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Abstract

Quantum states can be correlated in ways beyond what is possible for classical
states. These correlations are considered as the main resource for quantum compu-
tation and communication tasks. In this thesis, I present my studies on the different
forms of Quantum Correlations known as "Quantum Discord", "Einstein-Podolsky-
Rosen(EPR) Steering" and "Bel-type correlations" in the continuous-variable quantum
states and investigate their practical applications for the secure quantum communi-
cation.
While previously quantum entanglement was considered as the only form of quan-
tum correlation, in the recent years a notion known as quantum discord which cap-
tures extra quantum correlations beyond entanglement was introduced by Ollivier
and Zurek. This sort of non-classicality that can exist even in separable states, has
raised so much aspiration for the potential applications, as they are less fragile than
the entangled states. Therefore, of especial interest is to know if a bipartite quan-
tum state is discordant or not. In this thesis I will describe the simple and efficient
experimental technique that we have introduced and experimentally implemented
to verify quantum discord in unknown Gaussian states and a certain class of non-
Gaussian states. According to our method, the peak separation between the marginal
distributions of one subsystem conditioned on two different outcomes of homodyne
measurement conducted on the other subsystem is an indication of nonzero quan-
tum discord. We implemented this method experimentally by preparing bipartite
Gaussian and non-Gaussian states and proved nonzero quantum discord in all the
prepared states.
Though quantum key distribution has become a mature technology, the possibil-
ity of hacking the devices used in the quantum communications has motivated the
scientists to develop the schemes where one or non of the devices used by the com-
municating parties need to be trusted. Quantum correlations are the key to de-
velop these schemes. Particularly, EPR steering is connected to the one-sided-device-
independent quantum key distribution in which devices of one party are solely
trusted and Bell-type correlations to the fully device-independent quantum key dis-
tribution where non of the apparatuses of the communicating parties is trusted.
Here, I will present the result of our theoretical and experimental research to de-
velop one-sided-device-independent quantum key distribution in continuous vari-
ables. We identify all Gaussian protocols that can in principle be one-sided-device-
independent. This consists of 6 protocols out of 16 possible Gaussian protocols,
which surprisingly includes the protocol that applies only coherent states. We ex-
perimentally implemented both the entanglement-based and coherent state proto-
cols and manifested their loss tolerance. Our results open the door for the practical
secure quantum communications, asserting the link between the EPR-steering and
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one-sided-device-independence.
Due to the maturity of quantum information using continuous variables, it is im-
portant to develop a Bell-type inequality in this regime. Despite its fundamental
importance, Bell-type correlation is linked to the device-independent quantum key
distribution. I developed a computer modelling based on the proposal of ref [1, 2] to
demonstrate continuous-variable Bell-type correlation. The results of my computer
simulations that are presented in this thesis show the feasibility of these proposals,
which makes the real-life implementation of continuous-variable device-independent
quantum key distribution possible.
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Chapter 1

Introduction

The peculiar nature of quantum entanglement was first indicated by Einstein, Podol-
sky and Rosen (EPR) in their famous seminal paper in 1935 [3]. This paradox which
considers two main aspects of quantum mechanics; entanglement and uncertainty
principle [4], was proposed to prove that the quantum mechanics was not complete
in that current formalism and should include local hidden variable theories. Their con-
troversial proposal raised so many debates in physics until 1964 when John Stewart
Bell quantified local realistic theories through his famous inequality [5]. The viola-
tion of Bell’s inequality guarantees that a pair of particles are genuinely entangled
and their correlation cannot be described by any form of local theories.
The concept of quantum entanglement, later received tremendous amount of atten-
tion as the essential resource for quantum information tasks, including "Quantum Key
Distribution (QKD)" [6, 7] which appeared by the proposals of Bennett and Brassard’s
[8] in 1984, and Ekert’s [9] in 1991. This cryptographic technique which rely solely on
the laws of quantum mechanics, promises unbreakable security, what human beings
has endeavoured to achieve during the whole history!
Though the field of Quantum Key Distribution developed rapidly with so many suc-
cess stories [10, 11, 12], it is soon realized that the real-life implementation might
differ from the theoretical predictions. This means that unbreakable security will no
longer be guaranteed, unless less or more realistic assumptions about the devices are
considered. In order to tackle this problem, protocols with least amount of assump-
tions on devices were developed, now known as Device Independent QKD (DI-QKD)
[13, 14]. However, DI-QKD requires the strong form of quantum non-locality (Bell’s
non-locality) to prove the unconditional security. The fact that the violation of the de-
tection loop-hole free Bell test [15, 16] itself is a challenge to the experimental physics,
makes a field implementation of the DI-QKD protocols currently troublesome.
One may think that less stringent form of quantum correlation may be advantageous,
which is indeed true. An asymmetric form of quantum correlation known as EPR-
steering, which was first proposed by Schrödinger in 1935 as a generalization of the
EPR paradox [17] is linked to the new kind of quantum security, so called one-sided
device independent QKD (1SDI-QKD) [18, 19]. In these protocols only the appara-
tuses of one of the communicating parties are reliable. In addition, the link between
entanglement and uncertainty relations which was first mentioned by EPR has been
quantified by Berta et al. in ref [20] by employing entropic version of uncertainty
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2 Introduction

relations [21, 22, 23, 24, 25]. This provided new means for cryptographers, which
hand in hand with the concept of EPR-steering make the development of 1SDI-QKD
protocols possible. The requirements to satisfy the 1SDI-QKD protocols are less strict
than DI-QKD protocols which makes them an interesting candidate for practical ap-
plications.
One of the main focus of my thesis is the advancement of 1SDI-QKD protocols in
continuous-variables which are presented in Chapters 5, 6 and 7. By using en-
tropic version of uncertainty relations in continuous variables [26, 27, 28] , we lower
bounded the asymptotic secret key rate of all the 16 possible Gaussian OKD proto-
cols, and showed that only 6 of them can manifest one-sided device-independence.
We implemented 5 of these 6 protocols experimentally and demonstrated that the
best system using entangled source and homodyne-homodyne measurements can
tolerate an applied loss of up to 1.5 dB. Surprisingly, we implemented a protocol
that utilizes only coherent states as the source, and showed that it can tolerate an
applied loss of up to 0.6 dB. This was the first demonstration of 1SDI-CVQKD using
coherent states. The ease and the low price of producing coherent states compared
to the entangled states, make these sources a very interesting candidate for short-
range networks. I also developed a detailed computer modelling to understand our
experimental setups and the potential for further improvements. Our theoretical and
experimental research, further strengthen the link between the 1SDI-QKD and EPR-
streeing.
Though entanglement is regarded as the essential tool for quantum computation and
communication, the research during the last decade has proven that it is not the
unique form of quantum correlation. A form of quantum correlation which can exist
even in the separable states was introduced and characterized by Henderson and
Vedral in 2001 [29] and separately by Ollivier and Zurek in 2001 [30]. Ollivier and
Zurek named it "Quantum Discord". This new form of quantum correlation which
is more robust than entanglement has evoked large number of attention during the
last decade, promising new asset for quantum information tasks. Due to the increas-
ing interest in quantum discord and the difficulty of calculating it for an unknown
quantum state, it is important to find a method to verify quantum discord in an
unknown quantum state. We have introduced and implemented experimentally a
straightforward method to verify quantum discord in unknown Gaussian states and
non-Gaussian states that are prepared by overlapping a vacuum state and a statistical
mixture of coherent states on a 50:50 beamsplitter. In Chapter 3, I present a through
discussion on quantum discord and our discord verification method as well as the
implementation and the results of our experimental survey .
In the Chapter 8 of my thesis, I discuss Bell’s inequality and show how a CHSH
inequality can be extended to continuous-variables according to the proposal of
ref [1, 2]. I engaged in detailed modelling to understand these experimental se-
tups and showed the possibility of implementing them using the current technology.
This work is in the direction of developing unconditional security through device-
independent QKD in continuous-variables.
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1.1 Publications (Article and Conference paper)

A large part of the material presented in the following chapters are published in
the peer-review journals or presented in conferences. The list of publications and
conference proceedings are as follows:

• N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad,
J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman and P. K. Lam. "Experimental
Demonstration of Gaussian Protocols for one-sided device independent quantum key
distribution", Optica 3(6), 634-642 (2016).

• S. Hosseini, S. Rahimi-Keshari, J. Y. Haw, S. M. Assad, H. Chrzanowski, J.
Janousek, T. Symul, T. C. Ralph and P. K. Lam, "Experimental Verification of
Quantum Discord in Continuous-Variable States", J. Phys. B: At. Mol. Opt. Phys.
47, 025503 (2014).

• H. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph,
T. Symul and P. K. Lam, "Measurement-based Noiseless Linear Amplification for
Quantum Communication", Nature Photonics 8, 333-338 (2014).

• S. Hosseini, S. Rahimi-Keshari, J. Y. Haw, A. M. Syed, H. M. Chrzanowski, J.
Janousek, T. Symul, T. Ralph, P. K. Lam, M. Gu, K. Modi, and V. Vedral, "Ex-
perimental Verification of Quantum Discord and Operational Significance of Discord
Consumption", in CLEO: 2014, OSA Technical Digest (online) (Optical Society of
America, 2014), paper FTh3A.6.

• H. Chrzanowski, N. Walk, O. Thearle, S. M. Assad, J. Janousek, S. Hosseini,
T. C. Ralph, T. Symul, P. K. Lam, "Measurement-based Linear Amplification for
quantum communication", Quantum and Nonlinear Optics III (2014).

• J. Janousek , H. Chrzanowski , S. Hosseini, S. M Assad, T. Symul, N. Walk, T.
C Ralph, P. K. Lam, "Virtual Noiseless Amplification", CLEO/Europe-IQEC 2013
Conference on Lasers and Electro-Optics-Int Quantum Electronics Conference
(2013) 1.

1.2 Thesis Outline

The structure of my thesis is shown in figure 1.1. This thesis consists of four main
parts. The first part provides the theoretical background necessary to understand
the rest of the thesis. The second part concentrates on the concept of "Quantum
Discord" and our proposed verification method and experimental implementation
of it. The third part of this thesis, consists of four chapters, the first one reviews
the concepts on the "secure quantum communications". The second chapter presents
our proposed 1SDI-QKD protocols using Gaussian states and measurements and the
experimental implementation of those protocols. The last part of this thesis studies
Bell-like correlations.



4 Introduction

Chapter 2: Theoretical Background.
In this chapter I provide the theoretical background on quantum optics which
are necessary to understand the rest of the thesis. This includes quantisation of
the electromagnetic field, quantum states of light, Wigner function and Gaus-
sian states, quantum measurements, phase and amplitude modulation, classical
and quantum information theory and quantum correlations.

Chapter 3: Experimental Verification of Quantum Discord in CV States.
In this chapter I review the concept of Quantum Discord, Gaussian quantum
discord, and a general method to verify quantum discord. Then I present the
experimental method that we proposed and implemented to verify quantum
discord in continuous-variable (CV) states. I describe our theoretical develop-
ment of the technique as well as the details of our experimental implementation
including the description on different parts of our setup and present our results.

Chapter 4: Secure Quantum Communication.
In this chapter I looked at "Quantum Key Distribution" and the standard form
of it. Then I introduce the proposed methods to close the gaps between the-
ory and practical implementation of QKD protocols. These methods include
"Device-Independent QKD", "Measurement-Device-Independent QKD" and "One-
sided Device-Independent QKD". I reviewed large number of researches that
developed these techniques.

Chapter 5: Theoretical Development of 1SDI-QKD Gaussian Protocols.
In this chapter I discuss the one-sided device-independent quantum key dis-
tribution and its connection to EPR steering, I present our theoretical analy-
sis to derive the key rates for 1SDI-QKD protocols using Gaussian states and
measurements. I elaborate all the concepts that help to understand our theoreti-
cal development; including entropic uncertainty relations, virtual entanglement
and EPR-steering.

Chapter 6: Experimental Implementation of 1SDI-QKD Protocols in EB Scheme.
In this chapter I detail our experimental implementation of 1SDI-QKD proto-
cols using an entangled source. I describe the technique and equipments that
we used to generate amplitude squeezed light and entanglement and explain
our control system and data aqcusition. I elucidate our experimental results,
error estimation and the computer model that I developed to simulate our ex-
periments.

Chapter 7: Experimental Implementation of 1SDI-QKD Protocols in P&M Scheme.
In this chapter I expound our experimental implementation of 1SDI-QKD pro-
tocols employing coherent states. I present the technical details of our experi-
ment including the calibration method and data acquisition and control system.
The result of this experiment is presented at the end of the chapter along with
error estimation and computer modelling.
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Chapter 8: Bell-like Correlations for Continuous-Variables.
This chapter is a brief report on our research on the possibility of the experi-
mental demonstration of Bell-like correlation for continuous variables. Due to
the progress of CV regime in quantum information, it is of particular interest to
perform a Bell test using continuous sources and detections. This experiment
is based on the proposal of ref [1, 2]. I conducted a computer simulations to
understand these experimental setups and investigate is Bell’s inequality can
be violated using continuous variables. I present the details of my modelling
and its result in this chapter.

Chapter 9: Conclusion.
This chapter concludes the whole thesis, suggesting the possible applications or
the developments that can be done to improve our theoretical and experimental
investigations.
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Chapter 2

Theoretical Background

2.1 Quantum Optics

Quantum optics is a field in which the optical phenomena can only be described em-
ploying the laws of quantum mechanics. The pioneering ideas of quantum theories
of light started from 1901 with Planck’s description of black-body radiation as dis-
crete energy packets called quanta, followed up in 1905 by Einstein’s explanation of
the photoelectric effect applying Planck’s hypothesis. The precise theory of quantum
optics appeared after the birth of quantum mechanics with Dirac’s seminal paper
on quantum theory of radiation in 1927. However, looking for quantum effects as-
sociated with optical field was not important till 1963 after Glauber described new
states of light with different statistical properties from classical light. Non-classical
properties of light like photon antibunching were demonstrated experimentally by
Kimble, Dagenais and Mandel in 1977 and squeezing in 1985 by Slusher et al. These
led to the birth of the new and fast growing field of Quantum Optics with so many
applications and other disciplines being involved with it like quantum information
processing [31]. In this chapter I will review some of the key concepts of quantum
optics and quantum information theory which will be used through out the entire
thesis.

2.2 Quantisation of the electromagnetic field

Quantum description of light requires quantisation of the electromagnetic field. In
order to quantize the electromagnetic field we can start from source free Maxwell
equations [38]:

∇ · B = 0, (2.1)

∇× E = −∂B
∂t

, (2.2)

∇ · D = 0, (2.3)

∇× H =
∂D
∂t

, (2.4)

7
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Where B = µ0H, D = ε0E, µ0 is the magnetic permeability and ε0 is the electric
permittivity of free space. Considering the Coulomb gauge, (∇ · A = 0), electric and
magnetic fields can be derived from a vector potential A(r, t) as follows [38]:

B = ∇× A , (2.5)

E = −∂A
∂t

, (2.6)

Considering the equations (2.5) and (2.4), it is seen that the vector potential A obeys
the wave equation. Hence, the vector potential can be described as follows [38]:

A(r, t) = ∑
k
(

h̄
2ωkε0

)1/2[akuk(r)e−iωkt + a†
ku∗k(r)e

iωkt] (2.7)

Where h̄ is the Planck’s constant, uk(r) corresponds to the set of vector mode func-
tions with frequency ωk which satisfy the wave equation. This leads to the corre-
sponding electric field as follows[38]:

E(r, t) = i ∑
k
(

h̄ωk

2ε0
)1/2[akuk(r)e−iωkt − a†

ku∗k(r)e
iωkt] (2.8)

The normalization factors are chosen in a way to make the amplitudes ak and a†
k

dimensionless. These amplitudes are complex numbers in classical electrodynamics.
In order to quantize the electromagnetic field these amplitudes need to follow the
bosonic commutation relationship [38]:

[âk, âk′ ] = [â†
k , â†

k′ ] = 0, [âk, â†
k′ ] = δkk′ (2.9)

Substituting equation (2.8) and the equivalent expression for H in the Hamiltonian
of the electromagnetic field as H = 1

2

∫
(ε0E2 + µ0H2) dr, and making use of the

commutation relations (2.9) one can write the quantum version of the Hamiltonian
of the electromagnetic field as [38]:

H = ∑
k

h̄ωk(â†
k âk +

1
2
) (2.10)

This quantum representation of the Hamiltonian suggests that the energy of the
electromagnetic field consists of the sum of the energies of the number of photons
plus the energy of the vacuum fluctuation in each mode.

2.3 Quadratures of the electromagnetic field

Quadrature operators correspond to the two components of the electric fields which
are 90o out of phase with each other. Considering the amplitude of the kth mode of
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the optical field âk, quadrature operators are defined as:

q̂k =
1√
2
(â†

k + âk) (2.11)

p̂k =
i√
2
(â†

k − âk) (2.12)

which implies that :

âk =
1√
2
(q̂k + i p̂k) (2.13)

From the bosonic commutation relation (2.9), it is seen that q̂k and p̂k are canonically
conjugate observables, where k and l are two different modes of the optical field [39]:

[ p̂k, q̂k] = ih̄δkl . (2.14)

with the following uncertainty relationship :

∆ p̂k∆q̂k ≥ h̄/2. (2.15)

Hence the field quadratures fulfil the same uncertainty relation as the position and
momentum operators of a harmonic oscillator. The uncertainty of field quadratures
suggests that there must be some level of uncertainty in the estimation of the direc-
tion and magnitude of the electric field vector in a phasor diagram [31].
We can group together the canonical operators in a vector as follows:

R̂ = (q̂1, p̂1, ..., q̂N , p̂N)
T, (2.16)

using this vector we can write the compact form of the bosonic commutation relations
between the quadrature operators as follows [32]:

[R̂k, R̂l ] = ih̄Ωkl , (2.17)

where Ω is defined as :

Ω =
N⊕

k=1

ω, ω =

(
0 1
−1 0

)
(2.18)

I will use this compact form of quadrature operators later when I want to define the
general form of Gaussian states.

2.4 Quantum States of Light

In this section I review several optical states which are important in quantum optics
and most of them will be used in this thesis. This includes quadrature states, Fock
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states, coherent states, thermal state and squeezed state.

2.4.1 Quadrature States

Quadrature states are the eigenstates of the quadrature operators q̂ and p̂ [39]. Con-
sidering the kth mode of the optical field we have:

q̂k|qk〉 = qk|qk〉 (2.19)

p̂k|pk〉 = pk|pk〉 (2.20)

Due to the canonical commutation relation that the field quadratures obey, which is
similar to the position and momentum, the spectrum of quadratures is unbounded
and continuous. However, the quadrature states are not very useful as they are
not exactly normalizable, while the quadrature wave functions ψ(q) = 〈q|ψ〉 and
φ(p) = 〈p|φ〉 are useful and have physical meaning. In fact |ψ(q)|2 and |φ(p)|2
are the quadrature probability distributions which are measured in quantum optics
experiments using homodyne detection (see section 2.8 for description on homodyne
detection) [39].

2.4.2 Fock States

Fock states or number states are the eigenstates of the number operator Nk = â†
k â

[38]:

â†
k â |nk〉 = nk |nk〉 (2.21)

âk and â†
k are raising and lowering operators, which in respect of the photons they

correspond to the creation and annihilation of a photon with a wave vector k and
polarization êk. The effect of these operators on the number states are illustrated as
follows[38]:

âk |nk〉 =
√

nk |nk − 1〉 (2.22)

â†
k |nk〉 =

√
nk + 1 |nk + 1〉 (2.23)

The ground state or the vacuum state is defined as [38]:

âk|0〉 = 0 (2.24)

This aids to characterize the energy of the ground state as [38]:

〈0|H|0〉 = 1
2 ∑

k
h̄ωk. (2.25)



§2.4 Quantum States of Light 11

By employing the creation operator successively, the state vector of the higher excited
states can be built from the vacuum state [38]:

|nk〉 =
(â†

k)
nk

(nk !)1/2 |0〉, nk = 0, 1, 2, ... . (2.26)

The number states form a complete set of basis vector for a Hilbert space, as they are
orthogonal 〈nk|mk〉 = δmn and complete ∑∞

nk=0 |nk〉〈nk| = 1, and their norm is finite
[38] .
Although the number states are useful basis for several problems in quantum optics,
they are not good representation of optical fields with large number of photons which
are generated in most quantum optics experiments [38]. In the following, I will
review more realistic states in quantum optics.

2.4.3 Coherent States

Coherent states are the closest quantum mechanical states to the classical monochro-
matic electromagnetic wave. They consist infinite number of photons which make
them suitable basis for many optical fields. The coherent states are generated by
applying the unitary displacement operator on the vacuum state [38]:

|α〉 = D(α)|0〉, D(α) = exp(αâ† − α∗ â) (2.27)

Besides coherent states are the eigenstates of the annihilation operator â [38]

â|α〉 = α|α〉 (2.28)

Since the annihilation operator â is not Hermitian, the eigenvalues of â are complex.
Hence, the coherent states have well-defined amplitude |α| and phase arg α corre-
sponding to the complex wave amplitude and phase in classical optics.
Coherent states are the minimum uncertainty states, while the uncertainty of both
quadratures are equal [38]:

∆q = ∆p = 1. (2.29)

We assumed that they follow the commutation relation as [ p̂, q̂] = 2i with h̄ = 2 [38].
This effect is shown in figure 2.1 using the phase diagram.
Since coherent states contain an infinite number of photons they can be expanded in
terms of the number states [38]:

|α〉 = e−|α|
2/2 ∑

αn

(n!)1/2 |n〉 (2.30)
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Figure 2.1: Phase-space representation of a coherent state.

This leads us to find the probability distribution of the photons in a coherent state to
be Poissonian [38]:

P(n) = |〈n|α〉|2 =
|α|2ne−|α|

2

n!
. (2.31)

Further details on the coherent states can be found in references like [38, 39, 31].

2.4.4 Squeezed States

Squeezed states are another member of the family of the minimum uncertainty states.
The uncertainty of one quadrature in these states is squeezed at the cost of the in-
crease of the uncertainty at the other quadrature. This effect is shown in figure 2.2
using phasor diagram [38].

X

P

Figure 2.2: Phase-space representation of a squeezed state.
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These states can be generated by applying the unitary squeezing operator [38]:

S(ε) = exp(1/2 ε∗a2 − 1/2 ε a†2) (2.32)

Where ε = re2iφ. The level of attenuation and amplification is given by the parameter
r = |ε|, which is called the squeezing factor. To produce the squeezed state |α, ε〉, at
first the vacuum state should be squeezed and then displaced [38]:

|α, ε〉 = D(α)S(ε)|0〉 (2.33)

Further details on squeezed states can be found in references like [38, 39, 31].

2.4.5 Thermal States

Before proceeding I will briefly mention the classification of the light based on "the
standard deviation of their photon number distribution" [31]. This classification is
illustrated in table2.1, where n̄ implies the mean value of the photon numbers [31].
As suggested by table 2.1, a perfect coherent light source provides a Poissonian dis-

Table 2.1: Classification of light based on the photon statistics.[31]

Photon statistics Classical equivalent ∆n

Super-Poissonian Thermal or chaotic light >
√

n̄
Poissonian Coherent light

√
n̄

Sub-Poissonian non-classical <
√

n̄

tribution, while a sub-Poissonian distribution corresponds to the non-classical light.
A super-Poissonian distribution of light appears when there are classical fluctuations
in the intensity of light. This form of light is obviously noisier than the coherent light
in terms of the classical intensity and quantum photon number fluctuations [31].

Thermal light, which is an electromagnetic radiation emitted from an object due
to its temperature has super-Poissonian distribution. Its probability function for a
single radiation mode consisting of n photons is defined as follows [31]:

Pω(n) =
1

n̄ + 1
(

n̄
n̄ + 1

)n (2.34)

Where ω, n and n̄ refer to the angular frequency of the single radiation mode, the
photon number and the mean value of the photon number respectively. This distri-
bution, which is famous as "Bose-Einstein distribution", has a variance of [31]:

(∆n)2 = n̄ + n̄2 (2.35)

This single mode variance can be described using Einstein’s interpretation of the
energy fluctuations of the black-body radiation. According to him, the first term
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in equation (2.35) arises from the quantum nature of light, while the second term
emerges from the thermal fluctuations, hence has classical origin [31]. More details
can be found in ref [31].

2.5 Wigner Function

The Wigner function which was initiated by Wigner in 1932, aims to define a prob-
ability distribution in quantum mechanics. However, due to the restriction imposed
by Heisenberg uncertainty relation [4] on the observation of conjugate variables, this
is not in general possible. Hence, the probability distributions in quantum mechan-
ics are called "Quasiprobability distributions" [39]. Since in quantum mechanics, the
objective is to find the expectation values of the physical observables, it is possible
to define a Wigner function in a way that can produce these expectation values. In
fact, the correct Weyl inverse transform is also necessary to complete this picture,
otherwise the Wigner function is more or less a tool to envisage the quantum states
[40]. The inverse Weyl transform Ã is defined as follows [40]:

Ã(x, p) =
∫

e−ipy/h̄〈x + y/2|Â|x− y/2〉 dy, (2.36)

The main characteristic of the inverse Weyl transform is to feature the trace of the
product of two operators as follows [40] :

Tr[ÂB̂] =
1
h

∫ ∫
Ã(x, p)B̃(x, p) dxdp. (2.37)

Hence, the expectation value of an observable A can be illustrated as [40]:

〈A〉 = Tr[ρ̂Â] =
1
h

∫
ρ̃Ã dxdp. (2.38)

Where ρ̂ is the density operator of a pure state |ψ〉 being defined as ρ̂ = |ψ〉〈ψ|. This
leads to designate the Wigner function as [40] :

W(x, p) = ρ̃/h =
1
h

∫
e−ipy/h̄ψ(x + y/2)ψ∗(x− y/2)dy. (2.39)

Obviously, the expectation value of an observable A now can be written by employ-
ing the Wigner function as [40]:

〈A〉 =
∫ ∫

W(x, p)Ã(x, p) dxdp. (2.40)

The projection of the Wigner function onto the x axis provides the probability dis-
tribution along the x axis as

∫
W(x, p)dp = ψ∗(x)ψ(x), and its projection on the

p axis gives the probability distribution on this axis as
∫

W(x, p)dx = φ∗(p)φ(p).
Therefor, despite the fact that the Wigner function is not like the classical probability
distribution, and can become negative or being ill-behaved, our objective is fulfilled
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[39].

2.6 Gaussian States

A Gaussian state is outlined as any state whose quasiprobabilty distribution, for
example its Winger function is Gaussian on the quantum phase space. A general
multi-variate Gaussian function has the following form [32]:

f (x) = C exp(−1
2

xTAx + bTx), (2.41)

here x = (x1, x2, ..., xN)
T, b = (b1, b2, ..., bN)

T and A is an N × N positive-definite ma-
trix.
In spite of the fact that an infinite-dimensional Hilbert space is associated with
continuous-variable quantum states, Gaussian states can be completely characterized
through their first and second canonical moments, which are the mean and covariance
matrix of their quadratures. Using the compact form of quadrature operators defined
in relation 2.16, the first moment is designated as [32]:

da = 〈R̂a〉ρ , (2.42)

and the second moment or the so-called covariance matrix is defined as :

σab =
1
2
〈R̂aR̂b + R̂bR̂a〉ρ − 〈R̂a〉ρ〈R̂b〉ρ . (2.43)

where 〈Ô〉ρ ≡ tr[ρÔ] is the mean of the operator Ô evaluated on the state ρ.
The covariance matrix is a real, symmetric, positive definite matrix. From the point
of view of statistical mechanics, its elements are the two-point truncated correlation
functions between the 2N canonical continuous variables [32].
For a bipartite Gaussian state, the covariance matrix can be written as follows:

σ ( q̂a, q̂b, p̂a, p̂b) =



σ
qq
aa σ

qq
ab σ

qp
aa σ

qp
ab

σ
qq
ba σ

qq
bb σ

qp
ba σ

qp
bb

σ
pq
aa σ

pq
ab σ

pp
aa σ

pp
ab

σ
pq
ba σ

pq
bb σ

pp
ba σ

pp
bb


(2.44)

First moment of N-mode Gaussian states can be easily adjusted by a local unitary
operations, known as displacement operator in phase space. These operations do
not change the informationally relevant properties, such as entropy or any measure
of correlations. Hence, without any loss of generality, the first moment can be set to
zero d = 0 [32]. This suggests that the covariance matrix of a bipartite Gaussian state
can be described by 10 matrix elements, since the symmetry of the covariance matrix
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requires σ
pq
ab = σ

qp
ba .

The Wigner function of a Gaussian state has in general a Gaussian form as [32]:

W(X) =
1

πN
1√

det(σ)
e(X−d)Tσ−1(X−d), (2.45)

where X ∈ R2N .
According to what mentioned, the covariance matrix contains all the locally-

invariant information on a Gaussian state. Hence it is natural to expect that any
genuine covariance matrix has to obey certain constraints in order to reflect the re-
quirements that the associated density matrix is physical. These requirements are
positivity of the covariance matrix in addition to the canonical commutation rela-
tions which is described as follows [32]:

σ + iΩ ≥ 0 (2.46)

This relation is in fact the strong form of uncertainty principle on the canonical
operators, and it is the necessary and sufficient condition that the covariance matrix
σ has to meet in order to describe a physical density matrix [32].

2.6.1 Symplectic Transformations and the Gaussian Unitaries

Gaussian quantum information is build based on the symplectic transformations.
The symplectic matrices are defined by the following condition [32]:

SΩST = Ω (2.47)

where Ω is the symplectic form described via 2.18. Symplectic matrices are always
square (2N × 2N), invertible matrices with determinant det(S) = +1 [32].

A very interesting feature of Gaussian states, is the way unitary transformations
act on them. A unitary transformation is mapped to real symplectic transformations on
the first and second moments as follows[32]:

ρ′ = ÛρÛ† −→ d′ = Sd (2.48)

σ′ = SσST (2.49)

here S is the symplectic matrix corresponding to the action of the unitary operator on
the Gaussian state. However, this transformation only holds for the unitary transfor-
mations whose are at most quadratic in the mode operators {âk, â†

k}. Because these
unitary transformations preserve the Gaussian nature of the states [32].

2.6.2 Williamson Theorem and Symplectic Spectrum

Williamson proved that by using a symplectic transformation, any symmetric positive-
definite matrix can be put into a diagonal form. A very important benefit of this re-
sult is in finding the so-called symplectic eigenvalues of an arbitrary Gaussian state
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described by a covariance matrix σ. This physically corresponds to a normal mode
decomposition.The theorem is formalised as follows [32]:

THEOREM: Assume σ be a 2N × 2N positive-definite matrix. Then there exists a
symplectic matrix S that diagonalises σ such that [32]:

σ = S
N⊗

k=1

(
νk 0
0 νk

)
ST (2.50)

The N eigenvalues νk collected into ν = diag(ν1, ..., νN), is called the symplectic
spectrum of σ. For a state to be physical, the symplectic eigenvalues must obey
νk ≥ 1 ∀ k = 1, ..., N. This is equivalent to the condition 2.46 [32].

2.6.3 Standard form of two-Mode Gaussian states

In section 2.6, I mentioned that the vector of first moments can be ruled out by
the use of local-unitary operations. For a two-mode Gaussian state, this suggests
that the covariance matrix can be described by only 10 elements. For the general
case, 2N(2N + 1)/2 real parameters are needed to build the covariance matrix (CM).
The number of the necessary parameters can further be reduced by applying local
unitaries. This will bring the CM to the so-called standard forms. Here, I only limit
myself to the two-mode Gaussian states, where by employing a local symplectic
operations Sl = S1 ⊕ S2, a covariance matrix σ can be brought to its standard form
σs f [33] :

ST
l σSl = σs f ≡

(
A C

CT B

)
(2.51)

where A = diag(a, a), B = diag(b, b), C = diag(c1, c2). The quantities Det σ =
(ab− c2

1)(ab− c2
2), Det A = a2, Det B = b2, Det C = c1c2 are the four local symplectic

invariants. Hence, the standard form of any CM is unique [33].
Using the standard form of the CM, the symplectic eigenvalues of a two-mode Gaus-
sian state can be written as follows [35]:

ν2
± =

1
2
[ ∆ ±

√
∆2 − 4I4 ] (2.52)

here I1 = Det A, I2 = Det B, I3 = Det C, I4 = Det σ and ∆ = I1 + I2 + 2I3.

2.7 Quantum Measurements

Due to the usage of "Quantum Measurement", especially "POVM" measurement
which implies the Positive Operator-Valued Measure in this thesis, I briefly discuss
these concepts here. In quantum mechanics, the measurements are represented by a
set of measurement operators like {Mm}, which perform on the state space of the sys-
tem under observation. Here ”m” shows the possible outcomes of the measurement.
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Considering that |ψ〉 describes the state of the quantum system before the observa-
tion, the probability of obtaining the result m from the measurement is represented
as follows [42]:

p(m) = 〈ψ|M†
m Mm|ψ〉 (2.53)

With the post-measurement quantum state of the system |ψ′〉, given by [42]:

|ψ′〉 = Mm|ψ〉√
〈ψ|M†

m Mm|ψ〉
(2.54)

Besides, the measurement operators should meet the completeness criterion as [42]:

∑
m

M†
m Mm = I (2.55)

This guarantees the sum of all the probabilities to be equal to one [42]:

∑
m

p(m) = ∑
m
〈ψ|M†

m Mm|ψ〉 = 1. (2.56)

2.7.1 Positive-Operator-Value-Measurement (POVM)

POVM measurement, which implies the "Positive Operator-Valued Measure", is a
special case of the general formalism of quantum measurement. The purpose of
defining it separately is to provide a straightforward tool to inspect the measure-
ment statistics, without looking at the quantum state after the observation. This is
applicable for the experiments where the system needs to be observed only once.
Again we can assume that the measurement operators Mm function on the quan-
tum system being in the state |ψ〉, with the outcome probability defined as p(m) =
〈ψ|M†

m Mm|ψ〉. We designate the operator Em as [42]:

Em ≡ M†
m Mm. (2.57)

Considering what mentioned earlier Em is a positive operator, in a way that ∑m Em =
I and p(m) = ∑m 〈ψ|M†

m Mm|ψ〉. The complete set of operator {Em} which are
enough to describe the probability distribution obtained from the different measure-
ment outcomes is named as a "POVM". (See ref [42] for more details.)

2.8 Measurement in Quantum Optics

In quantum optics experiments, photon numbers either can be measured employing
the direct photo-detection or utilizing a technique called homodyne detection. In ho-
modyne detection field quadratures defined by relations 2.11 and 2.12 are measured.
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2.8.1 Quadrature Measurement

The homodyne detection technique for quadrature measurement is described in
many quantum optics books and texts including ref [39]. Here I briefly review it.
The schematic diagram of a balanced homodyne detection is shown in figure 2.3. As
it is illustrated the signal beam is interfered with an intense coherent beam called lo-
cal oscillator (LO). The local oscillator supplies the phase reference for the quadrature
measurement. It should be much more powerful than the signal beam in order to
be treated classically. The interested quantity is the subtraction of the two photocur-

LO

Signal

PD

PD

BS

Figure 2.3: Schematic diagram of a balanced homodyne detection. Here LO is the
local oscillator, BS is beam-splitter and PD is photo-detector. âin shows the input
mode, αLO is the amplitude of the local oscillator, â′out,1 and â′out,2 refer to the emerging

output modes of the beam-splitter interfering the signal and local oscillator

rents I1 and I2. These photocurrents are assumed to be proportional to the photon
numbers of the quantum mode reaching each detector defined as follows:

n̂1 = â′†out1 â′out1 and n̂2 = â′†out2 â′out2. (2.58)

Here â′out1 and â′out2 are the output modes of the beam-splitter mixing the input signal
and local oscillator. They are defined as [39]:

â′out1 =
1√
2
(âin − αLO), (2.59)

â′out2 =
1√
2
(âin + αLO). (2.60)

Hence, the subtracted photon numbers can be written as [39]:

n̂21 = n̂2 − n̂1 = α∗LO âin + αLO â†
in. (2.61)
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Considering the equation (2.11), this can be reduced to [39]:

n̂21 =
√

2 |αLO| q̂. (2.62)

Since the local oscillator carries the phase information, equation (2.62), hence the
balanced homodyne detector indeed measures the quadrature component.

2.8.2 Simultaneous Measurement of Two Quadratures

As we know quantum mechanics imposes restriction on the observation of the canon-
ically conjugate quantities simultaneously and precisely. However, it is still possible
to perform such measurement if we sacrifice the accuracy and allow some extra
quantum noise to be involved. Consider we have two conjugate operators q̂ and p̂,
following the commutation relation:

[q̂, p̂] = ih̄, (2.63)

The concurrent observation of q̂ and p̂ is possible through the definition of other
observables described by the relation [39] :

Q̂1 = q̂ + Â, P̂2 = p̂ + B̂. (2.64)

The operators Â and B̂ recount the extra quantum fluctuations introduced to the
system in order to perform the simultaneous measurement. They require not to
carry any preexisting amplitude [39]:

〈Â〉 = 〈B̂〉 = 0. (2.65)

And we demand that [39]:

[Q̂1, P̂2] = 0. (2.66)

In order to fulfill this idea in the quantum optics experiments, the signal beam is
divided into two, using a beamsplitter. Each part is then sent to a homodyne mea-
surement station, one for observing q̂ and the other for observing p̂. The key point is
to ensure that the local oscillator signals sent to two homodyne detection should have
π/2 phase shift. This is generally realized by dividing the same local oscillator into
two, by employing a beamsplitter and then applying a phase shift on one arm via a
λ/4 wave-plate [39]. This technique is called dual-homodyne or heterodyne detection.
A schematic diagram of the heterodyne (dual-homodyne) measurement is depicted
in figure 2.4.

2.9 Phase and Amplitude Modulation

Phase and amplitude modulation are used to encode information on a beam of laser.
These concepts are repeatedly used throughout this thesis.
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LO

LO

Signal

Vacuum

Figure 2.4: Schematic diagram of heterodyne (dual-homodyne) detection. The ele-
ments are the same as defined in figure 2.3

2.9.1 Phase Modulation

If we assume to be in a frame rotating at the carrier frequency Ω, a phase modulated
optical field can be written as :

aPM(t) = a0 exp(i Ωt) exp[iξ Cos(ωMt)] (2.67)

Where a0 exp(i Ωt) is the optical field prior to modulation, ωM is the frequency
of modulation, ξ is called "modulation’s depth". ξ = 1 corresponds to complete
modulation and ξ = 0 to zero modulation.
For small modulation depth (ξ ≤ 1), the field aPM(t) can be decomposed into a
component at the laser carrier frequency Ω and sidebands at ωM and −ωM away
from the carrier:

aPM(t) ≈ a0 exp(i Ωt)(1 + iξ Cos(ωMt))

= a0 exp(i Ωt) + i
ξ

2
[exp(i(Ω + ωM)t) + exp(i(Ω−ωM)t)]

This shows that the phase modulation transfers optical power from the carrier into
sidebands at frequencies ±ωM. These side bands only appear while the phase is
measured. Obviously the intensity will not be modulated as |aPM(t)|2 = a2

0. The
calculation for larger modulation depth involves Bessel functions.
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2.9.2 Amplitude Modulation

A beam of light which is amplitude modulated can be expressed as:

aAM(t) = a0 exp(i Ωt) (1− ξ

2
(1−Cos(ωMt))) (2.68)

which can be written as:

aAM(t) = a0 exp(i Ωt)(1− ξ

2
) + a0

ξ

4
[exp[i(Ω + ωM)t] + exp[i(Ω−ωM)t]] (2.69)

We see that the effect of amplitude modulation is to create new frequency compo-
nents at ±ωM, which are known as the upper and lower sidebands. For completely
modulated light with ξ = 1, the sidebands have exactly half the amplitude of the
fundamental component. The resultant intensity is modulated and given by :

I(t) = |aAM(t)|2 = I0 (1−
ξ

2
(1−Cos(ωMt)))2 (2.70)

Where I0 = a2
0. More information on phase and amplitude modulation can be found

in ref [34].

2.10 Information Theory and Entropy

In this section I briefly review the basic concepts of the classical and quantum infor-
mation theory which are based on the definition of entropy.

2.10.1 Shannon Entropy

Shannon entropy is the key concept of classical information theory. For a classical vari-
able X with values x occurring with probability px, the Shannon entropy measures
how much information one gains after learning the value of X. There is another
complementary view of entropy as a measure of one’s uncertainty before learning
the value of X [42].
The entropy of a random variable is characterized as a function of the probabilities of
the different possible values that the random variable can take. The Shannon entropy
related to these probabilities is defined as [42]:

H(X) ≡ H(p1, ..., pn) ≡ −∑
x

px log px. (2.71)

Logarithms are taken to base two. The main reason for this definition of entropy is its
ability to quantify the physical resources which are required to store the information
[42].
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2.10.2 Relative Entropy

The relative entropy is a measure of closeness of two probability distributions, p(x)
and q(x), on the same index set, x. It is defined as [42] :

H(p(x)||q(x)) ≡∑
x

p(x) log
p(x)
q(x)

≡ −H(X)−∑
x

p(x) log q(x). (2.72)

It is assumed that −0 log 0 ≡ 0 and −p(x) log 0 ≡ +∞ if p(x) > 0 [42].

2.10.3 Shannon Entropy of Continuous Random Variable

Shannon’s entropy can be extended to continuous random variables. Assume X be a
continuous random variable with the probability density function defined by p(x) on
I, where I = (−∞, ∞). Then the Shannon’s entropy for continuous random variables
is given by [43] :

H(X) = −
∫

I
p(x) log p(x) dx, (2.73)

Although it has many properties of Shannon’s entropy of discrete variables, un-
like that it can become infinitely large or negative. In addition, the Shannon’s entropy
for continuous random variables does not necessary remain invariant under a change
of variable, while Shannon’s entropy of discrete variables remains invariant [43].

2.10.4 Joint Entropy

The joint entropy quantifies one’s total uncertainty about the pair of random variables
(X, Y). It is naturally defined as [42]:

H(X, Y) ≡ −∑
x,y

p(x, y) log p(x, y). (2.74)

2.10.5 Conditional Entropy

If we have a pair of random variables (X, Y), by performing a measurement on the
random variable Y we can learn its value and acquire H(Y) bits of information about
the pair. The conditional entropy quantifies our lack of knowledge about the pair
(X, Y), on average, given the fact that we know the value of Y. It is simply defined
as [42]:

H(X|Y) ≡ H(X, Y)− H(Y). (2.75)

Another way to express It, is the lack of knowledge of X when the state of Y is in the
yth state, weighted by the probability for yth outcome as [45] :

H(X|Y) = −∑
y

p(X|y)H(X|Y = y) (2.76)
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where y is the outcome of the measurement performed on subsystem Y . Conditional
entropy can be shown schematically using the ’entropy Venn diagram’ depicted in
figure 2.5.

H(X) H(Y)

H(X:Y)H(X|Y) H(Y|X)

Figure 2.5: Entropy Venn diagram, showing the relationship between different en-
tropies [42].

2.10.6 Mutual Information

The mutual information quantifies how much information two random variables
(X, Y) have in common [42]. It is defined as [30]:

H(X : Y) = H(X)− H(X|Y) (2.77)

This can be seen in ’entropy Venn diagram’ depicted in figure 2.5. The mutual infor-
mation quantifies the average decrease of entropy of X when the value of Y is known
[30]. Using the ’Bayes’ rule, which defines the conditional probability for classical
variables as px|y = pxy/py [44], equation (2.77) can be written equivalently as [30]:

H(X : Y) ≡ H(X) + H(Y)− H(X, Y). (2.78)

Further information can be found in ref [42, 30, 44]

2.10.7 von Neumann Entropy

In classical information theory we calculate the uncertainty of the classical probability
distribution using Shannon entropy. Quantum state can be described similarly with
density operators ρ, and Shannon entropy can be generalized for quantum states to
Von Neumann entropy [42].
The Von Neumann entropy measures the information of a quantum state by finding
the entropy of the probability distribution resulted from the state ρ by a projective
measurement onto the state’s eigenvectors [29]. It is defined as:
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S(ρ) = −Tr(ρ log ρ) = H(λ) (2.79)

Where λ = λi are the eignevalues of the state. Here also the logarithms are taken to
base two and 0 log 0 ≡ 0.

2.10.8 Quantum Mutual Information and Conditional Entropy

Classical mutual information described by equation (2.78) can be easily generalized
to quantum mutual information by simply replacing the Shannon entropy by Von
Neumann entropy and the classical probability distributions by density matrices ρ as
follows [30]:

I(ρXY) = S(ρX) + S(ρY)− S(ρXY) (2.80)

However, equation (2.77) cannot be easily generalized to quantum states, as to define
the conditional entropy H(X|Y) one needs to define the state of X given the result
of the measurement performed on the state of Y. This is more obvious by looking at
the measurement-based version of conditional entropy defined by the relation 2.76.
Such statement is ambiguous in quantum mechanics until the set of the measure-
ment which will be performed on the state Y is selected [30]. In order to define the
quantum analogue of the measurement-based conditional entropy a set of (POVM)
with elements {Ey = M†

y My} is assumed to perform on subsystem Y with y to be the
outcome of the measurement (see subsection 2.7.1 for description on POVM). The
probability of obtaining the outcome y is py = tr(ρxyEy) and subsystem X is left in
the conditional state of ρX|y = trY(ρXYEy)/py. This allows us to write the quantum
version of measurement- based conditional entropy as S{Ey}(X|Y) ≡ ∑y py S(ρX|y).
Hence, the quantum analogue of mutual information defined by equation (2.77) can
be written as [44]:

max{Ey} J(X|Y) ≡ S(X)− S{Ey}(X|Y) (2.81)

The quantity max{Ey} J(X|Y) which is maximized over all possible POVMs is called
one way classical correlations [29].

2.10.9 Holevo Bound

Considering the fact that quantum states are generally nonorthogonal, a nontrivial
concern to address is the maximum information that can be extracted from it using
a quantum measurement. This quantity is called the accessible information of the
ensemble. The Holevo bound which is an extremely useful tool in quantum informa-
tion theory, provides an upper bound on the amount of accessible information. It is
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defined as follows [42] :

H(X : Y) ≤ S(ρ)−∑
x

pxS(ρx), (2.82)

Where ρ = ∑x pxρx. This refers to the situation when Alice prepares a state ρX, while
X = 0, ..., n with probability of occurring as p0, ..., pn, and Bob operates a POVM mea-
surement on the state with elements {Ey} = {E0, ..., Em}, and y being the outcome of
the measurement [42]. (See ref [42] for more details).

2.11 Quantum Correlations

Since the focus of this thesis is on Quantum Correlations, I specify this section to
describe the well-known forms of quantum correlations and the way to quantify
them especially in Gaussian states.

2.11.1 Entanglement and non-locality

When two physical systems have an interaction with each other, some form of cor-
relation with a quantum nature is created between them, which remains even when
the two systems get specially separated. This suggests that, if one performs a mea-
surement on a local observable on the first system, the state of the second system,
no matter where it is, is modified instantaneously. This phenomenon, named by Ein-
stein, Podolsky and Rosen as "spooky action at a distance" [3], is called entanglement
which is the non-classical and non-local quantum correlation. However, non-locality
and entanglement are a bit different. It can be understood from the general frame-
work of no-signalling theories which demonstrate more non-local features than the
quantum mechanics [33, 36]. According to Bell [33, 37], non-locality is a channel in
nature which allows one to distribute correlations between distant parties, in a way
that the correlations are not pre-determined at the source, and the correlated random
variables can be generated when distant parties perform local measurements on their
subsystems. Quantum mechanics describes this channel as an entangled pair [33].
As I will describe in the following chapters this characteristic of nature is harnessed
in secure quantum communications.
Considering the importance of quantum entanglement, it is desirable to have an op-
erational criterion to examine if a given state is entangled or not. As I will show
shortly, for pure states of the composite quantum system, it is relatively easy to quan-
tify entanglement. However, the situation is more complicated with mixed states, as a
mixture can be in many different ways where no one can extract all the information
it contains [33].

2.11.2 Entanglement Criteria for Pure Bipartite States

A pure quantum state |ψ〉 ∈ H = H1 ⊗H2 is entangled if it cannot be written as a
product state such that :
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|ψ〉 = |φ〉1 ⊗ |χ〉2 ≡ |φ, χ〉. (2.83)

where |φ〉1 ∈ H1 and |χ〉2 ∈ H2.
In order to quantify entanglement one can write a pure quantum state in its unique
Schmidt decomposition [42] as follows [33] :

|ψ〉 =
d

∑
k=1

λk|uk, vk〉, (2.84)

where

d = min{d1, d2} , (2.85)

λk ≥ 0,
d

∑
k=1

λ2
k = 1. (2.86)

The local bases {|uk〉} ∈ H1 and {|vk〉} ∈ H2 are the Schmidt bases, the positive
numbers {λk} are the Schmidt coefficients and the number d of the non-zero terms
in the Schmidt number. It can be seen that the product states |ψ〉 = |φ, χ〉 can be
automatically written in the Schmidt form when d = 1. In other words if a state can
be written as Schmidt decomposition with only one coefficient, then it is necessarily
a product state. Hence, a pure state |ψ〉 of a bipartite system is entangled if and only
if d > 1 [33].

2.11.3 Entanglement Criteria for Mixed States

A mixed state can be written as a convex combination of pure states :

ρ = ∑
k

pk|ψk〉〈ψk| (2.87)

Now the problem is that this decomposition is not unique, unless ρ is already a
pure state. This means that the mixed states can be prepared in many different
ways which makes the entanglement’s quantification very difficult. Considering the
ambiguity on the state preparation, no one knows a priori if the correlations between
the subsystems arose from a quantum interaction or were induced by means of LOCC
(Local Operations and Classical Communications) which causes classical correlations
[33].

A mixed quantum state of a bipartite system, described on the Hilbert space
H = H1 ⊗H2, is separable if and only if it can be written as follows :

ρ = ∑
k

pk(σk ⊗ τk). (2.88)

where {pk ≥ 0, ∑k pk = 1}, and states {σk} ∈ H1 and {τk} ∈ H2. Otherwise, ρ is en-
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tangled . However, this is a very impractical way of checking if a state is entangled or
not. Since deciding entanglement or separability according to this definition would
require one checks all the infinitely many decomposition of a state ρ and look for at
least one of them to be in the form of 2.88. Hence, several operational criteria have
been developed to check entanglement in mixed quantum states [33]. In addition,
developing a criterion for checking the inseparability will be dramatically simplified
if we restrict ourselves to the certain class of quantum states. Considering that the
focus of this thesis is on the continuous-variables and particularly on Gaussian states,
here I only present two entanglement criteria applicable to the two-mode Gaussian
states. The first one is the Duan inseparability criterion introduced by Duan et al. [48],
which provides a necessary and sufficient condition for the inseparability of two-
mode Gaussian states. The second one is the EPR-paradox criterion introduced by
Reid[47] which quantifies the degree of EPR paradox of a state.

2.11.4 Duan Inseparability Criterion

The Duan inseparability criterion quantifies the strength of entanglement of a quan-
tum state. For the case of two-mode quadrature entangled state, It is defined as
[49]:

I =
√

∆2 x̂a±b ∆2 p̂a±b (2.89)

where ∆2Ôa±b = min〈(δÔa ± δÔb)
2〉/2 . If I < 1, the state is inseparable. I = 0 cor-

responds to the best possible entanglement obtained from combining two perfectly
squeezed beams [49].

2.11.5 EPR Paradox Criterion

EPR criterion measures the degree of the EPR paradox, introduced by Einstein,
Podolsky and Rosen in 1935 [3]. It is based on the ability of a state to produce
an apparent violation of the Heisenberg uncertainty relation between two conjugate
variables. A quantifying measure of an EPR violation for the continuous variables
was introduced by Reid in 1988 [46, 47]. This criterion which is more restrictive
than the Duan inseparability criterion, is defined as the product of the conditional
variances of the phase and amplitude quadratures as follows:

εab = ∆q̂a|b∆ p̂a|b < 1 (2.90)

εba = ∆q̂b|a∆ p̂b|a < 1 (2.91)

The conditional variances are defined as :

∆q̂a|b = ∆q̂a −
|σqq

ab |
∆q̂b

(2.92)
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where σ
qq
ab is the covariance and ∆q̂a and ∆q̂b are the variances (please see 2.44). Sim-

ilar relation applies for other quadrature p̂ or the other direction of the conditional
variances. The conditional variance quantifies the reduced uncertainty on subsystem
a following a measurement on subsystem b. This gives a measure where the subsys-
tems a and b are not perfectly correlated, but by performing a measurement on one
subsystem some information can be gained about the other subsystem.
A state demonstrates an EPR paradox if the product of the conditional variances of
the two orthogonal quadratures is below one. Satisfying this criterion is a sufficient
but not the necessary condition for a state to be entangled.

2.11.6 Quantum Discord

While it was thought previously that the absence of entanglement implies the classi-
cality of the states, recent research has shown that some form of quantum correlations
can exist even in the separable states. This notion of quantumness which was first
discovered by Ollivier and Zurek [30] is called quantum discord. This is an important
form of quantum correlations that attract lots of attentions during recent years. This
concept will be elaborated in the next chapter.

2.12 Summary

In this chapter I reviewed the key concepts of quantum optics and information the-
ory which will be used though out this thesis. This includes introducing the optical
field quadratures, different quantum states of light, Wigner function, Gaussian states
and symplectic transformations, quantum measurement and the detection schemes,
phase and amplitude modulations which are used in the continuous-variable quan-
tum optics experiments . In the information theory part, I covered the concepts
of Shannon entropy, relative entropy, conditional entropy, mutual information, von
Neumann entropy, quantum mutual and conditional entropy and Holevo bound.
In addition, in the section of Quantum Correlations, I discussed Entanglement and
non-locality, the criterion of entanglement in pure states and two important entan-
glement criteria in the two-mode Gaussian states. I mentioned "Discord" here as a
form of quantum correlations that can exists even in the separable states. However,
this concept will be discussed thoroughly in the next chapter.
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Chapter 3

Experimental Verification of
Quantum Discord in
Continuous-Variable States

3.1 Introduction

Quantum systems can be correlated in a superior way than the classical systems.
These correlations are particularly important as the main resource for quantum infor-
mation processing and quantum communication. Due to the importance of quantum
correlations, quantifying the classical and quantum part of the correlations has been
the subject of many studies during the last decade. As mentioned in the previous
chapter, entanglement was considered before as the only form of non-classical corre-
lation and the main resource that causes quantum computation and communication
outperform the classical counterparts. Any correlation in the absence of entangle-
ment was thought to be purely classical. This idea was also supported by the funda-
mental Bell’s inequality [5], which cannot be violated by any classical or quantum
superposition and requires genuine entanglement to be violated. However, nowa-
days the accepted definition of a classical bit, is in one of two fully-distinguishable
states. According to this definition, general quantum states form a subset of the sep-
arable states, meaning that some separable states are quantum correlated [44]. This
suggests that entanglement no longer is the only source of quantumness. In addi-
tion, quantum computation models with no or very little entanglement were sug-
gested which can achieve much higher efficiency than classical computers [50, 51].
These models and other studies during the last decade have convinced physicists
that entanglement and classical correlation do not exhaust all the possible correla-
tions. Ollivier and Zurek were the first to characterize this extra quantum correlation
beyond entanglement and named it "Discord" [30]. Quantum discord has attracted
so much attention during the last decade and was suggested as a figure of merit
for characterizing the quantum resources in a computational model [52]; it was also
introduced as a resource for quantum state merging [53, 54], and for encoding in-
formation onto a quantum state [55]. Besides it has been shown as the necessary
resource for quantum remote state preparation, outperforming entangled states [56]

31
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This measure of nonclassical correlation has been extended to continuous-variable
systems to study quantum correlations in Gaussian states [57, 35] and certain non-
Gaussian states [58]. In addition, resilience of quantum illumination, a paradoxical
technique that employs entanglement to detect reflecting objects in noisy environ-
ments, has also been demonstrated to be due to quantum discord [59]. It also de-
termines the interferometric power of quantum states used in metrology [60]. Since
quantum discord is more robust than entanglement, it has been shown that it can
serve well in Device-Dependent quantum key distribution, where the trusted noise
is so high that prevents the distribution and distillation of entanglement [61]. The
relation between quantum coherence (superposition) and quantum discord [62], and
incoherent operation and discord-type quantum correlation [63] has also been stud-
ied recently.
Considering the importance of quantum discord, of particular interest is to experi-
mentally verify discord for an unknown quantum system. Methods have been pro-
posed to test for nonvanishing quantum discord of bipartite discrete-variable quan-
tum states [64, 65, 66, 67, 68, 69, 70], some of which have been experimentally imple-
mented in nuclear-magnetic-resonance systems [71, 72] and in an optical system [73].
A more general measurement-based method for verifying quantum discord was in-
troduced in ref [74], which can be applied to both discrete- and continuous-variable
systems. We have introduced and demonstrated experimentally a simple and effi-
cient technique to verify quantum discord in unknown Gaussian sates and a certain
class of non-Gaussian states, which I will elaborate it here.
The structure of this chapter is as follows. At first, I will review the definition of
quantum discord as the measure of quantum correlation beyond entanglement in
section 3.2. Then I mention the Gaussian quantum discord and present the general
form of it in section 3.3. After that, in section 3.4, I will then discuss the general
method for verification of quantum discord proposed in ref [74]. The main part of
this chapter which describes our simple experimental technique to verify quantum
discord in an unknown Gaussian states and certain class of non-Gaussian states, will
appear in section 3.5. It itself consists of two other sections, where in the section 3.6 I
will explain the theoretical development of our technique, and in the section ?? I will
detail our experimental implementation and results. This survey has been published
in the " Journal of Physics B " with the title and author list as follows:

"S. Hosseini, S. Rahimi-Keshari, J. Y. Haw, S. M. Assad, H. Chrzanowski, J.
Janousek, T. Symul, T. C. Ralph and P. K. Lam, "Experimental Verification of Quan-
tum Discord in Continuous-Variable States", J. Phys. B: At. Mol. Opt. Phys. 47, 025503
(2014)."

This research has been carried out in the "CQC2T Center of Excellence". The the-
oretical development has been done by Saleh Rahimi-Keshari and Timothy C Ralph
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3.2 Definition of Quantum Discord

Quantum Discord is simply defined as the mismatch between two quantum ana-
logues of classically equivalent expressions of the mutual information. As mentioned
previously in section 2.10.6, classical mutual information is given by two equiva-
lent expressions 2.78 and 2.77, while the mutual information in quantum mechanics,
is described by two different expressions 2.80 and 2.81. According to Ollivier and
Zurek, quantum discord from subsystem A to subsystem B is defined as follows:

δ(B|A) = I(A : B)− J(B|A) (3.1)

Where J(B|A) is maximized over all the possible measurements. The difference ba-
sically arises from the quantum analogous of conditional entropy J(B|A) due to the
nature of measurements in quantum mechanics in general (see section 2.10.8). Hen-
derson and Vedral also looked at J(B|A), and have shown the max{Ea} J(B|A) to be
the classical correlations [29]. Here Ea = {M†

a Ma} is a set of a positive-operator-
valued-measurement (POVM) performed on subsystem A (see section 2.7.1). Hence,
quantum Discord is the difference between the total correlation and the classical cor-
relations. However, it is not clear how to perform the maximaization to calculate the
quantum version of the measurement-based conditional entropy in general, unless
there are restrictions to certain class of states and measurements. Of particular inter-
est is Gaussian quantum discord. It is defined as the quantum discord of a bipartite
Gaussian state, while the maximaization is limited to the generalized Gaussian mea-
surements [57, 35]. Interestingly, it was shown in ref [74] that Gaussian states with
nonzero Gaussian quantum discord, have also nonzero quantum discord.

3.3 Gaussian Quantum Discord

Considering that the focus of this thesis is on the two-mode Gaussian state, before
presenting our experimental technique to verify quantum discord, I describe how
quantum discord for a bipartite Gaussian state is calculated.
At first, one should notice that quantum discord is invariant under the operation of
local unitaries [35]. Hence, we are allowed to perform our analysis using the standard
form of covariance matrix (see section 2.6.3). The definition of the Gaussian quantum
discord is also based on the mismatch defined in relation 3.1. We can assume a set
of POVM such as [35]:

ΠX = D(X)ρMD(X)†,
∫

dX ΠX = I (3.2)

here X is a two dimensional real vector and ρM is a bipartite Gaussian state with
zero mean and a covariance matrix σM in the standard form as shown in 2.51. If a
measurement described by the set of POVM, {ΠX}, is performed on the mode B of a
bipartite Gaussian state, the outcome is described by the distribution p(X), which is
a bimodal Gaussian state with the covariance matrix (B + σab). Then the conditional



34 Experimental Verification of Quantum Discord in Continuous-Variable States

state of mode A on the outcome of measurement on mode B, which is shown by
ρX , is a Gaussian state with covariance matrix given by the Schur complement σP =
A− C(B + σab)

−1CT and mean of XT(B + σM)−1CT [35]. Where A = diag(a, a), B =
diag(b, b), C = diag(c1, c2) as were previously defined in subsection 2.6.3.
Quantum discord can be written as [35]:

δ(ρ) = S(ρb)− S(ρM) + max{ΠX}

∫
dX p(X) S(ρX) (3.3)

It was shown that the general form of Gaussian quantum discord is as follows [35]:

δ(ρ) = h(
√

I2)− h(ν−)− h(ν+) + max[h(
√

σP)] (3.4)

where h(x) = (x+ 1
2 )log(x+ 1

2 )− (x− 1
2 )log(x− 1

2 ), and ν± are the symplectic eigen-
values of ρM explained by relation 2.52, and I2 = Det B which was defined in subsec-
tion 2.6.3

3.4 Verification of Quantum Discord in General

Knowing that it is not always easy to calculate quantum discord, it is important
to find a method to verify quantum discord in an unknown quantum state. A
measurement-based method for verifying quantum discord in general was proposed
in ref [74], which is based on measuring the conditional states of one subsystem,
for example subsystem B corresponding to the outcomes of an informationally com-
plete POVM (IC-POVM) performed on the other subsystem (subsystem A). If the
conditional states commute with one another then the quantum discord is zero, oth-
erwise is nonzero. A POVM is called informationally complete when its outcome
probabilities are sufficient to build the quantum state uniquely. For example, they
provide enough information to perform the quantum state tomography [79, 80]. If
we assume that k and k′ are two outcomes of IC-POVM performed on subsystem A,
then this theorem can be written mathematically as:

δ(B|A) = 0 ⇐⇒ [ ρB|k, ρB|k′ ] = 0 f or any k and k′ (3.5)

Here ρB|k and ρB|k′ are conditional states (see section 2.10.8). In order to apply this
theorem experimentally, one needs to calculate the commutation relation for all the
outcomes of the IC-POVM performed on subsystem A until one of the commutation
relations between conditional states of subsystem B is nonzero. However, if some
prior knowledge about the state is available, it is possible to verify quantum discord
with only a few measurements. As shown in ref [74], to verify nonzero quantum
discord in Gaussian states, one needs to check whether the peaks of the two condi-
tional Wigner functions (see section 2.5) corresponding to two different outcomes of
heterodyne measurements (see section 2.8) do not coincide at the same point in the
phase space. Although, it seems more practical than calculating the commutation
relations, it is still not very efficient as one has to repeat the measurements many
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times in order to obtain sufficient data to build the conditional Wigner functions. In
the next section I will detail the simple method that we propose to verify the nonzero
quantum discord in continuous variable systems.

3.5 Experimental Method to Verify Quantum Discord in Con-
tinuous Variable Systems

In this section I will detail our experimental technique for verifying quantum dis-
cord of Gaussian states, which can also be applied to some class of non-Gaussian
states. I will start with the theoretical description and terminate with presenting the
experimental results.

3.6 Theoretical Development of Verification of Quantum Dis-
cord in Continuous-Variables

The theoretical development is divided into two parts. First part is focused on the
Gaussian states and the second part on certain class of non-Gaussian states..

3.6.1 Theory: Gaussian States

It was shown in ref [74], that a bipartite Gaussian state has zero quantum discord if
and only if there is no correlation between the quadratures of the two subsystems.
For example, if we consider the standard form of covariance matrix defined by matrix
2.51, no correlations between the quadratures corresponds to C = 0.

Instead of performing full tomography proposed in ref [74], we suggested to in-
spect the correlation between two quadratures employing only two homodyne mea-
surements (see section 2.8). Suppose Alice and Bob are sharing a bipartite Gaussian
state (see section 2.6). In order to verify quantum discord they can conduct two ho-
modyne detections, one for each subsystem. Without loss of generality, we assume
the covariance matrix to be in the standard form and the mean to be zero. Since these
can be always accomplished by appropriately choosing the zero reference phase of
the local oscillators and shifting the zero reference points of the quadratures being
measured. Considering the overall quadrature vector to be as x = (x̂A, p̂A, x̂B, p̂B),
the joint marginal distribution describing the outcomes of two homodyne detections
is then given by [39]

DAB(xA, θA, xB, θB) =
∫ +∞

−∞

∫ +∞

−∞
dpAdpBW(xUθA,θB)

=
π√

λθA µθB − ν2
θA,θB

× exp
(
−λθA x2

A − µθB x2
B + 2νθA,θB xAxB

)
, (3.6)
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where

UθA,θB =


cos θA sin θA 0 0
− sin θA cos θA 0 0

0 0 cos θB sin θB
0 0 − sin θB cos θB


with θA and θB being the phases of the local oscillators used in Alice’s and Bob’s
homodyne detection, respectively, and λθA , µθB , and νθA,θB are functions of the the
elements of the covariance matrix, which depend on θA and θB. If νθA,θB is nonzero,
then the quadrature associated with the phase θA of subsystem A is correlated to
the quadrature associated with the phase θB of subsystem B. In order to inspect this
correlation, Bob measures two conditional marginal distributions corresponding to
the outcomes xA > 0 and xA < 0 of Alice’s measurements

DB|±(xB, θB, θA) =
∫ ±∞

0
(±1)dxADAB(xA, θA, xB, θB)

=

√
πλθA exp

(
ν2

θA ,θB
−µθB λθA
λθA

x2
B

)
√

µθB λθA − ν2
θA,θB

×
(

1± Erf

(
νθA,θB xB√

λθA

))
, (3.7)

where Erf(.) is the error function. If the peaks of the marginal distributions DB|+(xB, θB, θA)
and DB|−(xB, θB, θA) do not coincide with one another, this implies that νθA,θB 6= 0.

Alice and Bob can now verify quantum discord using this method. As we have:

ν0,0 =
c1

2a1b1 − 2c2
1

,

ν0, π
2
=

c2

2a1b2 − 2c2
2

,

νπ
2 ,0 =

c3

2a2b1 − 2c2
3

,

νπ
2 , π

2
=

c4

2a2b2 − 2c2
4

,

they only need to choose the phases of their local oscillator to be 0 or π/2 and
observe the conditional marginal distribution DB|±(xB, θB, θA) to check whether the
elements of matrix C are zero or not. If at least one of the elements is found to be
nonzero, the state has nonzero quantum discord.

3.6.2 Theory: Non Gaussian States

It was shown that the necessary condition for generating entanglement at the output
of a beam- splitter is sending the non-classical input states to the beam-splitter [82,
83]. Here we show that bipartite non-Gaussian states that are prepared by subjecting
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a statistical mixture of coherent states to one port of a beam splitter, and vacuum state
to the other port, have nonzero quantum discord. We show that quantum discord for
this class of non-Gaussian states can be simply verified by employing our technique.

By applying the Glauber-Sudarshan representation [84, 85] for an input state ρ1

to a beam splitter as described bellow

ρ1 ⊗ |0〉 〈0| =
∫

d2αP1(α) |α〉 〈α| ⊗ |0〉 〈0| , (3.8)

the output state is given by:

ρout =
∫

d2αP1(α) |ηα〉 〈ηα| ⊗ |η̃α〉 〈η̃α| , (3.9)

here η is the transmissivity of the beam splitter and η̃ =
√

1− η2. The state ρout has
nonzero discord, in case P1(α) is a positive semi-definite Gaussian or non-Gaussian
function other than the Dirac delta function. Since it is a mixture of nonorthogonal
states of two subsystems [74]. By applying our technique developed in the previ-
ous subsection, one can verify nonzero quantum discord by observing any changes
in the conditional marginal distributions, which indicates correlation between the
two quadratures. By measuring x-quadratures of two subsystems employing two
homodyne detections, the joint marginal distribution is then given by:

D(x1, x2) =
1√
π

D1(ηx1 + η̃x2)e−(ηx2−η̃x1)
2
, (3.10)

where D1(x) is the marginal distribution of W1(x, p), where W1(x, p) is the Wigner
function of the input state ρ1 (see section 2.5). If the input state is not a coherent
state then ρout has discord, otherwise zero discord. More details on the theoretical
development can be found in our published paper. In the following sections, I will
present our experimental implementation of this technique on bipartite Gaussian and
three non-Gaussian states.

3.7 Experimental Implementation of Verification of Quantum
Discord in Continuous-Variables

In this section I will describe the experimental implementation of our method to
verify quantum discord in a bipartite Gaussian states. At first, I will describe the
experimental elements that we used in the experiment, including the electro-optic
modulators (EOM), laser source and the mode cleaning cavity. Then I will describe
the actual implementation of my experiment and present the results.

3.7.1 Electro-Optic Modulators (EOM)

Phase modulation (see subsection 2.9.1) can be produced by varying the optical path
length, while amplitude modulation (see subsection 2.9.2) can be achieved through
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the attenuation experienced by the beam.
For frequencies less than 200 kHz, varying the position of the mirror can cause phase
modulation. But at higher frequencies, an effective technique is to elctro-optically
modulate the refractive index of a crystal with high electro-optic coefficient like
lithium niobate LiNbO3 or KTP, using an external electric field. Type of the crys-
tal determines the direction of the electric field which can affect the refractive index
along a particular optical axis. The change in the optical path length, hence the phase
of the exiting optical field from the crystal, depends on the applied electric field. The
refractive index will follow the field, up to several GHz. Hence, these devices which
are called electro-optic modulators (EOM) can be used to modulate the phase of the
optical beams.
For amplitude modulation, a birefringent nonlinear media such as LiNbO3 is used.
The polarization of the input field is set to be at 45o to the optical axis of the crys-
tal. In this case the applied voltage affects the two linear components of polarization
differently. Hence, the crystal performs as a variable waveplate, rotating the po-
larization of the exiting optical field as the applied voltage changes. This causes
polarization modulation. After transmission trough a polarizing beamsplitter (PBS),
which passes the rotated component of polarization, an optical beam with different
level of amplitude attenuation (modulation) will be achieved. Thus the intensity of
the optical beam varies sinusoidally as the voltage varies linearly.
However, the birefringence of these crystals are very dependent on the temperature.
In order to overcome the temperature sensitivity, generally two equally length crystal
with their optical axes at 90o to each other are used.

3.7.2 Source Laser

In all the experiments described in this thesis, an Innolight Diabolo Nd:YAG solid
state laser was used, as the light source in the entire experiment. This laser is particu-
larly designed for experiments in Quantum Optics. The Diablo laser system consists
of three main units: (1) laser head, (2) laser control electronics unit and (3) frequency
doubling control electronics.
Laser’s head of the Diabolo system consists of two laser diodes electronically driven
to provide the pump radiation for a monolithic Nd:YAG laser crystal. The fundamen-
tal emission of the monolithic Nd:YAG ring laser is at 1064 nm. The ring geometry
provides high frequency stability and very narrow spectral linewidth of 1 kHz.
In order to generate second harmonic radiation, part of the infrared optical field is
sent through an optical isolator and electro-optic modulator (EOM), and is focused
to a SHG external resonator. This resonator contains a nonlinear crystal generating
second harmonic radiation at wavelength of 532 nm. The laser system delivers 180
mW of output power at 1064 nm and 1 W at 532 nm.
The electronic units are connected to the laser head to provide the injection current
of diode laser’s p-n junctions. Besides, temperature stabilization of diode lasers and
Nd:YAG crystal is essential, which is provided by the control electronics.
Spatial generation of pairwise frequency doubled light depends on the phase mis-
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match between the fundamental and the second harmonic feeds, so called phase
matching condition, and on the stability of the external SHG resonator at the fun-
damental laser frequency. Phase modulation at 12 MHz which is generated via an
internal EOM ( described in section 3.7.1 ), is used to keep the external SHG cavity at
resonance, utilizing an active feedback control in PDH (Pound-Drever-Hall) configu-
ration [86, 87]. The frequency doubling control electronics unit provides the circuitry
for the cavity stabilization as well as the necessary temperature stabilization of the
nonlinear crystal.
Besides, the Diabolo system is equipped with an intensity noise reduction system
called the (Noise Eater). The intensity fluctuations or the noise is basically due to the
laser’s relaxation oscillations. This effect is caused by the oscillation of the laser’s
energy between atomic level population and the laser cavity field. For this system
the intensity fluctuations peak at 1 MHz. The Noise Eater via an electronic feedback
loop located in the laser control electronic unit suppresses the intensity noise above
100 Hz by 25 dB. Keeping Noise Eater on is particularly important for generation
and measurement of squeezed light which will be described in section 6.3.
In the experiment both the fundamental and SHG laser beams are passed through
Faraday isolators to avoid any unintended back-scatter to the laser.

3.7.3 Seed Beam Preparation

Quantum optics experiments are very sensitive to the spectral noise and spatial
mode-mismatching. In order to prepare a quantum-noise limited optical field with
well-defined spatial mode (TEM-00 in our experiment), the 1064nm (seed) beam is
passed through a mode cleaning cavity (MCC). The mode cleaning cavity performs
as a low-pass filter, suppressing the remnant of the intensity noise coming from the
laser’s relaxation oscillation, providing a quantum-noise limited optical field. Be-
sides, it defines the spatial Gaussian mode of the transmitted optical field.
We used a 3-mirror triangular ring design for our mode cleaning resonators. Both
ring cavities have the same design consisting of two flat input/output mirror, and
a back curved mirror with a radius of curvature of 100 cm. The curved mirror is
attached to a piezo-electric actuator (PZT), which controls the length of the cavity.
This design particularly has the advantage of preventing the incidental optical beam
from reflecting back towards the source. The optical path length of the MC cavities
is 800 mm, with cavity linewidth of 0.4 MHz for the 1064nm beam, and 1.0 MHz for
the 532 nm beam. This additional suppression of the remnant relaxation oscillation
provides a quantum noise limited laser field at frequencies above 2.7 MHz.
We used the 12 MHz modulation coming from the laser to create the locking error
signals. The reflected beam from each cavity is detected by a photodiode to provide
an error signal using PDH locking technique [86, 87]. After the error signal is passed
through an analog PID (Proportional-Integral-Derivative) controller and high voltage
amplifier, the feed-back signal is fed to the PZT to keep the cavity on resonance with
the optical field.
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Figure 3.1: Schematic diagram of a mode cleaning ring cavity and the feed back
control loop. Here EOM is electro-optic modulator, PD is photo-detector, PZT is a
piezo-electric actuator, HR is highly reflective and PR is partially reflective mirror.
PID is proportional-integral-derivative control system and HV is high voltage ampli-
fier. The reflection of the laser beam is detected by a photo-detector, demodulated at
12 MHz, the resulting error signal is used in PDH feed back control loop to keep the
laser on resonance. The signal generator was used to drive the crystal in EOM and

provided the electrical local oscillator for demodulation.
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3.7.4 Producing a vacuum state with Gaussian distributed noise

Figure 3.2: Vacuum state with Gaussian distributed noise. Here σ is the standard
deviation of the distribution, and X and P refer to the phase and amplitude quadra-

ture.

In this experiment we created the vacuum state with Gaussian distribute noise.
It is shown schematically in figure 3.2. In order to prepare this state, a laser beam
is modulated by a pair of phase and amplitude eletro-optic modulators, driven by
function generators producing white noise. White noise refers to a signal consists of
uncorrelated samples, like the numbers generated by a random number generator.
Due to the randomness, the signal will consist all the frequencies with equal propor-
tion. It has been named in analogy to the white light which consists all the frequen-
cies. Most function generators can produce white noise with Gaussian distribution.
Hence, a beam of laser modulated by Gaussian noise will be displaced randomly in
phase-space, with the overall radius corresponding to the standard deviation of the
Gaussian distribution, set by the function generator.

3.7.5 Experimental Implementation of Verification of Quantum Discord
in Gaussian States

The experimental setup used to verify the presence of quantum discord is depicted
in Figure 3.3 (a). The laser light was passed through a mode cleaning cavity to pro-
vide a quantum noise limited light source (for description on laser source and mode
cleaning cavity see subsections 3.7.2 and 3.7.3). A large portion of it, was used as
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Figure 3.3: (a) Schematic diagram of the experimental setup. Here, AM and PM
are the electro-optic modulators (EOM) driven by function generators (FG), which
in turn provide displacement of the vacuum state in amplitude and phase quadra-
ture with Gaussian distributed noise. Laser light is passed through electro-optic
modulators and is split on 50:50 beam splitter. Each part is sent to a homodyne mea-
surement station (Alice and Bob). Collected data points from each homodyne station
are demodulated and sampled using a digital data acquisition system (DAQ). (b) The
unconditioned (left) and conditioned (right) probability distributions of the bipartite
Gaussian state with discord. The state is obtained from a Gaussian distributed mod-
ulated beam with modulation depth of 4.5 times the quantum noise (see subsection
for the definition of modulation depth 2.9.1). The blue and pink shaded curves show
the probability distributions conditioned respectively on xA > 0 and xA < 0, where
xA is the measured amplitude quadrature of subsystem A normalized to quantum

noise. The peak separation indicates that the states A and B are discordant.
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the bright source of local oscillator for homodyne detection, and a small portion, was
passed through a pair of phase and amplitude elctro-optic modulators (EOM). EOMs
(see subsection3.7.1) were used to provide Gaussian distributed modulation on both
quadratures (as described in subsection 3.7.4). The modulated beam was then split
on a 50:50 beam splitter to generate two separable but correlated bipartite state (A
and B). Each part of it, was sent to a homodyne measurement station, which we la-
beled Alice and Bob.
In our experiment each pair of detectors were balanced electronically, providing 30
dB of common mode rejection. A pair of photo-detectors using the Uni-PD circuits
with a combination of the Epitax ETX-500 photodiodes were used for the homodyne
detection. Typical suppression of cross correlation between orthogonal quadrature
was around 25 dB. For each separate homodyne detection, 2.4× 106 data points were
sampled at 14× 106 samples per second utilizing a digital data acquisition system
(see section 7.3). In order to provide adequate statistics, this procedure was repeated
over five times for each data point. These data were then down sampled and digitally
filtered to 2-5 MHz. Our homodyne efficiency was typically 96.6%, with fringe vis-
ibility of 97.6%, generally limited by the mode distortions introduced by the EOMs
and the photodiode quantum efficiency of 99%. The homodyne efficiency was esti-
mated using the relationship ηHom = ηM . ηQE [39], where ηHom refers to the overall
efficiency of the homodyne, ηM denotes the degree of mode matching and ηQE is the
quantum efficiency of the detector. The degree of the mode matching of the homo-
dyne is quantified by the power of two of the fringe visibility.
Following subsection 3.6.1, in order to check whether the elements of matrix C are
zero or not, all possible correlations between two subsystems A and B need to be in-
spected. In order to do so we first locked Bob’s station to amplitude quadrature and
performed homodyne measurements on both of the stations by locking Alice’s station
to amplitude quadrature, followed by phase quadrature (see section 7.3 for descrip-
tion on the scheme we used to lock the homodyne on a desired quadrature). The
same procedure was repeated when Bob’s station was locked to the phase quadra-
ture. The marginal distributions of Bob’s state conditioned on Alice’s outcomes,
xA > 0 and xA < 0 , were calculated and any possible separation between the peaks
of conditional marginal distributions were investigated. In our experiment, the bi-
partite Gaussian state had correlations in both phase and amplitude quadratures but
with very little cross-correlation between the quadratures of two subsystems. Hence
when Alice and Bob were both locked to the same quadrature, we observed sepa-
ration between peaks of the conditional marginal distributions, as shown in Figure
3.3(b) for amplitude quadrature. In this figure the probability distribution condi-
tioned on xA > 0 is shown by a blue shaded curve and the probability distribution
conditioned on xA < 0 is shown by the pink shaded curve . Similar result was ob-
tained when both subsystems were locked to the phase quadrature. As discussed in
subsection 3.6.1, for Gaussian state the peak separation in the conditional marginal
distributions is a necessary and sufficient condition of existence of non-zero quantum
discord. Hence from our result we conclude that we have had a discordant bipartite
Gaussian state as the peaks of the blue and pink curves do not coincide. The covari-
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ance matrix of the bipartite state which is shown in Figure 3.3(b) is presented here. It
was build from the data collected from the quadrature measurement performed on
Alice and Bob’s optical fields (see section 2.6 for the description on the covariance
matrix and the way to build it). It shows that C is indeed non-zero.

σ =


15.96 0 17.58 0

0 14.37 0 13.55
17.58 0 22.62 0

0 13.55 0 14.81

 (3.11)

It can be seen from this covariance matrix that there are correlations between the
quadratures of two subsystems (C 6= 0). Hence quantum discord is nonzero [74]. It
confirms our method that quantum discord is not zero when peaks of the conditional
marginal distributions corresponding to two outcomes of homodyne measurements
do not coincide.
We also investigated the effect of the variation of modulation depth on the peaks
separation of conditional marginal distributions (see section 2.9 for the description
on the modulation depth). This was done by changing the variance of Gaussian noise
introduced by (EOM) on the desired quadrature (see subsection 3.7.4) . Since we only
modulated the phase quadrature, both subsystems were locked to this quadrature.
We applied 22 different modulation depths on the phase quadrature, ranging from
zero to 5 times the quantum noise. For each homodyne detection, 1.2 × 105 data
points were sampled at 200 ksamp per second and then down sampled at 4 MHz
sideband. The process was repeated 20 times in order to provide sufficient statistics.
For each modulation depth, the conditional marginal distributions were evaluated
and the separation between two peaks was measured. As shown in Figure 3.4(a), the
separation of the peaks increased monotonically with the modulation depth. This
was consistent with the theoretical curve plotted by equation 3.7. As the modulation
depth increased, more noise was applied on the input beam and thus increases the
variance of the input beam. This gave rise to output beams with higher correlations,
and hence larger elements of matrix C. It is remarkable that despite the simplicity
of our technique, it is robust enough to verify the presence of discord in weakly
correlated bipartite Gaussian states, as indicated in the Fig 3.4(b).

3.7.6 Experimental Implementation of non-Gaussian State

As discussed in subsection 3.6.2, our discord verification technique can be applied to
bipartite non-Gaussian states obtained by overlapping a statistical mixture of coher-
ent states and vacuum state on a beam splitter. It was previously reported in ref [88]
that a mixture of coherent states can be generated by subjecting a laser beam to
time varying modulation. Here, I demonstrate our verification technique to examine
quantum discord in non-Gaussian states discussed in subsection 3.6.2. In the fol-
lowing, I describe the preparation of three non-Gaussian states with positive-definite
Wigner functions and discuss the corresponding verification results (see Figure 3.5).

1) Switched Noise Modulation - The first non-Gaussian state was an equal statistical
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Figure 3.4: (a) Variation of peak separations of marginal distributions conditioned on
two different homodyne outcomes, DB|+ − DB|−, versus modulation depth. The the-
oretical curve was evaluated according to equation 3.7. The experimental error bars
were estimated using statistical uncertainties. Inset (b) shows the zoom-in for small
modulation depth. Even for the smallest modulation depth (0.2 times of quantum

noise), our technique is still able to reveal the presence of quantum discord.

mixture of vacuum and a thermal state. The thermal state was produced by applying
two independent Gaussian distributed noise signals to a phase and amplitude mod-
ulator. An external square wave modulation envelope at 12 kHz was then used to
gate the two modulators. Square wave modulation turned the Gaussian modulation,
on and off periodically. In this way the optical field had either Gaussian modulation
or no modulation at all. Since the square wave gating frequency was fast compare to
the detection time, the net detected statistics seen would consist of an equal contri-
bution from both the vacuum and the thermal state. Modulation and demodulation
arrangement and the Wigner function of the produced state are shown schematically
in Figure 3.5(a). The laser light with this non-Gaussian modulation then splits on a
50:50 beam splitter and each part was sent to a homodyne measurement station. To
investigate the correlations between two subsystems, the same measurement proce-
dure was performed as described in subsection 3.7, and the results are presented in
Figure 3.6 (a).

2) Switched Phase Modulation - The second prepared non-Gaussian state was a
mixture of vacuum and a coherent state. As depicted in Figure 3.5(b), a sine wave
modulation with frequency of 4 MHz was introduced to phase quadrature to create
the coherent state. We then added a square wave modulation with frequency of 120
Hz to gate the sine modulation on and off. With this arrangement there was a sine
modulation for half of the measurement time and no modulation for the other half.
Signal was detected synchronously by using the same demodulation frequency as
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Figure 3.5: Schematic diagram of the modulation and demodulation arrange-
ments used in preparation of the non-Gaussian states (left) and their corresponding
positive-definite non-Gaussian Wigner functions (right), XA and PA are normalized
quadrature amplitudes (a) Switched noise modulation: This vacuum-thermal super-
position state is generated by gating Gaussian noise modulation on both quadratures
with square waves; (b) Switched phase modulation: This state is an equal statistical
mixture of a vacuum and a coherent state, created by gating a sine wave modula-
tion with a low frequency square wave; (c) Asynchronous detection: This state is
prepared by modulating one quadrature with sine wave and demodulating it with

another sine wave of slightly different frequency.

used for modulation. Similar procedure as described before was repeated to prepare
a correlated bipartite state. In order to verify the presence of discord, the marginal
distributions of Bob’s state conditioned on two different sets of Alice’s outcomes
xA < −6 and xA > −6 were calculated and any possible correlation in conditional
marginal distributions was investigated1. The results are shown in Figure 3.6(b).

1As discussed in Section 3.6.2, in order to verify quantum discord in this class of non Gaussian states
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3) Asynchronous Detection - We prepared the third non-Gaussian state by using
asynchronous detection. This was experimentally realised by choosing a demodu-
lation signal different in the frequency by an small amount compared to the modu-
lation signal. As displayed in Figure 3.5(c), we drived the EOM by sine wave with
frequency of 4 MHz and demodulated with frequency of 3.99MHz. The data col-
lected was then digitally filtered to 3.9-4.1 MHz. The prepared state was a two peak
probability distribution function along the X-quadrature as shown by Wigner func-
tion in Figure 3.5(c) right. This is analogous to the stroboscopic measurement of
the quadrature of a harmonic oscillator. The marginal probability distribution of the
prepared state and the conditional probability distributions are presented in Figure
3.6(c).

As can be observed from Figure 3.6, it is evident that the conditional probability
distributions for all three non-Gaussian states are different from their unconditioned
distributions. Neither their peaks nor the mean values of their distributions coincide,
which by considering the preparation method, is a sufficient evidence of the presence
of nonzero discord in the three non-Gaussian states. As the difference between two
conditional marginal distributions is the criterion to verify quantum discord, in sit-
uations where the conditional distributions are very similar to each other, one can
deploy χ2 test and calculate its probability function. Generally one rejects the null
hypothesis if the probability function is less than 0.05, which means two distributions
are not the same. In our experiment, the calculated probability function is zero for all
the states, indicating the two conditional distributions are completely different and
the states are discordant.

3.8 Summary

In this chapter I discussed the general form of quantum correlations, existing even
in separable states, known as quantum discord. I reviewed Gaussian quantum dis-
cord and the previous method for verifying quantum discord. Then I introduced our
experimental technique for verifying quantum discord in unknown bipartite Gaus-
sian states which is a development to the previous one. According to our tech-
nique by checking peak separation between the marginal distributions conditioned
on two different homodyne measurements outcomes, the correlation of correspond-
ing quadrature can be tested. With this technique, quantum discord can be verified
by investigating the correlations between all four combinations of the amplitude and
phase quadratures of two subsystems. By varying the modulation depth, we showed
that our results are indeed consistent with the theoretical predictions within statisti-
cal errors. The robustness of our technique in small modulation depth permits one
to detect nonzero discord even when the correlations are small. Moreover, we have
discussed that our technique can be used for a certain class of non-Gaussian states.
We applied our method to three different bipartite non-Gaussian states, which were
prepared by subjecting statistical mixtures of coherent states to one port of beam

it is sufficient to calculate marginal distributions conditioned on any two sets of Alice’s outcomes.
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Figure 3.6: Unconditional (Brown) and conditional probability distributions of two
different outcomes (Pink and Blue) of the non-Gaussian states prepared by (a)
Switched Noise Modulation (The green dashed curve corresponds to a Gaussian
state with average variance of the two Gaussian distributions); (b) Switched Phase
Modulation; and (c) Asynchronous Detection. We observe that the unconditional dis-
tributions are non-Gaussian, and also changes in the conditional marginal distribu-
tions in all three cases. Hence, according to Section 3.6.2, all the three non-Gaussian

states have nonzero discord.

splitter while the other port is in the vacuum state. Experimental results for all the
non-Gaussian states show that the conditional marginal distributions are significantly
different from the unconditional distributions, indicating nonzero quantum discord
in each case. Our results ascertain that with some prior knowledge about a quantum
state, such as being Gaussian, or about the preparation stage quantum discord can
be efficiently verified with a finite number of measurements.



Chapter 4

Secure Quantum Communication

4.1 Introduction

A central task in cryptography is the distribution of a secret key among distant par-
ties, so they can use it to encrypt the messages. This field has a long history and has
its own successes and failures. Many different cryptographic techniques appeared
over the centuries and all of them broke at some point. Until in 1917 Vernam invented
the one-time pad encryption method, using a symmetric, random secret key shared
between two parties. This technique cannot be broken in principle and Shannon
proved that this scheme is optimal (Shannon,1949). But to implement this scheme
the communicating parties require to share a secret key as long as their messages,
which makes it impractical when large amount of information needs to be encrypted.
Hence, in classical cryptography, other schemes are being utilized where the secu-
rity actually relies on the hardness of a certain mathematical problem. For instance,
large number of current Internet transactions are secured by public-key cryptogra-
phy known as Rivest-Shamir-Adleman (RSA) protocol, which relies on the difficulty
of factorizing large numbers. Although no efficient factorization algorithm is recog-
nised for classical computers, these schemes can be broken if quantum computers
were available by using Shor’s algorithm [6].
New horizon on secure cryptography has appeared in the last three decades with
Bennett and Brassard’s proposal of key distribution in 1984 [8]. The proof that this
so-called BB84 [8] protocol is unconditionally secure depends only on the validity of
the quantum mechanics [92]. This idea which was later rediscovered by Ekert (Ekert
1991) [9], was the beginning of the Quantum Key Distribution [7, 6].
Quantum Key Distribution is generally divided into two regimes : DV (discrete-
variable)-QKD and CV (continuous-variable)-QKD. In DV-QKD properties of single
photons, like their polarization, are used to encode the information. Where in CV-
QKD [93, 91] the information is encoded in the quadratures of the optical fields. The
main elements of CV-QKD are the modulation or encoding of the Gaussian states and
decoding through Gaussian measurement, e.g., homodyne and heterodyne detection.
The early QKD schemes used DV-QKD to encode a discrete variable (DV) key in a 2
dimensional Hilbert space. However, the challenging optical implementation of DV
scheme including single photon generation and detection has also attracted lots of

49



50 Secure Quantum Communication

attention towards continuous-variable (CV) scheme. In CV scheme one has access to
deterministic, high efficiency broadband sources and detectors. But it is now theo-
retically more demanding , as the key is a continuous variable encoded in states in
infinite dimensional Hilbert space.
Quantum key distribution (utilizing either DV or CV scheme) has progressed rapidly
in recent years with reported Quantum Key Distribution over 80 km of optical fibre
[10] , and real-world implementation [11, 12]. Commercial devices are also readily
available these days. However, despite all these improvements, it appeared that the
security of QKD depends on the actual implementation of the protocol. Now the
problem is how one can asses the level of the security in practice, which is inevitably
different from the idealized theoretical description. Especially using the commercial
devices opens the door for new kind of attacks [95, 96] and hacking of the commer-
cial quantum cryptography systems [97, 98].

To address this challenge several approaches have been proposed. The first ap-
proach, which aims to guarantee security without making any assumptions on the
devices utilized in the protocol, results to the birth of the concept now known as "
Device Independent QKD (DI-QKD)" (see section 4.3). The security of DI-QKD is
provided via the violation of a Bell’s inequality [5]. While DI-QKD is theoretically
feasible, its practical implementation is very challenging, as it requires a loophole free
violation of a Bell test [15, 16]. Finding ways around this problem itself becomes an
active field of research. One of the suggested ways is known as the "measurement-
device-independent QKD" (MDI-QKD) as a simple solution to omit detector side
channels (see section 4.4). Another approach is "one-sided device-independent QKD
(1SDI-QKD)" where only the apparatuses of one of the communicating parties are
trusted. This scheme places between standard QKD, where both parties trust their
measurement apparatuses, and DI-QKD where neither do (see section 4.5).
In this chapter I will describe how a generic quantum key distribution protocol
works. Then I will review briefly the concept of DI-QKD and introduce the im-
portant researches that developed this field. I will continue by summarizing the
"measurement-device-independent QKD", and finish the chapter by discussing the
"one-sided DI-QKD".

4.2 A Generic QKD Protocol

Here I present a generic QKD protocol. Any QKD protocol wether it is based on
discrete or continuous variables consists of two main steps: (1) quantum communi-
cation part (2) classical post-processing [89].
In the quantum communication phase, at first Alice prepares a quantum state and
sends it to Bob in order to perform a measurement on it. Alternatively, Alice and Bob
can share an EPR state while each makes a measurement on their EPR arm. They
randomly choose different bases for their measurements. Then they change a signif-
icant number of quantum states over a communication channel (quantum channel).
At the end of this step, Alice, Bob and the eavesdropper (Eve) share a set of corre-
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lated data [89, 90].
The next step is the classical post-processing which itself is divided into several
stages. (1) The first stage is the sifting where Alice and Bob communicate and agree
on the basis or quadrature they used to encode or decode the information, discarding
the other observation results [89, 90]. (2) The second stage is the parameter estima-
tion, where Alice and Bob try to estimate the amount of information they share (IAB),
and the amount of information the eavesdropper may gain (IAE or IBE). In order to
do so, Alice announces some randomly chosen sample of the data that she forwarded
to Bob, and Bob reveals his corresponding measurements. If they find out that the
eavesdropper knows too much about their key, they will abort the protocol at this
point [89, 90]. (3) The third stage is error correction, where the two communicating
parties try to find the syndromes of the errors affecting their data [89]. (4) The forth
step in the "reconciliation" step, where Alice and Bob, through classical communica-
tion try to extract a common binary key, with a little information leakage as possible
to the third party. There are two types of reconciliations depending on if Alice’s or
Bob’s data are used to form the key. The first one is called Direct Reconciliation (DR),
where Alice’s data are the reference and must be estimated by Bob (and Eve). Here
Bob corrects his key elements according the the correction that Alice sends to him.
From the estimate of IAB in the first step, Alice infers the amount of information she
can reveal at this step. If IAB − IAE > 0 a usable secret key rate can be extracted.
The second one is called Reverse Reconciliation (RR), where Bob sends the correcting
information to Alice. The she corrects her key elements to have the same values as
Bob. Here if IAB− IBE > 0 a usable key can be extracted [90, 91]. (5) The fifth and the
last step in a practical QKD is the "privacy amplification" where Alice and Bob try to
omit the amount of information that the eavesdropper gained. The vital requirement
for this step is to get a bound on IAE for DR and IBE for a RR protocol [90, 91]. More
information on CV-QKD can be found in references like ref [89, 90, 91].

4.3 Device Independent Quantum Key Distribution

Generally the security of QKD protocols rely on the assumptions made on the di-
mension of the Hilbert space. As a result the security will no longer be guaranteed if
the dimension of the Hilbert space changes during the actual implementation. Par-
ticularly, it has been shown that the BB84 protocol [8] will no longer be secure if two
parties share four-dimensional space instead of qubits as often considered [99]. But,
due to the imperfections in the devices the measurement direction may be drifted
with time, or the entire device may be malicious, as they might be bought from
an untrusted supplier. Hence, to guarantee the security in DI-QKD protocols the
quantum apparatuses used are considered to implement a quantum process with-
out making any assumption in terms of the Hilbert space, operators or states. In this
case the security is provided, based only on the fundamental set of basic assumptions
which are: (i) access of Alice and Bob to secure locations, (ii) trusted randomness, (iii)
trusted classical processing devices, (iv) an authenticated classical channel, (v) and
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finally the validity of a physical theory on which the security protocols rely (either
quantum mechanics or no-signaling principle) [99] . In this sense, DI-QKD is in the
direction of the works aiming to provide unconditionally secure cryptography.

4.3.1 Usual QKD protocols are not secure in the device-independent sce-
nario

Let us consider entanglement-based version of BB84 protocl [8], where measurement
devices of both parties Alice & Bob act on a two dimensional subspace of the incom-
ing particles (e.g. the polarization of the photons). Two measurement settings σx and
σz are assumed. If Alice and Bob conduct measurements in the same basis, they al-
ways get perfectly correlated outcomes; while if they measure in different basis, they
get completely uncorrelated random outcomes. In term of measurement operators
σx and σz and the two-qubit state |ψ〉 ∈ C2 ⊗ C2 the mentioned correlation can be
written as [99]:

〈ψ|σx ⊗ σx|ψ〉 = 〈ψ|σz ⊗ σz|ψ〉 = 1 (4.1)

〈ψ|σx ⊗ σz|ψ〉 = 〈ψ|σz ⊗ σx|ψ〉 = 0 (4.2)

The only state well-matched with this set of equations is the maximally entangled
state (|00〉+ |11〉)/

√
2. Therefore Alice and Bob can derive a secret key from their

measurement data [99]. However, the same correlation can be reproduced by the
four-qubit state [100]:

ρAB =
1
4
(|00〉〈00|z + |11〉〈11|z)⊗ (|00〉〈00|x + |11〉〈11|x) (4.3)

Here, the first and third qubit belongs to Alice. Whenever she measures in the z(x)
basis, she is looking at the first (third) qubit in this basis. The same is true for Bob,
with the second (forth) qubit. Obviously when the same measurement basis are used,
their observed results are totally correlated. Otherwise they are uncorrelated. How-
ever, this state is separable and cannot be used to extract a secure key [100].
This simple example shows that if the dimension of the Hilbert-space varies in prac-
tice from what is assumed in theory, the QKD protocol is no longer secure. Experi-
mentally, additional Hilbert-space dimension refers to "side channels" i.e., to degrees
of freedom coded accidentally. Hence, it is desirable to find a scheme that Alice
and Bob can exploit a well established physical principle to extract a key from some
observed correlation, without having to care about the experimental details [100].

4.3.2 How can DI-QKD possibly be secure?

As suggested from the early work on QKD by Ekert, violation of a Bell’s inequality is
the key to the secure communication [9]. This idea is developed further by Jonathan
Barret et al [101] and Antonio Acin et al [100], which suggests that a correlation
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should not be described in terms of local hidden variables in order to be secure in
the device independent scenario (see section 8.2 for more discussion on the hidden
variables and correlation function). Formally it can be written as [99]:

P(a, b|X, Y) 6= ∑
λ

P(λ)D(a|X, λ)D(b|Y, λ), (4.4)

where P(a, b|X, Y) is the probability to observe the pair of outcomes a,b if they have
made measurement X,Y. λ is a classical variable with probability distribution P(λ)
shared by Alice and Bob’s apparatuses, and D(a|X, λ) is a function defining Alice’s
outputs once the input X and λ are known. The same applies for D(b|Y, λ).
In the reverse scenario Eve may posses a copy of λ. Hence knowing the input X and
the classical variable λ, she can estimate the outcome a from D(a|X, λ). The same
is true for the outcome b and D(b|Y, λ). Only the violation of a Bell’s inequality
[5] guarantees that the outputs of Alice’s and Bob’s apparatuses are correlated in
a non-local way, and can be written as equation 4.4 (see sections 8.2,8.3 for more
discussions on Bell’s inequality). This follows from the fact that non-local correlations
are generated from entangled state, whose measurement statistics are random and
cannot be known completely by the eavesdropper. This is the physical principle on
which all the device-independent security proofs are based [99].

4.3.3 History of DI-QKD

As mentioned earlier, the idea that the security of a QKD protocol can be based
on the violation of a Bell test was the essence of Ekert’s 1991 proposal [9]. But a
challenge now known as Device-Independent-QKD was first introduced by Mayers
and Yao [13]. However, Barret, Hardly and Kent [102] were the first to initiate the
quantitative progress towards the strong security proofs. Their concern was to prove
secure quantum key distribution based on other physical principle rather than quan-
tum mechanics. They suggested a key distribution scheme secure against general
attacks by a post-quantum eavesdropper limited only by no-signaling principle. The
no-signaling condition says that no measuring process can be used to send informa-
tion between distant locations. In other way local probabilities are independent from
distant partner’s inputs [99], e.g.,

P(a|X, Y) = ∑
b

P(a, b|X, Y) = P(a|X). (4.5)

According to them even if quantum mechanics were ever to fail, security can be
guaranteed based on the violation of a Bell’s inequality. It is true because once
the no-signaling condition is assumed the security is based on the principle called
monogamy which is analogous to entanglement in quantum mechanics. In its sim-
plest form the monogamy of entangled states means that the two quantum systems
that are maximally entangled cannot share entanglement with a third system [99].
Their work was a proof of principle as they proved security only for a noise-free
quantum channel. However, a sequence of follow-up papers extended their idea.
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In the paper "From Bell’s Theorem to Secure Quantum Key Distribution" Antonio Acin
et al [?] presented a QKD protocol aimed at producing data that violate the CHSH
inequality (see section 8.3), and they proved its security against the most general indi-
vidual attack without signaling, independently of any assumption on Hilbert spaces.
Their results represented the first step towards the characterization of optimal non-
signaling attacks. The improvement of their results compared to [102] was that their
analysis covers the noisy situation.
A further progress was made by Antonio Acin, Serge Massar and Stefano Pironio
[103]. They have shown that by adding one measurement to the CHSH test, the
key rate and the noise resistance can significantly be improved. They argued that
their approach can be based on any non-locality test, and as an illustration they have
studied a family of protocols based on the chained inequalities for N measurement
settings. Each inequality in the family provides a different estimation of Eve’s knowl-
edge. Their protocol is also noise-tolerant, but when N is large, the corresponding
protocol is very sensitive to noise. As a result, Alice and Bob should estimate the
properties of their channel and adopt the non-locality test to their measured param-
eters to maximize the key rate.
The work presented in Ref [100] has been expanded and generalized further by V.
Scarani et al. in Ref [104]. One of the perspectives opened by their work was the idea
of making a device-independent proof of security against an eavesdropper which
would be restricted by quantum physics. The advantage of using quantum mechan-
ics is that Eve would be limited in comparison to the power she can posses according
to the no-signaling principle; so one can hope to extract better secure key rate.

A substantial progress was made by A.Acin et al in [14]. They concentrated on the
more realistic situation in which Eve is restricted by quantum physics, and they have
found the optimal collective attacks on a QKD protocol in the device-independent
scheme. Their main outcome was a tight bound on the Holevo information between
one of the authorized parties and the eavesdropper, as a function of the amount of
violation of a Bell-type inequality. This work has been elaborated further in [99].

M. McKague in ref [105] extended the result of [99] to a more general class
of attacks where the state is arbitrary and the measurement apparatuses have no
memory. He accomplished it by reducing the arbitrary adversary strategies to qubit
strategies and a proof of security for qubit strategies relying on the previous proof
[99].

Another important theoretical analysis on DI-QKD carried on by L. Masanes in
ref [106] where they showed that fully DI-QKD is in principle, possible. Their proof
was based on both the no-signaling principle and the validity of quantum mechanics.
Their approach can be applied to protocols based on arbitrary Bell’s inequalities and
is valid against the most general attacks. Their model was limited by the assumption
that the measurement processes generating the different bits of the raw key are ca-
sually independent of each other (though they could be arbitrarily correlated). This
independence condition may be justifiable in several implementations and is neces-
sarily satisfied when the raw key is generated by N separate pairs of devices.
A fully DI-QKD protocol against the most general "coherent" type of attacks with
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2% loss tolerance in apparatuses was introduced by Umesh Vazirani and Thomas
Vidick in [111]. They showed that the variant of Ekert’s original protocol has all the
necessary features of DI-QKD. However, the experimental implementation of their
protocol faces the same difficulties as other DI-QKD protocols, which are mainly due
to the "detection loophole".
And finally the only DI-QKD protocol in CV regime that I found was proposed by C.
J. Broadbent et al in [112]. They used generalized two-mode Schrodinger cat states
and proved the security against collective attacks and some coherent attacks.

Despite all the theoretical progress on DI-QKD, realization of these protocols still
remains a challenge, as all the experimental tests of Bell’s inequalities that have been
made so far, are subject to at least one of several loopholes. Besides it is impossible
to violate a Bell’s inequality utilizing only Gaussian resources [107] which makes CV
DI-QKD not very feasible.
Considering Bell’s test, two requirements are needed for a loophole-free Bell exper-
iment to guarantee that no local description can be admitted : 1) no information
about the input of one party should be revealed to the other party before she has
produced her output; 2) high enough detection efficiency. If the first requirement is
not satisfied, which is known as locality loophole, it is trivial for a classical model
to account for the non-locality of the observed correlations. The second requirement
arises from the fact that not all signals are detected. This loophole, known as de-
tection loophole, suggests the idea that there is a local variable that determines if a
signal will be detected or not. In usual Bell experiments, the locality loophole is dealt
with by enforcing a space-like separation between Alice and Bob. This ensures that
no sub-luminal signals could have traveled between Alice’s and Bob’s apparatuses.
However the detection loophole, is a much more complicated issue to deal with [99].
Since not all entangled photons are detected, and the unavoidable losses in quantum
channel, losses in the coupling between the photon-pair source and the optical fibres
and finally finite detection efficiency make detection loophole a more complicated
issue to deal with. In usual Bell test the fair sampling assumption is considered
which states that the set of detected photon pairs is a fair set of all the photons. It is
reasonable to assume that Nature is not malicious. But in DI-QKD the fight is against
a possible active and malicious adversary [99].
To overcome the channel losses in Bell test, N. Gisin et al in [108] proposed a heralded
qubit amplifier based on single-photon sources and linear optics. They were inspired
by the proposal of Ralph and Lund on the use of quantum teleportation to realize
a heralded single-photon amplifier [109]. They showed that the entangled compo-
nent can be amplified in a heralded way, offering the possibility for Alice and Bob to
share a maximally entangled state despite losses in the channel. Hence, the overall
detection efficiency required to close the detection loophole does not depend on the
transmission efficiency. The implementation of their proposal is feasible, though it is
hard. Their calculations demonstrated DI-QKD over 10-20 km of standard telecom
fibre.
Another approach to circumvent the detection loophole was proposed by C. C. W.
Lim et al in [110]. Their protocol involves a third party Charlie, whose task is to help
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Alice and Bob distribute their key strings. However, it is not necessary to trust the
third party. Importantly, the protocol only requires Bell tests conducted locally on Al-
ice’s laboratory, so that the detection probabilities are not influenced by the losses in
the channel connecting Alice and Bob. In contrast to most DI-QKD protocols, whose
security is inferred from the monogamy of nonlocal correlations, the security of their
protocol is based on the generalization of the entropic uncertainty relation that ac-
counts for quantum side information [20]. The uncertainty relation only depends on
the local properties of the states sent by Alice, which can be inferred from the local
Bell test. Their estimate is that this protocol would provide a secure communication
up to 17-km of optical fibre between Alice and Bob.

Although DI-QKD seems to be a solution for unconditional secure QKD, its im-
plementation still remains a challenge. Two other schemes are suggested recently
to overcome this hurdle. The first is " Measurement-Device-Independent Quantum
Key Distribution " which aims to remove all the detector side channels. The other is
"One-sided-Device-Independent Quantum Key Distribution" where only the devices
of one of the communicating party is not trusted. It has been shown that the secu-
rity of one-sided-DI-QKD is based on EPR-Steering which is less strict that Bell test
and opens a new horizons for experimental implementation. In the next following
sections I will introduce these two schemes.

4.4 Measurement-Device-Independent Quantum Key Distri-
bution

The idea of measurement-device-independent QKD (MDI-QKD) suggested for the
first time by Hoi-Kwong Lo , Marcos Curty and Bing Qi [113] as a simple way to re-
move all the detector side channels. Their protocol works as follows. Alice and Bob
prepare phase randomized weak coherent pulses (WCPs) in a different BB84 polar-
ization states, and forward them to an untrusted relay Charlie (or Eve) located in the
middle, who conducts a bell-state measurement (BSM). In contrast to DI-QKD, in its
simplest formulation MDI-QKD necessitates that Alice and Bob have almost perfect
state preparation. Once the quantum communication phase is performed, Charlie
uses a public channel to announce the events where he has obtained a successful
outcome in the relay, including his measurement outputs. Alice and Bob keep the
data that correspond to these instances and discard the rest. An important advan-
tage of MDI-QKD is that the BSM does not need to be a perfect measurement. Even
a partial imperfect BSM implemented by linear optical elements can do the job.
Silvestre Abruzzo et al [114] generalized the idea of MDI-QKD to the scheme where
the Bell-state measurement station contains also heralded quantum memories. They
found analytical formulas, in terms of apparatus imperfections, for all the quanti-
ties entering in the secret key rates. The sources they considered were either single-
photon sources or weak coherent pulse sources plus decoy states. Their protocol may
represent the step towards implementing a two-segment quantum repeater. Similar
idea was presented in [115], where MDI-QKD was combined with quantum repeaters
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based on quantum memories. Memory-assisted MDI-QKD protocols have the poten-
tial of beating the existing distance records for conventional quantum key distribu-
tion systems . A further theoretical improvement was carried on by Marcos Curty et
al in [116], where they provided a rigorous security proof against general attacks in
the finite-key regime. They also demonstrated the feasibility of long-distance imple-
mentations of MDI-QKD within a reasonable time frame of signal transmission.

Several attempts have been devoted to the experimental realization of MDI-QKD.
One of the successful experiments was conducted by Yang Liu et al [117]. To demon-
strate MDI-QKD they developed up-conversion single photon detectors with high
efficiency and low noise. By assuming a reliable source scenario, their system gen-
erated more than 25 kbit secure key over 50 km of fibre link. Another experimental
demonstration of MDI-QKD was performed by Zhiyuan Tang et al [118]. They have
shown the first polarization encoding MDI-QKD experiment over 10 km of optical
fiber, with active phase randomization implemented to defeat attacks on imperfect
sources. They mentioned that their work can be extended to free space polarization
encoding MDI-QKD with an untrusted satellite in the future. The notion of MDI
has also been extended theoretically and experimentally to continuous variable (CV)
systems [119], where Alice and Bob communicate by connecting to an untrusted
relay via insecure links. To create secret correlations, they transmit random coherent
states to the relay where a CV Bell detection is performed and the outcome broadcast
to the parties. The authors showed that this protocol is secure theoretically up to 25
km and by extrapolating the result of their experiment to the telecom wavelength,
they estimated their protocol to be secure experimentally up to 20 km in fibre optics,
despite the possibility that the relay could be fully corrupted and the links being
subject to coherent attacks.

4.5 One-sided Device-Independent Quantum Key Distribu-
tion

So far I discussed about the necessity of higher level of security in quantum com-
munication and how it motivated the researchers to create the concept of DI-QKD
and finding the practical ways of implementing it. However, the fact that DI-QKD is
based on non-locality strongly suggests that only entanglement-based protocols are
suitable for obtaining this notion of strong security. But, most of the practical QKD
systems use the so-called "Prepare & Measure" scheme, where Alice prepares a quan-
tum state and sends to Bob who then performs a measurement on it. M. Pawlowski
and N. Brunner argued that a form of DI security, which they called "semi-device-
independent", can be obtained without using entanglement [120]. They assumed that
for semi-DI, the Hilbert space dimension of the quantum system is known, but the
quantum preparations and measurements are noncharacterized. Since no assump-
tions on the devices are required except the fact that Alice’s device emits preparations
of one bounded dimension, it can be applied directly to the one-way configuration.
Using this assumption they proved the security of one-way QKD against individual
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attacks. However, it was only proof of principle.
The intermediate scenario between standard QKD (S-QKD) and DI-QKD further de-
veloped by C.Branciard et al [19] so-called as one-sided DI-QKD (1SDI-QKD). In this
scenario only one of the two parties trusts his/her measurement apparatuses. They
showed that the requirement for obtaining the secure key in 1SDI-QKD is the viola-
tion of the EPR-steering inequality [17]. That is, if one imagines that Bob’s system has
a definite (albeit unknown to him) quantum state, the protocol must prove that Alice,
by her choice of measurement, can affect (steer) this state. It corresponds to the link
between S-QKD or DI-QKD and the violation of a separability criterion or a Bell’s
inequality respectively. The authors proved the security of a 1SDI-QKD protocol us-
ing an approach based on an uncertainty relation for smooth entropies developed by
Tomamichel and Renner [18]. This uncertainty relation enables one to prove security
against coherent attacks in 1SDI-QKD scenario. They considered realistic implemen-
tation by taking into account the imperfect detection efficiencies.
Utilizing the entropic uncertainty relations recently developed for CV regime, we
investigated theoretically and experimentally the entire family of 16 Gaussian CV-
QKD protocols in the asymptotic setting. In the following chapters I will describe
our theoretical and experimental results in detail.

4.6 Summary

In this chapter I reviewed the concept of secure quantum communication. I started
with a standard QKD protocol and discussed the necessity to develop a more secure
notion of QKD, which led to the development of the concepts of Device-Independent
Quantum Key Distribution, Measurement-Device-Independent Quantum Key Distri-
bution and One-sided Device-Independent Quantum Key Distribution. I mentioned
that the violation of a Bell’s inequality is the key that guarantees security in device-
independent quantum key distribution and measurement-device-independent quan-
tum key distribution, while the asymmetric form of non-locality know as EPR-
steering provides security in one-sided device-independent quantum key distribu-
tion. Schematic diagram of all these protocols is shown in Fig 4.1. In the next
chapter I will discuss one-sided device-independent quantum key distribution and
EPR steering in detail, and will present our theoretical and experimental results on
the development of the CV one-sided device independent QKD.
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Figure 4.1: Schematic diagram of (a) standard quantum key distribution where
both parties trusts their devices as described in section 4.2 (b) one-sided-device-
independent quantum key distribution where only one of the communicating parties
trust his/her devices and the devices of the other party is considered as a black box as
described in section 4.5 and in more detail will be discussed in Chapter 5 (c) device-
independent quantum key distribution where no assumption is made on devices and
the devices of both communicating parties are considered as black boxes as described
in section 4.3 (d) measurement-device-independent quantum key distribution, where
two parties Alice and Bob prepare phase randomized weak coherent pulses (WCPs)
in four possible BB84 polarization states and send them to an untrusted relay Charlie
or (Eve) where he performs a Bell state measurement (BSM) as described in section

4.4.
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Chapter 5

Theoretical Development of
1SDI-QKD Protocols Using
Gaussian States and Measurements

5.1 Introduction

As mentioned in the previous chapter, the physical implementation of DI-QKD [13,
14], which aims to close the gap between the theoretical prediction and the real-life
implementation of QKD protocols, still remains a challenge. This made scientist to
explore the other possible ways to close this gap. One of the suggested approaches
is called 1SDI-QKD [18, 19], where devices of one party solely are trusted. Besides,
an elegant tool for cryptographic tasks appeared as M. Berta et al [20] characterized
the connection between the uncertainty relations [4] and entanglement by employing
the entropic version of uncertainty relations [21, 22, 23, 24, 25]. Utilizing further
advances in entropic uncertainty relations [26, 27], we investigate theoretically and
experimentally in the asymptotic setting, the entire family of 16 Gaussian CV-QKD
protocols which can be proven 1SDI. Our investigations confirm 6 of the 16 Gaussian
protocols to be 1SDI. The results of this investigation is published in Optica with the
title and author list as follows :
"Experimental Demonstration of Gaussian Protocols for one-sided device independent quan-
tum key distribution", "N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Arm-
strong, S. M. Assad, J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman and P. K.
Lam. Optica 3(6), 634-642 (2016)."
This research has been conducted under the "CQC2T Center of Excellence". The
theory of this research has been developed by Nathan Walk, Howard M Wiseman
and Timothy C Ralph at the University of Queensland and Griffith. The experiment
which included four parts applying both "entanglement-based (EB)" and "Prepare
and Measure (P&M)" sources was completed in our group at the Australian National
University.
In this chapter I will present my own understanding of the theoretical investiga-
tion, which is essential to know before presenting the experimental implementation
and results. I tried to elaborate all the key concepts including; entropic uncertainty
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relations, steps of QKD in general, virtual entanglement and EPR steering and its
connection to 1SDI-QKD to make our theoretical development more understandable.
Further details can be found in ref[?]. The experimental implementation and results
will be presented in the next following two chapters.

5.2 Uncertainty Relations

The uncertainty principle originally proposed by Heisenberg [4] imposes constrains
on the potential knowledge one can learn about the physical properties of a system.
It states that even with full knowledge of the state of a particle, it is impossible to pre-
dict the outcomes of all the measurements. This lack of knowledge first characterized
by Heisenberg using standard deviation [20]:

∆X · ∆P ≥ 1
2
|〈[X, P]〉| (5.1)

However, from information-theoretic aspects, it is more useful to quantify the un-
certainty relations in terms of entropy. Several authors tried to derive the entropic
version of uncertainty relations [21, 22, 23, 24, 25]. The improved relation is as
follows [20]:

H(X) + H(P) ≥ log2
1
c

(5.2)

where H(X) stands for the Shannon entropy (see section 2.10.1) of the probability
distribution of the outcomes when observable X is measured. The same applies for
H(P) and the outcome of the measurement of the observable P. The term 1

c shows
the complementarity of the observables, with c := maxi,j |〈xi|pj〉|2 where |xi〉, |pj〉 are
the eigenvectors of the observable X and P respectively. Equation (5.2) quantifies the
uncertainty relation where one starts without any additional information or at most
only classical information describing the system in question, i.e. the density matrix
[20].
However, if observers could share quantum correlation with the measured system,
there would be significant reduction in the level of uncertainty. M. Berta et al derived
a generalized relation, allowing for this so-called quantum side information for finite
dimensional Hilbert spaces and observables [20]. They assumed that Bob entangles
his quantum memory with the state he forwards to Alice. They found a bound on the
uncertainties of the measurement outcomes, based on the amount of entanglement
existing between the measured particle, A, and the quantum memory B, as follows
[20]:

S(XA|B) + S(PA|B) ≥ log2
1
c
+ S(A|B) (5.3)

here S(A|B) stands for the conditional von Neumann entropy of the bipartite state
ρAB, and S(XA|B) is the conditional von Neumann entropy of the outcome of the
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measurement of the observable X on subsystem A given the knowledge of subsystem
B (see sections 2.10.7 and 2.10.8 for the description on von Neumann and conditional
entropy).
Since a negative conditional entropy is a sign of entanglement [123], relation (5.3)
shows the effect of entanglement in reducing the uncertainty.
One can also consider that the state ρAB could have experienced some decoher-
ence which is purified by an environment, or eavesdropper, in a way that ρAB =
trE(|ABE〉〈ABE|). Considering the purity of the overall state i.e. S(AB) = S(E) one
can modify the relation (5.3) to find [20] :

S(XA|E) + S(PA|B) ≥ log2
1
c

(5.4)

Although relation (5.4) is an elegant mechanism to bound the key that Alice and
Bob can extract as shown in ref [20], it is only valid for measurement and states
in finite-dimensional Hilbert space. For CV-QKD we need an uncertainty relation
valid for infinite-dimensional Hilbert spaces and continuous-valued measurements.
Particularly, we are interested in homodyne measurements (see section 2.8.1) of the
canonically conjugate quadratures (see section 2.3 ).
Fortunately such a relation has been lately derived, based on the previous findings
for discrete and finite measurements on infinite dimensional Hilbert spaces [124]. At
first it was extended to countably infinite measurements with the possible application
for a discretised version of a homodyne detection [26]. By considering the infinite
precision limits of these coarse-grained POVM’s, results for the continuous spectra,
had previously been extensively investigated for the Shannon entropies, with an
analogous procedure for the quantum conditional von Neumann entropy employing
by Ferenczi [28] and Furrer et al [26]. An alternative derivation was also presented by
Frank and Lieb [27]. The ultimate result is the following relation for the homodyne
detection performed on the infinite dimensional Hilbert spaces [26, 27, 28],

S(X|E) + S(P|B) ≥ log 2πh̄ (5.5)

Utilizing relation (5.5) which bounds Eve’s information, we developed a key rate in
infinite dimensional Hilbert space. I will describe it in detail in the following sections.

5.3 Quantum Cryptography in Continuous-Variable Regime

Since the focus of this thesis is on continuous-variable QKD, before showing how we
use relation (5.5) for QKD purposes, I will briefly describe the most important fami-
lies of continuous-variable QKD protocols using Gaussian states and measurements.
A generic QKD protocol was previously described in section 4.2.
The most common CV-QKD protocols are the Gaussian protocols in which the infor-
mation is encoded in the field quadratures (see section 2.3). In Gaussian protocols
one can use either an entangled source (EB) or the equivalent picture; prepare and
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measure (P&M) scheme, where Alice by using a random number generator, prepares
an ensemble of signal states. In fact, one of the most significant results in CV-QKD
was the discovery that the secret key can be generated by using coherent states [126].
It is easier to generate coherent states in the laboratory which opens the door for
the real-life implementation of CV-QKD protocols. In this scenario Alice encodes
two real variables aq and ap, onto a coherent state. She draws these variables from
a Gaussian distribution of variance Va and zero mean. By considering Va = V − 1,
Alice obtains a thermal state of variance V as an output (see section 3.7.1 and 3.7.4
for more details on the preparation of the coherent states). Alice sends the thermal
state to Bob, where for each incoming state he measures either q̂ or p̂ quadrature by
performing a homodyne detection (see section 2.8.1) . At the end, Alice has a long
string of encoded data with the values (aq, ap) which are correlated with Bob’s ho-
modyne outcomes. After sifting, Alice keeps only the string of data compatible with
Bob’s quadrature measurements [89].
The previous protocol can be modified by changing the homodyne detection to the
heterodyne detection (see section 2.8.2) where both quadratures are observed simul-
taneously. This protocol is famous as "no-switching protocol". The advantage of this
protocol is that Alice can keep both real random variables, hence producing higher
secret-key rates [89, 127].
Although coherent states are better candidates for CV-QKD protocols, squeezed
states are also utilized especially in the early QKD protocols [93, 125, 89]. In this
protocol Alice randomly chooses to squeeze and displace either q̂ or p̂ quadrature.
When the state received by Bob, he randomly decides to perform a homodyne mea-
surement on one quadrature. After sifting, Alice and Bob keep only the data which
correspond to the same quadratures. Squeezed-state protocol can also be conducted
where Bob performs heterodyne measurement on his received state [89].
In entanglement-based representation, a bipartite entangled state is distributed be-
tween Alice and Bob. Here Alice’s preparation is realized by performing a suitable
measurement on the entangled source. For (P&M) scheme, either squeezed [93, 125]
or coherent [126] states, are respectively equivalent of performing the homodyne or
heterodyne measurement on one part of the entangled state.
The communicating parties Alice and Bob, can implement either a direct reconcilia-
tion (DR) or the reverse reconciliation (RR) which make a total of 16 possible Gaus-
sian protocols.

5.3.1 Virtual Entanglement

In (EB) scheme [47], an entangled state is shared between two communicating parties
Alice and Bob, while in (P&M) approach Alice prepares a coherent (squeezed) state
and forwards it to Bob. The interchangeability between these two approaches has
been demonstrated in a device dependent scenario [90]. This one-to-one analogy
between (P&M) and (EB) schemes is famous as "virtual entanglement". This effect
is captured in figure 5.1 for heterodyne measurement and coherent states. It can
be understood as if the EPR source and measuring apparatus of Alice shown in
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figure 5.1 (a) are hidden in a black box. The only things emerging from this box
are the measurement values QA and PA, and Q and P which are sent to Bob. The
outputs of this black box are equivalent to the outputs of the other black box depicted
in figure 5.1 (b), where QA and PA are chosen by the adequate random number
generator. The physical implementation of (P&M) scheme is easier and cheaper,
while the equivalent (EB) scheme is better to use for the mathematical calculations.
We will use the equivalence between these two schemes later to prove the key rate
for the (P&M) scheme.

Het

EPR Source

Alice

towards

 Bob

Source Modulators
towards

 Bob

Alice

RNG

(a) (b)

Hom

Hom

Figure 5.1: (a) showing an EB scheme where Alice measures both quadratures of
her beam by performing a heterodyne (dual homodyne) measurement on her EPR
arm. (b) showing the equivalent black box to (a), where a coherent state source
generates the beam, which is then displaced in phase space using a modulator. The

two numbers are produced by a random number generator (RNG)

In the next section, I will show how we employed the uncertainty relation (5.5)
to lower bound the secret key rate, in the asymptotic regime and taking into account
only the Gaussian collective attacks. Asymptotic regime is when two communicating
parties exchange infinite number of data to establish a key. Besides the collective at-
tacks are shown to be the optimal attack using de Finetti theorem adapted to infinite
dimension [128].

5.4 CV-QKD using entropic uncertainty relations

I will describe here the derivation of the key rate for RR protocol. Finding the secret
key for DR protocol is straightforward. As mentioned earlier, in CV-QKD the secret
key can be extracted from Alice and Bob’s quadrature measurements, symbolized
by the random variables XA(B) with outcomes xA(B) which follow probability distri-
butions p(xA(B)). Here the detector and reconciliation efficiencies are neglected for
simplicity. These effects will be included later. The asymptotic RR secret key rate is
lower bounded by [129, 130] :

K/ ≥ I(XB : XA)− χ(XB : E) (5.6)
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where the left white triangle denotes the information flow during reconciliation from
Bob to Alice. Here I(XB : XA) denotes the classical mutual information between Alice
and Bob (see section 2.10.6), with H(X) being the continuous Shannon entropy of the
measurement strings defined as H(X) = −

∫
dx pX(x) log pX(x) (see section 2.10.3),

and χ(XB : E) = S(E)−
∫

dxB p(xB)S(E|xB) denotes the continuous Holevo bound
(see section 2.10.9) with S(X) being the von Neumann entropy (see section 2.10.7)
and S(A|B) the conditional von Neumann entropy of A given B (see section 2.10.8).
In the case that systems are classical, i.e. B = XB, the von Neumann entropies may
be replaced by the Shannon entropy.
By substituting the classical mutual information and the Holevo bound in the relation
(5.6) we have:

K/ ≥ H(XB)− H(XB|XA)− S(E) +
∫

dxB p(xB)S(E|xB) (5.7)

Using the following definition:

S(XB|E) = H(XB) +
∫

dxB p(xB)S(ρ
xB
E )− S(E) (5.8)

where ρxB
E is the conditional state of E given measurement outcome xB, and combin-

ing the relations (5.7) and (5.8) we have :

K/ ≥ S(XB|E)− H(XB|XA) (5.9)

Now using the entropic uncertainty relation (5.5) and changing the places of A and
B, one can bound the eavesdropper’s information as follows:

S(XB|E) ≥ log 2πh̄− S(PB|A) (5.10)

Considering S(PB|A) ≤ S(PB|PA) = H(PB|PA), we can have:

S(XB|E) ≥ log 2πh̄− H(PB|PA) (5.11)

By substituting relation (5.11) in (5.9) and assuming h̄=2 we have:

K/ ≥ log 4π − H(PB|PA)− H(XB|XA) (5.12)

Thus by employing an expression that relies only upon the conditional Shannon
entropies, we have bounded the secret key. These conditional Shannon entropies
are directly available for Alice and Bob. Besides for any probability distribution
p(x), it can be demonstrated via a variational calculation that the analogous Shannon
entropy is maximized for a Gaussian distribution of the same variance. In other
words, by measuring Bob’s conditional variances, Alice and Bob can bound their
secret key rate for this protocol . Substituting the Shannon entropy for a Gaussian

distribution HG(XB|XA) = log
√

2πeVXB|XA
, where VXB|XA

= VXB −
〈XAXB〉2

VXA
is Bob’s

variance conditional on Alice’s measurement, we derive the final expression for the
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RR key rate as:

K/ ≥ log(
2

e
√

VXB|XA
VPB|PA

) (5.13)

The DR expression is obtained by simply permuting the labels of Alice and Bob. The
extension of equation (5.13) to the other Gaussian protocols is straightforward and
is given in ref [122]. Due to the importance of the protocol with coherent states and
homodyne measurement in this thesis, I will present its key rate calculation here.
As mentioned in section 5.3.1, a DR coherent state in EB picture involves Alice mak-
ing a heterodyne detection upon her arm of an EPR pair, where she mixes her mode
with the vacuum. The resulting modes are A1 and A2 upon which she measures
x̂ and p̂ respectively. Bob makes a homodyne detection by switching between the
quadratures. The DR key rate is then bounded by:

K. ≥ S(XA1|E)− H(XA1|XB) (5.14)

where the right white triangle denotes here the information flow during reconcilia-
tion from Alice to Bob. After Alice’s projective measurement upon A2 the state ρA1BE
is pure and we can again apply the entropic uncertainty relation :

K. ≥ log 4π − S(PA1|B)− H(XA1|XB) (5.15)

≥ log 4π − H(PA1|PB)− H(XA1|XB) (5.16)

Although we do not measure p̂ upon mode A1, we trust the device in Alice’s station.
Therefore we can assume H(PA1|PB) = H(PA2|PB) which is measured. Hence we
have:

K. ≥ log 4π − log
√

2πeVPA2|PB
− log

√
2πeVXA1|XB

(5.17)

= log(
2

e
√

VXA1|XB
VPA2|PB

) (5.18)

In order to compare with the previous protocol (EB scheme and homodyne detection)
we use the fact that mode A is mixed with the vacuum as shown in figure 5.1. Hence
we have:

XA1 =
1√
2
(XA + Xv) (5.19)

VXA1 =
1
2
(VXA + 1) (5.20)
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where Xv is the vacuum fluctuation, and its variance is VXv = 1.
Alice’s variance on Bob’s measurement is as follows:

VXA1|XB
= VXA1 −

〈XA1 XB〉2
VXB

(5.21)

Using the expressions (5.21) and (5.20) we have :

VXA1|XB
=

(VXA + 1)
2

−
〈 1√

2
(XA + Xv)XB〉2

VXB

(5.22)

=
1
2

VXA −
1
2
〈XAXB〉2

VXB

(5.23)

2VXA1 |XB
− 1 = VXA|XB

(5.24)

A similar expression can be written for VPA2
. Hence considering the equation (5.18)

the key rate will be given as follows:

K. ≥ log(
4

e
√
(VPA|PB

+ 1)(VXA|XB
+ 1)

) (5.25)

5.5 Security proof with imperfect reconciliation efficiency

In the previous section the secret key rates were derived assuming the ideal situation.
In reality we won’t be able to perfectly achieve this and we should take into account
the effect of imperfect reconciliation between Alice and Bob. Thus the key rate will
instead be bounded by:

K ≥ βI(XA : XB)− S(XA : E) (5.26)

where 0 < β ≤ 1 is the reconciliation efficiency. In this scenario, rather than applying
the entropic uncertainty relation to lower bound the secret key rate, we will employ
it to upper bound the eavesdropper’s (Eve’s) information and then independently es-
timate βI(XA : XB) to obtain the actual key rate. Considering that Eve’s information
is upper bounded by the Holevo quantity we will have:

S(XA : E) ≤ S(E)−
∫

dXA p(XA) S(ρXA
E ) (5.27)

Besides the conditional von Neuman entropy of the observable XA is given by:

S(XA|E) = H(XA) +
∫

dXA p(XA)S(ρ
XA
E )− S(E) (5.28)

Hence Eve’s information can be written as:

S(XA : E) ≤ H(XA)− S(XA|E) (5.29)
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We now make use of equation (5.5), our CV entropic uncertainty relation as :

S(XA|E) + S(PA|B) ≥ log 4π (5.30)

to obtain,

S(XA : E) ≤ H(XA) + S(PA|B)− log 4π (5.31)

Knowing the fact that S(PA|B) ≤ S(PA|PB) = H(PA|PB) and the Gaussian distri-
bution for a fixed variance maximizes the Shannon entropy such that H(XA) ≤
log
√

2πeVXA we arrive finally at:

S(XA : E) ≤ log 2πe
√

VXA VPA|PB
− log 4π (5.32)

Thus the secret key rate for an arbitrary β is defined as:

K ≥ β log

√
VXA

VXA|XB

+ log 4π − log 2πe
√

VXA VPA|PB
(5.33)

Considering that in the real situation x̂ and p̂ quadratures are not symmetric, we
need to average over them. Hence, the key rate in real situation becomes:

K ≥ (β log

√
VXA

VXA|XB

+ log 4π − log 2πe
√

VXA VPA|PB
)/2

+ (β log

√
VPA

VPA|PB

+ log 4π − log 2πe
√

VPA VXA|XB
)/2 (5.34)

We used this expression in the experimental implementation of one-sided device-
independent QKD protocols that I will describe in the next chapters.

5.6 One-sided device-independent CVQKD

An important benefit of employing entropic uncertainty relations which ended to
equation (5.13), is that they lend themselves towards one-sided device-independent
(1SDI) protocols. As mentioned in section 4.5 for 1SDI-QKD protocols only one of
the communicating parties, Alice or Bob, is trusted and the other is regarded as a
black box. Since the trusted partty is assumed to involve a particular set of quantum
operations, the security is linked to the steering inequalities [17] associated with the
observables on the trusted side. In the following I will describe EPR steering briefly,
and then explain the connection between quantum steering and the possible one-
sided device-independent Gaussian protocols based on equation (5.13).
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5.6.1 EPR Steering

The concept of EPR steering was pioneered by Schrödinger in 1935 as a generalization
of the EPR paradox. In his response to EPR paper, Schrödinger introduced Steering
for Alice’s ability to affect (steer) Bob’s state by her choice of measurement. In this
scenario Alice prepares a bipartite quantum state and forwards one part to Bob. Her
job is to assure Bob that their state is entangled. Bob relies on quantum mechanics
but does not trust her. To convince him, Alice randomly chooses a measurement base
and conducts measurement on her state. Bob does tomographic measurement of his
state. If Bob finds a well-defined state conditioned on Alice’s announced outcomes
through the entire experiment and all the measurement choices, he will be convinced
that Alice can steer his state and as a result their shared state is entangled. Other-
wise, he would conclude that Alice has drawn a pure state at random from some
ensemble, where the correlation between Bob’s measurement result and Alice’s an-
nounced results can be described utilizing a local hidden state (LHS) model for Bob
[17]. An operational definition for EPR steering is provided by H.M.Wiseman et al.
[17] where they proved that the states that exhibit Bell-type correlations are a subset
of EPR steerable states, and steerable states are a strict subset of entangled states .
Due to the asymmetry between the parties, it is easier to show EPR steering exper-
imentally than violating a Bell’s inequality [131]. Since in EPR steering, instead of
considering correlation functions for measurement outcomes for two parties in Bell’s
inequality, the correlation is considered between measurement outcomes announced
by Alice and Bob’s measurement results conditioned on Alice’s outcome [131]. For
example, for the simplest case of the Gaussian states where Alice and Bob each have
one mode with correlated positions X and momenta P, the EPR steering is demon-
strated through violation of Ried [47] EPR criteria [17], which says that the product
of the conditional variances VXB|XA

and VPB|PA
should violate the uncertainty princi-

ple for Alice to steer Bob’s state as follows :

E. = VXB|XA
VPB|PA

≤ 1 (5.35)

It also shows that "EPR Paradox" is a special case of steering. The steering task when
Alice is affecting Bob’s state is shown schematically in figure 5.2.
This asymmetric correlation of EPR steering makes one-sided device-independent
QKD possible. In the following I will discuss Gaussian protocols for 1SDI-QKD and
their connection to the EPR steering.

5.6.2 One-sided device-independent CV-QKD protocols and their connec-
tion to EPR steering

Here I will discuss which of the 16 Gaussian protocols mentioned in section 5.3 can
possibly show one sided-device independence. Similar to steering inequalities, the
1SDI nature of the entropic proofs is clear in expressions like equation (5.13) in that
it relies only on measuring a known observable upon one side. For example, in the
derivation we only need to know that Bob is observing either x̂B or p̂B and then
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Bob

Alice

Figure 5.2: Schematic diagram of steering task when Alice is affecting Bob’s state.
Bob trusts his devices which is shown by the white box, but he has no knowledge
about Alice’s devices which is depicted by a black box. Only the outcomes of Alice’s
measurement ak are important to Bob. By performing the complete measurement
on his received state and conditioning on Alice’s announced outcomes, Bob will be
convinced that Alice has the ability to steer his state if he finds a well defined state

conditioned on Alice’s outcomes

conditioned on the outcomes of Alice’s observation in order to use the entropic un-
certainty relations. Alice could choose any measurement and the security would still
hold if the conditional variance was sufficiently small to violate Ried EPR criteria
(equation 5.35).
Hence for entanglement-base (EB) scheme and homodyne detection, by definition
any positive key proved by the entropic uncertainty relation is 1SDI, independent of
Alice for RR and Bob for DR protocols. Though the protocols involving heterodyne
detection does not necessarily exhibit device independence. This is basically due to
the fact that extracting the non-zero key rates for the heterodyne protocols depends
upon characterizing the devices utilized in the heterodyne detection. Hence, using a
heterodyne measurement by the supposedly untrusted party immediately disproves
the device-independence. However, the heterodyne measurement can be performed
safely by the trusted party with high efficiency sources and detection, making the im-
plementation of 1SDI-CVQKD protocols possible with current technology. It means
that Bob can safely perform heterodyne for an RR protocol and Alice may conduct
heterodyne for a DR protocol. Finally, for DR protocols where Alice who is trusted
and controls the source, we can also benefit from the equivalence between prepare
and measure (P&M) and entanglement-based (EB) schemes (see section 5.3.1). Sur-
prisingly, this means that for direct reconciliation it is possible to extract 1SDI key
utilizing only coherent states. The table in figure 5.3 summarizes the possible Gaus-
sian protocols which are potentially 1SDI out of the all 16 Gaussian protocols .

The idea that the 1SDI-QKD protocols should be related to EPR steering was
confirmed in DV regime by C.Branciard et al. [19] before. For CV-QKD the EPR-
steering criteria is defined by equation 5.35. Comparing Ried EPR criteria with
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Alice

Bob

Hom Het

Hom Het Hom Het

DR

RR

P&M

EB

P&M

EB

Figure 5.3: Gaussian protocols which can potentially be 1SDI. Alice and Bob can
choose either homodyne or heterodyne detection. DR and RR reconciliation protocols
can be performed for both (EB) and (P&M) schemes. The same colors are chosen to

show the equivalence between the (EB) and (P&M) protocols.

equation (5.13) we can rewrite the key rate as a function of EPR-steering E.:

K/ ≥ log(
2

e
√
E.

) (5.36)

For the RR protocols the key rate K/ > 0 if and only if E. < ( 2
e )

2 ≈ 0.55, with
the similar relation between the DR key rate and E/ following straightforwardly. In
other words, the condition for obtaining the positive one-sided device-independent
key is more strict than EPR steering, analogous to the case for DV-QKD [19]. For
the protocols where a trusted party performs the heterodyne detection, the security
of the protocol is instead based on the steerability of the outcome of the heterodyne
measurement which will be more challenging due to the extra loss introduce to the
system. Now secure key enforces an EPR condition E.(/) < 0.22. In the next chap-
ters where I present the experimental results, I will demonstrate the connection of
achieving the positive key rates and the EPR steering criteria mentioned here.
From the 6 possible 1SDI Gaussian protocols, we conducted 5 protocols experimen-
tally. However, only 3 of the 5 demonstrated sufficient correlations to allow 1SDI
key distribution. Two different experimental setups were used, the first for the (EB)
protocols based on EPR correlations and the second for a coherent state (P&M) proto-
cols. A schematic diagram of all the performed experiments and the achieved results
are summarized in figure 5.4.
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Figure 5.4: Schematic diagram of all the experimentally realised 1sDI protocols. Al-
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generates either EPR or coherent states (indicated respectively by pink and yellow
boxes). Direct (reverse) reconciliation protocols are demonstrated using right (left)
pointing arrows. The table summarizes each performed protocol and the experimen-
tally achieved results. The same color scheme as figure 5.3 is used here to show the

different performed protocols.
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5.7 Summary

In this chapter I reviewed the entropic uncertainty relations and showed how we
used them to derive 1SDI-QKD key rates. I discussed the connection between EPR
steering and 1SDI-QKD protocols. I looked at all the 16 Gaussian QKD protocols and
showed that only 6 of them can manifest device independence. We experimentally
implemented 5 of these 6 protocols. In fact, Implementation of 1SDI-QKD using con-
tinuous variables against coherent attacks has been reported recently by T. Gehring et
al. in ref [132]. However, they just implemented one protocol, while we extended the
notion of 1SDI-QKD to the whole family of continuous variable protocols for the first
time. In the next two chapters I will detail our experimental setups, the computer
simulation and the results.



Chapter 6

Experimental Implementation of
1SDI-QKD Protocols in EB Scheme

6.1 Introduction

In this chapter I will describe the experimental implementation of one-sided device-
independent protocols using an entangled source. I will start by giving the overall
view of our experimental setup, then I will explain each part in more detail. I will
introduce the detection, data acquisition and control systems that we utilized in the
experiment, and present the experimental results, error estimation and computer
simulation at the end.

6.2 Experimental Setup

We performed three 1SDI-QKD experiments using an entangled source. The general
form of the experimental setup is shown in Fig 6.1 and the different parts of the
setup will be described in the following sections. In all these three experiments the
entangled state was distributed between two parties, Alice and Bob, where one part
of the entangled state was sent to Alice locally and the other part to Bob through a
lossy channel. In the first experiment both Alice and Bob performed homodyne mea-
surement on their states alternating between two quadratures. Where in the second
experiment Alice heterodyned, measuring both quadratures at the same time, while
Bob conducted a homodyne detection on his received state. The third experiment
was the reverse scenario where Alice homodyned and Bob performed heterodyne
detection on his state. These three experiments are depicted schematically in Fig 6.2.
All the synchronizations were local in these experiments and no finite size effects are
taken into account.
We utilized a 1064nm laser source which is frequency doubled to 532nm. This laser
source was the same as described in subsections 3.7.2 . Considering that the squeez-
ing and entanglement experiments are very sensitive to the spectral noise and spatial
mode-mismatching, it is important to prepare a quantum-noise limited optical field
with well-defined spatial mode (TEM-00 in our experiment). Hence both the 1064nm
(seed) and 532nm (pump) beams were passed through the mode cleaning cavities

75
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(MCCs) as shown in Fig 6.1. The mode-cleaning cavities were the same as described
in subsection 3.7.3. The two OPAs which were used to produce squeezed light and
entanglement will be detailed in sections 6.3 and 6.4. The estimated values of squeez-
ing and anti-squeezing generated from both OPAs were respectively -6 dB and 10.7
dB at 3 MHz. A simple model was used to infer the pure squeezing produced inside
the cavity and also the effective loss of the system. According to this model, the
OPAs were assumed to produce pure squeezed states and the effective loss which
considered as the combination of the cavities’s escape efficiencies EFs, propagation
and detectors’ losses, was modelled with a beam splitter after the squeezer. This
model is shown schematically in figure 6.7. The control and data acquisition systems
which were used in these experiments will be described in section 6.5.

6.3 Optical Parametric Amplifier

We used optical parametric amplifiers (OPA) to produce squeezed light. A detailed
schematic of our OPA is depicted in Fig 6.3. Both OPAs that we used were designed
and built by Jiri Janousek [49]. These OPAs are based on a periodically poled KTP
(PPKTP) crystal as a nonlinear material. KTP or Potassium titanyl phosphate is a
nonlinear optical material which is commonly used for three wave mixing applica-
tions like frequency doubling or optical parametric down conversion. The crystal is
housed in a bow-tie cavity resonant for the seed frequency to enhance the nonlinear
interaction. PPKTP material has the advantage of high nonlinearity plus a large tem-
perature bandwidth. This will guarantee that the phase-matching condition will not
significantly change if the crystal heats up due to the absorption of the pump filed.
Our crystals were fabricated by Raicol with identical dimensions of 10× 5× 1 mm3

and poling periods of Λp = 9 µm. The surfaces of both crystals are anti-reflection
coated at both the fundamental and SH wavelengths. In order to temperature stabi-
lize the crystals, each of them was placed in a copper oven where the temperature
was controlled with 0.1oc precision using a Peltier element.
Both OPA cavities are formed of four mirrors in bow tie geometry, having an optical
round trip path length of 275 mm with cavity linewidth of 19 MHz and finesse of
57. The two concave mirrors of each cavity (m3,m4) have the radii of curvature of 38
mm, spacing 44 mm apart. These two mirrors are highly reflective at the fundamen-
tal wavelength and have 95% transmission for the SH field. The other two mirrors
are plane (m1,m2), from which one is the input coupler of transmission 99.9% and
the other is the output coupler of transmission of 90% at 1064 nm. The resulting
beam waist is 19 µm centered between the two curved mirrors. This waist is almost
optimum for the Boyd-Kleinman condition. This condition places a constraint on the
optimum focusing of the beams into the nonlinear crystal [133].

6.3.1 Locking loops of the OPAs

In order to operate each squeezer, two feed-back control loops were used. The first
one controlled the cavity length, keeping it on resonance with 1064 nm seed field, and
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Figure 6.1: Schematic diagram of the experimental setup with entangled source. A
1064nm Nd:YAG laser which is frequency doubled to 532 was used as the source.
MCC is the mode cleaning cavity which was used to provide a quantum-noise lim-
ited optical field with well-defined spatial mode. Both 1064nm and 532nm beams
were passed though a mode-cleaning cavity. OPA1 and OPA2 are two similar optical
parametric amplifiers which produced amplitude-squeezed beams. The 1064nm op-
tical field coming from the Nd:YAG laser was used to seed the OPAs and the 532nm
optical field to pump them. Both OPAs generated - 6.5 dB of squeezing and 10.7 dB
of anti-squeezing. LO is the local oscillator. This was the bright 1064nm optical field,
separated from the 1064nm laser beam and sent to Alice and Bob’s detection sta-
tions. PZT is a piezo-electric actuator and BS is a 50:50 beamsplitter. Two amplitude
squeezed beams were mixed on a beamsplitter with their relative phase locked in
quadrature to produce an EPR state. One part of the entangled state is sent to Alice
locally and the other through a lossy channel to Bob. A half wave plate (λ/2) and
a polarizing beamsplitter (PBS) were used to simulate the lossy channel. Depending
on the QKD protocol, Alice and Bob perform a Homodyne (Hom) or Heterodyne

(Het) measurements on their subsystem.
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Figure 6.2: Schematic diagram of the three experimental setups using an entangled
source and different measurement configurations chosen by Alice and Bob. In all
these experiments one part of the entangled state is sent to Alice locally and the
other through a lossy channel to Bob. Here EPR source refers to the setup shown in
Fig 6.1 including two OPAs and a beamsplitter which produce a two-mode EPR state.
Lossy channel as shown in Fig 6.1 consists of a half wave plate λ/2 and a polarizing
beamsplirre. "Hom" refers to alternating homodyne measurements, and "Het" to a
heterodyne (dual-Homodyne) measurement. "LO" is the local oscillator. As shown
in Fig 6.1, it is separated from the 1064nm optical field coming from the laser. In
order to provide the local oscillator for the Heterodyne (dual-homodyne) measure-
ment, the LO coming to the detection station is again divided to two. By using two
piezo-electric actuators (PZTs) and separate locking loops (see section 6.5), two ho-
modynes in the dual-homodyne configuration were locked to different quadratures.
The measurements configurations for Alice and Bob are (a) Homodyne (Alice) - Ho-
modyne (Bob), (b) Heterodyne (Alice) - Homodyne (Bob) and (c) Homodyne (Alice)

- Heterodyne (Bob).



§6.3 Optical Parametric Amplifier 79

Squeezed Beam 

Pump Beam

Seed beam

PZTTC

m
1

m
2

m
4

m
3

HR@1064 HR@1064

HT@532

output coupler

90%@1064

HT@532

input coupler

99.9%@1064

HT@532

PPKTPHT@532

Figure 6.3: Schematic diagram of the optical parametric amplifier bow-tie cavity.
Here PPKTP is periodically poled KTP nonlinear crystal, PZT is piezo-electric ac-
tuator, TC is temperature controller, HR is highly reflective mirror and ROC is the

radius of curvature.

the second loop controlled the phase relation between the seed and pump field. This
phase relation is very important since it defines the direction of the nonlinear process,
resulting either amplification or deamplification. In order to generate amplitude
squeezed light, we operate the OPA in the deamplification regime. Phase drifting
will degrade the squeezing in the desired quadrature.
In order to use PDH locking technique, the seed beams of OPA1 and OPA2 were
modulated at 7.1 MHz and at 16 MHz respectively, using electro-optic modulator
(EOM). Each seed beam was coupled to a bow-tie cavity. The error signal for each
squeezer was extracted from the reflection of the seed beam from the cavity detected
by a photo-detector. This error signal was split into two. The first part was used in
a PDH configuration to keep the cavity length on resonance with the seed beam. In
order to use the second part in locking the phase of the pump field, a 90o electronic
phase shift was applied to it. This phase shift decoupled the two error signals from
each other. In the experiment we maximized each error signal independently, and
ensured that when looking at one error signal the other one was not interfering.
After passing the second error signal through a PDH locking loop, it was fed to the
piezo-electric crystal which scanned the pump beam. This feed-back loop enabled
us to control the relative phase of the pump and seed beams and lock the non-linear
process to de-amplification.

6.3.2 Alignment of the OPAs

Our squeezers were doubly passed (resonant) for the seed fields and single passed
for the pump fields. Hence, the cavity could be aligned for the seed beam by simply
scanning the length of the cavity and looking at the cavity resonances. However,
aligning the pump beam was more tricky. In order to align the pump field, a bright
reverse-propagating seed field was sent to the OPA cavity. This produced SHG field
which could be aligned all the way back to the mode cleaning cavity, guaranteeing
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Figure 6.4: Schematic diagram of the Optical Parametric Amplifier and the feed
back control loops. The reflection from the cavity was detected by a photodiode
and the high frequency signal was split into two. The first part was used in a PDH
configuration to keep the cavity length on resonance. An electronic phase delay of
90o was applied to the second part and was used to control the relative phase of the
pump beam and seed beam utilizing the PDH locking technique. Here 90o represents

the phase delay, other symbols are the same as figure 3.1 and 6.3.
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that the mode coming from the green MC cavity is coupled optimally to the OPA.

6.3.3 Characterization of the OPAs

Our both squeezers are type I OPA, which means that both photons generated in
the down conversion process are in the same polarisation. We operated both squeez-
ers below the threshold of the optical parametric oscillator (OPO), and in the de-
amplification regime. In this regime the quantum fluctuations in the amplitude
quadrature are de-amplified leading to the amplitude squeezing [49].
In order to characterize both OPAs, squeezing noise variances are measured as a
function of the pump power using a spectrum analyzer. These graphs are shown in
figure 6.5. The temperature was kept at 30oC. However, it was seen that changing
the temperature from 30oC to 35oC would not disturb significantly the mode match-
ing condition. This is not surprising due to the large temperature bandwidth of the
PPKTP crystal.
We used these graphs to find a regime where both OPAs function identically.
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Figure 6.5: Squeezing and anti-squeezing values of OPA1 and OPA2 measured at
3 MHz, as a function of the pump power. These graphs were used to characterize the

OPAs.

6.4 Entanglement Generation

The purpose of generating squeezed states, was to produce an entanglement for the
1SDI-QKD experiment. An Einstein-Podolsky-Rosen (EPR) state can be generated
via quadrature phase measurement performed on the two output beams of a non-
degenerate parametric amplifier [47]. In our experiment in order to produce an EPR
state, we generated two amplitude squeezed states and interfered them on a 50:50
non-polarizing beam-splitter (NPBS), while controlling their relative phase to be π/2.
It is shown schematically in Fig 6.6.
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To control the relative phase between the two squeezed fields, we used DC locking
technique. In this method, 1% of each output of the mixing beam-splitter is tapped
off utilizing a pellicle AR coated for 1064 nm. The two resulting photocurrents are
then subtracted producing a sinusoidal signal. The zero-crossing of this signal corre-
sponds to π/2 relative phase between the two fields.
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Figure 6.6: Generation of two mode EPR state by interfering an amplitude squeezed
state and a phase squeezed state, or two amplitude (phase) squeezed states which

are locked in quadrature.

Here X̂±s are the quadrature operators, X̂±m are the measured quadratures, and
ηe f f is the effective loss. Hence the squeezed noise variances can be found using the
relation :

V±m = ηe f f V±s + (1− ηe f f ) (6.1)

where Vs =< X2
s > and Vm =< X2

m >. Since we assumed in the model that the
squeezed states are pure, we have V+

s = 1
V−s

. Using this model and the measured
values of the squeezing and anti-squeezing, I predicted that each OPA produced 11.5
dB of pure squeezing (-11.5 dB of squeezing and 11.5 dB of anti-squeezing), and the
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Figure 6.7: Schematic diagram of the model used to predict the pure squeezing
produced by the OPA and the effective loss of the system.

effective loss of this system was calculated to be around 20% with 14% loss due to the
EFs of each squeezer’s cavity and also the propagation of the optical beams through
the optical components and nearly 6% loss due to each detection station.

Four identical photo-detectors using Uni-PD circuits with a combination of Epitax
ETX-500 photodiodes were used in the detection stations. The detection efficiency
of Alice and Bob’s stations were estimated to be 94% and 92% respectively, with
fringe visibility of 99% and the photodiodes’ quantum efficiency of around 96% for
all the detectors. We estimated 2% extra loss on Bob’s side due to the loss introduced
by the half wave plate and polarizing beamsplitter that were used to simulate the
lossy channel. Each pair of detectors were balanced electronically, providing 30 dB
of common mode rejection. Each detector had at least 16 dB of dark noise clearance.

6.5 Control System and Data Acquisition

As mentioned before and illustrated in Fig 5.4, the EB scheme consisted of four pro-
tocols and three experiments. We controlled the first experiment where both Alice
and Bob performed homodyne measurement with nine locking loops; two to con-
trol the length of the 1064 nm and 532 nm mode-cleaning cavities, two to control the
length of the OPAs’ cavities and two to control the phase of the pump and seed fields,
one to control the relative phase between the two squeezed beams and two to con-
trol the measured quadrature of homodyne detections. The first six feed-back loops
were controlled by extracting error signals using analog demodulation and analog
PI (Proportional-Integrator) servo controllers built in house, as shown previously in
figures 3.1 and 6.4.
The error signals for homodyne detections were generated by exploiting the 7.1 MHz
and 16 MHz phase modulations imposed previously on seed beams of the OPAs (see
subsection 6.3.1). Since the two squeezed beams are mixed on a beam-splitter and
locked in quadrature, the modulations appeared on both quadratures. This enabled
us to extract two error signals to lock the homodynes to any desired quadrature. This
is analogues to the locking technique, where both quadratures are modulated sepa-
rately. We employed this technique in the prepare & measure experiment for locking
the homodyne as will be described in section 7.3. Although all the error signals were
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extracted using analog demodulation, we used digital PID controller developed by
S. Armstrong [134] to lock the homodynes and the relative phase between the two
squeezed beams. I will describe digital locking more in section 7.3.
The experiments involving the heterodyne (dual homodyne) detection, have the same
locking loops. Except we needed one extra control loop to lock the heterodyne.

For each separate homodyne detection 5× 107 data points are sampled at 14×
106 samples per second using digital data acquisition system. In order to provide
sufficient statistics for each data point, this process is repeated ten times. These data
were then digitally filtered to 2.5-3.5 MHz and then resampled. After this process,
the number of data points was reduced to 4× 106 which is sufficient to extract the
key rates.

6.6 Experimental Results

I used the relation 5.34 to calculate the key rate from the obtained experimental data.
Considering that the reconciliation efficiencies for CV-QKD have increased a lot in
the recent years [135, 10], with reported efficiencies of between 94% and 95.5% [132],
we assumed the reconciliation efficiency to be β = 0.95 for all the experiments. This
would make the comparison between different protocols possible.
Among all the implemented experiments using an entangled source, only the proto-
cols where both Alice and Bob performed homodyne measurement succeeded. The
reason that the heterodyne protocols failed to produce any positive key rates, was the
strong correlations required to overcome the quantum noise penalty. Our calculation
showed that a perfect system with no losses of any kind and reconciliation efficiency
of 0.95 would still require at least 7 dB of pure squeezing to get any positive key.
The measured secret key rates as a function of the applied loss in dB scale for the
EB experiment with homodyne-homodyne measurement is shown in Fig 6.8. Solid
lines are calculated from a theoretical model based upon the characterisation of var-
ious imperfections in the experiment (see section 6.7). Using the RR protocol we
measured a positive key rate independent of Alice’s devices up to the applied loss of
nearly 1.5 dB. And using the DR protocol, we measured a secret key independent of
Bob’s devices up to the applied loss of nearly 0.5 dB. Our theoretical model, which
is in good agreement with the experimental data, predicts a maximum applied loss
of 1.6 dB and 0.6 dB for the RR and DR protocols respectively (see section6.7). I also
display the behavior of the measured steering parameter with respect to the thresh-
olds required for key generation and violation of the Reid EPR-steering criteria (see
Fig.6.8 (b)). For each data point, I graphically represent the relevant steering param-
eter with respect to these thresholds in Fig 6.8 (c). In accordance with our earlier
discussion we show that a positive key is achieved with an RR protocol only when
E. < 2

e
2 ≈ 0.55, while the corresponding relationship holds between the DR protocol

and E/. Hence, all the plotted points with positive key rate demonstrate EPR-steering
through a violation of the Reid criteria. The error estimation is the same as will be
described later by equation 7.4 in section 7.5.
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Figure 6.8: Key rates versus the applied loss in dB scale for (a) DR and RR protocols
with EB source and homodyne-homodyne detections (protocols 1, 2 and 5 in the Ta-
ble of Fig.5.4). Theoretical curves are evaluated from the models described in section
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(b) Example experimental data points from the EB protocol. Phase-space plots show
the correlation between the quadratures, PA and PB and XA and XB, measured by
Alice and Bob. Using their statistics, the conditional variances are calculated and
used to estimate the EPR-steering parameters. The circle on the right illustrates the
comparison of the measured value of the EPR steering (purple), the threshold for ob-
taining a positive key rate (dashed) and the upper bound for EPR steerability (green).
Panels (c) illustrates circles corresponding to each plotted data point in (a), showing
the connection between the measured values of EPR steering and the generation of
the positive key rates. Numbers are assigned to each data point in (a) to connect

them to the circles in (c).
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6.7 Computer Modeling

Since all the states and operators were assumed to be Gaussian in this experiment, the
states can be easily described by their mean values and covariance matrices CM’s, see
section 2.6. The effect of Gaussian operations on Gaussian states can be compactly
calculated via symplectic transformations as described in subsection 2.6.1. Under an
arbitrary symplectic operation, S, an input CM, σin transforms via

σout = S σinST. (6.2)

The CM of a two-mode squeezed vacuum with squeezing in quadrature in modes i
and j is given by applying the following symplectic operator,

SQi,j(s1, s2) =


es1 0 0 0
0 e−s1 0 0
0 0 e−s2 0
0 0 0 es2

 (6.3)

where s1 and s2 are squeezing parameters applied on the ith and jth second mode
respectively. Implicit in this notation is the fact that when applied to a multi-mode
CM one should appropriately pad out the above matrix such that the identity is
applied to all modes other than i and j.

The loss of each squeezer is modelled by introducing a vacuum mode, and then
applying a beamsplitter of transmittance ηA(B) on each squeezed mode and a vacuum
mode to mix them together. The beamsplitter transformation between the modes i
and j is:

BSi,j(η) =


√

η 0 −
√

1− η 0
0

√
η 0 −

√
1− η√

1− η 0
√

η 0
0

√
1− η 0

√
η

 (6.4)

In order to create an EPR state two squeezed states are locked in quadrature and
mixed on a 50:50 beamsplitter. To model the imperfect locking point a phase shift θ

is applied to one mode before they mix on a beamsplitter. The applied operator is as
follows:

RT(θ) =
(

cos θ − sin θ

sin θ cos θ

)
(6.5)

To model the loss of the transmission channel, a vacuum state was introduced and
mixed with the second mode on a beamsplitter with transmittance T. The loss of
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each homodyne station was modelled by a beamsplitter of transmittance ηDA(B) , equal
to the efficiency of the homodyne station, with the other mode being in a thermal
state of variance V∆A(B)

= 1 + ∆A(B)/(1− ηDA(B)) to model the detector dark noise of
magnitude ∆A(B). Thus the final CM is given by (6.2) where

S =BS2,7(ηDB)BS2,6(T)BS1,5(ηDA)BS1,2(1/2)RT2(θ)

BS2,4(ηB)BS1,3(ηA)SQ1,2(s1, s2)

with

σin = diag(1, 1, 1, 1, 1, 1, 1, 1, V∆A , V∆A , 1, 1, V∆B , V∆B) (6.6)

a 14x14 diagonal matrix. The whole process is shown schematically in Fig 6.9.
To determine the value of the applied loss, T, from the measured correlations it is

sufficient to consider the ratio of the correlation between Alice and Bob at particular
loss setting with the case where the channel is set to full transmission. From the
simulated covariance matrix, key rates were calculated and plotted as a function of
the effective transmission distance. Using the measured parameters in our model
resulted in a good agreement with the experimental results as shown in Fig 6.8 (a).

The model was also used to estimate the performance of a more efficient system
with two squeezers each producing -10 dB of squeezing and 16 dB of anti-squeezing
and detection efficiency for Alice and Bob’s stations of 96% and 95% respectively.
Using these parameters, our model shows the improvement of the secure communi-
cation, where the tolerable applied loss to the system would extend from 1.6 dB to
3.3 dB for the RR protocol and from less than 0.6 dB to nearly 1.4 dB for DR pro-
tocol ( see Fig 6.10). Achieving this level of quadrature squeezing is experimentally
challenging but feasible as up to -12 dB of squeezing was reported previously [136].

6.8 Summary

In this chapter I described the experimental setup that we used to implement the
1SDI-QKD protocols using entangled source. I presented the overall view of our
setup then detailed the optical parametric amplifiers that we used to generate am-
plitude squeezed light and EPR state. I showed how I estimated the loss of the
squeezers and described our control system and data acquisition. I presented our ex-
perimental results and detailed the computer modelling I conducted to understand
the setup better and the way to improve it.
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Figure 6.9: Schematic diagram of the modelling of the 1SDI-QKD experiment using
entangled source and homodyne-homodyne measurements based on the symplec-
tic transformations. In the calculation, 7 Gaussian modes were involved which are
shown as Mode1 to Mode 7 in the diagram. To simulate the sequence of the ex-
periment, appropriate Gaussian unitary operators were applied to these modes, in
the order shown by numbers 1 to 8. Number 1 shows a squeezing operator apply-
ing on Modes 1 and 2 to produce a two-mode squeezed vacuum state. Numbers 2
and 3 depict the beamsplitter transformation with transmittance ηA(B) applying be-
tween Modes 1,3 and 2,4 to model the loss introduced to each squeezers. Number 4
shows a phase shift θ applying to the second Mode to model the imperfect locking
point. Number 5 demonstrates Modes 1,2 mixing on a 50:50 beamsplitter to create a
two-mode EPR state. Numbers 6 and 8 shows a beamsplitter transformation to mix
Modes 1,5 and 2,7 in order to model the loss on each homodyne detection. Number 7
illustrates a beamsplitter operator with transmittance T between modes 2,6 to model

the lossy channel.
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Figure 6.10: Predicted improvement of secure communication for the EB protocols
with an improved experimental setup (blue curve) for the (a) RR protocol and (b)
DR protocol. The model for the current system (red curve) is plotted along with
experimental data (blue points) for comparison. The two OPAs in our system each
produced -6 dB of squeezing and 10.7 dB of anti-squeezing and suffered from 13%
combined loss due to the squeezers’ cavities and the propagation through the opti-
cal components. A further loss of 6% and 8% was due to the inefficiency of Alice
and Bob’s homodyne detections respectively. The value of the unknown rotation, θ,
was estimated to be 3π/180. The improved system consists of two squeezers each
producing -10 dB of measurable squeezing and 16 dB of anti-squeezing, 5% loss due
to the cavities and propagation of the optical beams through the optical components
with 4% and 5% loss for Alice and Bob’s stations respectively and a rotation of π/120.
Reconciliation efficiency is chosen to be 0.95 for both cases. These theoretical lines

are produced using the model described in the text.



90 Experimental Implementation of 1SDI-QKD Protocols in EB Scheme



Chapter 7

Experimental Implementation of
1SDI-QKD Protocols in P&M
scheme

7.1 Introduction

In this chapter I will describe the experimental implementation of the one-sided-
device-independent protocol using (P&M) scheme. I will elaborate our experimental
setup, the control system and data acquisition and will present the experimental
results along with the error estimation and computer modelling .

7.2 Experimental Implementation of P&M Scheme

The experimental setup is depicted in Fig 7.1. A 1064 Nd:YAG laser was used in the
experiment. It was the same laser as was described in section 3.7.2. The mode clean-
ing cavity that we used to prepare a quantum-noise limited optical field was also
similar to the one elaborated in section 3.7.3. A large portion of the light was used
as the local oscillator for the homodyne detection and small portion of it was passed
through a pair of phase and amplitude electro-optic modulators (EOMs). EOMs were
used to provide a Gaussian distributed modulation on each quadrature to produce
a randomly displaced coherent states as described in section 3.7.4. It was shown
that, coherent states prepared by Alice can be used for QKD protocols instead of
an entangled source [90]. The equivalence between using these two type of sources
for QKD applications is know as virtual entanglement and described earlier in sec-
tion 5.3.1. Each EOM was driven by an independent function generator, providing a
broadband white noise signal up to 10 MHz. The magnitude of the white noise was
set to provide almost the same displacement on each quadrature.
The outputs of function generators were divided into two. One part was sent to drive
the EOMs and the other to data acquisition system (DAQ) to be recorded, as shown
in Fig 7.1. This modulation record, after calibration was considered as Alice’s data
since she had control over the source. Here, calibration means determining the rela-
tionship between the function generator output and the phase space displacement as
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measured before transmission. I will describe the calibration more, shortly. This is to
produce the virtual entanglement which was explained earlier (see section 5.3.1).
An electronic delay was introduced to Alice’s and Bob’s data to gain the maximum
correlation between them at 3.5-4.5 MHz.
When the homodyne detector was locked to the phase quadrature there was 30 dB
of suppression of cross correlation between orthogonal quadratures and when it was
locked to the amplitude quadrature the suppression was around 37 dB. But this effect
worsened as the modulation depth increased as is seen from the experimental results
presenting in section 7.4.
A pair of photo-detectors using the Uni-PD circuits with a combination of the Epi-
tax ETX-500 photodiodes were used for the homodyne detection. The photodiode’s
quantum efficiency was estimated to be around 97%. Our pair of detectors were bal-
anced electronically, providing 30 dB of common mode rejection.
The homodyne efficiency was estimated using the relationship ηHom = ηM .ηQE [39],
as described in subsection 3.7.4. Here ηHom is the overall efficiency of the homodyne,
ηM denotes the degree of mode matching and ηQE is the quantum efficiency of the
detector. Hence our homodyne efficiency was around 93% with fringe visibility of
98%, limited by the mode distortions introduced by the EOMs.

7.2.1 Calibration of function generator outputs

As mentioned before, the output of function generators need to be calibrated in or-
der to provide the corresponding phase-space displacement. One way to calibrate
the output of function generators, is to keep the channel transmission value to ”1”,
and scan the voltage of function generators over a certain range. For each value of
voltage, Bob should measure the corresponding quadrature amplitude of his received
state. The slop of the plot showing the variation of the quadrature amplitudes mea-
sured by Bob which are normalized to quantum-noise, versus the output of function
generators on Alice’s side, will give the calibration factor.
Another way that I used, is to infer the calibration factor from the elements of the co-
variance matrix, built from the experimental data. Our experiment can be described
by the simple picture shown schematically in Fig 7.2. Only one quadrature is il-
lustrated in this picture. I assume that S̃a are the numbers saved from the function
generator, and Sa = S̃a/k are the corresponding phase-space displacement, with k
being the calibration factor. xv is the vacuum input to the EOM, xB is the output of
homodyne measurement performed by Bob, and η is the channel transmission.

This experiment can be described mathematically as follows:

xB = (xv + Sa)
√

η +
√

1− η (7.1)

It can be inferred easily that < xB Sa >=
√

η < S2
a >, where < S2

a > is the variance
of Sa and < xB Sa > are the covariance or off-diagonal elements of the covariance
matrix built from the Alice’s data and the output of Bob’s measurement (see section
2.6 on description on the covariance matrix). Hence, the channel transmission can be
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Figure 7.1: Schematic diagram of experimental setup implementing P&M scheme.
A Nd:YAG 1064 nm laser was used as the light source. Here MCC is the mode-
cleaning cavity which provided a quantum-noise limited laser field. AM and PM
are electro-optic modulators (EOMs) driven by function generators (FG), which in
turn provided Gaussian distributed displacement of the vacuum state in amplitude
and phase quadratures. The resulting coherent states were sent to Bob’s detection
stations where he performed homodyne measurement (Hom), alternating between
conjugate quadratures. DAQ is the digital data acquisition system. xA and pA are
the outputs of function generators and XB and PB are the outcomes of the homodyne
measurement. Inset (b) shows the combination of half waveplate (λ/2) and the po-
larizing beamsplitter (PBS) which were used to simulate the lossy channel. Red lines
corresponds to the optical paths, while the dashed lines refer to the direction of the

electrical signals.

EOM

FG

Figure 7.2: Simple diagram of P&M scheme showing only one quadrature.
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written as:

η =
cov(xB, Sa)2

var(Sa)2 (7.2)

This helps to infer the calibration factor when η = 1 as (considering Sa = S̃a/k) :

k =
var(S̃a)

cov(xB, S̃a)
(7.3)

7.3 Control System and Data Acquisition

This experiment was controlled digitally utilizing field programmable gate arrays
(FPGAs). The digital control has the advantage of integration of the control loops and
data acquisition together. The control loops and data acquisition codes programmed
using National Instruments Lab VIEW. These codes were developed previously in
our group by Dr. B. M. Sparkes et al [137], and further modified by Dr. Syed Assad.
We used this system to lock the mode-cleaning cavity of the 1064nm laser field and
a homodyne station.
In order to lock the homodyne station to the desired quadrature, a phase modulation
at 21.25 MHz and an amplitude modulation at 30 MHz were imposed on the signal
beam using electro-optic-modulators. After demodulation at the right frequency, an
error signal was extracted enabling us to lock to any quadrature. The locking scheme
of the homodyne station is illustrated schematically in Fig 7.3.

Utilizing this digital data acquisition system, 4× 106 data points were sampled at
25× 106 samples per second . The process was repeated five times in order to provide
sufficient statistics for each data points. These data were then digitally filtered to 3.5-
4.5 MHz.

7.4 Results

Here I present the result of the experimental implementation of the P&M scheme.
In this experiment as described in section 7.2, Alice who was trusted and controlled
the source, generated coherent states and Bob performed a homodyne measurement.
In this protocol, Alice and Bob are also connected by a variable lossy channel of
transmission T. The synchronization is local in this experiment and no finite size
effects is taken into account. In addition, no parameter estimation errors due to the
calibration imprecisions (see subsection 7.2) was calculated. I present the results as a
function of the applied loss in dB scale.

In order to find the maximum range over which the protocol provides secure
communication, we wish to find the optimal modulation variance for each value of
the applied loss. Hence, we scanned the modulation variance over a range of 2 to 19
times the shot noise. The key rates were calculated using Equation 5.34, with recon-
ciliation coefficient set to 0.95 for each modulation variance and loss setting. This is
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Figure 7.3: Schematic diagram of the homodyne lock utilized in P&M experiment.
The input signal was modulated in both quadratures using electro-optic modula-
tors. The two photocurrents coming from the two detectors of homodyne detection
were subtracted, and was sent to the FPGA card. The error signal was extracted
digitally, providing a proper feedback signal after being passed through a digital PII

(proportional-double integral) controller.

an achievable value for CV-QKD [135, 10, 132]. Assuming it to be constant makes the
comparison between different protocols possible. The result of these measurements
is illustrated in Fig 7.4.

Fig.7.5 depicts the results obtained for the DR coherent state protocol for opti-
mum modulation variances. We show that secure key can be generated after ap-
plying 0.6 ± 0.047 dB of loss, in good agreement with our theoretical model, which
predicts our current setup would be secure up to applying 0.9 dB of loss. With the
P&M protocol, we have much more freedom to vary the modulation variance and
hence the virtual entanglement in order to optimize the secret key rate for each loss
setting. As such, we could achieve a loss tolerance superior to the EB DR protocol,
whilst using only the cheapest and most readily available quantum optical resources.

7.5 Error Estimation

In order to estimate the errors in calculating the key rates and other variables all vari-
ables (A, B, ...) are considered to be independent and the error propagation formula
is applied as follows:

∆Z =

√
(

∂Z
∂A

)2∆A2 + (
∂Z
∂B

)2∆B2 + · · · (7.4)

Here ∆A and ∆B etc represent the standard deviation of the variables. Key rates
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Figure 7.4: (a) variation of key rates versus effective modulation squeezing parameter
for 5 different values of the applied loss. A theory line with the average value of the
applied loss is fitted on the experimental data points. Data points surrounded by
dashed circles correspond to the optimum modulation squeezing parameters which
resulted the highest key rate for each loss setting. The key rates resulting from these
optimum modulation variances are shown separately in Fig 7.5. (b) demonstrates
the gap between the theoretical model and the realistic model which captures the
experimental imperfections and matches well with the experimental results for the

case of the zero applied loss. The model is described in section 7.6.
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Figure 7.5: (a) key rates versus loss in dB scale for P&M coherent state DR protocol.
Experimental error bars were estimated using error propagation of uncertainties.
Panels (b) show the connection between the measured values of EPR steering and

generation of the positive key rates, are as described in Fig 6.8.
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are functions of the variances and covariances of the collected data. Each measure-
ment was repeated 5 times for the this scheme, which provided us sufficient data to
estimate the error.

7.6 Computer Modeling

To model the P&M experiment, I benefit from the equivalent EB picture and begin
with σin = EPR(S) given as follows :

EPR(s) =


cosh(2s) 0 sinh(2s) 0

0 cosh(2s) 0 − sinh(2s)
sinh(2s) 0 cosh(2s) 0

0 − sinh(2s) 0 cosh(2s)

 (7.5)

where s is the squeezing parameter and is related to the modulation variance via
cosh(2s) = VS + 1.

Recall that one part of the equivalent EPR state was sent to Bob through a lossy
channel where he performed a homodyne detection, and on the other part Alice
performed a heterodyne detection. To model the heterodyne detection a vacuum
state was introduced to the first mode (Alice’s mode) and mixed with it on a 50:50
beam splitter. Although much more flexible, the coherent state setup naturally still
suffers from imperfections which in turn determine the optimum modulation. These
imperfect correlations arise partly from cross correlation between orthogonal quadra-
tures and partly from our limited ability to maximize the correlation between Alice
and Bob’s modes using electronic delay. Both phenomena can be thought of as an
unknown rotation in the system. Hence, a rotation operator with small angles is ap-
plied to both quadratures of the second mode (Bob’s mode) to model the imperfect
correlation between Alice and Bob’s modes.

To model the lossy channel, a thermal state with the variance of 1 + χ was intro-
duced to the system and mixed with the second mode on a beamsplitter of transmis-
sion T. Here χ is the excess noise entering to the system through the transmission
channel. The excess noise χ was very small compared to decoherence effects caused
by cross correlation between orthogonal quadratures. Hence, it has negligible impact
on the key rate calculations. The transmission can again be determined directly by
taking the ratio of the correlation at a particular setting with the correlation at full
transmission. Here again all the states and operators were assumed to be Gaussian.
Therefore, the final covariance matrix can be described by symplectic transformation
(see subsection 2.6.1 and equation 6.2) as follows:

σout = S[σin
⊕

Vχ(B)
⊕

diag(1, 1)]ST, (7.6)

where Vχ = diag(1 + χx, 1 + χp) , and χx(p) is the excess noise introduced to x̂( p̂)
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quadratures. The operator S is given by :

S = RT(θx, θp)BS1,4(1/2)BS2,3(T). (7.7)

where RT is the rotation operator described by the matrix 8.17 and BS is the beam-
splitter operator defined by matrix 8.18.

The variation of key rates versus the equivalent modulation squeezing parameter
for 5 different transmission was previously shown in Fig 7.4. As is clear from Fig
7.4, using coherent states provides a much greater range over which to tune the
equivalent squeezing. When using actual EPR states the maximum achievable value
for s is around 0.8, well short of the optimum.

As the modulation was increased, so too was the detrimental effect on the correla-
tions, leading to a smaller value for the optimal modulation parameter which for an
ideal experiment would depend only upon β. In inset(b) of Fig 7.4 the gap between
the ideal case without cross correlation and the realistic case is shown for the case of
zero applied loss.

The key rate resulting from optimum modulation variances for each loss setting
is chosen and plotted versus the applied loss in Fig 7.5. (a). In addition, our model
predicts that if the cross correlation between Alice and Bob’s modes was zero, the
loss tolerance of the system would extend from 0.9 dB to 1.3 dB as depicted in Fig
7.6. This would result the extension of the range of secure communication for this
protocol.
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Figure 7.6: Comparison of the key rates resulted from optimum modulation variances
versus the applied loss in dB scale for our experimental system and an ideal system
with out any imperfections. The reconciliation efficiency is taken as 0.95 for both

cases. These theoretical lines are produced using the model described in the text.
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7.7 Summary

In this chapter I detailed our experimental implementation of one-sided device-
independent quantum key distribution using coherent states. I started by giving
the overall view of our experiment then I described the way I calibrated the function
generator outputs. I explained our control and data acquisition system and presented
our experimental results. I detailed the computer modelling I perform to understand
the setup better and the way to improve it.



Chapter 8

Bell-like Correlations for
Continuous-Variables

8.1 Introduction

In the early 1930s, Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) in their
seminal paper[3] pointed out the quantum entanglement to demonstrate that Quan-
tum Mechanics was incomplete. They hoped that a more comprehensive and less
troubling theory could replace it one day. Their argument was based on two assump-
tions of realism (that physical objects have real properties determining the outcome
of a measurement) and locality (that the physical reality in one location is not in-
fluenced instantaneously by measurements conducted at a distant location), together
called "local realism" or "local hidden variables". However, EPR did not provide any
test to prove local realistic theories. These concepts were first quantified in 1964 by
John Bell [5] through his famous inequalities. Bell assumes that a pair of particles
have interacted and separated, where two distant observers perform measurement
on them. If local realistic theories are correct, the correlations between different out-
comes of measurements should obey certain constraints defined by Bell’s inequalities.
While the violation of the Bell’s inequalities disprove all local realistic theories.

In addition, it has particular implication in quantum key distribution where the
violation of the Bell’s inequality will rule out any tampering of the quantum source
leading to the development of device-independent QKD as described earlier in chap-
ter 4.
In this chapter I review the Bell’s inequality and show how it can be extended to
the continuous-variables scheme. Then I will discuss the computer simulation I per-
formed to model two experiments proposed in ref [1, 2] that can violate the Bell’s
inequality in continuous varaibles. The feasibility of these experiments open the door
for real-life implementation of device-independent CV-QKD.

8.2 Mathematical Description of Bell’s Inequality

In order to derive the original inequality Bell considered the EPR argument promoted
by Bohm and Aharonov [138], where an entangled pair of spin one-half particles
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formed in the singlet state can move freely in opposite directions. Measurements
are performed employing Stern-Gerlach magnets on the selected components of the
spins, where spins of particles 1&2 are defined by ~σ1 and ~σ2 respectively. Considering
~a as a unit vector in a certain direction, then the measurement of the spin compo-
nent in that direction which is described by ~σ1 .~a , yields the value +1. Hence the
measurement of the spin of the other particle on the same direction ~σ2 .~a must yield
−1 according to the laws of quantum mechanics. Now we can imagine that the two
measurement apparatuses are placed far from each other in a way that the orienta-
tion of one Stern-Gerlach magnet does not affect the result of the other measurement
setup. Since the result of measuring any chosen spin component of of particle 2,
can be predicted by previously measuring the same component of the spin of parti-
cle 1, it suggests that the result of any such measurement should be predetermined.
Since according to the quantum mechanics the result of any measurement cannot
be determined in advance, this predetermination may lead to the possibility of the
more complete description of quantum mechanics by including the so-called hidden
variables [5].

To include the hidden variables, a single continuous parameter λ was assumed in
a way that the result A of measuring ~σ1.~a is determined by ~a and λ, and the result B
of measuring ~σ2.~b in the same time is determined by~b and λ. The outcomes of these
measurements are as follows [5]:

A(~a, λ) = ±1, B(~b, λ) = ±1. (8.1)

The important assumption is that the result B for particle 2 is not affected by the
measurement setting of the particle 1 or vice versa.

Considering ρ(λ) as the probability distribution of λ, then the quantum correla-
tion which is defined as the expectation value of the product of the two components
~σ1.~a and ~σ2.~b is given by [5] :

P(~a,~b) =
∫

dλ ρ(λ)A(~a, λ)B(~b, λ) (8.2)

If the description using the hidden variables is correct, the expectation value defined
above should be equal to the quantum mechanical expectation value [5] :

< ~σ1 .~a ~σ2 .~b >= −~a .~b (8.3)

However, Bell showed through developing his famous inequality that it is not possi-
ble to have the quantum mechanical expectation value defined above, by including
the hidden variables. His original proposed inequality is as follows [5] :

1 + P(~b,~c) ≤ |P(~a,~b)− P(~a,~c)|. (8.4)

here~a,~b and~c denote the unit vectors in the direction of three arbitrary measurement
settings, and Ps are the correlation functions defined by relation 8.2. Nevertheless,
this inequality is restricted to the case in which the outcomes of both sides of the
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experiment should be anti-correlated when the analyzers are parallel. This makes
the real implementation of this inequality very hard. Hence other inequalities were
developed which are experimentally more feasible.

8.3 CHSH Inequality

"in 1969, John Clauser, Michael Horne, Abner Shimony and Richard Holt generalized
Bell’s original inequality to the famous CHSH inequality " [139]. As the original Bell’s
inequality it introduces constraints on the correlations of the outcomes of the mea-
surements performed by the two different parties. Though, no assumption of perfect
correlation or anti-correlation at equal detector settings was taken into account to
derive this inequality. The CHSH inequality is defined as follows [139]:

|E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| ≤ 2 (8.5)

where a and a′ are two different detector settings on side A, and b and b′ are different
detector settings on side B. The E(a, b) etc. are the quantum correlations of the pair
of particles defined as the expectation value of the product of the "outcomes " of the
experiment, as previously described by equation (8.2):

E(a, b) =
∫

dλ ρ(λ)A(a, λ)B(b, λ) (8.6)

where λ again is the "hidden variable" drawn from a fixed distribution with density
function ρ(λ), and A and B are the average values of the outcome of the measure-
ments made by two parties as described previously by relation 8.1. However, in rela-
tion 8.1 two outcomes ±1 was denoted for the outcome of the measurements, while
for CHSH inequality which was derived based on the use of "two-channel" detectors,
+1 is coded for "+" and −1 for the "-" channel. As performing a real experiment
at that time meant utilizing of polarized light and single-channel polarizers, where
they interpreted "-" as "no detection" and "+" as the "detection" of the single photon.
In fact, most of the experiments performed so far employed properties of light like
its polarization, as in the well-known experiment by Aspect et al. [140] rather than
spins of the electrons as Bell thought in the first place. Schematic diagram of this
kind of experiments is shown in Fig 8.1.

Quantum mechanics predicts maximum violation of 2
√

2 for CHSH inequality
which is greater than 2. Therefore, experimental verification of violation of this in-
equality proves that the nature cannot be described by local hidden variables theories.

For experiments utilizing single photons, simultaneous observations or coinci-
dences are recorded and categorized as "+ +","+ -","- +" and "- -", where "+" implies
the detection of a single photon and "-" to non-detection of a photon. The num-
bers of coincidences for each detection settings (a, b) are registered as N++ etc. The
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Source

a b D+

D-

D+

D-
BobAlice

Figure 8.1: Schematic diagram of a two channel CHSH Bell experiment. Pairs of
photons are produced by an entangled source. They are sent through two different
directions. Each photon encounters a two-channel detection station where two par-
ties Alice and Bob perform measurement by setting the orientation of their polarizer.

experimental estimation for correlation functions E(a, b)s are calculated as [139]:

E(a, b) =
N++ − N+− − N−+ + N−−
N++ + N+− + N−+ + N−−

(8.7)

Four separate subexperiments should be performed corresponding to the four terms
of E(a, b) in CHSH inequality. The settings a, a′, b, b′ are generally set to the angles
0, π/4, π/8 and 3π/8 respectively. These angles which are known as the "Bell
test angles" result the greatest violation of the inequality. When all the correlation
functions are estimated, equation (8.5) will be used to calculate the CHSH Bell’s
inequality. If the number is bigger than 2, it will prove quantum mechanics to be
correct excluding all the hidden variable theories.
One of the most important assumptions in the derivation of the CHSH inequality was
fair sampling. It assumes that the detected pairs are a fair samples of the emitted
photons.

8.4 CHSH Inequality for Continuous Variables

Optics has been a platform for experimental demonstration of bell’s inequality for a
long time, in a way that polarization of single photons were used in the experiment
by Aspect et al. [140]. However, due to the improvements in the field of quantum
information using optical systems based on the continuous variables, developing a
Bell type inequality for these systems is of significant importance. T. C. Ralph et al.
in ref [1] proposed a method for observing Bell type correlations with continuous
variables. They suggested that EPR states created by squeezed light beams can be
utilized to violate a Bell’s type inequality. In their first proposal they suggested to use
four independent squeezing sources to generate two pairs of EPR states [1]. Although
using four squeezing sources would provide higher correlation, it is experimentally
challenging to implement. Hence, a simpler systems were proposed later by E. H.
Huntington and T.C.Ralph in ref [2] based on only two bright squeezed sources with
moderate levels of amplitude squeezing.

The Bell-type correlation experiment suggested in [1, 2] is shown schematically
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in Fig 8.2. A quantum optical source S generates four-mode (two spatial and two
polarization) correlated beams of light denoted by Âh, Âv, B̂h and B̂v, where two
modes Âh and Âv are sent to Alice and the other two modes B̂h and B̂v to Bob. By
using a combination of polarizing optics, such as a half-waveplate and polarizing
beamsplitter, they mix their modes and separate them to two polarization basis "+",
"-" at an angle θA and θB. This is given by the following transformation [2] :

Â+ (θA) = cosθA Âh + sinθA Âv (8.8)

Â− (θA) = cosθA Âv − sinθA Âh (8.9)

B̂+ (θB) = cosθB B̂h + sinθB B̂v (8.10)

B̂− (θB) = cosθB B̂v − sinθB B̂h (8.11)

Then Alice performs one of the measurements {θA, θ′A} on her mode and Bob
performs one of the measurements {θB, θ′B} on his mode. The result of the measure-
ments are shown by two outcomes R+ and R−, where +1 is coded for R+ and -1 for
R− in the Bell experiment.

Source CC

Classical Phase Reference

Figure 8.2: Schematic diagram of a quantum optical system that can be used to
demonstrate the violation of Bell’s inequality. Here Âh, Âv, B̂h and B̂v are the four-
mode (two spatial and two polarization) of the system generated by the source. Po-
larizing optics are used to decompose the two spatially distinct beams Â and B̂ into
a polarization basis set +,− at an angle θ to the original h, v basis. Photo detection
in the + and − basis on each beam can be made. The classical phase reference refer

to the local oscillator that is used for homodyne measurement.

The photon number correlation can be constructed by repeating the experiment
several times and using the correlation statistics between Alice and Bob’s measure-
ment outcomes as follows [1, 2]:

〈Rij(θAθB)〉 = 〈Ri
A(θA)Rj

B(θB)〉
= 〈Â†

i (θA)Âi(θA)B̂†
j (θB)B̂j(θB)〉

where i, j = +,−. The Rij correspond to the numbers of coincidences for each de-
tection settings defined as N++ etc. in section 8.3. Hence, the correlation function
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corresponding to relation 8.7 can be built using these photon number correlations as
follows[1, 2]:

E(θA, θB) =
〈R++(θA, θB)〉+ 〈R−−(θA, θB)〉 − 〈R+−(θA, θB)〉 − 〈R−+(θA, θB)〉
〈R++(θA, θB)〉+ 〈R−−(θA, θB)〉+ 〈R+−(θA, θB)〉+ 〈R−+(θA, θB)〉

.

(8.12)

here also the measurement settings can be chosen as {0, π/4} for {θA, θ′A} and
{π/8, 3π/8} for {θB, θ′B}, which are the "Bell test angles" introduced in section 8.3
and were also used for settings a, a′, b, b′ in section 8.3. Any local realistic description
of the correlations can be bounded using CHSH Bell’s inequality as [1, 2]:

B = |E(θA, θB) + E(θ′A, θ′B) + E(θ′A, θB)− E(θA, θ′B)| ≤ 2. (8.13)

Here again four separate subexperiments corresponding to the four combination of
measurement settings should be performed to build the four terms of E(θA, θB)s in
CHSH inequality.
In order to extend this result to continuous variable measurements, it was shown
in ref [1] that the photon number correlations can be decomposed into a series of
quadrature amplitude measurements using the equivalence [1, 2]:

Â†
i Âi ≡ 4(Â†

i Âi − V̂†
i V̂i) = (X̂i

A;1)
2 + (X̂i

A;2)
2 − (X̂i

V;1)
2 − (X̂i

V;2)
2 (8.14)

where X̂F;1 = F̂+ F̂† corresponds to amplitude quadrature operator and X̂F;2 = i(F̂−
F̂†) corresponds to phase quadrature operator. They can be measured experimentally
using homodyne detection technique (see section 2.8.1). V̂i is a vacuum mode where
〈V̂†

i V̂i〉 = 0. Using equation (8.14) and assuming that the fields having Gaussian
statistics, correlation functions Rij can be written as [1, 2] :

Rij =
1

16
[2(〈X̂i

A;1X̂ j
B;1〉

2 + 〈X̂i
A;2X̂ j

B;2〉
2 + 〈X̂i

A;2X̂ j
B;1〉

2 + 〈X̂i
A;1X̂ j

B;2〉
2)

+ Vi
A;1V j

B;1 + Vi
A;2V j

B;2 + Vi
A;2V j

B;1 + Vi
A;1V j

B;2 − 2Vv(Vi
A;1 + V j

A;2)

l − 2Vv(Vi
B;1 + V j

B;2) + 4V2
v ]

where VF;k = 〈(X̂F;k)
2〉 for k = 1, 2.

This shows that the correlation function defined by equation 8.12 and hence the
CHSH inequality given by equation 8.13, can be built from the photon correlations
Rij developed for continuous variables introduced above. The violation of CHSH in-
equality for continuous variables suggests the presence of strong correlation between
the subsystems of a quantum system and excludes all the hidden variable theories.
In the next section I will describe the computer simulation I conducted to model the
experimental setups suggested in [1, 2].
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8.5 Computer Modeling of two systems showing Bell type
correlation using continuous variables

I simulated two of the experimental setups suggested in [1, 2] and calculated the
possible outcomes of those experiments. The first setup was the scheme using four
squeezing sources named as S1 in [1]. The second one, was the similar scheme in
which two squeezing sources are used instead of four. This scheme is called S2 in
[2]. These two experimental setups are shown schematically in figures 8.3 and 8.4.

Squeezer 1

λ/2

PBS
Squeezer 3

BS

BS

PBS

λ/2

λ/2PBS PBS

Squeezer 4

Squeezer 2

λ/2 LO

LO

LO

LO

HD1

HD2

HD3

HD4

PZT

PZT

PZT

PZT

Figure 8.3: Schematic diagram of system S1 using four squeezing sources proposed
in ref [1]. Four horizontally polarized bright amplitude-squeezed beams are pro-
duced. The third and forth beams (Âin3, Âin4) experienced 90o phase shift and then
combined on a 50:50 beamsplitters with the first and second beams (Âin1, Âin2) re-
spectively to generate two EPR states. The polarizations of the transmitted outputs
from the beamsplitters are rotated by 90o. The reflected outputs from each beam-
splitter are combined with the transmitted beams from the other beamsplitter on a
polarizing-beamsplitter (PBS) to form the output modes Âh, Âv, B̂h, B̂v. A combina-
tion of half-waveplate and polarizing-beamsplitter are used to decompose the two
spatially distinct beams to the new polarization basis. Each output is sent to a homo-
dyne detection station in order to perform the quadrature amplitude measurements.
Here PZT is piezo-electric crystal, BS is beamsplitter, λ/2 is half-waveplate, 90o refers
to the 90o phase shift, PBS is polarizing beamsplitter and HD refers to homodyne de-

tection.

To model the experiments showing the Bell type correlation from continuous
variables, all the states and operators were assumed to be Gaussian. Hence, the
states can be described by their mean values and covarinace matrices (CMs), where
symplectic transformations are used to describe the effect of the Gaussian operations
on the Gaussian states as described in subsection 2.6.1 . This simulation is very
similar to the theoretical modelling of 1SDI-QKD experiment which was described in
sections 6.7. Except that in Bell type correlation experiments four modes are involved.
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Squeezer 1

λ/2

PBS

BS
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λ/2

λ/2PBS PBS

Squeezer 2
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HD1

HD2

HD3

HD4

PZT

PZT

Figure 8.4: Schematic diagram of system S2 using two squeezing sources proposed
in ref [2]. This system is very similar to system S1 shown and described in fig-
ure 8.3. Except, instead of squeezed beams Âin3 and Âin4, vacuum modes δv̂1 and
δv̂2 are introduced and mixed on beamsplitters with squeezed modes Âin1 and Âin2

respectively.

The CM of a four-mode squeezed vacuum state with squeezing in quadrature of
modes i,j,k and l is given by applying the following symplectic operator:

SQi,j,k,l(s1, s2, s3, s4) =



es1 0 0 0 0 0 0 0
0 e−s1 0 0 0 0 0 0
0 0 es2 0 0 0 0 0
0 0 0 e−s2 0 0 0 0
0 0 0 0 e−s3 0 0 0
0 0 0 0 0 es3 0 0
0 0 0 0 0 0 e−s4 0
0 0 0 0 0 0 0 es4


(8.15)

where s1, s2, s3 and s4 are the squeezing parameters applied on the modes 1 to 4 or
ith, jth, kth and lth respectively. I assumed modes 1&2 to be squeezed on the same
quadrature and modes 3&4 to be squeezed on the orthogonal quadrature, so later
modes 1&3 and 2&4 can be mixed on a 50:50 beamsplitter to create two EPR states.
This is equivalent to applying the 90o phase shifts to the output of the squeezers 3th
and 4th in Fig 8.3.
In order to model the loss of each squeezer, a vacuum mode is introduced and mixed
with the squeezed mode by applying a beamsplitter operator of transmittance ηA for
the first squeezed mode and vacuum, ηB for the second squeezed mode and vacuum,
ηC for the third squeezed mode and vacuum and ηD for the forth squeezed mode and
vacuum. The beamsplitter transformation between any two modes is given by :
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BS(η) =


√

η 0 −
√

1− η 0
0

√
η 0 −

√
1− η√

1− η 0
√

η 0
0

√
1− η 0

√
η

 (8.16)

As shown in Fig 8.3, the squeezed modes 1 & 3 and 2 & 4 are mixed on the 50:50
beamsplitter to create EPR states. Before mixing these modes, a rotation operator
was applied to modes 1 and 2 to model the phase shift due to the imperfect locking
point. The applied operator is given by :

RT(θ) =
(

cos θ − sin θ

sin θ cos θ

)
(8.17)

After that beamsplitter operators with transmittance of 1/2 were applied on
modes 1 & 3 and 2 & 4.
To model the transformations defined by 8.11, a beamsplitter operation with the
transmittance of cos2(θA) is applied on modes 2 & 3 and another beamsplitter op-
eration with the transmissivity of cos2(θB) is applied on modes 1&4. A two-mode
beamsplitter operator with the transmissivity of cos2(θ) is given by :

BS(cos2θ) =


cosθ 0 −sinθ 0

0 cosθ 0 −sinθ

sinθ 0 cosθ 0
0 sinθ 0 cosθ

 (8.18)

The loss of the four homodyne stations was simulated by applying a beamsplitter
operator of transmittance ηDA , ηDB , ηDC and ηDD , which are equal to the homodyne
efficiencies, while the other mode was in a thermal state of variance V∆A(B,C,D)

=
1+∆A(B,C,D)/(1− ηDA(B,C,D)

), to model the detector dark noise of magnitude ∆A(B,C,D).
The correlation functions and Bell’s inequality were calculated using the equation
mentioned in section 8.13.

Modelling of the system S2 proposed in [2] and shown in Fig 8.4, which uses two
squeezers instead of four was the same as described above. Except the squeezing
operator was not applied on modes 3&4. Hence each of the 1st and 2nd modes was
mixed with a vacuum on a 50:50 beamsplitter.

The results of this simulation is shown in Fig 8.5, which suggests that both of the
experimental setups S1 and S2 can violate the Bell’s inequality. It is obvious that the
system S1 that uses four squeezers show higher correlation and higher violation of
Bell’s inequality. However, the correlation generated from two squeezers also show
the violation of Bell’s inequality while being experimentally more feasible.
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Figure 8.5: Plots showing the maximum violation of Bell’s inequality (Bmax) as a
function of the variance of the input state for (a) an experimental setup using four
squeezing sources suggested in [1] and named as system S1 and (b) the experimental
setup using two squeezing sources suggested in [2] and named as system S2. Bell test
angles were used to calculate the (Bmax). Three levels of detectors’ electronic noise
variances of 13 dB, 16 dB and 20 dB below quantum noise limit were considered for

each system.
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8.6 Summary

I this chapter I introduced briefly the Bell’s inequality, a fundamental inequality in
physics which proves quantum mechanics to be correct and ruling out the hidden
variable theories. I described CHSH inequality and showed how it can be extended
to continuous-variables. I illustrated two experimental schemes for the measurement
of the Bell-type correlation from continuous variables proposed in [1, 2]. I elaborated
the computer simulation I performed to model these two experiments and presented
its results which shows that both schemes which are experimentally feasible can
violate Bell’s inequality. The violation of Bell’s inequality for continuous-variables
quantum systems, despite having the fundamental importance, opens new horizons
for secure quantum communication through the development of device-independent
QKD, as is described in chapter 4.
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Chapter 9

Conclusion

In this thesis I covered our studies on different types of quantum correlations; Quan-
tum Discord, EPR-steering and Bell-type correlation.

I have introduced our simple experimental technique to verify quantum discord
in continuous-variable quantum states. This method can be applied to unknown
bipartite Gaussian states and certain type of non-Gaussian states which can be pro-
duced by exposing statistical mixtures of coherent states to one port of a beam-splitter
and the vacuum state to the other port. We implemented this technique experimen-
tally by producing a thermal state and subjecting it to a beam-splitter to prepare a
separable but correlated bipartite state. Three different non-Gaussian states were also
prepared; the first one was a uniform statistical mixture of vacuum and a thermal
state, the second was a mix of coherent and the vacuum state and the last one was
generated using asynchronous detection. This corresponds to the stroboscopic obser-
vation of the quadrature of a harmonic oscillator. Our technique successfully proved
nonzero quantum discord in all the prepared Gaussian and non-Gaussian states.
Since our method provides an easy way to confirm the presence of quantum discord
in a bipartite quantum state, it can open the door for practical implementation of
quantum discord as a resource for quantum computations and communications.

In the second part of this thesis, I have looked at the EPR-steering, the inter-
mediary scheme between general entanglement and the Bell-type correlation. I have
discussed its application in the quantum cryptographic scenario known as "one-sided
device independent QKD" where the apparatuses of one of the communicating par-
ties are only trusted. I have presented our theoretical and experimental investigations
on the complete family of the Gaussian CV-QKD protocols from the perspective of
one-sided device independence and its connection to EPR-steering. We have demon-
strated theoretically that only 6 of the 16 possible Gaussian CV-QKD protocols are
device-independent, and implemented 5 of those 6 protocols experimentally. We
have used both entanglement-based (EB) and prepare and measure (P&M) schemes.
I have detailed the experimental implementations and the results in this thesis. One
of the highlights of our research was the first demonstration of a 1SDI-QKD protocol
employing only the coherent states. This surprising result and the fact that produc-
ing coherent states is a lot cheaper and easier than entangled states makes them an
elegant candidate for the short range metropolitan quantum networks.

In the last part of this thesis I looked at the Bell-like correlations for continuous-
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variables. It was based on the theoretical proposal of ref [1, 2]. This completes my
study on quantum correlations. We are implementing experimentally this proposal
in our group. The experiment is not completed yet. Here, I only presented the result
of my computer simulation.

9.1 Future Work

Our research on 1SDI CV-QKD can be improved further experimentally and theo-
retically. As suggested by my computer modelling presented in section 6.7 for EB
scheme and section 7.6 for (P&M) scheme, by improving the experimental setup we
can boost the range of secure communication considerably. For example, in (EB)
scheme by decreasing the the level of noise reduction (squeezing) to -10 dB and im-
proving the locks the applied loss can be increased from 1.6 dB to more than 3.2 dB
which in turn will expand the range of the secure quantum communication. This
effect is captured in figure 6.10. There is a little room to improve the secure range
using the coherent states. However, still by omitting the effect of cross-correlation it
can be increased as shown in figure 7.6.

Another way to further extend the range of these 1SDI-QKD protocols, would be
employing the noiseless linear amplifier [109, 141], especially the measurement based
version of these scheme which has been recently demonstrated [142]. However, this
could only be applied to the RR protocols.

From theoretical point of view, we need to include finite size effects [143] into our
security proof.

After implementing all the improvements mentioned above, it is possible to apply
our 1SDI-QKD protocols practically between two nodes connected with fibre optics.
This can be done for example between ANU and UNSW-ADFA in Canberra where
the fibre optics link is already available.

Completing the Bell’s test using continuous variables; itself is of special interest.
It can provide the tool for implementation of device-independent quantum key dis-
tribution in continuous-variables. In addition, since the violation of the Bell’s test
guarantees the existence of quantum entanglement in the system under measure-
ment, the output of the measurement is assured to be random and not predeter-
mined. This makes it possible to generate random numbers [144] from the output of
the homodyne measurements in the experiment.
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79. E. Prugovečki, Information-theoretical aspects of quantum measurement , Int. J. Theor.
Phys. 16, 321 (1977). (cited on page 34)

80. P. Busch, Informationally complete sets of physical quantities, Int. J. Theor. Phys. 30,
1217 (1991). (cited on page 34)

81. M. D. Lang, C. M. Caves, A. Shaji, Entropic measures of non-classical correlations,
Int. J. Quant. Inf. 9, 1553 (2011).

82. M. S. Kim, W. Son, V. Buzek, and P. L. Knight, Entanglement by a beam splitter:
Nonclassicality as a prerequisite for entanglement , Phys. Rev. A 65, 032323 (2002).
(cited on page 36)

83. W. Xiang-bin, Theorem for the beam-splitter entangler , Phys. Rev. A 66, 024303
(2002). (cited on page 36)

84. R. J. Glauber, Photon Correlations , Phys. Rev. Lett. 10, 84 (1963). (cited on page
37)

85. E. C. G. Sudarshan, Equivalence of Semiclassical and Quantum Mechanical Descrip-
tions of Statistical Light Beams , Phys. Rev. Lett. 10, 277 (1963). (cited on page
37)

86. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H.
Ward , Laser phase and frequency stabilization using an optical resonator, Appl. Phys.
B: Photophys. Laser Chem. 31, 97-105 (1983). (cited on page 39)

87. E. D. Black, An introduction to Pound-Drever-Hall laser frequency stabilization, Am.
J. Phys. 69 (1), (2001). (cited on page 39)

88. J. W. Wu, P. K. Lam, M. B. Gray, and H.-A. Bachor, Optical homodyne tomography of
information carrying laser beams, Optics Express 3, 154 (1998). (cited on page 44)

89. Christian Weedbrook, Stefano Pirandola, Raúl García-Patrón, Nicolas J. Cerf,
Timothy C. Ralph, Jeffrey H. Shapiro, Seth LIoyd, Gaussian quantum information,
Rev. Mod. Phys. 84, 621, (2012). (cited on pages 50, 51, and 64)

90. F. Grosshans, N. J. Cerf, J. Wenger, R. Tualla-Brouri, P. Grangier, Virtual entangle-
ment and reconciliation protocols for quantum cryptography with continuous variables,
Quantum Inf. Comput. 3, 535-552 (2003). (cited on pages 51, 64, and 91)

91. F. Grosshans & P. Grangier, Continuous Variable Quantum Cryptography Using Co-
herent States, Phys.Rev.Lett. 88, 057902 (2002). (cited on pages 49 and 51)

92. P. W. Shor & J. Preskill, Simple Proof of Security of the BB84 Quantum Key Distribu-
tion Protocol, Phys.Rev.Lett. 85, 441 (2000). (cited on page 49)



122 References

93. T. C. Ralph, Continuous variable quantum cryptography, Phys. Rev. A.61, 010303
(1999). (cited on pages 49 and 64)

94. G. Brassard, N. Lútkenhaus, T. Mor and B. C. Sanders, Limitations on Practical
Quantum Cryptography, Phys. Rev. Lett. 85, 1330 (2000).

95. C-H. F. Fung, B. Qi, K. Tamaki,and H-K. Lo, Phase-remapping attack in practical
quantum-key-distribution systems , Phys. Rev. A. 75,032314 (2007). (cited on page
50)

96. F. Xu, B. Qi and H-K Lo, Experimental demonstration of phase remapping attack in a
practical quantum key distribution system, New J. Phys. 12, 113026 (2010). (cited on
page 50)

97. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar and Vadim Makarov,
Hacking commercial quantum cryptography systems by tailored bright illumination ,
Nature Photonics. 4, 686 (2010). (cited on page 50)

98. Y. Zhao, C-H. F. Fung, B. Qi, C. Chen and H-K Lo, Quantum hacking: Experimental
demonstration of time-shift attack against practical quantum-key-distribution systems,
Phys. Rev. A 78, 042333 (2008). (cited on page 50)

99. S. Pironio , A. Acín, N. Brunner, N. Gisin, S. Massar and V. Scarani, Device-
independent quantum key distribution secure against collective attacks, New J. Phys.
11, 045021 (2009). (cited on pages 51, 52, 53, 54, and 55)

100. A. Acín, N. Gisin, and L. Masanes, From Bell’s Theorem to Secure Quantum Key
Distribution, Phys. Rev. Lett. 97, 120405 (2006). (cited on pages 52 and 54)

101. J. Barrett, L. Hardy and A. Kent, No Signaling and Quantum Key Distribution,
Phys. Rev. Lett. 95, 010503 (2005). (cited on page 52)

102. J. Barrett, L. Hardy and A. Kent, No Signaling and Quantum Key Distribution,
Phys. Rev. Lett. 95, 010503 (2005). (cited on pages 53 and 54)

103. A. Acín, S. Massar and S. Pironio, Efficient quantum key distribution secure against
no-signalling eavesdroppers, New J. Phys. 8, 126 (2006). (cited on page 54)

104. V. Scarani, N. Gisin, N. Brunner, L. Masanes, S. Pino and A. Acín, Secrecy extrac-
tion from no-signaling correlations , Phys. Rev. A. 74, 042339 (2006). (cited on page
54)

105. M. McKague. New J.Phys. 11, 103037 (2009). (cited on page 54)

106. L. Masanes, S. Pironio and A. Acín, Secure device-independent quantum key distri-
bution with causally independent measurement devices, Nature Comm. 2, 238 (2011).
(cited on page 54)

107. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge Univ.
Press, Cambridge, (1987). (cited on page 55)



References 123

108. N. Gisin, S. Pironio and N. Sangouard, Proposal for Implementing Device-
Independent Quantum Key Distribution Based on a Heralded Qubit Amplifier, Phys.
Rev. Lett. 105, 070501 (2010). (cited on page 55)

109. T.C.Ralph and A.P. Lund, Nondeterministic Noiseless Linear Amplification of
Quantum Systems , in Quantum Measurement and Computing Proceedings of
9th International Conference, Ed. A. Lvovsky, pp 155 (AIP,New York 2009);
arXiv:0809.0326. (cited on pages 55 and 114)

110. C. C. W. Lim, C. Portmann, M. Tomamichel, R. Renner, and N. Gisin, Device-
Independent Quantum Key Distribution with Local Bell Test , Phys. Rev X. 3, 031006
(2013). (cited on page 55)

111. U. Vazirani & Thomas Vidik, Fully Device-Independent Quantum Key Distribution,
Phys. Rev. Lett. 113, 140501 (2014). (cited on page 55)

112. C. J. Broadbent, K. Marshall, C. Weedbrook, J. C. Howell, Device-
independent quantum key distribution with generalized two-mode Schrödinger cat states
,arXiv:1503.01688v1, (2015). (cited on page 55)

113. H-K. Lo, M. Curty and B. Qi, Measurement-Device-Independent Quantum Key Dis-
tribution , Phys. Rev. Lett. 108, 130503 (2012). (cited on page 56)

114. S. Abruzzo, H. Kampermann and Dagmar BruSS, Measurement-device-
independent quantum key distribution with quantum memories, Phys. Rev. A. 89,
012301 (2014). (cited on page 56)

115. C. Panayi, M. Razavi, X. Ma and N. Lütkenhaus, Memory-assisted measurement-
device-independent quantum key distribution, New. J. Phys. 16, 043005 (2014). (cited
on page 56)

116. M. Curty, F. Xu, W. Cui, C. C. W Lim, K. Tamaki and H-K. Lo, Finite-key analysis
for measurement-device-independent quantum key distribution , Nature Comm. 5, 3732
(2014). (cited on page 57)

117. Y. Liu, T-Y. Chen, L-J. Wang, H. Liang, G-L. Shentu, J. Wang, K. Cui, H-L.
Yin, N-L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C-Z. Peng, Q. Zhang and
J-W. Pan, Experimental Measurement-Device-Independent Quantum Key Distribution,
Phys. Rev. Lett. 111, 130502 (2013). (cited on page 57)

118. Z. Tang, Z. Liao, F. Xu, B. Qi, L. Qian and H-K.Lo, Experimental Demonstration
of Polarization Encoding Measurement-Device-Independent Quantum Key Distribution,
Phys. Rev. Lett. 112, 190503 (2014). (cited on page 57)

119. S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S.
Lloyd, T. Gehring, C. S. Jacobsen and U. L. Andersen , High-rate measurement-
device-independent quantum cryptography , Nature Photonics. 9, 397-402 (2015).
(cited on page 57)



124 References

120. M. Pawlowski & N. Brunner, Semi-device-independent security of one-way quantum
key distribution, Phys. Rev. A. 84, 010302(R) (2011). (cited on page 57)

121. A. Einstein, B. Podolsky and N. Rosen, Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?, Phys. Rev. 47, 777-780 (1935).

122. N. Walk, S. Hosseini, J. Geng, O. Thearle, J. Y. Haw, S. Armstrong, S. M. Assad,
J. Janousek, T. C. Ralph, T. Symul, H. M. Wiseman and P. K. Lam. Experimen-
tal Demonstration of Gaussian Protocols for one-sided device independent quantum key
distribution. Optica 3(6), 634-642 (2016). (cited on page 67)

123. I. Devetak & A. Winter, Proceedings of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences 461, 207-235 (2005). (cited on page 63)

124. M. Berta, F. Furrer, V. B. Scholz, The Smooth Entropy Formalism for von Neumann
Algebras , arXiv:1107.5460 (2011). (cited on page 63)

125. M. Hillery, Quantum cryptography with squeezed states, Phys. Rev. A 61, 022309
(2000). (cited on page 64)

126. F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf and P. Grangier,
Quantum key distribution using gaussian-modulated coherent states, Nature 421, 238-
241 (2003). (cited on page 64)

127. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph and P. K. Lam,
Quantum Cryptography Without Switching, Phys. Rev. Lett 93, 170504 (2004). (cited
on page 64)

128. R. Renner & J. I. Cirac, de Finetti Representation Theorem for Infinite-Dimensional
Quantum Systems and Applications to Quantum Cryptography, Phys. Rev. Lett 102,
110504 (2009). (cited on page 65)

129. R. García-Patrón & N. J. Cerf, Unconditional Optimality of Gaussian Attacks against
Continuous-Variable Quantum Key Distribution , Phys. Rev. Lett 97, 190503 (2006).
(cited on page 65)

130. M. Navascués, F. Grosshans & A Acín, Optimality of Gaussian Attacks in
Continuous-Variable Quantum Cryptography, Phys. Rev. Lett 97, 190502 (2006).
(cited on page 65)

131. D. J. Saunders , S. J. Jones, H. M. Wiseman and G. J. Pryde, Experimental EPR-
steering using Bell-local states, Nature Phys 6, 845-849 (2010). (cited on page 70)

132. T. Gehring, V. Händchen, J. Duhme, F. Furrer, T. Franz, C. Pacher, R. F. Werner
and R. Schnabel, Implementation of continuous-variable quantum key distribution with
composable and one-sided-device-independent security against coherent attacks, Nature
Comm. 6, 8795 (2015). (cited on pages 74, 84, and 95)



References 125

133. G. D. Boyd & D. A. Kleinman, Parametric Interaction of Focused Gaussian Light
Beams , J. Appl. Phys,39:3597 (1968). (cited on page 76)

134. S. Armstrong, Experiments in Quantum Optics: Scalable Entangled States and Quan-
tum Computation with Cluster States. PhD Thesis, Australian National University
(2014). (cited on page 84)

135. P. Jouguet, S. Kunz-Jacques and A. Leverrier, Long-distance continuous-variable
quantum key distribution with a Gaussian modulation , Phys. Rev A. 84, 062317
(2011). (cited on pages 84 and 95)

136. T. Eberle , S. Steinlechner, J. Bauchrowitz, V. Händchen, H. Vahlbruch, M.
Mehmet, H. Müller-Ebhardt and R. Schnabel, Quantum Enhancement of the Zero-
Area Sagnac Interferometer Topology for Gravitational Wave Detection, Phys. Rev. Lett.
104, 251102 (2010). (cited on page 87)

137. B. M. Sparks, H. M. Chrzanowski, D. P. Parrain, B. C. Buchler, P. K. Lam, T.
Symul, A Scalable, Self-Analyzing Digital Locking System for use on Quantum Optics
Experiments , Rev. Sci. Instrum. 82, 075113 (2011). (cited on page 94)

138. D. Bohm & Y. Aharonov, Discussion of Experimental Proof for the Paradox of Ein-
stein, Rosen, and Podolsky, Phys. Rev. 108, 1070 (1957). (cited on page 101)

139. J. F. Clauser, M. A. Horne, A. Shimony and R. A. Holt, Proposed Experiment to
Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23 (15):880-4 (1969). (cited on
pages 103 and 104)

140. Alain Aspect, Philippe Grangier and Gérard Roger, Experimental Tests of Realistic
Local Theories via Bell’s Theorem, Phys. Rev. Lett. 47 (7):460-3 (1981). (cited on
pages 103 and 104)

141. G. Y. Xiang, T. C. Ralph, A. P. Lund, N. Walk and G. J. Pryde, Heralded noise-
less linear amplification and distillation of entanglement , Nature Photon. 4, 316-319
(2010). (cited on page 114)

142. H. M. Chrzanowski, N. Walk, S. M. Assad, J. Janousek, S. Hosseini, T. C. Ralph,
T. Symul and P. K. Lam, Measurement-based noiseless linear amplification for quantum
communication , Nature Photon. 8, 333-338 (2014). (cited on page 114)

143. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel and
R. F. Werner, Continuous Variable Quantum Key Distribution: Finite-Key Analysis of
Composable Security against Coherent Attacks, Phys. Rev. Lett. 109, 100502 (2012).
(cited on page 114)

144. J. Y. Haw, S. M. Assad, A.M. Lance, N. H. Y. Ng, V. Sharma, P. K. Lam and
T. Symul, Maximization of Extractable Randomness in a Quantum Random-Number
Generator, Phys. Rev. Applied. 3, 054004, (2015). (cited on page 114)


	Declaration
	Acknowledgments
	Abstract
	Contents
	Introduction
	Publications (Article and Conference paper)
	Thesis Outline

	Theoretical Background
	Quantum Optics
	Quantisation of the electromagnetic field
	Quadratures of the electromagnetic field
	Quantum States of Light
	Quadrature States
	Fock States
	Coherent States
	Squeezed States
	Thermal States

	Wigner Function
	Gaussian States
	Symplectic Transformations and the Gaussian Unitaries
	Williamson Theorem and Symplectic Spectrum
	Standard form of two-Mode Gaussian states

	Quantum Measurements
	Positive-Operator-Value-Measurement (POVM)

	Measurement in Quantum Optics
	Quadrature Measurement
	Simultaneous Measurement of Two Quadratures

	Phase and Amplitude Modulation
	Phase Modulation
	Amplitude Modulation

	Information Theory and Entropy
	Shannon Entropy
	Relative Entropy
	Shannon Entropy of Continuous Random Variable
	Joint Entropy
	Conditional Entropy
	Mutual Information
	von Neumann Entropy
	Quantum Mutual Information and Conditional Entropy
	Holevo Bound

	Quantum Correlations
	Entanglement and non-locality
	Entanglement Criteria for Pure Bipartite States
	Entanglement Criteria for Mixed States
	Duan Inseparability Criterion
	EPR Paradox Criterion
	Quantum Discord

	Summary

	Experimental Verification of Quantum Discord in Continuous-Variable States
	Introduction
	Definition of Quantum Discord
	Gaussian Quantum Discord
	Verification of Quantum Discord in General
	Experimental Method to Verify Quantum Discord in CV Systems
	Theoretical Development of Verification of Quantum Discord in Continuous-Variables
	Theory: Gaussian States
	Theory: Non Gaussian States

	Experimental Implementation of Verification of Quantum Discord in Continuous-Variables
	Electro-Optic Modulators (EOM)
	Source Laser
	Seed Beam Preparation
	Producing a vacuum state with Gaussian distributed noise
	Experimental Implementation of Verification of Quantum Discord in Gaussian States
	Experimental Implementation of non-Gaussian State

	Summary

	Secure Quantum Communication
	Introduction
	A Generic QKD Protocol
	Device Independent Quantum Key Distribution
	Usual QKD protocols are not secure in the device-independent scenario
	How can DI-QKD possibly be secure?
	History of DI-QKD

	Measurement-Device-Independent Quantum Key Distribution
	One-sided Device-Independent Quantum Key Distribution
	Summary

	Theoretical Development of 1SDI-QKD
	Introduction
	Uncertainty Relations
	Quantum Cryptography in Continuous-Variable Regime
	Virtual Entanglement

	CV-QKD using entropic uncertainty relations
	Security proof with imperfect reconciliation efficiency 
	One-sided device-independent CVQKD
	EPR Steering
	One-sided device-independent CV-QKD protocols and their connection to EPR steering

	Summary

	Experimental Implementation of 1SDI-QKD Protocols in EB Scheme
	Introduction
	Experimental Setup
	Optical Parametric Amplifier
	Locking loops of the OPAs
	Alignment of the OPAs
	Characterization of the OPAs

	Entanglement Generation
	Control System and Data Acquisition
	Experimental Results
	Computer Modeling
	Summary

	Experimental Implementation of 1SDI-QKD Protocols in P&M scheme
	Introduction
	Experimental Implementation of P&M Scheme
	Calibration of function generator outputs

	Control System and Data Acquisition
	Results
	Error Estimation
	Computer Modeling
	Summary

	Bell-like Correlations for Continuous-Variables
	Introduction
	Mathematical Description of Bell's Inequality
	CHSH Inequality
	CHSH Inequality for Continuous Variables
	Computer Modeling of two systems showing Bell type correlation in CV regime
	Summary

	Conclusion
	Future Work

	References

	Chapter 1: 
	4: 
	12: 
	Chapter 2: 
	undefined: 
	undefined_2: 
	Row1: 
	24: 
	fill_2: 
	Signal: 
	undefined_3: 
	LO: 
	210: 
	fill_2_2: 
	212: 
	30: 
	Chapter 3: 
	ContinuousVariable States: 
	32: 
	fill_2_3: 
	fill_2_4: 
	38: 
	fill_1: 
	undefined_4: 
	42: 
	fill_1_2: 
	44: 
	01: 
	46: 
	MODULATION: 
	MODULATION_2: 
	38_2: 
	prepared by subjecting statistical mixtures of coherent states to one port of beam: 
	48: 
	Chapter 4: 
	43: 
	54: 
	43_2: 
	46_2: 
	WCP: 
	undefined_5: 
	undefined_6: 
	undefined_7: 
	undefined_8: 
	undefined_9: 
	Chapter 5: 
	Gaussian States and Measurements: 
	64: 
	66: 
	54_2: 
	Therefore we can assume HPA1PB  HPA2PB which is measured Hence we: 
	fill_3: 
	56: 
	VXA: 
	VPA PB: 
	VXA_2: 
	VXA_3: 
	VPA PB_2: 
	VXA_4: 
	VXA_5: 
	VPA PB_3: 
	VPA: 
	VPA_2: 
	VXAXB: 
	56_2: 
	undefined_10: 
	Bob: 
	Hom: 
	56_3: 
	undefined_11: 
	RR: 
	DR: 
	1: 
	Hom2: 
	Het2: 
	Hom2_2: 
	Het2_2: 
	RR2: 
	DR2: 
	Positive key2: 
	Hom3: 
	Het3: 
	Hom3_2: 
	Het3_2: 
	RR3: 
	DR3: 
	Positive key3: 
	Hom4: 
	Het4: 
	Hom4_2: 
	Het4_2: 
	RR4: 
	DR4: 
	Positive key4: 
	0: 
	Hom5: 
	Het5: 
	Hom5_2: 
	Het5_2: 
	RR5: 
	DR5: 
	Positive key5: 
	Chapter 6: 
	1SDIQKD Protocols in EB Scheme: 
	undefined_12: 
	undefined_13: 
	PZT: 
	fill_5: 
	TC: 
	80: 
	Mixer: 
	undefined_14: 
	undefined_15: 
	Optical Seed beam: 
	Optical Pump beam: 
	5: Off
	50: 
	100: 
	150: 
	200: 
	250: 
	300: 
	0_2: 
	50_2: 
	100_2: 
	150_2: 
	200_2: 
	250_2: 
	300_2: 
	84: 
	fill_2_5: 
	1 1Row1: 
	undefined_16: 
	fill_3_2: 
	1 1Row1_2: 
	1 1Row1_3: 
	Mode 5Row1: 
	Mode 5Row2: 
	1 1Row1_4: 
	Mode 7Row1: 
	90: 
	Chapter 7: 
	scheme: 
	92: 
	This experiment can be described mathematically as follows: 
	72: 
	Lossy Channel: 
	Lossy Channel_2: 
	BS: 
	FG: 
	FG_2: 
	Hom_2: 
	fill_3_3: 
	fill_4: 
	00 05 10 15 20: 
	undefined_17: 
	76: 
	00: 
	05: 
	10: 
	15: 
	20: 
	25: 
	30_2: 
	Chapter 8: 
	102: 
	83: 
	undefined_18: 
	1_2: 
	2: 
	undefined_19: 
	undefined_20: 
	PZT_2: 
	undefined_21: 
	fill_7: 
	undefined_22: 
	Squeezer 4: 
	BSRow1: 
	undefined_23: 
	undefined_24: 
	fill_3_4: 
	fill_2_6: 
	110: 
	dark noise is 20 dB below QNL: 
	dark noise is 13 dB below QNL: 
	undefined_25: 
	undefined_26: 
	undefined_27: 
	undefined_28: 
	undefined_29: 
	undefined_30: 
	undefined_31: 
	undefined_32: 
	undefined_33: 
	02: 
	06: 
	08: 
	dark noise is 13 dB below QNL_2: 
	undefined_34: 
	undefined_35: 
	02_2: 
	06_2: 
	112: 
	Chapter 9: 
	116: 
	References: 
	118: 
	References_2: 
	120: 
	References_3: 
	122: 
	References_4: 
	124: 
	References_5: 


