 7.5: Output distribution of a physical NLA. The blue, dashed line gives the distribution
of the coherent state input with amplitude α0 = 0.5. The black, dotted line gives the output dis-
tribution of an ideal NLA with infinite photon number cut-off. Red solid line is the distribution
of the outcome of physical NLA with different photon number cut-offs and amplification gains.
The spacing contour levels is 0.1.

input with amplitude α0, this is given by

p
(mb)
S =

g2

π
exp

[(
g2 − 1

)(
|α0|2 −

α2
c

g2

)] ∫∫
|α|<αc

g

exp
(
− |α− gα0|2

)
d2α

︸ ︷︷ ︸
p

(mb)
S,in

+
g2

π

∫∫
|α|≥αc

g

exp
(
− |α− α0|2

)
d2α

︸ ︷︷ ︸
p

(mb)
S,out

. (7.32)

The first term p
(mb)
S,in involves an integration within the circle of radius αc/g of a two-

dimensional Gaussian centred at gα0. The second term, p(mb)
S,out, is independent of g (upon

a change of variable β = gα). Although both terms contribute to the total probability
of success, only the fraction p

(mb)
S,in are properly amplified. The p(mb)

S,out fraction are the
remnant from the input distribution that lies beyond the filter cut-off. The probability of
success are plotted in Fig. 7.6(a) as a function of the NLA gain for different cut-offs. We
see that the probability of success decreases rapidly as gain and cut-off increases. For
example, at NLA gain g = 2, the probability of success drops from 10−4 to 10−11 when
the cut-off increases from αc = 4 to αc = 6. Meanwhile, for P-NLA, the probability of
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Figure 7.6: (a) MB-NLA with versus gain g for αc = 4, 6 and 8 (blue, black and red) curves. (b)
P-NLA versus gain g for cut-off Nc = 1, 3 and 5 (blue, black and red). For all plots, the input
state has an amplitude of α0 = 0.5.

success (Eq. (7.27)) can be written as a sum of two terms

p
(phy)
S = Tr (MS,1ρinMS,1)︸ ︷︷ ︸

p
(phy)
S,1

+ Tr (MS,2ρinMS,2)︸ ︷︷ ︸
p

(phy)
S,2

, (7.33)

where p(phy)
S,2 is independent of g. Similarly to MB-NLA (Eq. (7.32), the first term con-

tributes to a proper amplification while the second term accounts for the events lies
beyond the truncation point. For a coherent input state, this expression can be written
analytically as [172]

p
(phy)
S =1−Q

(
Nc + 1, |α0|2

)
+

g−2Nc exp
[
(g2 − 1) |α0|2

]
Q
(
Nc + 1, |gα0|2

)
,

where Q(N,λ) is the regularised incomplete gamma function defined as

Q (N,λ) = Γ (N,λ) /Γ (N) ,

where Γ (N,λ) and Γ (N) are the incomplete and complete gamma function, respec-
tively. Similarly to the MB-NLA, the probability of success is plotted as a function of the
NLA gain for different photon number cut-off values (Fig. 7.6(b)). The trend is similar
to that of the MB-NLA, that is the higher the cut-off Nc, the lower the probability of
success due to a better approximation of the ideal NLA. While the link between the MB-
NLA cut-off αc and P-NLA photon number cut-off Nc is not immediate due to different
implementation mechanism, comparison of the plots suggests that that the probability
of success of the former is less optimistic. For example, with the gain of 2, the output
Q-distributions of the amplifiers at cut-off values of αc = 4 and Nc = 3 exhibit similar
features (Fig. 7.4(e) and 7.5(i)). However, the probability of success differs by more than
2 orders of magnitude. Of course, it is reminded that the P-NLA in comparison is an
optimal theoretical bound [172], and the practical realisation would have lower success
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probability due to experimental imperfection such as detection efficiency [171].

7.5.4 Discussion and summary

We have shown that our MB-NLA is equivalent to its physical counterpart for entan-
glement distillation protocol when considering the situation where the amplification
directly precedes the measurement. This equivalence allows us to extend this technique
to CV-QKD, where the potential benefits have been explored in Refs. [174, 183, 184].
Such interchangeability with measurement-based implementation is also of great prac-
tical advantage because it avoids the complications arise from physical implementation,
such as restriction to small input states due to inefficiencies of source and measurements
[194, 164, 165, 195].Although a deterministic phase-insensitive amplifier [191] inevitably
incurs noise to its output, one can get the best of both worlds by considering the possibil-
ity of a hybrid system to perform operations such as enhancement of the signal-to-noise
ratio and universal cloning [196], which we shall discuss in the next chapter.
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Chapter 8

Heralded Hybrid Linear Amplifier
for Quantum Cloning

“If people reach perfection they vanish, you know.”

– T.H. White, The Once and Future King

Overview

The no-cloning theorem states that an unknown quantum state cannot be cloned exactly
and deterministically due to the linearity of quantum mechanics. Associated with this
theorem is the quantitative no-cloning limit that sets an upper bound to the quality of
the generated clones. However, this limit can be circumvented by abandoning determin-
ism and using probabilistic methods. Here, we report an experimental demonstration
of probabilistic cloning of arbitrary coherent states that clearly surpasses the no-cloning
limit. Our scheme is based on a hybrid linear amplifier that combines an ideal deter-
ministic linear amplifier with a heralded measurement-based noiseless amplifier. We
demonstrate the production of up to five clones with the fidelity of each clone clearly
exceeding the corresponding no-cloning limit. This work is a collaborative work be-
tween University of Queensland (UQ) and the Australian National University (ANU),
where the theory is conceived in UQ and the experiment is conducted in ANU. Most of
the contents in this chapter have been published in the following articles:

• J. Y. Haw, J. Zhao, J. Dias, S. M. Assad, M. Bradshaw, R. Blandino, T. Symul, T. C.
Ralph, and P. K. Lam,
”Surpassing the no-cloning limit with a heralded hybrid linear amplifier for coherent
states,” Nature Communications, 7: 13222. (2016).

• J. Zhao, J. Dias, J. Y. Haw, T. Symul, M. Bradshaw, R. Blandino, T. Ralph, S. M.
Assad, P. K. Lam.
”Quantum enhancement of signal-to-noise ratio with a heralded linear amplifier,” Optica
4 (11), 1421-1428. (2017)
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8.1 Introduction

The impossibility to perfectly duplicate an unknown quantum state deterministically,
known as the no-cloning theorem [5], lies at the heart of quantum information theory
and guarantees the security of quantum cryptography [197, 198]. This no-go theorem,
however, does not rule out the possibility of imperfect cloning. The idea of generating
approximate copies of an arbitrary quantum state was conceived by Buzek and Hillery
in their seminal work [199] with the proposal of universal quantum cloning machine.
This discovery has since sparked intense research in both discrete [200, 201, 202, 203]
and continuous variable [204, 205, 206, 207, 208] systems to explore the fundamental
limit of cloning fidelity allowed by quantum mechanics, known as the no-cloning limit.
Several quantum cloning experiments approaching the optimal fidelity enforced by this
limit have since been demonstrated for single photons [209], polarisation states [210]
and coherent states [196].

By forgoing determinism, perfect cloning is not entirely forbidden by the law of
quantum physics. In fact, if the quantum states to be cloned are chosen from a dis-
crete, linearly independent set, then the unitarity of quantum evolution does allow
probabilistic exact cloning [211, 212, 162, 171, 213]. Non-deterministic high-fidelity
cloning of linearly dependent input states can also be performed if the cloning oper-
ation is only arbitrarily close to the ideal case [186, 171]. Recently, the invention of
probabilistic noiseless linear amplifier (NLA) [160], and its subsequent theoretical stud-
ies [168, 167, 163, 214, 215] and implementations [164, 165, 169, 216, 217] in principle pro-
vided a method for cloning arbitrary distributions of coherent states with high fidelity
via an amplify-and-split approach [164]. In practice, however, implementing NLA for
coherent states with amplitude |α| ≥ 1 remains a technical challenge. This is because
the resources required scales exponentially with the coherent state size.

In this chapter, we follow a different path by adopting a method that interpolates
between exact-probabilistic and approximate-deterministic cloning [218]. We show that
a hybrid linear amplifier, comprising of a probabilistic NLA and an optimal determinis-
tic linear amplifier (DLA) [196, 192], followed by an N -port beam splitter is an effective
quantum cloner. Previously, Müller et al. [179] demonstrated probabilistic cloning of co-
herent states which outperformed the best deterministic scheme for input alphabet with
random phases but fixed mean photon number. Here, we propose a high fidelity her-
alded cloning for arbitrary distributions of coherent states and experimentally demon-
strate the production of N clones with fidelity that surpasses the Gaussian no-cloning
limit FN = N/(2N − 1) [207, 208].
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Figure 8.1: (a) Concatenation of a noiseless linear amplifier (NLA) and an ideal deterministic
linear amplifier (DLA). (b) Ideal (outer circle), perfect (dashed circle) and noiseless linear am-
plification (inner circle). By concatenating a DLA with a NLA, we have access to the region
between the two amplifiers (light blue), and are able to preserve or even enhance the input SNR.

8.2 Hybrid linear amplifier

8.2.1 Reduced-noise amplifier

In the previous chapter, we have introduced the deterministic and probabilistic linear
amplifier. The former, though produces an outcome always, suffers from the degra-
dation in signal-to-noise ratio (SNR). Meanwhile, although an NLA in principle can
amplify a quantum state without paying the noise penalty, the success probability can
turn out to be infeasible when the demand for input amplitude and gain increases. In
turns out that it is actually possible to merge them together into one entity, which we
termed a reduced-noise amplifier [219]. As depicted in Fig. 8.1(a), a reduced-noise setup
can be formed by a concatenation of DLA and NLA. Such setup can be interpreted as
two linear amplifiers with distinct features, complementing each other by sharing the
burden of amplification. Lower noise can be achieved at the expense of the probabil-
ity of success by increasing the NLA gain. Conversely, a higher probability of success,
though with an increased noise, can be obtained by increasing the DLA gain. Hence,
by tailoring both gains appropriately, one can achieve the desired enhancement of SNR,
with vanishing probability of success as the amplification approaches truly noiseless.

One of the figure of merit for an amplifier is the signal transfer coefficient, Ts defined
in Eq (7.15). By considering the action of NLA with gain gNLA in phase space represen-
tation [220], a single mode Gaussian state with mean d = ( 〈x̂〉 , 〈p̂〉)T and covariance
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matrices Σ = diag(Vx, Vp) transforms according to

dNLA =

 2gNLA〈x̂〉
Vx+1−g2NLA(Vx−1)

2g〈p̂〉
Vp+1−g2NLA(Vp−1)

 , (8.1)

ΣNLA =

 Vx+1+g2NLA(Vx−1)

Vx+1−g2NLA(Vx−1)
0

0
Vp+1+g2NLA(Vp−1)

Vp+1−g2NLA(Vp−1)

 . (8.2)

For the coherent states with (Vx = Vp = 1), Eq. (8.1) reduces to dNLA = gNLAd, i.e. the
amplification of the mean is independent of the variance. The signal transfer coefficient
for an ideal NLA upon a coherent state is thus in principle is unbounded, T NLA

s =

g2
NLA. Combining this with the signal transfer coefficient for a DLA (Eq. (7.16)), in which
T DLA

s = g2
DLA/(2g

2
DLA − 1), the effective Ts is given by

T eff
s = T NLA

s × T DLA
s (8.3)

=
g2

NLAg
2
DLA

2g2
DLA − 1

. (8.4)

Remarkably, a Ts of 1, i.e. SNR preserving perfect amplification is achievable by set-
ting the g2

NLA = 2 − 1/g2
DLA. We can also define this in terms of the effective gain

geff = gDLAgNLA, giving g2
NLA = 2g2

eff/(g
2
eff + 1). We note that in this perfect amplifica-

tion regime, the gain of the noiseless linear amplifier is upper bounded by 2. Since the
probability of success decreases rapidly as a function of gain (See Fig. 7.6), this bound on
the NLA gain implies that good probability of success can be attained even for high total
effective gain geff . Beyond the perfect amplification regime, we observe that a reduced-
noise amplifier in fact allows us to explore the amplification continuum between the
DLA and NLA (Fig. 8.1(b).)

8.2.2 Heralded hybrid linear amplifier

A reduced-noise probabilistic amplifier, though attractive in terms of flexibility in gain
and noise level, might be difficult to be realised in practise. As discussed in Sec. 7.1,
it is generally technically challenging in the implementation of a P-NLA, let alone the
requirement of tunability in gain power to meet the required SNR. Although a direct ap-
plication of MB-NLA is conceivable, the approach of measurement-based would imply
the loss of the propagating quantum state.

This predicament can be mitigated with the observation that when the probabilistic
gain is less than the deterministic gain, gNLA < gDLA, the reduced-noise amplifier can be
translated to a linear optical setup [192] with an embedded measurement-based NLA
(MB-NLA) (Fig. 8.5b). Since the measurement outcome of such a composite device is
heralded, we termed it as a heralded hybrid linear amplifier (HLA).

We now show how concatenating an NLA and a DLA (Fig. 8.2a) can be transformed
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Figure 8.2: Hybrid Linear Amplifier. (a) The general concatenated amplifier, consisting a noise-
less linear amplifier (NLA) followed by a deterministic linear amplifier (DLA). (b) An optical
implementation of the DLA with a beam splitter of transmission T and electronic gain g(ff)

e . (c)
When gNLA < gDLA, the NLA and beam splitter T can be substituted by an effective NLA (NLA′)
at the reflection port of a beam splitter Ts. (d) The NLA′ followed by a dual-homodyne detection
with outcomes (x, p) is replaced by a heralding function pF with an electronic rescaling g(rescale)

e

acting upon measurement outcomes (xm, pm). (e) The two electronic gains are combined into
gx,p. EOMs, electro-optical modulators.

to a probabilistic linear optical setup (Fig. 8.2(e)). In our scheme, the deterministic am-
plification can be implemented by a linear optical feed-forwarding circuit discussed in
Sec. 7.2.3, which is shown in Fig. 8.2b. A beam splitter with transmission

T =
1

g2
DLA

, (8.5)

is used to tap off the noiselessly amplified state. The reflected beam is subjected to a dual
homodyne measurement whose outcome d = (x, p) is electronically amplified with gain

g(ff)
e =

√
2
(
g2

DLA − 1
)
. (8.6)

This amplified signal is feed-forwarded to the transmitted beam to displace it by g(ff)
e d

via electro-optical modulators (EOMs).

As described in [174], this same output state can be obtained by a different setup
(Fig. 8.2c) where the NLA is moved from the input to the reflected port with a modified
gain

gNLA′ =

√
1− T

1− Tg2
NLA

gNLA, (8.7)
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and the beam splitter is replaced by a beam splitter with transmission

Ts = Tg2
NLA = g2

NLA/g
2
DLA. (8.8)

These setups are equivalent provided gNLA < gDLA. The reason for going to this al-
ternate setup is that now we have a situation where the NLA is followed by a dual-
homodyne detection which can be implemented by a measurement-based NLA (MB-
NLA) [175, 185]. The MB-NLA consists of a Gaussian heralding function pF, followed
by a rescaling factor

g(rescale)
e =

1

gNLA′
. (8.9)

This rescaling factor is combined with g(ff)
e to give a net electronic gain of

gx,p = g(rescale)
e g(ff)

e

=

√
2

(
1

Ts
− 1

)
, (8.10)

as shown in Fig. 8.2e.
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Figure 8.3: Tunability of the amplifier. Signal transfer coefficient (blue contours), various effec-
tive gains (red contours), and T ′ (green lines) as the function of gNLA and gDLA. The blue-dotted
line denotes SNR preserving amplification (Ts = 1) while the enclosed shaded area refers to the
region where additional noise is introduced.
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Figure 8.3 illustrates the operational degrees of freedom of our noise-reduced linear
amplifier. The amount of noise reduction depends on both the product and the ratio of
gNLA and gDLA, which correspond to, respectively, the values of the effective gain geff

and the transmittivity Ts in Fig. 8.2. Intuitively, for a fixed effective gain geff , a higher
signal transfer coefficient Ts is achieved with a larger gNLA, since the associated noise
determined by gDLA decreases while the input amplitude undergoes the same amount
of amplification. Hence, under the same effective gain, a higher Ts would always lead
to a larger signal transfer coefficient.

8.3 Hybrid cloning machine

gNLA gDLA N...
...

Figure 8.4: Hybrid Cloning Machine. An N -port hybrid cloning machine (HCM), consisting of
two control knobs: a probabilistic noiseless linear amplifier (NLA) gain (gNLA) and a determinis-
tic linear amplifier (DLA) gain (gDLA). Heralded successful events (symbolised by a green light)
produceN clones (ρi) of coherent state |α〉with noise less than the deterministic approach, while
unsuccessful events (red light) will be discarded.

As discussed in Sec. 7.2.1 quantum amplification and cloning are closely related con-
cepts, as the no-go of one implies the impossibility of the other. By subjecting the output
of a hybrid linear amplifier to an N -port beam splitter, we obtain a total gain of

g = gNLAgDLA/
√
N. (8.11)

Quantum cloning can be achieved when the gain is set to unity, i.e. g = 1. Upon setting
Ts and the number of clones N , the corresponding gNLA and gDLA at unity gain can
be determined from Eq. (8.8). Combining Eq.s (8.8) and (8.11), we note that as long
as Ts > 1/N , gNLA will always be bigger than 1, enabling the hybrid operation of the
cloning machine. Our heralded hybrid cloning machine (HCM) is depicted conceptually
in Fig. 8.5a, where an N -copy cloner is parametrised by an NLA amplitude gain (gNLA)
and an optimal DLA gain (gDLA). By introducing an arbitrary input coherent state of
|α〉, and setting the total gain to unity,

g = gNLAgDLA/
√
N = 1, (8.12)

HCM will generateN clones with identical mean α and quadrature variance 1+2(g2
DLA−



118 Heralded Hybrid Linear Amplifier for Quantum Cloning

1)/N (where the quantum noise level is 1). Since the probabilistic amplification incurs
no noise at all, the variance is a function of gDLA only.

H
eralding Function

... ...LO- θ

LO- θ

LO- θ

LO- θ

LO-P

LO-X
Heralding

gx

gp

Ts

98:2

CloningInput

Auxiliary beam

Figure 8.5: Experimental schematic for HCM. When gNLA < gDLA, the cloning machine can
be realised by a feed-forward scheme. The input coherent state passes through a beam splitter
with transmitivity Ts, where both conjugate quadratures of the reflected port are measured via a
dual-homodyne detection setup. The measurement outcomes pass through a heralding function
and the successful events are then amplified with gain gx,p to displace the corresponding trans-
mitted input state via a strong auxiliary beam. An N -port beam splitter finally creates N clones,
which are characterised by homodyne measurements on quadratures θ = {X,P}. |0〉, vacuum
state; LO, local oscillator; 98:2, 98% transmissive, 2% reflective beam splitter; AM, amplitude
modulator; PM, phase modulator.

A key feature in our implementation is the observation that when the probabilistic
gain is less than the deterministic gain, gNLA < gDLA, the hybrid amplifier can be trans-
lated to a linear optical setup [192] with an embedded MB-NLA (Fig. 8.5b). This equiv-
alence is illustrated in Fig. 8.2. The MB-NLA is the post-selective version of the physical
realisation of NLA that has been proposed [175, 221] and experimentally demonstrated
recently [185]. Compared to its physical counterpart, MB-NLA offers the ease of im-
plementation and avoids the predicament of demanding experimental resources. By
deploying MB-NLA as the heralding function in a feed-forward control setup [193],
HCM preserves the amplified quantum state, extending the use of the MB-NLA beyond
point-to-point protocols such as quantum key distribution.

8.3.1 Cloning protocol

To clone an input coherent state, we first tap off part of the light with a beam splitter of
transmission

Ts = (gNLA/gDLA)2, (8.13)
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which is then detected on a dual-homodyne detector setup locked to measure the am-
plitude and phase quadratures (X and P ). A probabilistic heralding function, which
is the probabilistic quantum filter function of a MB-NLA [175, 185], is then applied to
the measurement outcome. By post selecting the dual-homodyne data with higher am-
plitude, the heralding function gives rise to an output distribution with higher overall
mean. We will discuss this in more details in Sec. 8.3.2.

The heralded signal is then scaled with gain gx,p =
√

2 (1/Ts − 1) and used to mod-
ulate an auxiliary beam. The auxiliary beam is combined with the transmitted beam
using a 98:2 highly transmissive beam splitter, which acts as a displacement operator to
the transmitted beam [222]. Finally, the combined beam passes through anN -port beam
splitter to create N -clones, which is then verified by homodyne measurements.

In our experiment, the dual-homodyne measurement heralds successful operation
shot-by-shot. This is then paired up with the corresponding verifying homodyne mea-
surements to select the successful amplification events. The accumulated accepted data
points give the distribution of the conjugate quadratures of the successful clones. The
processing of the input coherent state at different stages of the HCM is illustrated by
Fig. 8.6a.

It is instructive to compare our scheme to that of ref. [179], where probabilistic
cloning of fixed-amplitude coherent states was demonstrated. In [179], the amplifica-
tion is performed by a phase-randomized displacement and phase insensitive photon
counting measurement, which have to be optimised according to input amplitude.
In our scheme, the amplitude and the phase of the input state is a priori unknown.
Moreover, owing to the phase-sensitive dual-homodyne measurement and coherent
feed-forward control in DLA [214, 223], the state to be cloned is amplified coherently
in the desired quadrature. The integration of MB-NLA in HCM, which emulates a
phase-preserving noiseless amplification, further enhances the amplitude of the signal
while maintaining its phase.

8.3.2 Implementation of measurement-based noiseless linear amplifier

Here we give a brief summary of the MB-NLA implementation in our protocol. The
NLA with gain gNLA′ on the reflected mode followed by a dual-homodyne measurement
can be replaced by a direct dual-homodyne measurement on the reflected mode, whose
outcomes αm = (xm + ipm)/

√
2 are used to herald successfully cloned states. These

measurement data points αm are accepted with probability

pF (αm) =


1
M exp

[
|αm|2

(
1− 1

g2
NLA′

)]
if |αm| < |αc|,

1 otherwise.
(8.14)
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Here |αc| is the NLA cut-off and M = exp
[
|αc|2

(
1− 1/g2

NLA′
)]

ensures that the output
is normalized properly. This heralding function, pF (αm), together with the rescaling
factor (Eq. (8.9)), can be made arbitrarily close to an ideal NLA operation gn, where n is
the number operator.

Next, we describe how the parameters gNLA′ and |αc| are chosen in Eq. (8.14). For
both X and P quadratures, the gain gNLA′ is chosen such that the inferred mean of
N clones prior to splitting equals to that of the amplified input mean to ensure av-
erage unity gain. For the quadrature with zero mean, gNLA′ will be tuned such that
the variance matches the value given by the experimental model with imperfect dual-
homodyne detection efficiency. In all cloning protocols, only two clones are directly
measured. Based on the N -port splitting ratios, the mean and the variance of the re-
maining clones for N > 2 can be evaluated either from rescaled data from different
cloning runs or from an estimation of the remaining transmission power.

The cut-off parameter |αc| > 0 determines how closely the MB-NLA approximates
an ideal NLA. A larger cut-off parameter implements the ideal NLA more accurately
at the cost of a lower probability of success. The accuracy and the success probabil-
ity also depend on the gNLA′ and the amplitude of the coherent state. The probability
distribution of a dual-homodyne measurement on ρ = |α0〉 〈α0| is given by

Q(αm) =
1

π
〈αm|ρ|αm〉

=
1

π
exp
(
−|αm − α0|2

)
, (8.15)

which is centred around α0 with the variances Var(Re(αm)) = Var(Im(αm)) = 0.5.
Applying the probabilistic filter Eq. (8.14) on the distribution Q(αm) results in a two-
dimensional Gaussian distribution with amplified mean and variance of g2

NLA′α0 and
0.5g2

NLA′ , respectively. To implement the NLA with high fidelity, we propose the follow-
ing cut-off value for the distribution:

Re(αc) = g2
NLA′Re(αmax

0 ) + β(
√

0.5gNLA′), (8.16)

and similarly for Im(αc). Here, αmax
0 is the expected maximum input amplitude in-

volved in the cloning protocols. In our experiment, β is chosen to ensure more than 98%

of the data are within the cut-off value for both the two-clone and multi-clone protocols.
Finally, the probability of success for input state |α0〉 can be obtained by integrating

the function pF (αm) (Eq. (8.14)) with the dual-homodyne distribution Q(αm).

8.4 Experimental details

Our hybrid cloning machine is shown in Fig. 8.5b. The coherent state is created by
modulating the sidebands of a 1064 nm laser at 4 MHz with a pair of phase and am-
plitude modulators. The mean of the coherent state is set by the modulation strength.
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In the cloning stage, the input mode is split by a variable beam splitter consisting of a
half-wave plate and a polarising beam splitter with transmitivity Ts = (gNLA/gDLA)2.
An optical dual-homodyne measurement is performed on the reflected beam, where
the measurement outcome is further split into two parts. The first part is used to ex-
tract the 4 MHz modulation by mixing it with an electronic local oscillator, before being
low pass filtered at 100 kHz and oversampled on a 12-bit analog-to-digital converter at
625 kSamples per second. The data is used to provide the heralding signal. The second
part of the output is amplified electronically with a gain gx,p and sent to a pair of phase
and amplitude modulators, modulating a bright auxiliary beam. This beam is used to
provide the displacement operation by interfering it in phase with the delayed trans-
mitted beam on a 98:2 beam splitter. The delay on the transmitted beam ensures that it
is synchronised to the auxiliary beam at the beam splitter. The combined beam is then
split by an N -port splitter to generate clones. The clones are then verified individually
by the same homodyne detector. Two conjugate quadratures X and P are recorded and
used to characterise the Gaussian output. For each separate homodyne detection at least
5 × 107 data points are saved. We note that in evaluating the fidelities, we take into ac-
count the detection efficiency and losses to avoid an overestimation of the fidelity (See
Sec. 8.7).

8.5 Two clones

To benchmark the performance of the HCM, Fig. 8.6b demonstrates the universality of
the cloning machine by showing the cloning results of four coherent input states with
different complex amplitudes |x/2 + ip/2〉, where (x, p) = (−0.71, 0.72), (−0.01,−1.51),
(2.23, 2.19) and (−5.26,−0.02). The figure of merit we use is the fidelity F = 〈α|ρi|α〉,
which quantifies the overlap between the input state |α〉 and the i-th clone ρi. Using
a setting of Ts ≈ 0.6, our device clones the four input states with average fidelities of
0.695± 0.001, 0.676± 0.005, 0.697± 0.001 and 0.681± 0.008, respectively. All of the ex-
perimental fidelities are significantly higher than that of a classical measure-and-prepare
(M&P) cloner (FM&P = 0.5), where the clones are prepared from a dual-homodyne mea-
surement of an input state [224]. More importantly, all the clones also surpass the no-
cloning limit of F2 = 2/3, which is impossible even with a perfect deterministic cloning
machine.

To further analyse the HCM, we examine in detail the cloning of an input state
(x, p) = (2.23, 2.19) (|α| = 1.56). This experiment is repeated 5× 107 times, from which
about 5.9× 105 runs produced successfully heralded clones. The electronic gain gx,p

and the splitting ratio of the beam splitter are carefully tuned to ensure that the two
clones produced are nearly identical. The probabilistic heralding function was chosen
to ensure that the output clones have exactly unity gain. This is done to prevent any
overestimation of the fidelity (see Sec. 8.7 and Fig. 8.10). As can be seen in Fig. 8.7c,
the produced clones have noise significantly lower than the M&P cloning protocol.
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Figure 8.6: (a) Phase space representation of the deterministic-probabilistic hybrid cloning ap-
proach. The input state is first deterministically amplified before being heralded to produce a
target state which is split into two clones. (b) Cloning of distinct input states. Since both the de-
terministic and noiseless linear amplifiers are invariant to the input state, any unknown coherent
state can be cloned in the same way.

Since the noise variance is only affected by the deterministic amplification, setting
gNLA > 1 will reduce the required DLA gain while still achieving unity gain. As a result,
the clones produced by our HCM will have less noise compared to its deterministic
counterpart. The data points also show that the heralded events (purple region of
Fig. 8.7c right) have Gaussian distributions with mean equal to that of the input state.
We experimentally obtained a fidelity of 0.698 ± 0.002 and 0.697 ± 0.002 for the two
clones. The fidelity plot in Fig. 8.7d clearly demonstrates that the fidelities of both
clones exceed not only the M&P limit but also lie beyond the no-cloning limit by more
than 15 standard deviations.
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Figure 8.7: (a) Cloning of coherent state (x, p) = (2.23, 2.19). Left, noise contours (1 stan-
dard deviation width) of the Wigner functions of the input state (red circle) and the clones from
a measure-and-prepare (M&P) cloning machine (dashed blue) and an hybrid cloning machine
(purple circle). Right, Quadrature measurement histograms constructed from 5× 107 homodyne
measurements before (green) and 5.9× 105 measurements after heralding (purple). (b) Proba-
bility distributions of the fidelity of the clones. Both clones surpass the fidelity limits imposed
by the M&P cloner (FM&P = 0.5) and the deterministic cloner (F2 = 2/3).

8.6 Multiple clones

We operate our HCM at higher gains to enable the production of more than two clones.
In order to have gNLA > 1, from equations (8.12) and (8.13), we require gDLA <

√
N ,

which leads to Ts > 1/N . Hence, by tailoring Ts for each N , HCM can produce N clones
with fidelity beating the deterministic bound FN with the desired probability of success.
Fig. 8.8a shows the fidelity of the multiple clones with an input of |α| ≈ 0.5. The average
fidelities of the clones for N = 2, 3, 4 and 5 are 0.695± 0.002, 0.634± 0.012, 0.600± 0.009

and 0.618±0.008, respectively, clearly surpassing the corresponding no-cloning limit. In
Fig. 8.8b, we plot the theoretical prediction of the fidelity as a function of the probability
of success with the experimental data. The theoretical fidelity is modelled upon the
dual-homodyne detection efficiency of 90±5%, which is the main source of imperfection
(see Sec. 8.7). We find that our results lie well within the expected fidelities, with the
probability of success ranging between 5% to 15%. Remarkably, by keeping 5% of the
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Figure 8.8: (a) Fidelity of N clones beyond the no-cloning limit. By applying appropriate de-
terministic and probabilistic gains on the input |α| ≈ 0.5, clones with fidelity exceeding their
corresponding no-cloning limits FN = N/(2N − 1) are produced. For N > 2, only two of
the output clones are directly measured (solid lines). The remaining N − 2 clones’ fidelity dis-
tributions are obtained either from rescaled data of different runs (dashed) or estimation of the
remaining intensities (dotted). A sample size of 5×107 data points is used for allN . The spreads
in fidelity distributions are predominately due to imperfect splitting. (b) Fidelity as a function
of heralding probability of success for different N . Theoretical simulations (solid lines) are su-
perimposed with the experimental points (symbols) and the no-cloning limits FN (dotted lines).
Error bars represent 1 standard deviation of clones’ fidelities and the shaded regions are theoret-
ically expected fidelities from 1 standard deviation of the dual-homodyne detection efficiency.

data points, the average cloning fidelity for N = 5 can be enhanced by more than 15%,
and hence exceeding the no-cloning limit F5 by 11.2%. For deterministic unity gain
cloners, as long as N clones are produced each with fidelity F > FN+1 [208, 207], one
may conclude that there are no other clones with equal or higher fidelity. Here we show
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Figure 8.9: Three clones with fidelity F > F2 and F3. The experimentally reconstructed Wigner
functions of the input (red) and clone 1 (purple) together with their normalized probability dis-
tributions for both X and P quadratures.

that this is not necessarily the case for probabilistic cloning. By further increasing NLA
gain, we successfully produce three clones, each with fidelity F > F2 (Fig. 8.9c), and
the average fidelity is 0.684 ± 0.009. Given only fidelity, it is impossible for a receiver
with only two clones to determine whether the clones originate from a 2-clone or 3-
clone probabilistic protocol (Fig. 8.8a and 8.9c). The resulting probability distribution
from 7.2× 106 successful three-clone states out of 5× 108 inputs and the corresponding
experimental reconstructed Wigner function are shown in Fig. 8.9d together with the
input state.

The theoretical fidelity for the HCM’s clones at unity gain can be shown to be
FHCM = 1/(1 + (g2

DLA − 1)/N), which is only a function of the deterministic gain and
the number of clones. We note that maximum fidelity for a given N can be achieved
in the limit of Ts → 1, giving Fmax(N) = 1/(1 + (

√
N − 1)/N) (See Sec. 8.7). Fmax(N)

converges to 1 in the limit of an infinite number of clones. However, since this also re-
quires an infinitely large nondeterministic gain, and thus an unbounded truncation in
post-selection, the probability of success will be essentially zero.
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Figure 8.10: Fidelity of two-clone protocol with different input states. Deviation from unity
gain (dashed line) can lead to overestimation of fidelity when the amplitude of the input state
|αi| is small.

8.7 Fidelity evaluation

The fidelity which quantifies the overlap between the clones and the input state is cal-
culated as a criterion for examining the performance of our HCM. We consider single-
mode Gaussian input ρi (di,Vi) and output ρo (do,Vo), where dj = (xj , pj) is the mean
of the amplitude and the phase of the state ρj while Vj = diag(σxj , σpj ) is the corre-
sponding covariance matrix. The fidelity between ρi and ρo is given by [24]

F (ρi, ρo) =
2

√
M +δ −

√
δ

exp
[
−1

2
dT (Vi + Vo)−1d

]
, (8.17)

where M:= det(Vi + Vo), δ := (detVi− 1)(detVo− 1), and d := do− di. The fidelity for
a coherent state input ρi (di, 1) is

F =
2√

(σ2
xo

+ 1)(σ2
po

+ 1)

exp
[
−1

2

(
(xo − xi)

2

σ2
xo

+ 1
+

(po − pi)
2

σ2
po

+ 1

)]
. (8.18)

Suppose that the output quadratures are symmetric, and the theoretical output means
{xo, po} are given by {gxi, gpi} and the variances σ2

xo
= σ2

po
= 1 + 2(g2

DLA− 1)/N , respec-
tively. Then, the theoretical fidelity of N clones is thus

F (N) =
1

1 + (g2
DLA − 1)/N

exp
[
− (g − 1)2|αi|2

1 + (g2
DLA − 1)/N

]
.

where αi = (xi + ipi)/2. We emphasize that it is crucial to set the gain of the HCM as
close to unity gain as possible. As shown in Fig. 8.10, non-unity gain for small input
amplitude may lead to an overestimation of the fidelity. At unity gain, the theoretical
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fidelity reduces to

F (N) =
1

1 + (g2
DLA − 1)/N

, (8.19)

which depends only on the deterministic gain and number of clones. The maximum
fidelity can be achieved in the limit of Ts → 1, and from Eq. (8.8) and (8.11), g2

DLA →
√
N ,

giving

F (N)→ Fmax(N) =
1

1 + (
√
N − 1)/N

. (8.20)

Note that although the fidelity goes to 1 as N increases, the probability of success is
vanishingly small. This is because at this limit, the cut-off αc in the heralding function
will also scale with the probabilistic gain g2

NLA to implement the amplification faithfully,
thus rejecting essentially most of the data points (c.f. Eq. (8.14)). In practice, the fidelity
of HCM is limited by several factors, such as the dual-homodyne efficiency, electronic
gain, asymmetry in the quadratures and imperfect N -port splitting ratio. Nevertheless,
following [225], a simple model of the imperfection of HCM can be constructed simply
by considering the detection efficiencies of the dual-homodyne ηDH, which is the domi-
nant source of imperfection. Taking into account the losses and imperfect visibilities, the
average dual-homodyne detection efficiency for the amplitude and phase quadratures
is 90± 5%.

To evaluate the experimental fidelity of the clones, we corrected the homodyne data
to ensure proper characterization of both the input state and the clones. This is to avoid
overestimation of the fidelity due to underestimation of the clones variances (Fig. 8.10).
The total detection efficiency for the input state is typically around 97%, where we have
taken into account the quantum efficiency of the photodiodes, mode-matching visibility,
and the propagation losses. The detection efficiency of the clones in the verification
stage is about 98.5%.

The correct mean can be obtained by rescaling the overall data by 1/
√
ηtot, where ηtot

is the total detection efficiency of either the input state or the clones. The corresponding
variance can be obtained by subtracting (1− ηtot)/ηtot from the variance of the rescaled
data.

To determine the standard deviation of the fidelity, we take into account the propa-
gation of the uncertainties in the variance of output quadratures. The uncertainty of our
fidelity is estimated according to:

Var
(
σ2
F̃

)
=

(
∂F̃

∂σ2
xo

)2

Var(σ2
xo

) +

(
∂F̃

∂σ2
po

)2

Var(σ2
po

) . (8.21)

Here F̃ is

F̃ =
2√

(σ2
xo

+ 1)(σ2
po

+ 1)
, (8.22)
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which is obtained by setting xo = xi and po = pi in Eq. (8.18). The variance of the
quadrature variances Var(σ2

xo
) and Var(σ2

po
) are evaluated based on several parameters:

number of datapoints, uncertainty of the total detection efficiency and uncertainty of
the N -port beam splitter. Finally the standard deviations of the average fidelities are
determined from the spread of the fidelity probability distributions.

8.8 Summary

In a nutshell, we have proposed and demonstrated a hybrid cloning machine that com-
bines a deterministic and a probabilistic amplifier to clone unknown coherent states
with fidelity beyond the no-cloning limit. Even though an ideal NLA implementation is
not possible with our setup, as this would require unity deterministic gain, our hybrid
approach does allow the integration of measurement-based NLA in the optimal deter-
ministic amplifier. We showed that our device is capable of high-fidelity cloning of large
coherent states and generation of multiple clones beyond the no-cloning limit, limited
only by the amount of data collected and the desired probability of success. Our cloner,
while only working probabilistically, provides a clear heralding signal for all successful
cloning events.



Chapter 9

Conclusion and Future Outlook

9.1 Summary

In this thesis, we have studied two aspects of the continuous variable (CV) quantum
communication in detail, namely the security of the quantum devices, and the amplifi-
cation of quantum state in a communication channel. By carefully redesign and quantify
the relevant quantities in the quantum protocols, we have demonstrated novel simple
techniques that enhance the security and robustness quantum devices. To summarise:

• The security of the quantum devices

– CV quantum random number generator (QRNG)
We have presented a novel method that leads to the maximization of ex-
tractable high-quality randomness without compromising both the integrity
and the speed of a QRNG. In fact, within our framework, when the QRNG
is appropriately calibrated, the generated random numbers are secure even
if the electronic noise is fully known. We showed that depending on the as-
sumption made on the eavesdropper, the ADC range, digitisation bits and the
QCNR can be optimised with respect to speed and security. From a practical
point of view, our method also relaxes the signal-to-noise ratio requirement
on the detector. The final real-time throughput our CV QRNG is 3.55 Gbps,
with a potential to achieve up to 70 Gbit/s provided all the available band-
width and (conditional) min-entropy from our detector (approximately 2.5
GHz) can be harnessed.

– One-sided device independent CV quantum key distribution
We have proposed and demonstrated that through a recently proved entropic
uncertainty principle for the continuous variable, it is possible to establish
a one-sided device-independent quantum key distribution (QKD) protocol,
where the device of one side of the communicating party needs not be fully
trusted. Remarkably, such a coveted protocol could be performed using only
coherent states, one of the most readily available resources in the lab. By
examining the protocol experimentally, the correlation necessary for 1sDI key
distribution up to an applied loss equivalent to 3.5 km of fibre transmission

129
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was measured.

• Probabilistic linear amplification of quantum state

– Measurement-based quantum amplifier
We have studied a hierarchy of quantum amplifiers, and show the interplay
between amplification noise and the probability of success in a quantum am-
plifier. We have reviewed a recent measurement-based noiseless linear am-
plifier (MB-NLA), and compared it with its physical counterpart. We noted
that equivalence between the approaches, and highlighted that care must be
taken in choosing the experimental parameters, such as truncation point to
ensure a faithful emulation of the NLA.

– Heralded hybrid quantum amplifier based cloner
By combining an ideal deterministic amplifier with a heralded MB-NLA, we
have proposed and demonstrated a hybrid cloning machine that combines a
deterministic and a probabilistic amplifier to clone unknown coherent states
with fidelity beyond the no-cloning limit. Even though an ideal NLA imple-
mentation is not possible with our setup, as this would require zero determin-
istic gain, our hybrid approach does allow the integration of measurement-
based NLA in the optimal deterministic amplifier.

9.2 Future research

For the CV-QRNG, we note several possible extensions of our work. For instance, one
can apply entropy smoothing [93, 91] on the worst-case min-entropy to tighten the anal-
ysis. Our framework can also be generalized to encapsulate potential quantum side
information by considering the analysis described in Ref. [79]. It is also interesting
to examine the bound for the accessible entropy without either the description of the
source or the measurement device. For example, in [226], the CV entropic uncertainty
principle (see Sec. 6.2) in the form of min-max entropies provided a lower bound of
the conditional min-entropy without trusting the quantum source. A detailed crypto-
analysis of our framework can also increase the final throughput of the QRNG [101].
Last, a hybrid of an information-theoretic provable and cryptographic randomness ex-
tractor is also an interesting avenue to be explored in the construction of a high-speed,
side-information (classical and quantum) proof QRNG [104].

In one-sided device independent QKD, an obvious avenue for future work is the in-
vestigation of methods to improve long distance performance. One option would be to
revisit the restrictions, or lack thereof, made about the eavesdropper including physical
assumptions about the quantum memory available to Eve [227, 228, 229], which has al-
ready seen applications in DI-DVQKD [230]. Another candidate to further extend the
range of these protocols would be the noiseless linear amplifier [194, 164] which has
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already been proposed for application to fully DI-DVQKD [231]. Even more appeal-
ing may be the measurement-based versions of these amplification schemes [184, 183]
that have recently been experimentally demonstrated [185] although this could only be
applied to RR protocols. In light of these results, it appears that several 1sDI-CVQKD
protocols are within the reach of current technology and multiple possibilities exist to
extend the secure range of such schemes to long distances.

The notion of noiseless linear amplifier opens up an opportunity for extending the
range of a quantum network. Our study on the equivalent measurement-based ap-
proach would provide a guideline in determining the best operating parameters while
optimising the relevant figure of merit. For example, in NLA-assisted quantum com-
munication protocols [232, 233], one can choose to maximise either the transmission
range or the secret key rate. While our analysis here focuses on the emulation of a
quantum amplification process, it suggests the possibility of performing other quan-
tum information processing in a measurement-based manner, such as virtual photon
subtraction [234] and iterative entanglement distillation [235].

For our heralded hybrid cloning machine (HCM), several comments on the
prospects and avenues for future work are in order. An immediate extension is the im-
plementation of HCM in various feed-forward based cloning protocols, such as phase
conjugate cloning [236], cloning of Gaussian states [237, 238], telecloning [239], and
cloning with prior information [179, 240, 241]. Our tunable probabilistic cloner could
further elucidate fundamental concepts of quantum mechanics and quantum measure-
ment, for instance, quantum deleting [242] and quantum state identification [218, 243].
This probabilistic coherent protocol might also play a role in the security analysis of
eavesdropping attacks in continuous variable quantum cryptography as well [244, 245].
The implication of HCM in the context of quantum information distributor [246] and
quantum computation [247] also demands further investigation.

Beyond probabilistic cloning, owing to the composability, tunability, and ease of im-
plementation of this heralded hybrid amplification, it provides several interesting av-
enues for future research in loss-sensitive quantum information protocols. First, the
access to the two variable knobs - deterministic and probabilistic - provides a spectrum
of effective gain and success probability. For protocols with high SNR demands, such as
long-distance quantum communication [156], the signal transfer coefficient can be en-
hanced by intensifying the probabilistic gain. When signal transfer speed is the critical
requirement, the deterministic amplification can play the leading role while maintain-
ing the same effective gain. An interesting extension of this work would be to study the
optimality of these gains for a given channel loss and excess noise in various quantum
communication protocols, including quantum key distribution [232], entanglement dis-
tillation [164, 178, 185] and quantum repeater [182, 181]. As such, we believe our scheme
will be a useful tool in the quest to realise large-scale quantum networks.



132 Conclusion and Future Outlook



Appendix

133





Appendix A

QRNG LabView Interface

As described in Sec. 5.3.1, National Instrument FPGA is used to collect, analyse and
post-process the raw quantum randomness from our continuous variable random num-
ber generator. Fig. A.1 shows the Labview interface used to extract consecutive raw
data from two independent high-speed analog-to-digital (ADC) channels for analysis.
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Figure A.1: The LabView interface for the CV-QRNG. (Top) Raw data is stored in RAM before
readout to prevent latency issue in collecting the sampled data. The randomness (Shannon en-
tropy and min-entropy) is then estimated from the data histograms. (Bottom) Raw time series
and power spectrum from two ADC channels.



Appendix B

1SDI-QKD Secret Key Rate with
Imperfect Reconciliation Efficiency

In Sec. 6.4, we derived secret key rates assuming that Alice and Bob achieve the Shannon
capacity for their Gaussian encoding, and we recall that the key rate is bounded by
Eq. (6.8),

K� ≥ I(XA1 : XB)− χ(XA1 : E) (B.1)

In practise, we will not be able to achieve this ideal capacity and the key rate will instead
be bounded by,

K� ≥ βI(XA1 : XB)− χ(XA1 : E) (B.2)

where β < 1 is the information reconciliation efficiency. In this case, instead of using the
entropic uncertainty relation to lower bound the secret key rate, we will use it to upper
bound Eve’s information and then independently measure βI(XA1 : XB) to obtain the
actual key rate. Eve’s information is upper bounded by the Holevo quantity,

χ(XA1 : E) ≤ S(E)−
∫

dxA1 p(xA1)S(ρ
xA1
E ) (B.3)

The conditional von Neuman entropy of the observable XA is given by

S(XA1 |E) = h(XA1) +

∫
dxA1 p(xA1)S(ρ

xA1
E )− S(E) (B.4)

Thus we can rewrite Eve’s information as,

χ(XA1 : E) ≤ h(XA1)− S(XA1 |E) (B.5)

We now make use of our CV entropic uncertainty relation,

S(XA1 |E) + S(PA1 |B) ≥ log 4π (B.6)
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to obtain,

χ(XA1 : E) ≤ h(XA1) + S(PA1 |B)− log 4π (B.7)

Using the fact that S(PA1 |B) ≤ S(PA1 |PB) = h(PA1 |PB) and that the Shannon en-
tropy is maximised by a Gaussian distribution for a fixed variance such that hG(XA1) ≤
log
√

2πeVXA1
we finally arrive at,

χ(XA1 : E) ≤ log 2πe
√
VXA1

VPA1
|PB − log 4π (B.8)

Thus the secret key rate for an arbitrary β for the DR protocol where Alice heterodynes
(or alternatively prepares coherent states) is given by

K� ≥ β log

√
VXA1

VXA1
|XB

+ log
2

e
√
VXA1

VPA2
|PB

(B.9)



Appendix C

Verification of Quantum Discord

Overview

We introduce and demonstrate experimentally a simple technique to verify quantum
discord in Gaussian states and certain class of non Gaussian states prepared by using
a beam splitter. We show that quantum discord for Gaussian states can be verified by
checking whether the peaks of the conditional marginal distributions corresponding to
two different outcomes of homodyne measurement coincide at the same point in the
phase space or not. This method is further applied to non-Gaussian states that are sta-
tistical mixture of coherent states subjected to a beam splitter. The work in this chapter
has appeared in the following publication:

• S. Hosseini, S. Rahimi-Keshari, J. Y. Haw, S. M. Assad, H. M. Chrzanowski,
Janousek, J., T. Symul, T. C. Ralph, and P. K. Lam.
”Experimental verification of quantum discord in continuous-variable states.”
Journal of Physics B: Atomic, Molecular and Optical Physics, 47(2), p.025503.
(2014).

C.1 Introduction

Quantum correlations have been the subject of many studies during the last decades,
in particular, as a resource for quantum information processing and quantum commu-
nication. Previously, any correlation in the absence of entanglement was thought to be
purely classical as they can be prepared with local operations and classical communica-
tions. However, there are reasons to believe that this was not the whole story; for ex-
ample, there are quantum computational models with no or little entanglement, which
can efficiently perform tasks that are believed to be classically hard [248, 285]. Quantum
discord was introduced as a general measure of quantum correlation that can capture
nonclassical correlations beyond entanglement [249]. Discord was suggested as a figure
of merit for characterizing the quantum resources in a computational model [250]; it
also was introduced as a resource for quantum state merging [286, 287] and for encod-
ing information onto a quantum state [251]. This measure of nonclassical correlation has
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been extended to continuous-variable systems to study quantum correlations in Gaus-
sian states [252, 253] and certain non-Gaussian states [288].

Considering the importance of quantum discord, of particular interest is to exper-
imentally verify discord for an unknown quantum system. Methods have been pro-
posed to test for nonvanishing quantum discord of bipartite discrete-variable quan-
tum states [289, 290, 291, 292, 293, 294, 295], some of which have been experimentally
implemented in nuclear-magnetic-resonance systems [296, 297] and in an optical sys-
tem [298]. Recently a measurement-based method for verifying quantum discord was
introduced [299], which can be applied to both discrete- and continuous-variable sys-
tems.

Here we introduce and demonstrate a simple and efficient experimental technique
for verifying quantum discord in Gaussian states. It was shown that the “if and only if”
condition for a bipartite Gaussian state to have zero discord is that there is no correla-
tion between the quadratures of two subsystems, i.e., it is a product state [299]. In our
method, we use two homodyne detections to examine the correlations between quadra-
tures of subsystems A and B. For example, if the peaks of the conditional marginal
distributions of B’s quadrature corresponding to the positive and negative outcomes
of homodyne measurements performed on A’s quadrature, do not coincide at the same
point, those quadratures are correlated. In order to consider all possible correlations,
we check the correlations between all four combinations of the amplitude and phase
quadratures of A and B. If at least one of them is found to be correlated, quantum dis-
cord is nonzero, otherwise it is zero. There is also a simple way to verify quantum
discord in bipartite non-Gaussian states prepared by subjecting a statistical mixture of
coherent states to one port of a beam splitter while the other port is in the vacuum state.
We show that any changes in the conditional marginal distributions observed using
our method for this class of bipartite non-Gaussian states indicate nonzero discord. We
experimentally demonstrate our technique by preparing Gaussian and non-Gaussian
states with no entanglement and verify the presence of quantum discord.
a This paper is structured as follows. In Section C.2, we review the theoretical descrip-
tion of quantum discord and introduce our technique to experimentally verify quantum
discord in Gaussian states and certain class of non-Gaussian states. In Section C.3, we
thoroughly describe the experiments which are performed to examine this method on a
Gaussian state and three different non-Gaussian states, and the experimental results are
presented in detail. Finally, Section C.4 concludes our main findings.

C.2 Theory

C.2.1 Quantum discord

Quantum discord, is defined as the mismatch between two quantum analogues of clas-
sically equivalent expressions of the mutual information [254]. For two classical ran-
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dom variables A and B, the total correlation is given by mutual information, which
can be defined by two equivalent expressions I(A : B)=H(A)+H(B)−H(A,B) and
J(A : B)=H(A)−H(A|B)≡H(B)−H(B|A), where H(X) is the Shannon entropy and
H(X|Y ) is the conditional entropy. For a bipartite quantum system, the quantum
mutual information is defined by I(ρAB)=S(ρA)+S(ρB)−S(ρAB) that is analogous to
I(A : B), where S(ρ)= − Tr[ρ log2(ρ)] is the von Neumann entropy. A measurement-
based quantum conditional entropy is S{Πj}(A|B)=

∑
j pjS(ρA|j), where pj=Tr[ρABΠj ]

is the probability of obtaining the conditional state ρA|j=TrB[ρABΠj ]/pj , and the set
{Πj}, with

∑
j Πj=I, form a POVM performed on subsystem B. As this quantity is

measurement dependent, the quantum version of the expression including conditional
entropy is defined as J←(ρAB)=S(ρA)−min{Πj}S{Πj}(A|B), which is known as one way
classical correlation.The minimization is performed over all possible measurements.
Therefore, the quantum discord from B to A is defined as:

D←(ρAB) = I(ρAB)− J←(ρAB)

= S(ρB)− S(ρAB) + min{Πj}S{Πj}(A|B) . (C.1)

In general, it is not clear how to perform the minimization for any arbitrary state,
unless there are restrictions to certain class of states and POVMs. Gaussian quantum
discord is defined as the quantum discord of a bipartite Gaussian state, where the min-
imization is restricted to generalized Gaussian measurements [252, 253]. This quan-
tity was experimentally estimated and characterized for a two-mode squeezed thermal
state [300], two-mode squeezed vacuum state generated by a four-wave mixing pro-
cess [255], and entangled and separable Gaussian states [256]. Gaussian states with
nonzero discord are shown to be used to reveal interference [301]. It was recently shown
that Gaussian states with nonzero Gaussian discord have nonzero discord [299].

C.2.2 Verification of quantum discord in Gaussian states

The measurement-based method for verifying quantum discord [299] is based on mea-
suring the conditional states of subsystem B corresponding to the outcomes of an in-
formationally complete POVM [257, 258] performed on subsystem A. If the conditional
states commute with one another then quantum discord is zero, otherwise is nonzero.
However, if some prior knowledge about the state is available, one may be able to verify
discord with only a few measurements. It was shown in ref [299] that in principle for
Gaussian states nonvanishing quantum discord can be verified by checking whether the
peaks of two conditional Wigner functions corresponding to two different outcomes of
heterodyne measurements do not coincide at the same point in the phase space. How-
ever, in practice, this is not efficient, as one has to repeat the measurements many times
in order to obtain sufficient data for finding the peaks of the conditional Wigner func-
tions. Here we introduce a simple and efficient experimental technique for verifying
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discord of Gaussian states, which can be also applied to some class of non-Gaussian
states.

In general, one can always characterize Gaussian states in terms of the means
and covariance matrix of their quadratures x and p [24]. For a bipartite system with
modal annihilation operators â=x1+ip1 and b̂=x2+ip2, we define quadrature vectors
for each subsystem, xA=(xA, pA) and xB=(xB, pB), and an overall quadrature vector
x=(xA,xB)=(xA, pA, xB, pB). The vector x̄ represents the means of the quadratures,
and the covariance matrix is

σ = 〈|x̂T x̂|〉 − x̄T x̄ =

(
A C

CT B

)
, (C.2)

where A, B and C are 2×2 matrices. The Wigner function is then given by

WAB(x) =
1

4π2
√

detσ
exp

(
−(x− x̄)σ−1(x− x̄)T

2

)
, (C.3)

A bipartite Gaussian state has zero discord if and only if there is no correlation between
the quadratures of the two subsystems, i.e., [299]

C =

(
c11 c12

c21 c22

)
= 0 . (C.4)

Suppose Alice and Bob are sharing a bipartite Gaussian state. In order to verify
quantum discord they use two homodyne detections, one for each subsystem. Without
loss of generality, we assume A=diag(a1, a2), B=diag(b1, b2) and x̄ = 0, as these can
be always accomplished by appropriately choosing the zero reference phase of the local
oscillators and shifting the zero reference points of the quadratures being measured.
The joint marginal distribution describing the outcomes of two homodyne detections is
then given by [25]

DAB(xA, θA, xB, θB) =

∫ +∞

−∞

∫ +∞

−∞
dpAdpBW (xUθA,θB )

=
π√

λθAµθB − ν2
θA,θB

× exp
(
−λθAx

2
A − µθBx

2
B + 2νθA,θBxAxB

)
, (C.5)

where

UθA,θB =


cos θA sin θA 0 0

− sin θA cos θA 0 0

0 0 cos θB sin θB

0 0 − sin θB cos θB

 .

with θA and θB being the phases of the local oscillators used in Alice’s and Bob’s ho-
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modyne detection, respectively, and λθA , µθB , and νθA,θB are some functions of the co-
variance matrix elements, which depend on θA and θB . If νθA,θB is nonzero, then the
quadrature associated with the phase θA of subsystem A is correlated to the quadrature
associated with the phase θB of subsystem B. In order to check this, Bob measures two
conditional marginal distributions corresponding to outcomes xA > 0 and xA < 0 of
Alice’s measurements

DB|±(xB, θB, θA) =

∫ ±∞
0

(±1)dxADAB(xA, θA, xB, θB)

=

√
πλθA exp

(
ν2θA,θB

−µθBλθA
λθA

x2
B

)
√
µθBλθA − ν2

θA,θB

×

(
1± Erf

(
νθA,θBxB√

λθA

))
, (C.6)

where Erf(.) being the error function. If the peaks of the marginal distributions
DB|+(xB, θB, θA) and DB|−(xB, θB, θA) do not coincide with one another, this implies
that νθA,θB 6= 0.

Using this technique Alice and Bob can now verify quantum discord. As we have

ν0,0 =
c1

2a1b1 − 2c2
1

,

ν0,π
2

=
c2

2a1b2 − 2c2
2

,

νπ
2
,0 =

c3

2a2b1 − 2c2
3

,

νπ
2
,π
2

=
c4

2a2b2 − 2c2
4

,

they only need to choose the phases of their local oscillator to be 0 or π/2 and measure
the conditional marginal distribution DB|±(xB, θB, θA) to check whether the elements
of matrix C are zero or not. If at least one of the elements is found to be nonzero, the
state has nonzero quantum discord.

C.2.3 Verification of quantum discord in non-Gaussian states

One way to create quantum states with nonclassical correlation is to use beam splitter. It
was shown that nonclassicality of input states to a beam splitter is a necessary condition
for generating entanglement at the output of a beam splitter [302, 303]. Here we show
that bipartite quantum states that are prepared by subjecting a statistical mixture of
coherent states to a beam splitter, while the other port is in the vacuum state, have
nonzero discord. We show that quantum discord for this class of non-Gaussian states
can be simply verified.

By using the Glauber-Sudarshan representation [26, 27] for an input state ρ1 to a
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beam splitter

ρ1 ⊗ |0〉 〈0| =
∫
d2αP1(α) |α〉 〈α| ⊗ |0〉 〈0| , (C.7)

the output state is then given by

ρout =

∫
d2αP1(α) |ηα〉 〈ηα| ⊗ |η̃α〉 〈η̃α| , (C.8)

where η is the transmissivity of the beam splitter and η̃ =
√

1− η2. If P1(α) is a positive
semidefinite Gaussian or non-Gaussian function other than the Dirac delta function,
the state ρout has nonzero discord, as it is a mixture of nonorthogonal states of two
subsystems [299].

The Wigner function of the state after the beam splitter is given by [25]

Wout(x1,p1, x2, p2) = W1(ηx1 + η̃x2, ηp1 + η̃p2)

× 1

π
exp

[
−(ηx2 − η̃x1)2 − (ηp2 − η̃p1)2

]
. (C.9)

whereW1(x, p) is the Wigner function for the input state ρ1. Therefore, the necessary and
sufficient condition to verify discord in the state (C.8) is to check whether the Wigner
function of any of marginal states at the output, for example

Wout,1(x1, p1) =

∫ +∞

−∞

∫ +∞

−∞
dx2dp2Wout(x1, p1, x2, p2),

is the Wigner function of a coherent state or not.

Also by applying our technique developed in the previous subsection, if one ob-
serves any changes in the conditional marginal distributions, that indicates correlation
between the two quadratures and hence nonzero quantum discord. By measuring x-
quadratures of two subsystems using two homodyne detections, the joint marginal dis-
tribution is then given by

D(x1, x2) =
1√
π
D1(ηx1 + η̃x2)e−(ηx2−η̃x1)2 , (C.10)

where D1(x) is the marginal distribution of W1(x, p). If the input state is not a coherent
state then ρout has discord, otherwise zero discord. In the following section, we demon-
strate the use of our technique for three different non-Gaussian states.

Notice that our technique has limited use in verifying quantum discord of com-
pletely general non-Gaussian states where any peak separation is not necessarily an
indication of quantum discord. For example, this state

ρAB =
1

4

(
|α〉 〈α| ⊗ (|0〉+ |1〉)(〈0|+ 〈1|)

+ |−α〉 〈−α| ⊗ (|0〉 − |1〉)(〈0| − 〈1|)
)
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has zero discord from B to A, but by using our method one can see that there is a peak
separation in the conditional marginal distributions ofB . There are also quantum states
with nonzero discord but no peak separation in the conditional marginal distributions;
one such state is

ρAB = ρA,1 ⊗ ρB,th + ρA,2 ⊗ ρB,S , (C.11)

where ρB,th and ρB,S are thermal state and squeezed vacuum state, respectively.

C.3 Experiment

C.3.1 Quantum discord in Gaussian states

Figure C.1: (a) Schematic diagram of the experimental setup. Here, AM and PM are the electro-
optic modulators (EOM) driven by function generators (FG), which in turn provide displace-
ment of the vacuum state in amplitude and phase quadrature with Gaussian distributed noise.
Laser light is passed through electro-optic modulators and is split on 50:50 beam splitter. Each
part is sent to a homodyne measurement station (Alice and Bob). Collected data points from
each homodyne station are demodulated and sampled using a digital data acquisition system
(DAQ). (b) The unconditioned (left) and conditioned (right) probability distributions of the bi-
partite Gaussian state with discord. The state is obtained from a Gaussian distributed modulated
beam with modulation depth of 4.5 times the quantum noise. The blue and pink shaded curves
show the probability distributions conditioned respectively on xA > 0 and xA < 0, where xA
is the measured amplitude quadrature of subsystem A normalized to quantum noise. The peak
separation indicates that the states A and B are discordant.

The experimental setup used to verify the presence of quantum discord is depicted
in Figure C.1 (a). The laser light is passed through a mode cleaner cavity to provide a
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quantum noise limited light source. A large portion of it, is used as the bright source
of local oscillator for homodyne detection, and a small portion, is passed through a
pair of phase and amplitude elctro-optic modulators (EOM). EOMs are used to provide
Gaussian distributed modulation on both quadratures. The modulated beam is then
split on a 50:50 beam splitter to generate two separable but correlated bipartite state (A
and B). Each part of it, is sent to a homodyne measurement station, which we labelled
Alice and Bob.

Following subsection C.2.2, in order to check whether the elements of matrix C

are zero or not, all possible correlations between two subsystems A and B need to be
checked. In order to do that we first lock Bob’s station to amplitude quadrature and
perform homodyne measurements on both of the stations by locking Alice’s station to
amplitude quadrature, followed by phase quadrature. The same procedure is repeated
for phase quadrature of Bob’s station. The marginal distributions of Bob’s state con-
ditioned on Alice’s outcomes, xA > 0 and xA < 0 , are calculated and any possible
separation between the peaks of conditional marginal distributions are investigated. In
our experiment, the bipartite Gaussian state have correlations in both phase and ampli-
tude quadratures but with very little cross-correlation between the quadratures of two
subsystems. Hence when Alice and Bob are both locked to the same quadrature, we
observe separation between peaks of conditional marginal distributions, as shown in
Figure C.1(b) for amplitude quadrature. Similar result is obtained when both subsys-
tems are locked to phase quadrature. As discussed in subsection C.2.2, for Gaussian
state the peak separation in the conditional marginal distributions is a necessary and
sufficient condition of non-zero quantum discord. Hence from our result we conclude
that we have a discordant bipartite Gaussian state.

In our experiment each pair of detectors are balanced electronically, providing 30 dB
of common mode rejection. Typical suppression of cross correlation between orthogo-
nal quadrature is around 25 dB. For each separate homodyne detection, 2.4 × 106 data
points are sampled at 14 × 106 samples per second utilizing a digital acquisition sys-
tem. In order to provide adequate statistics, this procedure is taken over five times for
each data point. These data are then down sampled and digitally filtered to 2-5 MHz.
Our homodyne efficiency is typically 96.6%, with fringe visibility of 97.6%, generally
limited by the mode distortions introduced by the EOMs and the photodiode quantum
efficiency of 99%.

We also investigate the effect of variation of modulation depth on the peaks sepa-
ration of conditional marginal distributions. This is done by changing the variance of
Gaussian noise introduced by (EOM) on the desired quadrature. Since we only modu-
late the phase quadrature, both subsystems are locked to this quadrature. We apply 22

different modulation depths on the phase quadrature, ranging from zero to 5 times the
quantum noise. For each homodyne detection, 1.2× 105 data points are sampled at 200
ksamp per second and then down sampled at 4 MHz sideband. The process is repeated
20 times in order to provide sufficient statistics. For each modulation depth, the con-
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Figure C.2: (a) Variation of peak separations of marginal distributions conditioned on two dif-
ferent homodyne outcomes, DB|+ − DB|−, versus modulation depth. The theoretical curve is
evaluated according to Eq. (C.6). The experimental error bars are estimated using statistical
uncertainties. Inset (b) shows the zoom-in for small modulation depth. Even for the smallest
modulation depth (0.2 times of quantum noise), our technique is still able to reveal the presence
of quantum discord.

ditional marginal distributions are evaluated and the separation between two peaks is
measured. As shown in Figure C.2(a), the separation of the peaks increases monotoni-
cally with the modulation depth. This is consistent with the theoretical curve plotted by
Eq. (C.6). As the modulation depth increases, more noise is applied on the input beam
and thus increases the variance of the input beam. This gives rise to output beams with
higher correlations, and hence larger elements of matrix C. It is remarkable that despite
the simplicity of our technique, it is robust enough to verify the presence of discord in
weakly correlated bipartite Gaussian states, as indicated in the Fig C.2(b).

C.3.2 Quantum discord in non-Gaussian states

As discussed in subsection C.2.3, our discord verification technique can be applied to
bipartite non-Gaussian states obtained by overlapping a statistical mixture of coherent
states and vacuum state on a beam splitter. It was previously reported in ref [304] that a
mixture of coherent states can be generated by subjecting a laser beam to time varying
modulation. Here, we demonstrate our verification technique to examine quantum dis-
cord in non-Gaussian states discussed in Section C.2.3. In the following, we describe the
preparation of three non-Gaussian states with positive-definite Wigner functions (see
Figure C.3) and discuss the corresponding verification results.

1) Switched Noise Modulation - The first non-Gaussian state is an equal statistical mix-
ture of vacuum and a thermal state. The thermal state is produced by applying two
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Figure C.3: Schematic diagram of the modulation and demodulation arrangements used in
preparation of the non-Gaussian states (left) and their corresponding positive-definite non-
Gaussian Wigner functions (right), XA and PA are normalized quadrature amplitudes (a)
Switched noise modulation (b) switched phase modulation and (c) asynchronous detection.

independent Gaussian distributed noise signals to a phase and amplitude modulator.
An external square wave modulation envelope at 12 kHz was then used to gate the two
modulators. Square wave modulation turns the Gaussian modulation, on and off peri-
odically. In this way the beam has either Gaussian modulation or no modulation at all.
Since the square wave gating frequency is fast compare to the detection time, the net
detected statistics seen will consist of an equal contribution from both the vacuum and
the thermal state. Modulation and demodulation arrangement and the Wigner function
of the produced state are shown schematically in Figure C.3(a). The laser light with this
non-Gaussian modulation then splits on a 50:50 beam splitter and each part is sent to
a homodyne measurement station. To investigate the correlations between two subsys-
tems, the same measurement procedure is performed as described in Section C.3.1, and
the results are presented in Figure C.4 (a).

2) Switched Phase Modulation - The second prepared non-Gaussian state is a mixture
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of vacuum and a coherent state. As depicted in Figure C.3(b), a sine wave modulation
with frequency of 4 MHz is introduced to phase quadrature to create the coherent state.
We then add a square wave modulation with frequency of 120 Hz to gate the sine mod-
ulation on and off. With this arrangement there is a sine modulation for half of the mea-
surement time and no modulation for the other half. Signal is detected synchronously
by using the same demodulation frequency as is used for modulation. Similar proce-
dure is repeated to prepare a correlated bipartite state. In order to verify the presence
of discord, the marginal distributions of Bob’s state conditioned on two different sets
of Alice’s outcomes xA < −6 and xA > −6 are calculated and any possible correlation
in conditional marginal distributions is investigated1. The results are shown in Figure
C.4(b).

3) Asynchronous Detection - We prepare the third non-Gaussian state by using asyn-
chronous detection. This is experimentally realised by choosing a demodulation signal
different in the frequency by an small amount compared to the modulation signal. As
displayed in Figure C.3(c), we drive the EOM by sine wave with frequency of 4 MHz
and demodulate with frequency of 3.99MHz. The data collected is then digitally filtered
to 3.9-4.1 MHz. The prepared state is a two peak probability distribution function along
the X-quadrature as shown by Wigner function in Figure C.3(c) right. This is analo-
gous to the stroboscopic measurement of the quadrature of a harmonic oscillator. The
marginal probability distribution of the prepared state and the conditional probability
distributions are presented in Figure C.4(c).

As can be observed from Figure C.4, it is evident that the conditional probability
distributions for all three non-Gaussian states are different from their unconditioned
distributions. Neither their peaks nor the mean values of their distributions coincide,
which by considering the preparation method, is a sufficient evidence of the presence
of discord in the three non-Gaussian states. As the difference between two conditional
marginal distributions is the criterion to verify quantum discord, in situations where
the conditional distributions are very similar to each other, one can deploy χ2 test and
calculate its probability function. Generally one rejects the null hypothesis if the proba-
bility function is less than 0.05, which means two distributions are not the same. In our
experiment, the calculated probability function is zero for all the states, indicating the
two conditional distributions are completely different and the states are discordant.

C.4 Conclusion

We have introduced and experimentally demonstrated a simple and efficient method for
verifying quantum discord in unknown bipartite Gaussian states. We have shown that
by checking peak separation between the marginal distributions conditioned on two
different homodyne measurements outcomes, the correlation of corresponding quadra-

1As discussed in Section C.2.3, in order to verify quantum discord in this class of non Gaussian states it
is sufficient to calculate marginal distributions conditioned on any two sets of Alice’s outcomes.



150 Verification of Quantum Discord

XA > 0

Conditioned

Unconditioned

XA < 0

Conditioned

(a)

(b)

XA > -6
ConditionedUnconditioned

XA < -6
Conditioned

(c)

XA > 0
Conditioned

Unconditioned

XA < 0
Conditioned

Figure C.4: Unconditional (Brown) and conditional probability distributions of two different
outcomes (Pink and Blue) of the non-Gaussian states prepared by (a) Switched Noise Modula-
tion (The green dashed curve corresponds to a Gaussian state with average variance of the two
Gaussian distributions); (b) Switched Phase Modulation; and (c) Asynchronous Detection. We
observe that the unconditional distributions are non-Gaussian, and also changes in the condi-
tional marginal distributions in all three cases. Hence, according to Section C.2.3, all the three
non-Gaussian states have nonzero discord.

ture can be tested. With this technique, quantum discord can be verified by testing
correlations between all four combinations of the amplitude and phase quadratures of
two subsystems. By varying the modulation depth, we showed that our results are in-
deed consistent with the theoretical predictions within statistical errors. The robustness
of our technique in small modulation depth permits one to detect nonzero discord even
when the correlations are small. Moreover, we have discussed that our technique can be
used for a certain class of non-Gaussian states. We applied our method to three different
bipartite non-Gaussian states, which are prepared by subjecting statistical mixtures of
coherent states to one port of beam splitter while the other port is in the vacuum state.
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Experimental results for all the non-Gaussian states show that the conditional marginal
distributions are significantly different from the unconditional distributions, indicating
nonzero quantum discord in each case. Our results show that with some prior knowl-
edge about a quantum state, such as being Gaussian, or about the preparation stage
quantum discord can be efficiently verified with a finite number of measurements.
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Appendix D

Discord Empowered CV Quantum
Illumination

Overview

Here we study the role of discord in continuous variable quantum illumination. I am
involved in initiating the research and conducted the preliminary derivation of the mu-
tual information (Holevo and Accessible). The project was took over by Mark Bradshaw,
who further explored tighter bound for the information quantities and derived the ana-
lytical result.

The work in this chapter has resulted in the following publication:

• M. Bradshaw, S. M. Assad, J. Y. Haw, S. H. Tan, P. K. Lam and M. Gu.
”The overarching framework between Gaussian quantum discord and Gaussian quantum
illumination.”
Physical Review A, 95 (2): 022333 (2017).

D.1 Introduction

Quantum illumination is a simple target detection scheme, first proposed by Lloyd for
photonic qubits [259]. It harnesses entanglement in a quantum state of light to bet-
ter infer the presence or absence of a weakly reflecting object flooded by white noise.
The protocol distinguished itself in displaying quantum advantage, even in regimes
so noisy that no entanglement survives. It presented a remarkable deviation from the
conventional view that quantum technologies are fragile, displaying advantage only in
carefully engineered environments which ensure little or no loss of entanglement. Since
its original inception, quantum illumination has gained significant scientific interest.
Many variants have been proposed, including some that make use of Gaussian states in
the continuous variable regime [260, 261, 262] and inspiring a number of different ex-
perimental realizations [263, 264, 265, 266]. The phenomenon has also seen applications
outside metrology, where quantum illumination has been harnessed to provide security
against passive eavesdropping in the setting of secure communication [267].
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Quantum illumination challenges the conventional view that entanglement alone
can explain all quantum advantage. It joins a particularly surprising class of protocols
that appear to thrive in noisy, possibly entanglement-breaking environments [268, 269].
What other quantum resources then, could help us better understand its noisy re-
silience? Quantum discord [270, 254, 271] which quantifies correlations beyond entan-
glement is considered a likely candidate. Unlike entanglement, discord is far more ro-
bust, and can also survive in highly noisy conditions [250]. In fact, Weedbrook et al. have
shown such a relation for discrete variables [272]. Specifically, they showed that the per-
formance advantage of quantum illumination – in terms of extra accessible information
about whether an object is present – can be directly related to the amount of discord in
the illumination protocol that survives after being subjected to entanglement-breaking
noise. Does a similar relationship hold for continuous variables?

The aim of this work is to answer this question. We extend the framework relating
discord and illumination to the continuous variable regime. This involves understand-
ing how these relations generalize when a number of conditions specific to the discrete
scenario no longer hold. The paper is organized as follows. In section D.2 we describe
the illumination protocol and the quantifiers of performance. In section D.3 we describe
discord and how it relates to quantum illumination. In section D.4 we present and dis-
cuss our results, demonstrating that there is a general relationship between discord and
the quantum advantage of illumination in the continuous variable regime.

D.2 The illumination framework

D.2.1 Setup

The illumination framework is described as follows: Bob wishes to determine whether
an object is located in a noisy environment. He sends a quantum state, referred to as the
probe, to the location. If an object is present, part of the probe will be reflected back to
Bob, along with some background noise. If the object is not present, Bob receives only
the background noise. Bob may have another state called the idler, which was initially
correlated with the probe.

If the probe and idler are quantum correlated (have a non-zero quantum discord)
the scheme is called quantum illumination. If there is no idler, it is called single-mode illu-
mination. A diagram of illumination is shown in Fig. D.1(a) and (b). Bob performs a joint
measurement on the idler and returning probe, and uses the results of the measurement
to determine whether an object was present. For brevity in notation in the rest of the
paper, modes A and B will label the probe and idler parts of the state respectively.

We are interested in quantum illumination in the continuous variable setting, where
the probe and idler are Gaussian states. For single-mode illumination, Bob uses a coher-
ent state ρα, where α is its amplitude. For quantum illumination, Bob uses an EPR state
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Figure D.1: Diagram of illumination setup. (a) With probability p0 there is an object located in a
noisy environment. The object is partially reflective (modeled as a beam splitter with reflectivity
ε). A probe is sent towards the object. The probe is mixed with the noisy environment, and
reflected to the detector. (b) With probability p1 an object is not present. In which case there
is nothing to reflect the probe to the detector. Hence, only noise is detected. (c) An equivalent
description of illumination whereby first noise is injected. Then, encoding is performed on the
probe, whereby with a probability p0, an identity operation is performed on the probe (after
noise injection) and the environment noise, and (d) with probability p1 a swap operation is per-
formed on the probe and environment. In quantum illumination we also have an idler initially
entangled with the probe which is used to perform a joint measurement. Single-mode illumina-
tion is when there is no idler. ρenv is the noisy environment and ρ̃env is the environment with the
mean photon number scaled by 1/(1− ε).

described by ρEPR = |ψEPR〉 〈ψEPR|, where

|ψEPR〉 =
√

1− λ2

∞∑
n=0

(−λ)n |n〉A |n〉B . (D.1)

where λ = tanh(r), and r is the squeezing parameter.

Illumination can also be recast as a communication protocol. Let us suppose that
Alice is in control of the object, and she would like to communicate with Bob. She can do
so by encoding a binary alphabet via the control of the object, such as in the Morse code.
The message she sends to Bob can be described by realizations of a random variable X ,
where if X = 0 Alice places the object in the noisy environment, and if X = 1 Alice
removes the object. Let px be the prior probability that X = x, and let p0 = p1, i.e. let
both hypotheses be equally likely to occur. Let ρ(x) denote the state received by Bob
when X = x. Noise is injected into the probe state before Alice encodes the value of X .
This is shown diagrammatically in Fig. D.1(c) and (d). We model the object as a beam
splitter with reflectivity ε. The environment noise state ρenv is a thermal state with mean
photon number n̄env, where ρenv(n̄) =

∑∞
n=0

n̄n

(n̄+1)n+1 |n〉 〈n|. When the object is present,
the environment noise is multiplied by a factor of 1/(1− ε) such that the mean number
of noise photons arriving at the detector is the same as when the object is absent. This
approach has been adopted by [273] to avoid a ‘shadowing effect’ – so that the object
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is not detected by a reduction in the number of noise photons arriving at the detector.
The typical illumination scenario that has greatest quantum advantage is for the regime
of low object reflectivity and high noise, i.e. ε � 1 and n̄ � n̄env where n̄ is the mean
photon number of the probe. We term this as the intense white noise limit.

Consider Fig. D.1(c) and (d). After the noise injection, the entanglement is reduced
or lost all together, before any information is encoded within the probe. In fact, for all
the settings studied in section D.4, the entanglement after noise injection is strictly zero.
Nevertheless we see a quantum advantage. Thus, quantum entanglement itself does
not give a complete picture on why illumination thrives in such noise. Our goal here is
to see if discord will give us additional insight.

In the next subsection, we will use the communication formalism to study the
amount of information that Alice can communicate to Bob under different settings. This
provides a measure for assessing the performance of illumination under these settings.

D.2.2 Quantifiers of performance

We consider two quantifiers of performance of illumination: the accessible information
and Holevo information.

Let M = {Ek} be a set of positive operator-valued measures (POVMs) (Sec. 2.4.1)
that represent mathematically the outcome of a measurement. The subscript k labels the
outcome of the measurement. The probability of the measurement outcome k on a state
ρ(x) is then given by q(x)

k = Tr
(
ρ(x)Ek

)
. Let this be governed by random variableKM. In

the communication setting described in the last subsection, the amount of information
obtained by Bob after measurement of the state ρ(x) is given by the mutual information,

Imut(X,KM) =
∑
k

1∑
x=0

pxq
(x)
k log

(
q

(x)
k

qk

)
, (D.2)

where qk =
∑1

x=0 pxq
(x)
k . The accessible information is the maximization of the mutual

information over all POVMs:

A
(
ρ(0), ρ(1)

)
= max
M

Imut (X,KM) . (D.3)

The accessible information quantifies Bob’s knowledge when each ρ(x) from N trials is
measured separately using an optimal POVM. In the context of communication, illu-
mination can be regarded as classical information exchange over a noisy channel. By
the Shannon’s noisy-channel coding theorem [30], Alice and Bob communicate at a rate
equal to the accessible information in the limit of infinite message size N .

There is no known general method for calculating the accessible information exactly.
Here we will make use of the upper and lower bounds found by Fuchs and Caves [274].
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The lower bound, hereby referred to as the Fuch’s lower bound is

Ilower = Tr
{
p0ρ

(0) ln
[
Lρ̄(ρ(0))

]
+ p1ρ

(1) ln
[
Lρ̄(ρ(1))

]}
(D.4)

where L is the lowering superoperator given by

Lρ̄(∆) =
∑

{j,k|λj+λk 6=0}

[
2

λj(p1) + λk(p1)
× 〈ψj(p1)|∆ |ψj(p1)〉 |ψj(p1)〉 〈ψk(p1)|

]
, (D.5)

and where ∆ = ρ(1) − ρ(0). λi(p1) and |ψi(p1)〉 are the eigenvalues and eigenvectors of
ρ̄ = (1−p1)ρ(0) +p1ρ

(1). The Fuchs upper bound Iupper, is found by numerically solving
the differential equation

d2Iupper(p1)

dp2
1

=
∑

{j,k|λj+λk 6=0}

[
− 2

λj(p1) + λk(p1)
× | 〈ψj(p1)|∆ |ψk(p1)〉 |2

]
(D.6)

subject to:
Iupper(0) = Iupper(1) = 0. (D.7)

The other figure of merit we consider is the Holevo information [31]. It is given by

χ(ρ(0), ρ(1)) = S

(
1∑

x=0

pxρ
(x)

)
−

1∑
x=0

pxS(ρ(x)) (D.8)

where S(ρ) is the Von Neumann entropy of the quantum state ρ. The Holevo informa-
tion is the maximum communication rate Bob can obtain, provided he stores all of theN
states and then performs a joint measurement upon all of the states. From the Holevo-
Schumacher-Westmoreland theorem [275, 276] this information rate is obtainable when
N →∞.

D.2.3 Three cases of illumination and quantum advantage

Three cases, together with three pairs of accessible information and Holevo information
are relevant for our assessment of the illumination scheme (Figure D.1(a)) in the
communication framework. They are as follows:

Case 1. Quantum illumination with joint measurement: Aq and χq are the accessible
information and Holevo information, respectively for Bob when two mode EPR states
are used as probes and idlers for illumination. Any arbitrary joint measurement over
the two modes is allowed.

Case 2. Quantum illumination with local measurements: Ac and χc are the av-
erage accessible information and Holevo information for Bob with EPR state as the
probe and idler, under the restriction that Bob must perform the optimal Gaussian



158 Discord Empowered CV Quantum Illumination

local measurement on mode B, followed by an arbitrary local measurement on
mode A. The measurement on mode B is optimal in the sense that it maximizes the
amount of accessible information/Holevo information Bob receives. In this case,
Bob only takes advantage of the classical correlations of the EPR state. This enables
a direct comparison to case 1, when both quantum and classical correlations are utilized.

Case 3. Single-mode illumination: As and χs are the accessible information and
Holevo information, respectively when Bob uses a single mode coherent state with a
fixed amplitude α as the illumination probe.

The quantum advantage is defined as the difference between the performance of
quantum illumination and single-mode illumination protocol. The protocols are com-
pared for scenarios where the probe states have coinciding energy. This constraint al-
lows for fair comparison, as it is always possible to detect the presence of an object with
any fixed accuracy by using a sufficiently energetic probe. The quantum advantage in
terms of accessible information is Aq−As and the Holevo information quantum advan-
tage is χq − χs, where each information quantity is evaluated over the probe with mean
photon number n̄. As we shall show in this paper, these quantum advantages can be
linked to the discord consumed in the illumination protocol.

D.3 Discord and quantum illumination

Quantum discord, as introduced in Sec. C.2.1, is a measure of the nonclassical corre-
lations between two quantum states. It arises from the difference between quantum
analogs of two distinct definitions of the classical mutual information [270, 254]:

I(A : B) = S(A) + S(B)− S(AB) (D.9)

J(A|B) = S(A)−min
{Πb}

∑
pbS(A|b) (D.10)

where Πb is the positive-operator valued measure (POVM) of the outcome b, pb is the
probability of that outcome, and S(A|b) is the entropy of the state conditioned on the
outcome b. The discord is then

δ(A|B) = I(A : B)− J(A|B)

= S(B)− S(AB) + min
{Πb}

∑
pbS(A|b) , (D.11)

where the minimization is done over all possible POVMs on mode B. In the special
case that the domain of this minimization is restricted to Gaussian measurements, then
the discord is known as the Gaussian discord [253, 252]. It was recently shown that
for a large class of Gaussian states, Gaussian quantum discord is equal to quantum
discord [277]. Henceforth we denote the Gaussian discord: δG(A|B) with a superscript
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G.

We now consider the evolution of the discord when quantum illumination is de-
scribed by Fig. D.1(c) and (d). After the noise injection step, Alice is left with state ρ
with which she can encode information to send to Bob. We note that this state may have
no entanglement due to the noise injection [273]. Alice encodes the value of X on the
state by performing the operation Ox on ρ, resulting in a state ρ(x) = Ox(ρ) with discord
δ(x)(A|B).

Let us decompose the discord of ρ, δ(A|B) into three components:

δ(A|B) = δloss + δ̄(A|B) + δcon(A|B) (D.12)

The first component δloss is the amount of discord lost to the environment during the
encoding process. This can be evaluated by first defining

δ
(x)
loss = δ(A|B)− δ(x)(A|B) (D.13)

as the loss of discord for each possible value of x that Alice can encode, and then taking
the weighted average over the probability of encoding that x. This results in

δloss =
∑
x

pxδ
(x)
loss (D.14)

The second component δ̄(A|B) is the discord of ρ̄ = p0ρ
(0) + p1ρ

(1), the state after encod-
ing. This is the state seen by Bob who is oblivious to the value of X .

We term the remaining component the consumed discord δcon(A|B), and represents
the discord in ρ that remain unaccounted for. In prior literature, it was proposed to
capture the amount of discord consumed to encode the value of X on the state ρ [272].
For the special case where encodings were unitary, such that δ(x)

loss = 0, δcon(A|B) was
related to the advantage of using coherent interactions [251]. It is also interesting to
note that δcon(A|B) also coincides with the the extra discord Bob sees between A and B,
should he learn the value of X .

In quantum illumination, when X = 0, Alice performs an identity operation, thus
δ(0)(A|B) = δ(A|B) and δ

(0)
loss = 0. When X = 1, Alice performs a swap operation be-

tween mode A of ρ with the environment noise, destroying all correlations between the
two modes. All discord is lost and δ

(1)
loss = δ(A|B). Putting this together, the average

discord loss is thus δloss = p1δ(A|B). Hence the consumed discord for quantum illumi-
nation is

δcon(A|B) = p0δ
(0)(A|B)− δ̄(A|B). (D.15)
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D.4 Method and results

In section D.4.1 we first derive a general result that if certain conditions are fulfilled,
the discord consumed is equal to the Holevo information quantum advantage. In sec-
tion D.4.2, we numerically calculate the illumination information quantities. In section
D.4.3 we numerically evaluate the consumed discord and compare it to the quantum
advantages. Our main result is that for continuous variable quantum illumination, the
consumed discord is approximately equal to the Holevo information quantum advan-
tage.

D.4.1 Analytic result

We prove the following theorem:

Theorem 1 Let ρ(0)
AB and ρ(1)

AB be two arbitrary two mode states. If the following conditions are
met:

1. Mode B is the same for both states: ρ(0)
B = ρ

(1)
B where ρ(x)

B = TrA(ρ
(x)
AB) where TrA denotes

the partial trace over subsystem A.

2. ρ(1)
AB is a product state: ρ(1)

AB = ρ
(1)
A ⊗ ρ

(1)
B

3. The Holevo information of local measurement χc, the discord of ρ̄AB = p0ρ
(0)
AB + p1ρ

(1)
AB,

and the discord of ρ(0)
AB are achieved by the same measurement,

then δcon(A|B) = χq − χc, where

χq = χ(ρ
(0)
AB, ρ

(1)
AB)

χc = max
{Πb}

∑
b

pbχ(ρ
(0)
A|b, ρ

(1)
A|b),

where pb is the probability of measuring outcome Πb on subsystem B, and ρ(x)
A|b are the states of

subsystem A conditioned on that outcome.

Proof:

Let {Πb} be the measurement in condition 3 that simultaneously optimizes χc, as
well as the discord of states ρ̄AB and ρ(0)

AB. The measurement outcome probability is

pb = Tr
(

(Πb ⊗ I)ρ
(0)
AB

)
= Tr

(
(Πb ⊗ I)ρ

(1)
AB

)
,

where we have used condition 1. The resulting conditional states are

ρ
(x)
A|b =

TrB(Πbρ
(x)
AB)

pb
.
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Our goal is to prove δcon(A|B) = χq − χc. Because of condition 2, δ(1)(A|B) = 0, as
so the consumed discord is

δcon(A|B) = p0δ
(0)(A|B)− δ̄(A|B)

= p0(S(ρ
(0)
B )− S(ρ

(0)
AB) +

∑
b

pbS(ρ
(0)
A|b))

− S(ρ̄B) + S(ρ̄AB)−
∑
b

pbS(ρ̄A|b).

We also have that:

χq − χc = S(ρ̄AB)− p0S(ρ
(0)
AB)− p1S(ρ

(1)
AB)

+
∑
b

pb(−S(ρ̄A|b) + p0S(ρ
(0)
A|b) + p1S(ρ

(1)
A|b)).

This leads to

δcon(A|B)− (χq − χc) = p0S(ρ
(0)
B )− S(ρ̄B) + p1S(ρ

(1)
AB)−

∑
b

pbp1S(ρ
(1)
A|b).

From condition 1 we have that ρ(0)
B = ρ

(1)
B = ρ̄B. From condition 2, ρ(1)

AB is a product
state, so S(ρ

(1)
AB) = S(ρ

(1)
A ) + S(ρ

(1)
B ) and ρ(1)

A|b = ρ
(1)
A . So this becomes

δcon(A|B)− (χq − χc) = S(ρ
(0)
B )(p0 − 1 + p1) + S(ρ

(1)
A )(p1 − p1)

= 0.

In continuous variable quantum illumination, condition 1 is satisfied since the
idler is not interacting with the illumination object. Condition 2 is met by the fact
that the swap operation decorrelates mode A and mode B. By restricting ourselves to
Gaussian quantum discord, together with the assumption that a Gaussian heterodyne
measurement is the optimal measurement for the quantities in condition 3, we have
δG

con(A|B) = χq − χc. This assumption is justified by numerical results in the next sub-
sections.

D.4.2 Accessible information and Holevo information calculations

The accessible information and Holevo information quantities Aq, χq, Ac, χc, As and
χs were calculated numerically for typical settings of quantum illumination. Due to fi-
nite computational resources, the states must be approximated to a Hilbert space with
finite dimensions. Under this restriction, the highest noise mean photon number that
does not result in significant error is n̄env = 4. Plots are shown in Fig. D.2, of the in-
formation quantities for noise mean photon number 4, and probe mean photon number
n̄ = (0.01, 0.5). We will now review the information quantities for each case listed in
Sec. D.2.3.
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Figure D.2: Information versus object reflectivity ε when probe has mean photon number (a)
0.5 and (b) 0.01. The environment noise has mean photon number 4. Each plot has two insets
showing zoomed portions. Insets (ii) show the upper and lower bounds for Aq , the true value
of lying somewhere in the shaded region. Insets (iii) show that χs, χc, As and Ac differ slightly,
despite appearing as a single line in the main plot.

Case 1. The Holevo information χq and Fuchs upper and lower bounds for the
accessible information Aq for quantum illumination with joint measurement are shown
in Fig. D.2. The difference between the upper and lower bounds of Aq are at most 0.7%,
implying that the true accessible information is close to the Fuchs bounds. As evident
in the plot, there is a substantial difference between the χq and Aq.

Case 2. χc and Ac: In the previous section, we assume that a heterodyne mea-
surement is the optimal local Gaussian measurement to make on mode B. It can be
shown that this is true for a typical choice of parameters [278]. Since a heterodyne
measurement on mode B collapses mode A into a distribution of coherent states, χc and
Ac were calculated by integrating the information quantities of single coherent probe
(χs, As) as as function of energy. The computed upper and lower bounds for Ac are
equal to within 6 significant figures.
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Case 3. χs and As: The Holevo information χs is plotted in Fig. D.2. Fuchs lower
and upper bounds for As were calculated and are equal to within 7 significant figures,
and are indistinguishable in Fig. D.2. Unlike Case 1, when using a coherent state the
Holevo and accessible information differ by a small amount, only 0.4%.

From Fig. D.2(a)(i)(iii) and (b)(i)(iii), we see that χq is greater than χs, and Aq is
greater than As, showing that quantum illumination with joint measurement does in-
deed have an advantage over single-mode illumination. In the communication context,
Alice can communicate with Bob with a higher bit-rate if Bob uses a probe entangled
with an idler instead of a coherent state probe.

From Fig. D.2, we see that the performance of a coherent state probe is approximately
equal to performance of an EPR probe when a local Gaussian measurement is performed
on the mode B. However, As is slightly higher than Ac (and χs slightly higher than χc),
because As is a concave function of energy [278]. By considering the ratio of As and
Ac, we find that their relative difference approaches zero in both the limits ε → 0 and
n̄ → 0. This indicates that there is no advantage to using an EPR state for illumination,
over a coherent state probe, if a Gaussian measurement is first made on mode B of
the EPR state. A local Gaussian measurement on mode B of an EPR state will cause
mode A to collapse to a single-mode Gaussian state. Hence, this is equivalent to using a
distribution of single-mode Gaussian states for the probe, which, under the masking of
strong environmental noise, gives an approximately equal knowledge about a weakly
reflecting object as using a single mode coherent state probe.

D.4.3 Relating quantum advantage to discord consumed

To calculate the consumed discord δcon(A|B), we need to compute the discord of states
ρ(0) and ρ̄ when the entangled state ρEPR is used as probe and idler. ρ(0), the result-
ing state when Alice does nothing, is a Gaussian state whose discord is equal to the
Gaussian discord, and additionally this discord is obtained when the measurement is
a heterodyne measurement [279]. The state after encoding ρ̄, however, is not Gaussian,
thus the same rule does not apply. Unfortunately, calculating the discord of a general
state is an NP-hard problem [280], so there is no method to calculate it efficiently. Here,
we simplify the problem by restricting ourselves to Gaussian discord and calculate the
consumed Gaussian discord δG

con(A|B) instead. This is just Eq. (D.15) with the discords
replaced with Gaussian discords.

The Gaussian discord of state ρ̄ was obtained by numerically optimizing Eq. (D.11)
over Gaussian measurements. It was found that the optimal point occurs when the
measurement is a heterodyne measurement. The two discord values δG(0)(A|B) and
δ̄G(A|B) are then substituted into Eq. (D.15) to obtain the consumed Gaussian discord.

Due to the optimality of the Gaussian discord of state ρ(0), and the fact that Gaussian
discord is an upper bound for the discord for state ρ̄, the consumed Gaussian discord
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Figure D.3: The quantities χq − χs, χq − χc, Aq − As and Aq − Ac, compared to the consumed
Gaussian discord δG

con(A|B). The average photon number of the probe is (a) 0.5 and (b) 0.01. The
mean photon number of the environment noise is 4. Each plot has two insets showing zoomed
portions. The insets (ii) show δG

con(A|B), χq − χs and χq − χc. The insets (iii) shows upper and
lower bounds of Aq −As and Aq −Ac.

is a lower bound of the consumed discord, i.e. δG
con(A|B) ≤ δcon(A|B). A plot of the

δG
con(A|B) compared to the information differences is shown in Fig. D.3.

As discussed in Sec. D.4.1, since a heterodyne measurement on mode B optimizes
δ(0)(A|B), and numerical results show that this is the case for δ̄(A|B) and χc, from theo-
rem 1, δ(0)(A|B) = χq − χc. Numerical calculation of δ(0)(A|B) and χq − χc agree within
the precision of the calculation, further verifying the theorem.

From Fig. D.3, we see that the difference in Holevo information between quantum
illumination (χq − χc) and single-mode illumination (χq − χs) differ by 1.3% for n̄ = 0.5

and 0.005% for n̄ = 0.01 when ε = 0.3. The percentage difference approaches zero
when ε → 0. Since δG

con(A|B) = χq − χc, this leads us to the conclusion that in limit
of low reflectivity and low probe energy, χq − χs converges to the Gaussian discord
consumed. Hence, discord encoded can suitably explain the quantum advantage of
quantum illumination, if quantum illumination is viewed as a communication problem
with access to devices such as quantum memory.

On the other hand,Aq−As which quantifies the performance advantage for quantum
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illumination in the single copy measurement case is more relevant from a practical point
of view since this does not require the storage of quantum states [261]. From Fig. D.3 we
see that δG

con(A|B) is greater than Aq − As and Aq − Ac. This discrepancy is mainly due
to the difference between the Holevo information χq and the accessible information Aq
for the states involved in quantum illumination. Hence, measuring each illumination
event separately does not fully harness the benefits offered by the discord. However, it
is sufficient to provide some quantum advantage over single-mode illumination.

D.5 Conclusion

In [272], it has been shown that quantum discord coincide exactly with quantum ad-
vantage in a DV quantum illumination. Here, we complete the picture by extending the
framework to CV quantum illumination [260]. To this end, we numerically calculated
the performance enhancement quantum illumination has over single-mode illumina-
tion and compared it to the Gaussian discord of the system. We derived an analytic
result showing that δG

con(A|B) = χq − χc provided condition 3 of theorem 1 is met. Our
main result is that the quantum advantage in terms of Holevo information matches the
consumed discord in the limit of low probe energy and low object reflectivity (n̄ → 0

and ε → 0). This is in agreement with the DV counterpart, which analogously assumes
an maximally entropic illumination environment.

Several remarks on relation with other works are in order. In deriving our results,
we have demonstrated that a joint measurement over the returning probe and idler is
necessary to exploit the surviving quantum correlation to determine the non-unitary
encoding. Similar to [251], a coherent interaction is required to unlock the information
encoded via unitary discord consumption. The discrepancy between the quantum ad-
vantage offered by Holevo information and accessible information is in concordance
with recent findings, where the improvement of error probability of quantum illumina-
tion over single-mode illumination is limited to 3 dB (out of maximum gain of 6 dB) for
single copies separate measurement in the intense white noise limit [262, 261].

We note other efforts in quantifying the source of enhancement in quantum
illumination-like protocols. In [281], mutual information is used to quantify the ad-
vantage offered by entangled source over correlated thermal source. Gaussian discrimi-
nating strength is proposed to distinguish the absence or presence of a set of unitary
operation in [282, 283]. The role of correlation in the improvement of channel loss
detection is also established by linking discord to the performance numerically [284].
Meanwhile, several other cryptographic and metrological variants of illumination has
been proposed and demonstrated recently [267, 264], which we envisage our framework
would shed light in understanding the discord’s role in the their quantum enhance-
ment.
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[69] M. Stipčević and B. M. Rogina, “Quantum random number generator based on
photonic emission in semiconductors,” Review of Scientific Instruments 78, 045104
(2007).

[70] C. R. Williams, J. C. Salevan, X. Li, R. Roy, and T. E. Murphy, “Fast physical
random number generator using amplified spontaneous emission,” Optics Express
18, 23584 (2010).

[71] Y. Liu, M. Zhu, B. Luo, J. Zhang, and H. Guo, “Implementation of 1.6 Tb s- 1 truly
random number generation based on a super-luminescent emitting diode,” Laser
Physics Letters 10, 045001 (2013).



172 Bibliography

[72] P. J. Bustard, D. G. England, J. Nunn, D. Moffatt, M. Spanner, R. Lausten, and
B. J. Sussman, “Quantum random bit generation using energy fluctuations in
stimulated Raman scattering,” Optics Express 21, 29350 (2013).

[73] Y. Shen, L. Tian, and H. Zou, “Practical quantum random number generator
based on measuring the shot noise of vacuum states,” Phys. Rev. A 81, 063814
(2010).

[74] T. Symul, S. Assad, and P. K. Lam, “Real time demonstration of high bitrate quan-
tum random number generation with coherent laser light,” Applied Physics Letters
98, 231103 (2011).

[75] C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L. Andersen, C. Mar-
quardt, and G. Leuchs, “A generator for unique quantum random numbers based
on vacuum states,” Nature Photonics 4, 711 (2010).

[76] S. Pironio et al., “Random numbers certified by Bell’s theorem,” Nature 464, 1021
(2010).

[77] A. N. Kolmogorov, “On tables of random numbers,” Sankhyā: The Indian Journal
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[175] J. Fiurášek and N. J. Cerf, “Gaussian postselection and virtual noiseless amplifi-
cation in continuous-variable quantum key distribution,” Phys. Rev. A 86, 060302
(2012).

[176] N. Walk, T. C. Ralph, T. Symul, and P. K. Lam, “Security of continuous-
variable quantum cryptography with Gaussian postselection,” Physical Review A
87, 020303 (2013).

[177] T. C. R. S. Kocsis, G. Y. Xiang and G. J. Pryde, “Heralded noiseless amplification
of a photon polarization qubit,” Nat Phys 9, 23 (2013).

[178] A. E. Ulanov, I. A. Fedorov, A. A. Pushkina, Y. V. Kurochkin, T. C. Ralph, and L. I.,
“Undoing the effect of loss on quantum entanglement,” Nat Photon 9, 764 (2015).

[179] C. R. Müller, C. Wittmann, P. Marek, R. Filip, C. Marquardt, G. Leuchs, and U. L.
Andersen, “Probabilistic cloning of coherent states without a phase reference,”
Phys. Rev. A 86, 010305 (2012).

[180] J. Bernu, S. Armstrong, T. Symul, T. C. Ralph, and P. K. Lam, “Theoretical analysis
of an ideal noiseless linear amplifier for Einstein-Podolsky-Rosen entanglement
distillation,” Journal of Physics B: Atomic, Molecular and Optical Physics 47, 215503
(2014).

[181] J. Dias and T. C. Ralph, “Quantum repeaters using continuous-variable teleporta-
tion,” Phys. Rev. A 95, 022312 (2017).



180 Bibliography

[182] T. C. Ralph, “Quantum error correction of continuous-variable states against
Gaussian noise,” Phys. Rev. A 84, 022339 (2011).
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[198] N. J. Cerf and J. Fiurášek, “Optical quantum cloning,” Progress in Optics 49, 455
(2006).
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[291] B. Dakić, V. Vedral and C. Brukner, Necessary and Sufficient Condition for Nonzero
Quantum Discord, Phys. Rev. Lett. 105, 190502 (2010).

[292] L. Chen, E. Chitambar, K. Modi and G. Vacanti, Detecting multipartite classical states
and their resemblances, Phys. Rev. A 83, 020101(R) (2011).

[293] C. Zhang, S. Yu, Q. Chen, and C. H. Oh, Detecting the quantum discord of an unknown
state by a single observable, Phys. Rev. A 84, 032122 (2011).

[294] D. Girolami & G. Adesso, Observable Measure of Bipartite Quantum Correlations,
Phys. Rev. Lett. 108, 150403 (2012).

[295] J. Maziero & R. M. Serra, Classicality Witness for two-qubit states, Int. J. Quant. Inf.
10, 1250028 (2012).

[296] R. Auccaise, J. Maziero, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, T. J.
Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimentally Witness-
ing the Quantumness of Correlations, Phys. Rev. Lett. 107, 070501 (2011).



188 Bibliography

[297] G. Passante, O. Moussa, D. A. Trottier, and R. Laflamme, Experimental detection of
nonclassical correlations in mixed-state quantum computation, Phys. Rev. A 84, 044302
(2011).
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