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Abstract

The reciprocal interaction between light and matter has been attracting increasing

interest in recent years thanks to the developments in the field of optomechanics. A

typical optomechanical system can be exposed to the radiation pressure force thanks to

the amplifying action of an optical cavity, which can increase the level of the interaction

by several orders of magnitude. The extraordinary interplay between the light and the

mechanical components of the cavity grants access to remarkably delicate applications,

which include the cooling of an oscillator to its motional ground state, the generation

of non-classical optical states, and refined quantum optical measurements.

A particular indicator of the capabilities of an optomechanical system is its me-

chanical quality factor, which gives a measure of the coherence time of the oscillator.

High-quality oscillators are less susceptible to the interaction with the environment,

thanks to the lower dissipation and reduced coupling of external noise. Thus, an op-

tomechanical system with a very high quality factor enables more advanced operations.

Levitated objects are particularly suitable for this, since their motional degrees of free-

dom are completely decoupled from any external reservoir. The levitation scheme

introduced in this thesis takes the concept to extremes by considering fully coher-

ent optical levitation of a cavity mirror. Such system would allow exceptionally pure

tracking of the oscillator’s position, which can be converted for example into accurate

measurements of relative changes in the gravitational field.

Other approaches focusing on the improvement of the sensitivity in existing systems

are also considered. Taking advantage of the incredible diversity of optomechanical

structures, we show how enhanced signals can be extracted in systems as small as

a nanowire or as big as an interferometer stretching over several kilometres. Each

strategy is presented in relation to a specific application, while keeping the opportunity

of generalizing to systems operating under very di↵erent conditions open.

Overall, the experimental and theoretical investigations presented in this thesis

show that optomechanics is a valuable resource for the attainment of high-precision

measurements of displacements, forces, accelerations, and other relevant physical quan-

tities.
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Part I

The framework of optomechanics
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This Part covers the foundations of the topics treated in the rest of the manuscript,

from the concept of an electromagnetic field to the full quantum treatment of the op-

tomechanical interaction. Some of the material also focuses on more practical matters,

such as locking of an optical resonator, with the aim of creating a reference point for

users less experienced with modern techniques in experimental optics. Chapter 1 opens

with a description of the subject of optomechanics, its origin, and the current state of

advancement. It also outlines a few major incentives that motivate the interest behind

the research in the field. This introduction aims to delineate a very general overview

of the subject, and more detailed analysis of the relevant topics will be presented in

the respective sections throughout the document. Chapter 2 covers some of the no-

tions in quantum optics and other fields that are essential for the understanding of

the topic. This opportunity is also used to introduce notions and conventions that

will be presupposed throughout the thesis, and even though most of this preparatory

material falls easily into the domain of common knowledge for a physicist this induc-

tion is still important for the establishment of a reference point for future chapters.

Chapter 3 develops from the bases laid out in the previous chapter to formally describe

the theory specific to optomechanics. Radiation pressure, optomechanical bistability,

and the optical spring e↵ect will develop naturally from the formalism introduced in

this chapter.

In Greek mythology, light and progress are
both associated with Prometheus, one of the
four sons of Iapetus whose name literally
means “forethought”. The Titan stole fire
from the gods and gifted it to mankind, mark-
ing the beginning of technological advancement.

F. H. Füger, “Prometheus bringt der
Menschheit das Feuer”



Chapter 1

Introduction

1.1 A historic tour of radiation pressure

and optomechanics

Light is such a common premise to our daily experience that we often overlook its

dominant role in many of the phenomena that lay the basis of our very existence. The

energy from the Sun travels to Earth in the form of light, initiating photosynthesis and

other photochemical processes indispensable for the sustenance of life. As a species,

we evolved to probe the surrounding world with vision, a sense based on the recep-

tion and interpretation of the information carried by light. On the same principle

we established astronomy and the exploration of the otherwise unreachable domains

of the universe. The technological advancements based on di↵erent manifestations of

light are uncountable, and the quest to understand its true nature has sparked some of

the major revolutions in modern physics, from Maxwell’s unification of electricity and

magnetism to quantum mechanics and the standard model.

Among the discoveries that challenged our understanding of light was the existence

of radiation pressure. Light impinging on a surface applies a force proportional to its

intensity, establishing a direct form of interaction with matter. This force was first

observed by Kepler, who noticed how the tail of comets always pointed away from the

Sun rather than trailing behind in the comet’s orbit. Today, we know that comets

generally exhibit two tails corresponding to streams of neutral dust and ionized gas,

driven by a combination of radiation pressure and solar winds. The first formulation

for radiation pressure arrived only a few centuries after Kepler’s discovery, with the

development of Maxwell’s theory of electromagnetism. The electromagnetic field carries

its own energy and momentum, both capable of being transferred to a medium upon

absorption or reflection. Light, being a manifestation of the electromagnetic field,

makes no exception. With the advent of quantum mechanics and the quantization of

3



4 Introduction

the field, radiation pressure may be understood in terms of momentum transfer from a

photon flux. Though the photon is itself a massless particle, it still carries a momentum

that transfers to the target. Depending on whether the photon is reflected or absorbed,

the process can be seen as equivalent to an elastic or an inelastic collision.

The first attempt to characterize radiation pressure in laboratory conditions was

performed by Crookes in 1873. He envisioned a light-powered mill, with vanes en-

closed in low vacuum and painted black on one side and white on the opposite. The

net di↵erence in radiation pressure due to the absorption or reflection of light on the

two sides would power the mill and activate rotation around a low-friction spindle.

However, while the rotation was expected to be observed with the white sides trailing

backwards as they experienced a double momentum transfer, it was in fact observed

in the opposite direction. The rotation originates from the thermal exchange of the

residual gas molecules with the di↵erently painted panels. The molecules bounce with

greater velocity from the black sides, which are heated more by the light than the white

ones, and specific air pressure conditions are needed to ensure a pressure imbalance on

the two sides without the drag that would prevent the motion. This was confirmed

in 1901 by Lebedev, who observed the rotation reducing and eventually ceasing in

higher vacuum. Crookes’ original idea was successfully implemented not long after by

Nichols and Hull. They used a similar radiometer which allowed regulation of the air

pressure to identify a regime where the gas heating and other thermal e↵ects could

reach a torsional balance. The apparatus could then be calibrated to obtain accurate

(b)(b)(a)(a)

Figure 1.1: Examples of systems influenced by radiation pressure. (a) The comet Hale–Bopp

was the brightest passing by Earth in recent years. The two tails that can be distinguished

correspond to the white dust tail, fanning to the right, and the blue ion tail, pointing straight

away from the Sun. Image credits: ESO (http://www.eso.org/). (b) Artist’s impression of

the IKAROS mission, propelled by the solar pressure on a large membrane acting as a solar

sail. Image credits: JAXA (http://global.jaxa.jp/).
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experimental measurements of radiation pressure force for the first time [1, 2].

Radiation pressure is generally very weak and hard to detect with conventional

measurements. Sunlight, for example, exerts a pressure on the surface of the Earth

on the order of a few micropascals, 1011 times smaller than the atmospheric pressure

of air. Yet, the consequences of radiation pressure are identifiable in many di↵erent

scenarios. Without question its largest manifestation occurs on the cosmic scale, where

it is responsible for the dispersion of interstellar dust and the general redistribution

of matter during formation processes. Within the solar system, the radiation pressure

from the Sun exerts its influence by perturbing the orbits of large and small celestial

bodies, including man-made probes or satellites [3]. It is even possible to harvest the

energy received by solar pressure and use it as the main form of propulsion, as demon-

strated by the solar sail mission of IKAROS (Interplanetary Kite-craft Accelerated

by Radiation Of the Sun) on its way to Venus [4]. This mission made clever use of

liquid-crystal panels that could change their reflectivity to steer the sail into the desired

trajectory. In the last few decades radiation pressure became more easily accessible in

laboratory conditions as well thanks to the much stronger optical intensities allowed by

laser technology. Its impact is not always desirable: in gravitational-wave interferom-

eters, for example, the sensitivity su↵ers from the laser noise that radiation pressure

transmits to the test masses. Nevertheless, in di↵erent conditions it is often used to

one’s advantage for cutting edge light-matter interaction, with practical applications

including laser cooling, trapping, and optical actuation.

The optical manipulation of mechanical systems and the reverse e↵ect that mate-

rial objects have on the propagation of light fall within the sphere of optomechanics.

The origins of the field can be traced back to the early 1970s, when Braginsky and

colleagues noticed and successively investigated the damping e↵ects of light onto mov-

ing objects [5, 6]. Around the same period Ashkin started groundbreaking work on

optical manipulation by levitating small microspheres using only the intensity of light.

These two lines of research evolved into two major tools available to the optomechan-

ical experimentalist: the optical spring e↵ect, and optical tweezers. Fast-forwarding

to the present day, optomechanics emerges as a fully mature discipline with a very

active and prolific community that has recently accomplished exceptional milestones.

These include the cooling of a mechanical oscillator to its quantum ground state [7],

the generation of squeezed quantum states of light [8, 9], the slowing of light by op-

tomechanically induced transparency [10,11], and much more. With the race for most

proof-of-principle demonstrations now over, the research in optomechanics is currently
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oriented towards the translation of these achievements into quantum-enabled technolo-

gies for practical applications (such as integrated quantum memories) but also for the

investigation of fundamental physics (from quantum decoherence to tests of semiclas-

sical models of gravity).

It should be mentioned that optomechanics does not strictly require the interaction

between light and matter to be mediated by radiation pressure. A similar interplay

between the two parts of the system can be achieved by thermal e↵ects. These can

arise for example in the form of bolometric forces, which apply to bimorph materials

subject to thermal expansion, or in the form of photophoretic forces, occurring in

fluid-suspended particles that exhibit a non-uniform distribution of temperature when

irradiated by light. Depending on the system, these expressions of optomechanical

interaction may benefit from a far greater strength than radiation pressure force. At

the same time, however, they may not be as fast and direct as radiation pressure force

and they could preclude the decoupling of thermal noise from the apparatus.

1.2 Motivation

A major benefit of optomechanics lies in its potential to investigate the quantum regime

from a perspective that had been impossible until recently. With the assistance of

laser cooling, even the collective motion of extremely large ensembles of atoms can

be witnessed responding to the laws of quantum mechanics. Large systems, strong

coherences, and close interactions with gravitational forces are all qualities that appeal

to the modern physicist, as they can all test our understanding of the physical world.

Macroscopic quantum superpositions are required to observe predicted deviations

from quantum physics [12,13]. This e↵ort would necessarily involve adequate measures

to isolate the system from environmental sources of noise and decoherence. One of

the schemes proposed in the present work could be very promising in this respect: by

levitating a milligram-scale mirror on top of a strong optical field, its centre-of-mass

motion can be decoupled from any external degrees of freedom that would otherwise

interfere with quantum operations [14]. The intrinsic role of gravity in the levitation

process could also allow such system to act as a testbed to rule out certain semiclassical

theories of gravitational quantum mechanics [15].

Optomechanics is also famed for state-of-the-art readings of displacements, which

can be easily translated to other highly sensitive measurements in accelerometry, mag-

netometry, and atomic force microscopy thanks to the broad flexibility of mechanical
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platforms. This is also one of the possible scopes of the levitated mirror, along with the

other schemes featured in this manuscript. At the nanoscopic level, it is shown that a

sensitivity enhancement for impulsive forces is possible by applying periodic feedback

to metallic nanowires [16]. At the opposite end of the scale, the optomechanical inter-

action is suggested as a means to push the sensitivity of kilometre-sized interferometric

detectors for gravitational waves [17].

The purpose of this thesis is to present the investigations performed during the

length of the author’s doctoral candidature. The systems and techniques considered

aim to promote the role of optomechanics for refined applications in metrology. The

thesis is divided in four Parts. Part I o↵ers a general overview of optics and optome-

chanics. Part II describes the investigations performed with nanowires for a sensitivity

enhancement of impulsive forces. The levitating mirror scheme is developed in Part III.

Finally, in Part IV we extend on the set of tools available thanks to optomechanics

with the proposal of two schemes, one to engineer arbitrary optical potentials and one

to enhance the sensitivity of interferometers with frequency-dependent squeezing.
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Chapter 2

General premises

2.1 Notation and preliminary concepts

This section is meant to familiarize the reader with basic notions and conventions that

will be used throughout the thesis. Even though most of these topics could easily fall

into the domain of common knowledge of a physicist, an explicit introduction is still

important to ensure acquaintance with the material and to act as a reference point for

future chapters.

• Physical and mathematical quantities

To facilitate navigation between the assorted topics covered in di↵erent parts of

the thesis, a special endeavour was dedicated to maintain consistence of notation

across di↵erent chapters. Naturally, exception is made for those variables or

indices whose scope is manifestly local or illustrative for a specific context.

The notation for physical quantities holding a universally accepted value, such as

the speed of light and the Planck constant, is so widespread that it makes little

sense to point them out individually every time they are being used. Table 2.1

reports here, for future reference, the symbols (and values) of the physical con-

stants found throughout the main text, so that they can be used without further

Quantity Symbol Value

Reduced Planck constant ~ 1.054 57⇥ 10�34 J s
Speed of light in vacuum c 299 792 458m s�1

Vacuum permittivity "0 8.854 187 817⇥ 10�12 Fm�1

Vacuum permeability µ0 4⇡ ⇥ 10�7NA�2

Boltzmann constant kB 1.380 65⇥ 10�23 JK�1

Stefan–Boltzmann constant �SB 5.670 39⇥ 10�8Wm�2K�4

Table 2.1: Notation and values of the physical constants used in this text.

9



10 General premises

specification [18].

A similar argument applies to mathematical constants, of course. To avoid am-

biguity, the symbol i is reserved for the imaginary unit and the symbol e is used

only to indicate Euler’s number. Other mathematical conventions include the use

of bold-faced symbols to indicate vectors (e.g. v), a double bar for its norm (e.g.

||v||), an asterisk (⇤) for complex conjugation, and a dagger (†) for the adjoint of

an operator. Additionally, if the upper and lower bounds of an integral extend

to infinity, for simplicity they may be omitted if they have been clearly specified

at least once within the context.

• Fourier analysis

An essential mathematical tool in physics is the concept of Fourier transform [19].

As there are several possible conventions, however, it is imperative to clarify

which particular transformation is in use. Given a generic function f(t), with

the assumption that all the necessary convergence conditions hold, we consider

for the Fourier transform f̃(!) the non-unitary transformation in terms of the

“angular” conjugate variable !:

f̃(!) ..=

Z +1

�1
dt f(t)e�i!t, f(t) =

Z +1

�1

d!

2⇡
f̃(!)ei!t. (2.1)

The use of an angular variable instead of the canonical one has the advantage of

a lighter notation, as illustrated by the absence of 2⇡ factors in the properties

of the Fourier transform listed in Table 2.2. It is worth mentioning that the

Fourier transform has the quality of being asymmetric with respect to complex

Linearity Translation Scaling

f(t) a f(t) + b g(t) f(t� t0) ei!0tf(t) f(at)

f̃(!) a f̃(!) + b g̃(!) f̃(!)e�i!t0 f̃(! � !0)
1
|a| f̃(!/ |a|)

Derivative Convolution

f(t) (@/@t)nf(t) (�it)nf(t) (f ⇤ g)(t) f(t)g(t)

f̃(!) (i!)nf̃(!) (@/@!)nf̃(!) f̃(!)g̃(!) 1
2⇡ (f̃ ⇤ g̃)(!)

Table 2.2: Properties of the Fourier transform.
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conjugation:

[f̃(!)]⇤ = f̃⇤(�!). (2.2)

Note that the “tilde” used to denote the Fourier transform in this section will

be dropped in the remainder of the thesis, in order to prevent the notation from

becoming unnecessarily cumbersome.

• Dirac delta

In the domain of distributions, one of the most singular Fourier transforms is the

Dirac delta function,

�(!) ..=

Z +1

�1
dt

e�i!t

2⇡
, (2.3)

which is obtained by transforming a constant function. The Dirac delta is an even

distribution, null everywhere except at the origin where it is undefined, with the

requirement that

Z +1

�1
d! �(!) = 1. (2.4)

It also acts like the identity element for the convolution operation, an attribute

that leads to the sifting of the value of other functions at the centre of the

distribution (here taken to be some !0):

Z +1

�1
d! f(!)�(! � !0) =

Z +1

�1
d! f(!0)�(! � !0) = f(!0). (2.5)

It should be noted that the value of a generic integral involving the Dirac delta

highly depends on the integration domain. The integration does not need to

stretch to infinity for the above properties to hold, as long as the centre of the

distribution is included within the limits of the integration. If, on the other hand,

the centre of the distribution falls outside of the interval between the upper and

lower bounds, the full integral vanishes. A particular case occurs when the centre

of the distribution coincides with one of the two integration bounds:

Z
!0

�1
d! �(! � !0) =

1

2
,

Z +1

!0

d! �(! � !0) =
1

2
. (2.6)
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• Spectral density

Often, when dealing with some time-dependent quantity f(t), one might be con-

cerned with the distribution of its frequency components across the spectrum.

This task is performed e↵ectively by the power spectral density, defined in terms

of the Fourier transform by

S
f

(!) ..= h|f(!)|2i, (2.7)

where the expectation value is taken over extended periods of time (i.e. greater

than the inverse of the frequencies considered). The label of “power” comes

from the fact that, thanks to Parseval’s theorem, integrating the spectral density

S
f

(!) over all frequencies is equivalent to integrating the squared absolute value

of the original variable |f(t)|2 over time, resulting in a quantity proportional to

the “energy” of f(t).

The power spectral density coincides with the Fourier transform of the auto-

correlation function of f , i.e. (f⇤ ? f), as

S
f

(!) =

Z
dt

Z
dt0 hf⇤(t)f(t0)iei!(t�t

0)

=

Z
d⌧

Z
dt hf⇤(t)f(t+ ⌧)ie�i!⌧

=

Z
d⌧ h(f⇤ ? f)(⌧)ie�i!⌧ . (2.8)

This feature can be used to extend the definition of power spectral density to more

than one quantity by use of their cross-correlation. Given a second quantity g(t),

its similarity to the first function f(t) is measured by the cross power spectral

density

S
fg

(!) ..=

Z
d⌧ hRe[(f⇤ ? g)(⌧)]ie�i!⌧ , (2.9)

where the real part is considered to maintain the symmetry between the two

functions.

Following directly from the definition, thanks to Eq. 2.2 we know that the power

spectral density is always symmetric in frequency, i.e. S
f

(!) = S
f

(�!). This

property, however, is not always holding: if the quantity of interest, f(t), is

replaced with an operator f̂(t) belonging to a non-commutative algebra (as is the

case of observables in quantum mechanics), the auto-correlation function is not
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guaranteed to be real. This renders the power spectral density asymmetric and

leads to an inherently “quantum” interpretation of the spectrum [20], where one

half describes the system’s capacity of absorbing energy from the environment and

the other half measures how much energy is emitted by the system instead. The

asymmetry in absorption and emission processes corresponds to the imbalance

in the spectral density between negative and positive frequencies. Denoting the

spectral density obtained by simple replacement of the classical functions with

quantum operators as S
(Q)
f

(!), we consider a quantum power spectral density

that more closely resembles its classical counterpart by applying a symmetrizing

action:

S
f

(!) ..=

Z
d⌧ h{(f̂ † ? f̂)(⌧)}ie�i!⌧

=

Z
d⌧

h(f̂ † ? f̂)(⌧)i+ h(f̂ † ? f̂)(�⌧)i
2

e�i!⌧

=
1

2

⇣
S
(Q)
f

(!) + S
(Q)
f

(�!)
⌘
. (2.10)

The act of symmetrizing the quantum observables, indicated with curly brackets,

resembles the act of taking the real part in the cross spectral density of Eq. 2.9.

When probing the spectrum of an observable of the system with a classical mea-

surement, this is the correct power spectral density to consider.

2.2 Quantum mechanics

Quantum mechanics [21], one of the biggest achievements of the 20th century, lays

the foundations for an incredible variety fields. It is not surprising, then, to find it at

the core of a relatively young field such as the one of optomechanics. Without laser

light, for example, it would be hard to conceive a practical way to achieve the levels of

interactions of a mechanical oscillator with an optical field observed today. Even more

importantly, optomechanics has the possibility of exploring entirely new regimes that

could help to answer some of the questions still open in quantum physics.

The name of this branch of physics originates from the fact that primary physical

quantities, such as energy and angular momentum, are quantized and can hold only

discrete values. This result can be predicted by Schrödinger’s equation, which is taken

here as a postulate. In the customary bra-ket notation, Schrödinger’s equation takes
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the form

i~
@

@t
| (t)i = Ĥ| (t)i, (2.11)

where the quantum state with wave function  (t) is indicated by the “ket” | (t)i
(and its dual by the “bra” h (t)|). The operator Ĥ denotes the system’s Hamiltonian,

governing the time evolution of the state.

Operators such as Ĥ, generally distinguished by an overhead circumflex, are an

important part of the mathematical framework of quantum mechanics. Observables

of the system are a special class of operators, with the property of being self-adjoint

and thus admitting only real eigenvalues that represent the di↵erent values that can be

measured for the particular variable under consideration. A crucial premise of quantum

mechanics is that measurements might not be compatible: in the language of operators,

this implies that the order in which di↵erent operators are applied is important, and in

general two operators corresponding to two di↵erent measurements do not commute.

One of the best examples is given by the position and momentum operators of an oscil-

lator, x̂ and p̂, whose commutation relation is
⇥
x̂, p̂

⇤
= i~. An important consequence

of non-commutativity is Heisenberg’s uncertainty principle, which puts a bound to how

well conjugate observables can be known at the same time. This is expressed as

�O1
�O2

� 1

2

���h
⇥
Ô1, Ô2

⇤
i
��� , (2.12)

where the uncertainty of the observable Ô is represented by its standard deviation

�O
..=

q
hÔ2i � hÔi2 and the angled brackets indicate the expected value over the

state of the system. Observables corresponding to di↵erent degrees of freedom in the

system are not a↵ected by measurement incompatibility, however, and they always

commute with one another. Specifically to optomechanics, for example, operators

associated with the optical field unconditionally commute with any observable of the

mechanical oscillator.

The formulation following from Schrödingers equation, where the temporal dynam-

ics of the system are encoded in the state, is referred to as the Schrödinger picture. It

is possible to use another formulation, called the Heisenberg picture, where the states

are treated as constants and the time evolution is assigned to the operators. A generic

operator Ô(t), then, evolves according to the equation

dÔ(t)

dt
=

i

~
⇥
Ĥ, Ô(t)

⇤
+
@Ô(t)

@t
(2.13)
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(see Appendix A.2 for a detailed derivation). The two pictures are mathematically

equivalent, and di↵er mainly in the interpretation attributed to the observables and

the measuring process. However, sometimes one may seem more appropriate than the

other for a convenient description of the dynamics. In quantum optics it is customary

to work in the Heisenberg picture, where quantized fields are handled with more ease.

2.3 Quantum optics

Optics has been one of the main subjects of interest since the very early days of physics.

History has seen many di↵erent interpretations and variants, slowly evolving into our

modern understanding of the subject. From ray optics to beams and waves, it was

only with the development of Maxwell’s theory of electromagnetism that the entire

picture started to come together. However, the advent of particle-wave duality in

quantum mechanics demanded for a reformulation that ultimately gave rise to quantum

optics and the concept of photons. The aim of this section is to highlight the major

cornerstones of optics, from a classical understanding of electrodynamics [22] to the

quantization of the electromagnetic field and the quantum properties of light [23].

2.3.1 Classical electrodynamics

Maxwell’s equations establish a relation between the electric field E and the magnetic

field B. In vacuum, in the absence of charges, they are:

r ·E = 0, r ·B = 0, (2.14)

r⇥E = �@
t

B, r⇥B = µ0"0 @tE, (2.15)

where "0 and µ0 are, respectively, the electric constant (or vacuum permittivity) and the

magnetic constant (or vacuum permeability) [22]. Combining these equations together,

we find that both E and B satisfy the wave equation:

✓
r2 � 1

c2
@2
t

◆
E = 0,

✓
r2 � 1

c2
@2
t

◆
B = 0. (2.16)

The waves propagate at velocity c = 1/
p
µ0"0, corresponding to the speed of light in

vacuum.

A specific class of solutions to the wave equations is obtained by considering the

components of the field to be of the form A(r)e�i!t, where the spatial dependence

on the coordinates r is separated from the time dependence. Solutions of this form
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are known as monochromatic waves, since they are characterized by the presence of a

single wave frequency, !. Expressing Eq. 2.16 in terms of A(r), we obtain the Helmholtz

equation,

�
r2 + k2

�
A(r) = 0. (2.17)

The constant k ..= !/c represents the wave number, which is linked to the wavelength

� by the well-known relation k = 2⇡/�. To calculate the transfer of energy of a

monochromatic wave, it should be observed that the rotating component is typically

fast compared to an ordinary measurement time. This is especially true for optical

waves, whose frequencies are typically in the scale of a few hundred terahertz. There-

fore, it is reasonable to consider the average flow of energy over one or many cycles and

obtain a result that is independent of time. The intensity of the field is then obtained

by multiplying the average energy by the speed of the wave. With an appropriate

choice of coordinates where A(r) represents the full field amplitude, the intensity of

the monochromatic wave is

I(r) =
c"0
2

|A(r)|2 . (2.18)

In general, any solution of the wave equation can be expanded as a sum of monochro-

matic plane waves, i.e. monochromatic waves for which the field amplitude has uniform

value across a plane orthogonal to some wave vector k which determines the direction of

propagation of the wave. In these terms, the electric and magnetic fields are expressed

as [23]

E(r, t) =
X

k

⇣
Ake

ik·r�i!kt +A⇤
ke

�ik·r+i!kt
⌘
✏k, (2.19)

B(r, t) =
X

k

⇣
Ake

ik·r�i!kt +A⇤
ke

�ik·r+i!kt
⌘ k⇥ ✏k

!k
, (2.20)

where the sum is taken to run over all possible wave vectors k. Each mode has a specific

frequency !k
..= c ||k||, polarization orthogonal to the propagation and specified by the

unit vector ✏k, and amplitude Ak determined by the specific Fourier decomposition of

the particular solution. The intensity of the field, proportional to the squared absolute

value of the amplitude, is susceptible in this general case to the interference of di↵erent

modes.
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2.3.2 Radiation pressure

The electromagnetic field carries both momentum and energy, and is subject to the

same conservation laws as mechanical systems [22]. The energy flux density is described

by the Poynting vector,

⇧ =
1

µ0
E⇥B, (2.21)

whose time-averaged magnitude corresponds to the fields intensity, I = h||⇧||i. When

the field is absorbed or reflected, the change in momentum results into the exertion of

a pressure on the incident surface, known as radiation pressure.

An intuitive derivation for radiation pressure can be obtained by considering the

Lorentz force applied by a monochromatic wave reflecting from a perfect conductor [24].

For convenience, assume the field to be propagating in the z direction, with the electric

and magnetic components E and B aligned respectively to the x and y axis. and let

the reflecting surface be aligned to a plane transversal to the direction of propagation.

On reflection, the magnetic field outside of the conductor becomes a superposition of

a forward and a backward-travelling wave. Within the conductor the magnetic field

instead vanishes. The discontinuity at the interface generates a surface current along

the x direction,

js =
1

µ0
(0� 2 ||B||) = 1

µ0
· 2 |A0|

c
cos(!0t), (2.22)

where |A0| /c is the amplitude of the incident magnetic field and !0 the frequency

of oscillation of the waves. The Lorentz force applied by the magnetic field to an

infinitesimal surface element of the conductor d⌃ is dF = js ||B|| d⌃, in the positive x

direction. This corresponds to a force per unit area of 2"0 |A0|2 cos2(!0t) pushing on

conductor. Considering !0 to be an optical frequency, one can average over multiple

oscillations to directly obtain the radiation pressure

prad
..=

⌧
dF

d⌃

�
= "0A

2
0 =

2I

c
. (2.23)

In the last step, Eq. 2.18 was used to link the radiation pressure to the field’s intensity.

A more formal derivation is possible in terms of the Poynting vector. Overall, radia-

tion pressure depends on whether the field is reflected, absorbed, or transmitted by the

material. The general expression for radiation pressure force, obtained by integration



18 General premises

of prad over the surface, is

Frp =
QradP

c
cos2 ✓, (2.24)

where P is the incident power, ✓ is the angle of incidence of the field on the surface,

and Qrad is a coe�cient which determines how much pressure is applied (Qrad = 2

when the field is fully reflected, 1 when fully absorbed, and 0 when fully transmitted).

2.3.3 Quantum electrodynamics

The electromagnetic field is quantized by identifying each mode’s complex field ampli-

tude Ak and its conjugate A⇤
k as bosonic operators of a quantum harmonic oscillator

(cf. Appendix B). As a result, the fields also become quantum operators:

Ê(r, t) =
X

k

⇣
âke

ik·r�i!kt + â†ke
�ik·r+i!kt

⌘
E0✏k, (2.25)

B̂(r, t) =
X

k

⇣
âke

ik·r�i!kt + â†ke
�ik·r+i!kt

⌘ E0
!k

(k⇥ ✏k) . (2.26)

Here, âk and â†k are the annihilation and creation operators for the mode k, normalized

to satisfy the commutation relation
⇥
âk, â

†
k

⇤
= 1. Physically, the creation/annihilation

refers to a quantum of excitation of the field, known as a photon. The dimensional com-

ponent of the field amplitude is separated into a separate constant, E0 ..=
q

~!k
2"0V

[23],

where V indicates the mode volume (for well-behaved modes, a consistent definition

could be given in terms of energy as V =
R
d

3r "0|E(r)|2

max("0|E(r)|2)).

It is not uncommon to restrict the electromagnetic field to a single mode. This

requirement is quite realistic for laser light, which is characterized by extremely good

temporal coherence with a narrow spectral distribution centred around the carrier

oscillation frequency of the field. The spectral linewidth of a laser depends on many

factors, such as the width of the atomic transition used to generate the laser and

the techniques used to achieve stability of the apparatus. The typical linewidth of a

Nd:YAG laser with wavelength � = 1064 nm ranges around a few tens of kilohertz, or

a few parts in 1010, and implementation of high-stability techniques can even achieve

sub-hertz linewidths [25]. Under these premises, unless specifically declared otherwise

in the following discussion the field will be implicitly assumed to consist of a single

frequency mode. The index identifying the mode will be omitted: the annihilation

and creation operators will simply be indicated by â and â†, and !o will be the optical
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frequency of oscillation. The intensity of a single mode, originally described by Eq. 2.18,

is reformulated as a photon flux as

I =
c

4V
~!ohn̂i, (2.27)

where hn̂i = hâ†âi is the mean number of photons, each of energy ~!o.

2.3.4 Coherent states

The mode of a classical field is determined by the direction of propagation and the

frequency of oscillation. Each mode, however, is not uniquely specified, unless its

amplitude and phase are exactly known. In quantum optics, the amplitude and phase

are two operators used to define two orthogonal quadratures of the field. They can be

described by linear combinations of â and â† as

X̂1
..= â+ â†, X̂2

..= �i
�
â� â†

�
, (2.28)

As conjugate observables, the amplitude and phase quadrature are subject to Heisen-

berg’s uncertainty principle: �
X1
�
X2

� 1.

The vacuum state, corresponding to the ground state |0i of the field as a harmonic

oscillator, has minimum uncertainty, i.e. �
X1
�
X2

= 1. The same is not true for the other

number states which constitute the typical basis of a quantum harmonic oscillator.

These, known as Fock states in connection with electromagnetic fields, are usually

indicated by |ni, where n is some integer number indicating how many quanta of

excitations, or photons, the field carries. The uncertainty relation for a generic Fock

state is �
X1
�
X2

= 2n+ 1, which for n > 0 is always higher than the vacuum’s.

The coherent state, |↵i, is defined as the eigenstate of the annihilation operator:

â|↵i = ↵|↵i. It can be expanded in terms of the Fock states basis as

|↵i = e�
|↵|2
2

+1X

n=0

↵n

p
n!
|ni, (2.29)

where the coe�cients are determined by using the defining property and requesting

unitary normalization. Formally, the same state can be obtained by applying the

displacement operator D̂
↵

..= e↵â
†�↵

⇤
â on the vacuum state, i.e. |↵i = D̂

↵

|0i [23]. The
parameter ↵ is a complex number, and its squared absolute value is proportional to
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the mean number of photons:

hn̂i = hâ†âi = h↵|â† · â|↵i = |↵|2 . (2.30)

Like the vacuum, the coherent state has minimum uncertainty. In fact, |↵i is equivalent
to a “displaced” vacuum state, with the same uncertainty but with a finite field ampli-

tude equal to ↵. Coherent states exhibit maximum coherence, as opposed to thermal

states—another class of displaced states characterized by an uncertainty larger than

the vacuum’s. Thanks to this remarkable feature, coherent states are often considered

as “quasi-classical” states of the field and their use is widespread in quantum optics.

For fields with high intensity, and thus a large number of photons, we can treat the

coherent state as a classical field and let the operators â and â† be replaced by their

counterparts ↵ and ↵⇤. This consideration might be performed implicitly in future

chapters, but for now we will continue discussing about a quantum field.

Because the detection of each photon is independent from the others, the fluctuation

in number of photons for any state di↵erent from a Fock state follows a specific prob-

ability distribution. Given a coherent state, from Eq. 2.29 we see that the probability

of measuring n photons is

Pr(n) = |hn|↵i|2 = |↵|2n e�|↵|2

n!
. (2.31)

This is a Poisson distribution of mean |↵|2 = hni. The variance of the photon-counting
process is equal to its expectation value, meaning that the standard deviation grows

as the square root of the mean number of photons. The relation between intensity

and photon number given by Eq. 2.27 translates this fluctuation into an unavoidable

measurement noise, known as shot noise, which originates from the quantized nature

of the field.

2.3.5 Squeezed states

The shot noise designates a fundamental bound to the measurement of the intensity

or the amplitude of the field [26]. However, there is a special class of states, known

as squeezed states, that can push the shot noise limit even lower than the vacuum’s

by allowing a reduction in the photon-counting uncertainty at the expense of greater

noise on di↵erent quadratures.

A squeezed state is obtained by applying the squeezing operator Ŝ
⇢

..= e
1
2(⇢

⇤
â

2�⇢â

†2)

to a coherent state |↵i, i.e |↵, ⇢i ..= Ŝ
⇢

|↵i. The quantity ⇢ is the squeezing parameter,
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a complex number that specifies the degree of squeezing. Experimentally, squeezed

states are achieved by exposing the field to non-linear processes that correlate di↵erent

quadratures, for example by letting light propagate through an optical parametric

oscillator. By doing so, conjugate quadratures such as amplitude and phase become

engaged in a reciprocal interaction that can extract noise from one and cast it onto the

other.

Photon-counting noise reduction is achieved by squeezing the uncertainty in the am-

plitude quadrature. In general, however, squeezing can be performed on any quadrature

and does not have to be restricted to the two quadratures considered so far (amplitude

and phase). It is convenient to define a quadrature parametrized by the angle ✓ that

encompasses all possible choices:

X̂
✓

..= e�i✓â+ e+i✓â†. (2.32)

With this definition, the amplitude and phase quadrature correspond to X̂0 and X̂
⇡/2,

respectively. To understand how X̂
✓

generally responds to the uncertainty principle, we

calculate its variance �2
X

✓

..= hX̂2
✓

i � hX̂
✓

i2 on the squeezed state |↵, ⇢i. By specifying

the squeezing parameter in terms of its polar coordinates as ⇢ = re2i', and by using

the operator properties Ŝ†
⇢

âŜ
⇢

= â cosh(r) � â†ei' sinh(r) and Ŝ†
⇢

â†Ŝ
⇢

= â† cosh(r) �
âe�i' sinh(r) [27], we find

�2
X

✓

= cosh(2r)� cos(2 (✓ � ')) sinh(2r). (2.33)

The quadrature corresponding to the squeezing angle, i.e. ✓ = ' (modulo multiple

integers of ⇡), is appointed as the squeezed quadrature thanks to the fact that it

has minimum variance. The orthogonal quadrature, at the angle ✓ = ' + ⇡/2, has

instead maximum variance and is designated as the anti-squeezed quadrature. The

corresponding uncertainties are obtained from the square root of the variance,

�
X

'

= e�r, �
X

'+⇡/2
= e+r. (2.34)

Squeezed states owe their title to the fact that one quadrature has reduced uncer-

tainty relative to the conjugate one, unlike vacuum or coherent states where conjugate

quadratures share the load of Heisenberg’s uncertainty principle in equal measure.

Any positive value of r brings the uncertainty of the squeezed quadrature lower than 1,

which is the uncertainty value of any quadrature on the vacuum state. In this sense, a
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squeezed state is less noisy than vacuum itself, as long as the right quadrature is being

observed; the noise is transferred onto the anti-squeezed quadrature, in such a way that

�
X

'

�
X

'+⇡/2
= 1 and Heisenberg’s uncertainty principle is still respected. Experimen-

tally, some additional noise in the generation or propagation of the field typically leaks

onto the state, and the product of the uncertainties of the squeezed and anti-squeezed

quadratures may generally be greater than 1. The purity of the squeezed state [28],

measured by

P ..=
1

p
�
X

'

�
X

'+⇡/2

, (2.35)

quantifies how close the squeezed state is to the states of minimum uncertainty dis-

cussed so far.

Squeezing of coherent states is an established technique [27] that has seen many

breakthroughs over the past decades, with great improvements in e�ciency and ro-

bustness. The current state-of-the-art is achieved by optical parametric oscillators,

reported to accomplish up to 15 dB of shot noise reduction [29]. Current development

is involved with the addressing of practical issues such as extension to new operating

bandwidths [30], variation of the squeezed angle over frequency [31], and miniaturiza-

tion of the source [32]. Original ideas are also pushing the subject to new frontiers,

for example considering the involvement of non-linear entanglement for the genera-

tion of unconventional squeezed states [33] or by suggesting alternative methods of

detection capable of detecting squeezing when the correlation between quadratures is

complex [34]. The incredible interest attributed to squeezing is an indication of the

importance it plays in several fields, from quantum information [35] to metrology be-

yond the standard quantum limit [36, 37]. In Chap. 12 we will examine the squeezing

generated using optomechanics, how it presents frequency-dependent properties, and

how this can be applied to enhance the sensitivity of interferometric gravitational-wave

detectors.

2.4 Optical cavities

The optical resonator, or cavity, is an indispensable element of experimental optics [27,

38]. In its simplest form a cavity is composed by two mirrors aligned in front of each

other, so that successive reflections of light can interfere and build up the field in

the confined volume to a much greater power than that of the input field. This kind

of optical cavity is known as the Fabry–Pérot resonator, or etalon, but many other



§2.4 Optical cavities 23

di↵erent types are possible. For example one could consider a geometry with a greater

number of mirrors, or there could be a non-linear medium in the intra-cavity path.

Even completely di↵erent devices such as monolithic resonators are possible, where

light is confined through total internal reflection [39,40].

The applications of optical cavities are manifold. They can be employed as mode

cleaners, purifying the spatial configuration of the mode, or also as frequency filters,

narrowing the linewidth of a laser with low spectral coherence. They also have more

distinctive uses for specific applications. For example, a resonator featuring a non-linear

crystal can generate squeezing by correlating the amplitude and phase quadratures of

the intra-cavity field.

Optomechanics often relies on the presence of an optical cavity. The reciprocal

dependence between the position of the mirrors and the resonance condition of the

cavity creates the opportunity for a strong interaction that could often be impossible

by any other means.

2.4.1 Cavity field build-up

To derive an expression for the intra-cavity field we can start from the input field, with

amplitude ↵in, and follow its propagation within the cavity after entering from the first

mirror. Let r1, r2 and t1, t2 be respectively the Fresnel reflection and transmission

coe�cients of the two end mirrors, which we identify by the subscript i 2 {1, 2}.
We then define the reflectivities R

i

= |r
i

|2 and the transmissivities T
i

= |t
i

|2, and

consider each mirror to have other scattering or absorption losses described by L
i

so that the relationship R
i

+ T
i

+ L
i

= 1 always holds true [41]. Also, let µ be

the attenuation coe�cient within the cavity. The distance between the two reflective

surfaces determines the length of the cavity, L0. A cavity resonates only when its

length is an integer multiple of the half-wavelength �/2, or else boundary conditions

would not allow the fully resonant build-up of a stationary wave.

A diagram for the following discussion is provided in Fig. 2.1. Initially, the light

inside the cavity is produced by the transmission of the input field through the input

mirror (leading to ↵0 = t1↵in). The light then propagates for the length of the cavity

(gathering a phase shift equal to eikL0 and an attenuation of e�µL0), is reflected at the

second mirror, propagates back to the first mirror, and is reflected once more (resulting

into ↵1). The total round-trip time of these steps is ⌧ ..= 2L0/c. Multiple passes (↵
n

)

keep repeating the same process until the field leaks outside of the resonator due to the

losses and residual transmissivity of the mirrors. This is translated into the equations
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Figure 2.1: Schematic of a Fabry–Pérot cavity displaying resonance via the build-up of inter-

ference through subsequent passes.

for the field at the nth pass as

↵in ! ↵0 = t1↵in

! ↵1 = r1e
(�µ+ik)L0r2e

(�µ+ik)L0t1↵in

. . .

! ↵
n

= rn1 e
n(�µ+ik)L0rn2 e

n(�µ+ik)L0t1↵in. (2.36)

The phase accumulated after a single round trip is �0
..= k · 2L0, where k ..= 2⇡/�

is the wave number. Analogously, the losses due to attenuation within the cavity are

described by `c
..= µ ·2L0. The total cavity field, as a consequence of the superposition

principle, is given by the sum of each single pass contribution. The transmitted and

reflected fields can also be obtained by using Fresnel conditions at the first and second

mirror, respectively.

↵cav =
1X

n=0

↵
n

=
t1

1� r1r2e
�`c+i�0

↵in, (2.37)

↵tra = t2↵cav =
t1t2

1� r1r2e
�`c+i�0

↵in, (2.38)

↵ref = �r⇤1↵in + t⇤1r2e
(�µ+ik)2L0↵cav =

 
�r⇤1 +

r2 |t1|2 e�`c+i�0

1� r1r2e
�`c+i�0

!
↵in. (2.39)

To infer the power, which we know is proportional to the absolute value of the corre-

sponding field thanks to Eq. 2.18, we first introduce the coe�cient of finesse

f ..=
4
p
R1R2e

�`c

�
1�

p
R1R2e

�`c

�2 , (2.40)
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and then express everything in terms of the input power Pin:

Pcav =
T1�

1�
p
R1R2e

�`c

�2 �
1 + f sin2(�0/2)

�Pin, (2.41)

Ptra =
T1T2�

1�
p
R1R2e

�`c

�2 �
1 + f sin2(�0/2)

�Pin, (2.42)

Pref =
R1 + (1� L1)

2R2e
�`c + 2T1

p
R1R2e

�`c cos(�0)�
1�

p
R1R2e

�`c

�2 �
1 + f sin2(�0/2)

� Pin. (2.43)

We can use the quantities introduced during the derivation to identify certain dis-

tinctive properties of the cavity field. The frequency-domain equivalent of the phase �0

accumulated at each pass, commonly referred to as free spectral range, can be defined

from the inverse of the round-trip time ⌧ ,

!FSR
..=

2⇡

⌧
=
⇡c

L0
. (2.44)

The free spectral range corresponds to the spacing in frequency between di↵erent reso-

nances of the cavity, a direct consequence of the periodicity of Eq. 2.41. The coe�cient

of finesse gives a measure of the quality of the resonance, as large values of f corre-

spond to a higher build-up of constructive interference into a narrower portion of the

free spectral range. To have a measure of the spectral width of the resonance is, we can

consider the phase for which the cavity power is half of its maximum resonant value,

i.e. the � that satisfies Pcav|
�0=�

⌘ 1
2 Pcav|

�0=0. The equivalent of this phase in the

frequency domain is the cavity half-linewidth,

�!

2
..= !FSR

arcsin(1/
p
f)

⇡
. (2.45)

Together, the free spectral range and the cavity linewidth can be used to define an

optical analogue of a quality factor to indicate the number of reflections that light

undergoes before escaping from the resonator. This is known as the finesse:

F ..=
!FSR

�!
=

⇡

2 arcsin(1/
p
f)

. (2.46)

The definition of Eq. 2.40 suggests that f , and consequently F , can be specified by a

unique parameter
p
R1R2e

�`c . Having the loss factors corresponding to each mirror

indicated by `
i

, chosen such that e�`

i =
p
R

i

, we can define ` ..= `1+`2+`c to represent
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Figure 2.2: Finesse F as a function of total cavity losses `. The approximated expression for

F (dashed line) significantly diverges from the original definition only for ` & 1.

the total losses of the cavity. For `⌧ 1, the finesse can then be approximated to

F ' ⇡
p
e�`

1� e�`

. (2.47)

In Fig. 2.2, where Eq. 2.46 and 2.47 are compared, we see that the approximation does

not require extreme system purities to hold. As few as five reflections before the field

leaks out of the cavity are enough to make the two results indistinguishable. In this

approximation, the intra-cavity power can be expressed as

Pcav ' T1
1 + 4F2

⇡

2 sin2(�0/2)

F2

⇡2
Pin. (2.48)

The reduction induced by the necessarily low transmissivity of the input mirror is

compensated by the square of the finesse, and as a rule of thumb the intra-cavity

power scales as F times the input power.

The cavity dynamics obtained so far are general enough for regular purposes, but

we may sometimes be interested in scanning through the cavity length (or equivalently

the optical frequency) and the speed of the scan might be high enough that it might

a↵ect the regular build-up of resonance. To make provisions for the ring-down inter-

ference e↵ects arising, we can look back at Eq. 2.36 and consider a length which is

now dependent on the number of reflections of the light within the cavity. Using the

initial cavity length L0 as reference, we consider a scan actuated through motion of

the input mirror at speed v. When light is reflected at the second mirror after travers-

ing the cavity once, the length is altered to L0 (1� v/c). When light has travelled

again to return to the input mirror, the correction due to the back-and-forth reflec-

tion gives a revised length L1 = L0 (1� v/c) / (1 + v/c), which can be linearized to
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L1 ' L0 (1� 2v/c) for a mirror travelling much slower than light. Successive iterations

give a length L
n

' L0 (1� 2nv/c) at the nth pass. The field amplitude is revised to

↵in ! ↵0 = t1↵in

! ↵1 = r1e
(�µ+ik)L0(1�2v/c)r2e

(�µ+ik)L0t1↵in

. . .

! ↵
n

= r1e
(�µ+ik)L0(1�2nv/c)r2e

(�µ+ik)L0[1�2(n�1)v/c]↵
n�1

= t1 (r1r2)
n e(n�n

2
v/c)(�`c+i�0)↵in. (2.49)

The full series remains unresolved due to the quadratic exponent and the intra-cavity

field cannot be expressed analytically. An accurate comparison with Eq. 2.37 can

still be performed if we consider that after a number of reflections comparable to

the finesse most of the light has escaped and the series can be truncated to the first

leading terms. However, this method could prove computationally demanding and

unappealing, especially in light of an alternative, more e�cient method to describe the

intra-cavity field presented in the next section.

2.4.2 Cavity field dynamics

A more flexible treatment for the intra-cavity field takes into account time, not the

number of reflections, as the parametrizing variable. Considering the field at a time t,

at any stage of its evolution, after a round-trip time ⌧ it will undergo a reflection from

both mirrors, will be attenuated by a factor e�`c and will accumulate a propagation

phase �0. Considering also the contribution from the travelling wave at the input of

the cavity, the intra-cavity field becomes

↵cav(t+ ⌧) =
⇣p

R1R2↵cav(t) +
p

T1R2↵in(t)
⌘
e�`c+i�0 . (2.50)

Assuming small changes at each round trip, i.e. �0 ⌧ 1 (modulo 2⇡), R
i

' 1, and
p
1� Lc

..= e�`c ' 1, the field can be expanded to first orders as

↵cav(t) + ⌧
.
↵cav(t) '

p
(1� T1 � L1) (1� T2 � L2) (1� Lc)e

i�0↵cav(t) +
p

T1↵in(t)

'
✓
1� T1

2
� T2

2
� L1

2
� L2

2
� Lc

2
+ i�0

◆
↵cav(t) +

p
T1↵in(t),

(2.51)

and by introducing the stationary cavity field ↵ ..=
p
⌧↵cav, normalized to the cavity
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lifetime, we obtain the di↵erential equation

.
↵(t) = (�+ i�0)↵(t) +

p
21↵in. (2.52)

Here, we use �0
..= �0/⌧ for the cavity detuning from resonance, 

i

..= T
i

/ (2⌧) for the

partial decay rates at the end mirrors and  ..= 1 + 2 + (L1 + L2 + Lc) / (2⌧) for the

total decay rate of the cavity. The steady-state solution is

↵ =

p
21

� i�0
↵in, (2.53)

and it corresponds to the zero-frequency component of the more general solution in the

frequency domain,

↵(!) =

p
21↵in

� i (�0 � !)
. (2.54)

Using the boundary conditions set by the relation between the input field ↵in and the

transmitted and reflected fields, ↵tra and ↵ref,

↵tra =
p
T2↵cav '

p
22↵, (2.55)

↵ref = �
p
R1↵in +

p
T1↵cav ' �↵in +

p
21↵, (2.56)

and, remembering that ↵cav = ↵/
p
⌧ , we can infer the steady-state solutions for the

travelling waves:

↵cav =

p
21/⌧

� i�0
↵in, (2.57)

↵tra =

p
412

� i�0
↵in, (2.58)

↵ref =
21 � + i�0

� i�0
↵in. (2.59)

The steady-state power of each travelling wave is proportional to the squared absolute
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Figure 2.3: Intra-cavity power for a cavity of length L
0

= 0.185m with R
1

= R
2

= 99.90%

and T
1

= T
2

= 0.08%. The finesse corresponding to these parameters is F = 3140. (a)

Time-domain evolution of the intra-cavity power at di↵erent detunings, from |�
0

| = 0 (bright)

to |�
0

| = 3 (dark) in intervals of . The horizontal axis is in units of the cavity round-trip

time ⌧ , and the vertical axis is normalized to the input power P
in

. (b) Intra-cavity power in

the frequency domain. The horizontal axis is in units of the cavity decay rate  and the vertical

axis is again normalized to the input power P
in

. Vertical dashed lines indicate the detunings

used in (a), and for each the value of the power corresponds to the steady-state level in the

time domain. The asymmetric traces show how the intra-cavity field is a↵ected by a scan speed

v 6= 0. They have been obtained at scan speeds v = 50⇥ 10�6 ms�1 and v = 150⇥ 10�6 ms�1,

corresponding to scan frequencies of 50Hz and 150Hz for a 1µm stroke.

value of the corresponding field. In terms of the input power Pin, they are:

Pcav =
21/⌧

2 +�2
0

Pin, (2.60)

Ptra =
412
2 +�2

0

Pin, (2.61)

Pref =
(21 � )2 +�2

0

2 +�2
0

Pin. (2.62)

An example of how the intra-cavity power evolves in time before reaching the steady

state is shown in Fig. 2.3a. After a total time equal to the time of a single round-trip

times the finesse (⇡ 3000 ⌧ in the case at hand), the evolution starts to converge to its

steady-state value given by Eq. 2.60. In the frequency domain (Fig. 2.3b) the power

follows a Lorentzian profile.

To see how the scan speed a↵ects the intra-cavity field, we now consider a cavity

length changing linearly in time as L(t) = L0+vt because of one end mirror moving at

speed v. For the field, the change in length translates into a time-dependent detuning

�(t) = (k · 2L(t)) /⌧ = 2k (L0 + vt) /⌧ = �0+2kv ·t/⌧ . Equation 2.52 is then modified
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to

.
↵(t) = [�+ i (�0 + 2kv · t/⌧)]↵(t) +

p
21↵in. (2.63)

The non-constant nature of the new coe�cient in front of ↵(t) prevents us from directly

solving it in the frequency domain, as it was done for Eq. 2.54. Instead, the Fourier

transform of the field amplitude answers to the di↵erential equation

↵0(!) =
⌧

2kv

h
(�+ i�0 � i!)↵(!) +

p
21↵in

i
, (2.64)

where the prime indicates derivation relative to the Fourier variable. The e↵ects of the

scan are shown in Fig. 2.3b. Compared to the Lorentzian solution at zero speed, the

solutions at speed v 6= 0 show signs of asymmetry due to the end mirror moving in a

particular direction. Self-interference of the field causes lower peak powers and addi-

tional ripples at the tails. Note that these self-interference e↵ects are highly dependent

on the optical quality of the cavity [42]: at high finesse, the cavity lifetime 2⇡/ is

longer and the light interacts with the moving mirror more extensively than it would

at low finesse. In other words, the extent of self-interference can be characterised by

the dimensionless quantity 2kv · 2⇡/. If this quantity is small, which could either be

because the scan speed is slow enough or because the cavity lifetime is short, then the

correction term in Eq. 2.63 has less weight and the behaviour is closer to the solution

described by the original di↵erential equation without the correction term (Eq. 2.52).

On a final note, it should be mentioned that both the total cavity decay rate  and

the cavity half-linewidth �!/2 of Eq. 2.45 are a measure of the losses in the cavity,

and even if they have a di↵erent definition they are technically the same quantity. For

losses `⌧ 1, the asymptotic congruence of  and �!/2 can be proved as follows:

�!

2
..= !FSR

arcsin(1/
p
f)

⇡
 ..=

(T1 + L1) + (T2 + L2) + Lc

2⌧

' !FSR

2⇡

2p
f

=
(1�R1) + (1�R2) + Lc

2⌧
,

=
1

⌧

1� e�`

e�`/2
=

�
1� e�2`1

�
+
�
1� e�2`2

�
+
�
1� e�2`c

�

2⌧

' `

⌧
, ' `

⌧
. (2.65)

This congruence makes the original solutions found via successive reflections (Eq. 2.37–

2.39) agree with the solutions of the cavity equation (Eq. 2.57–2.59).
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2.4.3 Impedance matching

The relationship between the input, the output and the intra-cavity fields is conditioned

by the losses at each mirror. From Eq. 2.59 we can see that, for example, if 1 = 

the reflected field di↵ers from the input field only by a phase shift. This particular

example also implies 2 = 0, which corresponds to a perfect reflectivity for the second

mirror. Another possible configuration could be given by 1 = 2 = /2, in which case

99.90 99.92 99.94 99.96 99.9899.9099.9299.9499.9699.98
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ℛ 2 (%)
4.03.83.63.43.23.02.82.6 Log 10("
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Figure 2.4: Impedance matching of a Fabry–Pérot cavity. All plots assume no losses in

the cavity, and mirror 1 used as the input port. (a) Response of the reflected (blue) and

transmitted (red) fields during a scan across resonance. The reflectivity is chosen to be 99.90%

for both mirrors, corresponding to a finesse of 3140. On resonance there is no reflection and the

field is fully transmitted, implying optimal (100%) impedance matching for the cavity. (b)

Same as (a), but now one of the mirrors is chosen with a reflectivity of 99.99%. The finesse in

this instance is 5710, and the intra-cavity power depends on whether the higher reflectivity is

assigned to the first or the second mirror. In either case, on resonance only part of the input field

is transmitted and the impedance matching of the cavity is ine↵ective (33%). (c) Impedance

matching as a function of the reflectivities of the two mirrors. The level of impedance matching

is determined by the proportion of the input field being transmitted rather than reflected back.

Perfect impedance matching conditions are achieved when R
1

= R
2

. (d) Intra-cavity power

as a function of the reflectivities of the two mirrors. A higher reflectivity for the input mirror

implies less power coupled into the cavity. The symmetrical situation, with the reflectivity of

the input mirror swapped with the other one, has the same finesse but higher circulating power.

The bright lines denote constant finesse, from 6000 to 30000 at increments of 3000.
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on resonance the reflected field completely vanishes and the input is fully transmitted

through the cavity. These are only two examples of a broader set of circumstances

determined by all possible values of 1 and 2. The selection of specific values for

the decay rates of the two mirrors in order to satisfy one’s requirements is known in

resonator optics as impedance matching.

Some examples of di↵erent impedance matching conditions are presented in Fig. 2.4.

The first example (Fig. 2.4a) shows the power of the reflected and transmitted fields

when the cavity has no losses and the two mirrors have the same reflectivity. The

second example (Fig. 2.4b) considers the same lossless cavity where the reflectivity

is higher for one of the two mirrors is higher while it is unchanged for the other.

Assuming the mirror with unchanged reflectivity to be the input port, the amount of

power coupled into the cavity is the same. As the total intra-cavity power also depends

on the finesse which is now higher, however, there is more energy circulating within the

cavity. Despite this, the response of the output fields on resonance is more moderate,

as the discrepancy between the reflectivities of the two mirrors creates a mismatch from

optimal impedance conditions. Since impedance matching is symmetrical with respect

to R1 and R2 (see Fig. 2.4c), the response of the output fields would be exactly the

same if the reflectivities of the two mirrors were to be swapped, thus associating the

higher reflectivity to the input mirror. In this case, however, less field is transmitted

from the input into the cavity, and the intra-cavity power would be lower despite the

finesse being the same. This situation is better described in Fig. 2.4d, where the intra-

cavity power is seen to be asymmetrical with respect to the reflectivity of the input

and the output mirrors.

2.4.4 Gaussian modes

So far the analysis has involved only one of the three spatial dimensions, the one

longitudinal to the direction of propagation of light. A realistic treatment needs to

account for the transverse directions as well, since the optical mode might be diverging

or converging and the cavity might not fully satisfy the requirements bringing for a

stable, complete interference. It is therefore important to determine a solution to

Maxwell’s equations that well approximates the idea of a ray of light, in terms of its

propagation and divergence properties.

The Helmholtz equation introduced in Chap. 2.3.1 describes the profile of an optical

mode, with the assumption that the time dependence of the wave can be separated from

its spatial features. In making the further assumption of a planar wave propagating
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along a specific direction z, representing the optical propagation axis, the generic wave

profile A(r) can be further separated into

A(r) ..= Ā(r)e�ikz. (2.66)

The spatial properties of the complex envelope Ā(r) are assumed to vary slowly com-

pared to the scale determined by the wavelength � = 2⇡/k, i.e. @
z

Ā ⌧ Ā/�, so that

the monochromatic nature of the wave is preserved along the propagation [38]. The

argument can also be extended to the second derivative, and we request @2
z

Ā ⌧ @
z

Ā/�.

Substituting the new expression into Eq. 2.17, we can use the two assumptions on Ā(r)

to find an approximation of the Helmholtz equation, called the paraxial Helmholtz

equation [43]:

�
r2

T � 2ik@
z

�
Ā(r) = 0. (2.67)

The paraxial approximation does not a↵ect the transverse degrees of freedom, which

still feature in terms of the transverse Laplacian rT
..= @2

x

+ @2
y

.

A spherical wave, given by A(r) = (A0/r)e
�ikr, can be approximated to be paraxial

if
p

x2 + y2 ⌧ |z|, i.e. the transverse coordinates are much smaller than the longitu-

dinal one. The approximation results into the paraboloidal wave, with a propagating

profile

Ā(r) =
A0

z
e�ik

x

2+y

2

2z . (2.68)

It can be easily verified that this represents a solution to the paraxial Helmholtz equa-

tion, and it will still be one if the entire wave is shifted along the direction of propaga-

tion. Interestingly, an imaginary shift z ! z+ iz0 also produces a solution of Eq. 2.67.

The paraxial wave obtained in this case is the Gaussian beam, which is expanded as

Ā(r) =
A0

z + iz0
e
�ik

x

2+y

2

2(z+iz0)

= A0
z � iz0
z2 + z20

e
�ik


x

2+y

2

2

✓
z�iz0
z

2+z

2
0

◆�

=
A0p
z2 + z20

(�i) (z0 + iz)p
z2 + z20
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�ik

x

2+y

2

2z(1+z

2
0/z

2) e
� 2⇡

�

x

2+y

2

2z0(1+z

2
/z

2
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A0

z0

1p
1 + z2/z20

e�i(⇡

2
�arctan (z/z0))e
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2
0/z

2) e
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�z0

x

2+y

2
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2
/z

2
0) . (2.69)
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We can define the Gouy phase shift,

⇣(z) ..= arctan
⇣ z

z0

⌘
, (2.70)

the wavefront radius,

R(z) ..= z

✓
1 +

z20
z2

◆
, (2.71)

and the beam width,

W (z) ..= W0

s

1 +
z2

z20
, (2.72)

which depends on the beam waist W0
..=

p
�z0/⇡ and corresponds to the distance from

the peak of the field distribution where the field amplitude decays to a 1/e factor of its

maximum value. The field amplitude of the Gaussian beam can be expressed in terms

of these parameters as

A(r) =
A0

z0

W0

W (z)
e
�x

2+y

2

W (z)2 e
�i

⇡

2
+i⇣(z)�ik

✓
x

2+y

2

2R(z)
+z

◆

. (2.73)

The name of this particular solution of the paraxial Helmholtz equation originates

from the Gaussian profile of its intensity,

I(r) =
c"0
2

|A(r)|2 = I0

✓
W0

W (z)

◆2

e
�2x

2+y

2

W (z)2 . (2.74)

Each cross section along the longitudinal direction follows a two-dimensional Gaus-

sian envelope which has a width determined by W (z) and a peak value of I0
..=

c"0 |A0|2 /(2z20) at the origin. The brightness is inversely proportional to W (z), and

the total power in each transverse plane,

P (z) =

ZZ
dx dy I(r) =

1

2
⇡W 2

0 I0, (2.75)

is independent of z. Even though, technically, the intensity profile extends infinitely

in the transverse directions, one can use the beam width as an appropriate measure

of the dimensions of the beam, since more than 86% of the power is contained in a

circle of radius W (z). Propagation makes the beam expand to a width of
p
2W0 when

|z| = z0, and when |z| � z0 the width increases linearly in z. The angular spread of
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Figure 2.5: Illustration of the intensity distribution of Gaussian modes. (a) Longitudinal

cross section of a Gaussian beam. The main parameters characterizing the beam are outlined:

the Rayleigh range z
0

, the beam waist W
0

, the beam width W (z) and the angular spread ✓
0

.

(b) Transverse cross sections of Hermite–Gaussian modes (left) and Laguerre–Gaussian modes

(right). The indices denoting the order of the mode are, respectively, (m,n) and (p, l).

the beam in the far-field region is

✓0
..= lim

z!+1
W (z)

z
=

W0

z0
=

�

⇡W0
. (2.76)

The Gouy phase shift ⇣(z) makes the wavefronts propagate at a di↵erent velocity than

those of a plane wave. The curvature also varies with propagation, as described by

R(z): at z = 0 the wavefront is flat, progressively getting more curved as the beam

propagates until it can be considered spherical at |z| � z0. The parameter z0, known as

the Rayleigh length, gives a measure of the range in which the beam can be considered

to be collimated. The far-field limit of the Gaussian beam is a paraboloidal wave.

A conceptual vision of the Gaussian beam and its main parameters is provided in

Fig. 2.5a.

The Gaussian beam belongs to a broader class of orthogonal solutions of the

Helmholtz paraxial equation, the transverse electromagnetic (TEM) modes [38]. These

solutions, obtained by having the mode amplitude A0 a function of coordinates before

solving Eq. 2.67, are a combination of the Gaussian beam with particular orthogonal

polynomials, which depend on the symmetry of the system. Generally, their inten-

sity distribution is di↵erent from a Gaussian function. However, they share the same

paraboloidal wavefronts of the Gaussian beam, meaning that they can be reflected o↵

a curved mirror or transmitted through lenses in a similar way. When reflection in the

system occurs with rectangular symmetry in the transverse plane, the polynomials used

to describe higher-order modes are the Hermite polynomials. The solutions, typically
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referred to as Hermite–Gaussian modes, are described by

A
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A0

z0

W0

W (z)
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with integers indices m and n representing the horizontal and vertical directions of the

transverse plane, respectively, and H
n

(x) ..= (�1)nex
2

d

n

dx

n

(e�x

2
) for integer n. When

the symmetry of the system is cylindrical, the generalized Laguerre polynomials are

used instead. The solutions, called Laguerre–Gaussian modes, have the form

A
pl

(r) =
u0
z0

W0

W (z)

 p
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W (z)

!|l|
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where we use cylindrical coordinates r = {⇢,�, z}, radial and azimuthal indices p and

l, and La

n

(x) ..= e

x

x

�a

n!
d

n

dx

n

(e�xxn+a) for integers n and a. The intensity distribution

of both kinds of higher-order modes is shown in Fig. 2.5b. In both cases, the mode

u00 corresponds to the Gaussian beam of Eq. 2.73. The di↵erence in Gouy phase shift

between modes of di↵erent orders results in di↵erent resonance conditions, and during

the cavity scan each mode can usually be independently identified.

The optical resonators used for the production of laser light generally employ mir-

rors with spherical curvature wrapped around the gain medium, imposing a very specific

boundary condition on the resonant modes. Gaussian modes can satisfy this condition

thanks to their almost-spherical wavefronts, and they are the typical optical modes used

in experimental setups. A Gaussian beam with a waist W0 = 1mm can be regarded as

collimated in a range of at least 3m for most optical wavelengths, thus being suitable

for table-top experiments. Collimation over an even greater extent can be obtained by

increasing the beam waist: for example, W0 = 2 cm ensures collimation over more than

1 km, which is convenient for experiments on a larger scale [44–46]. Gaussian modes are

not the only solutions to the paraxial Helmholtz equation, though, and other optical

modes are possible if the experiment requires di↵erent characteristics. One example

is given by the Bessel beam, which maintains a planar wavefront during the entire

propagation (as opposed to the almost spherical wavefronts of the Gaussian beam) but

has a non-uniform, unbounded intensity profile which would require infinitely extended
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boundary conditions to be faithfully reproduced. Despite the possible complications,

Bessel beams have particularly useful applications as optical tweezers [47], since their

di↵raction properties make them robust over long distances and even against obstacles.

The use of other optical modes goes beyond the scope of this thesis, however, and a

Gaussian mode will always be implicitly assumed unless otherwise specified.

2.4.5 Mode matching and optical stability

We now examine the procedure that reveals how to match a Gaussian mode to the

optical resonant mode of a cavity. The idea is to find appropriate beam parameters

that allow the wavefronts to be reflected o↵ the end mirrors of the cavity without

distortion [38].

Consider two spherical mirrors, aligned along the z axis at positions �z1 and z2,

and take their radii of curvature R1 and R2 to be positive if they look concave from

within the cavity. Recalling the functional form of the wavefront of a Gaussian beam

from Eq. 2.71, and adjusting the sign convention to parallel the one for the mirrors, so

that a converging wave has a negative wavefront, we can request a match between the

wavefront profile and the curvature of the mirror to obtain the conditions

R1 = �R(�z1) = z1

✓
1 +

z20
z21

◆
, (2.79)

R2 = R(z2) = z2

✓
1 +

z20
z22

◆
, (2.80)

L0 = z1 + z2. (2.81)

The three equations can be solved for z1, z2, and z0 with simple algebraic manipulation.

Introducing the stability parameters

g1 = 1� L0

R1
, g2 = 1� L0

R2
, (2.82)

the positions of the two mirrors have solutions

z1 =
L0 (R2 � L0)

R1 +R2 � 2L0
= L0

(1� g1) g2
g1 + g2 � 2g1g2

, (2.83)

z2 =
L0 (R1 � L0)

R1 +R2 � 2L0
= L0

(1� g2) g1
g1 + g2 � 2g1g2

, (2.84)
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Figure 2.6: Stability diagram of an optical resonator. The illustrations on the right show some
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and the Rayleigh range of the beam is

z0 =

s
L0 (R1 +R2 � L0) (R1 � L0) (R2 � L0)

(R1 +R2 � 2L0)
2

= L0

s
(1� g1g2) g1g2

(g1 + g2 � 2g1g2)
2 . (2.85)

The mode has a real solution only when the argument within the square root of Eq. 2.85

is positive, which is accomplished when

0  g1g2  1. (2.86)

This is the stability condition that an optical cavity needs to satisfy in order to guar-

antee the existence of a resonant mode. The separation between two mirrors of given

curvature needs to lie in a very specific range, or otherwise after reflection the beam

might be diverging or converging too much for the other mirror to compensate, and

the field would escape the cavity.

The simplicity of Eq. 2.86 inspires an intuitive visual representation of all the possi-

ble stable configurations for a resonator, as presented in Fig. 2.6. Configurations close

to the edge of the stability region are usually avoided, since they require additional

precision in mode matching and cavity length that is otherwise unnecessary in most

common applications. Moreover, when g1g2 ' 1 the resonator is particularly sensitive

to misalignment and even small angular displacements can make the optical axis fall
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out of the cavity boundaries determined by the finite dimensions of the mirrors [48].

Concave-concave configurations are probably the most common in experimental se-

tups, as they are stable under a wide range of parameters and allow flexibility in terms

of the possible lengths for the cavity. This is particularly convenient if one needs

to operate with given mirrors and di↵erent cavity linewidths are required. However,

convex-concave configurations are also a viable option in terms of optical stability, and

one remarkable example is found in the optical levitation system proposed in Chap. 8.

2.5 Experimental techniques

A successful quantum optics experiment relies on a number of standard techniques [27].

The aim of this section is to present some of the practises employed systematically which

will also feature in the two major investigations presented in this thesis.

2.5.1 Homodyne and heterodyne detections

Homodyne detection is a very versatile technique based on interferometry that can be

used to measure specific attributes of the field that would be otherwise unaccessible.

It is performed by combining the field â, in the role of the signal to be detected, with

a stronger reference field âLO, acting as a local oscillator. The name (derived from

the ancient Greek words homós, “same”, and dýnamis, “power”) hints that the two

fields oscillate at the same frequency, !o, and to guarantee temporal coherence the

same source is often used for both. The intensity of the local oscillator is typically high

to enhance the interferometric component, and can thus be modelled as a classical

coherent field ↵LO.

The signal and the local oscillator are combined at a beam splitter (as shown in

Fig. 2.7), resulting in the two output fields

d̂1 = t↵LO + r â, (2.87)

d̂2 = r⇤↵LO � t⇤â, (2.88)

where r and t are the reflection and transmission coe�cients of the beam splitter,

related by the conditions |r|2 + |t|2 = 1 and r⇤t + rt⇤ = 0 [49]. A photodetector after

the first output port of the beam splitter records an intensity proportional to

hd̂†1d̂1i = |t|2 |↵LO|2 + |r|2 hâ†âi+ rt⇤h↵⇤
LOâ� ↵LOâ

†i. (2.89)
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The interference of the two fields is represented by the last term on the right-hand side

of the equation. This makes the reading depend not only on the intensity but also

on the complex amplitude of the signal. The large amplitude of the local oscillator

enhances the interference and could make even weak signals easier to detect. As the

intensity of the field grows quadratically with the amplitude, however, the measurement

in the case of the single photodetector of Fig. 2.7a might become overly tainted and

information on the signal could be swamped by the local oscillator instead of being

boosted. This problem is easily circumvented by the use of another photodetector on

the second output port (as in Fig. 2.7b), whose measurement would be proportional to

hd̂†2d̂2i = |r|2 |↵LO|2 + |t|2 hâ†âi � rt⇤h↵⇤
LOâ� ↵LOâ

†i. (2.90)

The two readings can then be subtracted, analogically or digitally, to obtain

hd̂†2d̂2i � hd̂†1d̂1i =
�
2 |r|2 � 1

�
|↵LO|2 +

�
1� 2 |r|2

�
hâ†âi

+ 2 |r|
q
1� |r|2e�i

⇡

2 h↵⇤
LOâ� ↵LOâ

†i. (2.91)

Here the condition r⇤t + rt⇤ = 0 was used to infer that the relative phase between r

and t is ⇡/2 [49]. The terms related to the intensity of the two fields are then easily

eliminated by choosing |r|2 = |t|2 = 1/2, corresponding to a 50:50 beam splitter. The

subtracted output in this case is proportional to

hd̂†2d̂2i � hd̂†1d̂1i = |↵LO| he�i(✓LO+⇡

2 )â+ ei(✓LO+⇡

2 )â†i, (2.92)

where the phase of the local oscillator was specified by writing ↵LO = |↵LO| ei✓LO in the

frame rotating at the optical frequency of both fields. This is precisely the quadrature

X̂
✓LO+⇡/2 of the signal field, as defined in Eq. 2.32. Therefore, any quadrature of the

field can be revealed by homodyne detection after an appropriate choice of the local

oscillator’s phase, whereas the amplitude of the local oscillator acts as an e↵ective gain

for the measurement.

Heterodyne detection (from the ancient Greek héteros, “di↵erent”) is based on very

similar principles to those of homodyne detection, with the only di↵erence being in

the local oscillator frequency, !LO, which is not restricted to be the same as that

of the signal. The di↵erence induces a beating component, and the measurement of
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Figure 2.7: Schematic of a homodyne/heterodyne detection setup. (a) Combination and de-

tection of the signal field with a reference local oscillator. (b) A clean quadrature measurement

is obtained after subtracting the read-outs of photodetectors at both ports.

hd̂†2d̂2i � hd̂†1d̂1i results centred around a carrier frequency |!LO � !o|:

hd̂†2d̂2i � hd̂†1d̂1i = |↵LO| he�i(✓LO+⇡

2 )e�i(!LO�!o)â+ ei(✓LO+⇡

2 )ei(!LO�!o)â†i. (2.93)

In the presence of low-frequency background noise, this feature can be very useful as

the information coming from the signal may be shifted to a di↵erent spectral region,

clear of contamination.

Both detection methods are very e↵ective for the measurement of the quadrature

of the signal field, whether this is another coherent state like the local oscillator, or a

single photon, or even a squeezed vacuum state. It should be emphasized one more time,

however, that the analysis presented assumes a high-power local oscillator. Although

this is su�cient for the scope of this thesis, a more complete treatment is required [27]

to extend the concept to general interference of two quantum fields.

2.5.2 Feedback and control theory

Many disciplines, from navigation and aeronautics to mechanical engineering, rely on

control theory as a measure against deviations of the system from a desired state.

Quantum optics makes no exception, and feedback loops are commonly applied to

lasers and cavities to stabilize the frequency. Another application, more specific to

optomechanics, involves the use of feedback to cool down a specific mode of oscillation

of the resonator. This is known as feedback cooling, and it will be a central topic in

Part II. In this section we focus on the basics of control theory [50] in order to encompass

a broader class of systems, including for instance the cavity locking schemes discussed

in the next section.

At the core of every system in control theory is the plant, which is the element

we want to keep in a certain state. Internal dynamics or external elements may cause
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Figure 2.8: Simple examples of control systems. (a) Open-loop control: the controller C

directly acts on the input to the plant P in order to obtain an output y as close as possible

to the reference signal r. (b) Closed-loop control: some sensors S are used to feed back

the output and compare it to the reference in order to create the error signal ". (c) The

proportional-integral-derivative controller.

deviations from this state, and another module, the controller, is normally required

to restore the desired conditions. In order to know how to act to bring the system

closer to the target, rather than further away, it is essential to have the appropriate

sensors to register the current state of the system. Control theory is represented well

by block diagrams, where each block represents a part of the system (plant, control,

etc.) and inputs and outputs are the measurable signals. In time domain the input

is transformed into an output by a convolution operation, and in Fourier or Laplace

domain this becomes equivalent to a multiplication. A good control should make the

transfer function, given by the ratio of the output and the input of the total system,

as close to unity as possible.

A relatively unsophisticated method of implementing control is outlined in Fig. 2.8a.

The plant, P , has an output y that we would like to get as close to the reference r

as possible. The controller, C, uses the reference to change the input to the plant,

and therefore the final output as well. This scheme makes no use of sensors, and relies

on prior modelling of the system to implement control. The transfer function for this

example is

y

r
= PC, (2.94)

and it is straightforward to infer that a control acting like the inverse of the plant,

i.e. C = P�1, would achieve the result sought. Unfortunately this simple, open-loop

method is useful only for very predictable systems, and is not robust against arbitrary

swings that are not covered by the modelling.
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A closed-loop feedback control, as in Fig. 2.8b, does not su↵er from the same issue.

The key lies in the error signal, which is proportional to the di↵erence between the

state of the system and the reference. The aim of the control system is to maintain the

error signal as close to zero as possible. The outline of the setup includes some sensing

devices, S, that send the information recorded back in order to create and update the

error signal, which is obtained by subtracting the measured output from the reference.

Feeding a non-vanishing error into the controller prompts a reaction that modifies the

plant’s input. The changes applied through this negative feedback loop are expected

to oppose the causes of the non-vanishing error in the first place, thus restoring the

system to balance. With the output depending on the error as y = PC", and the error

depending on the output as " = r � Sy, the transfer function obtained by closing the

loop is

y

r
=

PC

1 + SPC
. (2.95)

Even though this transfer function might seem harder to bring close to unity than

Eq. 2.94, it represents a much better choice for most practical applications since there

is no need to model the plant perfectly. Any disturbance, whether internal or external,

is handled directly by the feedback.

There is a special type of controller that accounts for the vast majority of appli-

cations because of its versatility: the proportional-integral-derivative (PID) controller

(Fig. 2.8c). Starting from the error signal, the PID controller produces an output given

by three terms proportional to the error itself and its integral and derivative over time:

(C ⇤ ")(t) = KP "(t) +KI

Z
t

0
d⌧ "(⌧) +KD

d"(t)

dt
. (2.96)

The reason for the presence of the proportional term is clear. If the error signal

is di↵erent from 0, the controller has to act to restore the system with a strength

proportional to the magnitude of the deviation. Responding only to what the error

signal indicates at the present instant might not be enough, however. This is where

the integral and derivative terms play their part. The integral of the error signal can

detect patterns in the history of the feedback and is particularly sensitive to slow and

periodic disturbances. Thanks to the accumulation over time, it is more sensitive to

a constant o↵set than the proportional gain and it is therefore useful to dynamically

compensate for possible deviations from the steady state. The derivative of the error

signal, on the other hand, anticipates what the disturbances might be in the near
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future. It can predict fast or sudden events, but it is rarely used because it could easily

become unmanageable if the system is too erratic. The proportionality constants KP,

KI and KD designate the gains associated with each operation, and should be tuned

independently to best account for the requirements of the system.

2.5.3 Pound-Drever-Hall locking

The resonance condition of a cavity is particularly sensitive to the e↵ective path of

the light within the resonator, as we have seen in Chap. 2.4. Variations can occur

because of independent fluctuations of the cavity mirrors, or because of subtle changes

in the refractive index due for example to air currents. Most of these problems can be

tackled by robust designs that manage to couple the motion of the end mirrors and

prevent unwelcome air flows, but making the optical resonator impervious to any type

of fluctuation is a rather challenging task, especially if the same conditions need to

be met for extended periods of time. A solution is found in the implementation of

active feedback control. If the variations of the round-trip path over time could be

monitored, then one would be able to continuously adjust the e↵ective length of the

cavity to maintain resonance. In linear resonators the adjustment can be performed

by moving the end mirrors with a piezoelectric actuator, for example. In monolithic

cavities, an analogous result is achieved by tuning the refractive index using electro-

optic e↵ects.

Monitoring the cavity length variations, however, is not a trivial task. One option to

infer how the cavity drifts once the resonance condition is reached would be to monitor

intensity fluctuations, since the resonance frequency depends on the round-trip path

and a drop in intensity directly translates into a change in length. This side-of-fringe

locking scheme unfortunately presents a few flaws. The cavity response is symmetric

around resonance, and unless the lock is restricted to small fluctuations on one side

of the resonance it is not possible to identify whether the cavity length needs to be

increased or decreased. Additionally, the e↵ectiveness of this procedure is limited by

the impossibility of distinguishing the original intensity fluctuations from the frequency

fluctuations of the cavity. Despite the simplicity and original popularity of this scheme,

there are now more advanced alternatives that do not su↵er from the same weaknesses.

The Pound-Drever-Hall (PDH) locking scheme [51,52], initially developed for appli-

cations in gravitational-wave interferometry, soon became the standard in most cavity

or laser frequency stabilization applications. Intuitively, this technique relies on fast

dithering of the input field’s frequency to allow a comparison between this modulation
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and the variations in the intensity of the cavity field. The error signal produced is

proportional to the derivative of the Lorentzian response of the cavity with respect

to frequency, and is therefore antisymmetric with respect to resonance. Thus PDH

locking overcomes both the major complications of side-of-fringe locking, and thanks

to the fast modulation it also has the additional advantage of an extended bandwidth,

which is usually limited by the other elements within the feedback loop (e.g. a relatively

slow response of the piezoelectric actuator used to move one of the end mirrors of the

cavity).

In practice the dithering is performed on the phase rather than the frequency of

the input field [53]. A piezo-actuated mirror on the beam path can achieve phase

modulation frequencies of up to a few tens of kilohertz. Electro-optic modulators,

however, are a much more common choice since they can be driven by sinusoidal

voltages of up to a few hundreds of megahertz, and can therefore dither over a spectral

range that covers several multiples of the cavity linewidth. Regardless of the method

chosen, the mathematical formulation of the sinusoidal phase modulation is identical.

Indicating the modulation depth with M and the modulation frequency with !
M

, the

oscillating component of the input field is changed as !ot ! !ot + M sin(!
M

t). In

the frame rotating at the optical frequency, assuming that the modulation depth M is

small, we can linearize to obtain

↵in ! ↵in


1� M

2

�
ei!M

t � e�i!

M

t

��
. (2.97)

The new rotating terms represent sidebands at !
M

relative to the carrier frequency

of the field. The presence of the sidebands propagates to the cavity field, and the

response of the cavity, originally described by Eq. 2.54, changes accordingly. Expressing

everything in terms of the Airy function,

A(!) ..= [� i (�0 � !)]�1 , (2.98)

we have that the modulation changes the field amplitude as

↵ = A(!)
p
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
A(!)� M
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M

)ei!M

t �A(! + !
M

)e�i!

M

t

��p
↵in,

(2.99)
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corresponding to an intra-cavity power

Pcav =


⌧
Pin ⇥


|A(!)|2 + M2

4

⇣
|A(! � !

M

)|2 + |A(! + !
M

)|2
⌘

+
M

2

�
A(!)A(! + !

M

)⇤ei!M

t �A(!)⇤A(! � !
M

)ei!M

t

+ A(!)⇤A(! + !
M

)e�i!

M

t �A(!)A(! � !
M

)⇤e�i!

M

t

�

� M2

4

�
A(! � !

M

)⇤A(! + !
M

)e2i!M

t +A(! � !
M

)A(! + !
M

)⇤e�2i!
M

t

��

' 

⌧
Pin ⇥


|A(!)|2 + M2

4

⇣
|A(! � !

M

)|2 + |A(! + !
M

)|2
⌘

+ M (Re(S(!)) cos(!
M

t) + Im(S(!)) sin(!
M

t))

�
. (2.100)

The function introduced here,

S(!) ..= A(!)A(! + !
M

)⇤ �A(!)⇤A(! � !
M

), (2.101)

stands for the error signal needed to implement the feedback. It is important to en-

sure that the operating bandwidth of the photodetector used to collect the reflected

or transmitted power has a cut-o↵ higher than !
M

, since at this stage the information

is encoded at this frequency. The terms rotating at 2!
M

can be neglected because

they are not going to be retrieved by the same demodulation procedure required for

S(!). When two sinusoidal signals are multiplied together the result is equivalent to

the sum of two sinusoidal components, oscillating at frequencies given by the di↵er-

ence and the sum of the original two. The photodetector signal is combined with a

reference oscillating at !
M

on a frequency mixer in order to split the information on

S(!) between 0 and 2!
M

. Filtering out higher frequencies, a signal proportional to

Re(S(!)) cos(�) + Im(S(!)) sin(�) is recovered, where � indicates the phase between

the sinusoidal components of Eq. 2.100 and the reference sine wave used. The mixed-

down signal reflects the real part or the imaginary part of S(!), or a combination of

the two, depending on the relative phase of the mixer’s inputs.

A valid error signal, appropriately demodulated with the correct relative phase, will

resemble one of the traces in Fig. 2.9 [53]. Which one it reflects should only depend

on the modulation frequency: for a relatively slow modulation, such that !
M

. ,

the modulation sidebands are located within the cavity linewidth and the error signal

echoes the derivative of the typical Lorentzian; at faster modulation frequencies, !
M

�
, the sidebands separate from the cavity resonance and the error signal acquires a
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Figure 2.9: The PDH locking scheme. (a–d) Cavity output at reflection (a–b) and associated

error signals (c–d) for low (left, !
M

= 0.5) and high (right, !
M

= 15) modulation frequen-

cies. When the modulation is slow the sidebands are concealed within the cavity linewidth.

Only at high modulation frequencies (!
M

) the two distinctive peaks become visible. (e)

Schematic of the setup. A function generator (⇠) is used to send a sinusoidal voltage to an

electro-optic modulator (EOM) to modulate the phase of the laser. The function generator’s

output is split to send a similar sine wave through a phase shifter (�) in order to use it as

a reference for demodulation on a frequency mixer (⇥). The other input to the mixer is the

read-out of the photodetector, in this example measuring the cavity’s reflected power. A high-

pass filter (HPF) or band-pass filter can be used to let only the information at the modulation

frequency through. The output of the mixer is low-pass filtered (LPF) to obtain the error

signal, which is fed to a proportional-integral-derivative controller (PID) to close the feedback

loop. A high-voltage servo amplifier may be required after the PID controller to drive the

piezo-actuator on one of the cavity mirrors.

much more distinctive appearance. From an operational point of view, both traces

display an asymmetric, linear profile close to resonance that makes them perfectly

viable choices for the feedback. The criteria to select what modulation frequency

should be used mostly depend on other factors external to the feedback. For instance,

a low modulation frequency that can be followed adiabatically by the cavity field would

be desirable if the same modulation needs to be propagated further down the optical

line. At the same time, modulating the phase of the field at a frequency close to the

mechanical resonance in an optomechanical setup could lead to undesired excitations

of the oscillator and thus be detrimental to the experiment. Whether a high or low

frequency of modulation is needed depends entirely on the specific parameters of the

system.
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An implementation of the PDH locking scheme will typically resemble the diagram

of Fig. 2.9e. The input beam, before entering the cavity, is sent through an electro-

optic modulator to dither the phase. The response of the cavity to the modulated input

field is recorded on a photodetector. Since the signal is encoded at !
M

, a high-pass or

band-pass filter can be used to remove low-frequency noise. This signal is then directed

to one port of a frequency mixer, where it is multiplied with a sine wave at the same

frequency. This sine wave can be obtained from the same function generator used to

drive the electro-optic modulator, although its phase needs to be adjusted separately

for a result that is directly proportional to either the real or the imaginary part of S(!).
Phase adjustments can be performed by the use of delay lines in the coaxial cables,

or with analog/digital phase shifter modules. Alternatively, satisfactory results can be

obtained by fine-tuning the modulation frequency. Amplifiers on the photodetector line

or attenuators on the pure sine wave reference can also be included to ensure similar

magnitudes of the two inputs. The output of the mixer contains the demodulated error

signal, which is sent through a low-pass filter to eliminate residual components at !
M

,

2!
M

or higher frequencies. A PID controller can make use of the error signal generated

by this procedure to infer when the cavity drifts away and act to restore the resonance

condition accordingly.

With the option to execute PID controls on traditional circuit boards, it is possible

to carry out the entire operation purely on analog components. However, as field-

programmable gate arrays (FPGAs) and system-design platforms such as LabVIEW

or other programming environments matured into feasible and accessible technologies,

it became possible to turn the PID controls into digital processes. This is a very

flexible and cost-e↵ective strategy that, simply by changing a few lines of code, can

be adapted to a variety of systems with di↵erent parameters. A one-time expense

for the FPGA and an annexed input-output breakout box to convert signals from

analog to digital and vice versa replaces the need to design and build new hardware

for each individual system. With everything set up appropriately, one could extend

the adaptation to digital to other parts of the locking scheme as well, including the

generation and processing of the error signal. The author is gratefully indebted to B.

M. Sparkes and S. Armstrong [54,55] for their e↵orts into the establishment of digital

PDH locking in the Australian National University’s quantum optics laboratories.



Chapter 3

Optomechanics: the theoretical

perspective

3.1 Hamiltonian formalism

The theory of optomechanics finds an elegant presentation in the Hamiltonian formal-

ism, which o↵ers a unified description for the variety of systems developed in the last

few decades. We begin this section with the dynamics of a mechanical oscillator, then

treat the field also as a harmonic oscillator to derive the quantum version of the cavity

equations. For a formal treatment, it will be necessary to describe the external noise

using the quantum Langevin equations, whose application will also be pertinent to a

general optomechanical system. Once the background for each part of the system is

outlined, we simply need to assemble the pieces together to unlock the full potential of

optomechanics.

3.1.1 Mechanical Hamiltonian

We start by focusing on the “mechanical” part of the term optomechanics, trying to

give a brief but exhaustive description of the dynamics behind a moving mirror.

Considering harmonic motion due to some unspecified restoring force, the Hamilto-

nian of the mechanical system ĤM can simply be taken as that of a harmonic oscillator,

given by a function of the position and momentum of the mirror described by the Her-

mitian observables x̂ and p̂:

ĤM =
p̂2

2m
+

1

2
m!2

mx̂
2. (3.1)

The quantities m and !m represent the e↵ective mass of the oscillator and the fre-

quency of its oscillation, respectively. The first of the Hamiltonian terms describes the

49
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kinetic energy of the mirror. The second term corresponds to the potential energy due

to the restoring force behind the oscillation, whose nature could be elastic (spring),

gravitational (pendulum) or, as we will see in Chap. 3.3, even optical.

Position and momentum are conjugate observables, and as such the corresponding

operators are subject to a non-zero commutation relation:

⇥
x̂, p̂

⇤
= i~. (3.2)

This can be used to expand Heisenberg’s equations of motion (see Appendix A.2):

.
x̂(t) = p̂(t)/m, (3.3)
.
p̂(t) = �m!2

mx̂(t). (3.4)

Even if we are considering the case of a harmonic oscillator, it is clear from the dynamics

that the limit for a free mass can be immediately recovered by taking !m ! 0.

New variables for the system o↵er a deeper insight on the nature of the quantum

harmonic oscillator. We can define the two conjugate observables

b̂ ..=
1p

2~m!m
(m!mx̂+ ip̂) , (3.5)

b̂† ..=
1p

2~m!m
(m!mx̂� ip̂) . (3.6)

These quantities are called respectively the lowering and raising operators, or alter-

natively the ladder operators, for the quantum harmonic oscillator. They act on the

eigenstates of the Hamiltonian to lower or raise the energy of the system, making the

state jump to the next energy level available (Appendix B o↵ers more details on the

topic). From their definition it can be seen that they are not Hermitian, and using the

canonical commutation relation of x̂ and p̂ (Eq. 3.2) we know that

⇥
b̂, b̂†

⇤
= 1. (3.7)

An alternative interpretation of b̂ and b̂† considers them as the annihilation and creation

operators for the quantum of mechanical oscillation, a quasi-particle known as phonon.

In this regard, the operator b̂†b̂ describes the number of phonons of the system, and

we can rewrite the Hamiltonian as

ĤM = ~!m

✓
b̂†b̂+

1

2

◆
. (3.8)
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The ground state of the system has a fundamental energy of ~!m/2, and each phonon

adds a quantum of ~!m to the total energy.

3.1.2 Optical Hamiltonian

Although the cavity equations have already been introduced in Chap. 2.4, their refor-

mulation in terms of quantum operators requires a formal treatment of the dissipation

terms due to the inescapable coupling with the environment [56]. In view of this, we

can identify three terms to describe the Hamiltonian concerned with the optics side of

the system: one for the cavity, one for the external bath, and one for the interaction

between the two:

ĤO = Ĥcav + Ĥext + Ĥint. (3.9)

Instead of treating the optical field as a sum of harmonic oscillators, we can assume

a single-mode input and reduce the analysis to a single frequency of the cavity, !c.

The cavity resonance is taken to be the multiple of the free spectral range nearest to

the optical frequency of the impinging field, !o, with the di↵erence between the two

corresponding to the cavity detuning, �0 ⌘ !o�!c. The cavity’s Hamiltonian in terms

of the field annihilation and creation operators â and â† is, therefore,

Ĥcav
..= ~!c

✓
â†â+

1

2

◆
. (3.10)

The external bath can be modelled as a reservoir of infinite modes denoted by the

bosonic annihilation and creation operators, ✏̂
!

and ✏̂†
!

, subject to the commutation

relation
⇥
✏̂
!

, ✏̂†
!

0
⇤
= 2⇡�(! � !0):

Ĥext
..=

Z +1

�1

d!

2⇡
~!✏̂†

!

✏̂
!

. (3.11)

The interaction is taken to be linear in ✏̂
!

and ✏̂†
!

, and identified by a coupling term ⇣:

Ĥint
..=

Z +1

�1

d!

2⇡
i~⇣(!)

⇣
â†✏̂

!

� â✏̂†
!

⌘
. (3.12)

The two terms describe the processes by which each bath mode can extract a photon

out of the cavity or bring one inside. The coupling with the environment is necessary

to have an external drive, but this cannot happen without introducing dissipation. It

is convenient to express the dynamics of the field relative to the optical frequency. To
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do so we consider the unitary transformation Û(t) = e�i!oâ
†
ât (see Appendix A.1),

moving the Hamiltonian to a frame where the field is rotating at frequency !o. This

transformation would make the interaction term dependent on time. In order to have a

time-independent Hamiltonian, the rotation needs to be counterbalanced by a transfor-

mation for each bath mode, Û
!

(t) = e�i!o✏̂
†
!

✏̂

!

t. With all the variables in the rotating

frame, the new Hamiltonian is

ĤO = �~�0

✓
â†â+

1

2

◆
+

Z
d!

2⇡
~ (! � !o) ✏̂

†
!

✏̂
!

+

Z
d!

2⇡
i~⇣(!)

⇣
â†✏̂

!

� â✏̂†
!

⌘
.

(3.13)

The equations of motion for â and ✏̂ in the Heisenberg picture are

.
â(t) = i�0â(t) +

Z
d!

2⇡
⇣(!)✏̂

!

(t), (3.14)

.
✏̂
!

(t) = i (!o � !) ✏̂
!

(t)� ⇣(!)â(t). (3.15)

We can directly solve for the external bath relative to some initial time t0,

✏̂
!

(t) = ✏̂
!

(t0)e
i(!o�!)(t�t0) �

Z
t

t0

dt0 ⇣(!)â(t0)ei(!o�!)(t�t

0). (3.16)

Under the first Markov approximation [56], according to which ⇣ can be assumed

uniform across all modes and therefore independent of !, we can use Eq. 3.16 together

with 2.3 and 2.6 to rewrite Eq. 3.14 as

.
â(t) =

✓
�⇣

2

2
+ i�0

◆
â(t) + ⇣

Z
d!

2⇡
✏̂
!

(t0)e
i(!o�!)(t�t0). (3.17)

A comparison with the intra-cavity field amplitude obtained in Chap. 2.4.2 (Eq. 2.52)

suggests the following identifications:

⇣ $
p
2, (3.18)

Z
d!

2⇡
✏̂
!

(t0)e
�i!(t�t0) $ âin(t)e

�i!ot. (3.19)

The decay rate of the cavity mediates the exchange between the system and the envi-

ronment, manifested in two terms: one accounting for the losses and one representing

the external drive of the field. The Fourier transform of the external modes can be

seen as a driving field in the time domain, in the same rotating frame as the cavity

modes. In our case we take this to be the coherent field at the input of the cavity, but
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one could include the contribution of the vacuum or of scattering elements in the same

fashion. The quantum operator of the cavity field evolves according to the equation

.
â(t) = (�+ i�0) â(t) +

p
2âin(t). (3.20)

3.1.3 Quantum Langevin equation

The advantage of the derivation above is that it does not restrict to an optical field [57],

and one can immediately generalize to generic bosonic operators Ô and Ô† satisfying

the commutation relation
⇥
Ô, Ô†⇤ = 1 and whose dissipation is determined by some

coe�cient ⌘. Modelling the external bath as a reservoir of infinite modes indicated

by ✏̂ and ✏̂†, as before, we can then distinguish the operator D̂(t) ..=
R

d!

2⇡ ✏̂
!

e�i!t as

the driving element for Ô. In the previous section this was taken to be the input of

the cavity, but it could also be a thermal bath or any other operator that could act

as a driving factor. In optomechanics, the most common use for D̂ is as an operator

describing the Brownian noise that couples the mechanical oscillator to a thermal

bath of phonons. The coupling with the external bath is mediated by the dissipation

mechanisms. Instead of considering the Hamiltonians for the external bath and the

coupling, one can employ a variant of the Heisenberg’s equation of motion (Eq. 45)

to directly include the conventional decay term �⌘Ô(t) and the additional drive term
p
2⌘D̂(t). This variant, known as the quantum Langevin equation, takes the general

form

.

Ô(t) =
i

~
⇥
ĤS, Ô(t)

⇤
� ⌘Ô(t) +

p
2⌘D̂(t), (3.21)

where it should be remembered that here ĤS is the Hamiltonian of the system only,

and the interaction with the bath is introduced directly into the equation of motion.

3.1.4 Optomechanical Hamiltonian

An optomechanical system considers an optical cavity whose length depends on the

state of the mechanics. The typical implementation consists of a Fabry–Pérot cavity

where one of the end mirrors is free to oscillate, but it is possible to have many dif-

ferent variants based on the same principle. For example, in whispering gallery mode

resonators the variation in length can be obtained because of the mechanical oscilla-

tions around the perimeter, where the optical modes propagate. Even though it will be

convenient to work around the assumption of linear optical cavity with an oscillating
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mirror, any specific assumptions about the system will be limited to keep the following

derivation as general as possible.

The complete picture of optomechanics is obtained by considering the independent

optical and mechanical sub-systems and introducing the interaction between the two,

arising from the dependence of the cavity resonance on the position of the oscillating

mirror. Defining

G0
..= � @!c(x)

@x

����
x=0

, (3.22)

we can expand the resonant frequency of the cavity for small displacements:

!c(x) ' !c(0)�G0x̂. (3.23)

For simplicity, from now on we will refer to the zero-displacement cavity frequency

!c(0) simply as !c. The quantity G0 represents the optomechanical coupling strength.

For a Fabry–Pérot cavity, where the resonant frequency is inversely proportional to the

distance between the two mirrors, the coupling strength is G0 = +!c/L0 = 2!FSR/�.

For the sake of generality, however, a specific expression for the coupling will not be

used unless strictly necessary. Moreover, the following discussion is abstract enough

that it can be extended beyond the simple processes due to radiation pressure force and

be applied to alternative sources of coupling between the oscillator and the optical field.

An example is given by photothermal e↵ects, where the thermal absorption of light can

induce a reaction in the mechanical system that could be analogous or opposite to those

of radiation pressure force, depending on the nature of the response [58]. Therefore,

G0 could adopt either positive or negative values, depending on whether an increase of

optical power results in shortening or lengthening of the cavity.

The optomechanical Hamiltonian is a combination of the Hamiltonians of the two

sub-systems, ĤO and ĤM, plus one additional term describing the interaction:

ĤOM = ĤO + ĤM + Ĥint. (3.24)

The two sub-systems are taken with their own independent external drives/baths,

coupled to the main variables through the damping rates  for the optics and �m

for the mechanics. For simplicity the corresponding terms will be omitted from the

Hamiltonian and will be introduced into the equations of motion by using the quantum
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Langevin equations. Following from Eq. 3.23, the interaction term takes the form

Ĥint = �~G0

✓
â†â+

1

2

◆
x̂, (3.25)

from which we can identify the radiation pressure force acting on the oscillator,

F̂rp
..= ~G0

✓
â†â+

1

2

◆
, (3.26)

and see that Ĥint = �F̂rpx̂. Despite its simple form, the interaction Hamiltonian

holds all the information on the reciprocal coupling between the optical field and the

mechanical oscillator, and it will be instructive to see how it can be manipulated to

address di↵erent aspects of the optomechanical interaction.

Considering the field operators in the same rotating frame as the driving field, the

equations of motion obtained from ĤOM are

.
â(t) = [�+ i (�0 +G0x̂(t))] â(t) +

p
2âin(t), (3.27)

.
x̂(t) = p̂(t)/m, (3.28)
.
p̂(t) = �m!2

mx̂(t)� �mp̂(t) + F̂rp(t) + F̂th(t). (3.29)

These equations include the drive and decay terms from the quantum Langevin equa-

tion. For the cavity field, the coupling to the environment is once more represented

by the input field âin, with expectation value hâin(t)i = ↵in(t). The mechanics are

driven by a Brownian force F̂th, deriving from thermal fluctuations and with mean

value hF̂thi = 0. At thermal equilibrium at temperature T , this force has spectral

density [57]

S
(th)
F

(!) = m�m~! coth

✓
~!

2kBT

◆
. (3.30)

Considering the phonon thermal occupation number nth(!) = 1/
�
e~!/kBT � 1

�
, we

find that S
(th)
F

(!) = m�m~! (2nth(!) + 1) and can see that the magnitude of the

Brownian motion is proportional to the number of phonons. Also, in the regime of

high temperature one can recover the limit S
(th)
F

(!) ! 2m�mkBT , corresponding to

white thermal noise.

In Eq. 3.27 the interaction is expressed as a correction to the phase term of the

cavity field dependent on the position of the mirror and proportional to the optome-

chanical coupling strength. The mirror motion is also subject to back action from the
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light, manifested through the radiation pressure force term in Eq. 3.29 that a↵ects the

momentum rate together with the thermal noise and the regular restoring force. The

cross-coupling is still evident in the steady-state solutions of the expectation values of

the operators:

↵s
..= hâi|

@

t

!0 =

p
2↵in

� i (�0 +G0xs)
, (3.31)

xs
..= hx̂i|

@

t

!0 =
Frp

m!2
m
, (3.32)

ps
..= hp̂i|

@

t

!0 = 0. (3.33)

When the cavity is resonating, the mean cavity field ↵s produces a mean radiation

pressure force Frp
..= hF̂rpi that displaces the mirror by a constant o↵set xs. The

displacement a↵ects the resonance condition of the cavity on account of the position-

dependent frequency shift, which is now also constant. It would seem like the argument

is circular: the position of the mirror depends on how much light resonates in the

cavity, and the resonance condition depends on the position of the mirror. This is

the principle behind optomechanical bistability, which should be seen at this stage

as a positive feedback loop under specific parameter regimes, which will be analysed

in detail in Chap. 3.2. The optical spring e↵ect is based on a similar principle that

originates from the fluctuations of the mirror around its equilibrium point rather than

from the constant displacement of the steady-state solution, which is always positive

in sign. In Chap. 3.3 we will see how to use the bigger parameter space to achieve

positive (unstable) or negative (stable) feedback.

Considering coherent states for the optical fields, we can separate their quantum

properties from their mean values, which are simply considered as classical displace-

ments:

â ! ↵s + �â, (3.34)

âin ! ↵in + �âin. (3.35)

Because the displacement terms are classical, the fluctuation operators inherit the non-

commutativity of the original variables and satisfy the same commutation relations, so

that
⇥
�â, �â†

⇤
= 1. The phase of the complex field amplitudes ↵s and ↵in is related

by Eq. 3.31, but as long as this condition is preserved it can be set arbitrarily. While

we could assume the cavity field amplitude to be real (↵s = ↵⇤
s ) and let the input

field be complex, or vice versa, for the sake of generality we will treat both as complex
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quantities while keeping in mind this possibility for later application. In the linearizing

approximation, the interaction Hamiltonian can be separated into three parts:

Ĥint = �~G0

✓
|↵s|2 +

1

2

◆
x̂� ~G0

⇣
↵⇤
s�â+ ↵s�â

†
⌘
x̂� ~G0

⇣
�â†�â

⌘
x̂

= Ĥ(rp)
int + Ĥ(L)

int + Ĥ(NL)
int . (3.36)

The first term, Ĥ(rp)
int , simply describes the e↵ect of the constant radiation pressure force

Frp. The second term, Ĥ(L)
int , is linear in the field fluctuations and proportional to the

cavity field amplitude. The last term, Ĥ(NL)
int , maintains the original non-linearity of the

interaction, which is now of second order in the fluctuations. With the amplification

provided by the field amplitude ↵s, the linear interaction term, also called the many-

photon interaction, has a much bigger e↵ect on the dynamics than the residual non-

linear interaction, which is usually neglected. The many-photon coupling constant,

G
↵

..= G0↵s, (3.37)

is then acting as the e↵ective strength of the interaction, and can be intensified simply

by increasing the number of photons in the cavity. Ignoring the non-linear interaction,

we can see that the radiation pressure force transforms as

F̂rp ! Frp + �F̂rp
..= ~G0

✓
|↵s|2 +

1

2

◆
+ ~

⇣
G⇤

↵

�â+G
↵

�â†
⌘
. (3.38)

The fluctuation approach can also be extended to the variables for the mechanics. We

can treat the steady-state value of the position as no more than a constant o↵set and

separate it from the time-dependent part of x̂. Thus, we define the transformations

x̂ ! xs + �x̂, (3.39)

p̂ ! �p̂, (3.40)

F̂th ! �F̂th. (3.41)

A fixed value of xs also allows the use of an e↵ective initial detuning

� ..= �0 +G0xs (3.42)

instead of the original detuning �0. When all degrees of freedom are expressed in
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terms of fluctuations, the equations of motion become fully linear:

�
.
â(t) = (�+ i�) �â(t) + iG

↵

�x̂(t) +
p
2�âin(t), (3.43)

�
.
x̂(t) = �p̂(t)/m, (3.44)

�
.
p̂(t) = �m!2

m�x̂(t)� �m�p̂(t) + �F̂rp(t) + �F̂th(t). (3.45)

To draw a more symmetric picture of optomechanics, we can express the dynamics

of the mechanical system in terms of the phononic annihilation and creation operators

b̂ and b̂†. We directly consider their fluctuation terms �b̂ and �b̂†, which are related to

the fluctuations of the position and momentum operators in an analogous way:

�x̂ =

s
~

2m!m

⇣
�b̂+ �b̂†

⌘
, (3.46)

�p̂ = �i

r
~m!m

2

⇣
�b̂� �b̂†

⌘
. (3.47)

As for the original position operator x̂, the normalization coe�cient in front of �x̂ is

the amplitude of the zero-point fluctuations, xZPF =
p

~/ (2m!m), representing the

standard deviation of the position of an oscillator at the ground state (see Appendix B

for more details). The zero-point fluctuations can be used to scale the optomechanical

coupling strength so that it has the dimensions of a frequency:

g0
..= G0xZPF, (3.48)

g
↵

..= g0↵s. (3.49)

Ignoring all constant terms due to vacuum fluctuations and steady-state o↵sets,

neglecting the higher-order terms in the fluctuations, absorbing the appropriate factors

into the quantum Langevin equations, and choosing the phase of the input field so that

↵s is real, the Hamiltonian in the rotating frame reads

ĤOM ' �~��â†�â+ ~!m�b̂
†�b̂� ~g

↵

⇣
�â+ �â†

⌘⇣
�b̂+ �b̂†

⌘
. (3.50)

The optical and mechanical degrees of freedom are now perfectly counterbalanced in the

interaction, as outlined schematically in Fig. 3.1. Each of the four terms obtained by

expanding the product represents a di↵erent process which involves the creation or the

annihilation of a photon or a phonon. From the physical point of view, the oscillation

of the mirror modulates the phase of the cavity field at the mechanical frequency,
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Figure 3.1: Schematic of the generic optomechanical system. The optical mode �â, rotating at

frequency �� in the chosen reference frame, and the mechanical mode �b̂, rotating at frequency

!
m

, are coupled by the normalized optomechanical coupling strength g
↵

. The cavity field is

also coupled to the input driving field �â
in

through the cavity’s optical damping rate . The

mechanical oscillator is subject to Brownian forces �F̂
th

originating from the external thermal

bath, and its response is mediated by the mechanical damping rate �
m

.

inducing two sidebands on the carrier frequency which interact with the motion by

exchanging the energy between photons and phonons. Using terminology borrowed

from Raman scattering, these are often referred to as Stokes (�â) or anti-Stokes (�â†)

sidebands. Depending on the value of the detuning, the cavity resonance could enhance

one sideband more than the other. Correspondingly, one pair of (conjugate) processes

of creation/annihilation prevails over the other. This e↵ect, illustrated in Fig. 3.2, can

also be observed in the Hamiltonian by performing a rotating wave approximation in

the refined rotating frame to neglect all terms oscillating at a frequency di↵erent from

the resonant one. The approximation is much more e↵ective in the sideband-resolved

regime, !m � , where the separation between the sidebands is such that only one

can resonate at the time. In terms of the interaction, then, we can distinguish three

representative cases: when the detuning is equal to 0, +!m or �!m.

• On-resonance regime: � = 0.

When the input field is on resonance with the cavity, the interaction has the form

of a metrology Hamiltonian:

Ĥint ' �~G
↵

⇣
�â+ �â†

⌘
�x̂. (3.51)

From the equations of motion obtained from this Hamiltonian it can be seen

that the evolution of the optical phase quadrature, �i
�
�â� �â†

�
, is directly

proportional to the displacement of the mirror, �x̂. Position metrology can then

be performed using homodyne detection [59].
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Figure 3.2: Diagram of the cavity response in the sideband representation of the optomechan-

ical dynamics, in di↵erent detuning regimes. The black arrows correspond to the input field,

while the Stokes and anti-Stokes sidebands are indicated by the red and blue arrows respec-

tively. For simplicity, only the processes corresponding to the destruction of a phonon (�b̂) are

shown. (a) Red-detuned input field, with enhanced anti-Stokes processes. The destruction of

a phonon is more likely to create a higher-energy photon (�â†) than a lower-energy one. (b)

Blue-detuned input field, with enhanced Stokes processes. The predominant event associated

with the destruction of a phonon is the creation of a lower-energy photon (�â).

• Red-detuned regime: � = �!m.

When the input field has a negative detuning relative to the cavity resonance,

the dominant terms of the interaction are those corresponding to anti-Stokes

processes (Fig. 3.2a):

Ĥint ' �~g
↵

⇣
�â �b̂† + �â†�b̂

⌘
. (3.52)

The two conjugate terms describe events where the energy of the optical field

becomes lower if a phonon is created, or higher if a phonon is annihilated. This

is known as the beam-splitter Hamiltonian, and can be used to achieve state-

swapping between the field and the mechanical oscillator [60], or even between

di↵erent systems [61, 62]. In this detuning regime it is also possible to perform

sideband cooling of the mechanical motion, a process where energy is subtracted

from the oscillator and transferred to the light by the creation of higher-energy

photons. This passive cooling method can prove extremely e↵ective, and it has

been used to reach the quantum ground state of the oscillations [7, 63].

• Blue-detuned regime: � = +!m.

For positive detunings, the Stokes processes prevail in the interaction (Fig. 3.2b):

Ĥint ' �~g
↵

⇣
�â �b̂+ �â†�b̂†

⌘
. (3.53)
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Now, the energy of the optical field becomes higher when a phonon is created and

lower when a phonon is destroyed. Energy is still conserved, thanks to the fact

that in the rotating frame the energy of a photon, �~�, is negative in this regime.

This is the parametric Hamiltonian, resembling an optical parametric oscillator

(OPO) generating two-mode optical squeezing [64], and it shows that it is possible

to use an optomechanical system to correlate the noise of the optical field on dif-

ferent quadratures and generate ponderomotive squeezing [65,66]. This property

has recently been demonstrated experimentally [8,9] and will be discussed in more

detail in Chap. 12. As is often implied by the possibility of squeezing, another po-

tential application of this Hamiltonian could be in the generation of entanglement

between the mechanical motion and the optical mode [67, 68]. This has already

been achieved experimentally with techniques using pulsed light [69], although

parametric instabilities of the blue-detuned regime (see Chap. 3.3) might impose

limits to the extent of entanglement and hinder its realization with continuous

waves.

3.2 Bistability

The relation between the steady-state position of the moving mirror, xs, and the intra-

cavity field, ↵s, has a direct consequence: the radiation pressure force from the intra-

cavity field displaces the mirror and causes the resonance of the cavity to be shifted.

If the power is high enough, the shift can be more than one linewidth away relative

to the original cavity resonance, and the response of the system can result in bistable

behaviour.

The closed-loop relation between xs on ↵s can be explicitly revealed by expansion

of the radiation pressure force term in Eq. 3.29:

xs =
~G0

m!2
m

✓
|↵s|2 +

1

2

◆
. (3.54)

We can incorporate the cavity field steady-state solution of Eq. 3.31 to obtain a cubic

relation for xs (or equivalently |↵s|2):

xs

h
2 + (�0 +G0xs)

2
i
=

~G0

m!2
m
2

✓
|↵in|2 +

1

2

◆
. (3.55)

What this expression shows is that, under specific circumstances, the cavity can have

three possible configurations at the same time. Specifically, the cubic equation can have
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Figure 3.3: E↵ects of optomechanical bistability on the cavity. All the powers are normalized

in terms of P
g

:= ~!
c

|↵
s

|2
���
G0xs=

= !
c

2m!2

m

/g2. The parameters of interest have the

following values: m = 1kg, !
m

= 2⇡ ⇥ 10Hz, !
c

⇡ 2⇡ ⇥ 280THz, F = 1000. (a) Intra-cavity

power as a function of detuning. The traces, from darker to lighter, correspond to the power

P
cav

= ~!
c

|↵
s

|2 at input power P
in

between 0.2 and 1.0 P
g

, at intervals of 0.2P
g

. (b) Intra-

cavity power as a function of input power. Di↵erent traces now correspond to an increasingly

more negative detuning �
0

, ranging from �1.5 (darker) to �3.5 (lighter) at intervals of

0.5. In both plots, in the presence of bistability, the unstable solution is represented in

yellow. The dashed traces show what intra-cavity power would be obtained in the absence of

optomechanical interaction at an input power P
in

= P
g

(a) or at a detuning �
0

= �3.5 (b).

exactly three solutions if it is equipped with two stationary points, i.e. if its derivative

has two distinct roots, a situation that occurs when |�0| >
p
3. The boundaries of

the multi-stable region are thus determined by the mirror coordinates

x± =
�0

3G0

 
�2±

s

1� 32

�2
0

!
. (3.56)

The typical response of a cavity showing bistable behaviour is demonstrated in

Fig. 3.3a. Optomechanical back-action shifts the resonance proportionally to the power

within the cavity, resulting in a deformed Lorentzian response. When the input power

is high enough the deformation tilts the top of the peak beyond its base, leading to

three possible cavity configurations for a specific detuning range. Of these, only two

are stable; the other solution will dynamically collapse the system to one or the other

configuration. The overlap of the two stable solutions leads to hysteresis, meaning that

the intra-cavity power experienced by the system depends on whether the overlapping

region is adiabatically reached from more positive or more negative detunings. In

general, bistability can only be observed at negative detunings. The maximum intra-

cavity power occurs when �0 = � ~G2
0

m!

2
m

2|↵in|2


, a condition obtained after enforcing

�0 = �G0xs (or, in terms of the e↵ective detuning, � = 0) in Eq. 3.55. Hysteresis
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can also be witnessed if the intra-cavity power is treated as a function of input power

rather than detuning, as in Fig. 3.3b. When the detuning is fixed at a value such that

|�0| >
p
3 a region emerges where multiple stable solutions are possible, and of these

only the two corresponding to increasing cavity power for increasing input power are

stable.

The bistability described here is analogous to similar phenomena arising from cavity

non-linearities of di↵erent origin, and a comparable hysteresis can be obtained in an

optical system coupled to a single atom [70,71] or a Bose-Einstein condensate [72]. In

optomechanics, bistability has been reported since early experiments [73, 74], and has

recently become more common to observe with the emergence of cavities with higher

finesses.

3.3 Optical spring

The response of the mechanical system is directly a↵ected by the interaction with

the optical field [6]. Under appropriate conditions radiation pressure force displays

restoring properties that operate jointly with the original elastic restoring force of the

mechanical oscillator, providing a versatile technique that can be used to explore very

diverse parameter regimes.

3.3.1 Semiclassical model

For an intuitive, preliminary approach [75] we consider the mean radiation pressure

force from Eq. 3.26 in the semiclassical regime, where hâ†âi ! |↵s|2:

Frp ' ~G0 |↵s|2 =
2~!c |↵s|2

c⌧
. (3.57)

Between the first and second step we used the fact that for a Fabry–Pérot cavity the

optomechanical coupling is G0 = !c/L0, and recalled the relationship between the

length L0 and the cavity lifetime ⌧ from Eq. 2.44. Remembering that ↵s =
p
⌧↵cav and

that Pcav = ~!c |↵cav|2, we see that the force is proportional to the intra-cavity power,

Frp =
2Pcav

c
, (3.58)
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and as a consequence its dependence on the position of the mirror is Lorentzian:

Frp(x) =
4Pin

c⌧

2

2 + (�0 +G0x)
2 . (3.59)

Combining this with the elastic force acting on the oscillator, Fel(x) = �m!2
mx, one

can then derive an e↵ective mechanical potential

Ve↵(x) = �
Z

dx
�
Fel(x) + Frp(x)

�
= m!2

mx
2 � 4Pin

c⌧G0
arctan

⇣�0 +G0x



⌘
. (3.60)

The e↵ective potential deviates from the typical parabola expected for a self-contained

mechanical oscillator. The perturbation introduced by the radiation pressure force can

lead to a secondary minimum, which is simply another manifestation of optomechanical

bistability. An implication of the reshaping of the potential is that the spring constant

of the system, determined by the concavity of Ve↵, is also altered from its original value

m!2
m. The correction term to this quantity is what is commonly referred to as the

optical spring :

kos(x) =
8G0Pin

c⌧

 (�0 +G0x)h
2 + (�0 +G0x)

2
i2 . (3.61)

As it should be expected of a property arising from the interaction of the mechanical

system with the field, the optical spring is directly proportional to both the optical

power and to the coupling strength. It can be either negative or positive, represent-

ing the restoring or the anti-restoring behaviour of Frp depending on the detuning

of the input field. The optical spring is maximum in magnitude when the slope of

the Lorentzian force is maximum, i.e. when the force responds more acutely to small

variations in position, and vanishes on resonance and in the far-detuning regime.

The result obtained by this simple model is already accurate enough to describe

the data from experiments aiming at the characterization of the radiation pressure

force [76]. However, this approach does not take into account the retardation e↵ects

existing in optical cavities due to the finite value of the speed of light.

3.3.2 Dynamical back-action

Since light needs a finite amount of time to traverse the full e↵ective length of the

optical resonator, the e↵ects of radiation pressure force on the mirror are experienced

with a delay. As a consequence, the mirror builds up a viscous-like response to the
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optical field, an outcome that can have extreme consequences for the stability of the

system and is not accounted for in the previous model. For this reason it is necessary

to utilize the full dynamical, quantum picture of the system to completely describe the

impact of the optical spring [77].

We follow a derivation that regards the e↵ective susceptibility of the mechanical

system as it interacts with the optical field. We consider the linearized regime, since

any higher order, non-linear response of the mechanical system can always be treated

as an additional noise term. Thus, starting from the linearized equations of motion,

Eq. 3.43–3.45, we look at the fluctuations of the field and of the mirror’s position in

the frequency domain:

�â(!) =
iG

↵

� i (�� !)
�x̂(!) +

p
2

� i (�� !)
�âin(!), (3.62)

�x̂(!) =
1

m (!2
m � !2 + i�m!)

⇣
�F̂rp(!) + �F̂th(!)

⌘
. (3.63)

The quantity

�m(!)
..=

⇥
m
�
!2
m � !2 + i�m!

�⇤�1
(3.64)

can be recognized as the natural mechanical susceptibility, describing how the oscillator

responds to the input forces applied. From the optomechanical point of view, however,

the oscillator is regarded as a component of the extended system rather than as an

apparatus on its own, and the e↵ects of radiation pressure force can be included in an

e↵ective susceptibility instead of being considered as an external input. Recalling the

relation between �F̂rp and �â from Eq. 3.38, the dependence of the field on position

can be directly substituted in Eq. 3.63 to obtain

�x̂(!)

�m(!)
= ~G⇤

↵

iG
↵

�x̂(!) +
p
2�âin(!)

� i (�� !)
+ ~G

↵

�iG⇤
↵

�x̂(!) +
p
2�â†in(!)

+ i (�+ !)

+ �F̂th(!). (3.65)

Collecting the terms in �x̂ together, we get

✓
1

�m(!)
+

1

�os(!)

◆
�x̂(!) = �F̂sh(!) + �F̂th(!), (3.66)
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where we introduced the radiation pressure force due to shot noise,

�F̂sh(!)
..=

p
2

� i (�� !)
~G⇤

↵

�âin(!) +

p
2

+ i (�+ !)
~G

↵

�â†in(!), (3.67)

and an “optical spring” susceptibility due to the direct e↵ect of the mean radiation

pressure force on the position,

�os(!)
..=

⇢
�i~ |G

↵

|2


1

� i (�� !)
� 1

+ i (�+ !)

���1

. (3.68)

The optical spring is given by the inverse of �os(!):

kos(!) = �i~ |G
↵

|2


1

� i (�� !)
� 1

+ i (�+ !)

�

= ~ |G
↵

|2 2�

2 +�2 � !2 + 2i!

= ~ |G
↵

|2 2�

2 +�2


1� !

2 +�2
(! � 2i)

��1

. (3.69)

The dependence of the optical spring on the position of the mirror is implicit in the

e↵ective detuning � = �0 + G0x. A stricter resemblance to the result obtained by

the previous model is achieved by carrying out an expansion of the leading coe�cient,

similarly to Eq. 3.57–3.59:

kos(!) =
8G0Pin

c⌧

�

(2 +�2)2


1� !

2 +�2
(! � 2i)

��1

. (3.70)

A direct conclusion is that the model of Eq. 3.61 is only adequate in the static limit

! ! 0. The dynamical component of the optical spring turns it into a complex quan-

tity: while the real part of the optical spring alters the mechanical eigenfrequency

of the oscillator, the imaginary part acts like a viscous term that a↵ects the damp-

ing of the system. The new e↵ective parameters can be derived by combining the

optically induced susceptibility with the original one into an e↵ective susceptibil-

ity �e↵(!), satisfying �e↵(!)
�1 = �m(!)

�1 + �os(!)
�1. Imposing an analogy with

�m(!), we request that the e↵ective susceptibility satisfy an expression of the form

�e↵(!) =
⇥
m
�
!2
e↵ � !2 + i�e↵!

�⇤�1
. This allows us to derive expressions for the ef-

fective mechanical frequency, !e↵, and the e↵ective mechanical damping, �e↵, which

are perturbed from the original parameters by the correction terms imparted by the
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optical spring, !os and �os, as follows:

!e↵(!) =
p
!2
m + !os(!)2 =

r
!2
m +

Re(�os(!)�1)

m

=

s

!2
m +

~ |G
↵

|2
m


�� !

2 + (�� !)2
+

�+ !

2 + (�+ !)2

�
, (3.71)

�e↵(!) = �m + �os(!) = �m +
Im(�os(!)

�1)

m!

= �m � ~ |G
↵

|2
m!




2 + (�� !)2
� 

2 + (�+ !)2

�
. (3.72)

Figure 3.4 shows the magnitude of the optically induced correction terms at a

frequency equal to the mechanical eigenmode of the oscillator, as a function of detuning.

In the unresolved sideband regime (!m . ) the optical spring seems to follow the same

trend as the derivative of the Lorentzian profile of the intra-cavity power with respect

to the detuning. This is however not completely true. Comparing Eq. 3.70 to Eq. 3.61,

we see that part of the functional behaviour just described is withdrawn from the

optical sti↵ness to be embodied into the induced optical damping. This deviation from

the behaviour expected from the static model is much more evident in the resolved

sideband regime (!m � ), as can be seen in Fig. 3.4e–f by comparing the lightest

traces (corresponding to !m = 2.5) to the dashed ones, obtained using the static

limit under the same parameters. In this regime the dynamics diverge considerably,

and the role of the two sidebands created by the interaction becomes more crucial.

The expression for the optical spring given in Eq. 3.69 can be reformulated to give

emphasis to the importance of the optomechanical sidebands. Introducing the Airy

functions

A�(!)
..= [� i (�� !)]�1 A+(!)

..= [+ i (�+ !)]�1

=
+ i (�� !)

2 + (�� !)2
, =

� i (�+ !)

2 + (�+ !)2
, (3.73)

standing for the anti-Stokes and the Stokes sidebands, respectively, and satisfying the

property (A�(!))
⇤ = A+(�!), one can rewrite the full optical spring as

kos(!) = �i~ |G
↵

|2 (A�(!)�A+(!)) . (3.74)

The two sidebands act reciprocally: the sign of the detuning, determining which side-

band resonates in the cavity, makes the optical spring display opposite behaviour, as



68 Optomechanics: the theoretical perspective

0-5 5

210-1-2 ∆ (")
# os($ m) 

(% &2 /") (f)

0 5-5
-1
0
1

∆ (")

$ os2 ($ m) (2
% &2 ) (d)

0 1-1-2-1
01
2

$os2($m) (2%&2)

# os($ m) 
(% &2 /") (b)

0-1-2-3 1 2 3

210-1-2 ∆ ($m)

# os($ m) 
(% &2 /") (e)

0 1-1-2-3 2 3
-1
0
1

∆ ($m)
$ os2 ($ m) (2

% &2 ) (c)

0 1-1-2-1
01
2

$os2($m) (2%&2)

# os($ m) 
(% &2 /") (a)

Figure 3.4: Modelling of the optical spring. The traces in the top row are calculated for

a cavity linewidth  ranging between 0.4!
m

(resolved sidebands regime, light traces) and

2.5!
m

, (unresolved sidebands regime, dark traces) at intervals of 0.1!
m

. The bottom row is

instead obtained when the mechanical frequency !
m

is varied, from 0.4 (unresolved sidebands

regime, dark traces) to 2.5 (resolved sidebands regime, light traces), at intervals of 0.2. In

all plots the frequency-dependent quantities are calculated at ! = !
m

, with the assumption

that the oscillator samples the optical field at its own resonant frequency. (a–b) Optical spring

k
os

in the complex plane, parametrized as a function of detuning �. The horizontal axis is

rescaled as !2

os

..= Re(k
os

)/m to reflect the adjustment to the mechanical frequency due to the

optomechanical interaction; similarly, the vertical axis is rescaled as �
os

..= Im(k
os

)/(m!) to

account for the correction term applied to the mechanical damping. (c–d) Squared frequency

!2

os

as a function of detuning �. (e–f) Optically induced damping �
os

as a function of detuning

�. In plots (c–f) the dashed traces indicate what would be obtained in the resolved sideband

regime (!
m

= 2.5) if the contribution of dynamical back-action were ignored.

can also be seen in Fig. 3.4. Looking at detunings bigger in magnitude than the spec-

tral frequency under consideration, the optical sti↵ness, m!2
os, is positive or negative

depending on the sign of �. This means that the force exerted by radiation pres-

sure force is restoring at positive detunings (blue-detuned input) and anti-restoring

at negative detunings (red-detuned input). A similar argument applies to the optical

damping �os, which makes the system damped at negative detunings and anti-damped

at positive detunings. This fits well with the sideband picture provided by Fig. 3.2: in

the blue-detuned regime the anti-damping force channels energy from the optical field
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into the mechanical system, driving it into parametric amplification [78–83], whereas

in the red-detuned regime the creation of higher-frequency photons is achieved by the

optical damping, removing energy from the oscillator and performing sideband cool-

ing [59, 79, 84–88].

Sideband cooling can be used to steer the optical spring in a stable regime [89].

When the optomechanical system is driven by a blue-detuned beam the oscillator ex-

periences a force that is restoring, but at the same time anti-damping. To prevent

parametrically unstable oscillations, one can introduce a second, red-detuned beam to

oppose the anti-damping of the blue-detuned beam. The second beam would be set with

specific parameters so as not to exceedingly alter the optical sti↵ness induced by the

original beam: a lower power, for example, and most importantly a particular detuning

chosen so that the negative sti↵ness induced is minimal (thus, minimal anti-restoring).

On top of this application, the bare cooling obtained by optical damping can prove to

be extremely e↵ective [90], and to date many mechanical systems have even reached

the quantum ground state of the oscillations using this technique [7,59,63,91–93]. Un-

fortunately the e↵ectiveness of cooling in the unresolved sideband regime is hindered

by optomechanical bistability, as the regime of negative detunings coincides precisely

with the region where bistability is observed. Phenomena analogous to parametric

amplification and cooling by radiation pressure force have also been obtained by pho-

tothermal coupling [94, 95], although in these cases it is the nature of the interaction

itself acting as the main obstacle to the observation of quantum e↵ects.

Trapping, cooling and many other qualities make the optical spring a fascinating

tool for the manipulation of mechanical oscillators [96], and entirely new systems are

emerging [89, 97–100] which rely strongly, or entirely, on the optical spring e↵ect for

the creation of a stable optical trap. Part III of this thesis, in particular, focuses on

the development of a system that relies on three optical cavities to fully trap a mirror

and suspend it against its own weight [14] just by the use of optical springs.
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between light and nanowires
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The content of this Part is dedicated to the investigations performed with crystalline

nanowires to explore the e↵ects of feedback control on sensitivity. An all-optical setup

is devised to detect the mechanical modes, implement feedback cooling, and explore

the e↵ects of active control and post-processing filtering techniques on the sensitivity

towards force measurements in the transient regime. Chapter 4 touches on the topic of

precision sensing using nanomechanical devices and closes with a detailed description

of the nanowires employed. In Chapter 5 the detection methods used to monitor the

mechanical modes of the nanowires are explained, both with and without the aid of an

optical cavity. Chapter 6 enters into the details of the feedback, the nature of its driving

mechanism and its engagement in the cancellation of thermal fluctuations for cooling

of the mechanical modes. Finally, in Chapter 7 we delineate the circumstances under

which the abolition of thermal noise with feedback cooling can be advantageous, show-

ing that the nanowires benefit from feedback-enhanced sensitivity for impulsive forces.

Because feedback cooling can also be simulated o↵-line, the findings are compared to

the results obtained with virtual feedback and with optimal Kalman filtering.

The research presented here has been featured in the following publication:

• [16] Hosseini, M., Guccione, G. et al., “Multimode laser cooling and ultra-high

sensitivity force sensing with nanowires”, Nature Communications 5, 4663 (2014).

The impulsive forces acting on the nanowires
are well represented by Menoetius, son of
Iapetus and brother of Prometheus: he is
known in Greek mythology as the Titan of rash
action.

J. Jordaens, “La Chute des Géants”



Chapter 4

Nanomechanical oscillators as

probes

4.1 Mass sensing, atomic-force microscopy, and more

Micro- and nano-scale oscillators, thanks to their typically high quality factors [101],

serve as excellent metrological platforms. The smallest mass scales are hard to access

for two-dimensional oscillators [102–104], but if a small area is su�cient to achieve

the necessary interaction, then the solution is simple: one-dimensional oscillators, such

as cantilevers, beams, tubes, strips, and wires are inherently lightweight and hold

extraordinarily interesting attributes for metrology applications. The gallery in Fig. 4.1

displays only a small selection of all the nano-mechanical devices in existence. With

interest growing in several areas, and the availability of faster, cheaper, and more

precise fabrication techniques, nanoscopic probes are now established for ultra-fast,

high-precision sensing in a variety of applications [105].

Mass sensing is perhaps one of the most successful specializations of nano-mechanical

devices. From the detection of the smallest cells, particles, and molecules [106–111] to

the achievement of atomic resolution [112, 113], most of the sub-picogram mass spec-

trum is accessible to investigation by nano-scale probes. A similar argument extends

to force sensing, with the achievement of sub-attonewton resolution [114]. The pop-

ularity of nano-cantilevers for force measurements is largely due to the advancements

in atomic-force microscopy [115]. This is a technique based on the detection of light

reflected from the back of a cantilever, whose extremity is equipped with an atom-wide

tip that is allowed to interact with the sample surface. With the capacity of revealing

the structure of the surface down to a fraction of a nanometre, it is easy to understand

how the interest in this practice quickly spread across many disciplines. The widespread

extent of AFM cantilevers has been assisted by many refinements, such as the use of fre-

73



74 Nanomechanical oscillators as probes

(i)15 µm 157 nm

(h) 2 µm

(g)
20 µm

(i)15 µm(i)
(h) 2 µm

(g)
(f)

50µm(e) 1 µm1 µm

(d)
200 µm

(e)
(c)

200 µm(b)
(c)

(b)
(a) 5 nm(a) 5 nm

Figure 4.1: Nanomechanical devices come in a great variety of shapes, designs and applica-

tions. (a) The attachment of the carbon nanotubes used for mass sensing [112]. (b) Schematic

of a similar carbon nanotube setup [113]. (c) Cantilever with integrated piezoresistive trans-

ducer for detection of gas particles [109]. (d) Accelerometer based on a nitride cantilever with

a tunnelling tip [118]. (e) Torsional mechanical oscillator for charge sensing [120]. (f) Sus-

pended microfluidic channel in a cantilever for biomass detection [107]. (g) Torsional cantilever

used for inferring the structural flexibility of proteins [123]. (h) Doubly-clamped nanobeam

for detection of single molecules [108]. (i) Nano-needle on top of an atomic-force microscopy

cantilever, for viscosity [124] and visual force [125] measurements.

quency modulation [116], electromechanical feedback [117], and other forms of control

for sensitivity enhancements. More sectors benefitting from the incredible resolution of

nano-mechanical sensors are accelerometry [118,119], charge sensing [120], and magne-

tometry [121], with tremendous implications for three-dimensional imaging thanks to

the resolution of single-spin interactions.

These advancements are in high demand by disciplines other than physics. In bi-

ology, super-resolution allows monitoring of the properties of cells and proteins with

unprecedented accuracy and adaptability. For example, it is now possible to weigh

single cells [107], perform real-time tracking of single molecules [108], and interact

with proteins by detecting their binding processes [122] and their structural flexibility

within the time scale of conformational changes [123]. As the samples under investi-

gation tend to be extremely sensitive to the environmental conditions, fast, low-power

measurements such as the ones provided by nano-mechanical devices are in very high

demand. Any slight improvement in resolution, especially that does not require cryo-

genic environments, might imply a significant breakthrough in biosensing. This is the

aim of the investigations performed with crystalline nanowires presented in this thesis:

can low-power optical feedback at room temperature be a practical technique for sen-

sitivity enhancement by suppression of thermal fluctuations? We will see the answer

in Chapter 7.
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4.2 Crystalline nanowires

The investigations on methods to boost the force sensitivity of nano-probes discussed

in this thesis involve the use of commercial crystalline nanowires1 as nano-mechanical

devices. Each nanowire is grown coaxially at the extremity of a tungsten needle, by

a process that involves dipping of the silver-coated tip of the needle into a droplet of

liquid gallium at room temperature. Slow retraction of the tip from the droplet allows

the two metals to alloy into a long, uniform rod of Ag2Ga crystallites [126] (cf. Fig. 4.2).

Similar nanowires have been used to quantify the surface tension, the viscosity, and

other properties of fluids at the microscopic level [124], and to perform high-precision

subsurface characterization of nano-structures with high dielectric constants [127]. Vi-

sual force sensing was also demonstrated by directly monitoring their buckling defor-

mations [125]. In biology, they have been considered for the detection of edge-binding

e↵ects in proteins [122]. In most applications, however, the quality of the measure-

ments in ordinary operating environments is compromised by the thermally induced

vibrations of the nanowires. The work presented here analyses the e↵ects of control

techniques that aim to boost the sensitivity of the nanowires at room temperature con-

ditions by physical or simulated influence on the transient dynamics of the oscillations.

25 µm

1 µm

1 µm
Figure 4.2: Images of a nanowire, obtained by scanning electron microscopy. The images

in the insets show close-ups of the nanowire structure along the shaft and at the tip. For

comparison, the detail of a gold-coated nanowire is shown on the same scale.

1NN-NCL from NaugaNeedles LLC (http://nauganeedles.com/)
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4.2.1 Characteristics

The nanowires employed have a relatively wide range of specifications, summarized in

Table 4.1. They range in size between 20 and 60 µm in length and between 50 and

200 nm in diameter. To push up the detection e�ciency of their vibrational modes,

which depends on the light scattered from their surface, a number of specimens was

coated with about 50 nm of gold. Analysis of the nanowires’ structure by scanning

electron microscopy reveals an uneven coating with the gold collected in clusters around

the crystalline cylinder, as illustrated in Fig. 4.2. Given the sub-wavelength dimensions

of each nugget, however, this does not represent an impediment towards a more e�cient

scattering.

An estimate based on stoichiometric ratios gives a density of about 8960 kgm�3 for

Ag2Ga [128], projecting the mass of an uncoated nanowire to a few tens of picograms

(⇡ 10�14 kg). The additional mass due to the gold coating is of a comparable magni-

tude, and the overall mass of a coated nanowire may end up ranging in the hundreds

of picograms. As the nanowires are clamped on one extremity and free to oscillate

at the other, the e↵ective modal mass can be calculated using the Euler-Bernoully

theory [129]. Almost 90% of the total mass is accounted for by the first four modes,

respectively participating by a factor of 61.31%, 18.83%, 6.47%, and 3.31%. The

elastic modulus of the nanowires has been found to be on the order of 100GPa [128].

The eigenfrequencies of the vibrational modes are calculated as

!m =
↵2

l2

s
Y I

⇢A
, (4.1)

where l is the length of the cylinder, A is the cross-sectional area, ⇢ is the density, Y

is the elastic modulus, I is the areal moment, and ↵ is a mode-dependent coe�cient

Quantity Value

Length 20–60 µm
Diameter 50–200 nm (coated: 90–500 nm)
Density 8960 kgm�3

Mass 1–70 pg (coated: 4–150 pg)
Oscillation frequency 20–500 kHz (fundamental)
Sti↵ness 0.1–10mNm�1 (fundamental)
Elastic modulus ⇡ 100GPa
Damping rate 0.5–0.9 kHz (in air: ⇡ 10 kHz)

Table 4.1: Typical characteristics of the Ag
2

Ga nanowires used in the experiments.
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which is respectively equal to 1.87510, 4.69409, 7.85476, 10.9955, etc., depending on

the mode considered [130]. The areal moment for an object of circular cross section

of radius r is ⇡r4/4. Ellipticity or general imperfections in the crystallization process

induce, however, slight radial asymmetries in the nanowires. As a consequence, the

eigenmodes of oscillation occur along two preferred directions in the plane orthogonal

to the nanowire’s axis, and the frequencies of modes of the same order exhibit a modest

but measurable splitting. This quality, uncommon in rectangular beams and cantilevers

with a single preferred direction of oscillation, can prove quite useful for mass sensing

and sti↵ness spectroscopy [110]. The fundamental modes have frequencies typically in

the 20 to 500 kHz range, depending on the aspect ratio of the nanowire. The sti↵ness

of these oscillators is inferred to be in the range 0.1 or 1mNm�1 [131].

4.2.2 Quality factor

The quality factor Q determines the capability of the system to store energy into

the oscillations. It is defined as the ratio of the total energy divided by the energy

lost over one cycle. Generally, the quality factor is strongly influenced by a variety

of elements, such as thermoelastic and mechanical properties of the oscillator and its

support, and the viscosity of the surrounding medium. For a mechanical oscillator

where intrinsic mechanical damping and air viscosity are the main factors contributing

to the dissipation, the quality factor Q satisfies the relation

Q�1 = Q�1
m +Q�1

air , (4.2)

where Qm
..= !m/�m and Qair

..= !m/�air are the ratio of the oscillator’s eigenfre-

quency and the damping rate due to the intrinsic mechanical losses or due to the air,

respectively.

The contribution of air viscosity in ordinary atmospheric conditions is typically

dominating for most high-quality resonators [132], saturating the quality factor to a

value that can be estimated by

Q
(atm)
air =

2↵2

µairCdl
2

p
⇢AY I, (4.3)

where µair is the dynamic viscosity of air and Cd is the drag coe�cient, a function of the

Reynolds number and of the oscillator’s geometry. By transferring the oscillator into

vacuum, the lower density of air molecules is such that they interact with the system

without further collisions amongst each other. As more air is pumped out, background
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Figure 4.3: Dissipation properties of the nanowires. (a) Time-domain measurement of the

relaxation rate of a nanowire in air. The nanowire (⇡ 50 µm long, ⇡ 300 nm thick) is subject

to a thermally induced deflection until t = 0, at which point the amplitude of the deflection

undergoes exponential decay to the original state. The high-frequency fluctuations on top of

the decay represent oscillations at the mechanical frequency excited by thermal noise. For

this specimen, the rate obtained by exponential fit of the moving average (solid blue line) is

(7.6± 0.4) kHz. (b) Quality factor of two di↵erent oscillation modes in air and in vacuum

conditions. The circles correspond to the quality factor obtained by dividing the first two

eigenfrequencies of the nanowire, calculated according to Eq. 4.1, by the corresponding damping

rates, empirically measured to be ⇡ 10 kHz in air and ⇡ 0.8 kHz in high vacuum for a nanowire

with similar eigenfrequencies. The solid lines indicate the quality factor, dominated by air

dissipation, which is expected by the model for a nanowire at room temperature (T = 300K)

with elastic modulus Y = 85GPa, density ⇢ = 8960 kgm�3, diameter 2r = 200 nm, and

length l = 40 µm. The molar mass used in the model in the high-pressure regime is M
air

=

28.97⇥ 10�3 kgmol�1, and the air viscosity required in the high-pressure regime is µ
air

=

1.8⇥ 10�5 Pa s. The drag coe�cient C
d

, estimated to be between 1 and 10 for a cylinder with

Reynolds number around unity, was fitted to a value of 2.0. The transition between the regime

of individual gas collisions and viscous dynamics is, for these parameters, around 10.5 kPa. The

intrinsic mechanical dissipation takes over at pressures lower than 1 kPa.

gas collisions decrease and the quality factor becomes inversely proportional to the

pressure P [133]:

Q
(vac)
air =

s
⇡

2

RT

Mair

↵2r

2l2

r
⇢Y I

A

1

P
, (4.4)

where R is the universal gas constant, T the temperature, and Mair the molar mass of

air. The quality factor cannot be increased arbitrarily, however. At some point further

reduction of background gas collisions will have little or no e↵ect, as other intrinsic

damping attributes prevail. As these are often specific to the manufacturing process

or other details not always easily accessible [101,133], it is hard to predict what is the

highest quality factor achievable by the apparatus without a direct measurement. The
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decay rates of the thermally excited oscillations of the nanowires in air, measured from

the linewidth of the resonances on the spectrum analyser, was observed to be around

10 kHz due to the interaction with gas molecules (cf. Fig. 4.3). This corresponds to

quality factors of up to 50 for the fundamental modes. Insertion of the nanowires in

a vacuum chamber reduced the damping rates to less than 1 kHz, pushing the quality

factors to 500 or more. When operating in vacuum, the damping rate of the nanowires

was inferred from the time domain evolution of the oscillations to overcome the limit

in resolution bandwidth of the spectrum analyser. The chamber was operated in high-

vacuum conditions at pressures of 10�4 Pa or lower to avoid air having any role in the

damping mechanism.

4.2.3 Scheme

All operations on the nanowires and the enhancement of their probing capabilities in

the transient regime have been performed using a three-stage scheme: one part for the

detection of the thermally driven modes, one part for the realization of feedback con-

trol, and one part for the analysis of the nanowires’ response to an external signal. The

simplified diagram of Fig. 4.4 shows how each di↵erent role is performed by a separate

laser. The requirement for three independent sources comes primarily from the neces-

!"#"$%&'
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1*+'23456 &# 7'8'-89"& :;( 79-)2"9-#922"2
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Figure 4.4: Comprehensive scheme of the experiment on the nanowire (NW). The three

optical branches are used for the detection of the thermal motion of the nanowire (1064 nm),

for the continuous or periodic feedback to suppress the thermal fluctuations (780 nm), and for

the application of an impulsive signal during periods of feedback quiescence (795 nm). The

inset shows a close-up photograph of the tungsten needle with the nanowire at its tip between

the microscope objective lenses.
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Figure 4.5: The mount used to clamp the nanowires to a positioning stage, in orthogonal

projections showing the front, top, and side views and in isometric perspective. A screw is used

to fix the top piece to the bottom. A second screw in the middle of the top piece is used to

tighten the front end, where the tungsten needle is held in place thanks to a small notch.

sity of having the beams co-propagate without interference, and the wavelength of each

laser is, in itself, only a secondary requirement—something largely demonstrated by the

fact that the wavelengths of the detection laser and the feedback laser were swapped

during the first round of investigations. The absorption and scattering properties of

the nanowires are, of course, elements that need to be considered for an appropriate

choice of the operating wavelengths. In the final setup, the detection branch is powered

by a 1064 nm beam, while light around 780–795 nm is used for the actuation (for either

feedback or simulation of a signal), largely because the nanowire under investigation

displayed a stronger response in the near infrared and better resistance to high power

at longer wavelengths. The vacuum chamber, where the nanowire and the two focusing

microscope objective lenses are located, is maintained by an ion pump at pressures of

10�5–10�4 Pa. A vacuum-compatible nano-positioning stage2 is used to allow align-

ment within the enclosed chamber. The nanowire is clamped to the positioning stage

by a custom-built mount especially designed for the purpose, capable of in-plane or

out-of-plane orientation and compatible with most commercial stages (cf. Fig. 4.5).

For detection, many di↵erent schemes were trialled during the nanowire charac-

terization phase, including the use of split photodiodes to measure di↵erences of the

di↵racted shadow in the transmitted light, or observation of the e↵ects of the nanowire’s

modulation of the optical field inside a cavity. Out of these, a detection method in-

spired by Doppler vibrometers proved to be the most practical and e�cient, collecting

information on the oscillation along the same direction as the optical axis by interfer-

ence of a reference beam with the light scattered back by the nanowire. The presence

2ECS3030/HV from attocube systems AG (http://www.attocube.com/)
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of phase-locked homodyne detection, as opposed to a single photodiode, renders the

entire process more e↵ective. In the feedback branch, control on the nanowire’s motion

is realized by an acousto-optic modulator (AOM) that varies the amplitude of the field

and the consequent back-action on the oscillator. The AOM is driven in real time

by a signal extracted from the detection scheme, after appropriate processing required

to achieve the desired gain and phase for the feedback. The last stage uses a similar

principle to also drive the nanowire, in this case with an arbitrary external signal in-

dependent of the state of the nanowire itself. The external signal comes in the form of

a pulse modulated at frequencies close to the resonances of the mechanical oscillator.

It is synchronized to arrive at specific times after the feedback is turned o↵, in order

to study the nanowire’s response in a transient regime before the full restoration of

thermal fluctuations but without the suppression in susceptibility due to the feedback.

All branches will be discussed more extensively in Chapters 5, 6, and 7, each specifi-

cally dedicated to the explanation of how detection, feedback, and signal-to-noise ratio

enhancement come together in the context of the experiment.
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Chapter 5

Detection

5.1 Scattering model

When dealing with objects of 100 nm in radius, e↵ects at the sub-wavelength scale

become a significant and inherent part of the system. In this regime radiation pressure

is dominated by scattering forces. Therefore, appropriate modelling is required in order

to gain an insight on how to make detection and general methods of interaction more

optimal.

We follow Mie scattering theory for a sub-wavelength cylinder [134]. The solutions

are expressed in terms of infinite series of the scattering coe�cients {c
n

}
n2N, whose

value strongly depends on the geometry and refractive index of the object as well as the

polarization and the angle of incidence of the field. Notably, any display of absorption

is derived from a propagation of the imaginary part of the complex refractive index of

the material. We limit our analysis to the case of light normally incident to the axis

of the nanowire, with beam width W much larger than the cross-sectional dimensions,

microscope objectivesnanowire
tungsten needle

Figure 5.1: Scattering can induce some unexpected e↵ects, such as a peculiar purple emis-

sion from the nanowire when illuminating it with infrared light. The direction of emission is

orthogonal to the propagation axis of the beam, incoming from the left. The nanowire under

inspection does not have a gold coating.

83



84 Detection

i.e. W � r with r being the radius of the cylinder. The angular distribution of the

scattered field is

Esca(�) =

r
2

⇡⇠
ei(

3⇡
4
+⇠)T (�)Ein, (5.1)

where � is the polar angle, ⇠ ..= 2⇡r/� is a dimensionless ratio between the character-

istic length of the object and the wavelength, and Ein is simply the input field. The

dependence on the refractive index of the object is implicit in the transfer coe�cient

T (�), which is determined by the scattering coe�cients as

T (�) = c0 + 2
+1X

n=1

c
n

cos(n (⇡ � �)). (5.2)

The extinction, scattering, and absorption e�ciencies, equivalent to the ratio between

the e↵ective cross section of each process and the cross-sectional area of the target, are

also calculable from the scattering coe�cients. They are

Qext =
2

⇠

 
Re(c0) + 2

+1X

n=1

Re(c
n

)

!
, (5.3)

Qsca =
2

⇠

 
|c0|2 + 2

+1X

n=1

|c
n

|2
!
, (5.4)

Qabs = Qext �Qsca. (5.5)

It should be specified that, despite their name, these e�ciencies are not bound to unity

in Mie scattering theory. As a matter of fact, in many examples the light scattered or

absorbed is more than that geometrically incident on the object [134]. The e�ciencies

are needed to infer the amount of radiation pressure force contributing to each pro-

cess [135]. Recalling the general relationship between force and power from Eq. 2.24,

we have that the scattering and absorption components of radiation pressure force are

respectively

Fsca =
QscaPin

c
, (5.6)

Fabs =
QabsPin

c
, (5.7)

in terms of the incident power Pin, which is calculated by integrating the intensity of

the beam over the scattering cross section (2r)⇥(2W ) [136]. The scattering coe�cients

are the only elements needed to calculate all of these quantities that are still unspeci-
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fied. The reason lies in the fact that their definition di↵ers depending on whether the

polarization of the field is parallel or perpendicular to the cylinder’s axis:

c
n

=

8
>>><

>>>:

J
n

(⌫⇠)J 0
n

(⇠)� ⌫J 0
n

(⌫⇠)J
n

(⇠)

J
n

(⌫⇠)H10
n

(⇠)� ⌫J 0
n

(⌫⇠)H1
n

(⇠)
for parallel polarization,

⌫J
n

(⌫⇠)J 0
n

(⇠)� J 0
n

(⌫⇠)J
n

(⇠)

⌫J
n

(⌫⇠)H10
n

(⇠)� J 0
n

(⌫⇠)H1
n

(⇠)
for perpendicular polarization.

(5.8)

Here, ⌫ = nobj/n0 is the ratio between the refractive index of the cylindrical object,

nobj, and the one of the surrounding medium, n0. The functions {J
n

}
n2N are the

Bessel functions of the first kind and
�
H1

n

 
n2N are the Hankel functions of the first

kind. The prime indicates di↵erentiation relative to the full argument of the relative

function. The derivatives for both classes of functions can be easily computed as the

halved di↵erence of the involved functions with preceding and succeeding indices, e.g.

J 0
n

(x) = (J
n�1(x)� J

n+1(x)) /2. For any other polarization the result are obtained by

the appropriate linear combination of the di↵erent coe�cients.

The results from this model are presented in Fig. 5.2 for a field with vertical po-

larization and in Fig. 5.3 for a field with horizontal polarization. Since the optical

properties of Ag2Ga are not very well known [135], all calculations have been per-

formed for a gold-coated nanowire, under the assumption that the e↵ects due to the

presence of a di↵erent substance at the core could be ignored. Moreover, the image in

Fig. 4.2 shows an uneven, irregular gold-coated nanowire surface which deviates from

smooth cylindrical rod assumed by the model. These results are only meant for a qual-

itative analysis aimed at obtaining an order-of-magnitude estimate of the scattering

forces and understanding the main directions of the scattered light.

The spatial distribution of the scattered field shows a predisposition for backward-

scattering, though with quite a wide angle. This is particularly prominent for verti-

cally polarized light, but it holds generally true in other cases as well. It should not

be surprising, then, that the most e↵ective procedure for optical detection uses light

“reflected” back from the nanowire, although the potential for this (or any other) tech-

nique is limited by the aperture and light collecting ability of the setup. Alternatively,

one could resort to the “transmission” line instead, looking at the information obtain-

able from the absence of light in the form the modulation of the di↵racted shadow.

Whilst less e�cient, this method is not incompatible with the previous one and may

be carried out concurrently. As we will see in more detail in the next section, the two

detection methods actually address di↵erent modes, corresponding to oscillations along
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Figure 5.2: Scattering properties of a nanowire irradiated by a field with polarization parallel

to the shaft. The nanowire is assumed to consist entirely of gold, with refractive index n
obj

=

0.2+4.8i (0.2+7.0i) for 780 nm (1064 nm) light. The refractive index of the medium, n
0

, is taken

to be 1 regardless of whether the nanowire is in air or in vacuum. (a) Forces due to scattering

(green) and absorption (orange) as a function of the radius of the nanowire, calculated according

to Eq. 5.6–5.7. The traces are plotted for a beam of width W = 10 µm, power of 50mW, and

a wavelength of 780 nm (continuous) or 1064 nm (dashed). (b–c) Angular distribution of the

scattered field and its intensity, as calculated from Eq. 5.1. The nanowire is placed at the origin

and is assumed to have a radius of 120 nm. The incident light, of wavelength � = 780 nm, is

approaching from the negative x axis. Its colour is adjusted to the maximum value of the scale

rather than normalized to 1 in order to reveal the polarization at a glance.

orthogonal directions.

Looking at the forces acting on the nanowire from Fig. 5.2a and Fig. 5.3a, we see

that independently of wavelength or polarization the absorption forces are a couple of

orders of magnitude smaller than the scattering forces. The model suggests fluctuating

values of the forces depending on the radius of the nanowire (an e↵ect less obvious

for absorption forces due to the logarithmic scale). The positions and amplitudes

of the local minima and maxima depend on the wavelength, creating situations in

which the scattering force is, for example, stronger for 780 nm rather than 1064 nm.

Therefore, depending on the geometry of the nanowire, one wavelength is more suitable

for detection while the other is better for external control, as one applies a weaker back
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Figure 5.3: Scattering properties of a nanowire irradiated by a field with polarization normal

to the shaft. The parameters used are the same as Fig. 5.2. (a) Forces due to scattering

(green) and absorption (orange) as a function of the radius of the nanowire, for a wavelength

of 780 nm (continuous) or 1064 nm (dashed). (b–c) Angular distribution of the scattered field

and its intensity, for incident light of wavelength � = 780 nm.

action and the other exerts stronger forces.

Even though absorption forces are relatively small, indirect e↵ects due to photother-

mal absorption can have dramatic consequences. Any power higher than 100mW in-

duces permanent e↵ects on the nanowire, which can be observed in the spectrum in the

form of lasting resonance frequency shifts or more directly under microscopy as short-

ening, curling, and even complete obliteration. As a matter of fact, optically-induced

thermal bending of the Au/Ag2Ga bimorph nanowires generates a bolometric force

which is crucial for the interaction, as we will see in Chap. 6.2. The bolometric forces

observed are estimated to be about one hundred times stronger than the radiation

pressure forces estimated by the model.

5.2 Free-space measurements

In deciding what detection method would be more suitable in relation to other sec-

tions of the experiment, priority was attributed to simplicity and practicality. These
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qualities, not necessarily exhibited by intra-cavity measurements, are common traits of

detection methods performed in free space. Free-space measurements are more easily

characterized and they require a less demanding implementation, with a comparatively

straightforward alignment and no need for frequency locking schemes. Furthermore,

the bandwidth of a detection technique in free space is in principle unlimited, rather

than being restricted to frequencies within a cavity linewidth. When the option of feed-

back control is taken into account, the extended bandwidth is a particularly decisive

feature that allows cooling of several modes simultaneously.

The general configuration for free-space measurements is illustrated in Fig. 5.4.

Two microscope objective lenses (⇥40) are used to focus the beam onto the nanowire.

The advantage of a small waist lies in the possibility of a more precise alignment of the

beam onto specific sectors of the cylinder. The detection e�ciency of the vibrational

modes, for example, is increased by lining up the beam with the anti-nodes of the

oscillation, where the amplitude is maximized. The actuation by bolometric forces, on

the other hand, is increased when the beam is positioned about 10µm away from the

tip to enhance the thermal bending. Transmission of a collimated beam through the

objective lens would achieve a waist of on the order of 10 µm. By using a converging

beam, instead, the waist is reduced down to a little less than 1 µm. A camera (or

a beam profiler) is located on transmission to capture the di↵raction patterns of the

nanowire, also confirming the beam waist by comparison with the size of the nanowire

!"# -$%&%'()*+%,-.%' /'%/-'-&0(+ 123$23 4'-/ 5-60&*
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Figure 5.4: Detailed scheme of the detection branch. On reflection, the mechanical modes

of the nanowire are detected by heterodyne interferometry with a local oscillator (LO). On

transmission, a set of two flip mirrors allows a choice between an alignment mirror, a camera

or beam profiler, and a pixel photodetector (PPD). The setup includes a trap cavity in the

direction orthogonal to the microscope lenses.
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itself. Two flip mirrors allow reorganization of the optical path to switch between the

camera, a pixel photodetector (PPD), and a fixed flat mirror normal to the propagation

of the beam. The main purpose of the flat mirror is to simulate the reflection from the

nanowire in order to facilitate the alignment of the interferometric section. In addition,

the same mirror was used to test the e↵ects of radiation pressure force gradients from

a single-pass standing wave [137], without any discernible results.

The main detection scheme is inspired by laser Doppler vibrometry [128, 131, 138,

139]. The beam incident on the nanowire is scattered back with a phase that depends on

the position of the reflecting surface. As the nanowire oscillates, the reflection acquires

a phase modulation at the mechanical frequency. The modulated reflection is then

interfered with a reference beam (cf. Chap. 2.5.1) to obtain a real-time measurement of

the phase and amplitude of the oscillation. The diagram in Fig. 5.4 reflects a scheme

which is closer to conventional vibrometry than the one introduced in Fig. 4.4. Here,

the first-order di↵raction from an acousto-optic modulator (AOM) is used to shift the

local oscillator to a reference carrier frequency (80MHz in our case). This heterodyne-

based detection, which centres the measurement around the shifted frequency, is useful

to pick up low frequency modes that would otherwise be concealed under low-frequency

background noise. However, since the mechanical frequencies involved in the experi-

ment are at least 200 kHz or higher, the setup is ultimately converted to homodyne

detection, using the same frequency for both the reflected beam and the reference local

oscillator. This eliminates any averaging due to the beating which is distinctive of

heterodyne, and up to a factor of two of improvement in the detection can be gained

by phase-locking the two beams to ensure optimal interference over time. For the lock,

we modulate the phase of the local oscillator by displacing a mirror along the path

with a piezoelectric unit (PZT). Since the operating bandwidth of the piezoceramic

does not exceed a few tens of kilohertz, the lock is ideal to account for low-frequency

fluctuations (such as thermal drift of the optics) without interfering with the faster

modulation due to the mechanical oscillation. Therefore, the read-out from the detec-

tors, which doubles as the error signal, o↵ers a direct measurement of the vibrational

state of the nanowire.

An alternative setup for the detection of the nanowire’s vibrations is realized on

the transmitted light thanks to the pixel photodetector. As the nanowire oscillates,

the lateral displacement causes one side of the beam to be subtly less bright than

the other, and the intensity perceived by di↵erent pixels of the photodetector varies

accordingly. The detection is refined by subtraction of the signals from two pixels [140],
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Figure 5.5: Spectra of the nanowires’ thermal fluctuations. All traces have been recorded in

atmospheric conditions. (a) Eigenmodes of a nanowire (⇡ 60 µm long, ⇡ 350 nm thick, gold-

coated) obtained by interferometry on reflection, once with heterodyne (light) and once with

homodyne (dark). Between the two measurements the nanowire may have been repositioned

with a slightly di↵erent orientation, accounting for a small variation in the detection ratio of

the two modes, and a permanent change was induced by the use of high power, slightly shifting

both frequencies. The dashed trace follows the model of Eq. 5.9 at room temperature for an

oscillator with parameters similar to the measured ones. (b) Comparison between the two

di↵erent detection method: interferometry on reflection (violet) and intensity subtraction from

di↵erent pixels on transmission (orange). The measurements were performed simultaneously,

and the di↵erence in ratio between the peaks is due to the fact that the two methods have

preferential directions of detection. The nanowire is uncoated, ⇡ 40 µm in length and ⇡ 270 nm

in diameter.

which increments the e↵ect of the modulation due to the oscillation while at the same

time eliminating the relatively stronger intensity background.

There is a fundamental di↵erence between the two detection methods. The first,

based on interferometry, measures the Doppler shift of the reflected beam and is there-

fore proportional to the oscillator’s velocity. The second, dependent on intensity di↵er-

ences, is conditioned by the location of the nanowire and it produces a direct measure-

ment of the oscillator’s position. If one monitored the time evolution of the two signals,

they would appear as similar sinusoids separated by a phase shift of ⇡/2, modulo some

normalization factor that would in any case depend on the di↵erent gains of each detec-

tion as well. In both situations, however, the power spectrum that would be displayed

on a spectrum analyser would result proportional to the displacement spectrum

S
x

(!) = |�m(!)|2 S
(th)
F

(!), (5.9)

where x is the position of the oscillator, �m(!) =
⇥
m
�
!2
m � !2 + i�m!

�⇤�1
its mechan-

ical susceptibility (cf. Eq. 3.64), and S
(th)
F

(!) = 2m�mkBT is the spectral density of the

thermal Brownian forces, which is constant across all frequencies in the classical limit
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(cf. Eq. 3.30). Figure 5.5 shows some representative displacement spectra obtained

using the two detection methods. The thermal forces drive the eigenmodes of the os-

cillation, which exhibit in both cases a split because of geometrical asymmetries. Each

spectrum is originally recorded as a power spectrum and is subsequently converted to a

displacement spectrum. The normalization is performed by comparing the integrated

area with the total thermal energy anticipated by Eq. 5.9 at room temperature. The

displacement spectra in Fig. 5.5a show the di↵erence, after normalization, when homo-

dyne rather than heterodyne interferometry is used in the main detection setup. The

higher e�ciency in detection, due to phase-locking of the homodyne but also to better

visibility of the interference, appears in the power spectrum extracted directly from the

spectrum analyser as a stronger signal above a comparable noise. It is only after the

appropriate rescaling that both peaks appear to follow the same model of Eq. 5.5, and

the bigger signal-to-noise ratio is revealed as a higher clearance from the background

noise.

Another di↵erence between the two detection schemes is that they address orthog-

onal directions, and spatially orthogonal modes of the same order are observed with

complementary e�ciency. This is due to the fact that the detection on reflection

tracks oscillations in the direction parallel to the optical propagation, while the one

on transmission reveals only oscillations which cross the beam transversally. This al-

lows situations where a mode, if lined up exactly with one of these directions, could

be completely invisible to one detection method and at the same time measured with

maximum e�ciency by the other. For example, if the nanowire has a 250 kHz mode

aligned parallel to the beam and a 360 kHz mode normal to it, the interferometric

detection would distinguish only the mode of lower frequency and the pixel photode-

tector would measure only the mode of higher frequency. If, on the other hand, the two

modes are aligned at 45� with the beam, they will be measured with 50% e�ciency

by both methods. This is almost the case in Fig. 5.5b, where only a slight deviation

from the 45� orientation is already enough to account for an appreciable asymmetry in

detection.

5.3 Intra-cavity interaction

The setup in Fig. 5.4 includes a linear cavity at 90� with the detection beam. This cavity

was added during the development of the measurement scheme to explore additional

characteristics of the nanowire and to see in particular how the intra-cavity field a↵ects
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Figure 5.6: The output field of an optical cavity is influenced by the position of the nanowire

within. The nanowire used is ⇡ 30 µm long, ⇡ 200 nm thick, gold-coated, and in air. (a)

Variation of the intensity of the cavity’s reflected field as a function of the nanowire’s position.

The intensity is scaled to the value at resonance when the nanowire is out of the cavity. (b)

Detection of the nanowire’s thermal fluctuations from the cavity output. When the nanowire

is at an anti-node (lightest and darkest traces) the eigenmodes are detected thanks to the

interaction with the cavity field. When the position is shifted to coincide with a node, no

eigenmodes can be detected.

the oscillation.

The cavity is close to concentric in order to reduce the waist of the resonant modes.

The end mirrors have both a radius of curvature of 2.5 cm, and the length of the cavity

is about 4.7 cm. With a free spectral range exceeding 3GHz, and a finesse measured at

approximately 150, the cavity linewidth is estimated to be above 20MHz, certainly wide

enough to accommodate all of the detectable eigenmodes of the nanowire. The nanowire

is positioned close to the middle of the TEM00 mode, near the waist. This is achieved

by moderately misaligning the cavity, so that higher-order modes such as TEM10 and

TEM20 become partly resonant, and by looking at the eclipsing e↵ect that the nanowire

has on certain modes rather than others. In particular, the right location is reached

when TEM00 and TEM20 are obscured the most and TEM10 is una↵ected. Once the

nanowire is properly positioned within the cavity, the two microscope objective lenses

are adjusted in order for the nanowire to be aligned for the detection beam as well.

The interaction between the nanowire and the intra-cavity field highly depends on

the location of the mechanical oscillator [141], as illustrated in Fig. 5.6. When the

nanowire’s position is scanned across a range wider than the wavelength � (1064 nm in

Fig. 5.6a), the optical resonance is detected with varying intensity, periodic of �/2, as

the nanowire crosses the nodes and anti-nodes of the cavity field. This behaviour may

initially remind of the sinusoidal response of the reflected and transmitted fields in a

membrane-in-the-middle configuration [142, 143]. However, for a membrane the sinu-
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Figure 5.7: Two examples of frequency shifting of the nanowire’s mechanical eigenmodes.

The e↵ect is not permanent and in both cases the new eigenmodes (dark traces) are restored to

the original ones (light traces) simply by turning o↵ the action of the external agent. All traces

are recorded in atmospheric conditions. (a) Shifting due to the action of the intra-cavity field

for two di↵erent order modes of the nanowire, which is ⇡ 30 µm long, ⇡ 180 nm thick, and

gold-coated. (b) Shifting induced by the displacement from electric attraction. A voltage of

400V is applied between the nanowire and an electrode close to it to induce the electric force.

For voltages lower than 200V no discernible shift could be observed. The nanowire is the same

uncoated one used in Fig. 5.5b, although its modes have been permanently altered by optical

damage.

soidal variation detected originates from the dependence of the cavity eigenfrequencies

on the position, and not from the leaking of more or less photons from the cavity. In

particular, a symmetric sinusoid is obtained only with a completely lossless membrane,

whereas a lossy membrane introduces asymmetries in the periodic response. The case

for a nanowire is quite di↵erent, since the relative di↵erence in intensity is observed

even when the cavity is scanned while the position is slowly changed, meaning that

the response is not derived from a change in cavity eigenfrequency. Moreover, we

know from Chap. 5.1 that considerable scattering losses introduced by the nanowire’s

geometry di↵use the field over a very wide angle. The field that interacts with the

nanowire is not fully scattered away and lost, however, and the modulation introduced

by the mechanical oscillations can be detected on the cavity output when the position

coincides with an anti-node (Fig. 5.6b).

The most remarkable e↵ect of the cavity field on the nanowire is a change of the

mechanical resonances. Monitoring the thermal fluctuations on the detection line,

a sudden shift of the eigenmodes of up to 30 kHz is observed when there is power

circulating within the cavity (cf. Fig. 5.7a). The frequency shift is fully reversed as

soon as no input is sent to the cavity, it is confidently repeatable, it does not depend

on the cavity detuning, and its magnitude appears to be proportional to the order of

the eigenmode. When the mechanical resonances are detected directly on the cavity
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field they appear to be already shifted, as would be expected. The origin of this

e↵ect is attributed to a fixed displacement induced by a constant force from the cavity

field, which e↵ectively alters the susceptibility and consequently modifies the resonance

frequencies of the nanowire. To confirm this hypothesis is the fact that applying a

fixed displacement by other external forces also has a similar e↵ect. As an example,

a high voltage di↵erence was applied between the nanowire and an electrode in its

vicinity to create an attractive electric force and therefore bend the nanowire towards

the electrode, inspired by a technique for the characterization of field emission of SiC

nanowires [144]. The result, shown in Fig. 5.7b, is once more a shift of a few kilohertz,

although towards higher frequencies in this instance. The direction of the shift is likely

due to the specific orientation of the nanowire. In Chap. 6.2 we will see how the

evidence points towards an optomechanical interaction that relies on the nanowire’s

displacement from its natural state, which in the particular case of optical absorption

forces occurs in a specific direction dictated by the asymmetries in the geometry and

the bimorph structure.



Chapter 6

Feedback

6.1 The e↵ects of active control

The use of active feedback control in optomechanics was proposed very early in the

history of the field [145, 146]. As the systems became more and more refined, the op-

portunity for controlling the oscillations to achieve a desired state of the mechanics

sparked a surge in interest that continues to this day. In particular, feedback control

is extremely popular as an e↵ective procedure to cool down the vibrational modes

by actively counteracting the Brownian motion of the oscillator [147–150], reaching

even temperatures that approach the quantum ground state of the macroscopic res-

onators [151–153].

Feedback control may also be utilized to suppress extra noise on the oscillator

for applications in sensing. As we will see in more detail in Chap. 7.1, the specific

conditions under which feedback induces a real measurement advantage have been more

than once the subject of discussions [154, 155]. Notwithstanding, the active control of

the oscillations can enhance the sensitivity by altering the response characteristics of

an AFM cantilever [156] or by reducing the integration times required [157].

In this section we explore the e↵ects of feedback on the oscillator, starting with

a generic approach that analyses the general response of the system before focusing

on the implementation of feedback cooling, also known as cold damping. We will also

see how the feedback introduces artefacts in the measurement, and how this needs to

be accounted for in order to understand what the physical state of the oscillator is

precisely.

6.1.1 Modification of the oscillator’s response

To understand how feedback control generally a↵ects the position of the oscillator,

we consider the driving forces separated into a random Brownian force Fth, which

95
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sustains the thermal fluctuations arising from the coupling with a thermal bath, and a

force applied by the feedback, Ffb. Given the oscillator’s susceptibility to be �m(!) =⇥
m
�
!2
m � !2 + i�m!

�⇤�1
, we have, in the frequency domain,

x(!) = �m(!) (Fth(!) + Ffb(!)) . (6.1)

Similarly to the case of radiation pressure force (cf. Chap. 3.3.2), we can integrate the

feedback force into the original dynamics to obtain an e↵ective susceptibility [156,158].

To do so we consider a feedback force of the form Ffb(!)
..= K(!)xdet(!), i.e. a force

proportional to the detected position of the oscillator, xdet, with a generic transfer

function K(!). The detected position di↵ers from the actual position because, in

general, some noise is coupled into the measurement process. If this is taken into

account, the generic feedback force in terms of the actual position is

Ffb(!) = K(!) (x(!) + �x(!)) , (6.2)

where �x is the noise in the position measurement. After substituting in Eq. 6.1 and

rearranging accordingly, we obtain

x(!) = �fb(!) (Fth(!) +K(!)�x(!)) , (6.3)

where the e↵ective susceptibility due to the feedback was defined as

�fb(!)
..=

�m(!)

1� �m(!)K(!)
. (6.4)

The position of the oscillator still responds to the thermal forces, but now with a

susceptibility that is regulated by the feedback’s transfer function. Additionally there

is a residual force from the feedback, proportional to the measurement noise, which will

be seen to have strong consequences towards the limits of active control. In our case,

the signal used for the feedback is extracted from the interferometric detection and is

therefore proportional to the velocity of the nanowire. As a consequence, the feedback

force has viscous attributes that can be used to implement cold damping [145, 158],

and it takes the form

Ffb(t) = �⇣
�

m�m
.
xdet(t). (6.5)
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Here we express the strength of the interaction in units of the mass and the mechanical

damping rate in order to isolate the dimensionless gain ⇣
�

..= ⇣0e
�i�, assumed to be

complex to account for both the magnitude (⇣0) and the phase (�) of the feedback.

Transforming to the frequency domain, we get that the associated transfer function is

K(!) = �i⇣
�

m�m!, (6.6)

and the feedback-dependent susceptibility is

�fb(!) =
�
m
⇥
!2
m � !2 + ⇣0 sin(�)�m! + i (1 + ⇣0 cos(�)) �m!

⇤ �1
. (6.7)

As would be expected, the original susceptibility is recovered in the case of ⇣0 = 0,

when the feedback is turned o↵. When � = 0 pure cold damping is achieved, whereas

� = ⇡ brings the system into parametric amplification. Any other phase introduces

a frequency-dependent shift of the resonance, reminiscent of the e↵ect due to a fixed

displacement by the intra-cavity field presented in Chap. 5.3.

The spectrum of the oscillations obtained from Eq. 6.3 is described by

S
x

(!) = |�fb(!)|2 S
(th)
F

(!) + |�fb(!)|2 |K(!)|2 S
�x

(!), (6.8)

where compared to Eq. 5.9 there is an additional term proportional to the background

noise of the detection, S
�x

(!), and the original susceptibility is replaced by the e↵ective

one. It is important to distinguish, in the presence of feedback, between the spectrum

of the actual oscillations described by Eq. 6.8 and themeasured displacement spectrum,

primarily because the feedback correlates the oscillator’s position to the measurement

noise. The correlations between x and �x are accounted by the inclusion of their cross

spectral density in the measured displacement spectrum, which refers to xdet = x+ �x,

as follows:

S
(det)
x

(!) = S
x

(!) + S
�x

(!) + 2S
x �x

(!)

= |�fb(!)|2 S
(th)
F

(!) +
⇣
|�fb(!)|2 |K(!)|2 + 1 + 2Re(�fb(!)K(!))

⌘
S
�x

(!)

= |�fb(!)|2 S
(th)
F

(!) +
|�fb(!)|2

|�m(!)|2
S
�x

(!). (6.9)

Even though it does not correspond to the physical displacement of the oscillator, this

spectral density is the only one that can be observed directly during an experiment.

The spectral density of the actual displacement can only be inferred indirectly, despite
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Figure 6.1: Indicative spectral densities of the actual (dashed line) and the measured (solid

line) displacements, for an oscillator with quality factor Q
m

= !
m

/�
m

= 100. The red traces

correspond to the original spectra without feedback control. The green and blue traces corre-

spond to cold damping with a gain of 10 and 100 respectively. In the latter case, squashing

below the measurement noise is observed. All traces are normalized relative to the value of the

actual displacement spectrum at resonance, and the measurement noise is assumed to be 1000

times smaller than the thermally driven fluctuations.

the central role that it plays in the calculation of a mode’s temperature. Theoretical

simulations showing the di↵erence between the measured and the inherent displacement

spectral densities, with and without active control, can be appreciated in Fig. 6.1.

The ratio in front of S
�x

(!) in Eq. 6.9 is responsible for a curious phenomenon:

for high enough gain, the spectrum close to the mechanical frequency may be mea-

sured below the normal noise floor of the detection, similarly to how a squeezed state

of light behaves relative to the vacuum noise. This occurrence is known as squash-

ing [149,158,159], but unlike squeezing it does not seem to have practical applications

on its own since it cannot be extracted from within the feedback loop [160]. A probe ex-

ternal to the feedback would measure the temperature of the oscillator to get higher as

more squashing is introduced into the system. Even the inherent nature of squashing,

whether it exists as a physical e↵ect or it is just an artefact related to the measure-

ment process, has been the object of debate without conclusive evidence. At any rate,

squashing is mostly relevant to our case because it highlights how important it is to

have a low noise floor in the measurement. It should be noted that the noise floor of a

normalized spectrum (such as the ones seen in Fig. 5.5) is determined by the rescaling,

and what truly matters in the raw power spectrum detected is the signal-to-noise ratio

of the measurement, as would be expected in any other detection-based process.
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6.1.2 Cold damping

Directing our attention to the case of purely negative feedback (� = 0 and ⇣
�

= ⇣ > 0),

we can study the manifestation of cold damping in the system. In this regime, the

e↵ective susceptibility is simply

�fb(!) =
�
m
⇥
!2
m � !2 + i (1 + ⇣) �m!

⇤ �1
. (6.10)

The resemblance with the original susceptibility is more pronounced, with the only

di↵erence being in the damping component changing from �m to �fb = (1 + ⇣) �m.

The e↵ecive temperature Te↵ of a vibrational mode is related to the variance of the

oscillations �2
x

by the equipartition theorem, which states that

1

2
m!2

m�
2
x

=
1

2
kBTe↵. (6.11)

The variance can be calculated by integrating of the spectral density of the fluctuations.

Because the theorem is relative to a physical process, the spectrum that needs to be

considered is that from Eq. 6.8 relative to the actual displacement, not the measured

one. The mode temperature is then

Te↵ =
m!2

m

kB

Z +1

�1

d!

2⇡
S
x

(!). (6.12)

If the spectrum features overlapping modes, the temperature of each mode can still be

inferred by limiting the integration bounds around the resonance and by scaling the

result proportionally to the integration area being neglected.

In the limit of small gain, the additional noise injected into the system by the feed-

back can be disregarded, allowing the displacement spectrum to be simply proportional

to the spectrum of the thermal forces as S
x

(!) = |�fb(!)|2 S
(th)
F

(!). This expression is

analogous to Eq. 5.9, though with a response mediated by �fb(!) rather than �m(!).

As we are working in a classical regime, the thermal noise is taken uniform across all

frequencies, i.e. S(th)
F

(!) = 2m�mkBT . It should be remembered that here T represents

the temperature of the thermal bath, equivalent to room temperature for a system in

a non-cryogenic environment. Using the result that
R

d!

2⇡ |�fb(!)|2 =
�
2m2�fb!

2
m

��1
,

obtainable by applying Parseval’s theorem to the inverse transform of a Lorentzian, we
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get that the temperature of the mode is

Te↵ =
T

1 + ⇣
. (6.13)

Cooling is possible because the feedback force couples the resonator with an external

system which is unrelated to the thermal bath. The coupling makes the mechanical

resonator equivalent to an apparatus that has an e↵ective damping (1 + ⇣) �m and that

is subject to a bath at the e↵ective temperature T/ (1 + ⇣) [145,158].

Since the new thermal equilibrium conditions scale with ⇣, one would have to in-

crease the feedback gain as much as possible to obtain a strong cooling factor. This,

however, conflicts with the regime of small gain where Eq. 6.13 was derived, substanti-

ating the need of a full treatment that does not neglect the detection noise. Substituting

the full expression of S
x

(!) into Eq. 6.12, we have

Te↵ =
m!2

m

kB

✓Z +1

�1

d!

2⇡
|�fb(!)|2 S

(th)
F

(!) + ⇣2m2�2m

Z +1

�1

d!

2⇡
!2 |�fb(!)|2 S�x

(!)
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With the assumption that both the thermal force spectrum and the detection noise

are independent of frequency, and evaluating the integral of the second term on the

right-hand once more thanks to Parseval’s theorem as
R

d!

2⇡ !
2 |�fb(!)|2 =

�
2m2�fb

��1
,

the mode temperature is

Te↵ =
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where ⌘th
..= kBT/

�
m!2

m�mS�x

�
is the signal-to-noise ratio of the thermal fluctuations.

This result shows that the feedback gain cannot be turned up indefinitely without

consequences [149]. A higher value of ⇣ introduces more noise that becomes detrimental

to the cold damping process, and increasing the gain beyond a certain point has only

the e↵ect of adding more incoherence into the system. The minimum temperature

attainable depends, among other factors, on the measurement noise:

T
(min)
e↵ = T

p
1 + 2⌘th � 1

⌘th

' T

s
2m!2

m�mS�x

kBT
. (6.16)
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Here, the approximation is valid in the regime where the energy added to the mode by

the measurement noise is not significantly larger than the oscillator’s thermal energy,

i.e. m!2
m�mS�x

⌧ kBT or equivalently ⌘th � 1. Cooling to extremely low temperatures

is achieved only when the measurement noise is suppressed as much as possible. A

higher quality factor Qm
..= !m/�m or a thermal bath at lower temperature, such as

in cryogenic conditions, could also push the minimum temperature attainable by the

feedback to lower limits. The gain at which the e↵ective temperature corresponds to

its minimum value corresponds to the turning point where the measured spectrum of

Eq. 6.9 shifts from cold damping to squashing. Starting from low gain values, the

e↵ects of increasing ⇣ are observed on the spectrum as a suppression of the resonance

peak until the point where the temperature is minimum and the resonance lies flat on

the noise floor. Any higher gain pushes the spectrum close to resonance lower than the

detection noise, indicating the presence of squashing. At the same time, however, the

actual displacement spectrum experiences an overall broadening due to the prevailing

e↵ect of the injected noise, and the temperature of the mode increases.

6.2 Photothermal actuation

Regardless of what the trigger of the actuation induced by a laser on the nanowire is, be

it radiation pressure or photothermal e↵ects, it is the intensity of the laser that regulates

the strength of the forces in play. The feedback is implemented by driving an acousto-

optic modulator (AOM) with the signal obtained by the interferometric detection. The

AOM modulates the amplitude of the field, in such a way that the reaction forces result

proportional to the velocity of the oscillator and therefore exhibit dissipative attributes.

The phase of the gain was initially controlled with the use of passive components along

the feedback line. For this purpose, low- or high-pass filters were preferred to coaxial

delay lines because they can generate similar phase shifts without introducing excessive

dissipation. Eventually, however, the need for more precise phase control culminated

in the use of an active phase-shifter module that allowed switching between cooling,

heating, or pure frequency-shifting with full flexibility.

The feedback force acting on the nanowire is dominantly bolometric. The bolo-

metric force is an indirect consequence of optical absorption, arising from the thermal

stress and deformation due to the change in temperature. It is particularly substantial

for bimorph structures [95, 161], a category that includes the gold-coated nanowires.

Taking into account the reflectivity of the gold layer [162], the change in bulk tem-
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Figure 6.2: Thermally induced deflection of a nanowire as a function of the power of the

feedback beam. The nanowire is the same as in Fig. 4.3a, with the data collected in atmospheric

conditions. The deflection is measured by observing the change in the locked homodyne signal

when the feedback beam is turned on. The amplitude is then calibrated by comparing it to

the full size of the interference fringes observed during the scan of the homodyne phase, which

corresponds to one wavelength.

perature in atmospheric conditions is estimated to be around 10K for a modulated

beam of 1mW. In vacuum, where there is no air to facilitate the dissipation of thermal

energy, the power required to achieve the same change in temperature is on the order

of 100 µW. Such temperature increase is known to induce a thermal deflection of a

few tens of nanometres on hybrid nanowires [163]. A direct measurement of how the

power of the actuating beam a↵ects the deflection is shown in Fig. 6.2. The error bars

represent the standard deviation over sets of six successive measurements.

Thermal e↵ects, including the bolometric force [164], are characterized by a finite

response time which can sometimes be too slow for an appropriate control of the system.

The actuation can be strongly a↵ected by the delay due to a slow reaction, and the

feedback force needs to be rectified by considering the convolution of the time derivative

of the original signal with the nanowire’s response function [94, 148]. Modelling an

exponential response of characteristic time ⌧th, the corrected feedback force is

Ffb(t) = �⇣
�

m�m

Z
t

0
dt0

..
xdet(t

0)

✓
1� e

� t�t

0
⌧th

◆
, (6.17)

implying a transfer function of the form

K(!) = �i⇣
�

m�m
!

1 + i!⌧th
. (6.18)

The new denominator in Eq 6.18 implicates a filter-like action that limits the band-

width of the feedback to frequencies lower than 1/⌧th, reducing the overall e↵ective-
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Figure 6.3: Response to feedback of a nanowire at di↵erent orientations. The nanowire is

gold-coated, ⇡ 50 µm in length and ⇡ 300 nm in diameter, and it is always oriented at about

45� with the incident beam in order to detect the two spatially orthogonal modes together.

(a–b) Displacement spectra in normal conditions (red) and when feedback is applied (blue for

⇣ > 0, yellow for ⇣ < 0). For one orientation (left), both modes are subject to cold damping

when the gain is positive, and parametric amplification when the gain is negative. The other

orientation (right), where the nanowire is rotated by 90�, sees the two modes alternatively

damped or amplified in the presence of feedback. (c–d) Simulation of the nanowire’s transfer

function obtained by projecting the susceptibility �
fb

(!) of the two modes onto the detection

axis. The density plot represents the combined transfer function as a function of gain ⇣. The

traces compare the experimental data obtained through a network analyser (solid lines) with

the simulation (dotted lines) for both the magnitude (top) and phase (bottom) of the transfer

function at ⇣ = 0.

ness of the control. Fortunately, nanowires typically have much faster dynamics than

macroscopic resonators, with characteristic times depending on radius r and thermal

di↵usivity Dth as ⌧th ⇡ r2/ (4Dth) [165]. Material properties and size strongly a↵ect

the thermal di↵usivity, which can be almost two or three orders of magnitude smaller

for nanoresonators compared to the bulk material [166, 167] due to phonon scattering

overcoming the phonon-phonon coupling. Assuming an e↵ective thermal di↵usivity

of approximately 10�6m2 s�1, the characteristic time of the nanowire can be on the

order of nanoseconds, substantially faster than the time scale of any eigenmode. The
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bolometric force may be employed reliably for feedback purposes, and Eq. 6.17 can be

approximated to the expression considered in Chap. 6.1.1 without any inconvenience.

Unlike radiation pressure force, which always pushes the target in the direction of

incidence of the beam, the bolometric force has a preferred axis which does not depend

on the relative orientation of the nanowire and the beam. Being an indirect consequence

of the absorption of optical energy, it is factors such as the specific geometry of the

oscillator and its bimorph structure that determine the specific direction of the thermal

deflection. The experimental proof for this comes from the mode-selective behaviour of

the feedback: two spatially orthogonal modes have the same or the opposite response

to the actuation depending on how they are aligned relative to the detection axis, as

shown in Fig. 6.3. If the phase of the feedback is chosen to achieve cold damping of

one mode, in one case the other mode will also be cooled down for the same phase.

If the nanowire is rotated by 90�, the relative phase between the detected signal and

the actuation will still be same for one mode, but opposite for the other. This occurs

because the feedback-induced deflection does not depend on the orientation, whereas

the measurement of the oscillations does.

6.3 Single- and multi-mode cooling of the nanowires

The cold damping technique is an appealing strategy for the suppression of the random

thermal fluctuations in the mechanical system. If the issue of the measurement noise is

addressed appropriately and the detection is sensitive enough to resolve the quantum

fluctuations of the oscillator, the only limit to cold damping is technically set by the

quantum zero-point energy of the oscillation [168]. Under these circumstances the

bolometric force can be used, independently or in conjunction with radiation pressure

force, to reduce the energy of the oscillator even towards its quantum ground state [169–

171]. What happens may seem counterintuitive, as the mechanics are seemingly subject

to “cooling by heating”. However, it would be wrong to regard the oscillator as an

autonomous system. The application of feedback stretches the extents of the system so

that it encompasses an e↵ective bath at lower temperature. This bath is strictly tied

to the feedback loop, and the picture which considers only the energy being absorbed

by the oscillator is incomplete. Examples of systems where photothermal forces have

been used to cool down the vibrational modes, either by active control or passive self-

cooling, include gold-coated microlevers [94,161], semiconductor membranes [172], and

even graphene [173].
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Figure 6.4: Displacement spectra of a nanowire subject to feedback cooling. The nanowire

is ⇡ 60 µm in length, ⇡ 220 nm in diameter, gold-coated, and in vacuum. (a) Single-mode

cooling. The amplitude of the thermal fluctuations (red) is suppressed down to the level of the

background noise and beyond (blue), giving rise to squashing in the displacement spectrum.

The grey trace indicates the detection noise in the absence of the nanowire. (b) Multi-mode

cooling. The parameters of the feedback are optimized towards cooling of the mode with the

lowest frequency, although in order to obtain cooling of the higher-order modes the phase of

the feedback cannot be adjusted optimally and more measurement noise is injected into the

system.

Examples of the spectral response of the nanowire when subject to cold damping

are shown in Fig. 6.4. Feedback control can cool the nanowire’s modes both individu-

ally and collectively. The practical limits of cold damping imposed by the measurement

noise are reached with single-mode cooling, and for high gain squashing is observed (cf.

Fig. 6.4a). For multi-mode cooling, besides the detection e�ciency there are further

limits set by the bandwidth of the feedback and more importantly the ability to con-

trol its phase across a wide spectrum of frequencies. The technical constraint to the

bandwidth scales as the inverse of the characteristic response time ⌧th, and is not found

to be significant relative to the nanowire’s modes. On the other hand, the feedback

phase needs to be precisely tuned in order to achieve pure damping. Fine adjustments

are only possible over a relatively small frequency range, and pushing more than one

mode to the coldest temperature at the same time would only be feasible with the

introduction of more advanced controls. Nevertheless, as Fig. 6.4b shows, the feedback

implemented is capable of simultaneously cool modes spanning up to 2MHz.

Figure 6.5 displays how cold damping of the vibrational modes performs as a func-

tion of the feedback gain. The results vary considerably depending on whether the

nanowire is in ambient or in vacuum conditions. At atmospheric pressures, the addi-

tional dissipation due to the viscosity of the air molecules implies that more power is

required to achieve the same levels of actuation obtained in vacuum. At low pressure
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Figure 6.5: Cooling as a function of gain, which is controlled by the power of the feedback

beam. The nanowires used correspond to the same as Fig. 6.3 for atmospheric conditions and

the same as Fig. 6.4 under vacuum. (a–b) Spectrum of the thermal fluctuations for increasing

power, in air (a) and in vacuum (b). The black mesh lines represent the individual traces,

projected onto the bottom face with a colour corresponding to the peak value of the coldest

mode. The detection noise level is indicated in the colour gradient scale by a grey line. (c–d)

Front view of the spectra in (a–b), colour-coded according to the peak value of the coldest mode

(“II” in air, “III” in vacuum). (e) The temperature of each mode, calculated according to

Eq. 6.15. The error bars are estimated by propagating the uncertainty in the Lorentzian fit of

the amplitude noise. The solid lines are theoretical fits assuming a linear relationship between

the optical power of the feedback beam and the overall feedback gain. The resulting conversion

factors between power and gain estimated for the four modes are 0.4 µW�1 (I), 1.6 µW�1 (II),

39.3 µW�1 (III), and 15.1 µW�1 (IV).

the quality factor of the oscillations is also much higher, rendering the entire procedure

more e↵ective. Starting from a room temperature of 293K, the lowest single-mode

temperature attained is (17.4± 0.2)K. In air it was only possible to cool down to

(49± 5)K. It should be noted that, even under similar pressure conditions, di↵er-

ent modes respond to feedback at di↵erent rates and one may be cooled more rapidly

than the other. The degree of influence is determined by the spatial overlap of the

modes with the direction of the bolometric actuation, which does not depend on the

orientation relative to the feedback beam.

Typically a high gain, ⇣ � 1, is needed to reach the lowest temperature. The
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electronic control of the gain, for example by variable amplifiers, risks introducing

unnecessary noise and could contaminate the modulation. By varying the optical power

of the actuating beam, instead, the regulation of the gain is transferred to the latest

stages of the feedback loop, allowing more refined control over the system. This is the

reason why the plots in Fig. 6.5 are expressed in function of the power of the feedback

beam rather than the dimensionless gain parameter ⇣. Naturally there is a limit to

how much power can be delivered to the nanowire without damaging it, at which point

other kinds of amplification become necessary. In vacuum, the power required for a

productive actuation is low enough that the minimum possible temperature for a single

mode is attainable well within the safety limits.

The results obtained are far from any regime where the oscillator would be expected

to be near its quantum ground state. For a mechanical frequency of 300 kHz, the

temperature needed to reach a phonon occupation number smaller than 1 is estimated

to be around 20mK, orders of magnitude away from the capability of our system. If the

same experiment were to be repeated in cryogenic conditions, an extremely challenging

initial temperature on the order of a mK would be required to observe the nanowire

governed by its quantum fluctuations. Improvements in the detection process would

also be very valuable, since a reduced measurement noise brings lower temperatures

within the reach of the feedback. Similarly, other factors such as a higher mechanical

quality factor can also help to lower the minimum bound of the temperatures achievable

set by Eq. 6.16. At any rate, regardless of how close or far the nanowire is from

its quantum state, feedback cooling provides a practical technique for quenching the

thermal noise of the vibrations. This can provide a strategic advantage when the

resonator is used to probe external signals, although an actual signal-to-noise ratio

enhancement is only possible in the transient regime after the feedback is turned o↵

and does not suppress the noise and the signal alike. The next chapter will focus on the

exact conditions under which the sensor capabilities of the nanowires are improved.
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Chapter 7

Sensitivity enhancement

7.1 Improving the signal-to-noise ratio using feedback

Whether or not a mechanical oscillator used as a measurement probe may benefit from

the application of feedback cooling is a subject that requires careful examination. The

reduction in thermal noise resulting from cold damping is not, in itself, an advantage

towards the sensitivity of the system. The control does not distinguish between the

noise and a possible external signal, and both are equally suppressed by the cooling

process. It is the time scale of the measurement, instead, that takes advantage of the in-

troduction of feedback control. In the steady-state dynamics of the oscillator, when the

measurement integration time ⌧det is much greater than the correlation time ��1
m , the

probing resolution of the system scales as 4
p
�m⌧det [121, 157]. This is quite ine�cient,

and in general long integration times might be required to reach a specific resolution.

The feedback, however, has the e↵ect of extending the narrow-band dynamics of the

mechanical resonance onto a much larger bandwidth thanks to an e↵ectively larger

damping rate, meaning that a shorter time is needed to achieve the same resolution.

The signal-to-noise ratio (SNR) is unaltered, but the measurement becomes faster by a

factor equal to the ratio between the intrinsic and the e↵ective damping rates, �e↵/�m,

which is proportional to the feedback gain.

It is interesting to note that there is no physical requirement for the implementation

of stationary linear feedback, which could instead be simulated by appropriate data

processing strategies [155]. In the case of force sensing, the entire feedback process may

be reproduced by the application of an inverting module and a band-pass filter to the

original measurement record. The inversion converts the displacement observed into a

corresponding force by deconvolution of the dynamics from the oscillator’s susceptibil-

ity, while the filter cuts o↵ the noise which is far from the frequency band of interest

to minimize the contamination of the results. This o↵-line virtual feedback is only an

109
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example of the possible estimation strategies, which also include other filtering tech-

niques such as Kalman or Wiener filters [174]. A scheme using o↵-line data processing

would only be limited by the bandwidth over which the thermal fluctuations overcome

the overall detection noise, and could even be closer to optimal than schemes using

real-time feedback thanks to the removal of any hardware constraints. Ultra-sensitive

nanomechanical resonators are subject to increased measurement noise [175,176] which

could change the parameters of the system and still entail the need for real-time track-

ing.

In a stationary regime, then, feedback cooling leads to a reduction in the integration

time which in most cases can, however, be fully simulated and optimally integrated o↵-

line by data processing and estimation techniques. But what if the signal to measure is

brief or impulsive? In this case having the integration time span over the steady-state

fluctuations would not make the system more sensitive, since the signal to be detected

would be long gone. It has been suggested, however, that the actual SNR can be

enhanced by feedback control when the oscillations are in the transient regime [154,158,

177], and once more feedback leads to an advantage in the sensitivity. Whether a similar

or even better advantage can again be obtained by the relevant estimation strategies is

not straightforward. Because of the non-stationary character of the oscillations it is not

possible to extract the signal by a simple deconvolution as described before, and a more

refined approach is necessary. The nanowire setup provided a good platform to test the

SNR enhancement obtained in the transient regime [16], allowing the comparison of the

sensitivity enhancement obtained by two o↵-line data processing techniques, which are

presented in Chap. 7.2, with that obtained by physical feedback. The cooling scheme

had to be specifically reorganized to be periodic, so that it would be turned on prior to

the measurement and o↵ during the measurement. The remaining part of this section

outlines the experimental details of this periodic quiescence feedback technique.

7.1.1 Periodic quiescence feedback

The sensitivity advantage in the transient regime by real-time feedback is attained

by regularly turning the cooling actuation on and o↵, according to the cyclic structure

represented in Fig. 7.1. The periodic quiescence allows the nanowire to cycle between a

state of overdamping and one of re-thermalization. Since the signal time ⌧sig is assumed

to be much shorter than the thermalization time ��1
m , which strictly depends on the

intrinsic damping of the oscillations, the measurement of the signal is not significantly

a↵ected by the thermal noise until the new steady-state of the oscillations is reached. In
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vacuum conditions, where the intrinsic damping rate of the nanowires is �m . 1 kHz,

the integration times ⌧det can last up to 1ms. In particular, the linewidth of the

nanowire used was measured to be roughly 0.8 kHz. The total duration of one cycle is

set at 2ms, although thanks to a faster temporal response of the nanowire to feedback

(regulated by ��1
e↵ ) it is generally possible to reach the cold-damped steady state more

promptly than the thermalized state, and the total duration of the cycle could be

optimized to be much shorter. The periodicity of the actuation is imposed by gating

the feedback modulation rather than the full field amplitude of the feedback beam,

so that the steady-state impact of the driving force is kept constant throughout the

process.

To enact the incoherent force signal to be measured, a dedicated laser beam is sent

to the nanowire in addition to the feedback and the detection beams. The wavelengths

of the three lasers are all di↵erent to avoid any interference, although the signal’s is

close to the feedback’s in order to achieve a similar influence. The amplitude of the

signal beam is gated by an AOM to produce a 0.1ms optical square pulse, modulated at

the mechanical frequency !m, which is sent to the nanowire right after the feedback is

0.0 0.5 1.0 1.5

(c)
0.0 0.5 1.0 1.5

210-1-2
(b)
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ement (

a.u.)

Feedback: OFFFeedback: ON "det ≲ 1 ms"fb ∼= 1 ms
"sig = 0.1 ms(a)

Figure 7.1: The cycle of periodic quiescence feedback. (a) Diagram of the cycle. During

the first half of the cycle, feedback cooling is applied to increase the damping attributes of

the nanowire. After about 1ms, the control is turned o↵ and the nanowire is allowed to

re-thermalize. Before full thermalization, while the nanowire is in the transient regime, an

optical pulse long 0.1ms is sent to the oscillator to reproduce an external impulsive force. The

integration of the measurement begins right after the feedback is turned o↵ and can last up to

1ms. (b–c) Examples of evolution of the oscillations during one cycle without (b) and with

(d) the application of the external signal. The blue-shaded area represent the cooling interval,

and the orange-shaded area stands for the duration of the impulsive drive. The traces have

been frequency-filtered for clarity of illustration. The nanowire used is the same as that of

Fig. 6.5.
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turned o↵. After the impulsive force is introduced, the SNR is estimated by integrating

the energy of the oscillator and comparing it to the thermal noise in the absence of

the signal. A similar analysis is performed with the feedback turned permanently o↵

to assess how much the SNR has been enhanced compared to normal conditions.

The diagram of the implementation of periodic quiescence feedback in Fig. 7.1 is

followed by two examples of the time-domain evolution of the oscillations during one

feedback cycle, once without and once with the external signal. The amplitude of

the oscillations, subdued in the first half of the cycle by the feedback, is substantially

amplified by the arrival of the incoherent force before it decays back to the steady-

state size of the thermal fluctuations. The use of feedback before the arrival of the

signal allows the amplification to stand out much more above the noise than it would

in ordinary conditions, leading to the SNR enhancement. The full results are reported

in Chap. 7.3 where the enhancement is compared with the one obtained using virtual

estimation techniques.

7.2 O↵-line processing

The problem of optimal estimation in the pursuit for better sensitivity is relevant to

many fields of research, including optomechanics [154,178], atomic force microscopy [156],

and gravity wave detection [179–181]. Given the assortment of systems under consid-

eration, it is fair to assume that direct access to the inner dynamics in order to modify

them by active control is not always allowed. When the physical implementation of

feedback is challenging or altogether impossible, one can resort to o↵-line processing

strategies of the data to replicate similar advantages in sensitivity [155]. This is also an

option for the case when real-time feedback is possible, but it operates sub-optimally

because of limiting conditions.

In this section we focus on two distinct filtering techniques for the enhancement

of sensitivity in the transient regime: virtual feedback, which simulates the e↵ects of

physical feedback on the raw measurement record, and the extended Kalman filter,

which uses a preliminary tracking of the oscillations to predict how the system would

consequently evolve. Both schemes are applied to periodic cycles reminiscent of the

one used for periodic quiescence feedback. Now, however, the temporal evolution of

the oscillations is recorded without the presence of feedback control, letting only the

signal interact periodically with the nanowire.
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7.2.1 Virtual feedback

The dynamics of the oscillator are well known, and so is the response to the potential

application of feedback. With this knowledge it is possible to estimate what the evolu-

tion of the oscillator would be at any specific point in time, even during the transient

regime. Deviations from the expected behaviour can then be used to infer any external

influence, such as the signal to be detected.

Because we are interested in the simulation of linear feedback, we consider the force

in the time domain to be linearly dependent on the position’s measurement record as

Ffb(t) =

Z
t

0
dt0 K(t, t0)x(t0), (7.1)

where t = 0 is taken to be the starting time of the feedback cycle and K(t, t0) is the

kernel of the transformation applied by the feedback, which in steady-state conditions

leads to the transfer function K(!) considered in Chap. 6.1. The kernel is assumed

to be of the form K(t, t0) ' K0⇥(⌧fb � t0)�(t � t0), where K0 is proportional to the

dimensionless feedback gain ⇣, ⌧fb is the length of the time interval where feedback is

applied, ⇥(t) is the Heaviside step function, and the presence of a Dirac delta function

is justified by the fast characteristic time of the nanowires which allows the feedback to

be considered instantaneous. The response at time t due to the state of the system at

time t0 is obtained by convolving the feedback kernel with the mechanical susceptibility
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Figure 7.2: Simulation of the oscillator’s dynamics with virtual feedback, without (a) and

with (b) the application of an external signal to be detected. The black traces correspond to

the experimental measurement record of the displacement. The green traces are obtained by

applying the virtual feedback scheme during the first half of the cycle (green-shaded area). In

this interval the oscillations are substantially reduced in amplitude, as if regular feedback were

used. The orange-shaded area indicates the arrival of the external signal. As in Fig. 6.5, the

traces have been filtered for illustration purposes.
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of the oscillator,

H(t, t0) ..=

Z +1

�1
dt00 K(t00, t0)�m(t� t00). (7.2)

This function can be used to simulate the feedback process, since it can be shown that

the simulated displacement x⇤ satisfies the Fredholm equation of the second kind

x⇤(t)�
Z +1

0
dt0 H(t, t0)x⇤(t

0) = x(t), (7.3)

where x is the position measured in the absence of feedback [155]. Post-processing

of x can therefore produce a record which simulates precisely what would have been

measured if a real-time feedback scheme had been employed.

To solve Eq. 7.3, the full 2ms length of a cycle is discretized into 1000 time steps of

2 µs. The response function H is then treated as a 1000⇥1000 matrix, H, the measured

position x and the simulated position x⇤ are respectively regarded as the input and

the output vectors, x and x⇤, and the integration is carried out by the expansion of

the matrix product. The solution for x⇤ is then found by numerically solving the

approximated equation

x⇤ = (I�H)�1 x, (7.4)

where I is the identity matrix.

Figure 7.2 shows how post-processing changes the measurement record to simulate

ideal periodic quiescence feedback. The numerical estimation from Eq. 7.4 is applied

throughout the first half of the cycle, mimicking the cold damping e↵ect of active

control. In the second half the trace is allowed to converge back to the original fluctua-

tion measured. The initial parameters of the simulation are estimated in the following

way: first the gain is varied in order to maximize the SNR obtained using the param-

eters estimated from the raw data, then the values of the parameters are repeatedly

adjusted in order to maximize the peak SNR. The final values used for the results

in Chap. 7.3 are !m = 2⇡ ⇥ 339.722 kHz, �m = 2⇡ ⇥ 0.85 kHz, ⌧fb = 0.896ms, and

K0 = �1.6784 · e�0.00004i nNm�1.

7.2.2 Extended Kalman filter

The Kalman filter is an optimal estimator algorithm which can be applied to linear

systems to predict their evolution from their historical record [182–184]. Given a series
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of measurements a↵ected by noise, the Kalman filter can be used to keep track of the

underlying state by finding the statistically optimal estimate. The Kalman filter is op-

timal in the sense that it minimizes the mean square error of the estimated parameters.

However, according to theory the best use of the measurements towards the estimation

is achieved under the conditions that the noise entering the system is Gaussian and

that the linear model faithfully reflects the full dynamics. For transition models, the

extended Kalman filter (EKF) [185] represents the standard prediction technique to

be used. The EKF is an adaptation of the Kalman filter to non-linear processes by

linearization around the estimated state.

To implement the EKF scheme, the model requires knowledge of the natural oscilla-

tion frequency, the damping rate, the initial amplitude and velocity, the time interval,

the process and measurement noise vectors, and the initial covariance estimates. The

system’s state is stored as a vector containing the oscillator’s position x, the velocity
.
x, the damping ratio �m/!m = 1/Qm, and the mechanical frequency !m. The algo-

rithm also keeps track of a covariance matrix which describes the uncertainty in this

state vector. At each time step of 2 µs the filter acts in two stages: “prediction” and

“update”. During the “prediction” stage the state of the system is propagated to the

next step using the Runge-Kutta approximation (RK4), which determines the future

value by adding to the present signal the weighted average of four increments (each

given by the product of the time step interval with the derivative of the state vec-

tor). This method is used to estimate the evolution of the state for a short time into

0.0 0.5 1.0 1.5

(b)
0.0 0.5 1.0 1.5

210-1-2
(a)

! (ms)Displac
ement (

a.u.)

Figure 7.3: Prediction of the oscillator’s dynamics by the extended Kalman filter algorithm,

without (a) and with (b) the application of an external signal to be detected. The original

measurement record of the displacement obtained experimentally is shown in black. The red

traces correspond to the optimal estimate obtained by the EKF scheme. After tracking the

original record for the first half of the cycle (red-shaded area), the algorithm stops updating

and the state predicts normal decay at the thermal relaxation rate. The orange-shaded area

indicates the arrival of the external signal. As in Fig. 6.5, the traces have been filtered for

illustration purposes.
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the future. In the “update” stage, the estimated evolution is refined using the actual

measurement results together with the known measurement and process noise vectors.

After comparing the prediction to the measured value, the estimated state vector is

updated to reduce the di↵erence between the two. The discrepancy is calculated ac-

cording to the relative uncertainties, giving more weight to either the measurement

or the estimation depending on which quantity has the lower uncertainty. After the

two stages are complete, the estimated state vector is used as the initial state for the

next time step. After about 1ms, just before the optical pulse arrives, the “update”

stage is switched o↵ to let the EKF predict the subsequent evolution. The prediction

is expected to be a reliable estimation of the phase-space trajectory of the oscillation,

and the presence of an external stimulus can be deduced by looking at the deviations

from the expected behaviour. The phase-space distance between the measured and

predicted trajectories in the absence and in the presence of the impulsive force is used

to evaluate the amplitudes of the signal and of the noise, respectively, which are then

used to calculate the SNR.

As the virtual feedback scheme, the EKF requires precise definition of the pa-

rameters of the system. The initial values inferred from the raw data are iteratively

adjusted across a very narrow parameter range in order to maximize the resulting SNR

of the filtered trajectories. This procedure returned best results for the final values of

!m = 2⇡ ⇥ 339.9 kHz and �m = 2⇡ ⇥ 0.53 kHz.

7.3 Comparison of the enhancement

The experimental data is collected as four sets of homodyne signals recorded at the

rate of 25MS s�1. Each set comprises a statistically significant number of traces for the

nanowire’s evolution with and without real-time feedback control, and in the presence

or absence of the impulsive force. All traces are spectrally filtered to restrict the signal

to a 40 kHz bandwidth around the mechanical frequency.

The outcomes for the SNR and the corresponding enhancement resulting from the

various schemes are presented in Fig. 7.4. For physical feedback, the SNR is calculated

by integrating the energy of the oscillations from the data with both feedback and

impulsive force and dividing the result by the average integral of the energy from the

data with feedback but without the application of the external signal. For the two

filtering schemes a similar approach is applied to the data without feedback, although

the SNR is evaluated by the phase-space distance between the observed and the pre-
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Figure 7.4: Signal-to-noise ratio enhancement for the schemes considered. (a) Measurement

of the SNR of the impulsive force, without (black) and with (blue) feedback cooling. The SNRs

for the two o↵-line processing strategies (virtual cooling in green, extended Kalman filter in red)

are both calculated from the same data set without feedback. The shaded regions represent the

standard error. (b) Enhancement in SNR of the two estimation techniques, calculated as the

ratio of the SNR improved by the relative scheme with the SNR obtained from the raw data.

The dashed lines indicate the standard deviation in the estimated enhancement.

dicted trajectories rather than the integral of the oscillator’s energy. All the results

are averaged over 150 traces, and the uncertainty is assigned according to the standard

error (Fig. 7.4a) or the standard deviation (Fig. 7.4b).

For the specific schemes employed the SNR peaks after about 0.2ms of integration

time. For longer times the SNR degrades with a rate corresponding to the mechanical

decay time as the thermalization of the oscillator starts to prevail. In this transient

regime feedback cooling achieves a maximum SNR of about 20, more than double

than the value obtained without feedback. In particular, physical cooling is shown

to be roughly as e↵ective as the virtual cooling, indicating near-optimal actuation of

the nanowire. After about 0.4ms, real-time feedback shows even a slightly higher

improvement than its virtual counterpart. This is likely due to the fact that laser

noise may a↵ect the system’s parameters within the time scale of the measurement,

a factor that cannot be tracked by the filtering technique but would automatically be

accounted for by active control. The extended Kalman filter algorithm outperforms all

other strategies.

The ratio of the SNR from filtered and raw data gives the enhancement factor

(Fig. 7.4b). This quantity, calculated on a trace-by-trace basis for the filtering tech-

niques, cannot be similarly calculated in relation to physical feedback since the cooling

action would need to be reverted, which is impossible. For this case, the enhancement

might only be defined in terms of an average of the SNR over all traces without feed-

back, but this method does not allow an evaluation of the standard deviation and the
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Figure 7.5: Force resolution as a function of integration time for raw, feedback, and filtered

data, as processed from Eq. 7.7.

outcome may not be as reliable.

To calculate the force sensitivity of the system, we model a signal applying a

monochromatic force of amplitude F and frequency !m for the duration of an interval

long ⌧sig which drives an oscillation

x(t) =

Z
⌧sig

0
dt0 F sin (!mt

0)�m(t� t0). (7.5)

The uncertainty on x is obtained by looking at its variance over the duration of the

measurement,

�2
x

=
1

⌧det

Z
⌧det

0
dt

����
Z

⌧sig

0
dt0 F sin (!mt

0)�m(t� t0)

����
2

. (7.6)

Inverting this relation, we find that the smallest force detectable is

F =

vuut
⌧det�

2
x

R
⌧det

0 dt
���
R
⌧sig

0 dt0 sin (!mt
0)�m(t� t0)

���
2 . (7.7)

The resolution attainable by the nanowire is shown in Fig. 7.5. The best sensitivity

is achieved between 0.1 and 0.2ms, in correspondence with the point of maximum

SNR. A force as small as 200 aN can be resolved if any of the enhancement strategies

is implemented, and as suggested before the extended Kalman filter delivers the best

advantage.

Conclusions. The investigations based on optically induced thermal actuation

demonstrate promising capabilities of the nanowires as sensitive force sensors. High

resolution and fast force response are important qualities in bio-sensing applications

where the dynamics can change rapidly and long integration times are not accessible.
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The resolution in short transient regimes can be enhanced without foregoing any other

trait if cold damping feedback is used, and the flexibility of the single-pass, low-power

implementation is particularly relevant to biological samples that cannot be exposed

to global refrigeration. The sensing performance can also be improved by the use of

o↵-line processing techniques rather than active control of the nanowire. Estimation

by filtering algorithms stand out as a viable alternative which removes the need for any

feedback hardware while providing a similar or even better sensitivity advantage. A

final verdict on which strategy is best, however, is only possible based on the specifics of

the system. Incomplete knowledge of the probe’s dynamics, untracked perturbation of

the parameters, and insu�cient computational power can all be factors that may favour

real-time feedback over o↵-line processing. As an example, even a 0.1% perturbation of

the value of the natural frequency used as an input to the filter may significantly a↵ect

the SNR obtained. Such a change in frequency could easily occur through a change

in the bulk temperature of the oscillator. From a more fundamental perspective, it

should also be remembered that estimation strategies are based on a linear modelling

of the system. While physical feedback is directly adapted to any non-linearities in the

oscillation, it is not straightforward to retrieve a similar response from virtual feedback,

and even the linearization of the extended Kalman filter scheme could fail when the

non-linearity is too pronounced. Which technique results more convenient between

physical feedback and o↵-line filtering techniques depends on whether the system is

easily simulated and what kind of resources are available.
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Part III

Towards optical levitation of a

macroscopic mirror
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This Part is devoted to a scheme for state-of-the-art metrological applications based

on the optical levitation of a macroscopic mirror by the intra-cavity field of three optical

resonators. Presenting the idea from its earliest formulation to the realization of a

pilot experiment, the feasibility of the scheme is explored from both a conceptual and a

practical point of view. Chapter 8 starts with a snapshot of the current scene in optical

levitation, makes the case for measurements in suspended systems, and motivates the

development of coherent levitation. It then continues with an explanation of how the

optical spring e↵ect can be used to obtain ideal isolation of the system and what other

elements may obstruct its accomplishment. Chapter 9 enters into the technical details

of the apparatus and describes the factors leading to the specific tripod configuration

considered. In Chapter 10 we conclude with the preliminary results from the first trials

and report on suggestions and priorities of potential upgrades based on what has been

learned.

The research presented here has been featured in the following publication:

• [14] Guccione, G., Hosseini, M. et al., “Scattering-Free Optical Levitation of a

Cavity Mirror”, Physical Review Letters 111 183001 (2013).

Upholding something can be a momentous
task, as demonstrated by Atlas. According
to Greek mythology, the Titan, brother of
Prometheus and Menoetius, has to endure for
all eternity the burden of the heavens upon his
shoulders.

J. S. Sargent, “Atlas and the Hesperides”



Chapter 8

Conception and development of

the scheme

8.1 The current scene in levitation

Levitation, the chance to defy the pull of gravity and hover free from tangible con-

straints, has held a place in mankind’s aspirations for as long as historical records

can confirm. Even today, with countless aircraft weaving trails through the skies and

astronauts regularly experiencing weightlessness in a permanently occupied space sta-

tion, the levitation of ground-based objects can still induce awe and inspiration in the

general public. As with any other phenomenon, however, the interest on levitation

would be quite short-lived if it had to depend merely on its wonder factor. The shift

from novelty devices used to demonstrate physical principles to practical engineering

tools with functional applications is nowadays being completed by more and more

levitated systems. Levitated trains are a notable example [186], using the action at

a distance from permanent electromagnets or superconducting circuits to guarantee

fast, friction-less transportation. Other examples include contact-free manipulation of

small particles by acoustic standing waves [187,188], and “levitation” of graphene using

oxygen intercalation to lift and decouple the structure from a metal substrate [189].

Optical levitation dates back to the early 1970s, when micron-sized dielectric par-

ticles were trapped by radiation pressure force alone for the first time [190, 191]. The

technique, now known as optical tweezers [192–194], exploits the high refractive index

of the particle to deflect the beam and produce a back-action force that pushes the

object towards the point of highest intensity, the focus. Since the first experiments

the development of optical tweezers has been fuelled by continuous upgrades, which

include single beam realization over diverse scales [195] and the broadening of the trap-

ping range thanks to regenerative Bessel beams [47]. Advancements continue even to

123
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Figure 8.1: Only few of the many examples of optically levitated systems. (a) The principle

of optical tweezers uses the intensity gradient to trap particles in the focus of the beam [199].

(b) Multiple optical tweezers along the three axes create an “optical molasses” that cools

the centre-of-mass motion of the particle [152]. (c) Doubly resonant optical cavities can also

create a trapping potential for tiny particles [200]. (d) In air, photophoretic forces allow

manipulation of objects on a much bigger scale [198]. (e) A proposed system based on a

cavity mirror attached to a silica disk which is suspended by two optical tweezers [97].

this date, for example with the establishment of robust techniques to deliver particles

to high-vacuum environments [196]. Photophoresis can provide an alternative method

of levitation for particles that are not required to be in vacuum conditions: the non-

uniform heating of the air surrounding the particle causes the gas molecules to rebound

o↵ the surface with di↵erent velocities, producing a net force that can trap bodies sev-

eral order of magnitude heavier compared to the particles lifted by radiation pressure

force [197, 198]. A collection of representative systems based on optical levitation is

shown in Fig. 8.1.

The success of optical levitation is largely attributable to the flexibility it provides

in manipulating objects without direct contact [201, 202]. The technique is virtually

suitable for anything ranging from single atoms to particles of a few micrometres in

size, and has been successfully applied to manipulate DNA molecules [203] and col-

loidal systems [204, 205]. By transferring the orbital angular momentum of light onto

the particle, it is possible to rotate and manoeuvre micro-machines [206] and micro-

gyroscopes [207]. One could even think of using optical tweezers to operate a micro-

scopic steam engine [208], evidence of the fact that only inventiveness poses a limit to

the versatility of optically levitated systems.
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Trapping in an optical potential makes particle’s centre of mass behave like a har-

monic oscillator. Thanks to the complete detachment from any mechanical support,

which removes a direct coupling to a thermal reservoir, these suspended oscillators

demonstrate ideal qualities for optomechanics experiments. In principle, in high vac-

uum the mechanical damping rate �m could be reduced almost indefinitely and the

mechanical quality factor Qm = !m/�m of the centre-of-mass motion could become

higher than 1012 [200] once it is decoupled from the internal degrees of freedom. A

long coherence time and a high quality factor would make techniques like laser cooling,

state transfer, and quantum superposition incredibly accessible [209].

Multiple approaches could be considered in connection to laser cooling. Doppler

cooling along the optical axis can be achieved if the levitated particle enables resonance

of whispering gallery modes around its perimeter [210]. A combination of three cool-

ing beams encompassing all three spatial directions generates an “optical molasses”,

an expression derived from the viscous nature of the forces experienced by the levi-

tated object. Any generic cooling technique can be applied to the principle of optical

molasses, including modulation of the intensity of the trapping beam to realize active

feedback damping rather than passive cooling [152, 153]. Alternatively, the principle

of optical tweezers can be applied to suspend the object within an optical resonator,

extending the possibility of passive Doppler cooling to any type of particle. With a

doubly resonant arrangement, two optical fields can cooperate to simultaneously trap

and cool the target [88, 211]. Sympathetic cooling by coupling of the levitated sys-

tem with ultra-cold atoms has also been suggested to reach the quantum regime for

macroscopic resonators with less demanding cavity requirements [212].

The absence of environmental noise makes levitated systems particularly useful

platforms for metrological measurements. Force sensitivities down to a few zNHz�1/2

have been accomplished by optically suspended nanoparticles [199], although feedback

control is required to cancel the e↵ect of thermal non-linearities that arise even at

the lowest power in the absence of a thermal bath. Accurate measurements of tem-

perature [213] and electric charge [214] are also possible, in the latter case with a

resolution 10�5 smaller than the fundamental charge of the electron. A high-frequency

gravitational wave detector based on optically trapped particles has also been pro-

posed [215]. Levitated systems in general are particularly functional as accelerometers

and gravimeters, and superconductive levitation of microspheres [216] or of magne-

tized macrospheres [217] has been suggested for long-term scanning of force gradients

induced by surface gravity di↵erentials.
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Precision and sensitivity are critical for tests of fundamental physics. For instance,

the extremely high resolution of levitated particles may be applied to the detection of

short-range non-Newtonian forces or the characterization of Casimir interaction [218],

and thanks to the availability of long integration times possible violations of the inverse-

law of gravity may be expressly ruled out [219]. Oscillators that are completely de-

coupled from a thermal reservoir are more predisposed to anomalous dynamics which

allow for example the study of non-equilibrium fluctuation theorems [220], important

for chemical and biological processes based on irreversibility. The atypical suscepti-

bility of levitated systems could in principle promote the achievement of strong cou-

pling [221], also facilitating the observation of quantum dynamics. This leads to the

inevitable appeal towards exotic operations such as matter-wave interferometry [222]

and superposition of living organisms [223]. Other audacious proposals close the loop

between fundamental physics and levitation by suggesting that repulsive quantum vac-

uum forces may be used to levitate an ultra-thin mirror [224].

Unavoidably, all the systems mentioned so far are a↵ected by distinct limiting

factors often tied to the levitation process itself. While certain noise processes may be

monitored and counterbalanced by feedback control, such as classical laser amplitude

noise in optical levitation, other e↵ects may irreparably impair the measurements and

hold back the sensitivity. Superconductive levitation su↵ers decoherence because of

the generation of eddy currents, whereas optical tweezers are subject to scattering

losses that become especially pronounced in cavity-enhanced systems. If the cavity is

a pre-requisite for more refined sensitivity, a solution could be found by separating the

trapping process from the measuring component. For example, two optical tweezers

can be applied to a silica disk to trap it in the horizontal plane while balance in

the vertical direction is obtained by the radiation pressure force on a cavity mirror

attached to the disk [97] (cf. Fig. 8.1d). To completely eradicate scattering losses,

however, a more extreme approach is necessary. The system that will be discussed

in the following chapters, based on the fully coherent optical levitation of a cavity

mirror [14], is designed to accomplish absolute detachment from the environment while

preserving all of the information about the system. Using the resonantly amplified fields

from three optical cavities in a tripod configuration, the weight of the common end

mirror on top of the tripod can be cancelled by radiation pressure force. The trapping

potential is provided by the optical spring e↵ect, which induces restoring forces when

the fields driving the cavities are blue-detuned with respect to resonance. Each “leg”

of the tripod behaves like an extremely rigid spring, with the sti↵ness determined by
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the finesse of the corresponding cavity. Like levitated particles, the quality factor of

the motional eigenfrequencies of the levitated mirror may grow to exceptionally high

values in vacuum. Now, however, the read-out from all the cavities provides a complete

picture of the state of the oscillator, making the system more robust and suitable for

state-of-the-art applications.

8.2 Optical spring tripod

The idea of the optical tripod is founded around the radiation pressure of the intra-

cavity fields of three Fabry–Pérot resonators, arranged in a vertical geometry as in

Fig. 8.2. By letting the upper mirror act as the common end of the three cavities, the

combined action of the radiation pressure forces provides a balancing force that can

suspend the mass without the addition of any other support. To assist in the stability

of the tripod the upper mirror is taken to be convex, so that its centre of mass lies

level with the position of incidence of the cavity beams or below. Assuming the three

cavities, labelled by the index ⌫ 2 {1, 2, 3}, to be perfectly identical, and recalling the

relationship between intra-cavity power and force from Eq. 3.58, one can derive that
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Figure 8.2: Concept diagram of the optical spring tripod. Three lower mirrors of radius of

curvature R
⌫

and an upper mirror of radius of curvature R
m

are aligned to form the three

Fabry–Pérot cavities of length L
0

acting as the tripod legs. The coordinate system relative to

the centre of mass of the upper mirror is shown in the bottom right, including the angle of the

cavities from the vertical axis, ✓
⌫

. The top right diagram is an outline of the cavity response

as the upper mirror is displaced vertically. The input field (black arrow) is detuned so that the

balancing condition is satisfied on the side of the resonance. When the mirror falls (z < 0),

more power resonates inside the cavities to push it back, while the opposite happens when the

mirror floats too high (z > 0). The derivative of the force, which is proportional to the power in

the cavities, corresponds to the sti↵ness of the springs holding the mirror in place. The optical

trap breaks if the mirror falls too far below resonance, where the spring becomes negative and

the force turns anti-restoring.
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the intra-cavity power P
⌫

required in each resonator to satisfy the balancing condition

is

P
(bal)
⌫

=
1

3 cos(✓
⌫

)

mgc

2
, (8.1)

where g = 9.81m s�2 is the surface gravitational acceleration, c is the speed of light, m

is the mass of the mirror, and ✓
⌫

is the cavity’s angle from the vertical. Thanks to the

resonant amplification of the cavities, the power available at the input of each leg of

the tripod is used to lift a much heavier weight than otherwise possible. In addition,

the coherent coupling with the cavities imprints the motion of the mirror directly onto

the resonating modes without any added noise. Complete access to the state of the

oscillator, unperturbed by scattering losses or mechanical supports, is paramount for

applications based on detection e�ciency, such as the measurement-based feedback

seen in Chap. 6.

The equilibrium reached by the optical tripod would be short-lived if the forces had

merely a balancing e↵ect. To maintain the mirror floating on top of the cavity fields

after a slight displacement, no matter how small, it is crucial to have the forces display

restoring qualities. This can be realized by the optical spring e↵ect, as blue-detuning of

the input fields relative to the cavities’ resonances generates a radiation pressure force

gradient that confines the mirror to a specific region. Intuitively, detuning of the optical

frequency to the side of the resonance ensures that if the mirror were to fall down, for

example, the intra-cavity field would become more resonant and the mirror would be

pushed back up by the stronger radiation pressure force. If the mirror moved too

high, instead, the cavities would respond with a weaker force and the mirror would fall

back to its original position. The angular aperture of the tripod projects this response

to all three dimensions of space. Optical springs, occasionally employed to provide

additional rigidity to weak mechanical springs [98, 137], are in this case involved for

the full support of the mirror, which in the absence of mechanical attachments behaves

like a free mass without an intrinsic frequency of oscillation. Because the trapping is

entirely optical, appropriate tuning of the optical frequency and of the input power

o↵ers unprecedented flexibility on the system’s parameters.

8.2.1 Stability potential

The stability of the mirror is best characterized by its potential energy U(x, y, z), a

function of the coordinates of the centre of mass oriented as in Fig. 8.2. A more
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generalized potential which also includes angles of rotation of the mirror is possible

but unnecessary, since the symmetry of the spherical mirror is such that any small

rotation around the centre of mass can be considered as a translation of the Cartesian

coordinates. Should any torque instabilities arise, one can resort once more on the

optical spring e↵ect to reduce them and make the system more robust [225–227]. The

potential is constructed by integrating the total force applied on the mirror Ftot =

(F
x

, F
y

, F
z

) over a path extending from the origin to the point r = (x, y, z):

U(x, y, z) ..= �
Z r

0
dr0 · Ftot(r

0). (8.2)

The path can be chosen arbitrarily as long as the forces are conservative. This is not

strictly the case for the radiation pressure force once the finite response time of the

cavity is taken into account, which introduces a viscous element to the dynamical back-

action. The present analysis will presently ignore this fact and assume an undamped

system subject to fully conservative forces in order to obtain an uncomplicated picture

of the stability. The premises allowing such assumption will be justified in Chap. 8.2.3

with the introduction of dual cavity fields. With complete freedom of choice for the

path of integration, the calculation can be simplified to the sum of three integrals along

directions parallel to the axes:

U(x, y, z) = �
Z

x

0
dx0 F

x

(x0, 0, 0)�
Z

y

0
dy0 F

y

(x, y0, 0)�
Z

z

0
dz0 F

z

(x, y, z0). (8.3)

The total force results from the combination of the gravitational weight of the mirror

with the forces from the three cavities, F
⌫

:

Ftot(x, y, z) =

0
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The action of each cavity is proportional to the power and aligned with the optical

axes as

F
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(x, y, z) =
2P

⌫
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where the resonators’ orientation is specified by the polar angle '
⌫

, respectively 0,

2⇡/3, or �2⇡/3, and the azimuthal angle ✓
⌫

, identical for all three cavities. Since the

upper mirror is shared by the three resonators, the three optical axes join at the former’s

centre of curvature. The angular aperture of the tripod is therefore ✓
⌫

' arcsin(d
⌫

/Rm),

where d
⌫

is the distance of the beam’s spot from the origin and Rm the radius of

curvature of the upper mirror. The general form of the intra-cavity power P
⌫

, recalled

from Eq. 2.41, is

P
⌫

(x, y, z) =
T
⌫

1 + 4F2
⌫

⇡

2 sin2(�
⌫

(x, y, z)/2)

F2
⌫

⇡2
Pin,⌫ , (8.6)

where �
⌫

is the round-trip phase shift of the cavity, F
⌫

is the finesse, T
⌫

is the transmis-

sivity of the bottom mirror, and Pin,⌫ is the input power. The round-trip phase shift is

concomitantly determined by how the detuning of the optical frequency �
⌫

compares

to the free spectral range1 !FSR and by how the length of the cavity compares to the

half-wavelength �/2:

�
⌫

(x, y, z) = 2⇡

✓
�

⌫

!FSR
+
�L

⌫

(x, y, z)

�/2

◆

= ⌧ (�
⌫

+G0�L⌫

(x, y, z)) . (8.7)

Here, �L
⌫

(x, y, z) ..= L
⌫

(x, y, z) � L0 is the di↵erence between the cavity length when

the mirror is displaced and the cavity length at rest, which is assumed to be a multiple

number of �/2. In the last line, Eq. 8.7 has been rearranged to reveal its connection

with the cavity lifetime ⌧ and with the optomechanical coupling constant G0, which is

equal to 2!FSR/� for a Fabry–Pérot cavity. It should be noted that Eq. 8.6 is equivalent

to the apparently simpler form of Eq. 2.60, with the only di↵erence that the latter is

obtained in a regime of small detunings while the former preserves the full periodicity

over di↵erent free spectral ranges. The simpler expression is however convenient to

determine the detuning required to satisfy the balancing condition of Eq. 8.1,

�(bal)
⌫

= ±

s
3 cos(✓

⌫

)Pin,⌫ · 2⌫/⌧
mgc/2

� 2
⌫

, (8.8)

where 
⌫

= T
⌫

/ (2⌧) is the linewidth of the cavity under the assumption that the upper

mirror is fully reflective and the field only leaks out from the input mirror.

1Technically, the free spectral range depends on the length of the corresponding cavity and should
also be indexed by ⌫. Here, however, !FSR and the related ⌧ and G0 are calculated at the origin where
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Figure 8.3: Potential energy of the tripod’s upper mirror. (a–c) Planar cross sections of

U(x, y, z) passing through the origin, revealing a tight-confinement region. (d) Horizontal cut

of the triangular lattice of trapping nodes, each similar to the one at the origin. The energy

axis is expressed in a dB scale relative to the value of the potential just outside of the trapping

region, U
0

= 2 fJ. (e) Isopotential surfaces showing the confinement of the mirror in space.

The mirror is trapped as long as its energy does not exceed ⇡ 1 fJ. The parameters used are:

m = 1mg, � = 1064 nm, L
0

⇡ 185mm rounded to the closest multiple of �/2, F
⌫

⇡ 3100 with

the upper mirror fully reflective and the lower mirrors 99.8% reflective, !
FSR

⇡ 2⇡ ⇥ 810 kHz,


⌫

⇡ 2⇡ ⇥ 130 kHz, �
⌫

⇡ 2⇡ ⇥ 230 kHz, P
in,⌫

= 1W.

From the calculation of the potential energy it emerges that the tripod configuration

traps the upper mirror in a site whose dimensions depend on the tripod’s aperture

and the finesse of the cavities. The parameter regime used for the estimation shown

in Fig. 8.3 displays a trap stretching approximately 20 nm horizontally and 0.3 nm

vertically, for F
⌫

⇡ 3100 and ✓
⌫

⇡ 1.4� for all three cavities. The large discrepancy

in size between the horizontal and the vertical directions is largely due to the narrow

angular aperture chosen, which makes the three cavities close to vertical in order to

maximise the component of radiation pressure force acting against gravity. The finesse

is selected as a compromise between the size of the trap and the power required for

levitation. A high finesse would allow an easier fulfilment of the balancing condition

the three cavities are taken to have equal length L0.
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with less input power, but at the same time the Lorentzian envelope of the cavity

resonance would be narrower and the upper mirror would perceive the positive sti↵ness

over a smaller domain. The mass of the mirror is 1mg, which demands at least 1.5 kW

of combined intra-cavity power to achieve levitation. The finesse considered is high

enough that 1W of input power per cavity would su�ce to have enough circulating

power even with detunings on the order of the linewidth.

A particularly remarkable feature is the recurrence of trapping sites at each free

spectral range of the cavities, e↵ectively creating a three-dimensional lattice of tight-

confinement nodes (cf. Fig. 8.3d). The small dimensions of a each node should not

be concerning, as they are simply determined by the extent of the cavities’ resonance

compared to the full free spectral range. Trapping within a stability node is equivalent

to locking the cavity at or near resonance, a task that is regularly achieved with incred-

ible precision. Despite the fact that the system should be self-stabilized once trapped,

active feedback may nevertheless be opportune to ensure the simultaneous lock of the

three cavities.

8.2.2 Sti↵ness and oscillations

Under the confining influence of the stability potential, the mirror’s centre of mass is

maintained close to the origin by the restoring action of the radiation. The sti↵ness of

the three-dimensional optical spring, which depends on the direction of the displace-

ment, is described by a second-order tensor [228] obtained as the Jacobian of the force

from Eq. 8.4. The components of the sti↵ness tensor are, for i, j 2 {x, y, z},

K
ij

(x, y, z) = �@
i

F
j

(x, y, z). (8.9)

The preferred directions of oscillation are inferred by diagonalizing K. This task is

automatically settled at the origin, where the dynamics is reduced to motion along the

original basis of Cartesian coordinates for small vertical displacements. Specifically,

the eigenvalues of the sti↵ness tensor at the origin (obtained in the regime of small
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Figure 8.4: The mirror’s centre of mass eigenfrequencies, for the same parameters used in

Fig. 8.3, as a function of detuning (a) and input power (b) of the three cavities. The frequencies

of oscillation along the x and the y axes overlap because of symmetry. Also, they are both

magnified by a factor of 10 to increase their visibility relative to the frequency of oscillation

in the vertical direction. The shaded area in (a) represents the region of instability, while

the dashed line indicates the detuning required to satisfy the balancing condition. In (b) the

balancing condition is always satisfied, and the dashed line corresponds simply to the input

power used in (a).
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each consistent with the static limit of the optical spring of Eq. 3.70.

The optically induced frequencies of oscillation, proportional to the square root of

the sti↵ness, are directly inferred from the eigenvalues of K:

!os,i =
p
K

ii

(0, 0, 0)/m. (8.13)

The results, based on the same parameter used for the modelling of the stability po-

tential, are illustrated in Fig. 8.4. Because of horizontal symmetry at the centre of

the trapping region, the frequencies in the x and y directions perfectly coincide, with

an estimated value of about 900Hz at balance and up to 1.5 kHz when dynamically

displaced within the stability node. The oscillations in the vertical direction are much

sti↵er, with a frequency of approximately 50 kHz at balance and peaking at more than

80 kHz when displaced.
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The traces in Fig. 8.4a shows how the eigenfrequencies vary as a function of the

detuning of the cavities when the input power of each cavity is 1W. Even if the

intra-cavity power is adequate for levitation, at zero or negative detunings there is

no restoring force to steadily support the mirror. Only for positive detunings the

eigenfrequencies adopt real values, e↵ectively following the slope of the Lorentzian.

The balancing condition in this case is satisfied when �
⌫

⇡ 1.75
⌫

⇡ 230 kHz (cf.

Eq. 8.8).

Traces similar in behaviour but at the same time with very di↵erent characteristics

are obtained when the power is increased while the detuning is adjusted to maintain

the balancing condition in the same position, as in Fig. 8.4b. As it would be ex-

pected no eigenfrequencies are possible when the input power is below a threshold

of 1
3 cos(✓

⌫

)
mgc

2 ⇥ 2F
⌫

⇡

, which corresponds to the minimum power necessary to achieve

levitation at resonance. As soon as the threshold is passed, the injection of higher

input power has the e↵ect of pushing the balancing detuning further away from reso-

nance, now however with a much less pronounced asymptotic drop to zero. For high

(but reasonable) input power, the optical spring frequencies may almost be treated as

constants.

8.2.3 Dual-beam configuration

It is well known, especially in the gravitational wave community [228], that single-

cavity configurations with a suspended mirror introduce tilt instabilities. The triple-

cavity configuration of the optical tripod, however, combines the optical springs from

three independent fields to create a fully stable system. Yet this is not enough: the

self-locking that originates from the restoring e↵ect of the radiation pressure force

gradient is tainted by the occurrence of anti-damping and parametric amplification of

the oscillations due to the delayed response of the cavities [80].

As the tripod’s upper mirror does not have any mechanical supports acting as

dissipative sinks, a remedy to the problem needs to be found in the interaction with

the optical field. In particular, one can resort to the same optical spring e↵ect which

introduces the dynamical instability in the first place, since detuning the field to the

other side of the resonance induces a damping, anti-restoring force instead. The three

blue-detuned beams creating the trap can therefore be combined with another set of

red-detuned beams to make the system robust against parametric amplification and

favour lasting stability. The newly introduced fields need not be comparable in intensity

to the trapping ones. Because the dispersive and the dissipative attributes of the optical
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spring scale di↵erently as a function of detuning (cf. Fig. 3.4), it is possible to use low-

power damping beams with a di↵erent detuning than the trapping ones to introduce a

dissipation capable of stabilizing the system without introducing substantial changes

to the sti↵ness.

To implement the dual-beam configuration, rather than doubling the number of

cavities to six it is certainly more convenient to let the original three cavities be dou-

bly resonant [89]. When considering this option it should be remembered that, unless

orthogonal polarizations are used, the injection of two di↵erent fields into the same cav-

ity results into interference that will cause part of the intra-cavity power to beat. The

beating consequently extends to the force experienced by the mirror, and the levita-

tion dynamics may be a↵ected beyond control. The mechanical response of the system,

however, is more or less receptive to the interference depending on the time scale of the

beating. The susceptibility of the upper mirror is particularly prominent only at fre-

quencies close to the motional eigenfrequency !os, which for the optical tripod is fully

determined by the optical spring. The bandwidth of the susceptibility is determined

by the magnitude of the damping rate, |�m|. Even though we are trying to ultimately

minimize the (anti-)damping, we may for now assume it to be finite but smaller than

the frequency of oscillation, i.e. |�m| . !os. The mirror’s motion is not driven by the

beating when the beat frequency is many multiples of |�m| higher than !os, when only

a time-averaged e↵ect is perceived. Since the beat frequency is determined by the rela-

tive detuning between the two fields, the complications emerging from the interference

can thus be neglected if the two input beams are detuned su�ciently apart from each

other. Whether this condition is naturally satisfied or not, it is always possible to

take advantage of the periodicity of the cavity’s resonance and detune the two beams

to independent free spectral ranges. As the beat frequency is up-shifted by one or

more free spectral ranges, orders of magnitude higher than the peak in susceptibility,

the mirror’s dynamics become clear from any undesired e↵ects. Numerical support to

these claims is o↵ered in Appendix C. Under these circumstances the optical springs

can be added together as if the two intra-cavity fields acted independently and without

reciprocal interference.

The damping component of the optical spring is manifest only in the full dynamical

expression of Eq. 3.70, in which case the optical spring is a function of the spectral

frequency !. The generalized eigenvalue of the sti↵ness tensor at the origin is, in the
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The frequency of the oscillations and the corresponding damping depend, respectively,

on the real and the imaginary part as

!m,z

(!) =

r
Re(K

zz

(!))

m
, (8.15)

�m,z

(!) = � Im(K
zz

(!))

m!
. (8.16)

In ordinary optomechanical systems, the frequency dependence of the optically

induced parameters is typically convolved with the mechanical susceptibility of the

oscillator. For high mechanical quality factors the peak in susceptibility at the intrinsic

mechanical frequency can be approximated as a delta function, implying that only the

component at the natural frequency of the oscillator is relevant in the optical spring.

0 ∆"

#"
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Figure 8.5: The dual-beam configuration combines two optical springs to change the damping

of the system. The two optical springs can be represented in the complex plane, where the

horizontal axis is the square of the oscillation frequency and the vertical axis is the optical

damping. In this representation they can be combined as any two vectors as long as beams’

relative detuning is large compared to the dynamics of the mirror. The curves trace the course

of the optical spring of Eq. 8.15–8.16 as a function of detuning. The arrows point to the values

of the optical spring of the blue-shifted trapping beam (in blue) and of the red-shifted damping

beam (in red), which combine to a strictly real and positive optical spring (in black). The

trapping beam in each cavity has an input power of 1W and is detuned to satisfy the balancing

condition as in Eq. 8.8. The damping beam has a negative detuning equivalent to the oscillation

frequency, and the input power is adjusted to 12.7% of the power of the trapping beam in order

to make the overall damping component vanish.
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Since the optomechanical system under analysis behaves like a free mass, however,

this line of reasoning cannot be directly applied. The frequency of the oscillations is

directly determined by the optical spring, which itself depends on the spectral frequency

considered, and without a well-defined resonance there might not be a well-defined

solution. The argument results into a recurrence relation for the frequency of the

oscillations,

!m,z

[n+ 1] =

r
Re(K

zz

(!m,z

[n]))

m
, (8.17)

with seed value !m,z

[0] = 0. Numerical estimates suggest that in the regime of small

and medium finesses, where we operate, the recursion settles very rapidly after the first

few iterations. For cavities with very high finesse the recursion fails to converge to a

single solution, suggesting that the dynamical stability may additionally depend on the

spatial extent of the tight-confinement.

With the same choice of parameters used to calculate the static stability (cf.

Fig. 8.3), we have that the single-beam optical spring of the trapping beam converges,

at balance, to !m,z

= 2⇡ ⇥ 50.1 kHz and �m,z

= �2⇡ ⇥ 9.9 kHz. The second optical

spring from the damping beam is tuned to have equal but positive damping �m,z

when

detuned by �!m,z

. The two optical springs cooperate as shown in Fig. 8.5 to cancel

any optical dissipation e↵ects. The modest anti-restoring component of the damping

beam also combines to the sti↵ness of the original trapping beam, but because the

power and the detuning have been tailored specifically to minimize this drawback the

net sti↵ness is still largely positive. The radiation pressure force is thus purely restor-

ing and conservative. The oscillation frequency modelled for the combined dual-beam

configuration is !m,z

= 2⇡ ⇥ 43.3 kHz. Similar corrections occur at the same time on

the horizontal directions, where the e↵ects of the damping beam rescale as those of

the trapping beam because they have equal projections onto the x and y axes. The

frequency of the oscillations in the horizontal plane adjusts from 0.89 kHz to 0.77 kHz.

8.3 Practical considerations

The path to coherent optical levitation and full isolation from the environment is not

clear of obstacles. Before realizing a successful decoupling from the initial support, for

example, the small scale of the participating forces may be burdened by the presence

of Van der Waals interactions. During levitation the energy of the mirror is subject to

continuous random fluctuations stemming from laser noise and collisions with residual
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gas particles in low pressure conditions. Even when the mirror is successfully suspended

over long periods of time, the high intensities involved could be enough to overwhelm

the system, which is devoid of any dissipation methods apart from blackbody radiation

and interaction with the optical field. In this section we perform order-of-magnitude

estimations for the major points of concern that could prevent the functional operation

of the system.

8.3.1 Van der Waals interactions

Van der Waals forces are weak, attractive electric forces arising between neutral mole-

cules. They originate from the interaction of the electric dipoles induced by asymme-

tries in the charge distribution, and decay extremely rapidly as a function of distance

between the molecules [229]. These forces will occur between the mirror and the plat-

form supporting it before levitation, and it is important to check that their magnitude

is not significant compared to the weight of the mirror.

Considering the separation between the mirror and its launching platform to be

much smaller compared to the extent of either object, we can treat the two as semi-

infinite media at a relative distance d from each other. This assumption is good for

a worst-case estimate, since the strength of the interaction is only reduced when ac-

counting for a finite thickness. The Van der Waals interaction energy density per unit

area is expressed by

UVdW(d) = �AHam(d)

12⇡d2
, (8.18)

where AHam is the Hamaker coe�cient, a function of the materials and of the distance,

which determines the strength of the interaction. The dependance of AHam on d is

relevant only in situations where the finite speed of the electromagnetic interaction is of

importance, and it is not unusual to consider the Hamaker coe�cient constant for small

distances [229]. The Van der Waals force per unit area is obtained by di↵erentiating

the energy density:

FVdW(d) =
A

6⇡d3
. (8.19)

For the mirror, assumed to be an HR-coated silica substrate, the Hamaker coe�-

cient in vacuum is 65 zJ [230]. For the support, which is expected to consist of alu-

minium or another metal, the coe�cient is estimated around ⇡ 200 zJ. The Hamaker

coe�cient between the two materials is evaluated as the geometric mean of the coef-
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ficients of each material acting on itself [231]. The result for the case considered is

AHam ⇡ 114 zJ. Assuming a contacting surface of 4mm2 and an average distance of

1 µm caused by the roughness of the support, the Van der Waals interaction is esti-

mated to be approximately 24 nN, more than 400 times smaller than the weight of a

1-mg mirror.

8.3.2 Background gas collisions

Without other major elements of interaction, individual collisions with gas molecules

become the most significant source of dissipation for the levitated mirror. These back-

ground collisions increase or decrease the energy of the mirror depending on its size

and, more importantly, the pressure conditions of the gas.

In normal pressure conditions, such as in an atmospheric environment, the gas

surrounding the mirror is in the continuous regime and responds to the laws of classical

fluid dynamics. A full expression for the collision rate is hard to obtain in this case,

and any approximation might not reflect the full dynamics of the mirror because of

flow separation and turbulence caused by the high aspect ratio of the disk [232]. Under

high vacuum, instead, the pressure is low enough that the mean free path of the gas

molecules is much larger than the size of the mirror. In this regime of free molecular

flow the di↵erence in momentum exchange between the front and the back of the mirror

produces a drag force which, assuming elastic collisions between the mirror and the gas

molecules, is characterized by a damping rate [233]

�m =
2⇢gvg⌃

m
, (8.20)

where ⇢g is the density of the gas, vg is the velocity of the molecules, m is the mirror’s

mass, and ⌃ is the surface acting as the collisional cross section. The velocities of the

gas molecules follow the Maxwell–Boltzmann distribution,

fB(vg) =

✓
mg

2⇡kBT

◆ 3
2

4⇡v2g e
�

mgv
2
g

2kBT , (8.21)

wheremg is the molecule’s mass and T is the temperature of the gas. The mean velocity

of the gas in any one direction is hvgi =
q

8kBT
⇡mg

, which is around 460m s�1 for air at

room temperature. In these conditions, at a vacuum pressure of 10�3 Pa the damping

rate for a mirror 3mm in diameter is on the order of 10�4Hz. This suggests a quality

factor higher than 109 for the 50-kHz mode of oscillation in the vertical direction,
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which is limited only by the vacuum pressure when other sources of dissipation such

as possible optical damping are ignored.

The overall collision rate can be evaluated by the total number of gas molecules

hitting the surface of the mirror per unit time. Assuming the mirror to be a flat

disk of surface ⌃, whose velocity within the confinement trap for realistic oscillation

parameters is much slower than the velocity of the gas molecules, we have that the

collision rate is

R = 2ngvg⌃, (8.22)

where ng = ⇢g/mg is the number density of the gas. To determine the energy trans-

ferred to the mirror by the gas, we integrate the kinetic energy exchanged at each

collision over the distribution of velocities to obtain the energy rate

⌘m =

Z +1

0
dvg fB(vg)R(vg)

2m2
gv

2
g

m
, (8.23)

which evaluates at ⇡ 2⇥ 10�8 J s�1. Taking into account the dissipation calculated

from Eq. 8.20, the energy acquired by the mirror from background gas collisions

amounts to Em = ⌘m/�m ⇡ 10�20 J, five orders of magnitude smaller than the trapping

potential created by the optical spring.

8.3.3 Laser noise

Noise in the laser intensity transfers to the mirror via radiation pressure, inducing

fluctuations in the optical spring that can foment anti-damping and parametric heating

of the system. Following a method based on the application of perturbation theory to

optically trapped atoms, which can be extended to any kind of oscillator within an

optical trap, we aim to determine the lifetime of the mirror’s trap given a certain

degree of intensity noise [234,235].

The average transition rate R
n!m

from the state |ni to the state |mi of the os-

cillator depends on the elements of the interaction matrix hm|�V̂ |ni, where �V̂ is the

first-order perturbation of the potential term in the system’s Hamiltonian. The per-

turbation depends on the fractional fluctuations of the trap’s frequency, ✏, which are

time-dependent and determined by the intensity noise. Specifically, the harmonic fre-

quency !m modifies as !2
m ! !2

m (1 + ✏(t)), where ✏(t) ..= I(t)�hIi
hIi and I(t) is the laser’s

intensity with time average hIi. As the harmonic oscillator’s potential is quadratic, the

only non-vanishing rates R
n!m

correspond to second-harmonic transitions where the
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phonon number jumps in pairs, specifically

R
n!n±2 =

⇡!2
m

16
S
✏

(2!m) (n+ 1± 1) (n± 1) , (8.24)

where S
✏

(!) = h|✏(!)|2i is the power spectrum of the fractional noise. It can be shown

that the average energy E of the oscillator increases exponentially over time, at a rate

�
I

=
h
.
Ei
hEi =

P
n

p
n

2~!m (R
n!n+2 �R

n!n�2)P
n

p
n

~!m (n+ 1/2)
, (8.25)

where p
n

is the average probability of the oscillator being in the state |ni. Expanding
using Eq. 8.24, the heating rate becomes

�
I

=
⇡!2

m

2
S
✏

(2!m). (8.26)

This result, which could also be calculated classically [234], relates the e-folding time

of the oscillator, ��1
I

, to the spectrum of the intensity noise at the double harmonic of

the trap, S
✏

(2!m).

In order for the e-folding time of the levitating mirror’s parametric processes to be

longer than 10 s, for example, the laser needs to satisfy
p
S
✏

(2!m) . 2⇥ 10�6Hz�1/2

for a mode at 50 kHz. If we assume that the majority of the noise is evenly distributed

across a bandwidth of 300 kHz, the corresponding fractional intensity fluctuations ✏ is

required to be on the order of 10�3 or less. Even lasers that are not shot-noise limited

can satisfy this requirement with a clearance of at least a couple orders of magnitude.

8.3.4 Black-body radiation

For levitated particles, the recoil experienced from absorption or emission of black-

body radiation can represent a source of heating and decoherence [200,236]. Even when

the state of the oscillator is predominantly classical, the role of black-body radiation

processes is undeniably important especially when the power involved is high. In

vacuum, with no means of mechanical dissipation, the only way for the levitated object

to dissipate the excess energy absorbed over time is through radiative emission [237].

For the levitating mirror, the absorption of even a fraction of the incident power

could represent a significant change in the system’s conditions. Having a macroscopic

thickness h much greater than the optical wavelength, the mirror responds to the

Stefan–Boltzmann law according to which the power radiated is proportional to the
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surface area and the fourth power of the temperature:

Prad = "bb�SB
�
T 4 � T 4

0

�
⌃, (8.27)

where "bb is the black-body emissivity of the mirror, �SB is the Stefan–Boltzmann

constant, ⌃ is the emitting area, and T and T0 are the mirror’s temperatures with and

without the incident power, respectively. The field leaking from the cavity through the

coating is absorbed in the substrate with exponential decay before being transmitted

through:

Pabs =
⇣
1� e�↵h

⌘
TmPcav, (8.28)

where ↵ is the absorption coe�cient of the substrate, Tm the transmissivity of the

coating, and Pcav is the power in the cavity. After balancing the two equations, the raise

in temperature of a cylindrical silica substrate (✏bb ⇡ 0.8, ↵ ⇡ 10�2 cm�1, diameter of

3mm and thickness of 50 µm) at room temperature conditions is about 1K when the

cavity has enough power for levitation and about 0.1% of it is transmitted through the

coating. The change in temperature expected is far from reaching the melting point of

silica, but it is significant enough that there is a potential for less drastic consequences

to be manifest, such as thermal expansion or excitation of the mirror’s drum modes.

It should be noted that, due to the time-independent nature of the radiation, the net

work done by the black-body emission on the mirror over one oscillation is zero.



Chapter 9

Experimental design

9.1 Specifications of the mirrors

The model developed in Chap. 8 suggests that a macroscopic mirror can indeed be

successfully decoupled from the environment and be supported entirely by the optical

field of three cavities. A better idea of what “macro” exactly means in this context

is obtained by considering the mass employed in all simulations, 1mg. This mass, a

million times bigger than the average human cell (⇡ 1 ng), is characteristic of granular

substances. It is about twenty times larger than the mass of a single grain of fine

salt (⇡ 0.06mg), but still smaller than the typical mass of a grain of sand (10–50mg).

Assuming the convex substrate to be made of fused silica, which has a density of

2203 kgm�3, a mass of 1mg prescribes the dimensions of the mirror to range between

2 to 3mm in diameter and 30 to 70 µm in thickness, similar to a shrunk down contact

lens.

The thickness anticipated is small enough that the mirror is a simple spherical cap

with no cylindrical base. The convex shape, which was chosen so that the three beams

would hit the mirror higher than the height of its centre of mass, provides several

other unanticipated benefits that go beyond the improvement of the mirror’s stability.

The convex-concave cavity configuration places the waists of the beams outside of the

optical resonators. By having a virtual waist the intensity is prevented from being

at its highest at any physical point. Also, compared to a concave mirror of similar

dimensions, a convex mirror is much lighter and the power requirement for levitation is

lower. The choice of the mirror’s radius of curvature (RoC) reflects a balance between

two contrasting demands. A large RoC (i.e. a less pronounced curvature) is perfect

for having the three cavities as close to vertical as possible. This allows most of the

radiation pressure force to contribute towards levitation, but at the same time there is

a limit to how close the lower mirrors can be placed. Given a certain distance between
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30µm3 mm(a)

Figure 9.1: The actual specifications provide a di↵erent image of the tripod than the concept

diagram of Fig. 8.2. (a) Realistic diagram of the optical tripod, with dimensions to scale. The

metal ring on the top part provides the initial support for the mirror. (b) Close-up picture of

one of the 3-mm mirrors, from the side. The exhibited mirror is directly attached to a force

sensor in order to measure its mass. The original photograph has been modified to reduce the

noise and enhance the contrast with the background.

the input mirrors, a small RoC (i.e. a more pronounced curvature) for the upper mirror

allows the cavities to be much shorter, increasing the linewidth and thus allowing the

spatial dimensions of the trap to be extended without having to decrease the finesse.

However, when the cavities are shorter the aperture of the tripod gets larger and the

vertical component of the combined radiation pressure force becomes smaller. Feasible

radii of curvature for the upper mirror are around 20–35mm. The illustration in Fig. 9.1

shows a scale diagram of the tripod for a mirror which is 3mm in diameter, 30 µm thick,

and with a radius of curvature of �30mm (the negative sign indicates that it is convex).

These dimensions, taken as a benchmark for the experimental implementation, lead to

a distance of roughly 10mm between the centres of the beams at the bottom of the

cavities. For lower mirrors with RoC of 200mm, the cavities are optically stable when

their length is between 170mm and 200mm. The length of 185mm is chosen in the

middle of this range to let the spot size on the upper mirror be at its largest and reduce

the risk of laser-induced damage. The virtual waists are always close to the centre of

curvature of the lower mirrors, around 15mm above the upper mirror. All three beams

virtually coincide at the centre of curvature of the upper mirror, acting as the centre

of the tripod which has an aperture of ⇡ 1.4�.

With an expected spot size of 100 µm in radius and about 0.5 kW of circulating

power in each cavity, a few considerations on optical damage are inevitable. The laser-
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Figure 9.2: The cavity mirrors required special adjustments in order to be ready for the tripod.

The upper mirror, originally about 5mm thick, was lapped to a spherical cap of thickness of

⇡ 30 µm. The lower mirrors, with high-reflective coating on the concave side and anti-reflective

coating on the flat side, had to be sliced so that their centres could be placed closer.

induced damage threshold (LIDT) of the mirror’s coating is required to be at least a

few times higher than the intensity of 1.6MWcm�2. This figure may be too high for

conventional high-reflectivity mirrors where the coating is obtained by electron beam or

ion-assisted vapour deposition [238]. Modern ion-beam sputtering coating techniques,

on the other hand, have evolved to the point where these and even more ambitious re-

quirements are easily met1, with certified LIDTs higher than 1GWcm�2. The striking

di↵erence between the di↵erent techniques lies in the density of the coatings obtained.

Coatings obtained by vapour deposition are characteristically more porous and less

dense than ion-beam sputtered coatings. The pores are usually filled up with wa-

ter, making the coating more sensitive to temperature and humidity conditions while

also increasing absorption losses. The higher density obtained with ion-beam sputter-

ing produces extremely uniform and lossless coatings, also allowing greater variations

in refractive index which is essential for high-end Bragg mirrors. At the same time,

however, the greater adhesion induces extremely high stresses on the substrates. The

surface tension which is usually supported by regular substrates might be excessive for

the thin mirrors involved, and there is a high risk of shattering during or after the

coating process.

The mirror employed in the preliminary stage of the experiment (cf. Fig. 9.1b) con-

sists of a small fused silica lens substrate2, 3mm in diameter, with a surface roughness

of 10 nm, and coated by vapour deposition to a reflectivity of 99.9%. The original mir-

ror is lapped3 in order to reduce the thickness to 30 µm (with an upper uncertainty of

almost 100%). The lapping process may have slightly reduced the diameter depending

1from personal communications with D. Samuels, from Advanced Thin Films Inc. (http://
advancedthinfilms.com/)

2custom order from FOCtek Photonics Inc. (http://www.foctek.net/)
3lapping by Photon LaserOptik GmbH (http://www.photon-laseroptik.de/)
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on the final thickness due to the aspect ratio of the spherical cap. The reflectivity is

selected to favour impedance matching over a capacity for higher finesse. The lower

mirrors are more conventional high-reflective mirrors4, sliced as in Fig. 9.2 to allow

close positioning. They are coated on the concave side to a reflectivity of 99.9% by

ion-beam sputtering, and they also feature an anti-reflective coating on the flat surface

to prevent the creation of intra-substrate etalon modes.

It should be emphasized that an upper mirror coated by vapour deposition is a

moderate gamble, more vulnerable to thermal e↵ects and optical damage. One solution

for future iterations might be to manufacture the mirror out of a harder substrate that

can better tolerate the high stresses induced by ion-beam sputtering. Diamond is a

possible choice, with a tensile strength between 2 and 5 times that of fused silica. It

is also a much sti↵er material, meaning that the excitation of the vibrational drum

modes would be curbed. On the other hand, diamond is denser and the mass to be

supported by the radiation pressure force is heavier. Unless power is not the limiting

factor, this issue may outweigh the advantages.

9.2 Assembling the tripod

Putting together the tripod involves forming three separate cavities in a vertical con-

figuration, with a common end mirror which is not clamped to any form of physical

support. This singular undertaking may seem like an extension of the ordinary align-

ment of a Fabry–Pérot resonator. Yet it is important to employ special measures and

equipment to prevent complications and ensure attention to the smallest details in the

apparatus.

Proceeding with a top-to-bottom approach, it is immediately clear that the upper

mirror requires a stand during the initial alignment. This task is assigned to a small

aluminium ring5 which is designed specifically to minimize the e↵ect of Van der Waals

interactions. The ring, which is 3.5mm in diameter, is cut to have a circular hole

2.5mm wide in the centre so that most of the mirror’s surface is exposed. The top

part of the ring features a containing wall along the outer edge which is 60µm thick

and 450 µm tall. The vertical thickness of the inner part, where the mirror sits, varies

sinusoidally along the circumference between 0 and 150µm. This is done in order to

have three rounded maxima acting as minimalistic contact points.

4L-12173 from LASEROPTIK GmbH (http://www.laseroptik.de/)
5sincere gratitude to J. Janousek for fabricating the ring
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Figure 9.3: Di↵erent steps in the preparation of the stage for the upper mirror. (a) Attaching

the supporting ring to the tips of the three force sensors. (b) Holding the mirror with the

vacuum pick-up pen during positioning. (c) Close-up of the mirror held by the vacuum pick-up

pen just before releasing it onto the ring.

The holding ring is in its turn supported by a set of three force sensors6, each

with a sensitivity range of ±1000 µN and a resolution of about 16 nNHz�1/2. The

probing cantilevers are oriented laterally relative to the full body of the sensors to

allow measurement of perpendicular forces. This attribute is particularly important

for the arrangement, since the sensors exhibit photosensitivity to 1064 nm light which

results in the read-out of negative forces (i.e. in the downward direction). By having

the probes o↵-axis, the intra-cavity path is free from obstacles and the readings from

the sensors are clear from any optical interference. The ring was fixed on top of the

force sensors with a specific procedure (cf. Fig. 9.3a). First, the ring was positioned

upside down onto a flat platform that could be rotated around its in-plane axes and

elevated with a vertical micro-positioning stage. Then the force sensors, mounted onto

a di↵erent platform, were also flipped upside down and placed just above the ring. By

monitoring the force while raising the ring, it was possible to determine the precise

moment when one of the sensors made contact. The ring would then be lowered and

its orientation adjusted to bring its bottom side parallel to the plane determined by

the three tips of the sensors. The procedure was iterated several times until the force

measured by the three sensors upon contact was exactly the same. At this point epoxy

resin was applied to the tips of the sensors, which were then brought to contact with

the ring one last time until the resin fully hardened.

The platform where the three force sensors are installed is part of a closed-loop

nano-positioning stage7 with six degrees of freedom (three for translations and three

6FT-S1000-LAT from FemtoTools AG (http://www.femtotools.com/)
7SmarPod 110.45-S from SmarAct GmbH (http://www.smaract.com/)
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Figure 9.4: The cavity tripod, with in situ close-ups of the upper and lower mirrors.

for rotations). The stage includes a wide central opening for the intra-cavity fields to

go through. The manoeuvrability of the stage allowed precise positioning of the mirror

inside the ring, an operation performed with the assistance of a vacuum pick-up pen8

(cf. Fig. 9.3b–c). The exact dimensions and location of the mirror were inferred by

observing the vibrations induced by the vacuum pump of the pick-up system onto the

force sensors when the mirror was brought close to the containing walls of the ring.

Upon reaching the exact centre, the pump was turned o↵ and the mirror was released

onto its support. The comparison of the force sensors’ records before and after releasing

the mirror provide an estimate of the mirror’s mass, (0.9± 0.1)mg, which is close to

the target value. The stage was subsequently employed to align the upper portion to

the midpoint of the tripod.

The nano-positioning stage serves as the top part of an aluminium frame that houses

the rest of the tripod9. The lowest section of this frame provides enough space for the

optics used to deflect the input beams vertically. The middle contains the lower mirrors

8PELCO 520-1-220 from Ted Pella Inc. (http://www.tedpella.com/)
9special thanks to P. McNamara and N. Devlin for fabricating the frame, designing the adaptive

masks for the lower mirrors, and contributing to the manufacturing from its earliest developments
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Figure 9.5: Simultaneous alignment of the three cavities of the tripod. The traces correspond

to the reflected signals detected from each cavity, normalized by the respective input power to

obtain the coupling. The cavity peaks are obtained by scanning the length of each cavity over

time.

of the cavities, together with their alignment mounts and the piezoelectric actuators.

The alignment mounts are directly embedded into the aluminium disk for improved

stability, and they are complemented by adaptive masks that permit a quick removal of

the mirrors. The actuators consist of 6-mm thick piezoceramic rings10. Each actuator

is pre-loaded to increase its spring constant and consequently its bandwidth [239]. The

pre-loading is performed by having a flat-head screw go through the inner hole of the

piezoceramic into the adaptive mask. A gap within the mask allows the placement of a

rubber O-ring and a tightening nut onto the tip of the screw. The sliced mirrors forming

the bottom halves of the cavities are glued directly onto the flat top of the screws. A

snapshot of the full tripod can be found in Fig. 9.4. At this stage the experiment is

not yet performed in vacuum, and the apparatus is protected by an acrylic box11 from

unwanted air flows and dust particles.

The three input beams are mode-matched separately to better suit the correspond-

ing cavities. They are obtained from the same source using three polarizing beam

splitters, which are also used to independently control the power in each branch. The

source laser can be switched between two options: a 1-W Nd:YAG laser12 at 1064 nm,

used for alignment purposes, and a 20-W fibre-amplified laser13 at 1050 nm, used for

regular high-power operations. A mode-cleaner cavity after the two di↵erent lasers acts

as a filtering node to guarantee the same output mode regardless of the source selected.

10HPCh150/10x5/6 from Piezomechanik GmbH (http://www.piezomechanik.com/)
11E. Slatyer is to be thanked for laser-cutting the entire box, complete with windows for alignment

access and beam propagation
12Mephisto 1200NE from Innolight GmbH (http://www.innolight.de/)
13YAR-20K-LP-SF from IPG Photonics (http://www.ipgphotonics.com/), seeded by a Rock Source

from NP Photonics, Inc. (http://www.npphotonics.com/)
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Cavity Coupling Finesse Half-linewidth
Red (65± 2)% 1600± 90 (176± 4) kHz
Blue (68± 2)% 1700± 100 (171± 3) kHz
Green (35± 1)% 850± 50 (440± 10) kHz

Table 9.1: Properties of the three cavities of the tripod. The errors on coupling and half-

linewidth are calculated directly from the measured data. For finesse, the major contribution

to the error comes from the uncertainty in the linearity of the scan.

Its finesse is around 350, and the coupling achieved for either laser is above 90%.

The specifications of the three cavities of the tripod display marginal di↵erences.

This is unavoidable, even despite the fact that mirrors from the same coating batch

and with a nearly identical distance from the top were used. The green, red, and blue

traces in Fig. 9.5 show the response of each cavity while their length is linearly scanned

with the piezo-actuators, allowing the measurement of their properties as reported

in Table 9.1. The apparent capping in the visible coupling is possibly due to the

fact that having di↵erent coatings for the upper and the lower mirrors contributed to

an appreciable impedance mismatch. Also, all three input beams are imperceptibly

clipped just before entering the cavities. It is possible that the slight deviation from

a perfect TEM00 mode contributes to the limited coupling. The finesse of the cavity

corresponding to the green trace is noticeably smaller than the other two. This suggests

additional intra-cavity losses that would also account for the coupling being even lower.
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Preliminary observations

10.1 Lock of a single cavity

As in any other high-power system, the thermal e↵ects arising during regular operations

of the cavities are expected to play a significant role. This is especially the case for

the upper mirror used in the preliminary setup of the experiment, which is coated by

vapour deposition and is therefore subject to increased absorption losses. A qualitative

characterization of the thermal response of the system is possible by actively locking

one of the cavities on resonance.

A first sign of the thermal influence of the circulating light is observed in the

instability of the lock itself. The intensity detected at the output of the cavity appears

to be steady for a few seconds before starting to decrease slowly, to the point where

the error signal becomes too small and the lock fails to hold abruptly. The time scale

of the e↵ect is measured more accurately by tracking the evolution of the force sensors’

records, as shown in Fig. 10.1. While the lock is immediate, the reaction of the system

is not. The force sensors register a new signal with a finite response time which is on the

order of 3 s. This is very far from the time scale of radiation pressure force, which occurs

at the speed of light. False measurements due to the photosensitivity of the sensors

can equally be excluded as they would also be much faster. When the lock holds for

long enough the signal can be observed to saturate at a new steady-state level, which

is proportional to the power applied. Another indication of the thermal nature of the

e↵ect is the fact that energy is stored into the system, and when the lock is suddenly

interrupted the signal decays to its original value with the same time constant. An

accurate measurement of the characteristic exponential time of this e↵ect is arduous

due to the concurrent decrease in intensity of the circulating field. The maximum shift

obtained even at high power is roughly 2µN, which is lower than the weight of the

mirror (⇡ 9 µN) but still within the same order of magnitude.
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Figure 10.1: Upon locking of a single cavity, the force sensors reveal a slowly charging signal.

The two plots correspond to higher (a) and lower (b) power. The shaded region indicates the

period of time during which the cavity lock was active. The measurements from the three

separate sensors, represented by di↵erently coloured traces, are taken at a resolution of 100Hz.

For comparison, an exponential model with characteristic time of 3.0 s is also plotted (dashed

black lines).

The di↵erent signs and amplitudes of the forces detected hint to a redistribution of

the weight of the mirror onto its support. Some of the possible causes may be thermal

expansion, softening, or deformation. The radius of curvature of the upper mirror

is also a dynamic quantity, and as the temperature gradient applies local changes it

is possible that the mode structure of the cavity follows accordingly until the lock

breaks down. This behaviour has been observed in high-power interferometers, such

as LIGO [83], and there is a risk of it escalating into parametric excitations of the

acoustic modes of the mirror. Aside from the destabilization of the lock, however,

there are no obvious indications of self-sustained resonances or instabilities. Another

possible cause, also reported by the LIGO community, is thermoelastic noise on the

coating. The power absorbed might be greater than expected due to the additional

dissipation introduced by friction between di↵erent layers of the coating [240, 241].

Scanning of the other cavities during the lock to observe how their modes reacted did

not lead to any conclusive evidence on whether the e↵ect was localized to the bright

spot of the locked cavity or whether it extended to the rest of the mirror.

In the remainder analysis, locking is replaced by scanning of the cavity length to

observe the evolution of the system under high power conditions. Due to the di↵erent

time scales involved, it is generally harder to observe the slow thermal drift on the force

sensors in those conditions. As the optical traces carry a greater amount of information,

thanks to the larger bandwidth of the photodetectors, we will mostly refer to the signals

detected from the optical output of the cavities and look at either the reflected or the

transmitted field.
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10.2 Self-feedback

The thermal response of the cavity may induce a reciprocal dependence between optical

power and position of the mirror which conforms to the same model presented in

Chap. 3 for radiation pressure force. In both cases, the power is responsible for a

cavity length variation which translates into a shift of the resonance condition, with

consequences reverberating back to the circulating power. The main di↵erence lies in

the nature of the interaction, which may occur on a di↵erent time scale and may even be

inverted in sign. Radiation pressure force is instantaneous and it invariably pushes on

the mirror, therefore leading to an increase in cavity length. Thermal e↵ects, instead,

have a finite characteristic time due to the transfer of the heat within the substrate,

and higher power might cause the cavity to be shorter rather than longer, as is the

case for thermal expansion of the mirror. With the appropriate corrections, the e↵ects

of the interaction will still be manifest as of self-feedback in the form of bistability and

dynamical back-action (cf. Chap. 3.2 and 3.3).

This self-regulating behaviour is observed in the cavities by slowly scanning their

length with the piezo-actuators attached to the lower mirrors, which is equivalent to

sweeping the resonance condition relative to the fixed frequency of the input field. At

high power the resonance condition additionally changes due to the response of the

upper mirror. This produces an asymmetric response [242,243], as the cavity displays

self-locking or anti-locking behaviour depending on whether the change in resonance

occurs in the same or in the opposite direction of the scan. The observations indicate

that the self-locking mechanism triggers when the cavity becomes longer (i.e. the lower

mirror goes down), which is the opposite of what would be expected from the pushing

action of radiation pressure force on the upper mirror. This is a clear sign of the

dominant role played by thermal forces in the system.

Figure 10.2 shows the appearance of bistability in the system [244]. When the cavity

becomes longer (i.e. from red to blue detuning) the resonance condition is dragged for

a long way as the scan pursues forth. Conversely, when the cavity is shortened (i.e.

blue to red detuning) the resonance condition suddenly jumps to a state already past

in the scan. This behaviour can be simulated by adapting the model of Chap. 3.2

to have the correct sign for the interaction and to account for the time evolution of

the resonance condition. Specifically, the scan of the cavity frequency accounts for a

linear dependence of the round-trip phase shift on time, while the change in resonance

induced by the thermal e↵ect is determined by the exponential rate at which power is
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Figure 10.2: Bistability of one of the tripod cavities. The experimental traces show the output

power of the cavity when scanned at exactly the same speed but in opposite directions (dark

green when the scan makes the cavity shorter, light green when it makes the cavity longer).

Both traces correspond to data collected from the reflected field, averaged and inverted for a

more intuitive comparison with the diagram on the right. The two black traces represent the

simulated evolution based on the model described in the main text, using identical parameters

but opposite scan speed. The diagram on the right gives an intuitive picture of the hysteretic

behaviour as a function of detuning (cf. Fig. 3.3).

absorbed [243]. Thus, the round-trip phase shift � evolves as

�(t) = �0 (1 + ⌫ct) [1 + �th(Pcav ⇤ h)(t)] , (10.1)

where �0 is the phase at the start of the scan, ⌫c =
.
!c/!c is the fractional rate of change

in frequency determined by the speed of the scan (either positive or negative), �th is

a constant proportional to the strength of the interaction (negative in our case), and

h(t) = e�t/⌧th/⌧th is the first-order impulse response of the system with time constant

⌧th. The cavity solution of Eq. 2.48 becomes a functional equation for Pcav, which can

be numerically solved to yield the simulated results.

Thermally induced bistability provides an explanation to only part of the full dy-

namics unfolding at high power. The traces shown in Fig. 10.2 are averaged to display

the evolution of the mean cavity power. They seem to show that the cavity follows the

scan almost evenly along the distorted Lorentzian profile, while in fact the upper mirror

oscillates persistently back and forth across resonance. This is another by-product of

the optomechanical interaction, and it is visible on the optical output as a comb-like

response during the scan in either direction, as shown by the raw traces of Fig. 10.3.

The optical comb for this cavity is actually characterized by two separate frequencies.

The signature of the oscillations is also detected by the force sensors attached to the

support of the mirror. In this case however only a time-averaged measurement is pos-

sible, because the bandwidth of the force sensors is limited to 10 kHz and they cannot

resolve the full oscillations.
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Figure 10.3: Comparison of the output of one of the cavities during self-locking (a) and anti-

locking (b). The optical output is taken from the reflection of the cavity. The main plots show

the full record together with the moving average, taken over 0.4ms, to show the mean power

level in the cavity over time. Extracts of the raw traces are shown in detail in the two insets.

The plot at the top shows the signal from one of the force sensors, recorded in parallel to the

self-locked trace at a resolution of 10 kHz. The shaded region corresponds to the standard

deviation of the points sampled over 1ms, bringing the e↵ective.

The two frequencies of the comb can be seen in more detail in Fig. 10.4. A high-

frequency oscillation, measured at (25 480± 50)Hz, quickly crosses the full width of

the resonance. At the same time, a much slower oscillation at (2100± 50)Hz collects

multiple repetitions of the resonance into clusters due to its larger amplitude.

The self-locking shown in Fig. 10.4 presents a striking di↵erence from that of

Fig. 10.3, despite the two traces being collected at exactly the same power and scan

speed. In fact, especially at high powers, the self-locking regime of this cavity would

sometimes last for much longer. Throughout this occasional extension of the lock, the

low-frequency clustering disappears and the optical output is subject to regular, uni-

form spiking. Additionally, there are no vibrations detected on the force sensors, while

the mean value of the force becomes more and more displaced as further energy is

absorbed due to the increased duration of the lock. Even though this behaviour occurs

more frequently at higher circulating power, it still occurs occasionally even when the
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Figure 10.4: Self-locking of the same cavity as Fig. 10.3, now manifesting an extended duration

where the low-frequency oscillations are absent. Power and scan speed are the same as the

previous case.
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Figure 10.5: Self-locking of the second cavity. The traces represent the optical output obtained

on transmission from the cavity. The optical comb is more regular than the other cavity, and

it is possible to observe the oscillations decrease in amplitude as the average power increases.

The black traces in the insets illustrate the level of the dark noise for comparison.
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Figure 10.6: The duration of the self-locking regime depends on the power used. (a) Trans-

mission output of the first cavity (averaged over 1ms) for di↵erent levels of input power. Each

trace is labelled by the value of the corresponding input power in watts. The dotted black trace

presents a representative case of the extended self-lock that occurs stochastically. For all traces

the length of the cavity is scanned at a speed of 80 nm s�1. (b) Same as (a), but for the second

cavity. The time scale is kept the same for comparison, although since the piezo-actuator is

di↵erent the scan speed is half as fast, at 40 nm s�1. (c) Duration of the self-lock of the second

cavity as a function of input power. The dashed line indicates a rough threshold for the change

in trend described in the main text.

input power is varied by a factor of four or more.

The comb-like response is also observed in the other cavities, however without the

occurrence of two frequencies together. The cavity of similar coupling and finesse

as the one of Fig. 10.3–10.4 displays self-sustained oscillations with a frequency of

(32 010± 50)Hz. As long as the power is enough to support them, they always manifest

as a clean comb and no regular clustering is observed.

The duration of the self-locking regime for the two cavities is compared in Fig. 10.6.

One trace corresponding to the first cavity’s extended self-lock is also provided rep-

resentatively at the highest power. Although not explicitly shown, the extension also

occurs sporadically at lower power, generally doubling the extent of the self-lock. The

second cavity is more consistent in its response. Looking at Fig. 10.6b it can be ob-

served that, at high input power, the mean circulating power increases more sharply

during the last stages of the self-lock. The phenomenon seems to be correlated to a
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shorter duration of the lock than the one that would be projected from the traces at

low input power. This fact is also evident from Fig. 10.6c, where the linear trend of the

first points is curbed after a threshold of approximately 1.2W of input power. In terms

of oscillations, the threshold power corresponds to the point where the optical output

transitions from disordered to regular spiking. Similar trends are observed on the first

cavity, however it is impossible to reproduce a similar plot due to the stochastic occur-

rence of the extension. Because of reduced coupling and lower finesse, the third cavity

presents only disordered low-frequency oscillations at 1470Hz and does not self-lock as

substantially as the other two.

10.3 Interaction between the cavities

The non-linearities demonstrated by the cavities raise the question of what really hap-

pens to the upper mirror’s dynamics at high power. More evidence can be gathered by

looking at the combined e↵ects of two cavities scanned at the same time.

By driving one cavity at high power while using the other as a probe at very low
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) 0.0 0.5 1.0 1.5-6 -4 -2 0 2 4 6
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Figure 10.7: Optical output of two cavities, one pumped at high power (red) and one used to

probe the e↵ects on the mirror. The top, middle, and bottom plots correspond to the situations

where the probe resonance occurs before, during, or after the resonance driven at high power.

The panels on the right-hand side focus on the areas enclosed by the dashed lines on the left-

hand side. Both outputs are detected from the reflected field of the corresponding cavity. The

vertical scale of the probe is magnified by a factor of 10 to facilitate the comparison. The scan

speed is approximately 4µms�1.
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power it is possible to see if the e↵ects of the former are widespread to the entire mirror.

By independently changing the o↵set of the two scans, the probing resonance can be

observed before, during, and after the self-lock of the other cavity (cf. Fig. 10.7). When

the probe temporally precedes the driven cavity, no exceptional response is discerned

and the resonance presents a clean Lorentzian profile. When the two resonances over-

lap, the stirring caused by the absorption of high power is detected on the probe cavity

as well, indicating that the impact spreads to the full substrate. The oscillations on

the probe persist even after the conclusion of the high power drive, although inevitably

they have a smaller amplitude that decays as the two resonances get further apart. The

decay rate is measured at approximately 50Hz, and the optical resonance of the probe

returns to be a regular Lorentzian after about 20–30ms. The decaying oscillations after

the end of the optical drive can also be noticed on the force sensor traces, such as the

one of Fig. 10.3.

When the two cavities are pumped at high power at the same time, they influence
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Figure 10.8: Self-locking of the two cavities in the dual pump configuration. The top corre-

sponds to the optical output of each cavity detected on transmission. The bottom demonstrates

the synchronized clustering of the two optical combs in detail.
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each other in a very specific way. On the whole, the two self-locking regimes have a

tendency of triggering one another. Also, as can be seen in Fig. 10.8, the dominant

frequency characteristic of each cavity spills to the other one. This e↵ect occurs on the

first cavity, where the high-frequency comb in each cluster strays from the semi-regular

oscillations at 25.5 kHz and is contaminated by a 32.0 kHz component. It is even more

obvious on the second cavity, which on its own would not display any clustering at

2.1 kHz whereas now it synchronizes to the low frequency of the first cavity.

Both high- and low-level correlations point to the fact that the two cavities interact

through the oscillations of the upper mirror of the tripod. Ideally this interaction

would only occur through the optical spring e↵ect of the radiation pressure force, but

if thermal forces are capable of exhibiting analogous attributes it may be possible to

reach similar regimes of stability.

10.4 Discussion

From what has been witnessed on the current setup, one thing is clear: the intra-

cavity field has a strong impact on the resonance conditions. The oscillations of the

upper mirror excited by the optical field culminate into a spiked response where the

resonance is crossed numerous times. Each individual peak is much narrower than

the Lorentzian profile that would emerge in normal conditions. This is a sign that

the oscillations are much faster than the scan, a fact which is also confirmed by the

occasional appearance of ring-down self-interference on the output field (as can be

inferred for example in Fig. 10.4, where the power level of the reflected field rises even

higher than the input power). The two high frequencies characteristic of the cavities

with consistent self-locking (25.5 kHz and 32.0 kHz) are compatible with the order of

magnitude expected from the optical spring e↵ect, but no further evidence could be

collected at this stage in favour of this hypothesis. One of the cavities also oscillates at

a lower frequency (2.1 kHz) with much larger amplitude, several times wider than the

cavity linewidth. These fluctuations are also picked up by the force sensors and extend

to the full substrate, indicating that they probably correspond to the excitation of a

drum mode of the mirror. Regardless of their origin, the optically driven oscillations

decay with a time constant of 20ms.

The appearance of self-sustained oscillations together with bistability is characteris-

tic of systems where di↵erent types of non-linearities coexist. They have been observed

in whispering gallery mode resonators in relation to competing heat transport mech-
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anisms [245] and in suspended-mirror Fabry–Pérot cavities subject to both radiation

pressure and photothermal forces [246]. The clash between di↵erent non-linearities

operating at separate time scales induces cyclic transitions between the multiple sta-

ble solutions, especially when the strength of the two interactions is comparable [58].

While radiation pressure would increase the cavity length by pushing on the mirror,

the photothermal e↵ect would act in the opposite direction by slowly expanding the

substrate, for example. Their interplay leads to periodic excitations of the optical

intensity, provided that either e↵ect is strong enough to shift the cavity resonance

by at least one linewidth. The stationary stability of the system is lost through one

or more Hopf bifurcations that can burst into chaotic spiking when the mechanical

quality factor of the oscillations is high enough [247]. A similar chaotic response has

been recently reported in microtoroid optomechanical resonators [248], demonstrating

the interest for chaos-driven devices with the capacity of interfacing between di↵erent

systems for secure communication.

Conclusions. The stable optical levitation of a macroscopic mirror is, in princi-

ple, possible. The proposed scheme, consisting of an optical tripod relying on radiation

pressure forces and the optical spring e↵ect, could serve as an ideal platform for applica-

tions that are extremely sensitive to environmental noise. In the current experimental

configuration, the influence of radiation pressure force was observed in combination

with the impact of thermal e↵ects. Similar e↵ects in other systems have been observed

before, suggesting that it could be possible to operate the system in a di↵erent regime

where chaos could be observed. Whether new operational regimes are considered or

not, it is necessary to achieve a much larger degree of control over the cavities in order

to achieve stable suspension of the mirror on the optical field alone. The concurrence of

multiple e↵ects limits the general understanding of the full dynamics, and a reduction

in thermal absorption is indispensable for the successful levitation of the mirror. It

should be remembered that the present configuration is only a prototype and there is a

lot of room for improvement. The coating of the upper mirror, for example, should be

obtained by ion-beam sputtering (or equivalent) to minimize the absorption of intra-

cavity power. The substrate of the mirror would then need to be more resistant in order

to withstand the higher stresses induced by the denser coating. Diamond, thanks to its

mechanical strength and low optical absorption, presents a viable option for this optical

component. Additional enhancements to the apparatus require operations in a vacuum

environment and a dual-beam configuration to prevent the parametric amplification of

the oscillations from driving the cavities into unstable regimes. Should the combined
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upgrades not be enough to suppress the thermal e↵ects and restrain the competition

with radiation pressure, one can always resort to tailored stabilization protocols based,

for example, on dual-mode thermal stabilization and self-locking [249].



Part IV

Extensions of optomechanical

theory
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This final Part consists of additional theoretical research performed in parallel to

the experimental investigations presented so far. Even though the topics covered by

each chapter are not directly related, they share the common interest of developing

new techniques and applications aim at broadening the scope of optomechanics. Chap-

ter 11 explores the possibility of adapting the stability potential arising from the optical

spring e↵ect to better suit specific tasks. Chapter 12 explains how the reciprocal inter-

action between mechanical systems and light can be used to generate squeezed states

of light. The squeezing obtained by optomechanical systems is then shown to display

very specific spectral qualities that are attractive to the gravitational wave community

and could be used to obtained an advantage in interferometric measurements.

The research presented here has been featured in the following publications:

• [96] Slatyer, H. J., Guccione, G. et al., “Synthesis of optical spring potentials in

optomechanical systems”, Journal of Physics B 49 125401 (2016);

• [17] Guccione, G., Slatyer, H. J. et al., “Squeezing quadrature rotation in the

acoustic band via optomechanics”, Journal of Physics B 49 065401 (2016).

The fourth and last son of Iapetus acknowl-
edged by Greek mythology is Epimetheus,
whose actions led to the opening of Pandora’s
box. The name of the Titan name is a reflection
of his twin brother’s, Prometheus: it translates
to “afterthought”, a meaning appropriate for
this conclusive part.

G. Bonasone, “Epimeteo apre il vaso di
Pandora da cui escono le virtù”



Chapter 11

Synthesis of optical spring

potentials in optomechanical

systems

11.1 The advantage of engineered potentials

Most metrological applications of optomechanical systems rely on the accurate sensing

of the oscillator’s position [250]. The measurement of acceleration, gravity, magnetic

fields, and many other physical quantities is regulated by the susceptibility of the

mechanical system, which converts any action perceived by the oscillator into a dis-

placement that can be monitored precisely by the optical field. The susceptibility of

optically trapped systems is determined by the trapping potential applied by the op-

tical field. The performance of these optomechanical systems can then be improved if

the potential, or equivalently the force function, is tailored around an optimal use of

the system’s resources towards the intended task.

In the case of optical tweezers, the optical potential experienced by the trapped

particles can be tuned by shaping the transverse mode of the laser used for suspen-

sion [201], or by using an optical cavity [200] to modify the longitudinal mode of the

light. Other schemes subject to a strong influence of the optical spring e↵ect can also

benefit from engineering of the trapping potential, in this case entrusted to the spectral

properties of the field rather than the spatial distribution of its intensity. Even though

precise control is possible, the range of possible optical spring parameters is fixed by

the finesse of the cavity. Applications based on the use of high-finesse cavities are typ-

ically characterized by very sti↵ optical springs, which may not always be the desired

outcome. If one wants to sense the position of an optically trapped mirror to measure

a force, for example, then a large mechanical response is required in order to maximise

165
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the signal. Ideally, one would desire an optical spring of lower sti↵ness, while still

being able to use a high-finesse cavity to maintain the full interferometric sensitivity

of the position read-out. The use of polychromatic light has been suggested before to

synthesise complex optical force or potential profiles in cavity-based optomechanical

systems [251]. In general, control over the spectral attributes of the cavity’s input field

can be used to approximate customised force functions that modify the oscillator’s

response to enhance its sensing capacities.

In this chapter, we specifically analyse how the light source needs to be manipulated

in order to create elaborate force profiles to be adapted for a specific requirement of a

system [96]. In particular we develop an analytical theory based on continuous power

spectral densities of the optical field. Because these continuous spectral distributions

are hard to produce experimentally, we continue the analysis by investigating how

they can be approximated by appropriate frequency comb inputs. Finally, we apply

the formalism developed to the measurement of relative variations of gravitational

acceleration with the levitating mirror proposed in Chap. 8.

11.2 Interaction of multiple optical springs

We want to modify the response of an optomechanical system by modifying the e↵ective

optical forces acting in the system. The aim is to achieve this result by modifying only

the spectral properties of the input field, without having to modify any other aspect

of the system, such as the cavity finesse or the intrinsic susceptibility of the oscillator.

In particular, we consider an extension of the optical spring e↵ect in the case of a

multi-mode input to the cavity.

Recall, from Chap. 3.3, the expressions for the radiation pressure force,

Frp(x, �) =
4Pin

c⌧

2

2 + (� +G0x)
2 , (11.1)

and the corresponding optical spring,

kos(x, �) =
8G0Pin

c⌧

 (� +G0x)h
2 + (� +G0x)

2
i2 , (11.2)

as a function of the oscillator’s position, x, and of the detuning of the input field relative

to the closest cavity resonance, �. Here, G0 is the optomechanical coupling constant,

Pin is the power of the input beam, and ⌧ and  are the cavity’s round-trip time
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and half-linewidth. These expressions were derived assuming a typical optomechanical

cavity with a single-mode input of fixed detuning � = �0, and they are not valid for the

multi-mode input that we need to consider. This is because the optical force of a multi-

mode input, resulting from the interference of two or more di↵erent fields injected into

the cavity, does not correspond to the linear sum of the forces that would be obtained

with each input separately. A similar situation was encountered in Chap. 8.2.3, where a

dual-mode input was considered to allow the radiation pressure to be restoring without

introducing anti-damping into the system. The solution in that case was found by

taking advantage of the periodicity of the cavity’s response and opportunely detuning

one of the fields by a full free spectral range, !FSR. By doing so, the beating would

occur on a very fast time scale and the oscillator would perceive only an averaged

e↵ect. If the mechanical frequency of the oscillator, !m, happened to be comparable to

!FSR, then the procedure would need to be modified by allowing the relative detuning

between the two modes to be some multiple of !FSR in order to make the beating faster

than the dynamics of the oscillator. The claim that a fast beating component of the

optical force can be neglected from the oscillator’s point of view is numerically justified

in Appendix C for a realistic case.

The same argument can be extended to a multi-mode input with more than two

frequencies. Suppose a frequency comb input with constant spacing ✏ between the

modes. We may identify an integer N such that N✏ � !m. Beating between modes

separated by N✏ does not drive the oscillator. For any two modes separated by less

than N✏, one can apply the method outlined above to up-shift the relative detuning by

some multiple of the free spectral range. The process can be iterated over all modes

in the comb so that each free spectral range only carries modes that are spectrally

separated by more than N✏. Formally, the nth peak of the comb is shifted by (n

modulo N) multiples of !FSR, so that a total of N free spectral ranges are employed.

Each free spectral range, then, hosts a number of modes equal to the total number of

modes of the comb divided by N . This technique ensures that every pair of modes

beats at a frequency much higher than !m and therefore that no interference e↵ect

drives the oscillator, provided that !FSR � !m. Again, if the frequency of oscillation

is comparable to the free spectral range, it is simply necessary to shift each mode by a

higher multiple of !FSR. We assume such preparation technique to be implicitly applied

to the input if necessary, in order to expect the superposition principle to hold given

any multi-mode frequency comb input. The average e↵ective optical force experienced

by the mirror can then be approximated by the sum of the forces due to each individual
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mode.

Importantly, this method only holds for an input that has a discrete distribution

of modes. It is not applicable to an input that has a broad, continuous spectral distri-

bution, since in this case it would be necessary to shift a “continuum” of frequencies.

From a practical point of view, however, we will see that this is not an obstacle and that

the class of frequency comb input fields is su�cient for the approximation of a generic

potential. In the next section we continue the analysis in terms of a continuous input,

mostly to have the possibility of developing a formal treatment in terms of integrals

rather than sums. Then we will see what considerations are necessary to approximate

the continuous power spectrum with a discrete frequency comb, for which the superpo-

sition principle can be assumed to hold for the optical forces and the associated optical

springs.

11.3 Approximation of an arbitrary force function

Suppose we desire the optical forces to reproduce a theoretical force Fth(x), which is

some function of the mirror’s position x. The aim is to find a power spectral distribution

(PSD) for the input laser, p(�), that will produce an overall radiation pressure force

F
(tot)
rp (x) as close to Fth(x) as possible.

Under the assumption that no interference e↵ects occur between the di↵erent fre-

quency components of the input field, we have that the total optical force due to the

input p(�) is

F
(tot)
rp (x) =

Z +1

�1
d� Frp(x, �)p(�)

=

Z +1

�1
d� F0(� +G0x)p(�)

= (F0 ⇤ p)(�G0x), (11.3)

where F0(�)
..= Frp(0, �) is the force obtained from a single-mode input when the mirror

is in its rest position, and F0 ⇤ p is its convolution with the PSD. The idea is then to

choose p(�) to have the function (F0 ⇤p)(�G0x) coincide with Fth(x). For convenience,

the convolution can be rewritten in the equivalent form

F
(tot)
rp (x) = (F0/� ⇤ �p)(�)|

�=�G0x
, (11.4)

where � ..=
R +1
�1 d� F0(�). By doing so, we can view the action of the cavity as a
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combination of a smoothing by the normalized Lorentzian F0/�, a rescaling of the

input field by �, and a change of variable � ! x = ��/G0. The smoothing action

has a role analogous to that of a Gaussian blur, levelling out any feature finer than

the linewidth of the cavity while preserving larger features. With this we identify one

of the constraints of the approximation method: the fidelity of the approximation of

the theoretical force function by the optical forces depends on the finesse of the cavity.

Any theoretical force function whose features are larger than the cavity linewidth can

be reliably approximated. For this reason we limit the analysis to the reproduction of

functions that are not a↵ected significantly by the smoothing, i.e. Fth satisfying the

condition

Fth(��/G0) ⇡ (F0/� ⇤ Fth|
x=��/G0

)(�). (11.5)

With this assumption, the approximation of an arbitrary force function by the optical

forces is satisfied by the choice

p(�) = Fth(��/G0)/�, (11.6)

for which we have

F
(tot)
rp (x) = (F0/� ⇤ Fth|

x=��/G0
)(�)

���
�=�G0x

⇡ Fth(��/G0)|
�=�G0x

= Fth(x), (11.7)

as desired. Choosing the input according to Eq. 11.6 will cause the mirror to experience

an optical force which is modelled around the required theoretical force profile.

This result hinges on the linear superposition of the optical forces, as indicated by

the integration in Eq. 11.3. Such superposition is only possible in the lack of interference

e↵ects between di↵erent frequency components of the input field. For an input with

a continuous PSD this assumption is very speculative. However, it is feasible in the

case of a discrete frequency comb, as discussed in the last section. To confirm the

validity of the result we need to prove its compatibility when the continuous PSD p(�)

is replaced by a frequency comb of discrete modes of spacing ✏. Applying a rectangular
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approximation to Eq. 11.3, we have

F
(tot)
rp (x) =

Z
d� Frp(x, �)p(�)

⇡
X

n

✏Frp(x, n✏)p(n✏). (11.8)

Then, if the PSD is chosen according to Eq. 11.6, the optical force resulting from the

action of the cavity on the mirror is given by

F
(tot)
rp (x) =

X

n

Frp(x, n✏) · Fth(�n✏/G0)✏/�. (11.9)

The right-hand side corresponds to the force obtained by a frequency comb input

such that the component detuned by n✏ has power Fth(�n✏/G0)✏/�, assuming that

interference e↵ects are removed by appropriate shifting of each mode.

The required frequency comb could be generated in several ways. For many types

of force functions, the modulation of a normal single-mode input might be enough

to induce sidebands to the central frequency acting as the di↵erent components of the

comb. The strength of each component is determined by the strength of the modulation.

Potential asymmetries required in the comb may be enforced with a combination of

amplitude and phase modulation. As the size of the comb would be determined by

the maximum modulation frequency allowed, it could be possible to use a sequence

of modulations to allow the generation of wider combs, at the expense of simplicity

and flexibility. Alternatively, the di↵erent modes of the comb might be generated by

commercial multi-channel laser systems, which are capable of independently tuning the

frequency of each channel by up to a few tens of terahertz.

In summary, the optomechanical system can be engineered to let the oscillator expe-

rience any theoretical force function Fth(x), as long as the profile of such function does

not involve features finer than the linewidth of the cavity. The arbitrary force profile

is resolved by an approximation which is mediated by the optical forces, F (tot)
rp (x), and

which is determined by the appropriate choice for the spectral distribution of the input.

The realization of this technique relies on the absence of interference e↵ects. These can

be suppressed by separating the frequency components of the input to separate free

spectral ranges of the cavity to let the oscillator experience only the average e↵ect

of the beating. For inputs with a continuous spectral density, F (tot)
rp (x) can itself be

approximated by an equivalent frequency comb input to allow the required separation

of the modes.
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11.4 Engineering the sensitivity of a gravimeter

In this section we apply the method developed earlier to the specific case of an op-

tomechanical gravimeter. In particular, we see how to engineer the potential of the

levitating mirror proposed in Chap. 8 in order to obtain better measurements of the

variations in gravitational acceleration, g. The levitating mirror is a particularly illus-

trative example, since its motional sti↵ness is fully determined by the optical spring.

The ability to arbitrarily engineer the optical spring is therefore especially relevant

for this system. Nevertheless, the technique would be equally applicable to oscillators

where the optical spring only modifies the intrinsic attributes that already exist in the

system.

The equilibrium position of the levitating mirror depends on its weight. Assuming

the mass m to be constant, then the weight can only change if g varies. By monitoring

the equilibrium position, which is directly determined by the weight, one can estimate

local variations in the gravitational acceleration. The goal is to demonstrate how

adapting the force function to this specific task can bring an advantage. Because this

application is intended primarily for illustrative purposes, sources of noise that could

a↵ect the measurement, such as laser intensity fluctuations, will be ignored. Also, the

original tripod of cavities intended for levitation will be simplified to a configuration

with a single vertical cavity configuration in order to have a single degree of freedom,

x, for both the optical propagation and the motion in the vertical direction.

The sensitivity of the system can be increased by letting the same variation in

weight produce a larger variation in position. This is achieved with a softer spring

constant for the mirror. Because the spring constant is determined by the gradient of

the force function, the aim is to have a profile with a slope as gentle as possible. While

considering which force function is better suited for the role, we need to ensure that

the balancing condition for levitation holds. Only forces that can support the weight of

the mirror should be taken into account. For this purpose we build the analysis around

two directly related thresholds which set a reference for the comparison of di↵erent

profiles. The first threshold is f0
..= mg, which is the force corresponding to the weight

of the mirror and sets the equilibrium point of the system. In terms of optical field,

this threshold corresponds to an intra-cavity power p0
..= cf0/2 (cf. Eq. 3.58). The

second threshold is given by the maximum optical force applied to the mirror, set to be

equal to 1.5 f0 in order to compare di↵erent profiles at equal optical trap depth. The

trap width, on the other hand, is unconstrained and depends on the specific profile

considered.
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A gentler slope can be obtained directly by reducing the finesse of the cavity, thus

avoiding the need of a multi-mode input or of an engineered potential. However, this

approach has the downside that a lower finesse also corresponds to lower power in the

cavity at resonance. More input power would then be required to meet the trap depth

requirement obtained in the case of higher finesse. Intuitively, as the slope is reduced

to soften the sti↵ness, it is clear geometrically that to maintain the same threshold

of 1.5 f0 the integral of the force function needs to increase, regardless of its shape.

For a given trap depth, there is a limit to how much reduction in sti↵ness is possible

without an increase in input power. Availability and other technical impediments, such

as optical damage, determine how much improvement in sensitivity can be obtained

by simply lowering the finesse. Another determining factor is given by the precision

in the measurement of the displacement allowed by the cavity. The total phase shift

accumulated by the field on reflection with the moving mirror scales with the finesse of

the cavity. Reducing the finesse, therefore, sacrifices the high-precision interferometric

read-out that would otherwise be allowed by a cavity with higher finesse. By using

a multi-mode input, one can recreate a gentler slope without having to renounce to

finesse and measurement quality. At the same time, the multi-mode input can be used

to optimize the trade-o↵ between sti↵ness and input power by ensuring the e�cient

use of the available power where it is most needed.

The force profiles expected from single- and multi-mode inputs are shown in Fig. 11.1.

The single-mode input is considered in application to two cavities of di↵erent finesses

for comparison.As explained before, the low-finesse cavity allows a softer spring but it

also requires more input power in order to meet the required trap threshold. For multi-

mode inputs, the continuous PSD of an ideal ramp function and its approximation with

a plausible discrete frequency comb are shown. The ideal force function is designed to

extend further in the blue-detuned region in order to have the trap depth requirement

be satisfied by the approximated functions. A ramping profile is chosen to adapt to the

particular task considered. The ramp has a gentle slope on the blue-detuned side of

the resonance, where the mirror is trapped. Thus, in the region around the equilibrium

point, it achieves even a softer spring than the one obtained by the low-finesse cavity

with a single-mode input. The ramp drops o↵ immediately outside of the trapping

region, minimizing the input power needed. Thanks to this, both the continuous and

the discrete approximations of the ideal force function lead to a significant reduction in

sti↵ness, without the same power requirements of the low-finesse cavity. The specific

inputs of Fig. 11.1b–c correspond to a total power of 3.75⇥ 10�3 p0 for the continuous
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Figure 11.1: Di↵erent choices of input field (left panels) with the corresponding force functions

(right panels). The axes are scaled in terms of the power required for levitation p
0

, the weight

of the mirror f
0

, the free spectral range of the cavity !
FSR

, and the optical wavelength �. (a)

Single-mode inputs induce a force function which follows the typical Lorentzian profile of the

cavity. Two cavities with a high finesse of 3000 (dark blue) and a low finesse of 300 (light blue)

are considered. The input fields are blue-detuned to let the equilibrium condition correspond

to the position x = 0. In the case of low finesse, more input power is needed to maintain the

same trap depth. If the same power as the high-finesse case were used (dashed blue trace),

the maximum force would be noticeably lower than the force required to support the weight

of the mirror, f
0

(indicated by the dashed line for convenience). (b) Multi-mode input with

a continuous PSD can approximate the desired force function, in this case represented by a

ramp (yellow). The ramp is adjusted to have the approximated force function (red) satisfy the

trap depth requirement of 1.5 f
0

. The approximation is obtained in the case of the high-finesse

cavity, whose response is also shown for comparison (blue). (c) Multi-mode input given by a

discrete frequency comb. The comb is adapted to approximate the continuous PSD of (b). The

desired function (yellow) and the normal cavity response to a single frequency (blue) are also

shown for comparison. Each frequency component of the input is plotted modulo !
FSR

, with

each free spectral range depicted with a di↵erent shade of green. In this representative case the

spacing ✏ is chosen so that 4 ✏ � !
m

. Therefore, only four di↵erent free spectral ranges need

to be considered to avoid interference e↵ects.

PSD input and of 4.2⇥ 10�3 p0 for the frequency comb input, in both cases lower than

the input power of 8⇥ 10�3 p0 needed for the low-finesse cavity of Fig. 11.1a. Another
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Figure 11.2: Stabilisation of the optical spring resulting from the frequency comb input of

Fig. 11.1c. (a) Representation of the real and imaginary parts of the optical spring, corre-

sponding to the optical sti↵ness and the optical damping introduced by the cavity. The axes

are scaled in terms of k
0

..= 2f
0

/�, where f
0

is the mirror’s weight and � is the optical wave-

length. The parametric curves correspond to the e↵ect of each separate mode parametrized

as a function of detuning � 2 (�1,+1). The individual springs obtained at x = 0 for each

mode are indicated by circles on the parametrized curves. Di↵erent shades of green correspond

to modes shifted to di↵erent free spectral ranges. The blue arrow represents the total optical

spring resulting from the superposition of the comb modes. The red arrow represents the spring

obtained from the red-detuned field used to cancel the e↵ects of anti-damping. The black arrow

corresponds to the final optical spring. (b) Power needed for the red-detuned field to cancel

the anti-damping e↵ects as a function of its (negative) detuning �. A dashed line indicates

the detuning (and corresponding power) used in (a). Depending on detuning and power, the

resulting sti↵ness of the total spring may be di↵erent.

advantage of the customised potential is that it can make the trap wider, resulting in

greater robustness against large displacements.

It should be remembered that, due to the finite response time of the cavity, the

optical force obtained from a blue-detuned input is restoring but also anti-damping.

In the case of a multi-mode input, the character of the optical force is determined by

the contribution of each frequency component. The plots in Fig. 11.2 are obtained

considering the full dynamical expression of the optical spring, which in the case of a

single input is (cf. Eq. 3.70):

kos(!) =
8G0Pin

c⌧

 (� +G0x)h
2 + (� +G0x)

2
i2


1� !

2 + (� +G0x)
2 (! � 2i)

��1

. (11.10)

The real part of kos(!) determines the optical sti↵ness and thus the frequency of os-

cillation within the trap, !os
..=

p
Re(kos)/m. The imaginary part gives the optical

damping, �os
..= Im(kos)/ (m!). In Chap. 8.2.3 we saw how the anti-damping can be
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Figure 11.3: Comparison of the optical sti↵ness obtained with single- and a multi-mode

inputs. The axes are scaled in terms of the constants p
0

and k
0

introduced before. Physical

scaling in SI units is also given, corresponding to � = 1064 nm, !
FSR

= 2⇡ ⇥ 750MHz, and

m = 1mg. (a) Full comparison as a function of input power P
in

and cavity finesse F . The

blue surface is the spring constant obtained from a single-mode input. The red surface is the

minimum spring constant achievable when a multi-mode continuous ramp input is used instead.

(b) Cross sections of the full comparison for di↵erent values of finesse. The starting point of

each curve corresponds to the lowest power satisfying the trap depth requirement at a specific

finesse, i.e. such that the cavity power is at least 1.5 p
0

and the corresponding force is at least

1.5 f
0

. The locus of such points is shown as a dashed line. A further increase in power shifts the

balancing point f
0

along the profile of the Lorentzian force function, yielding di↵erent optical

sti↵ness. Each point on a red curve corresponds to the lowest sti↵ness achievable, which is

obtained when the maximum cavity power is kept constant at 1.5 p
0

to satisfy the trap depth

requirement while the additional power available is used to make the ramp wider.

neutralized by the introduction of an additional red-detuned field [89]. A similar argu-

ment applies in this case, where a separate beam can be appropriately tuned to induce

an optical spring with positive damping (red arrow) that cancels the anti-damping ef-

fects of the combined optical springs from the multi-mode input (blue arrow). Only

few modes contribute towards the optical spring at any given position of the mirror.

As the mirror moves, di↵erent modes start contributing more as they become resonant.

The total optical spring then oscillates between di↵erent values, with more or less anti-

damping to be cancelled. A worst case scenario can then be considered to balance the

system. Even in this case, the addition of such a damping beam does not limit the

ability to engineer the desired force function. The power assigned to this additional

beam can be lower than any individual mode of the comb, as shown in Fig. 11.2b.

The performance of single- and multi-mode inputs is compared in Fig. 11.3, which
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shows the optical sti↵ness obtained in both cases as a function of power and finesse.

The multi-mode input used in this case is the continuous, ramping PSD of Fig. 11.1b,

primarily because it allows for a simpler mathematical formulation. A more physical

multi-mode input returning comparable results can always be obtained in the limit

of very fine spacing of the approximating comb. For both types of inputs, no spring

value is reported when the combination of input power and finesse does not generate

enough cavity power to satisfy the trap depth requirement. Focusing on the single-mode

input (blue), we can see that the trend of the optical sti↵ness follows the gradient of

the Lorentzian force function when the power is increased while the finesse is kept

constant. This is because the increasing power pushes the balancing condition down

along the familiar Lorentzian profile. Lower sti↵ness values are obtained close to the

base of the Lorentzian, which is accessible only at high input power. Note that in

general the slope of the Lorentzian is also gentle close to resonance, but these points

can not be taken into account as they do not satisfy the necessary trap depth. A higher

finesse corresponds to a steeper profile, and therefore a generally higher sti↵ness value.

This tendency can be inverted when a multi-mode input is considered. Thanks to the

additional freedom provided by the ramping profile, when more power is available in

the cavity it can be used towards the intended task of softening the optical sti↵ness

instead of having it push the equilibrium condition further down along the profile. By

fixing the maximum of the force function to 1.5 f0, which correspond to a maximum

cavity power of 1.5 p0, the additional power can be used to increase the width of the

ramp and thus allow a softer spring. The trap does not become deeper, but it becomes

wider. This method allows significantly reduced spring constants compared to the ones

obtained with a single-frequency input. Moreover, as finesse is increased the quality of

the approximation becomes only better.

Conclusions. The spectral properties of the input of an optomechanical cavity

can be tailored to produce arbitrary potentials or force functions for optically trapped

objects. The engineered potential can be used to improve the performance of the system

for a certain task. The approximation of a desired force function is conditional on the

absence of features finer than the cavity linewidth. Given the practical di�culty of

handling inputs with continuous power spectral densities, it was also shown how these

can be approximated by discrete frequency combs. The protocol was finally applied

to a simplified version of the levitating mirror scheme to show that even a relatively

simple class of force functions can lead to a significant enhancement in performance.

Given its simplicity and generality, this technique could conceivably be used in a wide
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variety of optomechanical systems as a simple way to improve performance.
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Chapter 12

Squeezing quadrature rotation in

the acoustic band via

optomechanics

12.1 The role of squeezing in interferometric measure-

ments

The precision of optical measurements is intrinsically limited by the field’s noise. Even

ideal laser sources cannot escape a minimum level of uncertainty, as Heisenberg’s prin-

ciple manifests in the form of fundamental quantum fluctuations of the light’s degrees

of freedom, such as its amplitude and phase. Shot noise, which is the error in the

photon-counting process, is a by-product of these fluctuations [26]. The impact of shot

noise is reduced when the number of photons is large, i.e. when high laser power is used.

This might not always be practical: there could be a limit to the resources available, or

the system might require low power to avoid damage, or it could also be the case that

additional sources of noise are introduced at high power. A typical example of this is

found in optomechanics, where the modulation of the mechanical oscillator translates

the increased power into additional radiation pressure noise.

Interferometric measurements at the quantum level can be strongly a↵ected by

both photon-counting and radiation pressure noise. To understand how, it should first

be understood how these systems usually operate (cf. Fig. 12.1). The arms of the

interferometers are typically phase-locked in order to achieve complete constructive

interference on one of the ports, the input port, and complete destructive interference on

the other port, the output or “dark” port. When a perturbation moves the test masses

of the interferometer, the dark port detects the signal. The signal-to-noise ratio of the

measurement generally improves when the power used in the interferometer is high, as

179



180 Squeezing quadrature rotation in the acoustic band via optomechanics

!gw

!gw !gw!gw
"gw

cavities

signal recycling

power recycling

#$%& '(%)*(+%,-(.%/01) '(%))
Figure 12.1: Diagram of the interferometer considered in this chapter: a Michelson interfer-

ometer with Fabry–Pérot cavities in the two arms. In gravitational-wave detectors, additional

mirrors are used at the input and the output of the interferometer to meet the power require-

ments of the detection. The test masses are indicated by m
gw

, while L
gw

corresponds to the

length of the interferometer’s arms.

the photon-counting error becomes small compared to the signal. At the same time,

however, the measurement becomes contaminated by the fundamental fluctuations of

the test masses driven by radiation pressure force. The two e↵ects become particularly

relevant when optical cavities are introduced in the interferometer’s arms to e↵ectively

increase the optical path and enhance its sensitivity. As a consequence of the cavities’

resonance, the photon-counting noise is suppressed due to the higher circulating power

and starts to prevail only at high frequencies. Radiation pressure, on the other hand,

introduces a much greater noise at low frequencies, within the operation bandwidth of

the cavities. The trade-o↵ between photon-counting noise and radiation pressure noise

determines the standard quantum limit (SQL) of the measurement [252, 253]. The

influence of the SQL on the sensitivity spectrum depends on the power used to drive

the interferometer, as the two noise sources combine di↵erently to determine the band

of minimum uncertainty.

Despite its fundamental origin, the SQL does not represent an ultimate limit to the

measurement’s capacity. It can be beaten if one resorts to modified states of light where

the fluctuations are balanced di↵erently between di↵erent quadratures, i.e. squeezed

states of light as those introduced in Chap. 2.3.5. Gravitational-wave interferometers,

whose measurements are already bound only by the SQL over the detection’s band of

interest, have already used squeezing to push their sensitivity even beyond [36, 254].

Squeezed light is applied to the dark port of the interferometers, where the conventional

vacuum state is replaced by a state with reduced noise in one quadrature. In the case of

phase-squeezed light the e↵ect is similar to that obtained by using high power. However,

the improvement in signal-to-noise ratio is obtained because of the reduction in noise
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rather than an increase in signal strength. Unfortunately phase-squeezed states also

su↵er from a larger uncertainty on the amplitude quadrature. The additional noise is

fed into the system through radiation pressure on the test masses. Then, in complete

analogy to high-power operations, the sensitivity is deteriorated at low frequencies

and improved only at high frequencies. The outcome is completely reversed when

amplitude-squeezed light is used instead. In this case the interferometer is subject to

less radiation pressure noise but more photon-counting noise, and the sensitivity is

bound by the same SQL obtained when operating at low power.

The low-frequency region of the sensitivity spectrum is usually dominated by al-

ternative sources of technical noise that burrow the e↵ects of anti-squeezing of the

amplitude quadrature, thus making the use of phase-squeezed light unconditionally

advantageous. The measurements of the next generation of gravitational-wave detec-

tors, however, will reach such a level of refinement that the role of radiation pressure

noise at low frequencies will also be significant. In order to extend the enhancement to

the full spectrum, one requires frequency-dependent squeezing to address the dominant

sources of noise separately [31, 255, 256]. A broadband enhancement is accomplished

with light squeezed on the amplitude quadrature at low frequencies to suppress radia-

tion pressure noise, and squeezed on the phase quadrature at high frequencies to reduce

the photon-counting noise.

The dispersive properties of a filter cavity can achieve the desired quadrature rota-

tion from a conventional squeezed source, provided that the bandwidth of the cav-

ity matches that of the interferometer [255, 257–259]. This technique has already

been implemented with proof-of-principle demonstrations [30, 31]. However, technical

impediments such as decoherence and degradation can impact the overall e↵ective-

ness [260], and, in order to reach the storage time required to match the bandwidth of

gravitational-wave detectors, the length of the resonator would be required between a

few tens of meters and the entire length of the arms of the interferometer [261]. Op-

tomechanically induced transparency [10] has the capacity of implementing dispersion

over a narrow bandwidth and also qualifies as a possible candidate for the achievement

of frequency-dependent squeezing [262,263]. The same principle has inspired other pro-

posals, such as the inclusion of a feedback-controlled unstable optomechanical system

within the signal-recycling cavities of the interferometer [264].

Squeezed light can also be generated via the optomechanical interaction [65, 66,

265, 266]. Thanks to the dispersive nature of the mechanical resonance, optomechani-

cal squeezing also displays frequency-dependent properties that could o↵er a strategic
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advantage over other techniques. This would project optomechanical squeezing beyond

the recent proof-of-principle demonstrations [8, 9, 267] and demonstrate its value as a

metrological asset.

In this chapter we explore how the optomechanical interaction correlates di↵erent

quadratures of the optical field, and how this can be used to squeeze the noise ellipse

of the output state of light. After characterizing the noise spectrum to find a suitable

parameter regime, we use a simple model of the sensitivity of gravitational-wave detec-

tors to determine the e↵ects that optomechanical squeezing can have on interferometric

measurements [17].

12.2 Optomechanical squeezing

In an optomechanical system, the movement of the mirror induced by the intensity of

light is converted onto the field as a modulation of its phase. This conversion occurs also

at the noise level, meaning that the field’s amplitude fluctuations can be turned into

phase fluctuations, and vice versa. With the appropriate superposition of the correlated

fluctuations, one quadrature of the optical field can experience smaller fluctuations than

the vacuum state, therefore transforming the output of the optomechanical system into

a squeezed state.

12.2.1 Cross-correlations in the optical quadratures

To see how the cross-correlations between di↵erent optical quadratures emerge through

the optomechanical interaction, consider the equations of motion of a generic optome-

chanical system derived in Chap. 3.1.4:

�
.
â(t) = (�+ i�) �â(t) + iG

↵

�x̂(t) +
p
2�âin(t), (12.1)

�
.
x̂(t) = �p̂(t)/m, (12.2)

�
.
p̂(t) = �m!2

m�x̂(t)� �m�p̂(t) + �F̂rp(t) + �F̂th(t). (12.3)

The degrees of freedom for the optical field are given by the quantum fluctuations

of its ladder operators, �â and �â†. The mechanical degrees of freedom, �x̂ and �p̂,

correspond to the quantum fluctuations of the oscillator’s position and momentum re-

spectively. The equations include the quantum fluctuations of the radiation pressure

force, �F̂rp
..= ~

�
G⇤

↵

�â + G
↵

�â†
�
. The other force term, �F̂th, represents the stochas-

tic forces originating from the thermal bath of the mechanical oscillator, with power
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spectrum S
(th)
F

(!) = m�m~! coth
⇣

~!
2kBT

⌘
. The operator �âin stands for the fluctua-

tions of the input field driving the cavity. The parameters  and � characterize the

half-linewidth and the e↵ective detuning of the cavity. The mirror’s mass, natural

oscillation frequency, and mechanical damping rate are expressed by m, !m, and �m,

respectively. The quantity G
↵

..= G0↵s is the product of the optomechanical coupling

constant, which depends on the wavelength � and on the cavity’s free spectral range

!FSR as G0 = 2!FSR/�, and the steady-state amplitude of the optical field, which

depends on the input amplitude ↵in as ↵s =
p
2↵in/ (� i�).

We will be looking at the spectral response of the optomechanical degrees of free-

dom, as we did in Chap. 3.3.2 when the optical spring e↵ect was derived. Expanding

the inter-dependence of �x̂ and �â in Eq. 3.62–3.63, we obtain the frequency-domain

expressions

�â(!) =
�e↵(!)

�m(!)

p
2A�(!)

"
�âin(!) + iG
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�m(!)

 
A+(!)�F̂

(in)
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�F̂th(!)p
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!#
,

(12.4)

�x̂(!) = �e↵(!)
⇣
�F̂sh(!) + �F̂th(!)

⌘
. (12.5)

Here we are using the definitions of the two Airy functions, A±(!)
..=

⇥
±i (�± !)

⇤�1
,

of the original mechanical susceptibility, �m(!)
..=

⇥
m
�
!2
m � !2 + i�m!

� ⇤�1
, and of the

e↵ective susceptibility, �e↵(!)
..=
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�
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↵

�âin +G
↵

�â†in
�
corresponds to the radiation pressure force of the input

field, while �F̂sh(!)
..=

p
2

�
~G⇤

↵

A�(!)�âin(!) + ~G
↵

A+(!)�â
†
in(!)

�
is the frequency-

dependent force due to the response of the cavity to shot noise (cf. Eq. 3.67).

The dynamical back-action on the optical degrees of freedom cannot be accessed

directly from within the cavity. We need to consider the output field, which responds

to the input-output relation �âout = ��âin +
p
2 �â (cf. Eq. 2.56). Using Eq. 12.4, we
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can solve for �âout (and its conjugate) in terms of �âin, �â
†
in, and �F̂th to obtain
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The property [�âout(!)]
† = �â†out(�!) can be useful for the derivation of the conjugate

equation, in particular if one recalls that the Airy functions satisfy [A⌥(!)]
⇤ = A±(�!)

and the mechanical susceptibility satisfies [�m(!)]
⇤ = �m(�!) (and similarly for �e↵).

In both equations it can be seen how the output variables depend not only on the

corresponding input variable, but on its conjugate as well. These cross-correlations are

what allows the exchange of uncertainty between di↵erent quadratures. They depend

on the susceptibility of the moving mirror, and in particular they become stronger

at frequencies closer to the mechanical resonance. The presence of �F̂th testifies how

the optomechanical interaction also couples the thermal fluctuations of the mirror to

the optical field. When the optomechanical interaction is turned o↵ (G
↵

= 0), both

cross-correlations and thermal noise disappear and the equations turn into the familiar

cavity equations, as expected. It should be noted that squeezing can be generated

by the similar cross-correlations arising from dissipative (as opposed to dispersive)

coupling [268, 269]. However, dissipative optomechanics typically has weaker coupling

strengths and its contribution will not be considered for the following analysis.

To proceed further, and infer the uncertainty on di↵erent quadratures of the out-

put field, we need to know more information about the system’s inputs. We assume

the system to be in the limit of fast thermal correlation times and the stochastic

thermal forces acting on the mirror to be stochastic, therefore implying a frequency-

domain correlation function h�F̂th(!)�F̂th(!
0)i = 2⇡�(! + !0)S(th)

F

(!) [57, 270]. For

the optical input, we know that for a general thermal state the correlation functions

are h�â†in(!)�âin(!0)i = 2⇡�(! + !0)n(th)
o , h�âin(!)�â†in(!0)i = 2⇡�(! + !0)

�
n
(th)
o + 1

�
,

and h�âin(!)�âin(!0)i = h�â†in(!)�â
†
in(!

0)i = 0. The non-vanishing correlations and
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the associated uncertainty increase with the mean thermal occupation number of the

photons, nth
o . Since we are interested in beating the fundamental quantum noise, for

simplicity we will assume the input state to be a canonical coherent state, which has

the same uncertainty as the vacuum state and satisfies n
(th)
o = 0. The input field has

therefore only one non-vanishing expectation value, h�âin(!)�â†in(!0)i. The same does

not apply to the output field, where the variables result correlated by the optomechan-

ical interaction. We can calculate all the output correlations by first using the explicit

dependence of �âout and �â
†
out on the input variables, then expanding the known non-

vanishing correlations, and finally using the sifting property of the Dirac delta function

together with the properties of the complex conjugates of the Airy functions and the

susceptibilities. The results are

h�âout(!)�â†out(!0)i =
⇣
|C1(!)|2 + |C3(!)|2 S

(th)
F

(!)
⌘
2⇡�(! + !0), (12.8)

h�â†out(!)�âout(!0)i =
⇣
|C2(!)|2 + |C4(!)|2 S

(th)
F

(!)
⌘
2⇡�(! + !0), (12.9)

h�âout(!)�âout(!0)i =
⇣
C1(!)C2(!)

⇤ + C3(!)C4(!)
⇤S(th)

F

(!)
⌘
2⇡�(! + !0), (12.10)

h�â†out(!)�â
†
out(!

0)i =
⇣
C2(!)C1(!)

⇤ + C4(!)C3(!)
⇤S(th)

F

(!)
⌘
2⇡�(! + !0), (12.11)

where the four coe�cients introduced are defined as

C1(!)
..= �1 + 2A�(!)�e↵(!)/�m(!) + 2i~ |G

↵

|2A�(!)A+(!)�e↵(!), (12.12)

C2(!)
..= �2i~G⇤

↵

2A�(!)A+(!)�e↵(!), (12.13)

C3(!)
..= +i

p
2G

↵

A�(!)�e↵(!), (12.14)

C4(!)
..= �i

p
2G⇤

↵

A+(!)�e↵(!). (12.15)

Note that [C3(!)]
⇤ = C4(�!), and that only C1(!) would be non-vanishing in the

absence of optomechanical interaction.

We are now ready to deduce the uncertainty for the quadratures of the output field.

Define the generic quadrature parametrized by the angle ✓,

X̂
(out)
✓

..= e�i✓�âout + e+i✓�â†out. (12.16)

In particular, we identify the amplitude quadrature X̂ and the phase quadrature Ŷ as
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those corresponding to the angles ✓ = 0 and ✓ = ⇡/2, respectively:

X̂ ..= X̂
(out)
0 = �âout + �â†out, (12.17)

Ŷ ..= X̂
(out)
⇡/2 = �i

�
�âout � �â†out

�
. (12.18)

Their correlation functions are obtained directly in terms of Eq. 12.8–12.11. For the

self-correlations, we have

hX̂(!)X̂(!0)i = h�âout(!)�â†out(!0)i+ h�â†out(!)�âout(!0)i

+ h�âout(!)�âout(!0)i+ h�â†out(!)�â
†
out(!

0)i

=
⇣
|C1(!) + C2(!)|2 + |C3(!) + C4(!)|2 S

(th)
F

(!)
⌘
2⇡�(! + !0),

(12.19)

hŶ (!)Ŷ (!0)i = h�âout(!)�â†out(!0)i+ h�â†out(!)�âout(!0)i

� h�âout(!)�âout(!0)i � h�â†out(!)�â
†
out(!

0)i

=
⇣
|C1(!)� C2(!)|2 + |C3(!)� C4(!)|2 S

(th)
F

(!)
⌘
2⇡�(! + !0),

(12.20)

while for the cross-correlation we find

hX̂(!)Ŷ (!0)i+ hŶ (!)X̂(!0)i
2

= �ih�âout(!)�âout(!0)i+ ih�â†out(!)�â
†
out(!

0)i

=
h
2 Im

�
C1(!)C2(!)

⇤�

2 Im
�
C3(!)C4(!)

⇤�S(th)
F

(!)
i
2⇡�(! + !0). (12.21)

By using the amplitude and phase quadratures as reference, we can write the parametrized

quadrature as X̂
(out)
✓

= cos(✓)X̂ + sin(✓)Ŷ . It is then possible to use Eq. 12.19–12.21

as the building blocks for the generic correlation function, so that

hX̂(out)
✓

(!)X̂(out)
✓

(!0)i = cos2(✓)hX̂(!)X̂(!0)i+ sin2(✓)hŶ (!)Ŷ (!0)i

+ 2 cos(✓) sin(✓)
hX̂(!)Ŷ (!0)i+ hŶ (!)X̂(!0)i

2
. (12.22)



§12.2 Optomechanical squeezing 187

12.2.2 Frequency-dependent spectrum

The noise ellipse of the output field is uniquely determined by the symmetrized power

spectral density of X̂(out)
✓

[271], defined as

S
✓

(!) ..=

Z
d!0

2⇡
h{X̂

✓

(!)X̂
✓

(!0)}i. (12.23)

The symmetrizing action, indicated by the curly brackets (cf. Eq. 2.10), extracts the

information available from the system with a classical measurement [20]. Similarly to

the generic correlation function, the parametric spectral density can be reformulated

in terms of the amplitude and phase quadratures:

S
✓

(!) = cos2(✓)S
X

(!) + sin2(✓)S
Y

(!) + 2 sin(✓) cos(✓)S
XY

(!)

=
S
X

(!) + S
Y

(!)

2
+ cos(2✓)

S
X

(!)� S
Y

(!)

2
+ sin(2✓)S

XY

(!). (12.24)

Here, S
X

(!), S
Y

(!), and S
XY

(!) are respectively the spectral densities of the ampli-

tude quadrature, of the phase quadrature, and of the cross-correlations between the

two. In their fully expanded form, they are given by

S
X

(!) =
1

2

"�����1 + 2A�(!)
�e↵(!)

�m(!)
+ 2i~

⇣
|G

↵

|2 �G⇤
↵

2
⌘
A�(!)A+(!)�e↵(!)

����
2

+

�����1 + 2A+(!)
�e↵(!)

�m(!)
� 2i~

⇣
|G

↵

|2 �G2
↵

⌘
A�(!)A+(!)�e↵(!)

����
2
#

+ 2 |G
↵

A�(!)�G⇤
↵

A+(!)|2 |�e↵(!)|2 S
(th)
F

(!), (12.25)

S
Y

(!) =
1

2

"�����1 + 2A�(!)
�e↵(!)

�m(!)
+ 2i~

⇣
|G

↵

|2 +G⇤
↵

2
⌘
A�(!)A+(!)�e↵(!)

����
2

+

�����1 + 2A+(!)
�e↵(!)

�m(!)
� 2i~

⇣
|G

↵

|2 +G2
↵

⌘
A�(!)A+(!)�e↵(!)

����
2
#

+ 2 |G
↵

A�(!) +G⇤
↵

A+(!)|2 |�e↵(!)|2 S
(th)
F

(!), (12.26)

S
XY

(!) = 4
h⇣

� Re
�
~G2

↵

�
Re

�
A�(!)A+(!)�e↵(!)

�

+ 2Re
�
~G2

↵

A�(!)A+(!)
⇤�Re

�
A�(!)

⇤/�m(!)
�
|�e↵(!)|2

� 2 ~ |G
↵

|2 Im
�
~G2

↵

�
|A�(!)A+(!)�e↵(!)|2

⌘

� Im
�
G2

↵

A�(!)A+(!)
⇤� |�e↵(!)|2 S

(th)
F

(!)
i
. (12.27)
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The frequency-dependence of each spectral density is non-trivial. Thanks to the para-

metric expression of Eq. 12.24, however, it is easy to identify the quadrature angle that

minimizes the spectrum at any given frequency:

✓min =
⇡

2
+

1

2
arctan

✓
2S

XY

(!)

S
X

(!)� S
Y

(!)

◆
. (12.28)

In practice, unless the interferometer’s output is extracted with a variational read-

out [255], only one quadrature angle should be considered for the entire spectrum. The

minimized spectrum Smin(!)
..= S

✓

(!)|
✓=✓min(!)

o↵ers nevertheless a comprehensive

picture of optomechanical squeezing that helps in the full characterization of the results.

With all the key elements in place we can now examine how optomechanical squeez-

ing performs under a specific parameter regime. In particular, we consider the system’s

specifications required for a rotation of the squeezed quadrature over the acoustic fre-

quency bandwidth, where the ground-based interferometers operate to detect gravita-

tional waves. Even though the optomechanical interaction would be stronger with a

more intense intra-cavity field, the cavity is assumed to have only medium finesse and

thus a relatively short lifetime. Because of this premise we know that any observed

frequency-dependence emerges because of the optomechanical dispersion rather than

the filtering action of the cavity. In addition, in order to allow a realistic compari-

son with a traditional squeezing source, all parameters are tuned to cap the squeeze

factor to a maximum of 10 dB, a tenth of the original noise level. It should also be

noted that the mechanical oscillator does not need to be close to its quantum ground

state for optomechanical squeezing to be observed. The only requirement is to have

the radiation pressure interaction comparable in strength to the thermal noise im-

parted on the oscillator. The spectrum of the thermal forces can be approximated to

S
(th)
F

(!) = 2m�mkBT for a classical oscillator. A mechanical oscillator with a very

high mechanical quality factor Qm
..= !m/�m is therefore less susceptible to the ther-

mal noise. Between two mechanical oscillators experiencing the same level of radiation

pressure force, the higher suppression in the optical noise is produced by the one with

larger Qm. A worse quality factor can be compensated by lowering the temperature

T , since ultimately it is the ratio T/Qm that determines how much squeezing can be

extracted from the system. Even though extremely high quality factors have been

reported at room temperature [104, 272] it is nevertheless appealing to refrigerate the

mechanical oscillator at very low temperature so that all other requirements can be

relaxed.

We consider a moving mirror with mass m = 0.5 kg, natural oscillation frequency
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Figure 12.2: Characterization of the spectral density of the output field noise. (a) Mini-

mized spectrum S
min

(!) as a function of detuning � (vertical axis). The black line crossing

the spectrum corresponds to the e↵ective frequency of the oscillator, !
e↵

, which changes for

di↵erent detunings because of the optical spring e↵ect. The yellow mesh lines enclose the re-

gions squeezed by 3, 6 and 9 dB. The dashed lines indicate the detunings chosen for the plots

in the figure. (b–d) Frequency-dependence of optomechanical squeezing for detunings � = 0

(b), � = �0.5 (c), and � = +0.5 (d). For each detuning the optimal spectrum S
min

(!) is

shown, coloured according to the quadrature angle that minimizes the noise spectrum. The

noise level of a conventional vacuum state is indicated by a dashed line. (e–g) Normalized

spectral density S
✓

(!) as a function of the quadrature angle ✓ (vertical axis). Both squeezing

(blue) and anti-squeezing (red) are shown. As in the first plot, the mesh lines enclose the

regions squeezed by 3, 6 and 9 dB. The line in the centre of the squeezed region follows the

angle that minimizes the spectrum, ✓
min

(!).

!m = 2⇡ ⇥ 150Hz, and quality factor Qm = 5⇥ 106, cooled to a challenging but re-

alistic cryogenic temperature of T = 3mK. The cavity is tuned to be resonant for an

optical wavelength � = 2⇡c/!o = 1064 nm, with free spectral range !FSR = 2⇡⇥1GHz

and half-linewidth  = 2⇡ ⇥ 0.5MHz. The input power Pin = ~!o |↵in|2 = 20W is set

to conform to the operational requirement of the new generation of gravitational-wave

interferometers. The reduced optomechanical coupling, which depends on the zero-

point fluctuations xZPF =
p

~/ (2m!m), is equal to g0 = G0xZPF = 2⇡ ⇥ 0.63mHz

for this set of parameters. The system defined by this selection of parameters at-

tains frequency-dependent squeezing over a band of a few hundred hertz, as shown in

Fig. 12.2. This is what is required for a comparison with traditional fixed-quadrature

squeezing in connection with gravitational-wave interferometers, which usually reach

their best sensitivity at around 100Hz. The strongest dispersion occurs in proximity
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of the e↵ective mechanical frequency, !e↵
..= 1/

p
m�e↵(!m), which acts as the focal

point for the light-mirror dynamics. The spectrum culminates into a distinctive peak-

like feature at !e↵, as this is a point of inversion for the frequency response of the

system where squeezing and anti-squeezing converge together. This feature is shown as

a black line in Fig. 12.2a, varying with detuning according to the optical spring e↵ect.

At this frequency the spectrum can at best match the original noise, although realisti-

cally one should expect fluctuations in the locking mechanism to introduce additional

anti-squeezing noise. This can be inferred from Fig. 12.2e–g, where both squeezing

and anti-squeezing are shown to be more strongly concentrated around the inversion

node. The width of the narrow band where no noise reduction is obtained is inversely

proportional to the quality factor of the oscillator. Even a quality factor of 50, five

orders of magnitude smaller than the one considered, would not extend this e↵ect over

a linewidth larger than 1Hz. Moreover, the possibility of changing the detuning allows

control over what part of the spectrum would be most influenced.

Limiting the observations to a region of 3 dB of squeezing around the dispersive

feature, one can see that at � = 0 (Fig. 12.2b and 12.2e) the squeezed angle varies from

about ⇡/12 at low frequencies to about �⇡/6 at 300Hz, achieving an overall rotation

of ⇡/4. A slightly larger quadrature rotation is obtained at a detuning � = �0.5

(Fig. 12.2c and 12.2f) or � = +0.5 (Fig. 12.2d and 12.2g). A full ⇡/2 rotation is

obtained only at much higher frequencies, but it should also be considered that far from

!e↵ the interaction is not strong enough to correlate the noise of di↵erent quadratures

and the squeezing is much more diluted. Increasing the detuning also has the e↵ect

of reaching a rotation asymptotically close to ⇡/2, but again the reduction in noise

becomes negligible and there is no advantage for |�| & 1.5.

12.3 Sensitivity enhancement in gravitational-wave

detectors

The sensitivity of a gravitational-wave interferometer is determined by how well one

can infer its strain, or the variation in optical path between opposite ends of the

interferometer’s arms divided by the total length of the interferometer. The strain

sensitivity required to detect gravitational waves from potential astrophysical sources

is estimated to be about one part in 1021 or 1022. For large scale interferometers

this corresponds to a displacement sensitivity of ⇡ 10�18m, about one-thousandth

of the radius of a proton, over a total path of a few kilometres. Considering the
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Figure 12.3: Schematic of the injection scheme for improving the sensitivity of the interfer-

ometer. The vacuum state normally present at the dark port is replaced by a squeezed state.

The squeezing can be directly extracted from an optical parametric oscillator (OPO), in which

case the noise reduction is bound to the same quadrature at all frequencies. Alternatively,

the squeezing could be filtered through an ideal cavity that achieves the necessary quadra-

ture rotation. The squeezing obtained from an optomechanical system naturally displays the

frequency-dependent properties obtained from a filter cavity.

extreme resolution required for such a measurement, it should not be surprising that the

sensitivity of gravitational-wave interferometers is limited by the quantum fluctuations

of the light used for the observations. We will see in this section that a judicious

modification of the interferometer’s input state, as shown in the diagram of Fig. 12.3,

can bring the sensitivity even beyond this limit.

The standard quantum limit (SQL) is an expression of the uncertainty principle, and

it arises as a consequence of photon-counting noise and radiation pressure noise [255].

The minimum uncertainty in strain sensitivity allowed by the SQL is

hSQL(!) =

s
8~

mgwL
2
gw!

2
, (12.29)

where mgw is the mass of the test mirrors and Lgw is the length of the arm cavities.

Accordingly, the strain noise spectral density due to the SQL is SSQL = hSQL(!)
2.

Both noise sources are mediated by the arm cavities, and thus their spectral density is

related to the transfer function

K(!) ..=
24gw

!2
�
2gw + !2

� Pgw

PSQL
, (12.30)

where gw is the half-linewidth of the arm cavities of the interferometer, Pgw is the

operating power measured at the beam splitter, and PSQL is a reference power necessary
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to reach the SQL at ! = gw, defined in terms of the optical frequency !o as

PSQL
..=

mgwL
2
gw

4
gw

4!o
. (12.31)

In particular, since the signal-to-noise ratio is better on resonance, the spectral den-

sity of the photon-counting shot noise results inversely proportional to the cavities’

response:

Ssh(!) =
1

2
K(!)�1SSQL(!). (12.32)

On the contrary, the contribution of radiation pressure force on the test masses is

increased when more power circulates within the cavities, and the spectral density of

the radiation pressure noise is directly proportional to the cavities’ response:

Srp(!) =
1

2
K(!)SSQL(!). (12.33)

The noise spectrum of a quantum-limited interferometer is obtained by summing the

two together:

Sgw(!)
..= Srp(!) + Ssh(!) =

1

2

�
K(!) +K(!)�1

�
SSQL(!). (12.34)

The sensitivity for inspiralling astrophysical sources of gravitational waves is calculated

as the square root of the noise spectrum weighted by the frequency [255], i.e.
p
! Sgw(!).

Because we are interested in relative enhancements we can normalize all sensitivities by

the value of the SQL obtained when operating at PSQL. For this reason, all the traces

considered in the following analysis will represent the ratio between the corresponding

sensitivity and
p
gw SSQL(gw). Also, we will use the parameters of the last generation

of the advanced LIGO interferometer: mgw = 40 kg, Lgw = 4km, gw = 2⇡ ⇥ 100Hz.

The plots in Fig. 12.4a illustrate how the di↵erent noise sources combine into the

typical interferometer noise spectrum. By definition of PSQL, the best sensitivity of an

interferometer exercising at this power is achieved at ! = gw. When the operating

power is lower (i.e. Pgw < PSQL) the resulting sensitivity is degraded at high frequencies,

as photon-counting noise has a stronger impact on the signal, while it is improved

at low frequencies, where the contribution of radiation pressure noise is lower. As a

consequence, the band of minimum noise is e↵ectively moved towards lower frequencies.

The opposite e↵ect occurs when the power is higher (i.e. Pgw > PSQL), in which case

the band of best sensitivity is shifted towards higher frequencies. The minima obtained
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Figure 12.4: Sensitivity spectra of an interferometer as the one shown in Fig. 12.1. The stan-

dard quantum limit is indicated by a straight grey line. (a) The typical sensitivity spectrum

(black) is obtained as the combination of radiation pressure noise (yellow) and photon-counting

shot noise (violet). The sensitivity is shown for an interferometer operating at P
gw

= P
SQL

(solid lines), P
gw

= 0.1P
SQL

(dotted lines), and P
gw

= 10P
SQL

(dashed lines). (b) Sensitivity

spectra of the same interferometer, operating at P
gw

= P
SQL

, when squeezed light is injected

to the dark port. The squeezing factor is assumed to be constant at 10 dB over the entire

spectrum. The three representative cases shown correspond to amplitude squeezing (dotted

blue), phase squeezing (dashed blue), and hybrid quadrature squeezing (solid blue). The con-

ventional sensitivity (solid black) is also shown for comparison. The dashed black line indicates

the sensitivity attainable if the squeezing propagated through an ideal filter cavity, with vari-

able squeezed quadrature '(!) = ✓
gw

(!) rotating from amplitude at low frequencies to phase

at high frequencies.

as power is varied determine a straight line in the logarithmic scale which corresponds

to the best sensitivity allowed by the SQL,
p
! SSQL(!).

Refined readings are possible with the injection of squeezed light, which pushes

the capabilities of the interferometer beyond the SQL [256]. By replacing the vacuum

state at the dark port of the interferometer with a squeezed state of light, the detection

spectrum is modified to

Sgw(!) =
⇥
cosh(2r)� cos(2

�
✓gw(!)� '

�
) sinh(2r)

⇤
Sgw(!), (12.35)

where ✓gw(!)
..= � arctan(K(!)�1) is the phase rotation imposed by the arm cavi-

ties [255], r is the squeezing factor, and ' is the angle of the squeezed quadrature (cf.

Eq. 2.33). It is straightforward to see that this spectrum is minimized for frequency-

dependent squeezing satisfying '(!) = ✓gw(!), as shown by the dashed black trace in

Fig. 12.4b. This frequency dependence could be obtained by letting the squeezed light

generated by a conventional optical parametric oscillator (OPO) propagate through a

filter cavity before the injection [30,31]. However, the ideal rotation would be achieved

only by a filter cavity with exactly the same characteristics as the cavities in the inter-

ferometer’s arms. This task is quite impractical for gravitational-wave detectors, which
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extend for several kilometres in length and therefore demand an extremely narrow cav-

ity linewidth [273]. The other traces in Fig. 12.4b show the impact of fixed quadrature

squeezing. The sensitivity obtained by using phase-squeezed light (' = ⇡/2) is iden-

tical to the one obtained when the same interferometer operates without squeezing

but at increased power. In both cases the signal-to-noise ratio of the measurement is

improved, with the di↵erence that the application of high power increments the size of

the signal while the use of phase squeezing reduces the photon-counting noise. At low

frequency, the stronger noise is justified by a stronger radiation pressure in the case

of high power, and by the presence of anti-squeezing in the amplitude quadrature in

the case of squeezing. A very similar argument applies when comparing the injection

of amplitude squeezing (' = 0) with the use of lower power, with the roles of radia-

tion pressure and photon-counting noise reversed. The injection of hybrid quadrature

squeezing (�⇡/2 < ' < 0) does not have an equivalent counterpart in terms of power.

In this case the noise reduction pushes the sensitivity beyond the SQL in a narrow

band around gw. At the same time the anti-squeezing noise spreads between the

phase and amplitude quadratures, inducing a slightly higher uncertainty at low and

high frequency.

The frequency-dependent characteristics required to obtain a broadband enhance-

ment in sensitivity arise naturally in optomechanically generated squeezing. The dis-

persion obtained through the interaction with the mechanical resonator rotates the

squeezed quadrature over the spectrum, similarly to how a filter cavity rotates its in-

put. The centre of the rotation is determined by the mechanical frequency, which is a

more flexible variable than the linewidth of a filter cavity and can more easily target

the acoustic frequency band. However, as was shown in Fig. 12.2, the optomechanical

dispersion does not complete a full ⇡/2 rotation over the frequency band of interest.

Nevertheless, the frequency dependence achieved may nevertheless be enough to com-

pensate for ✓gw(!) over a section of the measurement band wider than the one covered

by fixed quadrature squeezing. Moreover, in the optomechanical system the squeezing

factor also varies across the spectrum. This seemingly undesirable property may be

used to one’s advantage if the system is adjusted to have less interaction, and thus

reduced anti-squeezing, around frequencies where the squeezed quadrature does not

match ✓gw(!). The system can therefore be prepared to provide high squeezing in a

region with reduced quadrature rotation (for example, from 0 to �⇡/4) and no change

from the conventional sensitivity elsewhere. The performance of the optomechanical

system is illustrated in Fig. 12.5, which compares on a case-by-case basis the sensitivity
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Figure 12.5: Comparison of the sensitivity of an interferometer subject to squeezing injection

at the dark port, as suggested by the scheme in Fig. 12.3. The comparison includes the case of

fixed-quadrature squeezing from a typical OPO source (blue), squeezing propagated through an

ideal filter cavity (dashed black), and frequency-dependent optomechanical squeezing (orange).

The parameters used for the optomechanical system are the same used to obtain the spectra of

Fig. 12.2. The plots consider di↵erent detuning configurations for the optomechanical cavity,

specifically � = 0 (a), � = �0.5 (b), and � = +0.5 (c). In all cases, the optomechanical

squeezing is capped to have a highest noise reduction of 10 dB. The fixed-quadrature squeezing

is considered to have a similar noise reduction of 10 dB, but across the entire spectrum. The

inset shows how the characteristic feature of the optomechanical spectrum at ! = !
e↵

a↵ects

the sensitivity. Starting from the initial trace corresponding to ✓
min

(!), subsequent traces (light

orange to white) are obtained by accounting for a total deviation of up to 6% of a radian in

intervals of 0.3%. A similar behaviour should be expected in the other two plots, where the

position of the e↵ective mechanical frequency is indicated by a dashed orange line.

obtained with fixed-quadrature squeezing to that obtained with frequency-dependent

squeezing examined in the previous section. When the optomechanical cavity is not

detuned (Fig. 12.2a, � = 0), optomechanical squeezing performs generally better than

hybrid quadrature squeezing. The sensitivity advantage is particularly noticeable at

frequencies higher than 100Hz, where most of the quadrature rotation takes place. The

di↵erence between the two traces gets as high as 5.5 dB, after which point the interac-

tion becomes progressively weaker and the sensitivity of the optomechanically enhanced

system converges to that of a conventional interferometer. The situation is similar

when the optomechanical cavity has a negative detuning (Fig. 12.2b, � = �0.5).

Compared with pure amplitude squeezing, optomechanical squeezing achieves noise re-

duction in the lower end of the spectrum while avoiding the additional noise introduced
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by anti-squeezing on the phase quadrature at high frequencies. A positive detuning

(Fig. 12.2c, � = +0.5) can result in a broad sensitivity enhancement in the region

between 100Hz and 200Hz without having to sacrifice too much sensitivity at lower

frequencies, as opposed to the fixed-quadrature squeezing that does not neutralize the

anti-squeezing in the wrong quadrature. It should be remembered that the spectrum

of the optomechanical squeezing presents a characteristic feature at the e↵ective me-

chanical frequency. Close to this frequency, any deviation from the optimal quadrature

risks introducing undesired noise into the system. The e↵ects of imprecisions in the

locking system of up to 6% of a radian are shown in the inset of Fig. 12.2a. When the

locked quadrature di↵ers from ✓min(!), the sensitivity around the resonance is slightly

improved before a spike of overwhelming noise takes over. The hint of better sensitivity

is possible because the rotation achieved by the optomechanical system is not ideal,

and a slight deviation may better approximate the desired rotation in a very small

region of the spectrum. This advantage is certainly negligible compared to the high

level of uncertainty introduced by the adjacent spike in anti-squeezing. As the angle

gets closer to optimal the e↵ect is imposed onto an increasingly narrower region, until

it is completely cancelled when ' = ✓min(!). It should also be considered that such

a distinctive feature may only be a product of the specific detection method used for

the measurement. A novel detection technique, called synodyne detection, has been

suggested to replace the conventional homodyne detection method used for traditional

squeezing in order to reveal the complex nature of optomechanical squeezing and thus

take full advantage of its frequency-dependent nature [34].

Conclusions. The frequency-dependent properties of optomechanical squeez-

ing lead to interesting applications in gravitational-wave detectors. Optomechanical

squeezing presents an elegant alternative to filter cavities by achieving squeezed quadra-

ture rotation over the spectrum in order to address di↵erent sources of noise at di↵erent

frequencies. Comparing the sensitivity obtained with optomechanical squeezing with

the one obtained using a traditional source, the former can obtain a relative enhance-

ment of up to 5.5 dB when both methods are capped to a maximum noise reduction

of 10 dB. The use of optomechanical squeezing is not without shortcomings. The pa-

rameter regime considered is realistic, but it requires state-of-the-art technology for a

successful implementation. On top of this, an extremely high precision in homodyne

quadrature locking is required to avoid excessive measurement noise close to the fre-

quency of the mechanical resonator. The high flexibility allowed by the detuning of

the optomechanical cavity can however be used to shift this noise to di↵erent frequen-
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cies, for example a↵ected by other unavoidable sources of background noise, or where

a measurement would not be expected for other reasons. Alternatively, the whole de-

tection process could be tailored to fully account for the optomechanical back-action.

Another issue is given by the fact that the squeezed quadrature rotation obtained by

the optomechanical system under analysis does not cover the full range of quadratures

that would be needed for an ideal broadband suppression of noise. The imperfect ro-

tation is compensated by a weakening of the interaction that prevents the fluctuations

of the anti-squeezed quadrature to impose additional noise. It should also be remem-

bered that the technical feasibility of a cavity-induced rotation at 100Hz has yet to

be demonstrated, while it is already plausible for a high-quality mechanical oscillator

to have a resonant frequency in that frequency band. Overall, the extensive e↵orts

placed by the gravitational-wave community in the suppression of all sources of noise

should pose a strong foundation for the experimental demonstration of the injection of

squeezing obtained via optomechanics.
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The field of optomechanics is currently projected on a very exciting path, as the

field matures from its developing stages into a fully independent discipline. Thanks

to entirely new levels of refinement of the optical feedback forces involved in the op-

tomechanical interaction, the creation of non-classical states of motion is becoming

increasingly accessible. Among the variety of platforms in development for quan-

tum applications, optomechanical systems are uniquely qualified to bridge the gap

between heterogeneous structures. Photon-phonon interaction; entanglement with co-

herent states, single atoms, or Bose-Einstein condensates; operating ranges from a few

hertz to the gigahertz domain; possibility of interaction with optical or microwave fields.

These are only some of the resources that make optomechanical systems exceptional

interfacing devices.

For metrological applications, the expectations for the following years will also

be higher than ever, as quantum optomechanics paves the way for measurements of

unprecedented accuracy. Proposals to reach and beat the standard quantum limit for

advanced displacement sensitivity are central to the future development of the field,

and both experimental and theoretical e↵orts are highly focused towards this direction.

Optomechanical systems will also serve as a remarkable resource for fundamental

investigations, as they have the potential to answer many of the open questions in

physics. Can a quantum state be manifested at a macroscopic scale? How does deco-

herence evolve? What is the role of gravity in quantum systems? The answers might

be very close or very far in time, and they might lead to dead ends or to even more

interesting questions. Nevertheless, it is highly possible that optomechanical systems

will often feature as a meaningful point of discussion for these topics in the coming

years.

Overall, the wide range of possibilities is evolving in a direction where sensitivity

and noise suppression are decisive traits. This is the case for levitated systems, which

target complete detachment from the environment to avoid the coupling of thermal

fluctuations into the measurement. Another example is given by gravitational-wave

interferometers, among the most sensitive devices ever built, which will be more op-

tomechanically sensitive with future advancements as low-frequency thermal noise is

reduced and the measurement becomes limited by radiation pressure noise. Kilometre-

sized interferometers, milligram-scale mirrors, and nanomechanical oscillators are only

a few representative cases of the wide range of possible configurations in optomechan-

ics. In this thesis we have seen a diversity of approaches applied to these systems

to push their sensitivity: filtering techniques, full optical trapping and optical spring
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manipulation, and enhancement by injection of optomechanical squeezing. Summaries

and possible future directions for each of the schemes considered are o↵ered below.

Feedback with nanowires

In Part II we explored the e↵ects of feedback on nanomechanical oscillators. The feed-

back, based on homodyne detection, was used to suppress the thermal noise and lead

to enhanced sensitivity of impulsive forces during the transient dynamics of the oscil-

lators. Due to the linear, classical nature of the system, it was also shown that similar

enhancements could be produced o↵-line with post-processing filtering techniques.

There are several opportunities for the extension of this research. One option would

be to consider conversion from measurement-based to fully coherent feedback [274,275],

in order to avoid the limits imposed by the detection noise and achieve stronger cooling.

This could also allow the study of the performance of filtering techniques in the quan-

tum regime. Further studies could also follow a di↵erent course and explore whether

an array of synchronized nanowires could be used to form a network of oscillators for

applications as a memory [276].

Levitation of a cavity mirror

The optical levitation scheme envisioned in Part III, based on the optical springs from

three separate cavities, has the potential to achieve unparalleled isolation from envi-

ronmental noise. The optical self-feedback mechanism observed is only a first step

towards a fully operating system, and many practical barriers need to be overcome for

pure levitation of the mirror. Among these, the reduction of thermal e↵ects on the

coating and the stabilization of the optical spring should be given the highest priority.

The levitating mirror would undoubtedly constitute an ideal platform for sensitive

applications in metrology or fundamental physics. Without the scattering characteristic

of other optical levitation schemes, the accuracy for position readings reached by the

cavity tripod can reach extremely high levels. The sensitivity of this optically trapped

mirror could be enhanced even further by engineering the optical potential using the

technique proposed in Part IV.

Novel protocols

The extreme flexibility of optomechanical systems is a key property for the evolution

of diverse techniques. The two techniques developed in Part IV serve as an example of
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this. The first involved the demonstration that custom force profiles can be synthesized

in optically trapped systems by changing the frequency components of the input to the

optomechanical cavity. The second showed how the sensitivity of interferometers at

the limit of their resolution can be increased even further with the back-action evasion

provided by optomechanically squeezed light.

These protocols were developed around the idea that optomechanics can be used to

gain a sensitivity advantage. Indeed, the breadth of optomechanics extends well beyond

this specific function. Trying to predict what other applications could be found for each

procedure would however require some degree of speculation. For example, arbitrary

potentials may result particularly useful for optical manipulation, while the frequency-

dependent properties of optomechanical squeezing could be required for the creation

of novel forms of entangled states. Only time will be able to tell what new paths will

be followed by the field in the end.
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A Hamiltonian tools

A.1 Reference frame transformations

The evolution of the state is not attached to the reference frame chosen for its descrip-

tion. When moving to a di↵erent reference, the Hamiltonian needs to be transformed

appropriately to preserve the dynamics in the new frame. Considering the unitary

transformation operated by Û , the state | i is described in the new reference frame by

| 0i ..= Û | i. (36)

Requesting the evolution of | ̃i to be also determined by Schrödinger’s equation (cf.

Eq. 2.11), we can see how the transformation a↵ects the Hamiltonian of the old coor-

dinate system:

i~
@

@t
| 0i = i~

@

@t

⇣
Û | i
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= i~
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#
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ÛĤÛ † + i~
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@t
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!
| 0i. (37)

The expression for the Hamiltonian in the new frame is, therefore,

Ĥ0 ..= ÛĤÛ † + i~
@Û

@t
Û †. (38)

A.2 Equations of motion

Working in the Heisenberg picture, we need to convert the time evolution described by

Schrödinger’s equation into a time evolution of the operators acting on the state. That

is, instead of letting the state | i evolve in time like in the Schrödinger picture, we let

the operators be a function of time. This does not a↵ect the expectation value:

hÔi
t

= h (t)|Ô| (t)i
���
S
= h |Ô(t)| i

���
H
. (39)
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Define Û(t) to be the time-evolution operator, so that its application on the state at

some initial time results in the state at a later time t:

Û(t)| i ..= | (t)i. (40)

From Schrödinger’s equation it follows that

@

@t
Û(t)| i = 1

i~
Ĥ| (t)i

=
1

i~
ĤÛ(t)| i. (41)

Since the equality holds no matter what the state | i is, the above can be considered

a di↵erential equation for Û(t). For a time-independent Hamiltonian, the solution,

satisfying the commutation relation
⇥
Û(t), Ĥ

⇤
= 0, is

Û(t) = e�
i

~ Ĥt. (42)

We can now transfer the evolution from the state to the observable. From Eq. 39 we

obtain that the observable in the Heisenberg picture is

Ô(t)
���
H
= Û †(t)ÔÛ(t) (43)

and evolves according to
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In general, if in the Schrödinger picture the observable does not have an explicit depen-

dence on time, the equation of motion in the Heisenberg picture can simply be taken

as

.

Ô(t) =
i

~
⇥
Ĥ, Ô(t)

⇤
. (45)
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B Quantum harmonic oscillator

The quantum harmonic oscillator is described by the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
m!2

mx̂
2, (46)

where m is the oscillator’s e↵ective mass, !m the resonant frequency, and x̂ and p̂ are

conjugate Hermitian operators representing the observables of position and momentum

of the oscillator. They respond to the canonical commutation relation

⇥
x̂, p̂

⇤
= i~, (47)

from which follows Heisenberg’s uncertainty principle:

�x�p � ~
2
. (48)

The eigenvalues of Ĥ represent the possible energy levels of the system, and the

corresponding eigenstates form a complete basis for a generic state. To obtain the

solution to the eigenvalue problem

Ĥ| i = E| i (49)

we consider the coordinate representation, specified by the eigenstates of the position

operator, |xi; in this framework, the state is represented by a function of the coordinates

 (x) ..= hx| i and the momentum operator acts on the state as its derivative, p̂ !
�i~@

x

. The problem is then reduced to the di↵erential equation

� ~2

2m
 00(x) =

✓
E � 1

2
m!mx

2

◆
 (x). (50)

Because the Hamiltonian is Hermitian, we expect the solutions of the di↵erential equa-

tion to form a basis of orthogonal, real states. These are given by the normalized

eigenfunctions [21]

 
n
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⌘
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which are indexed by an integer n and are implicitly dependent on the Hermite poly-

nomials defined by H
n

(x) ..= (�1)nex
2

d

n

dx

n

(e�x

2
). The eigenvalues for each  

n

(x) are
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given by the discrete energy levels

E
n

= ~!m

✓
n+

1

2

◆
. (52)

In bra-ket notation the eigenstates of the Hamiltonian are generally denoted by |ni. A
notable feature of the eigenstates is that their energy levels are equally spaced by ~!m,

indicating the quantum of energy of the harmonic oscillator. The ground state is the

eigenstate state with the lowest possible energy, E0 = ~!m/2.

The original observables can be used to define new non-Hermitian operators

b̂ =
1p

2~m!m
(m!mx̂+ ip̂) , (53)

b̂† =
1p

2~m!m
(m!mx̂� ip̂) . (54)

The normalization is chosen to imply a unitary commutation relation:
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⇤
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From b̂ and b̂† we can define a new Hermitian operator, b̂†b̂. Expanding the product,

b̂†b̂ =
(m!mx̂� ip̂) (m!mx̂+ ip̂)

2~m!m

=
m2!2

mx̂
2 + p̂2 + im!m
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2

◆
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1
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Ĥ� ~!m

2

◆
, (56)

we can then rewrite the Hamiltonian as

Ĥ = ~!m

✓
b̂†b̂+

1

2

◆
. (57)

A quick comparison with Eq. 52 reveals that b̂†b̂ can be interpreted as a number operator
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acting on eigenstates of the Hamiltonian to return the number of quanta of that state:

b̂†b̂|ni = n|ni. (58)

The quanta indicated by n may correspond to the quanta of energy, as |ni is an eigen-

state of the Hamiltonian, but it is more common to refer to them as phonons, quanta

of oscillation of the mechanical motion behaving like quasi-particles with energy ~!m.

To better understand the role of b̂ and b̂†, we notice that their action on one of

the eigenstates, |ni, returns a state which is still an eigenstate, albeit for a di↵erent

eigenvalue:

b̂†b̂ · b̂|ni =
⇣
b̂ · b̂†b̂�

⇥
b̂, b̂†b̂

⇤⌘
|ni

= b̂
⇣
b̂†b̂�

⇥
b̂, b̂†

⇤⌘
|ni

= (n� 1) · b̂|ni, (59)

b̂†b̂ · b̂†|ni = . . .

= (n+ 1) · b̂†|ni. (60)

Thus, b̂|ni is proportional to |n�1i and b̂†|ni is proportional to |n+1i. For this reason
b̂ and b̂† are known as the ladder operators of the quantum harmonic oscillator: their

action changes the state to one with lower or higher energy, and their repeated appli-

cation brings the total energy level of the system arbitrarily up or down along set of

discrete energy levels. In terms of phonons, b̂ acts as if it destroys one such excitation,

whereas b̂ has the e↵ect of creating one; this justifies their alternative name as, re-

spectively, annihilation and creation operators. Using the appropriate normalization,

all the eigenstates can be obtained starting from the ground state |0i by successive

applications of the creation operator:

|ni = 1p
n!
b̂n|0i. (61)

Considering the inverse relations of Eq. 53 and 54 to obtain the original observables

in terms of the creation and annihilation operators,

x̂ =

s
~

2m!m
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⌘
, (62)
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r
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⌘
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we can directly calculate the amplitude of the fluctuations of the harmonic oscillator

in the ground state, or zero-point fluctuations:

xZPF
..=

p
h0|x̂2|0i

=

s

h0| ~
2m!m

⇣
b̂2 + (b̂†)2 + 2b̂†b̂+ 1

⌘
|0i

=

s
~

2m!m
. (64)
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C Numerical estimates for dual-beam interference

We are interested in quantifying the e↵ects that the beating of two input fields has on

the oscillations of the cavity mirror in an optomechanical setup, in particular in relation

to the problem of suspending the mirror on the radiation pressure force of a vertical

cavity. Herem will denote the mass of the mirror, g the gravitational acceleration, c the

speed of light, !m the frequency of the oscillation, and !d the dual beam’s separation

in optical frequency.

Consider a worst-case scenario where the two input fields have identical strength and

the total power is modulated between perfect destructive and constructive interference.

With the assumption that each input beam, independently, produces enough resonating

power to support the weight of the mirror, mgc/2, we have that the beating of the two

inputs produces a time-dependent intra-cavity power,

P (t) = mgc cos2(!dt), (65)

which leads to the radiation pressure force

F (t) =
2P (t)

c
= 2mg cos2(!dt), (66)

also a function of time.

The equation of motion for the position of the mirror along the vertical optical axis,

z, includes the gravitational force, the restoring force of the harmonic oscillator, and

the radiation pressure force of Eq. 66:

m
..
z(t) = �mg �m!2

mz(t) + 2mg cos2(!dt). (67)

We will assume now that the beating is much faster than the mechanical oscillations

of the mirror. If this condition is not naturally satisfied, it can always be imposed by

detuning one of the two input beams to a separate free spectral range (FSR). This

operation, which changes nothing from the cavity’s perspective, shifts the beating to

much higher frequencies. The amplitude of the fast oscillations due to the interference

is obtained by the solution of Eq. 67 in the limit !d � !m,

z(t) = � g

4!2
d

cos(2!dt), (68)

obtained first by moving into the frequency domain, then applying the limit, and then
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transforming back to the time domain. The oscillations can be made arbitrarily small

by choosing the detuning between the two fields, !d, to be large enough. Choosing

the relative detuning to be on the order of the FSR of a cavity approximately 20 cm

long, i.e. !d ⇡ 2⇡⇥750MHz, the o↵-resonance oscillations induced by the beating have

amplitude on the order of 10�9 Å. These oscillations are therefore even smaller than

the zero-point fluctuations, zZPF =
p
~/(2m!m), which is on the order of 10�8 Å for a

mirror of mass m = 1mg and harmonic frequency !m = 2⇡ ⇥ 1MHz.

The e↵ect on the mechanics is minimal, but this might not be enough. The os-

cillations driven at 2!d risk to coherently interact with the cavity field and lead to

resonant redistribution of the optical modes. The induced oscillations, functioning as

a source of frequency modulation, create sidebands that resonate at frequencies 2!d

away, and it is important to check that these sidebands have negligible e↵ect on the

system especially when the relative detuning has a value close to the FSR. Assuming

the cavity to be at resonance when the mirror is at the centre of the oscillation, the

dynamics of cavity field ↵ are described by the di↵erential equation (cf. Eq. 3.27)

.
↵(t) = (�+ iG0z(t))↵(t) +

p
2↵in, (69)

where G0 is the optomechanical coupling constant, equivalent to the ratio between the

FSR and the half-wavelength, and ↵in is the amplitude of the input field. Transforming

to the frequency domain, we get

(+ i!)↵(!) + i
⇡G0g

4!2
d

(↵(! � 2!d) + ↵(! + 2!d)) =
p
2↵in(!). (70)

The input field on the right-hand side splits between three separate terms on the left-

hand side representing the carrier of the cavity field and two sidebands at 2!d induced

by the modulation. The amplitude of the sidebands scales as the inverse of the beat

frequency by a factor of ⇡G0g/
�
4!2

d

�
relative to the carrier. For a wavelength of

1064 nm, finesse of 1000, and beat frequency once more on the order of the FSR, the

sidebands are estimated at less than 1 part per billion of the main resonance.
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