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Abstract

Quantum optics has been developing into a promising platform for future generation
communications protocols. Much of this promise so far has come from the development
of quantum key distribution (QKD). The majority of the development of QKD is done
with discrete variables (DV), i.e. qubits with the underlying system of single photons.
This is one interpretation of an optical field. Alternatively an optical field can be inter-
preted as wave with the continuous variable (CV) observables of phase and amplitude.
This interpretation comes with the advantage of access to high efficiency detection at
room temperature and deterministic sources at the cost of susceptibility to noise in lossy
channels.

This thesis presents an investigation of protocols and resources for the next generation
of CV QKD protocols with two directions, the development of quantum state resources
and the development of QKD protocols.This thesis starts with the details on the on going
development of a low loss squeezed state resource using OPA for use in future communi-
cation and estimation experiments. So far the OPA has produced 11dB of squeezing with
13dB predicted with reasonable improvements to losses and locking. Being able to per-
form a Bell test with a CV Bell state is also key for future CV QKD protocols. Originally
developed for DV systems the Bell test is a fundamental test of quantum mechanics. Here
the first experimental demonstration of an optical CV bell test is presented. The experi-
ment violated a CHSH Bell inequality with |B| = 2.31. This violation holds promise for
being able to realise new device or source independent CV protocols.

The second half of this thesis proposes a channel parameter estimation protocol based
on the method of moments and presents the results of a one side device independent
CV QKD demonstration based on the family of Gaussian QKD protocols. The proposed
channel parameter estimation protocol through the use of the method of moments is able
to use information usually disregarded for estimation of an adversaries information. The
result does not allow for an increase in range of a fully optimised protocol but can increase
the key rate by an order of magnitude with high loss channels. Using a newly found
entroptic uncertainty relation for CV tripartite states a new security proof was applied to
the family of Gaussian CV QKD protocols. This resulted in the discovery of six new
protocols with the special property of being one side device independent. Using the new
security proof three of the protocols were demonstrated with a positive key rate.
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Introduction

Quantum mechanics is a very counter intuitive interpretation of reality with its pre-
dictions that go against how we experience the world. This is exemplified by the EPR
paradox [1] which predicts a violation of the basic principle of local realism with non-
local correlations. With this paradox in mind the famed Bell test [2] was developed and
experimentally demonstrated using quantum optics to show that local realism is incorrect
[3], albeit with some loopholes that could explain the violation. Recently four Bell test
experiments have unequivocally demonstrated a violation of local realism by closing all
of the major loopholes [4–7]. The original Bell test was formulated for discrete states and
as such all four of these violations were made using single photons states. The study of
single photons is part of a sub field of quantum optics known as Discrete Variable (DV)
quantum optics. While DV is an interesting area this thesis explores the alternate sub field
of Continuous Variable (CV) quantum optics [8] based on the equivalent interpretation of
light as a wave. These two interpretations closely link the study of DV and CV quantum
optics.

As well as fundamental research quantum optics is also providing a toolbox for a new
generation of quantum based communication technologies with a few interesting exam-
ples found in Ref. [9–11]. These new technologies will be crucial to realise a future where
quantum mechanics will become ubiquitous for solving problems. One set of protocols
that has found it way into commercial applications as a solution to the key distribution
problem is quantum key distribution (QKD).

The key distribution problem can be described by a game where two parties, Alice and
Bob, want to communicate a using a public channel controlled by an eavesdropper, Eve.
Alice and Bob can communicate using encryption but the problem is how to distribute the
encryption key without Eve intercepting it in a usable form. A common solution to this
problem is to use a public key distribution protocol. A famous example of these protocols
is the Diffie-Hellman key exchange protocol [12]. Using a combination of private and
publicly exchanged information Alice and Bob can distil a shared secret. The finer details
of this protocol are outside of the scope of this thesis but the security of the publicly
exchanged information relies on the difficult problem of integer factorisation. This is an
easy task for small numbers but it becomes exponentially harder for large numbers. In
computer science it is believed to be an NP-intermediate problem which is presumed to
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be a hard class of problems. While it is currently hard to solve on a classical computer
this and other difficult problems might not be so hard on a quantum computer with Shor’s
algorithm [13].

QKD uses physical principles to ensure security [14, 15]. A QKD protocol will have
Alice generate a series of quantum states to send to Bob. Using the properties of quantum
mechanics if Eve is listening any interaction she has with the transmitted states will create
detectable errors between Alice and Bob. If the error rate is too high Alice and Bob
can abort the protocol and try again or try to disassociate their shared secret from Eve’s
intercepted information. The advantage of QKD is that its security will hold as long as
the underlying physical principles do. With classical key distribution protocols Eve can
record the transmitted bits. Then at a later date when the particular distribution protocol is
broken she can use her records to decrypt any data sent in the past. The advent of general
quantum computing has the potential to change how data is communicated and stored.
There are efforts to investigate public encryption protocols that are hardened against the
potential of quantum computing [16].

This thesis presents an investigation of protocols and resources for the next genera-
tion of CV QKD protocols. The protocols investigated through this thesis address two
directions in the development of CV QKD, reducing the noise present in a protocol and
reducing the number of assumptions required by the security proofs. For some CV QKD
protocols the major source of noise comes from the quantum resource states required for
the protocol [17]. This thesis addresses the issue of source noise with the results from
the development of a low intra-cavity loss OPA squeezed state source that could be used
with QKD protocols. Another common source of noise is the overestimation of Eve’s
information to ensure security in the universal compostability framework. In this thesis
the method of moments estimator is demonstrated to reduce the variance of the estimate
of the channel noise in high loss channels as compared to the widely used maximum
likelihood estimation method thereby placing a tighter bound on Eve’s information and
increasing the final key rate. To reduce the number of assumptions made in a CV QKD
protocol the properties of EPR states can be used. The best possible protocol is one where
neither Alice or Bob need to trust quantum and measurement devices and only rely on the
outcomes of the measurements. This is possible with a loop-hole free Bell test [18]. This
thesis moves towards realising this protocol through the first optical CV Bell test using
Gaussian measurements to violate the CHSH inequality. A lesser protocol is one where
either only Alice or Bob are required to trust their devices in a one sided device indepen-
dent protocol (1sDI). This thesis generalises 1sDI to the family of Gaussian CV QKD
protocols using a tripartite entropic uncertainty principle allowing the demonstration of
three 1sDI CV QKD protocols including the first prepare and measure 1sDI protocol.



CONTENTS 3

Thesis Outline

The structure of this thesis is illustrated in Fig. 1. The content has been split into two parts,
Part 1: Quantum State Generation and Part 2: Continuous Variable Quantum Key Distri-
bution. Each part starts with an overview of the material to provide some background and
context. Part 1 covers the work that is more general to quantum mechanics and introduces
the basic theory used here from the point of view of continuous variable quantum optics
in Ch. 1. Building on this theory some of the experimental techninques used in this thesis
are presented in Ch. 2. Following this the results from the development of a low intra-
cavity loss OPA are presented in Ch. 3. Ch. 4 will present the results from the first optical
CV Bell test. Part 2 covers the work relating specifically to CV QKD. It opens with an
introduction to classical and quantum information theory. This chapter applies some of
the ideas presented in Ch. 1 and concludes with an introduction to CV QKD. Ch. 6 details
the application of the method of moments estimator to CV QKD to estimate the channel
noise. The one-sided-device-independent CV QKD protocols with their demonstrations
are given in Ch. 7. The thesis is concluded in Ch. 8 with a summary of the key results and
a perspective on where the field of CV QKD is headed.

Publications

1. O. Thearle, S. M. Assad, T. Symul, “Estimation of output-channel noise for continuous-
variable quantum key distribution,” Physical Review A, 93, 042343 (2016).

2. N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad,
J. Janousek, T. C. Ralph, T. Symul, H .M. Wiseman, and P. K. Lam, “Experimental
demonstration of Gaussian protocols for one-sided device-independent quantum
key distribution,” Optica, 3, 634-642 (2016).

3. S. M. Assad, O. Thearle, and P. K. Lam “Maximizing device-independent random-
ness from a Bell experiment by optimizing the measurement settings,” Physcial

Review A, 94, 012304 (2016).

4. O. Thearle, J. Janousek, S. Armstrong, S. Hosseini, M. Mraz, S. M. Assad, T. Symul,
M. R. James, E. Huntington, T. C. Ralph, P. K. Lam, “Violation of Bell’s inequal-
ity using continuous variable measurements,” Physical Review Letters, 120, 040406
(2018).
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Overview

Quantum mechanics is not a very intuitive physical description of the world. Some of the
more commonly known predictions by quantum mechanics such as Heisenberg’s uncer-
tainty principle or entanglement do not align with our experience of the real world. For
example it is common to observe local realism in our everyday experience. That is ob-
jects around us appear to be in a real predetermined state and are only changed by local
effects. However using quantum mechanics, local realism can be shown to not hold true
for all systems. First with the thought experiment by Einstein, Podolsky and Rosen [1]
where entanglement was first predicted and then more recently by a series of experiments
disproving local realism [4–7]. As quantum mechanics is revealing a world unfamiliar to
most, it is opening up opportunities to create some interesting technological advances in
computing and communications. More often that not these developments in protocols and
algorithms are either unrealisable with current abilities or restricted to a laboratory as the
states required are difficult to create.

The following chapters will provide an introduction to the mathematics behind quan-
tum mechanics and provide some description on creating and measuring quantum states.
Ch. 1 will provide the basic maths and ideas for describing optical quantum states. This
chapter will also contain a brief discussion on the experimental techniques used to create
and measure quantum states. Ch. 3 will cover some work on creating highly squeezed
quantum states which are hoped will be able to be used for quantum protocol demonstra-
tions. The final chapter, Ch. 4 will discuss a continuous variable test of local realism.

The background to this part is mostly given in Ref. [19] and Ref. [13]. Another useful
reference for the experimental side is given in Ref. [20]. Much of the work presented has
a long history within the research group with much of it document in previous PhD theses.
A good example is found in Ref. [21] which contains much of the same background.
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Chapter 1

Background Theory

1.1 Quantum mechanics

This section will give a basic description of quantum mechanics for isolated and closed
systems in a manner that will be helpful in understanding this thesis. The section is
modelled from the postulates of quantum mechanics given in Ref. [13].

1.1.1 State space

In classical mechanics the representation of information is in bits. This unit of informa-
tion is common and can be found in computing and communication theory. In practical
systems the bit is encoded into two level systems such as a coin. A coin flip will put the
coin into one of two states, either heads up or tails up. In quantum mechanics the analogue
to a bit is a qubit which describes a two level system that is more complex as the system
is allowed to be in a superposition between states. A quantum state can be described by a
state vector which is a unit vector in a Hilbert space that describes the state space of the
physical system of the quantum state. A Hilbert space is complex vector space with an
inner product. For a qubit the state space is described by the orthonormal basis {|0⟩, |1⟩}.
Here |i⟩ represents a vector in the state space using the ket notation. An arbitrary qubit
state in this basis is written as,

|ϕ⟩ = a|0⟩+ b|1⟩ (1.1)

The inner product is then given by ⟨ϕ|ϕ⟩ = 1, where ⟨ϕ| is the vector dual of |ϕ⟩. The
result of the inner product satisfies the requirement that the state vector be a unit vec-
tor on the state space. In general an arbitrary pure state can be represented as a linear
combination of the eigenstates.

9
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1.1.2 Evolution

A closed quantum system can evolve through time with the evolution of a state at time
t = t1, |ϕ⟩, related to the state at t = t2, |ϕ′⟩ by |ϕ′⟩ = U |ϕ⟩ where U is a unitary operator,
that is UU † = I where U † is the Hermitian conjugate. The evolution can also be described
by the Schrödinger equation,

iℏ
d|ϕ⟩
dt

= Ĥ|ϕ⟩, (1.2)

where ℏ is Planck’s constant and Ĥ is a Hermition operator, i.e. Ĥ = Ĥ†, known as the
Hamiltonian. There are two main interpretations of evolution, the Schrödinger picture
and the Heisenberg picture. In the Schrödinger picture Ĥ is taken to evolve with time as
the state vector does not. In the Heisenberg picture the state vector evolves with time and
Ĥ does not. The Schrödinger picture is commonly used in to describe the evolution of
discrete variable systems. For continuous variable systems the Heisenberg picture is used.

1.1.3 Measurement

The measurement of a quantum state can be described by a collection of measurement
operators {M̂m} where m is the index of the measurement outcomes. For example con-
sider the qubit in Eq. (1.1) with the family of measurement operators M̂0 = |0⟩⟨0| and
M̂1 = |1⟩⟨1|. The operator M̂0 will measure if |ϕ⟩ = |0⟩ and similarly M̂1 will measure
if |ϕ⟩ = |1⟩. Though in quantum mechanics a state is not predefined so the measure-
ment operators will have a probability of the measurement return a result 0 or 1. These
probabilities are given by,

p(0) = ⟨ϕ|M̂ †
0M̂0|ϕ⟩ = |a|2, (1.3)

p(1) = ⟨ϕ|M̂ †
1M̂1|ϕ⟩ = |b|2. (1.4)

After a measurement is made the state will change depending on the result and become,

M̂m|ϕ⟩√
⟨ϕ|M̂ †

m, M̂ |ϕ⟩
(1.5)

For the above example if 0 is the measurement result the state will be |0⟩ after the mea-
surement and similarly the state will be |1⟩ if 1 is measured.
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Projective measurements

An equivalent description of the general measurement given above is the class of projec-
tive measurements. A projective measurement is described by a Hermition operator, M̂ ,
known as an observable. The observable can be decomposed into a linear combination of
projectors, P̂m, into the eigenspace of M̂ ,

M̂ =
∑
m

mP̂m (1.6)

The outcomes of a projective measurements will correspond to the eigenvalue, m, of M̂ .
The probability of measuring the eigenvalue m is given by

p(m) = ⟨ϕ|P̂m|ϕ⟩ (1.7)

After measurement given m was measured the state will become,

P̂m|ϕ⟩√
p(m)

(1.8)

The expected value for a projective measurement is easily calculated as,

E(M̂) = ⟨ϕ|M̂ |ϕ⟩ (1.9)

A common notation for the expected value is also ⟨M̂⟩. The variance of an observable
follows as,

∆2(M̂) = ⟨M̂2⟩ − ⟨M̂⟩2 (1.10)

1.1.4 Composite systems

A composite system can be formed with individual component systems. The state space
for a composite system is described by the tensor product of the component systems state
spaces. A state vector in a composite system with n component systems is then described
by |ϕ1⟩⊗|ϕ2⟩⊗. . . |ϕn⟩ where |ϕi⟩ is a state vector in the state space for the ith component
system. The state vector is more commonly written as |ϕ1ϕ2 . . . ϕn⟩. An operator acting
on the composite state space is also described by a tensor product of operators acting on
the component state space.
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Entanglement

An important example of a composite system is an entangled state. For a composite sys-
tem made up of system A and system B both described by the qubit state space. Consider
the state,

1√
2
(|0A0B⟩+ |1A1B⟩) (1.11)

This state is interesting because a measurement performed on system A will project the
state of system B regardless of how far apart they are. Measurement of both states will
reveal correlations that forgo local realism as a physical law. This topic is explored further
in Sec. 1.2 and Ch. 4. Consider the set of measurement operators, M̂m = M̂A

m⊗ ÎB where
m = {0, 1}, M̂A

m is defined in Sec. 1.1.3 and ÎB is the identity operator on the state space
of system B. The projection of the state after measurement is given by,

M̂m|ψ⟩√
⟨ψ|M̂ †

mM̂m|ψ⟩
= |mAmB⟩ (1.12)

System B has been projected to either |0⟩ or |1⟩ depending on the outcome on the mea-
surement of system A.

1.1.5 Density operators

A more general way to describe the state of a quantum system is with a density operator.
For a pure quantum system the density operator is given by ρ̂ = |ϕ⟩⟨ϕ|. If the density
operator can be written in this way it is said to be in a pure state. Additionally a state is
pure if and only if ρ̂2 = ρ̂. Conversely a mixed state is one that cannot be represented by
a simple state vector but can be represented by an ensemble of pure states,

ρ̂ =
∑
i

pi|ϕi⟩⟨ϕi|. (1.13)

The purity of a state can be measured by using the trace operator on the square of the
density operator, tr(ρ̂2). The trace will give a value between 1/n and 1 with 1 representing
a pure state and n being the dimension of the Hilbert space. A composite system can
also be described by density operators for example a two mode state is represented as
ρ̂AB = |ϕAB⟩⟨ϕAB|. The partial trace operation can be used to remove a system form a
state,

ρ̂AB
PT−→ ρ̂A. (1.14)
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For this thesis density operators are not used in any meaningful way other than a conve-
nient way to refer to a quantum state and in particular mixed states. A more complete
description is given in Ref. [13].

1.2 Bell Tests

The Bell test is a fundamental demonstration of quantum mechanics. It is made up of
a family of inequalities that test the hypothesis of local realism [22]. A violation of a
Bell inequality by two spatially separated parties will demonstrate non local correlations
between them which is an indication of quantum entanglement. The original idea of en-
tanglement is know as the EPR Paradox [1]. The Authors of the EPR paradox conducted
a thought experiment where two separated particles, A and B, that have previously inter-
acted could from the measurement of the position of A, infer the position of particle B
beyond the quantum limit without it being disturbed. The conclusion was that quantum
mechanics at the time did not provide a complete description of reality. It was suggested
that a hidden variable could be used to explain the paradox. John Bell explored the para-
dox and came up with a theorem that any local hidden variable model would be violated
by the predictions of quantum mechanics [2]. To test this theorem many Bell inequalties
have been proposed to bound results from a local hidden variable description of experi-
mental results [22]. The most famous of them is the CHSH Bell inequality [23],

E(A,B) + E(A′, B′) + E(A′, B)− E(A,B′) ≤ 2, (1.15)

where E(X,Y ) is the expectation value of the random variables X and Y . A basic ex-
periment can be constructed around Eq. (1.15) to demonstrate a violation. Consider the
Fig. 1.1 where a source distributes a bipartite state between two non-local parties, Alice
and Bob, each with their own measurement device. They can change their measurements
to one of two observables, Â and Â′ for Alice and B̂ and B̂′ for Bob. Each measurement
will give the outcome ±1. At a prearranged time Alice and Bob will each receive a state
and perform a measurement with a randomly selected setting. The goal of Alice and Bob
is to violate Eq. (1.15). A simple derivation of the CHSH inequality can be used to see
how this protocol can violate Eq. (1.15) [13]. Suppose the state distributed to Alice and
Bob obeys they theory of local realism, that is the joint state has a real physical property
that exists independently of observation and Alice and Bob can only interact through local
effects. For this derivation assume Alice and Bob can not influence each others measure-
ments. Consider the quantity AB +AB′ +A′B′ −A′B where A, A′, B and B′ represent
the outcome from their respective measurements. With A,A′, B,B′ = ±1 it is easy to
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M ′
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M ′
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±1 ±1

Figure 1.1: A source distributes a Bell state to Alice and Bob. Alice and Bob each have
their own measurement apparatus that can perform one of two measurements. Comparing
their measurements they can violate Eq. (1.15).

see that this quantity can only be ±2. Now consider the mean value of this quantity,

E(AB + AB′ + A′B′ − A′B) =
∑
aa′bb′

p(a, a′, b, b′)(ab+ ab′ + a′b′ − a′b) (1.16)

≤
∑
aa′bb′

p(a, a′, b, b′)× 2 (1.17)

= 2, (1.18)

Where p(a, a′, b, b′) is the probability of the joint state being predetermined prior to mea-
surement such that the result will be A = a, A = a′, B = b and B′ = b′. Using the
linearity of the expected value the CHSH inequality in Eq. (1.15) can be derived.

Now consider the quantum state

|ϕ⟩ = |01⟩ − |10⟩√
2

. (1.19)

Where the source distributes one mode to Alice and one to Bob. Using the observables,

Â = Z B̂ =
−Z −X√

2
(1.20)

Â′ = X B̂′ =
Z −X√

2
, (1.21)

with X = |0⟩⟨0|+ |1⟩⟨1| and Z = |0⟩⟨0| − |1⟩⟨1|. The expectation values are;

E(Â, B̂) =
1√
2
, E(Â′, B̂) =

1√
2
, E(Â′, B̂′) =

1√
2
, E(Â, B̂′) = − 1√

2
. (1.22)

Interestingly this gives,

E(Â, B̂) + E(Â′, B̂) + E(Â′, B̂′)− E(Â, B̂′) = 2
√
2. (1.23)
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A clear violation of the original inequality and a demonstration that with quantum me-
chanics nature does not obey local-realism. The value of 2

√
2 is known as the Tsirelson’s

bound. This is the largest possible violation with the CHSH inequality [24].
In the derivation above it was assumed that Alice and Bob could not interact and every

measurement yielded a result. This of course is not realistic to experiments and there are
several loopholes [22] that can cause a violation of a Bell inequality. The most obvious
is communication between Alice and Bob which can easily violate Eq. (1.15). This is
knowm as the locality loophole. For example every time Alice decides a measurement
she could tell the Bob and cause fake Bell violations. This is easily solved in optics
experiments where Alice and Bob are moved far enough apart that even with speed of
light communication they cannot exchange any relevant information in the time it takes
to perform a measurement [25]. Another common loophole comes from the measurement
process. A realistic measurement will have some loss associated with it. This loss results
in a third possible outcome from the measurement being a “no click” or 0. These “no
clicks” can be discarded but there is a threshold of measurement efficiency below of which
a violation can be faked [26]. This is known as the detection loophole or the fair sampling
assumption as the recorded data has to be representative of the distributed state.

There have been a number of experiments dating back over 35 years [3] that have
demonstrated a violation of a Bell inequality but only recently has it been possible to
overcome both the detection and locality loopholes. There have so far been four experi-
ment where a convincing violation has been produced [4–7]. Each of these experiments
employed high efficiency detection methods to address the detection loophole and care-
ful analysis of the separation of Alice and Bob to address the locality loophole. Each
measurement setting was also chosen at random using a mixture of several sources of
random numbers including quantum random number generators (QRNG). These experi-
ments have opened up the possibility for practical applications of Bell tests in quantum
technology where one is faced with the question of verification of quantum devices. For
quantum key distribution (QKD) and QRNGs, a violation of a Bell inequality can rule out
any tampering of the quantum source or the measurement devices. This allows the user to
achieve device independent (DI) protocols [18].

1.3 Quantum states of light

So far only the mathematical description of a qubit has been considered. The system of
interest for this thesis is the electric field of an optical field. In this section a number of ex-
perimentally realisable optical states that are used throughout this thesis will be described.
Following from Ref. [27] and Ref. [19], quantum field theory gives the vector potential of
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an optical field as,

Â(r, t) =
∑
k

(
ℏ

2ωkε0

)[
âkuk(r)e

−iωkt + â†ku
∗
k(r)e

iωkt
]

(1.24)

where the vector k is the propagation vector, ω is the angular frequency of the field, A0

is a complex vector potential orthogonal to k and â is the annihilation operator with its
Hermitian conjugate, â† the creation operator. The vector potential can be written as a sum
of modes, i.e. subsystems, denoted by the subscript k. For each mode the annihilation
and creation operators obey the following bosonic commutation relations, where uk are
vector mode functions corresponding to a mode with an angular frequency ωk and â is the
annihilation operator with its Hermitian conjugate, â† the creation operator. The vector
mode functions define the direction of travel in the case of a traveling wave. The vector
potential can be written as a sum of modes, i.e. subsystems, denoted by the subscript
k. For each mode the annihilation and creation operators obey the following bosonic
commutation relations,

[âk, â
′
k] = [â†k, â

′†
k ] = 0 and [âk, â

′†
k ] = δkk′ , (1.25)

From Eq. (1.24) the electric field operator, Ê(r, t), and the magnetic flux density operator,
B(r, t), can be found using,

B̂ = ∇× Â Ê = −∂Â
∂t

. (1.26)

This gives the electric field operator,

Ê(r, t) = i
∑
k

(
ℏωk

2ε0

) 1
2 [
âkuk(r)e

−iωkt) − â†u∗(r)eiωt)
]
. (1.27)

The Hamiltonian of electromagnetic field can be found using,

Ĥ =
1

2

∫
(ε0Ê(r, t) · Ê(r, t) +

1

µ0

B̂(r, t) · B̂(r, t))dr (1.28)

=
∑
k

ℏωk

(
â†kâk +

1

2

)
. (1.29)

Which is the Hamiltonian of a simple harmonic oscillator. The two terms that appear in
the Hamiltonian are the photon number operator defined as n̂ = â†â multiplied by the
energy in each photon and a vacuum energy term 1

2
ℏω. That is the energy that exists in a

vacuum even without the presence of an optical field. It is the manipulation of the vacuum
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modes that forms the basis for this thesis.
The significance of the number operator comes from it being observable with the

discrete eigenstates,
n̂|n⟩ = n|n⟩, (1.30)

where n ∈ N. Two other observable operators are given by the natural analogue to the
position and momentum, the amplitude, x̂ and phase p̂ operators. These operators are
continuous variable observables and are defined in terms of the annihilation and creation
operators,

x̂ =

√
ℏ
2ω

(â+ â†) (1.31)

p̂ = i

√
ℏω
2
(â− â†), (1.32)

with the commutation relation,
[x̂, p̂] = iℏ. (1.33)

These can be considered in some sense to be the real and imaginary part of the annihilation
operator [27]. The eigenstates for the quadrature variables are not physically realisable
but are given by,

x̂|x⟩ = x|x⟩ and p̂|p⟩ = p|p⟩, (1.34)

where x and p are continuous variables. That is x ∈ R and p ∈ R [8, 28]. Making x̂ and
p̂ the continuous variable observables. Using the quadrature operators the electric field
operator for a single mode can be rewritten in the form,

Ê(r, t) =

(
ℏω
2ε

) 1
2

[x̂ sin(ωt− k · r)− p̂ cos(ωt− k · r)] , (1.35)

where k is the direction vector of the field. Unsurprisingly the quadrature operators act as
the amplitude operators on the phase and quadrature components of the electric field. As
the operators x̂ and p̂ are non commuting observables the Heisenberg uncertainty principle
(HUP) places a lower bound on the uncertainty of these two operators with,

∆A∆B ≥ 1

2
|⟨[A,B]⟩|. (1.36)

Using the phase and quadrature operators this becomes,

∆x̂∆p̂ ≥ 1

2
|⟨[x̂, p̂]⟩| = 1

2
ℏ (1.37)
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It is convenient for the remainder of this thesis to take ℏ = 2 and ω = 1 to simplify the
description of quantum states. This simplifies the uncertainty principle to,

∆x̂∆p̂ ≥ 1 (1.38)

1.3.1 The Fock states

While it is not widely used in this thesis it is useful to know about the Fock basis. The Fock
basis is made up by the eigenstates of the number operator. A Fock state is represented
by the vector |n⟩ where n is the number of photons in an optical field. The Fock basis
can be used to make optical qubits. The action of the creation, annihilation and number
operators on a Fock state is,

â†|n⟩ =
√
n+ 1|n+ 1⟩, â|n⟩ =

√
n|n− 1⟩ and n̂|n⟩ = n|n⟩. (1.39)

The minimum energy state or vacuum state is denoted by |0⟩ and is defined by

â|0⟩ = 0 (1.40)

with the expected value of this state given by,

⟨0|n̂|0⟩ = 0. (1.41)

All Fock states are accessible from the repeated application of the creation operator. The
Fock basis forms a complete basis and every state is orthogonal,

∞∑
n=0

|n⟩⟨n| = 1, ⟨n|m⟩ = δmn. (1.42)

1.3.2 Coherent states

The coherent states are interesting as they are minimum uncertainty states and are the
closest quantum states to a classical description of an optical field. The significance of
these states is they are the natural state generated by a shot noise limited laser. These
states are created by the application of the displacement operator on a vacuum state. The
displacement operator is given by [19],

D̂(α) = exp
(
αâ† − α∗â

)
, (1.43)
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A coherent state, |α⟩, can be written in the Fock basis as,

|α⟩ = D̂(α)|0⟩ = e−|α|2/2
∑
n

αn√
(n!)

|n⟩. (1.44)

The coherent state has a indefinite number of photons. The probability distribution of the
Fock states in a coherent state is Poisson,

P (n) = |⟨n|α⟩|2 = |α|2ne−|α|2

n!
. (1.45)

Unlike Fock states coherent states are not orthogonal to each other and form an over
complete basis,

⟨β|α⟩ = exp

[
−1

2
(|α|2 + |β|2) + αβ∗

]
(1.46)

The variance of the quadrature operators of a coherent state are given by,

∆x̂ = 1, ∆p̂ = 1 (1.47)

A coherent state is part of a family of minimum uncertainty states which achieve the HUP
lower bound,

∆x∆p = 1 (1.48)

A simple illustration of a coherent state can be made by a ball and stick diagram as shown
in Fig. 1.2 (a). The uncertainty of the state is represented by a ball of radius 1 which is
centered at α = ⟨x̂+ ip̂⟩.

1.3.3 Squeezed states

A more general minimum uncertainty state is the squeezed state. The defining feature
of a squeezed state is the unequal uncertainty in each quadrature. A squeezed coherent
state can be generated first by applying the squeezing operator S(ε), with a squeezing
parameter of ε = re2iϕ, and then the displacement operator to a vacuum state. The
squeezing operator is given by [19],

Ŝ(ε) = exp

(
1

2
(ε∗â2 − εâ†2)

)
. (1.49)

The squeezing operator applied to a coherent state, Fig. 1.2 (b), results in a scaling of the
quadratures parameterized by the squeeze factor, r, and a rotation by ϕ. A squeezed state
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Figure 1.2: A ball and stick diagram. The uncertainty of a coherent state, (a), is repre-
sented by a ball centered at 1

2
⟨x + ip⟩ = α. A squeezed state, (b), is scaled by e−r in the

x quadrature and er in the p quadrature and rotated by ϕ.

is also a minimum uncertainty state with the variance of the rotated quadrature given by

∆x = e−r ∆p = er. (1.50)

The photon number distribution for a squeezed state is given by,

P (n) =

(
1
2
tanh(r)

)n
n! cosh(r)

exp

[
−|α|2 − 1

2
tanh(r)

(
(α∗)2eiϕ + α2e−iϕ

)]
|Hn(z)|2, (1.51)

where,

z =
α + α2eiϕ tanh(r)√

2eiϕ tanh(r)
, (1.52)

and |Hn(z)| is the nth Hermite polynomial. It is interesting to note that Hn(0) = 0

for odd values of n. Operationally this means that squeezed vacuum states only contain
even numbered Fock states. When the squeezing operator is used on a coherent state the
probability distribution Eq. (1.51) will widen if r < 0 or narrow if r > 0. For large values
of r the probability distribution will oscillate at higher photon numbers. The probability
distribution for the case of low r is plotted in Fig. 1.3.

Experimentally a squeezed state can be generated through a process called optical
parametric amplification (OPA) where a non-linear crystal is pumped by the second har-
monic of the fundamental mode. The term r is proportional to the non-linear interaction
between the second harmonic and the fundamental fields. The angle ϕ is the phase be-
tween the pump and fundamental fields. This process is described in Ch. 2 with some
experiment results presented Ch. 3.
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Figure 1.3: The photon number distribution for a coherent state (blue) with α = 3, a
phase squeezed coherent state (yellow) with α = 3 and r = −0.5, an amplitude squeezed
coherent state (purple) with α = 3 and r = 0.5 and a vacuum squeezed state (red) with
r = 2.5.

1.3.4 Thermal states

It is sometimes useful for the description of a quantum system to consider non-minimum
uncertainty Gaussian states called thermal states. A thermal state is a mixed state that
describes the field emitted by a black body. The density operator for this state using the
Fock basis is given by [29],

ρ̂ =
1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n

|n⟩⟨n|, (1.53)

where n̄ is the mean photon number in the field. The variance of the thermal states in the
quadratures is given by ∆2x = ∆2p = 2n̄+ 1.

1.3.5 Two important unitary operators

The states discussed in Sec. 1.3 can be used in combination with other states using unitary
operators. This section will cover two important operations for this thesis, the beam
splitter operation and the phase shift operation.

Phase shift

The phase shift operator is parameterised by the variable θ. The transformation acting on
field âin is simply,

ÛPS(θ) = e−iθn̂ (1.54)
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Figure 1.4: The optical fields âin and b̂in combined on a beam splitter of transmission T .
Mode âin is shifted in phase by ϕ relative to b̂in

The phase shift operator represents a rotation in the quadratures of an optical field,

x̂θÛPS(θ)x̂Û
†
PS(θ) = cos(θ)x̂+ sin(θ)p̂ = âe−iθ + â†eiθ (1.55)

Beam splitter

A beam splitter is one of the more basic elements and most common of any optics ex-
periment that is used to combine or split beams through a semitransparent surface with a
transmission 0 ≤ T ≤ 1 and reflectivity R = 1 − T . In quantum optics a beam splitter
is always considered a four port device. A beam splitter can be combined with the phase
shift operator to control which quadratures will interfere. Consider a beam splitter with a
transmission of T acting on two optical fields âin and b̂in the transformation is given by,[

âout

b̂out

]
=

[ √
T

√
1− T

−
√
1− T

√
T

][
e−iϕâin

b̂in

]
, (1.56)

where e−iϕ is a phase shift acting on mode b̂in. A simple illustration of a beam splitter is
given in Fig. 1.4.

The beam splitter operator is significant in experimental modeling as it provides a way
to model experiment losses. All experimental processes will experience some kind of loss.
These include spatial mode matching, inefficient detection and scattering from optical
components. The beam splitter operator can be used to model loss, and the coupling of a
vacuum or a thermal state from the environment into the signal mode. In this thesis the
second mode produced is considered destroyed, and the mode is traced out of the state.
In the context of Fig. 1.4 if mode âin is the signal then mode b̂in is the environment noise
and mode b̂out is thrown away
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1.3.6 Two mode squeezed states

The name two mode squeezed state gets comes from the property that the squeezing is
now over two modes. Through this thesis they are commonly referred to as entangled
states or EPR states. In this thesis an entangled state is generated from two squeezed
vacuum states mixed in quadrature on a beam splitter with T = 0.5. The combination
of the two squeezing operators and the beam splitter results in the two mode squeeze
operator given by,

Ŝ(G) = exp
(
G∗âAâB −Gâ†Aâ

†
B

)
, (1.57)

where G = re−iθ. This operator can be used to describe the generation of two entangled
modes of different frequencies, ωA and ωB. For this thesis the modes A and B will be
spatially separated. It is interesting to note that each mode in a two mode squeezed state
has the quadrature variance ∆2x̂ = ∆2p̂ = cosh(r). Meaning the modes individually are
thermal states. The squeezing exists in the correlation between the two modes.

1.4 Phase-space representation

An alternative to describing a quantum state with a density operator is to use a Wigner
function. The Wigner function is a quasiprobability distribution defined over a real sym-
plectic space [28]. The Wigner function is outside the scope of this thesis but a compre-
hensive description can be found in Ref. [30]. What is of interest here though is that the
Wigner function can be described by the moments of the quantum state.
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Figure 1.5: Examples of a Wigner function for a coherent state, (a), and a squeezed state,
(b), where α = 1 + i and r = 0.5.

The coherent, squeezed, two mode squeezed states and thermal states are part of a
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family of Gaussian states that can be completely described by their variance and mean in
the phase and amplitude quadratures [29]. The covariance matrix and mean vector for a
vacuum state is given by,

γ =

[
1 0

0 1

]
d =

[
0

0

]
. (1.58)

Here element γ(1,1) and d1 represent the variance and mean respectively of the state in the
x quadrature. Likewise for elements γ(2,2) and d2 in the p quadrature. Just as was shown
in Sec. 1.3 and Sec. 1.1.4 each of the minimum uncertainty states can be found by using
an operator on the vacuum state. The covariance matrix for the single mode states is given
by,

γ =

[
∆2x 0

0 ∆2p

]
d =

[
⟨x⟩
⟨p⟩

]
. (1.59)

The purity of a state described by a covariance matrix is given by 1
2
√
γ

[31].

1.4.1 Composite systems

Multiple modes in a state can be represented by a single covariance matrix and mean
vector. For N modes this would look like,

γ =


γ1 · · · C1,N

· · · . . . ...
CN,1 · · · γN

 and d =


d1
...
dN

 , (1.60)

where each element γn and Cn,m represents a 2 × 2 diagonal matrix, dn is a 2 element
vector with n,m = {0, 1, . . . , N}. The sub matrix Cn,m will represent the correlations
between modes n and m. A partial trace of a Gaussian composite system will remove
an element from the covariance matrix and mean vector. Consider a partial trace on a
bipartite system, ρAB to trace out mode B. The covariance matrix will become,

γAB =

[
γA C

C γB

]
PT−→ γA (1.61)

and the mean vector,
dAB = (dA, dB)

PT−→ dA (1.62)
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1.4.2 Gaussian operations

A Gaussian operator simply maps a Gaussian state to another Gaussian state. The corre-
sponding operators for each of the operators given in Sec. 1.3 and Sec. 1.1.4 are given
here.

Displacement operator

The displacement operator used to generate coherent states simply translates the mean of
the state, dout = din + z, where z is the displacement in the x and p quadrature. The
covariance matrix under the displacement operator is invariant.

Symplectic transform

Any unitary operator US will have a corresponding symplectic operation S due to the
Stone-von Neumann theorem. A symplectic transformation applied with the mapping,

dout = Sdin γout = SγinS
T , (1.63)

where S is 2N × 2N matrix with real elements. The symplectic operation for the passive
operations described in Sec. 1.3 are given below

Phase shift A phase shift of a mode by θ is simply a rotation between the quadratures.
The symplectic operator for a single mode state is given by,

SPS(θ) =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
. (1.64)

Beam splitter A beam splitter with transmission T acts on two modes with the sym-
pletic operator,

SBS(T ) =

[ √
T I

√
1− T I

−
√
1− T I

√
T I

]
(1.65)

Squeezing operator The symplectic operator to squeeze a single mode state is given
by,

SSq(r) =

[
e−r 0

0 er

]
(1.66)

The unitary squeezed state operator also acted as a phase shift on the input state. To
capture this the operator Eq. (1.66) can be combined with Eq. (1.64).
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Two mode squeezed states The sympetic operators can be combined to create any
Gaussian state. An important example for this thesis of this is generating an entangled
state. As stated in Sec. 1.3.6 a two mode squeezed state can be created by combining two
orthogonally squeezed states with a beam splitter. This gives the sympletic operator,

SBS(
1

2
)SA

Sq(r)S
B
Sq(−r) =

[
cosh(r)I sinh(r)σz

sinh(r)σz cosh(r)I

]
, (1.67)

where the super script represents the mode being acted on by the operator and,

σz =

[
1 0

0 −1

]
. (1.68)

1.4.3 CP Maps

Not all desired transformations are unitary and covered by symplectic transformations.
The family of completely positive maps (CP map) can be used to perform irreversible
operations such as loss and is defined by two matrices X and Y applied to the covariance
matrix and mean vector by,

γout = XγinX
T + Y dout = Xdin (1.69)

Gaussian loss channel

A Gaussian loss channel can be modelled using a CP map with,

X =
√
T I and Y = (1− T + Tξ)I, (1.70)

where ϵ represents the noise in the channel relative to the input. This map is equivalent to
mixing a state γA and a thermal state with a variance 1 + T

1−T
ξ.



Chapter 2

Experimental Techniques

2.1 Detecting quantum states

In Ch. 1 the electric field was written as a discrete mode. To make sense of the detection
of quantum states a continuum of frequency modes must be considered. A multimode
system can be made by taking a sum of modes each with an angular frequency ωk and
propagation vector k. A continuum of modes can be made by considering the limit where
the separation between the modes goes to 0. This creates new annihilation and creation
operators which are related to the discrete operators by,

a→
√
∆ωa(ω) and a† →

√
∆ωa†(ω) (2.1)

Understanding the continuum of modes is not essential to understand the work in this
thesis. It is mentioned here to make the reader aware of the underlying description of
sideband modes. For the work in this thesis, the modes discussed can be considered to
be as described in Sec. 1.3. A rigorous description of this formalism for the continuum
of modes is given Ref. [32, 33] and a more accessible description in Ref. [34]. The
commutation relation for the new operators is now given by,

[a(ω), a†(ω′)] = δ(ω − ω′), (2.2)

where δ(ω − ω′) is the Dirac delta-function. The operators x̂(ω) and p̂(ω) are defined in
a similar way to their discrete equivalents. The measurement of the observable operators
are made relative to a carrier frequency, Ω, through the time varying field annihilation
operator,

ã(t) =

∫ ∞

−Ω

âΩ+ω(ω)e
iωtdω, (2.3)

where ω is the separation from the carrier frequency and decoration, ˜, represents that
the operator is in the time domain. The frequency domain annihilation operator can be

27
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extracted from the time domain using the Fourier transform, denoted by F, for ω < Ω,

â(ω) = F(ã(t)) (2.4)

Similarly the same relation exists for the quadrature operators to move from the time
domain operator to the frequency domain. Measuring the modes relative to a carrier
frequency is more widely known as the rotating wave approximation.

2.1.1 Phase and Amplitude modulations

Only phase modulations are used in this thesis however amplitude modulations can be de-
scribed in a similar way. The phase modulations are used to make error signals and control
phase and cavity lengths. They can also be used together with amplitude modulations as
the displacement operator for side band modes. There are two different types of devices
used for phase modulation in this thesis. For low modulation frequencies, typically be-
low 100kHz, Piezo driven mirrors are used. For large modulation frequencies, typically
above 1MHz, electro-optic modulators are used. These modulators apply an electric field
to a crystal to change its refractive index. The modulation of an optical field in the time
domain relative to the carrier frequency is given by,

ãPM = ãeiξ cos(ωmt), (2.5)

where 0 ≥ ξ ≤ 1 is the modulation depth and ωm is the modulation frequency. A mod-
ulation of ωm will results in a number of harmonics being generated at integer multiples
of ωm with an amplitude that decays with the order of the harmonic. Assuming a small
modulation depth the phase modulated field can be approximated by,

ãPM ≈ ã

(
1 + i

ξ

2
eiωmt + i

ξ

2
e−iωmt

)
. (2.6)

The action of modulation is to move power from the carrier frequency, Ω, into the positive
and negative sidebands Ω± ωm. In the Fourier domain the modulation is given by,

âPM = F(ãPM) (2.7)

= â+ i
ξ

2
â(ω − ωm) + i

ξ

2
â(ω + ωm) (2.8)

Phase modulation can be represented in a phasor diagram as illustrated relative to the
carrier frequency in Fig. 2.1.

Amplitude modulation can be modeled in a similar way. An amplitude modulated
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Figure 2.1: A phasor diagram, (a), showing the upper (red) and lower (yellow) sidebands
rotating in opposite directions at a frequency of ωm relative to the carrier. The two side-
bands beat to create a phase modulation (blue) of the carrier, (b).

field relative to the carrier frequency is given by,

ãPM = ã(1 + ξ cos(ωmt)). (2.9)

With the Fourier transform given by,

âAM = â+
ξ

2
â(ω − ωm) +

ξ

2
â(ω + ωm) (2.10)

2.1.2 Photodiode

A photodiode is a device that converts an optical field to a current using the photoelectric
effect. The current produced is proportional to the photon number operator for the field
[8, 19],

id(t) ∝ ã†ã. (2.11)

To make sense of the diode current it is beneficial to consider the linearised decomposition
of the annihilation and creation operators,

ã = α + δã and ã† = α∗ + δã†, (2.12)

where α = ⟨ã⟩ is the coherent amplitude of the laser and a fluctuating term δã. This
linearization is made with the assumption that ⟨δã⟩ = 0 and |⟨δã†δã⟩| ≪ α. For the
remainder of this thesis α is taken to be real. A detailed decription of the linearization is
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made in Ref. [35]. With linearization of the operators the photodiode current becomes,

id(t) ∝ α2 + αx̃. (2.13)

Moving to the frequency domain and restricting the analysis to the frequency bands with
no significant noise, the photocurrent can be written as upper and lower sidebands similar
to the classical phase modulation. The upper, Ω+ω and lower Ω−ω sidebands are given
by,

id(ω) = i(ω) + i(−ω) ∝ α(x̂(ω) + x̂(−ω)) (2.14)

Experimentally the isolation of the sidebands in the detector current is made by using a
combination of low and high pass electronic filters.

Photodetector

In an experiment the photodiode is used in a photodetector where the current is converted
to a voltage using a transimpedance amplifier with some gain gd. A basic circuit of a tran-
simpedance amplifier can be found in App. A.1. The conversion of current to voltage can
be done with a simple resister however for large gains this presents as a large impedance
which reduces the signal to noise ratio. A transimpedance amplifier on the other hand
presents as a low impedance load to the diode current through the use of an op amp for
large gains [36].

2.1.3 Homodyne detection

The intensity can be easily measured using a single photodiode but to measure an arbitrary
quadrature a homodyne detector is required. A homodyne detector works by interfering
on a 50/50 beamsplitter a signal field, â, with a stronger local oscillator field, âLO with
some relative phase θ between the two input fields. The strength of the local oscillator
needs to be such that αLO ≫ α. Taking the difference between the two photocurrents as
depicted in Fig. 2.2 measures the quadrature x̂θ. The resulting measurement is amplified
by the intensity of the local oscillator making it easier to measure weak quantum fluctua-
tion in both quadratures. Using the linearisation of both fields the detected photocurrent
is given by,

idiff(t) ≈ gD [2 cos(θ)ãαLO + αLO(δx̃ cos(θ) + δp̃ sin(θ))] (2.15)
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The terms not containing αLO are approximately 0. Taking the Fourier transform of idiff(t)
the sideband mode can be written as,

idiff(ω) = gDαLO(δx̃ cos(θ) + δp̃ sin(θ)) (2.16)

For the quadrature measurement to make any sense it needs to be normalized to shot noise
which can be measured by blocking mode a. For this thesis the normalization is such that
the variance of the shot noise is one. For a state containing multiple correlated modes a

a

αLO

idiff (t)

50/50

–

Figure 2.2: A homodyne detector. The signal beam is interfered on a 50/50 BS. Both
ports of the BS are measured and the photocurrents subtracted to get idiff .

homodyne measurement acts as a projective measurement to an infinitely squeezed state.
In phase space the projection of the second mode of a bipartite state is given by the map
[37],

γouta = γa − Cab(XγbX)MPCT
ab douta = Cab(XγbX)MP (m− db) + da, (2.17)

where X = diag(1, 0, 1, 0), m = (X1, 0) with X1 being the homodyne measurement
outcome andMP denotes the inverse on the range. The projection from the measurement
of the p̂ quadrature can be found by using X = diag(0, 1, 0, 1) and m = (0, X1). A
homodyne is a destructive measurement so the original mode is traced out of the bipartite
state.

Heterodyne detection

A homodyne detector can only measure one quadrature at a time. At the cost of 3dB loss
two homodyne detectors can be combined using a 50/50 beam splitter to split the signal
and measure both quadratures simultaneously as illustrated in Fig. 2.3. In phase space the
projection is given by the map,

γouta = γa−Cab(γb+I)−1CT
ab, douta =

√
2Cab(γb+I)−1(m−dinb )+dinb )+dina . (2.18)
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where m = (x1, p1) is the vector of the results from a heterodyne measurement on mode
b̂

a

αLO

i+diff (t)

αLO

i−diff (t)

50/50 50/50

50/50

–

–

Figure 2.3: A heterodyne detector also know as a dual homodyne. The signal field is split
on a 50/50 beam splitter and the resulting beams sent to homodyne detectors which are
measuring orthogonal quadratures.

2.2 Optical resonators

Optical resonators are used in this thesis to either define spatial and frequency modes by
filtering an incident field or to increase non-linear effects through the resonance of the
internal optical field. The most general optical resonators is a Fabry Pérot cavity. This
cavity, illustrated in Fig. 2.4, consists of two mirrors, an input coupler (IC) and output
coupler (OC), facing each other at some distance L. An optical field inside the cavity
will reflect between the two mirrors with resonant modes constructively interfering. The
resonant modes of the cavity have a wavelength that is a multiple of the cavity length. For
a Fabry Pérot cavity this create standing waves in the cavity that constructively interfere
with non-resonant wavelengths destructively interfering. Only the resonant modes will be
transmitted through a cavity with the remaining modes reflected off the coupling mirrors.
A cavity can be used to select specific frequency and spatial modes from an incident field
by clever design of the geometry [38–40]. These properties allow a cavity to be used to
filter the spatial and frequency modes from a laser.

As a closed system the internal field annihilation operator, â, will evolve in time ac-
cording to Heisenberg’s equation of motion,

˙̃a =
1

iℏ
[ã, Hrev] (2.19)
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al

aic,in

aic,out

aoc,in

aoc,out

ηic ηicηl

Figure 2.4: A model of an optical resonator with the field aic,in coupled through the IC
with transmission ηic and the counter propagating field aoc,in coupled through the OC with
transmission ηoc. The cavity loss is modelled as a beam splitter with transmission ηl which
couples the internal field to the environment.

In a closed system the Hamiltonian, Hrev is reversible. Open systems have non reversible
evolutions through lossy interactions with the surrounding environment. To account for
the irreversible interactions extra terms can be added to Eq. (2.19) [41]. The modified
equation of motion is know as the quantum Langevin equation and is given by,

˙̃a(t) =
1

iℏ
[ã, Hrev]− [ã, c̃†](γc̃+

√
2γb̃in)− (γc̃† +

√
2γb̃†in)[ã, c̃]. (2.20)

Here the operator c̃ is the system operator, ã, coupled to the environment b̃ and γ is
the cavity decay. For a lossless passive resonator the Hamiltonian is given by Eq. (1.29)
where ω = Ω is a resonant frequency. Using Eq. (1.29) with Eq. (2.20) gives the following
equations of motion for an optical cavity coupled to the environment [21],

˙̃a(t) = −(γ + i∆)ã+
√
2γicãic,in +

√
2γocãoc,in +

√
2γlãl. (2.21)

Here the cavity decay rate γ is given by γ = γic + γoc + γl, the cavity detuning between
the resonant frequency and the frequency of the input field, Ω′, is given by ∆ = Ω − Ω′

and the decay rates due to the IC, OC and loss are given by,

γic = ηic/2τ, (2.22)

γoc = ηoc/2τ, (2.23)

γl = ηl/2τ, (2.24)

where η is the transmission for the respective coupling mirror and τ is the round trip time.
To simplify the equations of motion the field ã will be modelled in the rotating reference
frame of the incident field and the detuning will be set to ∆ = 0. A solution for Eq. (2.21)
can be found using the Fourier transform property F(ȧ(t)) = iωF(g(t)) to give,

â =
−1

γ + iω

(√
2γicâic,in +

√
2γocâoc,in +

√
2γlâl

)
. (2.25)
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Figure 2.5: The intensity normalized to the power of aic,in (blue) and phase (red) of the
reflected, aic,out, and transmitted, aoc,out, fields using the classical analysis of the cavity
fields. The cavity parameters used here are from the cavity discussed in Sec. 3.2.2. The
fields aoc,in and al taken to be vacuum modes. The discontinuity in the phase of the
reflected field is caused by the reflected field disappearing when the cavity is on resonance.

The output fields aic,out and aoc,out in the Fourier domain can be found by using the bound-
ary conditions,

âm,out =
√
2γmâ+ âm,in, (2.26)

to give,

âm,out =
(γ + iω − 2γm)âm,in − 2

√
γmγnân,in − 2

√
γmγlâl

γ + iω
. (2.27)

Here m,n = {ic, oc}. The classical analysis of a cavity can be made using the linearisa-
tion of operators in Eq. (2.27) and ignoring the fluctuating terms. Setting αoc,in = αl = 0

gives the transfer functions from the input field aic,in to the reflected, aic,out, and transmit-
ted aoc,out fields,

αic,out

αic,in

=
2γic − iω − γ

iω + γ
(2.28)

αoc,out

αic,in

=
2
√
γicγoc

iω + γ
(2.29)

When ω ≈ 0 the cavity will have maximum transmission of the input fields, aic,in and
aoc,in, through the cavity. On the other hand when ω ≫ γ the cavity will reflect all of the
input fields e.g. âm,out = âm,in. The 3 dB point of a cavity is given where ω = γ. This
leads to a nice result where the spectrum of an input field, âic,in, can be filtered to the shot
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Figure 2.6: Second order non-linear process. Down conversion, (a), takes a single photon
of frequency 2Ω and produces two photons of frequency Ω. Up conversion, (b), takes two
photons of frequency Ω and converts them to a signal photon at frequency 2Ω.

noise limit when ω ≫ γ and the other inputs are vacuum modes.

2.3 Second order optical non-linearity

When an optical field is passed through a dielectric medium an atomic polarisation, P ,
is induced on the dipole moments of the medium. With light far detuned from the reso-
nance of the medium the electromagnetic field create a macro-scopic atomic polarisation
oscillating at the frequency of the field. These oscillations can be re-emitted back into the
optical field. In a non-linear medium these oscillations can occur at harmonic frequencies
of the original field. The polarisation of the resulting optical field can be written as the
series [21],

P = ϵ0
(
χE + χ(2)E2 + χ(3)E3 + . . .

)
, (2.30)

where χ is the linear susceptibility and χ(i) is the ith non-linear susceptibility of the
medium. The second order non-linearity, of interest in this thesis, are used to either
generate a second harmonic or squeeze a quadrature of the fundamental field. This thesis
will limit the description of optical non-linearity to degenerate parametric down conver-
sion. This is a simple case of non linearity where a single photon in a pump field, b, of
frequency 2Ω splits into two photons of the fundamental field, a, of frequency Ω in some
non-linear material. The non-linearity of the material is parameterised by the second-
order non-linear susceptibility, χ(2).

Phase matching condition

As with any system both energy and momentum must be conserved. In a degenerate sec-
ond order non linear process the energy conservation is satisfied by Ω2 = Ω1 + Ω′

1 and
momentum is satisfied by the wave vectors k2 = k1 + k′

1. Here ’ is used to represent
the pump field. If the fundamental and pump are co-propagating through the nonlin-
ear medium then the non-linear interaction is maximised if both propagate with the same
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phase. Normally a material does not satisfy this condition as the refractive index increases
with frequency. To match the propagation of the fundamental and pump this thesis uses
a method called quasi-phase matching. For this method the domains of the material are
periodically poled to invert the crystal axis. This changes the sign of the non-linear sus-
ceptibility and reverses the accumulation phase difference between the two fields. That is
the fundamental and second harmonic are re-phased every poling period which is ideally
once the waves are π/2 out of phase [42]. To perfectly match their propagation the mate-
rial can be heated or cooled. A more complete description of this and other methods used
to match the phase can be found in [42].

2.3.1 Optical parametric amplification

bic,in boc,out

al

aic,in

aic,out aoc,in

aoc,out

ηic ηocηl

χ(2)

Figure 2.7: A cavity with a non-linear crystal. The pump field bic,in is passed through the
IC and makes a single pass through the non-linear crystal.

The non-linear process can be enhanced by placing the medium in an optical cavity
as illustrated in Fig. 2.7. In a closed system the Hamiltonian that describes an Optical
Parametric Amplifier (OPA) is given by

Hχ(2) = ℏΩâ†â+ 2ℏΩb̂†b̂+ iℏ
Λ

2

(
â†2b̂− â2b̂†

)
. (2.31)

Here the first two terms represent the energy in the pump, b, and fundamental, a with Ω

being the angular frequency of the fundamental. The third term describes their interac-
tion. The interaction strength is parameterised by Λ which is a function of χ(2) and other
experimental parameters including phase matching and beam focusing.

Using the quantum Langevin equation, Eq. (2.20), with the Hamiltonian, Eq. (2.31),
the equations of motion for a cavity with second order non-linearity are found to be [43],

˙̃a = −γaã+ Λã†b̃+
√
2γic,aãic,in +

√
2γoc,aãoc,in +

√
2γl,aãl, (2.32)

˙̃b = −γbb̃−
Λ

2
ã2 +

√
2γic,bb̃ic,in +

√
2γoc,bb̃oc,in +

√
2γl,bb̃l. (2.33)
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Here γa is the cavity decay rate for the fundamental field and gammab the decay rate for
the pump. This thesis will only consider singly resonant OPAs. This allows the simplifi-
cation of γoc,b = γl,b = 0 by assuming the pump does not couple to the environment. The
pump can also be assumed to have an evolution rate much slower than the fundamental
to give ˙̃b = 0. To produce squeezing, each of the OPAs found in this thesis are operated
below threshold yielding approximately no pump depletion. With these assumptions the
equation of motion of the internal pump field of the cavity becomes,

b̃ = −
√

2

γb
b̃ic,in, (2.34)

and the equation of motion for the fundamental field simplifies to,

˙̃a = −γaã+
√

2

γb
Λã†b̃ic,in −

√
2γic,aãic,in −

√
2γoc,aãoc,in −

√
2γl,aãl. (2.35)

Classical description of an OPA

A classical description of an OPA can be made in the same way it was for the linear
resonator by only considering the real coherent component of the linearised operators in
Eq. (2.35). Taking αl = αoc,in = 0 and the OPA as being in steady state gives the solution,

α =
2γic,a(1 + g/γa)

γa(1− |g|2/γ2a)
αic,in, (2.36)

where the non-linear gain, g, is given by,

g = Λ

√
2

γb
βic,ine

iϕ. (2.37)

Here ϕ is the phase between the pump and the fundamental fields. The classical gain from
an OPA, gr, can be found using the output relation Eq. (2.26) to compare the power of the
amplified transmitted field with the unamplified field. This gives,

gr =
P a
oc,out(g)

P a
oc,out(0)

=
(1 + g/γa)

2

(1− |g|2/γ2a)2
(2.38)

This is known as the regenerative gain of the OPA [40]. As the gain, g, increases the more
pump power is transferred into the fundamental and gr increases. Once the pump power
reaches threshold of the optical parameteric oscillator (OPO), |g| > γa, the regenerative
gain will go to infinity and the cavity will start to self oscillate causing the squeezing
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Figure 2.8: Regenerative gain for a OPA cavity vs. the normalised pump parameter for
ϕ = 0 (blue) and ϕ = 90 (red).

spectrum to split [19]. The threshold of the pump is given by,

βth =
γa
√
γb

Λ
√
2

(2.39)

The equations of motion can be related to the pump threshold through the normalised
pump parameter,

βn =
g

γa
=
βic,in
βth

(2.40)

Semi-classical description

A semi-classical description of the squeezing spectrum of the output field can be made
by now considering the fluctuating terms in the linearised operators and substituting
Eq. (2.37) in Eq. (2.35) to get,

˙̃a = −γaa+ gã† −
√
2γic,aãic,in −

√
2γoc,aãoc,in −

√
2γl,aãl (2.41)

Then using the definition ẋ = ȧ + ȧ† and ṗ = i(ȧ† − ȧ) with the boundary condition
Eq. (2.26) the equation of the transmitted field in the frequency domain are found to be,

x̂ =
(wi+ γa + g + 2γoc)x̂oc,in + 2

√
γicγocx̂ic,in +

√
γlγocx̂l,in

wi− g + γa
(2.42)

p̂ =
(wi+ γa − g + 2γoc)p̂oc,in + 2

√
γicγocp̂ic,in +

√
γlγocp̂l,in

wi+ g + γa
(2.43)
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Figure 2.9: Demonstration of the effect of normalized pump power on squeezing and anti-
squeezing (dashed) with ω = 0, (a), and cavity loss on the squeezed and anti-squeezed
spectrum, (b). The cavity modelled here uses the parameters, ηic = 0.999975, ηoc = 0.8,
L = 0.45m. The cavity loss, ηl is set to 0 (blue), 0.005 (red), and 0.05 (yellow). The
escape efficiency for these losses are 0.9998, 0.95 and 0.67. For plot (b) x = 0.9.

Finding the variance of these two operators gives with the assumption that all of the input
fields are vacuum states i.e V a

ic,in = V a
oc,in = V a

l,in = 1,

V
x(p)
oc,out = 1 + (−)

γoc
γa

4(g/γa)

(ω/γa)2 + (1 + (−)g/γa)2
. (2.44)

From this equation the escape efficiency is defined as ηesc = γoc/γa. The variance can
be also be written in terms of the normalised pump parameter to give,

V
x(p)
oc,out = 1 + (−)ηesc

4βn
(ω/γa)2 + (1 + (−)βn)2

(2.45)

To generate squeezing with an OPA there is a trade off between increasing ηesc, while
at the same time keeping γa at a reasonable level. Increasing γa will increase the threshold
power making it harder to provide enough power to pump the crystal near threshold. If
ηesc is too small then the magnitude of the state is decreased. The effect of varying these
parameters is shown in Fig. 2.9. Decreasing the escape efficiency reduces the squeezing
at lower frequencies and has little effect on the amount of anti-squeezing. Increasing the
pump power increases the amount of squeezing and anti-squeezing exponentially near the
threshold power.
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2.4 Feedback control

Throughout this thesis there are multiple occurrences where feedback control has been
used to keep a cavity on resonance or keep two fields in quadrature or phase. There are a
number of methods that can be used for feedback control. This section will provide a brief
summary of methods used in this thesis. Consider the general feedback loop in Fig. 2.10
where a “plant” has an output y. A “measurement”, ym, is made on the output. The
measurement of the output is then used by a “controller” to control the state of the plant
to a reference level r. For this thesis the reference r is always set to 0 making ym = e.
This section is split into two sections to address how the error signal, e, is generated and
describe the controllers used.

- Controller Plant

Measurement

r e u y

ym

Figure 2.10: Typical feedback loop

2.4.1 Measurement

The PDH method

The PDH method of generating an error signal for a cavity is very common in optics. This
technique uses the beating between the carrier and a sideband modulation [44]. The gen-
eral setup for this method is shown in Fig. 2.12 along side an example error signal. For a
generic cavity the reflected signal from the IC will change phase and intensity as the in-
cident field detunes from the cavity resonance. This is represented in the phasor diagram
illustrated in Fig. 2.11(a) where the phasor for the reflected field rotates around a circle.
The case where the incident field has a modulation ωm ≫ γ is shown in Fig. 2.11(b).
The modulations will beat together to create a signal oscillating at 2ωm. When the cav-
ity is near resonance the carrier will create an asymmetry in the beating sidebands that
oscillates at ωm. This asymmetry will create the PDH error signal and can recovered by
demodulating the detected signal in quadrature. The remaining terms after demodulation
are filtered out with a low pass filter. The recovered error signal is given by,

e = −2
√
PcPsIm{F (w)F ∗(w + ωm)− F ∗(w)F (w − ωm)}, (2.46)
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Figure 2.11: A phasor plot showing the phase of the reflected incident field without (a)
and with (b) sideband modulations. The phasor of the reflected field from a critically
coupled cavity will rotate around a circle as the cavity is detuned from resonance. Adding
sideband modulation to the incident field creates beating in the detected signal. The two
sidebands (yellow and red) will beat together to create a beating signal (purple) at 2ω
which will vary at ω when the incident field is close to resonance.

where Pc and Ps are the power in the carrier and modulation respectively and F (ω) is the
transfer function of the reflected signal in the Fourier domain given in Eq. (2.28).

The in phase ωm signal is generally discarded but can be used to lock the phase of the
pump to the fundamental in an OPA cavity. For this the modulation needs to be within
the linewidth of the cavity. This will change the phase at which the reflected signal will
need to be demodulated to recover the PDH error signal. With a pumped OPA the internal
cavity field will detune and create imbalance between the lower and upper sidebands.
Imbalance will create an error signal orthogonal in the detected signal to the PDH error
signal. To find the angle of demodulation for this locking method the PDH error signal
needs to be demodulated at an angle that makes it independent of the pump phase. The
error signal for the pump is recovered from the orthogonal demodulation from the PDH
error signal [45].

Difference detection

Difference detection is the easiest method considered here to generate an error signal.
With two coherent beams mixed on a 50/50 beam splitter the detected signals are sub-
tracted to create the error signal,

i(t) = gD

(
1

2
α1(t) +

1

2
α2(t) + α1(t)α2(t) cos θ

)
(2.47)
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Figure 2.12: An example of the typical use of PDH locking in this thesis. The example
cavity is discussed in Sec. 3.2.2. The modulation is set to 25 × γ. The input u(t) is used
to control the cavity. The plot of e(t) is found by scanning u(t) with a ramp function.

Subtracting the detected signal from both output ports will give the following error signal

i(t)3 − i(t)4 = 2gDα1(t)α2(t) cos θ (2.48)

This gives a simple cosine error signal with the important linear section and zero crossing
around π/2 allowing the input beams to be easily locked in quadrature. Importantly the
zero crossing of this error signal is independent of the power of the input beams.

u(t)

e(t)

α1(t)

α2(t)
50/50

–

Figure 2.13: Difference detection. Two optical fields, α1(t) and α2(t) are interfered on
a 50/50 beam splitter. The signal u(t) controls the phase between the two fields with a
piezo driven mirror. The output ports are detected and subtracted to create e(t).
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2.4.2 Controllers

State-Machine Controller

This controller, developed by a former member of the group, Seiji Armstrong [46, 47],
was used to perform almost all the locking for this thesis. This controller uses the state-
machine logic illustrated in Fig. 2.14. In the default state, Scan, the controller will scan
the plant with a low frequency ramp function. When the user inputs a lock command the
scan will continue until the plant output drops below a threshold value, et. The controller
will transition to the lock state and engage a PI controller in a feedback loop. If the output
ever increases above et the controller will scan the cavity back to the locking point. For
a cavity the signal edc is used to determine if the plant is above or below the threshold.
If the user inputs a hold command the output of the controller is held at a constant value.
The controller is implemented in LabView and runs on a National Instruments FPGA with
both analogue inputs and outputs.

Scan

LockHold

!lock&!hold

lock&!hold

hold

lock&edc(t) < ethold

hold

edc(et) > t|!lock

!hold

Figure 2.14: State machine PDH controller. Hold, lock and et are set by the user. edc(t)
for a PDH lock is the error signal before the mixer. For difference detection e(t) = edc(t)

Microcontroller locking

A scheme using a microcontroller was proposed in Ref. [48, 49]. This method employs
the simple algorithm illustrated as a flowchart in Fig. 2.15. The original implementation
is designed to run on a microcontroller however for this thesis it was implemented using
an FPGA. This algorithm is easy to implement and tune.
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Start
e(0), f = 1

DAC
u(t+1) = u(t)+s×f

ADC
e(t)

e(t) > e(t− 1)?

f = −f

e(t − 1) = e(t)

no

yes

Figure 2.15: Microcontroller locking method flow chart. This algorithm updates the out-
put by stepping the DAC output by s. If the error signal starts increasing the algorithm
will change the sign of s using f .



Chapter 3

Squeezed State Generation at 1550nm

3.1 Introduction

This chapter details the work to generate highly squeezed states. The purpose of the
squeezed states is to use them in demonstrations of quantum control, estimation and com-
munication protocols. Squeezed states are a major resource for the CV community. In
this thesis they are primarily used in the context of QKD but they have other applications
in in broader communications protocols [50, 51], increasing the precision of phase estima-
tion [52] and lowering the noise in the detection of gravitational waves [53, 54] to name
a few. As well as this they are also used to create a variety of other non Gaussian states
[27] for numerous other protocols and applications. A wider summary of these applica-
tions can be found in Ref. [55]. There are a number of different methods for generating
squeezed states though this chapter will only discuss squeezed states generated from an
OPA. The highest recorded squeezing has been 15dB achieved with a semi-monolithic
cavity [56]. Another OPA cavity design commonly used and the one found in this chapter
is the bow-tie cavity [57, 58]. Unlike the standing wave semi-monolithic cavity the bow
tie cavity generates a travelling wave and can be made to be less prone to anti-squeezing
coupling into the squeezed quadrature through back reflections with a trade off of greater
intra-cavity losses. These losses are a result of the larger number of optical components
used in a bow-tie cavity. This chapter will present the results of the development of a
low intra-cavity loss OPA cavity. The OPA has so far achieved an 11 dB squeezed vac-
uum state with an intra-cavity loss of 0.3% using periodically poled Potassium Titanyl
Phosphate (ppKTP) as the non-linear crystal.

No publication has come from this work as yet. This chapter is a summary of the
current results. Much of the detailed design decisions for the components around the
OPA have been omitted. This chapter is divided into two main sections. The first Sec. 3.2
will detail the squeezing experiment including a brief description of the parameters of
each major component. The results of the experiment are presented in Sec. 3.3 and a
discussion on the planned use for the squeezed states is given in Sec. 3.4.

45
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3.2 Experiment

An overview of the experiment is given in the schematic found in Fig. 3.1. The laser used
for this experiment is first split into two paths. One is to provide the OPA cavity locking
signal and local oscillator. The other is used in an SHG cavity to generate a 775 nm beam
for the pump. The first beam path is passed through a mode cleaning cavity (MCC) before
being split again to a LO path and the locking beam for the OPA. The details for each of
the major components in Fig. 3.1 are given in the subsequent chapters.
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Figure 3.1: Schematic of the experiment to generate squeezed states using 1550nm. The
laser produced by 1550nm fiber laser source (Sec. 3.2.1) is split into three paths. The first
path is used in an SHG cavity (Sec. 3.2.3) to generate 775nm light for the pump. The
second path is used to lock the OPA cavity (Sec. 3.2.4) length and the third path is used as
the LO for the homodyne detector (Sec. 3.2.5). A MCC (Sec. 3.2.2) is used to clean the
spatial and frequency modes of the LO and the locking beam for the OPA. Each cavity
and path length is locked using feedback with an FPGA controlling the cavity lengths
(Sec. 3.2.6).
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3.2.1 The Laser

For this work a NKT Photonics Koheras BoostiK single frequency fibre laser system was
chosen based on its use in other labs and the poor reputation of similar lasers. The seed
laser for the system is an AdjustiK C15 shot noise limited co-doped eribium/ytterbium
fiber laser based on the Basik C15. From the Koheras range this laser has the lowest
relative intensity noise (RIN). This low RIN comes at the cost of increased phase noise
in comparison to other AdjustiK lasers [59]. The seed laser is amplified to provide power
up to 5W. The line width of the laser system is reported to be 8kHz with a RIN peak at
1.1MHz.

(a) (b)

Figure 3.2: RIN (a) and Phase noise (b) plots obtained from the laser test report [60]

3.2.2 Mode Cleaning Cavity

The MCC is the first element on the beam path providing the seed and local oscillator.
The role of a MCC is to reduce spectral noise and clean the spatial mode of the beam.
The design of this cavity is based on the previous experiments conducted at 1064nm by
the group [40, 61].

The MCC is a three mirror ring cavity as shown in Fig. 3.1 with a designed path
length of 800 mm. Each mirror is mounted on to a cylinder of Invar, chosen for its low
thermal expansion. The beam path through the Invar cylinder is machined out. The input
and output couplers are planar mirrors with reflectivity of 99.5% mounted with an angle
of incidence of 43.5◦. The length of the cavity is controlled by a Piezo pushing on the
highly reflective back mirror. The back mirror and the Piezo are pressed into a rubber
o-ring by the end cap of the cavity. The Piezo and mirror are pre-loaded with a force of
roughly 3kN. By pre-loading the Piezo the resonant frequency of the Piezo-mirror system
increases [21] allowing for larger locking bandwidths. The radius of curvature of the back
mirror is 1 m giving a cavity waist of around 0.63 mm at a wavelength of 1550nm.
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The finesse of this cavity was calculated to be 620. As the laser is fiber based and
already has a low intensity noise outside the line width of the cavity to begin with this
cavity has very little effect on the output beam frequency modes. However, it provides
a near perfect spatial Gaussian mode which is a necessary requirement to achieve high
homodyne detection efficiency.

3.2.3 Design of the OPA and SHG Cavities

Both the SHG and OPA cavities were designed to be identical to make mode matching
easier. The design is a bowtie singly resonant cavity at 1550nm with a non-linear crystal at
the waste. The mechanical design is shown in Fig. 3.3 and is based on previous squeezers
built by the group [34] with a few improvements to the crystal oven design and Piezo
mount.

The cavity is built on a base of solid aluminium with optics mounts that are designed
to easily adjust the distance between the two concave mirrors. The non-linear crystal is
positioned at the waist of the cavity in an oven constructed out of copper and heated by a
Peltier device which is contacted to a larger copper heatsink. The oven assembly is glued
together. To control the length of the cavity there is a Piezo controlled mirror on one side
of the cavity glued to an aluminium block. This block features a taper from the front
to the rear in an attempt to reduce mechanical oscillations. The rest of the mirrors were
mounted using half inch low drift Polaris kinematic mirror mounts from Thorlabs.

The chosen non-linear crystal was 16mm long ppKTP crystal with a poling period of
24.7 µm from RAICOL crystals. The KTP material was chosen as the nonlinear medium
due to its almost perfect transparency at the 1550nm wavelength [62]. The two crystal
facets were super-polished to an rms accuracy better than 1 angstrom and coated with a
low loss anti-reflection coating at 1550nm to minimise the OPA intracavity losses. The
facets were also polished at an angle of 1.15◦ to minimise back reflection into the cavity
mode.

The cavities were designed to be singly resonant so the mirrors used all have a trans-
mission of > 99.9% at a wavelength of 775nm. The two bottom mirrors and the Piezo
driven mirror are highly reflective (HR) with a reflectivity of 99.9975% at 1550 nm. The
remaining mirror is used as the IC for the SHG and OC for the OPA and has a reflectivity
of 90% at 1550nm. The two bottom mirrors have a radius of curvature of 50 mm and
positioned to give a beam waist of approximately 34 µm located inside the non-linear
crystal. This beam waist is close to the optimum for the OPA/SHG non-linear interaction
as predicted by theory [63].
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Figure 3.3: Mechanical design of the SHG and OPA cavities. The Piezo and crystal oven
assemblies are glued together using vacuum compatible epoxy. The total path length of
the cavity is 0.45m

SHG

As shown in Fig. 3.1, the 1550nm light is tapped off for the SHG using a half wave plate
and a PBS before the MCC. The input is coupled through the partially reflecting (PR)
mirror of the cavity. The upconverted 775nm light is coupled out of the cavity through
the first curved mirror and then collimated with a single lens. The efficiency of the SHG
was measured to be 71% with 560 mW of 1550 nm light. More details can be found in
Ref. [64, 65].

Using the SHG cavity the loss of the non-linear crystal was measured to be 0.3%.
This was measured by replacing the IC with a HR mirror and measuring the change in the
finesse of the cavity with and without the crystal. The non-linear interaction strength was
found to be Λ = 271 through measurement of an SHG field after a signal pass through
the non-linear crystal.

3.2.4 OPA Cavity

For the OPA cavity the design is turned around so the IC is now the Piezo driven HR mirror
and opposite PR mirror is used as the OC. Taking the cavity single pass loss of 0.3% the
resulting escape efficiency was estimated to be 0.97. The pump is mode matched into the
OPA through one of the convex mirrors. The maximum observed regenerative gain was
1440 with 591mW of pump power.

The cavity being seeded through a HR mirror meant that a PDH error signal on reflec-
tion had an extremely poor signal-to-noise ration and could not be used to stabilise the
cavity length. For this reason the cavity is locked on transmission. From the theory pre-
sented in Sec. 2.3.1 the spectrum of the OPA is filtered by the cavity to give the maximum
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squeezing at the DC band. For this OPA the linewidth is 10.9Mhz. Since the squeezed
state would be contaminated at low frequencies with the laser noise with a seed beam the
cavity was locked with a counter-propagating field. This meant that the OPA generated
a vacuum squeezed state which presented an interesting control problem for locking the
pump phase and homodyne quadrature.

3.2.5 Homodyne detector

The homodyne detector used achieves a dark noise clearance of 18dB below the shot
noise. The phase between the electronic signals from the two detectors in the homodyne
was tuned to give a 40dB common mode rejection from the local oscillator. The detectors
used high efficiency (> 99%) InGaAs p-i-n diodes. To reduce losses on the squeezed light
beam path all of the mode matching for the homodyne detector was done on the LO beam
path to give a fringe visibility1 between the modes of > 99.5%.

3.2.6 Cavity and path length locking

The cavity length locking for this experiment was done using the PDH method with a
modified version of the controller discussed in Sec. 2.4.2 [46]. The modifications to the
controllers code made the locks more reliable to acquire lock for a cavity. See App. B
for details of the modification. A new HV amp was also developed for this experiment to
take advantage of the lower voltage Piezo devices with the details given in App. A.2.

For the experiment the path length of the pump was held constant and the squeezed
path was locked to either the squeezed or anti-squeezed quadrature using a method that
combined the microcontroller locking algorithm [49] and the quantum noise locking
method [66]. This method used a spectrum analyser set to a span of zero to demodu-
late the detected squeezed signal at 1MHz with a resolution bandwidth of 300kHz and
video bandwidth of 1kHz. The external video output was then used as the error signal to
control the squeezed beam path length with the microcontroller locking algorithm. The
sampling frequency of the locking algorithm was set to 10kHz with a step size of around
2mV. As to be expected this locking method was unreliable and would occasionally drift
from the squeezed quadrature due to the sharpness of the error signal. Due to time con-
straints this was the only method that could be quickly adapted to lock to the quadratures
in this experiment.

1For an inference fringe between the signal and LO the fringe visibility from photodetector measure-
ments is given by imax−imin

imax+imin
where i is the photocurrent
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3.3 Results and Discussion

The OPA is a work in progress but has so far produced 11 dB of squeezing when corrected
for dark noise as shown in Fig. 3.4. The total intra-cavity loss of 0.3% was measured and
attributed mainly to the nonlinear crystal. This was measured using a high finesse cavity
and comparing the calculated finesse of the cavity without the crystal to the measured
finesse with the crystal. Using the measured cavity parameters a normalized pump param-
eter of βn = 0.96 was inferred. The theoretical curves of the squeezed and anti-squeezed
quadratures from Eq. (2.45) using these parameters are plotted along side the measured
traces in Fig. 3.4. With the poor mode matching of the pump to the cavity mode the first
attempt to measure the squeezing spectrum only achieved 9 dB of squeezing. A second
attempt with better mode matching resulted in 11 dB. The difference between the two
recorded squeezing levels is likely due to the poor locking technique introducing noise
into the measurement of the squeezed quadrature from the anti-squeezed quadrature rather
than loss. This result falls short of the predicted 13dB from the measured parameters. To
reach 13 dB of squeezing each locking loop in the experiment will be required to be care-
fully optimized to minimize noise. To measure greater than 15 dB the intra-cavity losses
will need to be improved. To further characterise the OPA, the pump threshold power was
measured. This was done by injecting a seed into the cavity and measuring the OPA gain
while sweeping the pump power. The results of these measurements are shown in Fig. 3.5.
This measurement was only made for the amplification gain. Despite best practice for
experimental physics each data point was only recorded once so no meaningful error bars
can be found for this data. However, two sets of measurements were made as shown in
Fig. 3.5 showing the data is repeatable. From fitting the data the pump threshold power
was found to be 624mW with a maximum regenerative gain of 1420. The predicted pump
threshold power was calculated to be 685mW. This value was calculated with the non-
linear interaction Λ = 271 found using manufacturer supplied parameters and measured
parameters from the SHG cavity. The discrepancy between the predicted and measured
values is mostly likely due to a better alignment of the ppKTP crystal inside the OPA cav-
ity and hence the actual non-linear interaction strength is higher than in the SHG system.

More time will need to be invested into the method used to lock the homodyne de-
tector to the squeezed and anti-squeezed quadratures. This will improve the observable
squeezing. As it stands the current method requires patience for the microcontroller lock
to stay locked on the correct quadrature for long enough to take a measurement. To try to
reduce the fluctuations in the squeezed spectrum from the bad locking the data in Fig. 3.4
is averaged over 10 sweeps. Two other methods of locking are typically used here, chop
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Figure 3.4: Plot of quadrature variance of the squeezed light from the OPA. The squeezed
quadrature was measured with a poorly mode matched pump (yellow) and then again with
the pump optimally mode matched (purple). The anti-squeezed quadrature (green) was
measured with the poor mode matching but demonstrated a normalised pump parameter
of βn = 0.96. Each trace was recorded using a spectrum analyser with a 30kHz resolution
bandwidth and 1kHz video bandwidth. Eq. (2.45) is plotted for both the squeezed (blue)
and anti-squeezed (red) quadratures using the measured loss of the non-linear crystal. A
maximum squeezing of 13 dB is predicted for this OPA.

locking and coherent locking. Chop locking cycles a seed on and off either using AOMs
or an optical chopper. The seed is provided long enough to stabilize the cavity and homo-
dyne locks. The control signals are then held when the seed is removed [47]. Coherent
locking uses a frequency shifted beam locked in phase with the pump to lock the homo-
dyne to a quadrature [67]. The scheme can either be built using a pair of AOMs to provide
the frequency shifted beams [68] or a second auxiliary laser.

The motivation for pursuing highly squeezed and pure CV states comes from their
application to advanced quantum protocols and error correcting codes. One of the pro-
tocols only accessible with a low intra-cavity loss OPA is discussed in Ch. 7. Another
obvious application for highly squeezed state is in error correction. For error correction
to be successful it has to guarantee a low probability of failure. In quantum computing
this probability relates to the reliability of the computations being performed. To phrase
this another way, what would be the minimum level of squeezing required to perform reli-
able quantum computing? So far the answer to this question is 20.5dB [69]. Though it is
expected that other protocols and QEC will appear with a requirement for less squeezing.
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Figure 3.5: A plot of the pump power vs the regenerative gain. Two separate measure-
ments were taken of the regenerative gain while sweeping the pump power (yellow and
green). A curve was fitted (red, solid) to the measurements to give a pump threshold
power of 624mW. The expected deamplified gain is also plotted as the red dashed line.
The calculated pump threshold power was greater than the measured value (blue).

The main goal of the observation of the record breaking 15dB is to increase the sen-
sitivity of the GEO 600 interferometer for gravitational wave detection [56]. A 10 dB en-
hancement would require less than 10% photon loss in the squeezed field. Another novel
application from Ref. [56] was to use the highly squeezed states to calibrate the quan-
tum efficiency of a photodiode. For their particular diode they measured an efficiency of
99.5% with an uncertainty of 0.5% without the need for a calibrated light source.

High levels of squeezing can also be used to provide incrementally improved results.
One project lined up will combine a squeezing gate [70, 71] with a measurement based
NLA [72] to create a probabilistic squeezed gate. It is expected that with the NLA the
squeezed gate will be able to achieve a fidelity of 1 for higher levels of squeezing than
was achievable in the original experiment [73].

3.4 Conclusion

In summary this chapter presented the current state of the development of a low intra-
cavity loss OPA. The maximum observed squeezing after correcting for dark noise was
11 dB. With improvements to homodyne quadrature locking and stabilizing the optical
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phase carefully, it should be possible to achieve the predicted 13dB of squeezing with
the current cavity design. With a further reduction in the intra-cavity losses down to
0.1% from better anti-reflection coatings it is theoretically possible to generate 15dB of
squeezing using the current experimental setup. Once optimised this design will serve
as a platform for state generation in future experiments by the group on mirror position
estimation and probabilistic squeezed gates.



Chapter 4

A Continuous Variable Bell Test

4.1 Introduction

A Bell test as discussed in Sec. 1.2 is a fundamental demonstration of quantum mechanics
with applications in quantum technologies such as QKD and QRNG [18]. Using discrete
variable quantum optics there have been to date four successful violations of a Bell in-
equality [4–7]. However, for CV quantum optics the challenge is much harder. As Bell
argued in in Ref. [74] a violation of a Bell inequality with a state described by a positive
Wigner function such as a CV EPR state would be impossible. There have been several
protocols proposed which try to use more exotic CV states with photon subtraction [75]
or using photon-wave correlations [76]. However, it was shown in Ref. [77] that in fact
it is possible to violate a Bell inequality with EPR states using CV measurements pro-
vided one trusts the measurements. There are experiments going back over 35 years [25]
and have been limited by non-deterministic quantum state resources and low quantum
efficiency detection. The historical Bell tests relied on the “fair-sampling” assumption
due to the limited quantum efficiency of single photon detectors. High quantum effi-
ciency single photon detectors at cryogenic temperatures have recently been developed
making loophole-free DV Bell tests possible. Using CV systems bring the advantage of
well developed high efficiency large bandwidth detection at room temperatures as well
as deterministically generated quantum states. This chapter presents the results from an
experimental violation of a Bell inequalty of B = 2.31 ± 0.02 based on the proposals
of Ref. [77, 78]. This opens new possibilities of using CV states for device independent
quantum protocols like those seen for DV.

This chapter is organised as follows. The proposals for a CV Bell test in Ref. [10, 78]
will be reviewed in Sec. 4.2. Sec. 4.3 will discuss the modelling of the experiment and
the considerations made. The experimental details are given in Sec. 4.4. The results and
discussion of the experiment are given in Sec. 4.5.
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Figure 4.1: A diagram of a two channel CHSH Bell test.

4.2 Theory

The Bell test presented in this chapter is based on the two channel variation, depicted in
Fig. 4.1, of the Bell test described in Sec. 1.2. Here the source, S, generates a four mode
correlated optical state; two parties Alice and Bob are then given two modes each, Âh,
Âv and B̂h, B̂v separated in polarization. They can mix their two modes to perform one
of two measurements, {θA, θ′A} and {θB, θ′B}, on their modes. Measuring the resulting
modes Â+, Â−, B̂+ and B̂− with single photon detectors will give one of two outcomes,
R ∈ {0, 1}. Repeating this experiment a number of times Alice and Bob can build up
correlation statistics between each others measurement outcomes with,

R(θA, θB)
ij = ⟨Ri

A(θA)R
j
B(θB)⟩, (4.1)

where i, j ∈ {+,−}. The expectation value of the correlations for each of the four
combination of measurement settings is given by.

E(θA, θB) =
R++(θA, θB) +R−−(θA, θB)−R+−(θA, θB)−R−+(θA, θB)

R++(θA, θB) +R−−(θA, θB) +R+−(θA, θB) +R−+(θA, θB)
. (4.2)

These expectations can then be used to form the CHSH inequality [23],

B = |E(θA, θB) + E(θ′A, θ
′
B) + E(θ′A, θB)− E(θAθ

′
B)| ≤ 2. (4.3)

A maximal violation of the inequality can be observed with measurement settings θA =

{π
8
, 3π

8
} and θB = {0, π

4
}.

The continuous variable Bell test proposals in Ref. [77, 78] are based around an en-
tanglement source using OPA’s and homodyne measurements. The photon correlations
needed for a Bell test are inferred through quadrature measurements using the equiva-
lence

Â†Â ≡ (Â†Â− V̂ †V̂ ) =
1

4
(X̂2

A + P̂ 2
A − X̂2

V − P̂ 2
V ), (4.4)
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for a mode Â. Here X̂F and P̂F are the quadrature operators for the mode F ∈ {A, V },
where V is the vacuum mode with the corresponding creation operator V̂ †. The measure-
ment of the background vacuum is inherent in homodyne measurement. Typically the
quandrature measurements made by a homodyne detector are normalised by the power
in the local oscillator. In Eq. (4.4) the local oscillator mode is equivalently subtracted
from the quadrature modes. This of course is not practical as the vacuum needs to be
measured separately but the equivalence can be used to find a correlation function that
can be measured. A direct measurement in the Fock basis of the detected field will yield
Eq. (4.4).

If Alice and Bob consider the photon number in each detected mode the correlation
equation Eq. (4.1) becomes,

Rij = ⟨Â†
i ÂiB̂

†
j B̂j⟩. (4.5)

Using the equivalence relation Eq. (4.4), the correlation Eq. (4.1) can be rewritten again
to be in terms of homodyne measurements of the quadratures. By assuming Gaussian
statistics, all correlations can be reduced to second order correlations. In this case, using
⟨X̂2Ŷ 2⟩ = ⟨X̂2⟩⟨Ŷ 2⟩+ 2⟨X̂Ŷ ⟩2, to get,

Rij =
1

16
[2(⟨X̂ i

AX̂
j
B⟩

2 + ⟨P̂ i
AP̂

j
B⟩

2 + ⟨X̂ i
AP̂

j
B⟩

2 + ⟨P̂ i
AX̂

i
B⟩2)

+ V i
A;XV

j
B;X + V i

A;PV
j
B;P + V i

A;PV
j
B;X + V i

A;XV
j
B;P

− 2Vv(V
i
A;X + V i

A;P )− 2Vv(V
j
B;X + V j

B;P )

+ 4V 2
v ]. (4.6)

Here V i
m:n the variance of the measurement made by party m = {A,B} in the quadrature

n = {X,P}. The variance Vv is the variance of the measured vacuum but could also be
considered to represent the noise on the vacuum measurement. Eq. (4.6) shows how the
photon number correlation can be inferred from the Gaussian homodyne measurements.

To see how Eq. (4.6) can be used to produce a Bell violation the significance of each
term is considered. The first four terms are dependent on the measurement angle with the
next four being polarization independent. The last three terms come from the quantum
noise of the vacuum state. In a perfect experiment the polarization independent terms
will cancel with the quantum noise terms to create high correlation fringe visibility with
respect to θA and θB. This fringe visibility can be diminished by the measurement of
uncorrelated photons from classical noise sources and high order photon number terms
such as those in highly entangled CV states. In a purely classical experiment the last
three terms will be zero and result in a small correlation fringe. The correlation function
Eq. (4.6) can then be used to bound the measured expectations between Alice and Bob



58 A Continuous Variable Bell Test

with the Bell inequality Eq. (4.3).
In regards to this protocol it is assumed that the contribution of the vacuum mode will

be such that ⟨V̂ †
v V̂v⟩ = 0 to meet the requirement that Eq. (4.4) remains a positive operator.

If this assumption is violated it opens loopholes that could explain a Bell violation from
this protocol. To rule out this loophole the photon number count for the V mode, i.e.
with all the light blocked, ndark, should be much less than the photon number count in
the local oscillator, nLO. In particular ndark ≪ √

nLO. This test demonstrates that the
homodyne measurements are truly of vacuum correlations. It is well established by many
experiments that this is a good assumption at optical frequency side bands. However this
requires trust of the detection device.

4.2.1 CV Bell state source

Av Ah

Bv

Bh

OPA 1
B1 B2

OPA 2

λ
2

π
2

Figure 4.2: The chosen Bell state source. Squeezed states produced by OPA 1 and OPA 2
are shifted to be in othogonal quadratures. They are then mixed on a 50/50 BS (B1). The
resulting beams are then shifted into opposite linear polarisations before being mixed on
a second 50/50 BS (B2). This creates four output modes, Ah, Av, Bh and Bv, that make
up the Bell state.

To observe a violation of Eq. (4.3) with the correlation function Eq. (4.6) a CV source
is required to produce the Bell state. For this experiment the second source proposed in
ref. [78], shown in Fig. 4.2 was chosen. This source is based on the well known Bell
test performed by Ou and Mandel [79]. Rather than post selecting entangled photons by
photon counting as in the Ou Mandel experiment, the CV correlations of a similar state
are analysed according to Eq. (4.6). In this experiment the CV source the entangled state
is created by interfering two orthogonal squeezed states on a 50/50 BS (B1). To create
the Bell state the entangled modes are shifted into orthogonal linear polarization and then
mixed on a second 50/50 BS (B2). These four modes are then distributed to Alice and
Bob. Of the three proposals analysed in ref. [78] the one selected performs the worst
however it is by far the simplest in terms of experimental complexity.



Modelling 59

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

dB of input squeezing

|B
|

Figure 4.3: Comparison of the three proposed schemes for a CV Bell test with 0.95 de-
tection efficiency and dark noise 18dB below shot noise. The yellow line is the chosen
scheme, shown in Fig. 4.2. The blue line is the original source proposed in Ref. [77] and
the red line is the first source proposed in Ref. [78].

4.3 Modelling

Using the Gaussian assumption made for Eq. (4.6) a model can be made using the phase
state representation discussed in Sec. 1.4. Both the input state, γin, and the output state,
γout can be represented by four modes. This means both states can be represented by an 8
by 8 covariance matrix. Here it is assumed that the mean vector will be zero. The matrix
γin was constructed such that each sub matrix γijout, where i, j ∈ 2n− 1, 2n, represents the
two quadratures for one of the four measured modes indexed by n. Each element in this
experiment is applied using a sympletic operation to get an expression for γout in terms of
γin. The sympletic operator representing the experiment is given by

S = S1,3
θB
S1,3
θA
S2,3
B2S

1,3
B2S

1,2
B1 . (4.7)

The input state is simply given by the diagonal matrix,

diag(γin) =
[
V opa1
sqz V opa1

asqz V opa2
sqz V opa2

asqz 1 1 1 1
]
, (4.8)

where Vsqz is the variance of the squeezed quadrature and Vasqz for both OPA 1 and OPA
2. To add the contribution of detector efficiency, η, and noise relative to the output, ε, a
completely positive map was used to arrive at,

γout =
√
ηISγinST√ηI+ εI (4.9)
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This model will account for the case where OPA 1 and OPA 2 are not symmetric. To
arrive at Fig. 4.3 and Fig. 4.4 the model was simplified so that the input state became,

diag(γin) =
[
V 1

V
V 1

V
1 1 1 1

]
, (4.10)

where V is variance of the squeezing produced by OPA 1 and OPA 2.
This model was fitted to each of the experimentally obtained values of Rij using an

iterative fitting process to find η, ε, Vasqz and Vsqz. The measured parameters provided the
starting point for the fitting algorithm. Using this fitting process gave a better prediction
of the output correlations than when the measured values were used in the model.

4.3.1 Experimental considerations

The correct measurement of shot noise in this experiment is crucial to this Bell test. Par-
ticularly in ensuring Eq. (4.4) remains a positive operator. The shot noise was found to
drift up to 1% over the course of a run of this experiment. Incorrectly measuring shot
noise can lead to spurious violations of Eq. (4.3) for unentangled states. To see this ef-
fect consider Eq. (4.6) where the data is normalized to the shot noise CVV . Here C is a
constant to represent the effect of dark noise contaminating the shot noise variance. The
first eight terms in Eq. (4.6) will now have a factor C2, the next two will have a factor C
and the last term will remain unaffected. This will reduce the cancellation between the
polarisation independent terms and the quantum noise terms but more importantly it will
artificially increase the first four correlation terms producing an overall increase in Bell
violation. The change in the Bell violation is shown in Fig. 4.4

0.9 0.95 1 1.05 1.1
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|B
|

Figure 4.4: Effect of incorrect normalisation with 1 dB input squeezing and 18 dB clear-
ance between darknoise and shot noise.
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Modelling of the experiment with this source shows several important factors that
could reduce the Bell violation [78]. Underlying this Bell test is essentially a single
photon experiment and as such the inequality will be maximally violated when the source
mostly produces correlated pairs of single photons. An important parameter is then the
input squeezing; with high levels of input squeezing the Bell violation decreases. As
shown in Sec. 1.3.3, squeezed states are made up of photons in sets of multiples of two
with a decreasing probability. Increasing squeezing of a state will increase the probability
of the higher order photon terms occurring. These higher order photon number terms can
introduce correlations that dilute the Bell correlations and decrease the violation. Any
noise in the experiment will have the same effect of decreasing the violation though by
decreasing the correlations. The two main sources of noise for this experiment were
identified as the input state purity and detector dark noise.

Just as in the single photon equivalent experiment loss will increase the number of
samples required to get a significant correlation value. This is not really a concern for this
experiment given the deterministic resources and high bandwidth detection. The loss can
however also decrease the violations by increasing the effect of noise that appears at the
output such as detector dark noise.

4.4 Experiment

A schematic of the experiment is shown in Fig. 4.5. The squeezed states are created in
the side bands of spatially separated beams of a Nd:YAG 1064nm laser. The side bands
were squeezed using two singly resonant bow tie cavity OPAs each containing a 1cm long
periodically pold Potassium Titanyl Phosphate (ppKTP) crystal. Both of the OPAs were
seeded by the 1064nm laser. A second harmonic generator provided a 532nm source to
pump the ppKTP crystals and create the squeezed light. The two squeezed beams are
mixed in quadrature on B1. Two slightly reflecting glass slips were used to create an error
signal from the coherent interference. This error signal was used to control P1 to lock the
squeezed beams in quadrature.

The entangled beams are then separated in polarisation by a halfway plate before
being interfered on B2. The resulting modes of Âh, Âv, B̂h and B̂v are then sent to Alice
and Bob accordingly. As this experiment is derived from a discrete variable Bell test
the result should be invariant to relative phase between each beam path between B1 and
B2. However it is necessary to lock each homodyne detector to orthogonal quadratures.
To do this the experiment used two phase modulations applied separately to the OPAs
for PDH locking. The phase between each of the beam paths was controlled by a piezo
controlled mirror, P2, to hold the modulations orthogonal to each other. As the distance
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between B1 and B2 was so small P2 was not required to be actively locked and was
manually controlled. An additional quarter wave plate (λ/4) was used to correct for a
phase mismatch between Âh and Âv caused by B2. Both B1 and B2 are 50:50 beam
splitters.

To find the set point for P2 the phase between the two locking signals was observed on
Bob’s detectors with θB = π/2. The position of mirror P2 was adjusted until one of the
two signals had maximised and the other minimized which corresponded to the locking
signals being orthogonal. This unfortunately created a situation where only one of the
two locking signals could be used to locking Bob’s homodynes with θB = π/2. To lock
to the other quadrature the DC subtracted signal was used.

To mix Alice’s and Bob’s modes a halfwave plate was used to rotate the polarisation
by an angle before being mixed on a PBS to create the modes A+, A−, B+ and B−. To
measure the correct shot noise an optical beam chopper was positioned after B2 was used
to switch the homodyne detectors between measuring the signal and shot noise. This
reduced the requirement on the stability of the experimental setup. The shot noise and
signal were divided up in post processing.

To highlight the difficulty in this experiment there has been an attempt to include the
electronics in Fig. 4.5. The homodyne locking was done using locking method described
in Sec. 2.4.2 [46]. The use of this locking code made this experiment possible by sig-
nificantly increasing the speed at which the experiment could be conducted. The initial
experimental runs took around two hours to compete. This was due to the number or mea-
surements required and the frequent sampling of shot noise. After modifying the code
to automatically switch measurement quadratures and record data with the beam chop-
per running, the experiment only took 30 minutes to complete. The reduction in time
to conduct the experiment was important to the results as it was shown early on that the
experiment had a significant drift.

From modelling it was found the maximal violation for the experiment would occur
with both OPA’s generating approximately 1 dB of squeezing with a measured dark noise
of 18 dB below shot noise for the homodyne detectors.

4.4.1 Detection protocol

A set of four fixed measurement settings were identified that would give all the correlation
and variance terms required by Eq. (4.6). These measurements were made in a fixed order
for each combination of θA, θ′A, θB and θ′B with the shot noise regularly sampled using the
beam chopper during measurements. The dark noise measurement was only taken once
at the end of each experimental run. To keep the experiment to a single optical table the
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Figure 4.5: A schematic diagram of the experiment. The Bell state is generated by mixing
two orthogonal squeezed states in the same linear polarization on a 50:50 BS to generate
an EPR state. One arm of the EPR state is rotated into the orthogonal polarization. The
two beams are then interfered on a second BS. This results in the generation of four
correlated modes; Âh, Âv, B̂h and B̂v separated spatially and in polarization from two
quadrature squeezed states. Alice and Bob each receive two polarization separated modes
and mix their polarisation by θA and θB respectfully. As a result of the birefringence
of BS2 the modes Âh, Âv were not orthogonal. This was corrected with a λ/4 plate.
The resulting modes; Â+, Â−, B̂+ and B̂− are measured with homodyne detectors. The
measurements filtered and amplified before (yellow box) being recorded via a digitizer
connected to a computer. Each phase lock was controlled using the controller described
in Sec. 2.4.2 running on a FPGA. An optical beam chopper was used to switch between
making a quadrature measurement and measuring shot noise.
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detectors were located next to each other and sampled using the same digitizer.

4.5 Results & Discussion

The main result presented in this chapter is the violation of Eq. (4.3) withB = 2.31 with a
standard deviation of 0.02 using 1.1 dB of input squeezing. The violation of Eq. (4.3) was
also demonstrated with squeezing of the input fields up to 1.8 dB. Sweeping of the input
squeezing with both OPA’s in Fig. 4.6 shows the effect of increasing the anti-squeezing
noise on the experimental setup. As the OPA’s are pumped harder to produce more squeez-
ing the purity of the state they produce decreases due to more noise in the anti-squeezed
quadrature. From a model fitted to the data, described in Sec. 4.3, it was found the purity
decreased from 0.98 for 1.1 dB of squeezing to 0.92 for 3.9 dB of squeezing. The results
from Ref. [78] and Fig. 4.3 show that for a similar detector noise it should be possible to
observe a Bell violation for up to 3 dB of squeezing, a result not observed in this experi-
ment due to the decreasing purity of the squeezed states. A second experimental run was
conducted where the local oscillator power was decreased for each homodyne detector to
simulate the effect of an increase in detector dark noise. This gave the expected result of
a decrease in violation of Eq. (4.3).

4.5.1 Correlation fringes

A third experimental run was conducted to observe the correlation fringe. To do this θA
was fixed at π/8 while θB was swept from 0 to π/2 rad. The input squeezing was set
to be 1.1 dB. The correlation fringes from this experiment are plotted in Fig. 4.7 (b) as
normalized P values. The P values are calculated with

P ij =
Rij∑
i,j R

ij
. (4.11)

The correlation fringe visibility was measured to be over 75%. This could be further im-
proved by reducing the noise in the experiment. From the normalized P values a compari-
son is made with the recorded homodyne data plotted in Fig. 4.7 (a) with the correspond-
ing Pearson correlation. For the raw homodyne data a very weak correlation is observed
but from this a significant P value is still observed. The process of calculating B is given
a visual representation by reading Fig. 4.7 from left to right. The homodyne correlations
and variances are used to calculate the photon correlations and then the expectation value
for each measurement setting.
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Figure 4.6: Bell violations showing the effect of different experimental parameters. The
highest recorded value was B = 2.31 (green point) with 15 standard deviations above
the classical limit (shaded region). The detector dark noise was measured to be 17.5 dB
below shot noise. The Bell violation decreases as the input squeezing generated by OPA
1 and OPA 2 is increased (blue points). A decrease in the dark noise clearance of the
homodyne detectors to 15.4 dB was created by decreasing the local oscillator power. As
expected the value of |B| (orange point) decreased below 2. The error bars shown are
three standard deviations from the mean violation as found with random re-sampling of
the data. The model from Sec. 4.3 was fitted to the data as described in Sec. 4.5.2 to
infer the experimental parameters. The fitting found detector losses of 10% and a state
purity that decreases from 0.98 to 0.92 as the squeezing is increased from 1.1 dB to 3.9 dB
for the detector dark noise clearances of 17.5 dB (blue line) and 15.4 dB (red line). For
comparison the theoretical upper limit of B for the experiment has been included with
infinite dark noise clearance, no loss and pure input states (black line). The shift in the
peak of the Bell violation is due to the input squeezing from OPA 1 and OPA 2 being
unmatched
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Figure 4.7: Raw homodyne data correlations with the photon correlation fringes and ex-
pectation values vs θB with 1.1dB input squeezing and θA = π/8. The weak correlations
in the homodyne data, represented in topographical maps with the Pearson correlation dis-
played (a), translates to strong photon correlation fringes, (b) with the recorded visibility
above 75%. The correlations are then used to find the expectation fringe Fig. 4.8. The
error bars are three standard deviations away from the mean correlation value of repeated
random samples of the recorded data.
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Figure 4.8: The expectation fringe found using the correlation fringes in Fig. 4.7 (b).
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4.5.2 Fitting the model

For Figs. 4.6 to 4.8 the model described in Sec. 4.3 was fitted to the experimental data
using an iterative fitting process. The starting parameter for the fit were Vasq = 1.25,
Vsqz = 0.79, η = 0.95 and ξ = 10−1.8. The fit gave a better prediction of the output
correlations than when the measured values were used in the model. This was partly due
to the fitting being able to capture the contributions in noise and losses from the optical
components and locking.

4.6 Conclusion

In this chapter the results of the first observation of Bell correlations in a continuous vari-
able system have been presented with a violation of 2.31 at 15 standard deviations above
the classical limit with a detector dark noise of 17.5dB below shot noise. This result
demonstrates the strength of photon number correlations when inferred through homo-
dyne measurements. A demonstration of a violation of the Bell inequality was also made
with 1.8 dB of input squeezing and would be possible to up to 2 dB of input squeezing
with this experiment. These correlations exist between side-band modes of a bright beam
that would be very difficult to measure directly via photon counting. This result was possi-
ble because of the high correlation fringes observed with this experiment. While this Bell
test fails to address any loopholes it is still a significant result. In order for this violation
to be believed the detection devices must be trusted due to the hard to close loop-hole
caused by the shot-noise verification. Never-the-less this Bell test could be applied to a
source independent QRNG similar to those protocols proposed in Ref. [80, 81].
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Overview

The idea that quantum mechanics could be used for cryptographic applications dates back
to 1983 when a publication proposed that a series of quantum states could be stored on a
bank note to prevent forgery. Each state was created in one of two basis. An adversary not
knowing which basis was used to create each state would not be able to perfectly measure
the states on a bank note. As was shown in Ch. 1 measuring a state in the wrong basis
would introduce errors in the measurements. An attempt to create a copy of the note it
would be easily detected by the bank which would know perfectly which measurements
would be required to retrieve each state and any errors present would be detected. In fact
due to the no-cloning theorem, quantum mechanics limits the fidelity between a clone
and the original quantum state [82, 83]. The idea for quantum money never gained trac-
tion but influenced the idea of using quantum mechanics as solution to the cryptography
problem of key distribution [84]. The first proposed quantum key distribution protocol
was published in 1984 with much more success [14]. Since then there have been numer-
ous proposals for QKD protocols using both CV and DV approaches [28, 85]. Another
application of quantum mechanics in cryptography comes from its thirst for high quality
random numbers for encryption keys. As measuring quantum states is inherently random
this is a natural application. Of course these random numbers can also be applied in many
other areas including gaming, simulations [86] and even art [87].

The following chapters build on the ideas presented in Part I and present a proposal
for a better way of characterising Eve and the results from a one sided device indepen-
dent QKD protocol demonstration. Ch. 5 will be a brief description and introduction into
Shannon information and quantum information to provide the mathematical framework
required for the subsequent chapters. This chapter will also give an introduction to quan-
tum random number generation and quantum key distribution. Ch. 6 covers a proposal
published in Ref. [88] for estimating an adversaries information using a combination of
commonly used parameter estimation methods. Ch. 7 will report on a proposal and ex-
periment published in Ref. [17] for family of one-sided device independent CV QKD
protocols.

A good introduction to quantum communications is given in Ref. [13]. This book
covers both classical and quantum information and provides an introduction to DV QKD.
For CV QKD a very complete description of the Gaussian CV QKD protocols discussed
in Ch. 5 to 7 is found in Ref. [29]. For general reading on cryptography Ref. [84] gives a
well presented history and motivation behind cryptography.
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Chapter 5

Background Theory

5.1 Shannon Information

Information theory has contributed greatly to technological development and has found
its way into many different scientific and engineering disciplines. It has helped to greatly
change the way we communicate from when it was first proposed by Claude E. Shannon
in 1948 [89]. Information theory provides a mathematical framework for the quantisation
of information using Shannon entropy to measure the information of a random variable.
The entropy of a random variable X is given by,

H(X) = −
∑
x

px log2 px, (5.1)

where px denotes the probability of X having the outcome x. As an example consider X
to be the outcomes of a coin flip with equal probably of head or tails, i.e. pHeads = pTails =

0.5. This gives H(X) = 1 which can be interpreted as the variable X being maximally
random. This same measure can be applied to other tasks such as data compression where
one would like to know the minimum bits required to represent a file. Shannon entropy
can be extended to multiple variables. Continuing the coin flipping example a second
variable could be the previous coin flip, Y ∈ {H,T}. The joint entropy of X and Y is
written as,

H(X,Y ) = −
∑
x,y

p(x, y) log2 p(x, y). (5.2)

Of course if the coin flipping is truly random then X and Y will be independent and the
joint entropy will be equal to the sum of their individual entropies. Another important
measure in information theory is conditional entropy. That is, given a known outcome of
a variable Y what is the uncertainty of X?

H(X|Y ) = −
∑
x,y

p(x, y) log2
p(x, y)

p(y)
. (5.3)

73
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H(X) H(Y )

I(X;Y )

H(X,Y )

H(X|Y ) H(Y |X)

Figure 5.1: A Venn diagram representation of each information measure. The red circle
represents H(X) and the blue circle represents H(Y ). The relations here are given in
Eq. (5.5)

For the coin flip example this could be interpreted as if the outcome of Y is known then
how hard would it be to predict the outcome of X . The last entropy to be covered in
this section is mutual information. That is, given the two random variables X and Y

how much information can be gained from X by observing Y . In practice this is usually
interpreted as the shared information between X and Y .

H(X;Y ) = I(X;Y ) = −
∑
x,y

p(x, y) log2
p(x, y)

p(x)p(y)
. (5.4)

For the coin flip example the mutual information will be maximized if X = Y and min-
imized if X and Y are completely independent. For Shannon entropies the mutual infor-
mation is symmetric, I(X;Y ) = I(Y ;X). The following relations between the mutual
information, conditional entropy and joint entropy are useful to know for this thesis,

H(X|Y ) = H(X,Y )−H(Y )

I(X;Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ) (5.5)

H(X,Y ) ≤ H(X) +H(Y ).

These relations can be used to create the Venn diagram in Fig. 5.1.
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5.1.1 Shannon Entropies of Gaussian states

The Shannon entropy is easily calculated for a variable X described by Gaussian distribu-
tion with variance σ2 and a mean of 0,

H(X) =
1

2
log2 σ

2 + C, (5.6)

where C is an arbitrary constant dependent on scaling. Extending this to a two mode state
the joint Shannon entropy for the variables X and Y with covariance CX,Y described by
the covariance matrix

γ =

[
σ2
X CX,Y

CT
X,Y σ2

Y

]
(5.7)

is given by

H(X,Y ) =
1

2
log2 det [γ] + C ′. (5.8)

Likewise the conditional entropy is,

H(Y |X) =
1

2
log2 σ

2
Y |X + C, (5.9)

where σ2
Y |X is the conditional variance given by,

σ2
Y |X = σ2

Y − CX,Y

σ2
X

. (5.10)

Finally the mutual entropy can be as written in terms of Eq. 5.8 or Eq. 5.9 with Eq. 5.6
using the relations in Eq. 5.1,

H(X : Y ) = H(Y )−H(Y |X) =
1

2
log

σ2
Y

σ2
Y |X

= H(X)−H(X|Y ) =
1

2
log

σ2
X

σ2
X|Y

= H(X) +H(Y )−H(X,Y ) =
1

2
log

σ2
Y σ

2
X

det γ
(5.11)

5.1.2 Rényi entropy

Shannon entropy is included in the general family of entropic quantities called the Rényi
entropies. The Rényi entropies are given by,

Hα(X) =
1

1− α
log2

(
n∑

i=1

pαi

)
(5.12)
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where α > 0 and α ̸= 1. α is the order of the entropy with α = 0 being know as the max
entropy as it is always the largest of all the Rényi entropies. The Shannon entropy is the
limit where α → 1. The limit where α → ∞ is known as the min entropy which is the
negative log of the probability of observing the most likely value. This is of interest for
random number generators where one wants to know how unpredictable the next value of
a random process will be. The min entropy is,

H∞ = min
i
(− log2 pi) = − log2max

i
pi (5.13)

5.2 Quantum Information

In the same way the information contained in classical state can be measured the infor-
mation contained in a quantum state can be measured using von Neumann entropy. The
description of von Neumann entropies in this section is made using the density operators
of a state. The entropy of a state described by a density operator, ρ, is given by,

S(ρ) = −tr(ρ log2 ρ). (5.14)

As with Shannon entropy the conditional, joint and mutual Von Neumann entropies can
be defined as

S(A,B) = −tr(ρXY log2 ρ
XY ) (5.15)

S(A|B) = S(A,B)− S(B) (5.16)

S(A : B) = S(A) + S(B)− S(A,B) (5.17)

Not all the same properties carry over from Shannon entropy. An example of this is the
conditional Shannon entropy is always greater or equal to 0. For von Neumann entropy
the conditional entropy can be negative and is considered a representation of the presence
of entanglement. There are a few von Neumann entropy properties that will be needed
later in this thesis given below,

• S(A) ≥ 0 where S(A) = 0 signifies a pure state,

• S(A) = S(B) if S(A,B) = 0, and

• S(AB) = S(AC) if S(A,B,C) = 0.
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5.2.1 Holevo bound

The Holevo bound plays an important role in quantum information as it bounds the acces-
sible information. This is an important bound for QKD. If Alice prepares a series of states
ρx and Bob performs a measurement to receive the outcome Y the accessible information
to Bob is bounded above by,

H(a : b) ≤ S(a : B) = χ(a : B) = S(ρ)−
∑
x

pxS(ρx), (5.18)

where ρ =
∑

x pxρx and χ(a : B) represents the Holevo quantity. Here classical states
are written as lower case letters to distinguish them from quantum states represented by
upper case letters.

5.2.2 von Neumann entropy for Gaussian and thermal states

A Gaussian state can be decomposed into a tensor product of thermal states. A covariance
matrix γ representing a Gaussian state can be written as,

SγST =
N⊗
k=1

λkI, (5.19)

where each λkI is the covariance matrix of a thermal state and λk is a symplectic eigen-
value of γ.

For a N mode thermal state, ρ the entropy is given by,

S(ρ) =
N∑
k=1

S(G(λk − 1)/2), (5.20)

Where
G(x) = (x+ 1) log2(x+ 1)− x log2 x. (5.21)

Symplectic eigenvalues

The symplectic eigenvalues for matrix γ are obtained by diagonalisation with a symplectic
transform S as shown in Eq. (5.19). The symplectic eigenvalues can be easily found for
one and two modes states.
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One-mode normal decomposition For a single mode state the symplectic eigenvalue
is simply given by the square root of the determinant of γ,

λ2 = det[γ]. (5.22)

Two-mode normal decomposition For two modes finding the symplectic eigenvalues
is a little more difficult. Consider the covariance matrix,

γ =

[
γ1 C12

CT
12 γ2

]
(5.23)

To find the symplectic eigenvalues the following two symplectic invariants can be defined,

∆ = λ21 + λ22 = det γ1 + det γ2 detC12, λ21λ
2
2 = det γ. (5.24)

The symplectic eigenvalues are the solution of the polynomial,

z2 −∆z + det γ = 0. (5.25)

With the solution,
λ21,2 =

1

2

[
∆±

√
∆2 − 4 det γ

]
. (5.26)

5.2.3 Entropic uncertainty principle

The Heisenburg uncertainty principle was introduced in Sec. 1.3 as a lower limit in the
variance of two non commuting variables e.g. amplitude and phase. The use of variance
as a measure of uncertainty limits the tightness of the inequality to Gaussian distributed
variables. The Heisenburg uncertainty principle can be reformulated in terms of entropy
to give the entropic uncertainty principle (EUP) which is a tighter inequality [90]. The
most well known of these uncertainties is [91],

H(X) +H(Z) ≥ log(
1

c
). (5.27)

Here c is the maximum overlap between two eigenvectors of X and Z. This equality
bounds the information in two discrete variables, X and Z. This naturally makes it unsus-
ceptible to decreasing from changes in the labeling of measurement outcomes and noise
due to the monotonicity of Shannon entropy. An application of interest of the entropic un-
certainty is describing a tripartite guessing game where we have three parties, Alice, Char-
lie and Bob. A source will prepare a quantum state described by ρABC . Bob and Charlie
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store their states in separate quantum memories. Alice measures ρA in a randomly se-
lected complementarity basis, X or Z. Bob and Charlie then have to independently guess
Alice’s measurement outcome given they have access to their state. Afterwards Alice
announces which basis she measured. After a number or trials Alice, Bob and Charlie
compare their results. Charlie and Bob win the game if they both guess Alice’s measure-
ment outcomes correctly. This is called the monogamy game as it is impossible for Bob
and Charlie to ever win due to the monogamy of entanglement. If ρB is more entangled
with ρA than ρC then Bob will have more certainty in his measurements than Charlie will.
This dynamic is captured by the uncertainty,

H(X|B) +H(Z|C) ≥ qmu, (5.28)

where qmu is a function of the overlap between the two measurements. A recent result
that applies the triparite EUP in the presence of a quantum memory to CV is [92–94],

H(X|B) +H(Z|C) ≥ log 2πℏ. (5.29)

This result places a bound on the tripartite entropic quantity for CV observables. One area
the entropic uncertainty principles have been applied is in QKD [17, 95] and QRNG [80,
96], for both CV and DV, to find device independent protocols by placing a bound on an
eavesdropper’s information using Alice and Bob’s measurements.

5.3 Quantum Key Distribution

Quantum Key Distribution (QKD), BB84, was proposed in 1984 [14] as a solution to
the key distribution problem. In this problem Alice wants to share a secret key with a
remote party, Bob, but she only has public channels available to her that are potentially
controlled by adversaries. The intended use of the key is for Bob to encrypt information
and send it to Alice. This is currently solved by public key distribution protocols such as
the RSA algorithm [84]. Older protocols like the RSA algorithm have security that relies
on difficult to solve problems such as factorising large prime numbers or the discrete
logarithm problem. It is expected that these problems will become easier to solve either
due to the creation of quantum computers [97, 98] or perhaps advances in mathematics
[99]. There is an effort to create post quantum computing public encryption and key
distribution protocols [16] which is a study of classical algorithms that rely on problems
that are difficult even for a quantum computer. The advantage of QKD over classical
algorithms is that its security is guaranteed by physical principles [85].
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5.3.1 BB84

In the BB84 protocol there are two remote parties, Alice and Bob linked together by an
optical channel under the control of Eve. For the protocol to work Alice and Bob need to
have access to an authenticated channel. The goal of Eve is to gain as much information
from the channel as she can. If enough information is intercepted, Eve can deduce the
final key distributed between Alice and Bob. An example of BB84 is given in Fig. 5.2.
Alice starts the protocol by generating two random strings of n random bits, ai and bi.
Bob will also start by generating a string of n random bits, b′i. Alice will then encode the
string ai as either the horizontal vertical polarisation basis or the diagonal anti-diagonal
basis of n photons determined by bi. These two bases will be denoted by

{|0⟩, |1⟩} and {|+⟩, |−⟩}. (5.30)

The diagonal anti-diagonal basis are given by,

|+⟩ = 1√
2
(|0⟩+ |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩). (5.31)

When bi = 0 then Alice will encode ai = 0 as |0⟩ or ai = 1 as |1⟩. If bi = 1 then she
will encode ai = 0 as |−⟩ and ai = 1 as |+⟩. These photons are sent to Bob through the
channel controlled by Eve.

For each photon Bob receives he will measure the polarisation in the horizontal ver-
tical basis if b′i = 0 or the diagonal anti-diagonal basis if b′i = 1. Bob stores all his mea-
surements as a′i. If Bob measures a photon in the same polarisation Alice used, assuming
there is no channel noise, then ai = a′i. However as the two bases are not orthogonal if
Bob uses the wrong basis then there is a 50% chance that ai ̸= a′i. For Bob to correct his
copy of ai Alice publicly announces bi on an authenticated channel and Bob will sift out
any measurement where bi ̸= b′i. Assuming there is no channel noise Alice and Bob will
now share a string of secret bits.

One tactic Eve can take to learn ai is to measure the polarisation of each photon as
it passes by in a randomly selected basis. Using this measurement she can try to create
a copy of the photon sent by Alice. Like Bob though her measurements will have a
chance of an error. After the sifting step Alice will randomly select n/2 bits from the
remaining ai. Bob will compare this set of bits with his remaining a′i. An attack from
Eve as described above will result in a 25% error rate between a′i and ai. If the error
rate threshold is achieved then Alice and Bob will abort the protocol. Eve can also use
quantum mechanics to try improve her attack but she is limited by the no cloning theorem
[82, 100]. If Alice and Bob decide to continue they will reconcile any errors between ai
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and a′i using classical error correction protocols on the authenticated public channel.

Alice BobEve

|0⟩ |+⟩
|1⟩ |−⟩ ε(|ϕ⟩) ×

+

ai bi
0 1
1 1
0 0
0 0
1 0

|ϕ⟩
|−⟩
|+⟩
|0⟩
|0⟩
|1⟩

|ϕ′⟩
|−⟩
|0⟩
|+⟩
|0⟩
|1⟩

a′i b′i
0 1
0 0
1 1
1 1
1 0

Figure 5.2: A example of the BB84 protocol. Alice generates two strings ai and bi and
Bob b′i. Using her strings Alice generates a series of states and sends them to Bob through
a channel controlled by Eve, represented by the operation ε(|ϕ⟩). Bob will measure the
states from Alice in a basis determined by b′i. Alice and Bob discard states that correspond
with bi ̸= b′i. By comparing a subset of ai with a′i they find an error rate of 33.3% and
detect the presence of Eve.

Rather than discarding the secret when Eve is detected Alice and Bob can instead cal-
culate how much information she may have intercepted. Alice and Bob can then use a
one-way hashing function to disassociate the final key from Eve’s information in a proto-
col step known as privacy amplification. The key rate, K, will be equal to the difference
between the mutual information between Alice and Bob and Alice and Eve.

K = I(A : B)− I(A : E). (5.32)

The mutual information between Alice and Eve can be calculated based on the type of
attack Eve performed on the protocol. The key rate above is written for the case of direct
reconciliation where Bob will correct his secret to match Alice. An alternative known as
reverse reconciliation is for Alice to correct her secret to match Bob’s. In situations such
as high loss channels reverse reconciliation can yield a higher key rate [101]. With reverse
reconciliation the key rate becomes,

K = I(A : B)− I(B : E). (5.33)

5.3.2 CV QKD

CV QKD uses the quadrature modulations and measurements of phase and amplitude
from a bright laser to distribute the shared secret [10, 15, 102]. The most popular of the
CV QKD protocols is the family of Gaussian protocols [15]. Depending on the protocol
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Alice will send Bob either a squeezed state randomly displaced in a quadrature randomly
selected or a coherent state randomly displaced in both quadratures. To measure the
received states Bob will use either a homodyne or a heterodyne measurement. There
are in total four combinations of state preparation and measurement methods. For this
thesis only the coherent state and squeezed state with homodyne detection protocol will be
considered. This subsection is based on the work in Ref. [29] which contains a complete
description and calculations of key rates for the Gaussian protocols.

For each of the Gaussian protocols there also exists an equivalent protocol that has a
completely quantum description using an entanglement source. Rather than Alice encod-
ing bits on in the quadratures of a laser she would use an entanglement source to generate
the state. One mode from the entanglement source would be sent to Bob and the other
would be measured by Alice in a basis selected by bi. Alice’s key is created using these
measurements. From here Alice and Bob would follow the same protocol as in the prepare
and measure case. This gives the family of Gaussian protocols sixteen possible protocols.

The optimal attack Eve can perform is a Gaussian collective attack [103, 104]. In this
attack Eve entangles a state with each mode being sent to Bob. Each of the entangled
states is stored in a quantum memory. After the protocol between Alice and Bob is com-
plete, Eve can recall each state and perform an optimal measurement on the collective
state to maximise her information based on the publicly exchanged information between
Alice and Bob. The amount of information Eve can gather about Alice or Bob’s collective
state is limited by the Holevo bound which gives the key rate,

K▷(◁) ≥ I(xi : x
′
i)− χ(xi(x

′
i) : E). (5.34)

The triangle signifies the direction of information flow with the right pointing triangle
indicating direct reconciliation and the left pointing triangle reverse reconciliation. It is
sufficient to prove security of the key exchange to consider Eve as always performing a
Gaussian collective attack. This makes the security proof straightforward as the informa-
tion quantities to calculate the key rate are a function of the first two moments of Alice and
Bob’s measurements as shown in the following sections for two of the Gaussian protocols.

Squeezed state with homodyne detection

This protocol is the most difficult to implement as a prepare and measure scheme as it
needs squeezed coherent states. But it is the simplest as the entanglement scheme. In
the prepare and measure scheme Alice will generate a strings of n random bits, bi and a
string of normally distributed numbers xi sampled from a normal distribution N(0, VA).
Likewise Bob will generate a string of n random bits b′i. Alice will then displace series of
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Alice BobA B0 B

xi x′i

EPR

– –

Channel

Figure 5.3: The squeezed state protocol with homodyne detection. Alice uses an EPR
state to generate the modes A and B0. Alice will measure A and sent B0 to Bob through
an uncontrolled channel. Bob will measure the transmitted state B with a homodyne
detector.

x

p

x

p

Figure 5.4: Alice randomly displaces a amplitude squeezed state by xi in phase (a) when
bi = 1 or phase squeezed states in amplitude (b) when bi = 0. The mixed state received
by Bob is a thermal state of variance V.

states by xi. These states are squeezed in phase and displaced in amplitude if bi = 0 or
squeezed in amplitude and displaced in phase if bi = 1. The mode B is sent through an
unsecure channel to get B′. Bob will then measure the received states with a homodyne
detector in the phase quadrature when b′i = 1 and the amplitude quadrature when b′i = 0.
The measurements are stored in the string x′i. As in the BB84 protocol Alice will announce
bi and both Alice and Bob will discard any state measured using the wrong quadrature.

Consider each squeezed state generated by Alice with a squeezed quadrature variance
of 1/V = e−r. The variance of xi is chosen such that VA = V −1/V . The collective state
sent by Alice when bi = 1 can now be described by the covariance matrix,

γ =

[
1/V + VA 0

0 V

]
=

[
V 0

0 V

]
. (5.35)

The same happens for bi = 0. The states sent to Bob will collectively form a thermal state
with a variance V where the displaced quadrature is indistinguishable from the squeezed
quadrature. This is illustrated in Fig. 5.4.
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In the entanglement equivalent protocol, shown in Fig. 5.3, Alice will measure one
mode from an EPR source using a homodyne detector and similar to Bob she will switch
the measurement quadrature based on bi. Her measurements are recorded as xi. By
measuring A in a single quadrature the mode B′ is projected into a squeezed state. The
EPR state is described by the covariance matrix,

γEPR =

[
V I

√
V 2 − 1σz

−
√
V 2 − 1σz V I

]
, (5.36)

A collective attack from Eve can conveniently be modelled as a Gaussian loss channel. To
calculate the mutual information between Alice and Bob and the Holevo bound for Alice
(Bob) and Eve is now a simple task. The parameter ξ will be assigned to the channel
to represent the Gaussian noise and T to represent the transmission. The channel can
be applied to Eq. (5.36) using a CP-map on the second mode with X =

√
T I and Y =

(1− T + Tξ)I to give,

γAB =

[
V I

√
T (V 2 − 1)σz

−
√
T (V 2 − 1)σz (TV + 1− T + Tξ)I

]
(5.37)

This covariance matrix gives a complete description of the state shared by Alice and Bob.
From Eq. (5.37) the key rate can be found using the entropies for Gaussian distributions
in Sec. 5.1.1 and Sec. 5.2.2. To simplify the following equations the noise relative to the
input of the channel will be used and is given by,

χ =
1− T

T
+ ξ, (5.38)

The mutual information between Alice and Bob can be found using Eq. (5.11). As the
phase and amplitude quadrature are symmetric only one quadrature needs to be considered

I(xi : x
′
i) =

1

2
log

[
V + χ

χ+ 1/V

]
. (5.39)

The Holevo bound can be found by taking Eves state E to be the purifying state of Alice
and Bob’s joint state AB. For direct reconciliation the Holevo bound can be written as,

χ(xi : E) = χ(xi : B) = S(AB)− S(B|xi). (5.40)

Each term is calculated using Eq. (5.37) and Sec. 5.2.2. The value of S(AB) is calculated
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with Eq. (5.20) where the symplectic invariants are given by,

∆ = V 2(1− 2T ) + 2T + T 2(V + χ)2 (5.41)

D = T (V χ+ 1)2. (5.42)

The conditional entropy S(B|xi) is calculated again using Eq. (5.20) on Bob’s projected
state after Alice’s measurement. The covariance for Alice’s state is given by using Eq. (2.17).
The projected state will have the symplectic eigenvalue of,

λ2 = T 2(V + χ)(χ+ 1/V ). (5.43)

For reverse reconciliation the Holevo bound is found by interchanging Alice and Bob to
give,

χ(x′i : E) = χ(x′i : A) = S(AB)− S(A|x′i). (5.44)

The entropy S(AB) is the same for both reconciliation directions and S(A|x′i) is calcu-
lated in the same way as the direct reconciliation case. The symplectic eigenvalue of
Alice’s projected state is given by,

λ2 = V
V χ+ 1

V + χ
(5.45)

Coherent states with homodyne detection

Alice BobA A0 B0
Channel B

C
xi

pi

xi

EPR

–

–

–

Figure 5.5: Entanglement based coherent state protocol with homodyne detection. Alice
uses an EPR source to generate two entangled modes B0 and A0. She measures A0 with a
heterodyne and sends B0 to Bob through an unsecured channel. Bob measures the mode
B with a homodyne detector.

This protocol is the easiest to implement as a prepare and measure protocol and is
commonly used for the study of CV QKD [105, 106]. This protocol is interesting as
the prepare-and-measure (P&M) protocol does not require any other resource states other
than vacuum. To start this protocol Alice will generate two strings of numbers xi and



86 Background Theory

pi from the distribution N (0, VA) which she uses to create the state |xi + ipi⟩. Bob
again creates the string of random bits b′i. Alice will send her states through the channel
controlled by Eve and Bob will measure the received states in a quadrature determined by
b′i. After receiving all the state Bob will announce b′i and Alice will discard either xi or pi
depending on the quadrature measured by Bob. Bob on the other hand will keep all of his
states.

Again the state measured by Bob will collectively appear as a thermal state as shown
in Fig. 5.6. This time Alice sets the variance of her key to VA and the collective state of
B′ will have a variance V = VA + 1

x

p

Figure 5.6: Alice randomly displaces a vacuum state to create the state |xi + ipi⟩. The
collective state of B0 will be a thermal mixture of coherent states with state variance of
V .

In the entanglement based scheme shown in Fig. 5.5 Alice will use a heterodyne to
measure both quadratures simultaneously to get xi and pi. The initial state is described by
Eq. (5.36) and after the channel by Eq. (5.37).

The keyrate for this protocol is calculated in a similar way to the squeezed state pro-
tocol but with the addition of one unit of shot noise to the variance of {xi} and {pi} from
the hetrodyne measurement. The mutual information between Alice and Bob is now,

I(xi : x
′
i) =

1

2
log

[
V + χ

χ+ 1

]
. (5.46)

As with the squeezed state protocol the Holevo bound can be found as it was in Eq. (5.40)
except now there is an additional state, C, from Alice’s heterodyne. The Holevo bound is
now given by,

χ(xi : E) = S(AB)− S(BC|xi). (5.47)

The joint entropy S(AB) is the same as the squeezed state protocol. Finding S(BC : xi)

again requires the projection of the modes B and C after mode A has been measured
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Figure 5.7: Comparison of the squeezed state protocol with homodyne detection (blue)
against the coherent state protocol with homodyne detection (red) for both reverse recon-
ciliation (solid) and direct reconciliation (dashed) with ξ = 0.25 and V = 40. The key
rates are plotted again the channel loss T in the dB scale.

using Eq. (2.17). The joint state BCD is described by the covariance matrix,

γBCD = (SAC0
BS ⊗ IB)γABC0(SAC0

BS ⊗ IB)T (5.48)

With the symplectic invariants,

A =
1

V + 1
[V + T (V + χ) det γAB +∆], (5.49)

B =

√
D

V + 1
[T (V + χ) +

√
D], (5.50)

where ∆ and det γAB are given in Eq. (5.42). The conditional entropy is then given by
Eq. (5.20). For reverse reconciliation the conditional entropy S(A|x′i) is the same as
Eq. (5.45) for the squeezed state with homodyne detection protocol.

The squeezed state and heterodyne protocols discussed here are compared in Fig. 5.7
for both reverse and direct reconciliation protocols with V = 40 and ξ = 0.25 against
channel loss in dB. The squeezed state protocol is the best performer of the protocols
discussed here and it is shown to be one of the best of the Gaussian protocols for collective
attacks in Ref. [29] for both direct and reverse reconciliation. The reverse reconciliation
squeezed state with homodyne protocol performs much better in this example than all the
other protocols. This is in contrast to long distance CV QKD demonstrations where the
coherent state protocol with homodyne detection is used due to the ability to limit and
control the amount of noise in the system [105, 107, 108].
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Alice
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Channel B
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–

Figure 5.8: Prepare and measure coherent state protocol with homodyne measurement.
This protocol is equivalent to the protocol in Fig. 5.5.

Finite size effects

The keyrates presented in Sec. 5.3.2 are only valid in the asymptotic regime. In a practical
implementation of a QKD protocol there will be effects from the finite length of a key that
could be exploited by Eve. These effects form a large part of the theory behind a practical
implementation [107, 109]. Two of these effects, reconciliation efficiency and parameter
estimation will be briefly explored here.

When Alice and Bob reconcile their secret key the error correction protocol will con-
sume some information which reduces the overall mutual information between the two
parties. How much information is consumed is represented by the reconciliation effi-
ciency and is denoted by β. Accounting for β the key rate becomes,

K ≥ βI(xi : x
′
i)− χ(xi : E), (5.51)

and similarly for the reverse reconciliation case. Using low density parity check codes β
can be as high as 95% though the key rate has to be modified again to account for non-
zero word error rates. Though as discussed in Ref. [110] the key rate is not formulated
correctly to use LDPC codes. For a given transmission and noise of a channel the choice
of reconciliation protocol can be chosen and optimized to maximize β [111].

As was found in Sec. 5.3.2 the key rate of a protocol can be characterised by three pa-
rameters, the EPR resource state variance, V , the transmission, T , and the channel noise,
ξ. In a practical CV QKD protocol these parameters must be estimated from the measure-
ments made by Alice and Bob to ensure the correct bound is found for the final secret
key. To do this Alice or Bob must reveal m of the N measurements performed by Bob.
The parameter estimation changes the key rate in two ways. The first is by Alice and Bob
reducing the size of their final key by revealing measurements for parameter estimation.
The second is the uncertainty of the estimation of the two parameters. The uncertainty in
the estimation is captured by the probability of failure as set by the parameter ϵPE. The
key rate can be rewritten to include the effect of parameter estimation with m

N
for the
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reduction in the key and ϵPE [109],

K =
m

N
[βI(x : y)− SϵPE

(y : E)], (5.52)

where SϵPE
(y : E) is calculated from the worst case estimates of our channel parameters.

The value ofm and V and can optimised in order to maximize the key for a given channel.
There are a number of other finite key effects that contribute to the security proof of a
QKD protocol to show that it is secure with respect to ϵ, where ϵ is the probability that
the protocol failed to produce a secret key. The ultimate goal for studying finite key
effects is to produce a composable security proof [112, 113] that allows the protocol to be
interoperable with other cryptographic systems.
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Chapter 6

Method of Moments Channel Noise
Estimator

6.1 Introduction

One of the major tasks for CV QKD introduced in Sec. 5.3 is channel parameter estima-
tion. In this chapter two new estimators for the channel noise are introduced based on
the method of moments. The method of moments uses the moments of data being used
to estimate parameters. The new estimators have the advantage of being able to use the
whole shared secret between Alice and Bob including those kept secret from Eve. The
proposed estimator has a lower variance for high-loss channels than the maximum like-
lihood estimator that has been previously used. The work in this chapter is published in
Ref. [88]

This chapter is organised as follows. Sec. 6.2 will review some previously proposed
channel noise estimators and introduce modelling the channel as an additive Gaussian
noise channel. Sec. 6.3 will detail the method of moments and its application to CV QKD.
This section proposes two channel noise estimators based on the method of moments.
These estimators are shown to be asymptotically unbiased and their performance is com-
pared against two previous estimators in Sec. 6.4. Sec. 6.5 will conclude the chapter with
an investigation into the effect of the two new estimators have on the keyrate of the co-
herent state with homodyne protocol. The hat decoration, ˆ, for this chapter denotes an
estimator rather than a operator.

6.2 Channel Model

In ref. [109] the authors propose a method of estimating the two channel parameters by
modelling the protocol using as classical loss channel with additive Gaussian noise:

yi = txi + zi i = 1, 2, . . . N. (6.1)

91
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Here xi is the data sent by Alice, yi is Bob’s measurement data, zi is a Gaussian noise
term with variance σ2 = 1 + Tξ and mean 0 and t =

√
T . To estimate the channel

parameters, t and σ Alice and Bob reveal a subset of m < N measurements. The channel
model Eq. (6.1) is well studied and has the maximum likelihood estimators [109]:

t̂ =

∑m
i=1 xiyi∑m
i=1 x

2
i

and σ̂2
MLE =

1

m

m∑
i=1

(
yi − t̂xi

)2
, (6.2)

with their distributions given by,

t̂ ∼ N
(
t,

σ2∑m
i=1 x

2
i

)
and

mσ̂2
MLE

σ2
∼ χ2(m− 1). (6.3)

Here N denotes a normal distribution and χ2 is the chi-squared distribution. The estima-
tors, Eq. (6.2) are then used to find the worst case for t and σ2 as described in [109]. That is
the minimum of t and the maximum of σ2 with in the confidence interval 1− ϵPE. The pa-
rameter ϵPE is the probability that the parameter estimation failed (Typically ϵPE = 10−10).
Using the theoretical distributions given in Eq. (6.3) the worst case estimators are given
by,

tmin ≈ t̂− zϵPE/2SD(t̂), (6.4)

σ2
max ≈ σ̂2

MLE + zϵPE/2SD(σ̂
2
MLE) (6.5)

Here SD is the standard deviation function and zϵPE/2 = erf−1(1− ϵPE/2) where erf(x) is
the error function. Equation (5.37) can be rewritten for the worst case noise and transmis-
sion,

ΓϵPE
=

(
(VA + 1) I2 tmin

√
V 2
A + 2VAσz

tmin

√
V 2
A + 2VAσz (t2minVA + σ2

max) I2

)
. (6.6)

Another proposed estimator from Ref. [114] uses a second modulation transmitted with
the key to assist the estimation of the channel parameters. This assumes the second mod-
ulation will experience the same channel as the modulation used for the final key. For
the protocol analyzed in their paper, Alice sends Bob squeezed displaced vacuum states
with a squeezed quadrature variance of VS. By setting VS = 1 the protocol becomes the
coherent state protocol. The parameters estimated are the channel transmission T and
the excess noise relative to the output Vξ = Tξ. Thanks to the second modulation this
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estimator is able to use N states for the key and parameter estimation,

T̂ =

(∑N
i=1 xM2,iyi

)2
(NVM2)

2 , (6.7)

V̂ξ =
1

N

N∑
i=1

(
yi −

√
T̂ xM2,i

)2
− T̂ VA − 1, (6.8)

where xM2,i is the displacement of the second modulation from Alice. These estimators
were shown to be asymptotically unbiased and to have the variances:

Var(T̂ ) =
4

N
T 2

(
2 +

VN
TVM2

)
, (6.9)

Var(V̂ξ) =
2

N
V 2
N + V 2

AVar(T̂ ), (6.10)

where VN = 1+Vξ +TVA and VM2 is the variance of the second modulation. The authors
then suggests using the linear combination in Eq. (6.11) to find the optimal estimator T opt

and V opt
ξ at a high channel transmission.

θ̂opt = αθ̂1 + (1− α)θ̂2, (6.11)

where θ̂1 and θ̂2 are two different estimators for either Vξ or T . The optimum value of α
to achieve a minimum variance from two estimators with a covariance of 0 is given by,

α =
Var(θ̂2)

Var(θ̂1) + Var(θ̂2)
. (6.12)

This can be found by minimising Var(θ̂opt) with respect to α. A derivation of α is shown
in App. D.3. The variance of θ̂opt is then given by,

Var(θ̂opt) =
Var(θ̂1)Var(θ̂2)

Var(θ̂1) + Var(θ̂2)
. (6.13)

By construction θ̂opt will have a variance less than or equal to the variance of the estima-
tors θ̂1 and θ̂2. The linear combination will also preserve the bias properties of the two
estimators.
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6.3 Theory

The estimators in Eq. (6.2) are found by maximizing the log likelihood joint probability
distribution ln p(xi, yi;σ

2, t, VA). An alternative is to use the method of moments (MM)
[115] to find the estimators. The method of moments is a simple way to find an estima-
tor but it has no optimality properties. It performs best with a long data record which
makes it suitable to CV QKD as typically the data record is > 108 [106]. Consider
the distribution of Bob’s measurements which can be described by the normal distribu-
tion N (0, t2VA + σ2). The moments of this distribution can then be solved as a system
of equations to find the method of moments estimators. As Bob’s data is normally dis-
tributed around 0 the first moment will be zero and the second moment is given by the
variance,

σ2
B = t2VA + σ2. (6.14)

All other moments for this distribution will be a function of σ2
B giving only one indepen-

dent non zero moment. This method will only provide one estimator so a decision must
be made between t and σ2.

The goal of parameter estimation for QKD is to maximize the keyrate for long dis-
tances. The limiting factor for protocols with a high loss channel is the excess noise [102].
For this reason Eq. (6.14) will be used to find a better estimator for the output noise. Start-
ing with Eq. (6.14) and substituting the estimator for t and the sample variance for σB the
initial estimator for the noise relative to the output is given by,

σ̂2
mm = σ̂2

B − t̂2VA, (6.15)

where σ̂2
B is given by the sample variance 1

N

∑
y2i . To use this estimator Alice and Bob

can publicly reveal VA and σ2
B without giving away any more of the shared secret to Eve

[109]. It was found that by treating VA as an unknown parameter and using the estimate
σ̂2
A = 1

N

∑
x2i in its place the variance of the MM estimator decreased. The variances of

σ̂2
mm and the new estimator σ̂2

MM are compared in appendix App. D.1. This improvement
comes from increasing the covariance between σ2

B and t2σ2
A and is demonstrated by the

following property of variance,

Var(σ2
B − t2σ2

A) = Var(σ2
B) + Var(t2σ2

A)− 2Cov(σ2
B, t

2σ2
A). (6.16)

Substituting σ̂A the final MM estimator is given by,

σ̂2
MM = σ̂2

B − t̂2σ̂2
A. (6.17)
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The improvement in the variance of the estimator σ̂2
MM over σ̂2

MLE can be seen in Fig. 6.1
as the transmission approaches zero for a fixed value of VA and m. The variance of these
estimators where t = 0 are given by

Var(σ̂2
MM) =

2σ4
B

N
(6.18)

Var(σ̂2
MLE) =

2σ4
B

m
(6.19)

When the two are compared Var(σ̂2
MM) is found to be better by a factor of m

N
.
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Figure 6.1: Plot of the standard deviation of the different noise estimators vs distance
in a fiber channel with a loss of 0.2dB/km: V̂ξ (dot dashed), σ̂2

MM (solid), σ̂2
MLE (dot dot

dashed), V̂ opt
ξ (dotted) and σ̂2

opt (dashed). A stochastic simulation of the coherent state
protocol was repeated 5000 times to obtain the data points for σ̂2

MM (circles) and σ̂2
opt

(squares). The parameters used were VA = 3, ξ = 0.01, m = 0.5×105, N = 105 and
V2 = 10. The black dash dot dot line is the standard deviation of the MLE with m = N
and represents the best estimate Alice and Bob can make of the channel noise using the
MLE. The MM estimators and the double modulation estimators approach this standard
deviation as the channel losses increases.

Interestingly σ̂2
MM = σ̂2

MLE when both estimators are used on the N transmitted states.
Such is the case at the range limit of a protocol, where for a positive key rate almost
all of the states need to be revealed for parameter estimation. Using Eq. (6.2) on the N
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transmitted states gives,

σ̂2
MLE =

1

N

N∑
i=1

(yi − t̂xi)
2 (6.20)

=
1

N

N∑
i=1

y2i −
1

N

(∑N
i=1 xiyi

)2
∑N

i=1 x
2
i

(6.21)

= σ̂2
B − t̂2σ̂2

A (6.22)

= σ̂2
MM. (6.23)

With this result it can be shown that σ̂2
MM from Eq. (6.17) is a combination of two estima-

tors. By ordering the exchanged states into the publicly revealed m subset and the secret
n = N −m subset to find

σ̂2
MM =

1

N

(
m∑
i=1

y2i +
N∑

i=m+1

y2i + t̂2

(
m∑
i=1

x2i +
N∑

i=m+1

x2i

))
(6.24)

=
1

N

m∑
i=1

(yi − t̂xi)
2 +

1

N

(
N∑

i=m+1

y2i − t̂2
N∑

i=m+1

x2i

)
(6.25)

=
1

N
(mσ̂2

MLE + nσ̂2
MM′′), (6.26)

where σ̂2
MM′′ is the MM estimator applied to n states and σ̂2

MLE and t̂ applied to m states.
This leads to the next estimator presented in the chapter. As in Ref. [114] an optimum
linear combination of two estimators can be found using Eq. (6.11) provided the two
estimators have a covariance of 0. This is the case for σ̂2

MLE and σ̂2
MM′′ given t̂ and σ̂2

MLE

are independent [116]. A full derivation is given in App. D.3. The optimum estimate of
the noise estimator is given by,

σ̂2
opt = ασ̂2

MLE + (1− α)σ̂2
MM′′ . (6.27)

Here α is given in Eq. (6.12).

6.4 Performance

For the purposes of CV QKD, it is important to consider the variance and the bias of
the parameter estimators. Finding an unbiased estimator with a minimized variance will
ultimately lead to an increase in the key rate and secure distance of the protocol.

For the MM estimators, the variance and mean are difficult to find due to the division



Performance 97

operation required for t̂. For this chapter a standard method in uncertainty analysis is
used where the variance is approximated from a first order Taylor series expansion [115].
Given an estimator θ̂ that is some function of J = {J1(y), J2(y), . . . , Jr(y)}, where
Ji(y) is some statistic from the data vector y, the variance is approximated by,

Var(θ̂(J)) ≈ ∂θ̂

∂J

∣∣∣∣T
J=µ

CJ
∂θ̂

∂J

∣∣∣∣
J=µ

(6.28)

and the mean by
E(θ̂(J)) ≈ θ̂(µ). (6.29)

Here µ is the expected value of our statistics J and CJ is the covariance matrix for J .
This method assumes that the statistics J will have a low variance and the estimator θ̂
will be roughly linear around µ. That is Eq. (6.28) and Eq. (6.29) will be the asymptotic
variance and mean. To apply this method the estimators are rewritten in terms of the data
statistics, σ̂2

B, σ̂2
A, σ̂A′B′ and σ̂2

A′ . Here σ̂A′B′ is the sample covariance. Here A′ and B′ are
used to indicate the statistic was estimated from the m subset of states used for parameter
estimation. The estimator σ̂2

MM becomes,

σ̂2
MM = σ̂2

B −
(
σ̂A′B′

σ̂2
A′

)2

σ̂2
A, (6.30)

where t̂ = σ̂A′B′/σ̂2
A′ . The matrix CJ can be found using the variance of the sample

variance and the properties of the covariance and variance functions. The elements of CJ

are given in App. D.2.1. Applying Eq. (6.28) the variance is given by

Var(σ̂2
MM) ≈

2σ4

N
+

(
1

m
− 1

N

)
4t2σ2VA. (6.31)

The final variance in Eq. (6.31) was achieved by making the substitution,

E[σ̂2
A] = E[σ̂2

A′ ] = VA, E[
σ̂A′B′

σ̂2
A′

] = t and E[σ̂2
B] = t2VA + σ2. (6.32)

For the estimator σ̂2
MM′′ a similar equation was found,

Var(σ̂2
MM′′) ≈

2σ4

n
+

(
1

m
+

1

σ2n

)
4t2σ2VA. (6.33)

As σ̂2
MM′′ uses different statistics CJ will be different. This is given in App. D.2.2. The
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Figure 6.2: The optimized values of m
N

and VA for the key rates in Fig. 6.3 where N =
109 using σ̂2

MLE (dotted), σ̂2
MM (dot dashed) and σ̂2

opt (solid) to estimate the excess noise.
Beyond 40 km more states are able to be used in the final key when the optimal or the
MM estimator is used.

variance of the optimal estimator is given by [114]

Var(σ̂2
opt) =

Var(σ̂2
MLE)Var(σ̂

2
MM′′)

Var(σ̂2
MLE) + Var(σ̂2

MM′′)
. (6.34)

The standard deviation of the estimators σ̂2
MM and σ̂2

opt are plotted as a function of the
channel distance in Fig. 6.1. Using Eq. (6.29) shows the estimator, σ̂2

MM is asymptotically
unbiased. A series of 5000 stochastic simulations of the coherent state protocol using
N = 105. The variance of the estimators from this simulations are shown in Fig. 6.1 and
have a good agreement with Eq. (6.31) and Eq. (6.34). In practical demonstrations N has
been of the order 108 to 109 [106].

6.5 Discussion & Conclusion

This chapter investigated using the method of moments to estimate the noise in a linear
channel relative to the output for a QKD protocol. The MM estimator allows for Alice and
Bob to use better estimates of the variances from the complete shared secret. Using these
variances allows the proposed estimators in this chapter to approach the performance of
the MLE used on the entire shared secret for a high loss channel.
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Figure 6.3: Plot of key rate with finite key effects relating to parameter estimation. The
values VA and m have been optimized with ξ = 0.01 and β = 0.95 to maximize key rate
using σ̂2

MLE (dotted), σ̂2
MM (dot dashed) and σ̂2

opt (solid) to estimate the excess noise for
(from left to right) N = 105, N = 107, N = 109 and N = 1012. The asymptotic key
rate with VA optimized is also plotted (black solid). As expected the maximum distance
increases with the size of N . The optimal estimator outperforms the MLE and MM es-
timator. As with Fig. 6.1 it was found the MM estimator is worse than the MLE at low
channel loss but is better with a lossy channel.

To simplify our analysis it was assumed that both Alice’s modulation and the channel
noise are Gaussian with a mean of zero. These assumptions are necessary for finding
the variance of the σ̂2

MM and σ̂2
MLE. The MM estimators do not require the Gaussian

assumption as they are estimating the second moment. It is possible that Eve could find a
non Gaussian state that could cause Alice and Bob to underestimate Eves influence on the
channel using the method to find the keyrate discussed in this chapter. Which state Eve
would need to do this is not investigated in this chapter.

In a situation where the added noise is non Gaussian, Alice and Bob should not
use the Gaussian approximation for estimating the variance of their estimators. Instead,
they should use the general formula for estimating the distribution of the estimators, for
example, when N is large, Var(σ̂2

B) in App. D.2.1 should be replaced by Var(σ̂2
B) =

µ4/M − µ2
2/M where µk is the k-th moment of Bob’s measurements [117].

When compared with other estimation methods in Fig. 6.1, it was found that the
method of moments based estimators are comparable in performance to the method pro-
posed in ref. [114] without requiring extra modulations and an improved performance
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over the MLE for high loss channels. The result of the improvement in the key rate can
be observed in Fig. 6.3 where the MM estimator based key rate is higher than when the
MLE is used and the optimum estimator always produces the best keyrate. It is interest-
ing to note that the estimators discussed in this chapter will never increase the maximum
distance for a QKD protocol. The reason for this is shown in Fig. 6.2 where the maximum
transmission distance the optimal m is N and the MLE and MM estimators are equal.

After reconciliation Alice and Bob are able to estimate the key rate bound again but
this time with all N measurements [113]. Doing this will give an improved key rate. For
high loss channels this improvement will be mostly due to the improved estimate of the
covariance matrix. The MM estimators could be used to determine a rough key rate before
the protocol commits to performing the reconciliation step.

With the simplicity of the method of moments, this estimator can also be modified to
be used with other CV QKD protocols such as the four state protocol [102] or to include
more protocol parameters [107].



Chapter 7

One Side Device Independent CV QKD
with EPR states

7.1 Introduction

The physically guaranteed security with minimal additional assumptions from QKD has
crystallised into two fronts. In the first place a lower bound on the extractable secret
key length is desired that accounts for an arbitrarily powerful Eve [118–121]. The sec-
ond, as briefly explored in Sec. 5.3 and Ch. 6, to close any gaps that may exist between
a theoretical QKD protocol and its practical realisation. Essentially, this is the problem
of whether or not the honest parties (Alice and Bob) have correctly characterised their
experimental devices. These gaps can be closed one by one as various loopholes, due
to miss-characterised devices, are pointed out [122–125]. However it is possible to rig-
orously surmount all side-channel attacks by harnessing non-local quantum correlations
[18, 92, 126]. A fully device independent protocol is possible using a loophole free Bell
test. As discussed in Ch. 4 a true loophole free Bell test using CV is difficult to achieve.
A compromise is one-side-device-independent (1sDI) protocol where only the devices
controlled by Bob or Alice are trusted. It is this problem tackled in this chapter for the
entire Gaussian family of CV-QKD protocols. In this chapter six protocols are identified
that can be proven secure in a 1sDI setting. The new security proofs are accompanied
by proof-of principle experimental demonstrations of the most basic of the EPR based
protocols, squeezed state protocol with homodyne detection, and a prepare and measure
coherent state protocol. The work in this chapter is published in ref. [17].

This chapter is organised as follows. Sec. 7.2 will detail the application of the tripar-
tite entropy uncertainty to the Gaussian family of CV QKD protocols. The experimental
details for the demonstration of these protocols is presented in Sec. 7.3 with some experi-
mental modelling. The results are presented in Sec. 7.4 with a conclusion in Sec. 7.5.

101
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7.2 Theory

This section will derive the key rate in a slightly different way to what appeared in
Ref. [17] to account for reconciliation efficiency. This key rate is the one used for the
presented experimental results. The family of Gaussian CV QKD protocols were intro-
duced in Sec. 5.3 along with a brief derivation of the secret key rate against collective
attacks. In this section a new key rate is derived for the squeezed state with homodyne
protocol using the EUP in Eq. (5.29),

H(XA|E) +H(PA|B) ≥ log 2πℏ, (7.1)

where XA and PA are quadrature measurements made by Alice and E and B represent
the unmeasured state of Eve and Bob. Consider the reverse reconciliation key rate from
Eq. (5.51),

K◁ = βI(XA : XB)− χ(XB : E), (7.2)

where β is the reconciliation efficiency. Recalling that,

S(XB|E) = H(XB) +

∫
p(XB)S(ρ

XB
E )dx, (7.3)

the Holevo bound can be rewritten in terms of conditional entropy.

χ(XB : E) ≤ H(XB)− S(XB|E). (7.4)

As in Sec. 5.3.2 Eve is considered the purifying state of Alice and Bob’s joint state that
is S(PB|E) ≤ H(PB|PA). The Holevo bound can again be rewritten with the uncertainty
Eq. (5.29) to be,

χ(XB : E) ≤ H(XB) +H(PB|PA)− log 4π (7.5)

Using Eve’s optimal attack which is known to be a Gaussian collective attack the Shannon
entropies for Gaussian states given in Sec. 5.1.1 can be used to find the final reverse
reconciliation key rate as,

K◁ ≥ βI(XB : XA) + log 4π −H(PB|PA)−H(B) (7.6)

= β log

√
V X
B

V X
B|A

− log

√
4π

e2V P
B|AV

X
B

. (7.7)

Here V j
i represents the variance of the measurement by party i = {A,B} of the quadrature

j = {X,P}. Similarly V j
i|i′ is the variance of party i conditioned on the results of i′.
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Figure 7.1: Secure regions for 1sDI CV QKD protocols for a Gaussian channel parame-
terised by transmission T and excess noise ξ. DR protocols are plotted in blue when Alice
homodynes and purple when Alice heterodynes. RR schemes are plotted in red when Bob
homodynes and yellow when Bob heterodynes. For each protocol, secure communication
is possible for all channels above the corresponding line. Inset: summary of 1sDI CV
QKD protocols where subscript A (B) indicates the security is independent of Alice’s
(Bob’s) devices.

The key rate for the direct reconciliation case is made by permuting the labels, A and B.
Eq. (7.7) was also calculated in Ref. [92] but the proof was incomplete as it relied on
the assumption of the applicability of the entropic uncertainty relation. Moreover, it was
incorrectly concluded that this method would never predict a positive key when applied
to coherent state or heterodyne protocols. In fact the extension of Eq. (7.7) to the other
Gaussian protocols is straightforward and is given in Ref. [17].

7.2.1 1sDI CV QKD

For 1sDI QKD protocols only Alice or Bob needs to be trusted with a assumed set of
quantum operations while the other is untrusted and considered a black box. A conceptual
picture of this is given in Fig. 7.2. The 1sDI nature of Eq. (7.7) comes from its dependence
on measuring a known observable on only one side. For example only Bob is required
to measure the amplitude or phase quadrature to apply the EUR. Although we write the
expression as V X

A|B Alice could be making any measurement and the key rate Eq. (7.7)
would still hold. That is Eq. (7.7) is independent from Alice for reverse reconciliation and
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A B0 B

XA XB

EPR

– –

ChannelAlice Bob

Figure 7.2: Conceptual picture of a 1sDI CV QKD protocol. From the perspective of
Alice (Bob) the local devices are known and allow a secret key to be extracted from
a direct (reverse) reconciliation protocol, even though the other party exists only as an
unknown blue (red) box.

from Bob for direct reconciliation. For the device independence to hold two assumptions
are made: the stations are secure and the measurements are causally independent [127,
128].

Thus for EPR based protocols with homodyne measurements, any positive key pre-
dicted via the EUR is by definition 1sDI [119, 121]. The device independence does not
necessarily extend to the heterodyne based protocols. This is because the steering demon-
stration requires a measurement choice by the untrusted party [129] which doesn’t occur
with heterodyne detection. Therefore employing heterodyne on the untrusted side inval-
idates the device independence. The extension to P&M schemes can also be made for
direct reconciliation protocols where Alice controls the source through their equivalence
to the EB schemes. This means that it is possible to generate a positive key using the co-
herent state protocol with homodyne detection which is a remarkable result. The device
independence protocols are summarised in the inset table of Fig. 7.1.

The key rates found using the entropic proofs result in a different and generally lower
secret key rates than the standard security proofs for the Gaussian protocols. To map
out the ultimate limit of these protocols an idealised setup was modelled. As was done in
Sec. 5.3 the channel was modelled as a Gaussian channel with a transmission T and excess
noise parameter relative to the input of ξ. Each protocol was modelled as having a source
with 17dB of entanglement and imperfections from measurement with finite effects were
ignored. In Fig. 7.1 the secure region for each of the six protocols are identified to be
1sDI (there are two redundancies between P&M and EB schemes). The best performing
protocol is the RR EPR scheme where both Alice and Bob use homodyne detectors. This
scheme is secure up to a loss of 73%. The DR equivalent and the squeezed state with
heterodyne protocol perform similarly for low noise channels. The worst performer is the
coherent state protocol with Bob performing homodyne measurement. This protocol is
only capable of a secure key up 33% loss in a low noise channel.

The standard security proofs for the Gaussian protocols, with an idealised very low
noise channels, can tolerate arbitrarily large loss. This is in contrast to the results in
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Fig. 7.1 which show that the 1sDI protocols discussed here are loss limited with low
noise channels. This is due to the key rate found in Eq. (7.7) only being tight when the
parties included can be approximated as sharing a pure, highly-squeezed EPR state [93,
119]. In a real QKD protocol this is rarely the case and the EUR method tends to give a
pessimistic bound on the eavesdroppers information.

7.2.2 Link to EPR steering

The connection between 1sDI QKD protocols and asymmetric EPR steering has been
made in the past for 1sDI DV QKD protocols [95] where it was shown to be a condition
for a positive key rate. Like the 1sDI DV protocol the key rate for the CV 1sDI protocols
found here can also be related to steering. The demonstration of EPR steering for CV is
traditionally shown by the violation of the condition E▶ = V X

B|AV
P
B|A ≥ 1 [130] to show

Alice steered Bob. Their roles can be interchanged to show the opposite, E◀. Consider
Eq. (7.7) where β = 1. The key rate simplifies to,

K◁ ≥ log
2

e
√
V X
B|AV

P
B|A

(7.8)

= log
2

e
√
E▶
. (7.9)

The key rate will be positive if and only if E▶ < (2
e
)2 ≈ 0.54. with the identical relation

between the DR key rate and E◀. In other words the condition for a positive 1sDI key
rate is more stringent than EPR steering as is the case for 1sDI DV QKD [95]. For the
protocols where a trusted heterodyne detection is used, the security of the protocol is
instead linked to the steerability of the outcome of the heterodyne measurement, which
will be more challenging due to the extra loss involved (see ref. [17]). Consequently
this connection gives the operational interpretation for the Reid product of conditional
variances [130] as being directly related to the number of secure 1sDI bits extractable from
Gaussian states with Gaussian measurements. Interestingly, the gap between a steering
violation and generation of a 1sDI key reveals that Eve’s optimal attack allows her to steer
the Gaussian measurement results of Alice and Bob.

7.3 Experiment

Of the six possible 1sDI protocols five were demonstrated with only three yielding a pos-
itive key. All four of the possible 1sDI entanglement based protocols were implemented
along with a prepare and measure implementation of the coherent state protocol with
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Figure 7.3: The EPR source used for the 1sDI CV QKD demonstration. Two OPA’s are
mixed on a 50/50 BS in quadrature. One mode is sent to Alice and the other is sent to Bob
through a simulated loss channel as shown in Fig. 7.4. The squeezed beams are locked in
quadrature by tapping off 1% of the power in each beam path after the BS and then using
difference detection to control the piezo using the controller described in Sec. 2.4.2.

homodyne detection. The entanglement based squeezed state with homodyne protocols
were the only EB protocols to give a positive key rate. They will be the focus of this
chapter. The details of the prepare and measure protocol are given in Ref. [17, 131, 132].

For each EB protocol the same EPR source was used as described in Ch. 4 where
two squeezed beams are interfered on a 50/50 BS. For this experiment the EPR source
was required to produce large correlations. To do this the regenerative gain of the two
squeezers was increased so each one produced a squeezed state with roughly 6 dB of
squeezing and 10.7 dB of anti-squeezing. The schematic of the entanglement source is
shown in Fig. 7.3. One mode from the EPR source was directly measured by Alice and
the other mode was sent through a Gaussian channel. For this experiment a simulated
channel made using a PBS and halfwave plate to simplify the complexity. By changing
the angle of the halfwave plate a loss of T was created on Bob’s mode after the PBS.

Of the four EB protocols only two produced a positive key rate, the squeezed state
protocols with homodyne detection, shown in Fig. 7.4 for both DR and RR. The noise
in the EPR state introduced by the anti-squeezing was enough to reduce the correlations
below the steering threshold required for a positive key when a heterodyne detector was
used. Around 7 db of pure squeezing would be required for the two heterodyne protocols
to achieve a positive key. The advantage of the P&M implementation of the DR coherent
state protocol is in the ease of implementation. The modulation produced less noise and
the variance of the output state can easily be finely tuned to suite the channel parameters.
On the other hand EB protocols require a EPR resource which are difficult to build and
don’t offer the same fine controls on excess noise and state variance. It is worth pointing
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Figure 7.4: A simple schematic of the entanglement based 1sDI CV QKD experiment.
An EPR state is distributed between Alice and Bob. Both states are measured using ho-
modyne detection. Bob’s state is passed through a simulated loss channel made from a
halfwave plate and a PBS. The EPR source is shown in Fig. 7.3.

out that if the squeezer presented in Ch. 3 were used to produce an EPR state a positive
key rate would be possible but the range would still be less than the P&M implementation
even with fine tuning of the squeezing parameter.

7.3.1 Modelling

A model of squeezed state with homodyne measurement demonstration can be constructed
using the phase space representation described in Sec. 1.4 as was done for the CV Bell
test in Ch. 4. Here there is only a BS operation and three CP-Maps to model the loss
channel and the loss on each homodyne. The model can be written as,

γout = ηAηBTCh.SBSγinS
T
BS + (1− ηAηBT )I, (7.10)

where ηA and ηB is the loss from the homodyne detection and T is the channel transmis-
sion. The input state covariance, γin, is given in Eq. (4.8).

7.4 Results

The key rates calculated from Eq. (7.7) with β = 95% for the protocols experimentally
demonstrated to be secure are shown in Fig. 7.5. The loss in Fig. 7.5 is expressed as
the equivalent transmission distance through standard single mode telecom optical fibre
with a loss of 0.2 dB/km. Of the successfully demonstrated protocols as expected the RR
squeezed state protocol with homodyne detection proved to be the most loss tolerant with
a maximum demonstrated range of 7.57 ± 0.26 km. In contrast the DR squeezed state
protocol performed the worst with a maximum range of only 2.52 ± 0.2 km. The DR
coherent state protocol was able to achieve a demonstrated distance of 3.47± 0.46 km. A
greater distance than would be possible even if the OPA presented in Ch. 3 were used.

Each parameter in the model, Eq. (7.10), was directly measured. The model was
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then compared against the experimentally obtained data and was shown to be a good fit as
shown in Fig. 7.5. The model demonstrated that the successful EB protocols could reach a
maximum of 2.8 km for DR and 8 km for RR. The model was also used for understanding
the limitations of the experiment. For the EB protocols the dominating limitation was
from the intra-cavity losses in the OPA cavities. With a reasonable improvement to the
cavity and detection losses it would be possible to extend the EB protocols to 8 and 17
km respectively [17].

The security proof presented in this chapter could be extended to include more finite-
size effect and compared to the results in Ref. [119, 121, 126]. In particular, in the ex-
periment in Ref. [126], the authors follow a similar program of applying entropic uncer-
tainty relations, in this case to the smooth min entropies, allowing them to account for
all finite-size effects while providing proof against complete general attacks. Their imple-
mentation was of the EB squeezed state with homodyne detection protocol. With better a
better squeezing source their demonstration was able to demonstrate a distance of 2.7 km.
Unlike the security proof presented here which spans RR and DR protocols their security
proof is only valid for DR.

7.5 Conclusion

In summary this chapter detailed the derivation of a 1sDI security proof for the family of
Gaussian protocols. Through experimental demonstrations three of these protocols were
shown to produce a positive key achieving a maximum distance of 7.5 km of equivalent
loss in an optical fibre. Although not extensively discussed in this chapter it was the first
time a 1sDI coherent state QKD protocol has been demonstrated. An interesting result
given the link between EPR steering and the 1sDI key rate. With the ease of which a
P&M protocol can be implemented it would be an attractive option to investigate further.
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Figure 7.5: Experimentally obtained key rates (points) with a model fitted to the data
(lines) vs effective distance through optical fiber for reverse (red) and direct (blue) recon-
ciliation for the squeezed state protocols and direct reconciliation for the coherent state
protocol (yellow). The effective distance was calculated based on a loss of 0.2dB/km
through a single mode optical fiber. For RR a maximum distance of 7.57± 0.26 km was
demonstrated with a predicted maximum range of 8 km. For DR the maximum demon-
strated distance was 2.52± 0.2 km with a predicted maximum range of 2.8 km. The pre-
dicted performance of an optimised protocol using a model from the squeezer presented
in Ch. 3 is also shown (purple dashed).
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Chapter 8

Conclusion

8.1 Summary of Key results

In this thesis I have present results of the development of a low intra-cavity loss squeezer,
the first optical CV Bell test using Gaussian measurements and a deterministic source,
two new estimators for the channel noise in a CV QKD protocol and a family of 1sDI CV
QKD prtocols. Each of these results build towards the contributions of this thesis to the
next generation of QKD protocols. What follows is a summary of those results:

8.1.1 Quantum state generation

Squeezed state generation

Squeezed state forms the basic resource state for all of the experimental work presented
in this thesis and in many other experiments. Here the key result is the observation of 11
dB of vacuum squeezing with around 580 mW of pump power. This figure is corrected
for the dark noise on the detector. To improve the squeezing both a better locking method
will be investigated and the non-linear crystal will be recoated. In the near future this
squeezer will be used for a probabilistic squeeze gate.

CV Bell test

The Bell inequality, originally formulated for DV, is violated for the first time using optical
CV states. While this demonstration falls short of the four discrete variable loop-hole free
Bell test this is still a significant milestone in the development of technologies based on
CV optics. The maximum violation of the Bell inequality observed was |B| = 2.31 15
standard deviations above 2 and a correlation fringe visibility of 75%. The methodology
used in this experiment can could be used for a source independent QRNG or QKD as the
detection process needs to be trusted for this particular implementation.
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8.1.2 CV QKD

Channel parameter estimation

This chapter discussed the results a investigation use of the method of moments estimator
with CV QKD to estimate the channel noise relative to the output. Two new estimators
were proposed that outperformed in terms of variance for high loss channels the maxi-
mum likelihood estimator that has been previously used. The performance of these two
estimators was evaluated with the coherent state protocol with homodyne detection. The
method of moments estimator is simple enough that it would be easy to modify for other
protocols or include more parameters

One side device independent CV QKD

Using a tripartite EUP six 1sDI CV QKD protocols was found from the family of Gaussin
CV QKD protocols. The security proof for the squeezed state protocol was derived with
an experimental demonstration. The original work also included a demonstration of the
P&M coherent state protocol with homodyne detection. This was the first time a protocol
of that type had been demonstrated. The EB equivilent was also attempted but failed to
produce a positive key rate due to excess noise and not enough squeezing from the source.
Both problems that would be solved with the OPA in Ch. 3. The demonstration achieved
a maximum equivalent distance through an optical fiber of 7.57 ± 0.25 km for RR and
2.52±0.2 km for DR. The P&M protocol achieved 3.47±0.46, which is still further than
the predicted performance with the OPA from Ch. 3.

8.2 Outlook

It is an exciting time to be involved in quantum optics. With the four loop-hole free Bell
tests that have recently been demonstrated there is more evidence suggesting quantum
mechanics is an accurate description of reality. The loop-hole free Bell tests also open
up the opportunity for real DI QKD and DI QRNG protocols. So far these results have
been limited to DV protocols but with the demonstration of a CV Bell test here and with
a number of proposed CV Bell test protocols claiming to be loop-hole free DI might in
the future extend to CV. Here the protocols will be able to take advantage of the high
bandwidth, room temperature low loss detection and deterministic sources.

Recently there was also a demonstration of entanglement between two sites 1203 km
apart with the source in orbit around earth at an altitude ranging from 1600 to 2400 km
[133]. This is part of an effort to extend QKD into a protocol that has a global reach.
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There are a number of groups trying to achieve this same goal using both CV and DV. If
it works then QKD will be much more useful in the field.

One avenue of investigation for the range of QKD to be extend is to place realistic
limits on Eve using a noisy storage model. For many previously demonstrated CV pro-
tocols Eve is assumed to be all powerful and capable of making the optimal attack [106,
108]. This probably is not the case in a real situation where the attackers are likely to be
human. Application of noisy storage models to QKD protocols has been demonstrated
for DV [134–136].
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Appendix A

Electronics

A.1 Photodetector

The basic circuit of a transimpedance amplifier is given in Fig. A.1. The advantage of
the transimpedance amplifier over a simple resistor circuit is that it is a low impedance
to the diode which allows for higher gains. A simple resistor would present as a large
impedance with high gains. The op-amp will try to match the potential at its inverting
and non-inverting input, which is grounded, by using the feedback resistor. This cause
the output of the transimpedance stage to be Vout = idRf at DC. The diode will naturally
contribute some parasitic capacitance. With the feedback resistor this creates a low pass
filter in the feedback which causes an oscillation peak on the output. The compensation
capacitor Cf reduces this peak by providing a zero in the transfer function to cancel it out.
More detailed calculations are given in Ref. [36].

−

+

V +

id

Rf

Cf

Vout = idRf

Figure A.1: Basic circuit for a transimpedance amplifier. The negative input will present
as a low impedance to id. The op-amp will try to match the potential of both inputs
through Rf by driving the output voltage giving a DC transimpedance gain of Rf .
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A.2 Piezo driver

Part of the work found in Ch. 3 led to the opportunity to use more modern Piezo actuators
that had previously been used in the group. Since the last major purchase of Piezo devices
the voltages required to drive them to their maximum displacement have dropped from
+400V to +150V. The displacement of the new Piezos was also found to be such that the
DAC with a range of ±10V on the FPGA was sufficient to be able to scan the cavities
nearly a full FSR with a low frequency. For these new Piezo devices a cheaper low
noise HV amp was developed. The previous HV amps used to drive the Piezos were
based around the PA85 which while good are expensive and beyond the needs for this
application. The PDu150 from PiezoDrive [137] was found to be an acceptable alternative
through a little easy to break because of its power supply design.

A design was made using same LTC6090 op-amp as the PDu150 with a gain of 6. The
design was refined with help from the Electronics Unit at RSPE to include high voltage
input protection. The final design is given in Fig. A.2. The op-amp has a full power
bandwidth of 65Hz with a capacitive load of 2.64uF and a supply voltage of -15V to
+100V. The small signal bandwidth is 47 kHz is sufficient for control of the cavities in
Ch. 3. To increase the bandwidth either the design could be changed to use dual op-amps
to push and pull the voltage or the output resister could be reduced. Reducing the output
resister would also reduce the full power bandwidth. For high bandwidth control the PA85
based amplifier would be preferable.
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Figure A.2: LTC6090 high voltage amplifier circuit with input protection diodes with a
gain of 6.
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Appendix B

Modifications to the FPGA locking code

Modification
Original

Figure B.1: A modification to PII controller from Ref. [46]. The intended operation of the
code is to scan the plant to near the locking point and then engage the PII controller. The
original design of the controller had no way of knowing where the locking point was in
the scan. This resulted in the PII controller trying to lock with the initial point of the scan.
The modification offsets the output from the PII controller by the last scan value (call out
box) which will be close to the locking point.
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Appendix C

Raw spectrum of the OPA homodyne
measurements
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Figure C.1: Raw squeezing data from the spectrum analyser for the OPA in Ch. 3 with the
miss-aligned pump. The dark noise(green), squeezed quadrature (red), shot noise (yellow)
and anti-squeezed quadrature (blue) are shown.
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Figure C.2: Raw squeezing data from the spectrum analyser for the OPA in Ch. 3 with
the correctly aligned pump. The dark noise(green), squeezed quadrature (red), shot noise
(yellow) and anti-squeezed quadrature (blue) are shown. The anti-squeezing measurement
was not locked on the correct quadrature.



Appendix D

Additional channel noise parameter
estimator calculations

D.1 Variance of σ̂2mm

Using the same method described in Sec. 6.4 the variance for σ̂2
mm is given by

Var(σ̂2
mm) ≈

2σ4

N
+

2t4V 2
A

N
+

(
1

m
− 1

N

)
4t2σ2VA. (D.1)

Here the covariance CJ can be found using App. D.2.1 and setting the appropriate values
to 0. With Eq. (D.1) we find

Var(σ̂2
mm) =

2t4V 2
A

N
+Var(σ̂2

MM). (D.2)

This agrees with the claim that Var(σ̂2
mm) > Var(σ̂2

MM).

D.2 Elements of CJ

D.2.1 CJ for σ̂2MM

The diagonal terms for the covariance matrix CJ for the estimator σ̂MM are given by,

Var(σ̂2
A) =

2σ4
A

N
, Var(σ̂2

A′) =
2σ4

A′

m
,

Var(σ̂2
B) =

2σ4
B

N
and Var(σ̂A′B′) =

1

m
(2t2σ4

A′ + σ2σ2
A′).
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The off diagonal terms are given by,

Cov(σ̂2
A, σ̂

2
B) = 2t2

σ4
A

N
, Cov(σ̂2

A, σ̂
2
A′) = 2

σ4
A′

N
,

Cov(σ̂2
A, σ̂A′B′) = 2t

σ4
A′

N
, Cov(σ̂2

A′ , σ̂A′B′) = 2t
σ4
A′

m
,

Cov(σ̂2
B, σ̂

2
A′) = 2t2

σ4
A′

N

and

Cov(σ̂2
B, σ̂A′B′) = 2t

t2σ4
A′ + σ2σ2

A′

N
.

D.2.2 CJ for σ̂2MM′′

The diagonal terms for the covariance matrix CJ for the estimator σ̂MM′′ are given by,

Var(σ̂2
A′′) =

2σ4
A′′

n
, Var(σ̂2

A′) =
2σ4

A′

m
,

Var(σ̂2
B′′) =

2σ4
B′′

n
and Var(σ̂A′B′) =

1

m
(2t2σ4

A′ + σ2σ2
A′)

The off diagonal terms are given by,

Cov(σ̂2
A′′ , σ̂2

B′′) = 2t2
σ̂4
A′′

N
, Cov(σ̂2

A′′ , σ̂2
A′) = 0,

Cov(σ̂2
A′′ , σ̂A′B′) = 0, Cov(σ̂2

A′ , σ̂A′B′) = 2t
σ4
A′

m
,

Cov(σ̂2
B′′ , σ̂2

A′) = 0 and Cov(σ̂2
B′′ , σ̂2

A′B′) = 0.

Here A′′ and B′′ to indicate the statistic was calculated using the n subset of states used
for generating the final key.

D.3 The optimal estimator

An optimal estimator can be found from a linear combination of two estimators, θ̂1 and θ̂,
with Cov(θ̂1, θ̂2) = 0. The optimal estimator is given by,

θ̂opt = αθ̂1 + (1− α)θ̂2 (D.3)
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with a variance of,

Var(θ̂opt) = α2Var(θ̂1) + (1− α)2Var(θ̂2) (D.4)

which is a convex function of α. The optimal value of α can be found by minimising
Var(θ̂opt).

0 =
d

dα
Var(θ̂opt) (D.5)

0 = 2αVar(θ̂1)− 2Var(θ̂2) + 2αVar(θ̂2) (D.6)

α =
Var(θ̂2)

Var(θ̂1) + Var(θ̂2)
. (D.7)

D.3.1 Covariance of σ̂2MLE and σ̂2MM′′

We can show that Cov(σ̂2
MM′′ , σ̂MLE) = 0 given that Cov(σ̂2

B′′ , σ̂2
MLE) = 0, Cov(σ̂2

A′′ , σ̂2
MLE) =

0 and Cov(t̂, σ̂2
MLE) = 0 [116]

Cov(σ̂2
MM′′ , σ̂MLE) = Cov(σ̂2

B′′ − t̂2σ̂2
A′′ , σ̂2

MLE) (D.8)

= Cov(σ̂2
B′′ , σ̂2

MLE)− Cov(t2σ̂2
A′′ , σ̂2

MLE) (D.9)

= 0. (D.10)
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