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Abstract

Squeezed states of light are quantum states that can be used in numerous protocols
for quantum computation and quantum communication. Their generation in labora-
tories has been investigated before, but they still lack compactness and practicality
to easily integrate them into larger experiments.
This thesis considers two experiments: one conducted in France, the miniOPO; and
one conducted in Australia, the SquOPO. Both are new designs of compact sources
of squeezed states of light towards an integrated system.
The miniOPO is a linear cavity of 5mm length between the end of a fiber and a
curved mirror with a PPKTP crystal of 1mm inside it. The squeezing generated
in this cavity is coupled into the fiber to be able to be brought to a measurement
device (homodyne) or to a larger experiment. The cavity is resonant for the squeezed
light and the pump light, and locked in frequency using self-locking effects due to
absorption of the pump in the crystal. The double resonance is achieved by changing
the temperature of the crystal.
Two different fibers have been tested in this experiment, a standard single-mode
fiber and a photonic large core single-mode fiber.
The squeezing obtained is still quite low (0.5dB with the standard fiber and 0.9dB
for the photonic fiber) but a number of ameliorations are investigated to increase
these levels in the future.
The SqOPO is a monolithic square cavity made in a Lithium Niobate crystal using
four total internal reflections on the four faces of the square to define an optical mode
for the squeezed mode and the pump mode. The light is coupled in the resonator
using frustrated internal reflection with prisms. The distance between the prisms
and the resonator defined the coupling of the light, which allows us to control the
finesse of the light in the resonator and by using birefringent prisms it is possible
to tune independently the two frequencies in the resonator to achieve an optimal
regime. The frequency of the light is locked using absorption of the pump light in
the resonator to achieve self-locking, and double resonance is controlled by tuning
the temperature of the crystal.
We demonstrated 2.6dB of vacuum squeezing with this system. Once again, the
amount of squeezing is low, but ameliorations that could be implemented in the
future are discussed.
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Overview of the Thesis

During the last 50 years, we have witnessed the huge development of information
technology around the world, to the point where almost everyone now has a computer
in their home and an Internet-connected Smartphone in their pocket. One of the
key points that allowed this sudden development was the progress of the transistors.
Quantum computation and quantum communication are the future of our informa-
tion technology and like the transistor, the source of quantum states used in these
technologies will be the key point for their development. Amongst the different me-
dia for these states, light is fast, easy to transport and has good interaction with
matter. The two simpler candidates for quantum states of light are single photons
and squeezed states. A lot of work has been done in the production of single photons,
this thesis emphasizes the production of squeezing states.
This Ph.D. was a collaboration between the Laboratoire Kastler Brossel in Paris
and the Australian National University in Canberra to investigate two new compact
designs to potentially operate as sources of squeezing of light for larger experiments.
The first one, the miniOPO, has been developed in Paris. It is a linear cavity between
the end of a fiber and a curved mirror containing a non linear crystal of PPKTP.
The advantage of this system is the fact that the squeezed light is directly injected
in the fiber allowing easy transfer and potential processing to be done directly in
the fiber. This system will be presented in the second part of the thesis. The second
system considered, the SqOPO, has been developed in Canberra. It is a square
piece of crystal of Lithium Niobate acting as a ring cavity with four total internal
reflections on the four faces of the square. The coupling with this system is made
with frustrated total internal reflection with two prisms brought into the evanescent
field of the resonator. This system will be described in the third part.
But because these two systems applied a few advanced concepts of optics, this
first part will provide the reader with an introduction to the necessary concepts
to understand this thesis. We will start by introducing the notion of general wave
propagation, and then apply it to isotropic linear material, to anisotropic material,
and to non linear materials. Then we will consider interface behavior and cavities
concepts. And finally we will consider the notions of quantum states with squeezed
states (Figure 0.1).

Writing Conventions: In this thesis I will be using normal characters for scalar
fields like ρ the charge density or q the charge. I will use bold characters for vector

3



Chapter 0

Gaussian Beams

ABCD Matrix

Fresnel Equation

Anisotropic Material
Non Linearity

Cavities

Squeezing

Figure 0.1.: Schematics of the two systems used in this thesis and all the concepts
used for each one that will be presented in this introduction.

fields like E the electric field and B the magnetic field, I will use bold characters
with an over-line for tensors like ε the permittivity tensor, and I will use a hat for
operators like the creation operator â†.
I will be using Einstein’s convention of summing terms with repeated indices, I will
use the Kronecker tensor δij and I will call the two lights used in this thesis: 1064nm
light red light or sub-harmonic for the light at the wavelength of 1064nm; and 532nm
light, green light or pump for the light at the wavelength of 532nm.
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1. Introduction

1.1. The Maxwell Equations and the Wave Equations

We start this thesis by enunciating the four Maxwell equations [13]. These describe,
the behavior of the electric field, E; the magnetic field, B; the electric displacement
field, D = ε0E + P; and the magnetizing field, H = 1

µ0
B. Here, P is the polariza-

tion field due to fixed charges of the material, and ε0 and µ0 are, respectively, the
permittivity and the permeability of free space. The equations are:

Maxwell-Gauss Maxwell-Faraday
∇ ·D = ρf , ∇× E = −∂B

∂t
,

Maxwell-Thomson Maxwell-Ampère
∇ ·B = 0, ∇×H = jf + ∂D

∂t
,

(1.1)

where jf is the free current density, and ρf is the free charge density.
By applying the Curl to the Maxwell-Faraday equation and using the Maxwell-
Ampère equation to eliminate the magnetic field in the assumption that there is no
free current, i.e. jf = 0, we obtain the wave equation:

∇× (∇× E) = −∂ (∇×B)
∂t

= − 1
c2
∂2E
∂2t
− µ0

∂2P
∂2t

, (1.2)

where c = 1√
ε0µ0

is the speed of light in the vacuum.

By using the expression ∇× (∇× E) = ∇(∇ · E) −4E, we obtain an other form
of the wave equation:

∇(∇ · E)−4E = − 1
c2
∂2E
∂2t
− µ0

∂2P
∂2t

., (1.3)

where 4, the Laplace operator, is given by (4A)i = ∇ · (∇Ai).

5



Chapter 1 Introduction

1.2. Energy Considerations

Consider some free charges {qf,i} moving at speed {vi} in an electromagnetic field
{E,B} in matter. The charges experience a force fi = qi(E + vi∧B), which corre-
sponds to a power P = qivi ·E. The density of electric power on the free charges is
given by:

P = jf · E

It is the energy held by the free charges in the field.
By using the Maxwell-Ampère equation, the property: ∇·(E×B) = B · (∇× E)−
E · (∇×B) and Maxwell-Faraday we obtain the Poynting Theorem [16] describing
the electromagnetic energy conservation:

∂u

∂t
+ div(Π) = −jf .E

Where Π = E ×H is the Poynting vector and u = 1
2 (E.D + B.H) is the electro-

magnetic energy density.
The change in electromagnetic energy is equal to a flux described by the Poynting
vector and a source term given by the energy held by the free charges.

1.3. Fourier Transforms

The Maxwell equations are a bit complicated to use directly, but a good simplifica-
tion of them can be achieved by using Fourier transforms. It allows us to solve the
field equations in the Fourier domain and come back to the field in the time domain
with an inverse transformation. For a field E(r, t), and its Fourier transform in time
E(r, ω), the two field vectors are related by

E(r, ω) = 1
π

∫+∞
−∞ E(r, t) exp(iωt)dt and E(r, t) = 1

2
∫+∞
−∞ E(r, ω) exp(−iωt)dω .

(1.4)

In this thesis, the field E(r, t) is a real field, so E(r, ω) satisfies the property E(r, ω) =
E∗(r,−ω). Thanks to this it is possible to restrain ourselves to positive frequency
values and take the real part of the complex field:

E(r, t) = <
{∫ ∞

0
E(r, ω) exp(−iωt)dω

}
. (1.5)

6



1.3 Fourier Transforms

It is also possible to extend the Fourier transform to the spatial coordinate by using
the wave vector space k:

E(k, ω) = 1
(2π)3

∫
E(r, ω) exp(−ik.r)dr and E(r, ω) =

∫
E(k, ω) exp(ik.r)dk .

(1.6)

The sign convention is inverted for space and time to make the field with one single
positive frequency ω and one single wave vector k propagate in the direction of k.
We call this particular solution a plane wave.
The real field in function of the complete Fourier transform in space and time is
given by

E(r, t) = <
{∫ ∞

0

∫
R3

E(k, ω) exp(−iωt) exp(ik.r)dkdω
}

(1.7)

where E(k, ω) is the Fourier transform of the field in space and time. It can be seen
as a superposition of waves with a particular distribution E(k, ω). Because of the
linearity of the Maxwell equations, it is possible to only consider propagations of
single waves and to add them weighted by the distribution E(k, ω) to obtain the
propagation of the real field. (Eq. 1.7).We can consider the field of a wave to be

E(r, t) = E0 exp(−iωt) exp(ik.r) + c.c (1.8)

with E0 the amplitude vector of the wave. In this regime, the Maxwell equations
become:

Maxwell-Gauss Maxwell-Faraday
k ·D = ρf k×E = iωB

Maxwell-Thomson Maxwell-Ampère
k ·B = 0 k×H = jf − iωD

, (1.9)

and the wave equation (Eq. 1.3) becomes

−(k · E)k =
(
ω2

c2 − k
2
)

E + µ0ω
2P. (1.10)
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Chapter 1 Introduction

1.4. Dielectric Medium and the Wave Equation

In a dielectric material, without any electric field for a sufficient period of time, the
polarization of the material, P, will be equal to zero. The polarization field P(r, t) is
a function of the electric field E, but the response is not necessarily instantaneous;
rather, it will depend on every component of E(r, t′) at every value of the time,
t′ < t. The Taylor series expansion of the polarization will be given by:

Pi(t) = ε0
∫
χ1
ij(t− τ)Ej(τ)dτ

+ε0
∫∫
χ2
ijk(t− τ1, t− τ2)Ej(τ1)Ek(τ2)dτ1dτ2

+...
+ε0

∫∫∫∫
χNij1...jN (t− τ1, ..., t− τN)Ej1(τ1)...EjN (τN)dτ1dτ2...dτN

+...

,

with χNij1...jN representing the susceptibility of order N , a tensor of order N + 1 with
each coefficient a function of N + 1 variables corresponding to the dependence in
time of each electric component in the decomposition. For the purpose of this thesis,
we will restrain ourselves to the two first terms of the decomposition, χ1

ij(t1) and
χ2
ijk(t1, t2).

In the Fourier domain, we obtain:

Pi(ω) = ε0χ
1
ij(ω)Ej(ω) + ε0

∫
χ2
ijk(ω′, ω − ω′)Ej(ω′)Ek(ω − ω′))dω′. (1.11)

The demonstration of this calculation is given in Appendix A.

1.4.1. Properties of Susceptibilities

The susceptibility coefficients have to satisfy some symmetry conditions that con-
strain their values. First, the polarization vector and the field vectors are real
vectors, meaning that the quantities χNij (t1, ..., tN) also have to be real. The Fourier
transforms of the first two orders must satisfy

χ1
ij(ω) = χ1

ij(−ω)∗,
χ2
ijk(ω1, ω2) = χ2

ijk(−ω1,−ω2)∗.

A second property of the second order susceptibility is obtained from intrinsic sym-
metry. It corresponds to the fact that it doesn’t matter which field is the first and
which one is the second in Eq. 1.11, it gives:

8



1.4 Dielectric Medium and the Wave Equation

χ2
ijk(ω1, ω2) = χ2

ikj(ω2, ω1).

This particularity of the notation can cause some confusion. If the two frequencies
considered are equal, we will get P (2ω) = χ2

ijk(ω, ω)E2(ω), but if the frequencies
are not equal, we will obtain P (ω1 + ω2) = 2χ2

ijk(ω1, ω2)E(ω1)E(ω2). The factor
two comes from the possibility of writing E(ω1)E(ω2) as E(ω2)E(ω1) in equation
(Eq. 1.11).
If the material is considered lossless (which we will suppose for the rest of this
calculation) then the first and second order coefficients of the susceptibility need to
be real:

χ1
ij(ω) = χ1

ij(ω)∗ χ2
ijk(ω1, ω2) = χ2

ijk(ω1, ω2)∗ .

There also exist two other symmetry conditions due to the fact that the material is
considered to be lossless. It implies that the first order susceptibility is a symmetric
tensor,

χ1
ij(ω) = χ1

ji(ω),

and that we can permute the frequencies and the coefficients of the second order
susceptibility:

χ2
ijk(ω1, ω2) = χ2

jik(ω1 + ω2,−ω2) = χ2
kij(ω1 + ω2,−ω1). (1.12)

A demonstration of this is presented in Appendix A. A more complete analysis of
the properties of the susceptibility can be found in [4]
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2. Light Propagation

2.1. Linear Homogeneous Isotropic (LHI) Behavior

To give the basics of wave propagation, we will first consider the LHI model. This
means that we consider a susceptibility which is constant in the medium and given
only by the first order in the applied electric field (χ(N) = 0 for N ≥ 2). Moreover,
we suppose the response of the material to be the same in each direction. This
means that χ(1) is a scalar.

Pi(ω) = ε0χ(ω)Ei(ω). (2.1)

Maxwell-Gauss equation implies that ∇ · E = 0 in Eq. 1.3, so by expressing the
refractive index of the material as n =

√
(1 + χ) we get the LHI wave propagation

equation:

4E = n2

c2
∂2E
∂2t

. (2.2)

Applying this equation to a single plane wave of frequency ω and wave vector k,
one obtains the expression:

k2 = n2ω
2

c2

Moreover, we have ∇ · E = k · E = 0, implying that the vector E is orthogonal to
the vector k. It is possible to define two vectors ε1(k) and ε2(k) orthogonal to k as
a basis for the direction of the electric field.
To characterize the usual coherent beams in free space, we will suppose the light
propagating along ez, and we will suppose the electric field to be a plane wave with
an amplitude slowly varying with the position:

E(x, y, z, t) =
∑

i=(1,2)
Ei(x, y, z)eikz−iωtεi

11



Chapter 2 Light Propagation

By using the propagation equation Eq. 2.2 and by supposing
∣∣∣∂2Ei
∂z2

∣∣∣� ∣∣∣k ∂Ei
∂z

∣∣∣ , which
means that the variation of Ei in z is negligible within the scale of a wavelength, we
obtain the paraxial Helmholtz propagation equation for Ei:

∂2Ei
∂x2 + ∂2Ei

∂y2 + 2ik∂Ei
∂z

= 0 (2.3)

By transforming the x and y coordinates of Ei to the Fourier domain, we get:

−(k2
x + k2

y)Ei(kx, ky, z) + 2ik∂Ei(kx, ky, z)
∂z

= 0

We obtain a solution in the shape:

Ei(kx, ky, z) = Ei(kx, ky, 0)e−i
k2
x+k2

y
2k z (2.4)

More details about propagation solutions for light can be found in [2].

2.1.1. Gaussian Propagation Solution

If we start in the plane at z = 0 with a field of Gaussian distribution Ei(x, y, 0) =√
2
π
E0
w0
e
−x

2+y2

w2
0 where w2

0 is the variance of this distribution, and E0, the amplitude of
this distribution (

∫
|Ei(x, y, 0)|2dxdy = |E0|2).

The Fourier distribution of this function is Ei(kx, ky, 0) =
√

2πw0E0e
−
k2
x+k2

y
4 w2

0 . Using
Eq. 2.4 and using the inverse Fourier transform we obtain the expression of the
Gaussian beam field:

Ei(x, y, z) = kE0√
2π

w0

iq(z)e
ik x2+y2

2q(z)

with q(z) = z − izR and zR = kw2
0

2 the Rayleigh’s range.
This Gaussian beam has a waist size in z given by

w(z) = w0

√
1 +

(
z

zR

)2

12



2.1 Linear Homogeneous Isotropic (LHI) Behavior

The curvature radius of the beam is given by

R(z) = z + z2
R

z
,

and the phase shift that the beam is experienced in function of z is:

ψ(z) = arctan( z
zR

).

The coefficient q can be expressed in function of the waist and the curvature by:

1
q(z) = 1

R(z) + i
2
kw2 . (2.5)

2.1.2. High Order Propagation Mode Solutions

In the same way it is possible to propagate a beam given by a Gaussian beam
weighted by Hermite polynomials:

Ei,nm(x, y, 0) = E0

√
21−n−m

w0
√
πm!n!

Hn(x
√

2
w0

)Hm(y
√

2
w0

)e
−x

2+y2

w2
0

with Hn the Hermite polynomial given by: Hn(ξ) = (−1)neξ2 dn

dxn
e−ξ

2 .
Fields having this expression can be seen to be orthogonal:

∫
Ei,nm(x, y, 0)Ei,kl(x, y, 0)dxdy =

|E0|2δnkδml. Adding the propagation in the z direction, the field mode reads

Ei,nm(x, y, z) = E0

√
21−n−m

w(z)
√
πm!n!

Hn(x
√

2
w(z))Hm( y

√
2

w(z))eik
(x2+y2)

2q(z) −iψnm(z)+ikz (2.6)

with a generalized phase shift ψnm(z) = (1 + n+m) arctan( z
zR

).

The family of functions
{
unm(x, y, z) = Ei,nm(x,y,z)

E0

}
nm

constitutes an orthonormal
basis of solution of Eq. 2.3 (

∫
|unm|2dxdy = 1 and

∫
|unmukldxdy = δnkδml). That

means that by considering {unm} we can reconstruct any solution of the system.

13



Chapter 2 Light Propagation

a b c d e
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f

Figure 2.1.: (a) to (e) are transverse Hermitian mode intensities (from left to right
TEM00, TEM10, TEM01, TEM11 and TEM02). f) is the intensity projection of
a Gaussian beam in a plane containing the propagation axis.

2.1.3. Astigmatism

In the development of Gaussian beams and higher-order modes we supposed a dis-
tribution identical in the directions ex and ey. But it wasn’t necessary, it is possible
to separate the problem in the direction x and y , The electric field becomes

Ei(x, y, z) = E0u
(x)
n (x, z).u(y)

m (y, z)

with u(i)
n such that

∫∞
−∞ u

(i)
n (ξ, z)u(i)∗

m (ξ, z)dξ = δnm given by:

u(i)
n (ξ, z) =

Hn(
√

2ξ
wi(z))e

ikξ2
2qi(z)√

wi(z)
√

π
2 2nn!

This decomposition has the same generality than Eq. 2.6, but because it allows to
consider modes with different waist size and positions in the direction x and y, it
can be more convenient to use in a cavity with non spherical mirrors .

2.1.4. ABCD Matrix

The ABCD matrix method is a convenient way to propagate the light through an
optical system based on a ray tracing matrices. The beams of light before and after
this system are characterized by two parameters: the distance from the optical axis
(xi and xo); and the angle relative to this axis (θi and θo). The optical system

is considered as a two dimensional matrix M =
(
A B
C D

)
corresponding to the

transformation of the two parameters (Figure 2.2).(
xo
θo

)
=
(
A B
C D

)(
xi
θi

)
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2.2 Linear Anisotropic Medium

( )xi
θi

θo

xoOptical
System

Incident 
ray

Transmitted
ray

Optical
Axis

Figure 2.2.: An optical system is analyzed by the transfer matrix between the
distance from the optical axis and the angle with the optical axis at the entry of
the system (xi, θi) and the same parameters at the output of the system (xo, θo).

M has to satisfy Det(M) = n1
n2

with n1 and n2 the indices of the medium before and
after the considered optical system.
The ABCD matrices are interesting because they can also be used for propagation
of a Gaussian mode, where instead of the pair of parameters (x, θ), the complex
parameter q(z) (Eq. 2.5) is used:

qo = Aqi +B

Cqi +D
. (2.7)

ABCD matrices of several sub-systems T1...Tn crossed by the beam can be combined
together so that they can be considered as a single, bigger system.

Ttotal = Tn ∗ ... ∗ T1.

Table 2.1 presents some of the most common matrices used in this thesis.
As we will see in the section on resonators (section 4.3), in order to have a beam
resonating in a cavity, it needs to be identical to itself after a full round trip. There-
fore, the ABCD matrix of a round trip applied to the q parameter of a mode needs
to give the same value q. More details will be given in the section on cavities
(section 4.3). The reader can access more detail on Gaussian beams and ABCD
matrices in references [15] and [9].

2.2. Linear Anisotropic Medium

In this part, we will consider a linear material, which means: χ(2) = 0, but this
time we will allow the linear susceptibility χ

(1)
ij to be a tensor (we will forget the

15



Chapter 2 Light Propagation

Matrix Elements(
1 d
0 1

)
Propagation in a medium
for a distance d.(

1 0
−2/Re 1

) Reflection at a curved
mirror with an angle θ with
the normal.

(
g(α) 0

0 n1
n2

1
g(α)

) Refraction at a flat surface
between two indices n1 and
n2 with an angle α with
the normal.

Table 2.1.: ABCD matrices used in this thesis. Re = R cos(θ) in the tangential
plane (horizontal direction), Re = R/ cos(θ) in the sagittal plane (vertical direc-

tion). For the refraction, g(α) =

√√√√1−
(
n1
n2

sin(α)
)2

cos2(α) where α is the angle between the
beam and the normal to the surface.

superscript in the following). The polarization in this birefringent material can be
expressed as::

Pi(ω) = ε0χij(ω)Ej(ω)

We usually use the relative permittivity: εij = δij + χij(ω), to describe the relation
between the electric displacement and the electric field D = ε0εE.
The susceptibility is symmetric, so the permeability is also symmetric. There exists
a basis where the matrix εij is diagonal.

ε =

 εx 0 0
0 εy 0
0 0 εz


Where εi, i ∈ {x, y, z} are the eigenvalues of ε. By analogy with the isotropic
case, we get three refractive indices ni = √εi . If all three of the values are equal
nx = ny = nz, it corresponds to the isotropic case; if only two of them are equal,
the material is called uniaxial; and if the all of them are different, it is a biaxial
material. In the case of this thesis we will always consider uniaxial birefringence
(nx = ne and ny = nz = no) .
The Maxwell-Gauss ∇ ·D = 0 and Maxwell-Thomson ∇ ·H = 0 equations imply
that the two fields D and H are orthogonal to the wave vector k.
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2.2 Linear Anisotropic Medium

k ·D = 0 k ·H = 0

Note that in this case: ∇ · E 6= 0, the electric field is not necessarily perpendicular
to the wave vector.
By returning to the propagation equation Eq. 1.10, and by using the expression of
the polarization in function of the electric field E and the relative permittivity ε,
we obtain:

Ek2 − (k · E)k− ω2

c2 εE = 0 (2.8)

One way to deduce the anisotropic Fresnel equation from there is to rewrite Eq. 2.8
for the three components of the electric field as a function of the components of the
wave vector in the basis where εij is diagonal. The propagation equation reduces to
a matrix equation: A(k, ω)E = 0 with A given by:

A(k, ω) =


ω2

c2
n2
x − k2

y − k2
z kxky kxkz

kykx
ω2

c2
n2
y − k2

x − k2
z kykz

kzkx kzky
ω2

c2
n2
z − k2

x − k2
y

 . (2.9)

For a non-trivial solution for the electric field to exists, the determinant of this
matrix needs to be zero, Det(A) = 0. In this way, after a bit of calculation, we can
obtain the Fresnel anisotropic equation. Another more elegant way to obtain the
Fresnel anisotropic equation is to write the electric field Ei in the basis where εij is
diagonal as a function of k · E:

Ei = (k · E)ki
k2 − ω2

c2
n2
i

(2.10)

Multiplying the left and right sides of Eq. 2.10 by ki and summing up in terms of i,
we get:

(k · E) =
∑
i

(k · E)k2
i

k2 − ω2

c2
n2
i

(2.11)

By simplifying by k·E and since {ki}verify 1 = 1
k2
∑
i k

2
i , we get the Fresnel equation:

n2
xk

2
x(

k
k0

)2
− n2

x

+
n2
yk

2
y(

k
k0

)2
− n2

y

+ n2
zk

2
z(

k
k0

)2
− n2

z

= 0 , (2.12)
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Chapter 2 Light Propagation

with k0 = ω
c
.

If we put these three terms in the same denominator and restrict ourselves to an
uniaxial material: nx = ne and ny = nz = no, we obtain

n2
ek

2
x

( k
k0

)2

− n2
o

( k
k0

)2

− n2
o

+n2
o

(
k2
y + k2

z

)( k
k0

)2

− n2
e

( k
k0

)2

− n2
o

 = 0.

(2.13)

Eq. 2.13 has two solutions for k, the first one is given by k2 = n2
ok

2
0, with no constrain

yet on the direction. It is the ordinary beam wave vector.

The second one is obtained by simplifying Eq. 2.13 by
((

k
k0

)2
− n2

o

)
and by noticing

that the coefficient in
(
k
k0

)2
in the new equation is n2

o

(
k2
y + k2

z + k2
z

)
= n2

ok
2. we

obtain:

k2
x

n2
o

+
k2
y + k2

z

n2
e

= k2
0 (2.14)

which is the equation obeyed by the extraordinary beam wave vector.
If the wave vector is real and its components satisfy: kx = nk0 cos(θ) and ky and kz
such that: k2

y +k2
z = nk0 sin(θ) with n the index that this field experiences and θ the

angle between the wave vector and the extraordinary axis of the crystal, Eq. 2.14
become the regular expression from text books giving n in function of θ:

cos2(θ)
n2
o

+ sin2(θ)
n2
e

= 1
n2

2.2.1. Ordinary Beam

In direction ej where j ∈ {x, y} such as k2− ω2

c2
n2
j 6= 0 we derive from Eq. 2.10 that:

(k · E) = 0

The ordinary beam is orthogonal to the wave vector Eo⊥k. Similarly, supposing
that n 6= no, so k2 − ω2

c2
n2
o 6= 0, Eq. 2.10 in direction ex also shows that Ex = 0,

so the ordinary polarization is also perpendicular to the extraordinary axis Eo⊥ex.
We obtain
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2.2 Linear Anisotropic Medium

Eo ∼

 0
kz
−ky

 .
We have also Do = ε0n

2
oEo, and the Poynting vector Π = E × H parallel to the

wave vector: Π ‖ k.

2.2.2. Extraordinary Beam

The electric displacement is perpendicular to the wave vector De · k = Do · k = 0,
and the extraordinary beam and the ordinary beam are orthogonal polarizations:
De · Do = 0. Since the Fresnel equation Eq. 2.12 can be interpreted as a scalar
product of the wave vector k and a vector d = n2

ekx(
k
k0

)2
−n2

e

ex+ n2
oky(

k
k0

)2
−n2

o

ey+ n2
okz(

k
k0

)2
−n2

o

ez

, d · k = 0, and we can notice that d⊥Do, we obtain that De is parallel to d:

De ∼



n2
ekx(

k
k0

)2
−n2

e

n2
oky(

k
k0

)2
−n2

o

n2
okz(

k
k0

)2
−n2

o


.

Knowing that E = ε−1

ε0
D, we get:

Ee ∼
1
ε0



kx(
k
k0

)2
−n2

e

ky(
k
k0

)2
−n2

o

kz(
k
k0

)2
−n2

o

 .

2.2.3. Dispersion Angle

It can be useful to know the angle between the electric field E and the displacement
field D. This angle is also the angle between the Poynting vector and the wave
vector:

tan(α) = |Ee ×De|
Ee ·De

= (n2
o − n2

e)
n2
e + n2

o

(
k2
y+k2

z

k2
x

)
√
k2
y + k2

z

kx

More details can be find in [17] and [18], and a good useful summary in [78] .
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Chapter 2 Light Propagation

2.3. Non Linear Medium

2.3.1. Propagation Equation

In this section, we will consider nonlinear material χ2 6= 0, but for the sake of
simplicity, we will consider the linear susceptibility to be a scalar χ1

ij = χ1δij to
avoid the problems of birefringence. In practice, it will not be true, but as long as we
consider only polarizations of the beams in the axis of the crystal, it is good enough to
consider the index of this specific polarization direction and to momentarily pretend
the case to be isotropic. We return to the wave equation of propagation from the
introduction:

∇(∇ · E(r, t))−4E(r, t) = − 1
c2
∂2E(r, t)
∂2t

− µ0
∂2P(r, t)
∂2t

, (2.15)

In most literatures, the first term is neglected. It is equivalent to neglect the con-
tribution of the non-orthogonal field to the wave vector which is usually very small.
Taking the Fourier Transform in time of Eq. 2.15 and decomposing the polarization
into linear and non linear terms: P = P(1) + P(2), we obtain:

4E(r, ω) = −ω
2

c2 E(r, ω)− µ0ω
2(P1(r, ω) + P2(r, ω)),

We can get rid of the linear term of the polarization by considering the linear permit-
tivity of the material ε = n2. We can project the equation on a basis orthogonal to
the direction of the field E considered and use the non linear susceptibility. We can
simplify the non linear polarization in Eq. 1.11 by considering only three frequencies
ω1, ω2 and ω3 = ω1 +ω2, and only one polarization at each frequency. We need only
to consider the component of the second order susceptibility which links these three
frequencies together. We will express this as deff . The non linear polarization is
given by:

P (2)(ω) = ε0deffE(ω1)E(ω2) (2.16)

The propagation equation Eq. 1.3 becomes:

4E(r, ωi) = −ω
2

c2 n(ωi)E(r, ωi)− µ0ω
2P (2)(r, ωi).

In the same way as in linear optics Eq. 2.1, we consider the propagation of the beam
mostly in the direction ez, and the field to have the shape:

E(ωi, x, y, z) = E(ωi, x, y, z)eikiz
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2.3 Non Linear Medium

Where E(ωi, x, y, z) is the slowly varying amplitude. It means k2
i = ω2

c2
n(ωi).

The paraxial approximation,
∣∣∣∂2E
∂z2

∣∣∣� ∣∣∣k ∂E
∂z

∣∣∣, gives the paraxial non linear equation:

∆⊥E(ωi, r⊥, z) + 2iki
∂E(ωi, r⊥, z)

∂z
= −ω2

i µ0P
(2)(ωi, r⊥, z)e−ikiz (2.17)

Where ∆⊥ = ∂2

∂x2 + ∂2

∂y2 . and r⊥ = xex + yey.
To obtain a general solution, we can use the solutions of the paraxial Helmholtz
equation : ∆⊥uinm(r⊥, z) + 2iki ∂u

i
nm(r⊥,z)
∂z

= 0 where uinm(r⊥, z) forms a set of or-
thonormal basis by satisfying:

∫∫
dxdyui∗nm(r⊥, z)uipl(r⊥, z) = δnpδml, and use the

decomposition of the electric field in this basis:

E(ωi, r⊥, z) =
∑
lm

Ailm(z)uilm(r⊥, z)

where Ailm(z) is the amplitude of the electric field on the mode (l,m).
However, for the purposes of this thesis, we will restrain ourselves to Gaussian beams
with a waist in z = 0, so

ui(r⊥, z) = ui00(r⊥, z) =
√
kizRi
π
∗ i

q(z) exp
(
i

[
kir

2

2q(z)

])
,

where q(z) = z − izRi and zRi is the Rayleigh length of the beam.
The electric field is given by:

E(ωi, r⊥, z) = Ai(z)ui(r⊥, z)

The paraxial equation Eq. 2.17 becomes:

∂Ai(z)
∂z

= i
ω2
i µ0

2ki

∫∫
dxdyui∗(r⊥, z)P (2)(r, z, ωi)e−ikiz. (2.18)

By substituting the non linear polarization term in Eq. 2.18 for Eq. 2.16, and by
considering ω1 = ω2 = ω, we get a system of two coupling equations for Aω, the
field at frequency ω, and A2ω, the field at the frequency 2ω.


∂Aω(z)
∂z

= i ω
2nωcdeffΛ(z)A2ω(z)Aω∗(z)e−i∆kz

∂A2ω(z)
∂z

= i ω
n2ωc

deffΛ(z)∗Aω(z)Aω∗(z)ei∆kz
(2.19)
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where Λ(z) =
∫∫
dxdyu2ω(r, z)uω(r, z)∗uω(r, z)∗,∆k = 2kω − k2ω; nω and n2ω the

refractive indices of beams at frequencies ω and 2ω.
We have nω ≈ n2ω = n which makes k2ω ≈ 2kω . We also consider the Rayleigh
length of the beam at frequencies 2ω and ω to be equal . We denote it zR. (In
practice, we consider only doubly resonant OPOs, so the Rayleigh lengths are defined
by the cavities.)
The calculation of the integral in Λ gives:

Λ(z) = −1
w0ω
√
π

zR
ZR − iz

.

More detail can be find in [5].

2.3.2. Second Harmonic Generation

Second harmonic generation (SHG) is the process of starting with a beam of fre-
quency ω (the pump) and generating another beam of frequency 2ω. We assume we
will start with no light at 2ω and we will solve the equations Eq. 2.19.
It is interesting to observe first what is the evolution of the SHG with ∆k. The
optimization of this parameter corresponds to the phase matching conditions. In
practice it is always very important to maximize this parameter to achieve the
maximum of non linearity. For plane waves, phase matching conditions correspond
to ∆k = 0. It can be achieved by tilting the crystal compared to the beam, changing
the temperature of the crystal, or applying a voltage on the crystal. It corresponds
to matching the index of refraction of both frequencies: ∆k = 2ω

c
(n2ω − nω) = 0.

Tilting the beam has an inconvenience, in that it adds walk off, which degrades the
non linearity, and moreover it is not allowed by the two experimental setups utilized
in this thesis, so we will not consider it here.
For a plane wave zr = ∞, we can neglect the z evolution of Λ(z). We will also
suppose the crystal (from z = − l

2 to z = l
2) small enough to consider the power of

the pump constant Aω(z) = Aω(0). We use Eq. 2.19 to obtain the SHG field at the
end of the crystal (z = l

2):

A2ω( l2) = i
ω

n2ωc
deffΛ(0)∗|Aω|2lsinc(∆kl

2 )

The power of the light beam is given by: P = nε0|A|2
2 :

P 2ω( l2) = (P ω)2 2ω2µ0

n3 d2
eff |Λ(0)|2 l2sinc2(∆kl

2 )
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2.3 Non Linear Medium

with P ω the pump power. We have considered here that n = n2ω = nω. A typical
plot can be seen in Figure 2.3.
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Figure 2.3.: A typical sinc plot of SHG power vs ∆k for different lengths of crystal.

When the light is focused in the crystal, it is not possible to neglect the evolution
of Λ(z) anymore, and the phase conditions change in the crystal. For all lengths
of crystal there is an optimal Rayleigh length for the light to maximize the non
linearity. The optimization is made in the general case by Boyd and Kleinman [36]
.
For a pump field with a Rayleigh length zR focused in the middle of the crystal
, supposing that the amplitude of the pump is large enough to be considered as
constant in the crystal Aω(z) = Aω(0) and that there is no light at frequency 2ω
entering in the crystal (in z = − l

2) we can use Eq. 2.19 to obtain the second harmonic
power at the end of the crystal (z = l

2):

A2ω( l2) = −iω
3/2deff |Aω|2

√
l

2
√
nπc3/2 H( l

2zR
,∆kzR)

with H(ξ, σ) = 1√
ξ

∫ ξ
−ξ

eiσζ

1−iζdζ. We have considered n = n2ω = nω. The optimization

of H(ξ, σ) can be found for ξ = l
2zR = 2.84, and σ = zR∆k = 0.57 with a value of

H = 2.07. It is interesting to see that the phase matching is no longer ∆k = 0, but
because zR � λ, with λ the wavelength of the light, the hypothesis n2ω = nω is still
valid.
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Chapter 2 Light Propagation

In power, we obtain:

P 2ω( l2) =
(
P 2ω

)2 ω3µ0d
2
eff l

2n2cπ
H2( l

2zR
,∆kzR)

2.3.3. Degenerate Parametric Amplification

Degenerate parametric amplification is the inverse process of SHG. We consider a
beam with frequency 2ω (the pump) with a high power that we can consider to be
constant across the entire crystal A2ω(z) = A2ω(0). To apply the above equation,
it is necessary to have a seed Aω (the signal) at the input of the crystal, otherwise
there is no amplification. In practice, the quantum fluctuation of the vacuum is
able to work as a seed and to be amplified by this process. Obviously, the same
arguments as for SHG can be applied to the optimal focusing of the beam in the
crystal, but for the sake of simplifying the expression, we will consider only the case
where z � zR, which makes Λ(z) a constant equal to Λ = −1

w0ω
√
π
, and where ∆k = 0.

The second equation of Eq. 2.19 gives:

∂Aω(z)
∂z

= −ie
iφ2ω

zc
Aω∗(z)

with 1
zc

= ωdeff
2nωcw0ω

√
π
|A2ω| = ωdeff

cw0ωn
3/2
ω

√
2ε0π

√
P 2ω and φ2ω such that A2ω = |A2ω| eiφ2ω .

By deriving a second time we obtain:

d2Aω

dz2 = 1
z2
c

Aω

which has the solutions:

Aω = Aω(z = 0)ei
π/2−∆φ

2

(
cos(π/2−∆φ

2 )e(− z
zc

) + i sin(π/2−∆φ
2 )e( z

zc
)
)

(2.20)

with ∆φ = 2φω − φ2ω and φωsuch that Aω(z = 0) = |Aω(z = 0)| eiφω .
If the pump and the signal at the input of the crystal have a difference of phase
∆φ = −π

2 , the signal will experience amplification, so the power of the light at ω
will increase in the crystal. If the phase difference is ∆φ = π

2 , the signal will be
de-amplified, and the power will decrease.
More details can be find in [4].
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3. Interface Conditions
All the previous calculations in this thesis supposed that the medium in which the
light is propagating is always the same. In practice, however, the fields will have to
travel between air and different crystals or glass, which are the different prisms and
the resonator. It is important to know how the fields will behave at the interfaces.

3.1. Field Interface Conditions

E2 6l
5l

4l

3l ΣE1

1l

2l

nΣ

js

I

n∥1

∥2n

Σ
S
∥

⟂S

E∥

E⟂

h

nΣ

σ

a) b)

Figure 3.1.: a) The normal field interface conditions are obtained by considering
the flux of the fields through an infinitely small box containing the surface Σ with
a surface charge σ. b) The tangential field interface conditions are obtained by
considering the circulation of the fields in a rectangle crossing the surface Σ with
a surface current js, and by making the square infinitely small.

3.1.1. Normal Fields

We consider a surface Σ between two media with a surface charge σ. By using the
Ostrogradsky theorem on a box Figure 3.1.a containing the surface, and the value
of the divergence of a field, and by making the length h and the surface of the box
S‖ go to zero, we obtain the surface conditions for the normal part of this field:


(E1 − E2) · nΣ = ε0σ

(D1 −D2) · nΣ = σf

(B1 −B2) · nΣ = 0
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Chapter 3 Interface Conditions

with σf the free surface charge and nΣ the normal vector of the surface.

3.1.2. Tangential Fields

In the same way, through using the Stokes theorem on a rectangle crossing the
surface Figure 3.1.b , by making all the lengths l1→6 equal and approaching 0 and
by using the expression of the Curl of a field, we obtain the surface conditions for
the tangential part of this field:


(E1 − E2)× nΣ = 0
(H1 −H2)vnΣ = jS,free × nΣ

(B1 −B2)× nΣ = µ0jS,free × nΣ

3.1.3. Poynting Vector

We use the interface conditions that we just obtained to see how the Poynting vector
Π behaves at the interface. With the X‖ the component of a vector X parallel to
the surface, and X⊥ the tangential component, we can write:

Π = E×H = (E‖ + E⊥)× (H‖ + H⊥) = E‖ ×H‖︸ ︷︷ ︸
Π⊥

+ E‖vH⊥ + E⊥ ×H‖︸ ︷︷ ︸
Π‖

.

E‖ is conserved at the interface and H‖is conserved if the free charges at the interface
are zero, which we will always assume to be true in this thesis. So we obtain:

(Π1 −Π2)× nΣ = 0

3.2. Fresnel Equations

We consider the interface between two dielectric materials 1 and 2 to be isotropic,
or anisotropic but with the principal axis (c1 and c2) limited to being along one of
the axes (ex, ey, ez). We suppose an incident field Ei to be coming from the left and
splitting at the interface between a reflected beam Er and a transmitted beam Et.
The different fields are given by:

Em(r, t) = Em0 exp[ikm.r− iωt]
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3.2 Fresnel Equations

n1 n2

ki

kr kt

X
Z

θtθi

Figure 3.2.: Incident, reflected and transmitted wave vectors ki, kr and kt at the
interface between two materials of index n1 and n2.

Where m = (i, r, t). We suppose the propagation of the incident beam to be in the
plane (ex, ez), which means that we have ki ∈ (ex, ez) .
The tangential part of the electric field E‖ is conserved at the interface:

Ei‖ + Er‖ = Et‖

We get for all time t and all points r on the surface:

Ei0‖ exp[iki · r− iωit] + Er0‖ exp[ikr · r− iωrt] = Et0‖ exp[ikt · r− iωtt]

This means that the frequencies of each field are the same ωi = ωr = ωt and that
we have equality in the tangential wave vectors ki‖ = kr‖ = kt‖, corresponding to
the first law of Snell-Descartes. We suppose that the incident beam is given by:

ki =

 kix
0
kiz

.
Knowing that each wave vector verifies: ||km|| = nm

ω
c
, with nm the index experi-

enced by the light in the medium m at this particular polarization, we obtain:

kr =

 kix
0
−kiz

 kt =


kix
0[(

n2
ω
c

)2
− (kix)2

]1/2

 .

If the incident beam is real, we consider θi such that kix = n1 sin(θi) and kiz =
n1 cos(θi), and if we have the two indices respecting: n1

n2
sin(θi) ≤ 1. We obtain the

second Snell-Descartes law:
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Chapter 3 Interface Conditions

n1 sin(θi) = n2 sin(θt)

with θt such that ktx = n2 sin(θt) and ktz = n2 cos(θt).
If the crystal on the left is isotropic Figure 3.2, we consider the s-polarization with
the electric field along ey and the p-polarization with the electric field in the plane
(ex, ez) perpendicular to k. If the crystal is anisotropic with the extraordinary
axis c1 along ey, the problem is the same. The ordinary beam polarization Eo
is perpendicular to the extraordinary axis c1 and the wave vector k, so it is in
the plane (ex, ez) (p-polarization case), and the extraordinary polarization Ee is
along ey (s-polarization case) because k is orthogonal to the extraordinary axis
c1(subsection 2.2.3). If the crystal is anisotropic with the extraordinary axis c1
along ex or ez, the ordinary polarization Eo is perpendicular to the extraordinary
axis and k, so Eo is along ey (s-polarization case), and the extraordinary polarization
Ee is perpendicular to the ordinary polarization, so Ee is in the plane (ex, ez) (but
Ee⊥k is no longer necessarily true).
The same reasoning used on the crystal on the right shows that the s-polarization
and p-polarization are good common bases for the problem.
From now on, in calculations, we will omit exp(−iωt) for simplicity.

3.2.1. TE Polarization or S-Polarization

The incident electric field Ei is supposed to be polarized in the ey axis. The three
electric fields’ expressions are:


Ei = E0ey exp[i(kixx+ ikizz)]
Er = rsE0ey exp[i(kixx− ikizz)]
Et = tsE0ey exp[i(kixx+ iktzz)]

, (3.1)

with rs and ts the reflection and transmission factors.
The continuity of E‖ gives a first equation:

E0 + rsE0 = tsE0. (3.2)

Maxwell-Faraday equation: ∇ × E = iωB gives in the x direction: ∂Ey
∂z

= −iωBx.
The continuity of B⊥ gives the continuity of ∂Ey

∂z
, which gives the second equation:

kizE0 − rskizE0 = ktztsE0. (3.3)
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3.2 Fresnel Equations

We have two equations with two variables:

{
1 + rs = ts

kiz(1− rs) = ktzts
,

These equations can easily be solved and give:


rs = kiz−ktz

ktz+kiz

ts = 2kiz

ktz+kiz

.

If kiz and ktz are real, we can rewrite these coefficients:

 rs = n1 cos(θi)−n2 cos(θt)
n2 cos(θt)+n1 cos(θi)

ts = 2n1 cos(θi)
n2 cos(θt)+n1 cos(θi)

.

The interesting values to measure are the reflectance R = |Πr⊥|
|Πi⊥|

and transmittance of
the system T = |Πt⊥|

|Πi⊥|
, with Πi⊥,Πr⊥ and Πt⊥ the normal components of the incident,

the reflected, and the transmitted Poynting vectors Π⊥ = E‖ ×H‖. By using the
Maxwell-Faraday equation ∇×E = −∂B

∂t
we can calculate the parallel magnetizing

field Hx = − kz
ωµ0

Ey and Hy = 0.


R = |Er‖×Hr‖|

|Ei‖×Hi‖|
= r2

s

T = |Et‖×Ht‖|
|Ei‖×Hi‖|

= t2s
ktz
kiz

.

They represent the reflection and transmission of the energy through the surface.
The conservation of energy implies R + T = 1.

3.2.2. TM Polarization or P-Polarization

We suppose here that the electric fields E are in the plane (ex, ez). For the calcula-
tion, we will consider the field H which is only in the direction ey. We will define
the same coefficient, but for the H field instead:


Hi = H0ey exp[i(kixx+ ikizz)]
Hr = rHH0ey exp[i(kixx− ikizz)]
Ht = tHH0ey exp[i(kixx+ iktzz)]
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Chapter 3 Interface Conditions

with rH and tH the reflection and transmission factors.
There is no free charge at the surface which gives the continuity of H‖:

H0 + rBH0 = tBH0.

For the second equation, we use the Maxwell-Ampère equation: ∇ ×H = iωD =
iε̄ωE. If one of the media at least is anisotropic, ε̄ is a tensor, but by hypothesis,

it is diagonal. ε̄ =

 n2
x 0 0

0 n2
y 0

0 0 n2
z

. By projecting the equation in the direction ex,

we obtain: 1
n2
x

∂Hy
∂z

= iωε0Ex. The continuity of Ex implies the continuity of 1
n2
x

∂Hy
∂z

.
We obtain:

kiz
n2
x1
H0 − rB

kiz
n2
x1
H0 = ktz

n2
x2
tBH0.

The two equations of the problem become:{
1 + rB = tB

kiz
n2
x1

(1− rB) = ktz
n2
x2
tB

which are easily solved thus:

 rB = n2
x2kiz−n

2
x1ktz

n2
x1ktz+n2

x2kiz

tB = 2n2
x2kiz

n2
x1ktz+n2

x2kiz

.

If kiz and ktz are real, we can rewrite these coefficients:

 rB = n2
2n1 cos(θi)−n2

1n2 cos(θt)
n2

1n2 cos(θt)+n2
2n1 cos(θi) = n2 cos(θi)−n1 cos(θt)

n1 cos(θt)+n2 cos(θi)

tB = 2n2
2n1 cos(θi)

n2
1n2 cos(θt)+n2

2n1 cos(θi) = 2n2 cos(θi)
n1 cos(θt)+n2 cos(θi)

.

The Maxwell-Ampère equation allows us to calculate the two coefficients for Ex and
Ez: 1

n2
x

∂Hy
∂z

= iωε0Ex and 1
n2
z

∂Hy
∂x

= −iωε0Ez


Ei = 1

ωε0

(
kiz
n2
x1

ex − ez
kix
n2
z1

)
H0 exp[i(kixx+ ikizz)]

Er = −1
ωε0

(
kiz
n2
x1

ex + ez
kix
n2
z1

)
rBH0 exp[i(kixx− ikizz)]

Et = 1
ωε0

(
ktz
n2
x2

ex − ez
kix
n2
z2

)
tBH0 exp[i(kixx+ iktzz)]
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3.2 Fresnel Equations

E0i = H0

ωε0

√√√√( kiz
n2
x1

)2

+
(
kix
n2
z1

)2

If nx1 = nz1, we get E0i = H0
nxε0c

So we get:


rp = rB

tP = tB

√(
ktz
n2
x2

)2
+
(
kix
n2
z2

)2

√(
kiz
n2
x1

)2
+
(
kix
n2
z1

)2

.

If nx1 = nz1, and nx2 = nz2 we get tP = tB
n2x
n1x

The coefficients in energy become:


R = |Er‖×Hr‖|

|Ei‖×Hi‖|
= r2

p

T = |Et‖×Ht‖|
|Ei‖×Hi‖|

= tptB
ktz
kiz

n2
x1
n2
x2

.

If nx1 = nz1, and nx2 = nz2 we get TP = t2B
ktz
kiz

nx1
nx2

.
The more simple example of the interface between two isotropic materials can be
found in [11]and [6].
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4. Cavity

r1,t1,C1

Mirror 1
r2,t2,C2

Mirror 2

d

L

Figure 4.1.: Fabry Perot cavity with two mirrors of reflectivity r1 and r2, transmi-
tivity t1 and t2 and curvature radius C1 and C2, with intra-cavity loss L.

Cavities can be used for defining a mode spatially and temporally, like with a mode
cleaner, or they can be used to increase and build power (the power inside the cavity
being equal to the finesse of the cavity multiplied by the input power). By putting a
crystal, or anything interacting with a mode of the cavity, inside it, the interaction
increases. For example, putting a material with positive gain in a cavity is the
principle of making a laser.
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r,t

Ei1

Ei2

Et1

Et2

Figure 4.2.: The beam splitter mixes the two input fields. We obtain Et1 = tEi1 +
rEi2 and Et2 = −rEi1 + tEi2.

4.1. Beam Splitter Conventions

There are several conventions for beam splitters’ transmission and beam splitters’
reflection. We will suppose the transmitted and reflected beam to be given by:{

Et1 = tEi1 + rEi2
Et2 = −rEi1 + tEi2

With this convention, the parameters r and t are real parameters. And the re-
flectance and transmittance of the beam splitters are given by:{

R = r2

T = t2

4.2. Cavity Transmission

We consider a Fabry Perot cavity with two coupling mirrors with reflectance and
transmittance coefficients r1, t1 and r2, t2 respectively. We suppose the cavity to
have absorption losses, which means that the power in the cavity decays as e−αl
with l the distance considered and α the linear attenuation coefficient (Figure 4.1).
We shine a beam Ei = E0e

ikx−iωt to the left of the cavity (mirror 1). We want
to find the transmitted beam Et going out of (mirror 2) and the reflected beam Er
from (mirror 1) . We can obtain them by adding the contributions of all the possible
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4.2 Cavity Transmission

paths that the light can take before exiting the resonator through one of the mirrors.
For the transmitted beam:

Et = Ei

(
t1t2e

ikd−αd
∞∑
N=0

(
r1r2e

2ikd−2αd
)N)

,

Et = Ei

(
t1t2e

ikd−αd

1− r1r2e2ikd−2αd

)
.

The intensity of the beam is given by:

It = |Et|2 = Ii

(
T1T2e

−2αd

(1− r1e−2αdr2)2 + 4r1r2e−2αd sin2(kd)

)

with Ii = |Ei|2 the intensity of the incident beam, and T1 = t21 and T2 = t22. We use
F the coefficient of finesse given by: F = 4r1r2e−2αd

(1−r1r2e−2αd)2 . We obtain:

It = |Et|2 = FIi
4r1r2

(
T1T2

1 + F sin2(kd)

)
.

In the same way we can obtain the expression of the reflection beam:

Er = Ei

(
r1 − (1− Lm) r2e

2ikd−2αd

1− r1r2e2ikd−2αd

)

Where Lm1 is the absorption in the first mirror satisfying: r2
1 + t21 = 1− Lm1.

The intensity of the reflected beam is given by:

Ir = Ii


(
r1 − (1− Lm) r2e

−2αd
)2

+ 4 (1− Lm) r1r2e
−2αd sin2(kd)

(1− r1r2e−2αd)2 + 4r1r2e−2αd sin2(kd)



Ir = FIi


(r1−(1−Lm)r2e−2αd)2

4r1r2e−2αd + (1− Lm) sin2(kd)
1 + F sin2(kd)


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Figure 4.3.: a) Power in reflection (red line) and in transmission (blue line) vs
frequency of incident light. We supposed no losses in the mirror, which makes
the sum of the transmitted power and the reflected power (green line) one (1).
The mirror reflectivity coefficients are :r1 = 0.9 and r2 = 0.95. b) is the power
in reflection (red line) and transmission (blue line) at resonance in function of
the reflectance R2 of the second mirror for the reflectance of the first mirror fixed
at R1 = 0.8. We supposed L = 2% of loss per round trip in the cavity. When
R1 = R2(1 − L), the total reflectivity is minimized, and this is called critical
coupling (CC). When R1 > R2(1 − L) it is in an under coupling (UC) regime,
and when R1 < R2(1−L) it is an over coupling (OC) regime. For both plots, we
normalized the powers by the power of the incident beam.

In the case α = 0 and Lm1 = 0, we can verify Ir + It = Ii. The transmission and
reflection intensities in function of the frequency and in function of the reflection of
one mirror at resonance is shown Figure 4.3.
An important parameter in the characterization of a cavity is the finesse F (not to
be confused with the finesse coefficient F). The finesse F of a cavity is more or
less the number of round trips that a photon will make in the cavity before either
exiting or being absorbed. The power in the cavity at resonance is the incident
power multiplied by the finesse. The finesse F of the cavity is given by:

F = ∆ω
δω

= π

2 arcsin
(

1√
F

)
with F the finesse coefficient. When r1r2e

−2αd > 0.5 we can generally approximate
the expression by:

F ≈ π
√
F

2 ≈
π
√
r1r2e

−αd

1− r1r2e−2αd
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4.3 Stability

Or even if the absorption is negligible and r1r2 ≈ 1:

F ≈ π
√
F

2 ≈ π

LT

with LT = 1−r1r2e
−2αd which can be seen as the losses of a round trip in the cavity.

More details can be found in [1].

4.3. Stability

To be able to resonate within the cavity, the light shape after one round trip must
remain unchanged. If not, the phase surface will not be the same and the cavity
will not be able to build the power inside. To analyze the wavefront deformation in
the cavity we can use ABCD matrices.

To be a stable cavity, the transformation matrix M =
(
A B
C D

)
of one complete

round trip in the cavity has to transform the Gaussian coefficient q of the beam in
the resonator to itself: Aq+B

Cq+D = q . We obtain an equation of the second order in q
which need to have complex solutions:

Cq2 + (D − A)q −B = 0.

The solutions of this equations are complex if ∆ given by ∆ = (D − A)2 + 4BC is
negative.

∆ = D2 + A2 − 2AD + 4BC

The determinant of the matrix M is one because we start and end with the same
index material: Det(M) = AD −BC = 1 so we obtain:

∆ = (A+D)2 − 4

The stability condition in the cavity ∆ ≤ 0 corresponds to:

0 < Tr(M) + 2
4 < 1.
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Chapter 4 Cavity

It is also possible to calculate the coefficient q at the position where we calculated
M :

q =
−(D − A)± i

√
4− (Tr(M))2

2C

The two values correspond to the two directions of propagation (ez and −ez) in the
cavity.
The waist size of the beam is given by:

w2
0 = |=(q)|λ

π
= λ

π

√
1− (Tr(M)

2 )2

|C|

For the linear cavity in Figure 4.1 with C1 and C2 the curvature radius of the two
mirrors, the matrix M is given by :

M =
(

1 0
− 2
C1

1

)
∗
(

1 d
0 1

)
∗
(

1 0
− 2
C2

1

)
∗
(

1 d
0 1

)

M =
 1− 2d

C2
2d− 2d2

C2

− 2
C1
− 2

C2
+ 4d

C1C2

(
1− 2d

C1

) (
1− 2d

C2

)
− 2d

C1


The stability condition corresponds to:

0 < g1g2 < 1,

with g1 = 1− d
C1

and g2 = 1− d
C2

. It is possible to visualize the stability conditions
on a diagram like in Figure 4.4.
The waist of the beam in the cavity is given by:

W0 =

√√√√λd

π

√
g1g2 (1− g1g2)
g1 + g2 − 2g1g2
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concentric
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hemispherical

concave-concave

Figure 4.4.: In white, the stability domains in function of g1 and g2.

4.4. Non Linear Cavity

We consider a non linear crystal with an index n in a cavity like in Figure 4.5. We
suppose some light at frequency 2ω in the cavity, which causes some non linear gain
(see chapter on parametric amplification subsection 2.3.3) to generate some light at
the frequency ω in the crystal. We suppose the light at frequency ω at point A to
be given by: E0e

−iwt−ikz with E0 real. (The imaginary part would be de-amplified
until it reaches zero after a few round trips in the cavity, so we can consider the field
to be real there). We simplify the calculation considering the crystal to be touching
mirror 2. Using the equation Eq. 2.20 twice, and multiplying by the reflectivity of
mirror 2, we get the field in point C. Supposing that there is no light at frequency
ω coming from outside, then a simple propagation of the field to the point A gives
the equation:

E0 = E0e
2γlr1r2e

2k(d+nl) (4.1)

with γ = 1
zc

= ωµ
3/2
0 deff√

2πn3/2
ω wω0

√
P 2ω, from the chapter on parametric amplification:subsection 2.3.3.

By taking the amplitude of this equation, we get the condition for a light seed at
frequency ω to build up in the cavity:
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r1,t1
Mirror 1

r2,t2
Mirror 2

ld

C

D
Crystal

A
B. ..

.

C
n

Figure 4.5.: Fabry Perot cavity with two mirrors of reflectivity r1 and r2, and
transmittivity t1 and t2 with a non linear crystal of length l and index n. To be
stable in the cavity, the field in the point A at a time t and the field after a round
trip need to be equal.

γ >
1
2l ln

( 1
r1r2

)

which gives the condition for the power of the pump P 2ω > P 2ω
thr with the threshold

power given by:

P 2ω
thr = πn3

ω (w2ω
0 )2

ω2µ3
0d

2
eff l

2 ln2
( 1
r1r2

)

with w2ω
0 the waist of the pump.

If the power of the pump is higher than the threshold power P 2ω
thr some light will be

generated at the frequency ω. Above the threshold, the losses will just increase or
the gain saturate, avoiding divergence of the power.
It is also possible to include in Eq. 4.1 absorption losses in the crystal L = 1− e−αl
and losses at the coupling interfaces tc1 and tc2, considering that the light still exits
the crystal and enters at the two interfaces. The equation becomes:

E0 = E0e
2γle−2αlt2c1t

2
c2r1r2e

2k(d+nl). (4.2)
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4.4 Non Linear Cavity

The threshold becomes:

P 2ω
thr = πn3

ω (w2ω
0 )2

ω2µ3
0d

2
eff l

2 ln2
(

1
r1r2e−2αlt2c1t

2
c2

)

More details can be found in [1].
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5. Quantum Optics

Classical non linear optics allows us to understand a lot of phenomena pertaining
to laser beams in crystals, but to explain squeezing or above-threshold behavior, it
is necessary to go beyond. The development of parametric generation in a classical
regime showed that spontaneous parametric generation does not happen. That is, it
is necessary to send a seed at frequency ω in the cavity in order to obtain generation
of light. Experimentally, however, it is in fact not necessary. With a non linear
crystal in a cavity with no seed, and with a pump at frequency 2ω, when the power
of the pump reaches the threshold, some light at frequency ω will be generated.
Moreover, when the power is lower than the threshold where nothing should happen
in classical physics, squeezed states of light are generated.

5.1. Quantization of the Field

We consider an electric field E constrained in a box of volume V = L3 in the vacuum.
We consider E given by:

E(r, t) = 1
L3

∫∫∫
A(k, t) exp(ik · r) + A∗(k, t) exp(−ik · r)dk

The field E is null outside of the volume V , so the integrals become a sum of wave
functions:

E(r, t) =
∑
l

(A(kl, t) exp(ikl · r)εl + A∗(kl, t) exp(−ikl · r)ε∗l ) (5.1)

with l corresponding to the parameters l = (nx, ny, nz, s) with (nx, ny, nz) three
integers and s ∈ (1, 2). The wave vectors are given by:

kl,x = nx
2π
L

; kl,y = ny
2π
L

; kl,z = nz
2π
L
.

and ε1 and ε2 two vectors orthogonal to each other and to the vector kl. (Complex
ε1 and ε2 will describe circular polarizations).
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The magnetic field can also be described by:

B(r, t) = −
∑
l

(
A(kl, t) exp(ikl · r)kl

ωl
× εl + A∗(kl, t) exp(−ikl · r)kl

ωl
× ε∗l

)
.

By applying the propagation equation Eq. 2.2 in the vacuum to the electric field
Eq. 5.1, we obtain an equation for Al:

d2Al
dt2

= −ω2
l Al

The solution of this equation Al(t) = Al0e
iωt allows us to rewrite the equation as:

i
dAl
dt

= ωlAl. (5.2)

We can calculate the energy of the field in function of Al :

HR = ε0

∫
d3
r

(
E2(r, t) + c2B2(r, t)

)
= 2ε0L3∑

l

|Al|2 = 2ε0L3∑
l

(
A2
lq + A2

lp

)

with Alq(t) and Alp(t) the real part and imaginary part of Al(t). With Eq. 5.2 we
can write the evolution equations in the Hamiltonian Jacobi form:

d
dt
Alq = ωlAlp = ωl

4ε0L3
∂HR
∂Alp

d
dt
Alp = −ωlAlq = − ωl

4ε0L3
∂HR
∂Alp

(5.3)

For some variables (qi(t), pi(t)) with an energy given by a HamiltonianH, (qi(t), pi(t))
are conjugate variables when:

d
dt
qi = ∂H

∂pi

d
dt
pi = −∂H

∂qi
.

The usual way to quantize this system is to consider (qi(t), pi(t)) as operators re-
specting:

[qi, pj] = i~δij

Eq. 5.3 allows a quantization of the fields by setting:

q̂i ↔ 2
√

ε0L3

ωl
Âlq p̂i ↔ 2

√
ε0L3

ωl
Âlp
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5.1 Quantization of the Field

We generally join the two Hermitian operators Âlq and Âlp with a normalized non
Hermitian operator âl:

âl =
√

2ε0L3

ωl~
(
Âlq + iÂlp

)
which satisfies:

[âl, â†l′ ] = δll′ (5.4)

âl is called the annihilation operator and â†l the creation operator. In the Schrödinger
representation, the field operators expressed with the annihilation and creation op-
erators are:

Ê(r) =
∑
l

√
~ωl

2ε0L3alεle
ikl·r + cc

B̂(r) = −
∑
l

√
~ωl

2ε0L3 âl
kl

ωl
× εleikl·r + cc

Ĥ(r) =
∑
l

~ωl
(
N̂ + 1

2

)

with N̂ = â†l âl as the operator number of photons.
In the Heisenberg representation, the time dependence is in the operators and the
state vector is replaced by the state of the initial condition of the experiment:

i~
dâH,l(t)
dt

= [âH,l(t), ĤR] = ~ωlâH,l(t)

âH,l(t) = âle
−iωlt

ÊH(r, t) =
∑
l

√
~ωl

2ε0L3 âlεle
ikl·r−iωlt + cc

B̂H(r, t) = −
∑
l

√
~ωl

2ε0L3 âl
kl

ωl
× εleikl·r−iωlt + cc.

In the following sections we will always use the Heisenberg representation, but we
will omit the index H.
More details about the quantification of the field can be find in [8].
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5.2. Quadratures and Homodyne Measurements

5.2.1. Quadratures

The operators â and â† are not Hermitian operators, so they do not correspond
to any measurable quantities. It is some times useful to define two new operators
X1 = â + â† and X2 = â−â†

i
called quadratures, which are twice the real part

(amplitude quadrature) and imaginary part (phase quadrature) of the operator â.
These operators are Hermitian and can be measured with a homodyne detector.
In function of the quadratures, the electric field operator, expressed in Heisenberg
representation, becomes:

Ê(r, t) =
∑
l

El0 (X1(t) cos(kl · r) +X2(t) sin(kl · r)) εl

with El0 =
√

~ωl
2ε0L3 . We consider here εl with real components to simplify the ex-

pression.
It is also possible to define a quadrature with rotation θ:

Xθ = X1 cos(θ) +X2 sin(θ) = â†eiθ + âe−iθ

The property on the commutator between â and â† (Eq. 5.4) gives the expression:

[Xθ, Xθ+π
2
] = 2i.

For any states, the two observables Xθ and Xθ+π
2
will satisfy a Heisenberg inequality.

∆Xθ∆Xθ+π
2
≥ 1

More details can be found in [1].

5.2.2. Optics Components

Most components in optics can have an input-output characterization [8] with re-
gards to operators, making the quantum interpretation of an experiment very easy.
We start with an ensemble of input states and vacuum states and propagate them,
mix them together and detect them by transforming the inputs operators.
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5.2 Quadratures and Homodyne Measurements

5.2.2.1. Photo-detectors

A photo-detector is a system converting photons on its surface to current that can
be analyzed with an oscilloscope or any other electric systems. A photo-detector
measures a current i proportional to the power of the field P , which is proportional
to the number of photons:

î ∼ X̂2
θ + X̂2

θ+π
2

= â†l âl

i ∼ 〈ψ0|â†l âl|ψ0〉

with |ψ0 > the initial state of the incident light.

5.2.2.2. Free Propagation

The free space propagation is the most simple transformation that can be applied
to our system. It corresponds to adding a phase to the annihilation operator.

âout = eiφâin

For the propagation in free space from (r1, t1) to (r2, t2), the phase φ is given by:
φ = kl · (r1 − r2)− ωl(t1 − t2)

5.2.2.3. Beam Splitter

The beam splitter is a very important component allowing us to combine and mix
beams together. The two output ports of the beam splitter will correspond to the
sum and difference of what enters in the two inputs weighted by the coefficients r
and t.

âout1 = râin1 + tâin2

âout2 = tâin1 − râin2
X̂out1 = rX̂ in1 + tX̂ in2

X̂out2 = tX̂ in1 − rX̂ in2 .

5.2.3. Homodyne

Consider a setup in which we mix two beams in a beam splitter: a signal beam (S)
that needs to be characterized, and a strong beam, called the Local Oscillator (LO).
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r,t

Xin1

Xin2

Xout1

Xout2

Figure 5.1.: The beam splitter mixes the two input quadratures. We obtain
X̂out1 = rX̂ in1 + tX̂ in2 and X̂out2 = tX̂ in1 − rX̂ in2, where r is the reflection
coefficient and t is the transmission coefficient.

By measuring the two output ports with photo-detectors, and by taking the differ-
ence between the two electrical signals, it is possible to measure the quadrature of
the signal Xθ in a particular angle θ. We call this system a homodyne measurement.
Figure 5.2.
We suppose the LO in the mode of the signal strong enough such that we can treat it
classically, âLO(t) ∼ αLO with αLO a complex number corresponding to the complex
amplitude of the beam. We also suppose that the frequency of the LO and the signal
are the same.
The two currents for the detectors a and b (Figure 5.2) are given by:

îa ∼ â†aâa =
(
râ†s + tα∗LO

)
(râs + tαLO)

=
(
r2N̂s + t2NLO

)
+ rt

(
αLOâ

†
s + α∗LOâs

)

îb ∼ â†bâb =
(
tâ†s − rα∗LO

)
(tâs − rαLO)

=
(
t2N̂s + r2NLO

)
− rt

(
αLOâ

†
s + α∗LOâs

)
with N̂s the operator number of photons, NLO the number of photons of the LO.
Supposing the coefficients of proportionality between the current and the number
of photons for the two detectors are the same,
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S

LO

a b

BS

Figure 5.2.: A signal beam (S) is mixed with a bright beam, the Local Oscillator
(LO) in a balanced beam splitter. The output lights are collected with two detec-
tors. The difference of the two electric signals are proportional to the quadrature
of the signal. By changing the phase of the LO, we can choose the direction of
the quadrature to measure.

îa − îb ∼
(
t2 − r2

) (
−N̂s +NLO

)
+ 2rt

(
αLOâ

†
s + α∗LOâs

)
For a balanced detection, r = t. By defining ϕ such as αLO = |αLO| eiϕ:

îa − îb ∼ 2rt |αLO|
(
eiϕâ†s + e−iϕâs

)

îa − îb ∼ 2rt |αLO| X̂ϕ

Hence, by measuring the two currents and by taking the difference between them,
it is possible to measure the observable Xϕ. By changing the phase of the LO, we
can control the angle of the measurement. And by measuring the variance of the
difference of current, we can measure ∆Xϕ.

5.3. Different Light States and Wigner Function

In this thesis we use three different states of light: the Fock states; the coherent
states; and the squeezed states. One way to characterize them is by using the
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Wigner Function. In classical mechanics, it is possible to define a probability for
the state to be in any point of a phase diagram. But in quantum mechanics, the
Heisenberg uncertainty makes the notion of defined points in the phase diagram not
anymore correct . It is not possible to define at the same time the two quadratures
X1 and X2. However, it is still possible to define a quasi-density of probability,
which is the Wigner function. It is defined by:

W (X1, X2) = 1
2π

∫ ∞
−∞

dq〈X1 − q|ρ|X1 + q〉eiX2q

with ρ the density matrix of the state and |X1 + q〉 the eigenstate of the observable
X̂1 with the eigenvalue X1 − q.
The probability distribution of the system measured in one quadrature is the integral
of the Wigner function in the conjugate quadrature P (X1) =

∫
W (X1, X2)dX2. The

difference with the classical equivalent is that the Wigner function can be negative,
which corresponds to the possibility to have interference in quantum mechanics.
For any operator Ô symmetric in X̂1 and X̂2 , it is possible to obtain the expectation
value with the Wigner function:

〈ψ|Ô|ψ〉 =
∫ ∞
−∞

∫ ∞
−∞

dx1dx2W (x1, x2)O(x1, x2)

5.3.1. Fock States

The Fock states |n > are states defined by a specific number n of photons. They
are the eigenvectors of the operators N̂ and Ĥ. The creation operator applied to a
Fock state increases the number of photons by one, and the annihilation operator
decreases the number of photons by one:

a†|n〉 =
√
n+ 1|n+ 1〉 a|n〉 =

√
n|n− 1〉

The state with zero photons |0〉 is the vacuum state. It is the state that we will
consider coming from the empty port of a beam splitter. All the other states |n >
can be derived from the vacuum state by applying the creation operator n times:

|n >= â†n√
n!
|0 >

By using the density matrix of the Fock state ρ = |n〉〈n| we can calculate the Wigner
function (Figure 5.3)

Wn(X1, X2) = (−1)n

2π e−
(X2

1+X2
2)

2 Ln
(
X2

1 +X2
2

)
with Ln(q) the Laguerre polynomials given by:Ln(q) = eq

n!
dn

dqn
(e−qqn).
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Figure 5.3.: Wigner function of (a) a one-photon Fock state and (b) a four-photon
Fock state.

5.3.2. Coherent States

The coherent state |α〉 (with α ∈ C) is the eigenvector of the annihilation operator
â with eigenvalue α. It corresponds to a good approximation of the mode coming
out of a laser:

|α〉 = e−
|α|2

2

∞∑
n=0

α̂n√
n!
|n〉.

It can be considered as the displacement operator D̂ = eαâ
†−α∗â applied to the

vacuum state:

|α〉 = D̂|0〉.

This state has the same uncertainty in X1 and X2 and minimizes the Heisenberg
inequality:

∆X1 = 〈α|(X̂1 − 〈X1〉)2|α〉 = 1
∆X2 = 〈α|(X̂2 − 〈X2〉)2|α〉 = 1

with 〈X1〉 = 〈α|X̂1|α〉 = α + α∗ and 〈X2〉 = 〈α|X̂2|α〉 = α−α∗
i

.
The photon distribution of the coherent state respects a Poisson distribution:

∆n = |α|2 〈n〉 = |α|2 .
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The Wigner function associated with this state is given by using the density matrix
ρ = |α〉〈α|:

Wα(X1, X2) = 1
2πe

− (X̂1−〈X1〉)2

2 − (X̂2−〈X2〉)2

2
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Figure 5.4.: Wigner function of (a) a vacuum state and (b) a coherent state.

5.3.3. Squeezed States

A squeezed state is a state similar to a coherent state, but with the uncertainty
in one quadrature “squeezed” below one. The squeezed state |s > (with s ∈ C) is
defined by the operator Ŝ applied to a coherent state:

|s >= ŜD̂|0 >

with Ŝ = es
∗â2−sâ†2 and s a complex number given by s = |s|eiφ. If the operator Ŝ

is directly applied to the vacuum state, we obtain a vacuum squeezed state. The
uncertainty relation for this state becomes:

∆Xφ = e−|s| ∆Xφ+π/2 = e|s|

The Wigner function of the squeezed vacuum state is given by using the density
matrix ρ = Ŝ|0 >< 0|Ŝ† for φ = 0 we obtain:

Ws(X1, X2) = 1
2πe

− (X̂0)2

2Vs
−

(X̂π/2)2

2V−1
s
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Figure 5.5.: Wigner function of (a) the squeezing of a vacuum state and (b) the
squeezing of a coherent state.

with Vs = (∆X0)2 the squeezed variance.
More information about Wigner functions of usual states in optics can be find in
[12].

5.4. Squeezing Creation and Interaction with
Environment

5.4.1. Single pass squeezing generation in a non-linear crystal

One way to create squeezing state of light is to use non linear crystals. Classically
the energy of interaction between the field and matter is given by D.E. In a non
linear crystal, it can be seen in Appendix A that the energy of interaction due to
the non linear polarization is given by:

Up2 = ε0

2 E
∗(2ω) ∗ 2χ(2)(ω, ω)E(ω)2 + cc

with E(2ω) and E(ω) the fields at frequency 2ω and ω, and 2χ(2)(ω, ω) the ef-
fective non linear susceptibility of the material at frequency ω. The Hamiltonian
corresponding to this classical energy is given by:

Ĥ = gâ†2ωâ
†2
ω + g∗â2ωâ

2
ω

with â2ω and âω the annihilation operators for the light at frequencies 2ω and ω, and
g a constant proportional to χ(2)(ω, ω) real (we consider the lossless case g = g∗).
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The two terms of the Hamiltonian correspond to the annihilation of two photons at
the frequency ω and the creation of one photon at frequency 2ω, or the annihilation
of one photon at 2ω and the creation of two photons at frequency ω.
Typically, the light at frequency 2ω is the pump, with a high power hence, it can be
considered classically. The Hamiltonian becomes:

Ĥ = gα∗2ωâ
†2
ω + gα2ωâ

2
ω

with α2ω the amplitude of the field of the pump.
Starting with a vacuum state in the cavity for the frequency ω, the interaction with
this Hamiltonian can be expressed by the time evolution operator:

Ŝ = e
iĤt
~ = e

i
~g(α∗2ω â†2ω +α2ω â2

ω)t

which is the squeezing operator, with t = L
c
, L the length of the medium and c the

speed of light. The strength of the squeezing is defined by the power of the light at
2ω, and the direction of squeezing by the phase.
The evolution equation of the operator âω can be obtain from the Hamiltonian:
i~∂âω

∂t
= [Ĥ, âω], we obtain:

i~
∂âω
∂t

= −2gα∗2ωâ†ω

The solution of this equation is given by:

âω(t) = âω(0) cosh(2g|α2ω|
~

t) + â†ω(0)ei(
π
2−Φ(α2ω)) sinh(2g|α2ω|

~
t) (5.5)

where Φ(α2ω) is the phase of the field α2ω. By choosing a phase of the pump such
as: π

2−Φ(α2ω) = 0, and by coming back to the quadratures, we obtain the squeezing
and anti-squeezing factors due to a time of interaction τ with the crystal:

Xout = e
2g|α2ω |

~ τ Xin

Yout = e−
2g|α2ω |

~ τ Yin

where τ = nlc with n the index of the crystal, l the length of the crystal and c the
speed of light.
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5.4.2. Squeezing Interaction in a Lossy Channel

The squeezed state as defined in the previous section subsection 5.3.3 minimizes
the Heisenberg inequality ∆X1∆X2 = 1. But when losses are introduced into the
system, this is no longer the case and we obtain a mixed state ∆X1∆X2 > 1. As
long as minφ(∆Xφ) < 1, we still call this mixed state a squeezed state. It is possible
to model losses in the system by supposing a pure squeezed state like that described
in subsection 5.3.3 going into a beam splitter, mixing the state with a vacuum state
and thus changing the amount of squeezing S = minφ(∆Xφ) and anti squeezing
A = maxφ(∆Xφ) that we measure (Figure 5.6).

We define X̂s and X̂a the quadratures of the pure state in the direction of squeez-
ing and anti-squeezing, and X̂ ′s and X̂ ′a the quadratures after the beam splitter of
reflectivity η:

X̂ ′s = √
ηX̂s +

√
1− ηX̂v1

X̂ ′a = √
ηX̂a +

√
1− ηX̂v2

with X̂v1 and X̂v2 the two quadratures of the vacuum state coming from the beam
splitter. We have:

X̂ ′2s =
(√

ηX̂s +
√

1− ηX̂v

)2
= ηX̂2

s + (1− η) X̂2
v + 2

√
η (1− η)X̂sX̂v .

If we call S =< s|(X̂s− < Xs >)2|s > and A = 1/S =< s|(X̂a− < Xa >)2|s >
the squeezing and anti-squeezing of the pure state that we started with, and S ′ and
A′ the squeezing and anti-squeezing obtained after the beam splitter, by supposing
that there is no coupling between the squeezed state and the vacuum state from the
beam splitter < XvXs >=< Xv >< Xs > and because < Xv >= 0 and ∆Xv = 1:

S ′ = ηS + (1− η)
A′ = ηA+ (1− η)

Usually we measure the squeezing in dB with SdB = 10 log10(S) andAdB = 10 log10(A).

5.4.3. Squeezing generation in a non linear crystal in a cavity

We consider a non-linear crystal in a linear cavity. One of the mirror has an infinite
reflectivity, the other one is characterized by its transmission T . The losses in the
cavity are modeled by a beam splitter with a reflection L mixing the mode of the
cavity with a vacuum mode Figure 5.7.
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X
X

X'
v

η

loss

Figure 5.6.: Losses in the system can be modeled with a beam splitter of transmis-
sion coefficient η mixing the state with a vacuum state X ′ = √ηX +

√
1− ηXv.

L T âin

âoutNon-linear
crystal

âL

â

Figure 5.7.: Schematic of a non-linear crystal in a cavity. The left mirror is sup-
posed with a reflection R = 1, the second mirror has a transmission T . The losses
in the cavity are modeled by a beam splitter with a reflectivity L which mix the
field of the cavity corresponding to an operator â to a vacuum field corresponding
to the operator âL . The field coming in the resonator correspond to the operator
âin , and the field leaving the cavity correspond to the operator âout.

The mode in the cavity after one round trip needs to be equal to the original mode.
By supposing the transmission T and the losses L low (

√
1− T ∼ 1−T/2 ,

√
1− L ∼

1−L/2 and (1− L/2) (1− T/2) ∼ 1− T+L
2 ) and the size of the crystal small enough

to be able to linearize Eq. 5.5, the annihilation operator at frequency ω (we will forget
the index ω) in the cavity â(t) verifies:

â(t+ τc) =
(

1− T + L

2

)(
â(t) + 2g|α2ω|

~
τ â†(t)

)
+
√
LâL +

√
T âin

where τc is the round trip time for the light in the cavity and τ = 2nlc where n
is the index of the crystal, l the length of the crystal, c is the speed of light, âL
correspond to the field coming from the losses and âin is the input field.
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we develop the field â(t+ τc) in Taylor series, and by neglecting T+L
2

2g|α2ω |
~ τ â†(t) we

obtain:

τc
∂â

∂t
= −T + L

2 â(t) + 2g|α2ω|
~

τ â†(t) +
√
LâL +

√
T âin.

By getting the same equation for ∂â†

∂t
, and by taking the sum and difference of both

equations, we obtain the equations for the two quadratures in the cavity:

τc
∂X̂1
∂t

= −T+L
2 X̂1 + 2g|α2ω |

~ τX̂1 +
√
LX̂1L +

√
TX̂1in

τc
∂X̂2
∂t

= −T+L
2 X̂2 − 2g|α2ω |

~ τX̂2 +
√
LX̂2L +

√
TX̂2in

(5.6)

where X̂1L, X̂2L are the quadratures of the field coming from the losses and X̂1in,
X̂2in the quadratures of the input field. By writing ωc = T+L

2τc and ε = 4g|α2ω |
~

τ
T+L =√

P2ω/Pth where P2ω = |α2ω|2 is the power of the pump and Pth =
(

4g
~

τ
T+L

)2
is the

threshold power of the squeezer. We apply a Fourier transform to Eq. 5.6, we obtain:

(
1− ε− i ω

ωc

)
X̂1(ω) = 2

√
L

T+LX̂1L(ω) + 2
√
T

T+LX̂1in(ω)(
1 + ε− i ω

ωc

)
X̂2(ω) = 2

√
L

T+LX̂2L(ω) + 2
√
T

T+LX̂2in(ω)
. (5.7)

Outside of the cavity, the quadrature are obtained by the equation: XθOut =√
TXθ − (1− T/2)Xθin where θ = {1, 2}. We suppose that we have a vacuum state

at the input of the cavity and at the level of the losses:< X̂1L(ω)X̂1L(−ω) >=<
X̂1in(ω)X̂1in(−ω) >= σ2

0 and < X̂2L(ω)X̂2L(−ω) >=< X̂2in(ω)X̂2in(−ω) >= σ2
0,

but there is no correlation between them: < X̂1L(ω)X̂1in(−ω) >=< X̂2L(ω)X̂2in(−ω) >=
0.
The noise of the output state normalized to the noise of the vacuum: s1 =<
X̂1out(ω)X̂1out(−ω)/σ2

0 and s2 =< X̂2out(ω)X̂2out(−ω)/σ2
0 are given by:

s1 = 1 + η 4ε
(1−ε)2+4( ω

ωc
)2

s2 = 1− η 4ε
(1+ε)2+4( ω

ωc
)2
.

Where η = T
T+L is the escape efficiency. s1 and s2 are the squeezing and anti-

squeezing expected from the cavity.
More details can be found in [1] and in Olivier Morin’s Thesis [14].
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6. Introduction

6.1. Introduction

The design that I will present has been constructed in France under the supervision
of Nicolas Treps and Claude Fabre. The idea underlying the project comes from
the work of Jakob Reichel on micro cavities between two fibers ([53]). With a CO2
laser, his team shot a strong beam on the end of a fiber to create a curved shape.
Then they applied a high reflectivity (HR) coating on the surface, and created a
cavity between two fibers.
These cavities are used for different purposes, but mostly for trapping atoms to
study the interaction between the light and the atoms([56],[47],[51]).
The idea behind my project was to investigate the possibility to add a non linear
crystal into a similar cavity and create squeezed states of light which would be
directly coupled into the fiber.

6.2. Squeezing Generation

A squeezed coherent state is a state with the noise in one of its quadratures smaller
than the noise fluctuation of the vacuum; the excess noise is transferred to the
complementary quadrature (which is anti-squeezed) to respect the Heisenberg in-
equality. A more mathematical description of the squeezed state can be found in
Part 1 (subsection 5.3.3). This non-classical state can be used for a variety of ap-
plications like quantum communication, Quantum Key Distribution (QKD) ([41],
[63]), quantum computation ([48]) and metrology ([34]). By mixing two squeezed
states on a 50/50 beam splitter with the correct phase, one can create the so called
EPR state ([60]), a cornerstone of quantum mechanics. It is also possible to subtract
a photon from a squeezed state using a beam splitter and create Schrödinger states
([58],[40]), and it can be interacted with single photons ([55]). By using the char-
acteristic of transferring noise in another quadrature, a squeezed state can be used
to increase detection sensitivity to the theoretical limit ([59]). These days, squeezed
states are used to improve the sensitivity of gravitational wave detectors such as the
LIGO interferometer ([34]).
The big inconveniences of such a state is its fragility, and the complexity to create
it. The amount of squeezing decreases very rapidly with losses. A state with an
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infinite amount of squeezing at the start, which experiences 50% of transmission
losses is reduced to 3dB of squeezing.When we want to use several of these states it
is generally necessary to lock a lot of cavities, and the complexity of the experiment
increases very rapidly.
Squeezed states have been generated in research laboratories for around 20 years,
with optimized methods reaching up to 12.7dB of squeezing below the shot noise
([45]). The common technique is to use a χ(2) non linear crystal in a cavity with
a pump field interacting with its sub-harmonic field resonant in the cavity. One
common design is to use a bow-tie cavity ([62],[61]) which allows easy manipulation
and potential replacement of the crystal. (Some linear cavities also have been used
for this purpose ([54])). The common characteristic is usually the size of the system,
which is generally quite large, and the fact that the coupling and the generation of
squeezing is usually in free space rather than in fibers. The advantage of the system
presented in this thesis is that it is a very compact system which generates squeezing
directly in fibers.

6.3. Toward an all-fibered squeezer

Fibers have the advantage to simplify a lot the transport of optical states, and
for single fiber areas, the technology is very mature. We can find fibered beam
splitters, phase shift controls, and polarization controls with relatively low losses,
but the coupling in a fiber can be sometimes problematic and therefore imply losses.
The long time project under this thesis was to develop a very compact linear squeezer
between two fibers with a crystal in the middle. The mode of the output fiber and
the mode of the cavity need to be perfectly matched. If this is not the case, a part of
the light going out of the cavity will not go into the fiber, but will be lost which will
degrade squeezing. It means that the output coupler, where the squeezing is leaving,
needs to be a flat mirror and that the waist of the cavity will be at the position
of this mirror. Moreover, the non linearity is bigger at the focus point. It means
that the crystal needs to be placed at the waist position, where the power is the
strongest. This means it needs to be ideally stuck to the output mirror. The length
of the cavity is also an issue. A too-small cavity will imply a very small crystal,
and the non linearity compared to the losses will be too weak to create sufficient
squeezing. The ideal length of the crystal is defined by the Boyd and Kleinman
coefficient [36] to maximize non linearity.
The design implied one multi-mode fiber for coupling the pump with one of its ends
curved in the shape of a mirror and coated with a reflective coating to make the
first coupling mirror of the cavity. The second mirror of the cavity would have
been the end of a single mode fiber glued to a non linear mirror. With a sufficient
coupling from the cavity to the fiber, it would be possible to have very compact
fiber-based systems generating squeezed states of light ready to be used in a bigger
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experiment, see Figure 6.1 ([42]). The system described in this thesis is almost the
same, but rather than using a multi-mode fiber as a coupler, it uses a curved 5mm
mirror (Figure 7.1). This system still couples light directly into a fiber which al-
lows, potentially, almost plug-and-play experiments with different fibered squeezing
sources.
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Sq

Sq
Sq

Single-Mode
Fiber

Non Linear
 Crystal

Multimode
 Fiber

a) b)

Figure 6.1.: a) is a proposal of an experiment suggested by Jakob’s Reichel’s team’s
work, going beyond the experiment presented in this thesis. It is a cavity formed
between a flat mirror on a single-mode fiber and a curved mirror on a multi-mode
fiber, with a non linear crystal in it. The pump (in green) is brought to the
cavity by the multi-mode fiber; it generates squeezed light at the sub-harmonic
(red) which is directly coupled into the single mode fiber. b) an example of
protocols that could be used with four of these systems. A laser provides pump
power for four squeezers identical to (a). The outputs of all squeezers are mixed on
beam splitters with variable reflection coefficients and measured on four homodyne
detections.
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7.1. The OPO Cavity, Description of the Experiment

Single-Mode
Fiber

Curved 
Mirror

Crystal

Figure 7.1.: The system proposed in this thesis is a simpler experiment than
Figure 6.1. It consists of a cavity formed between a single mode fiber and a
curved mirror with a non linear crystal in it. The pump (green) enters the cavity
from the curved mirror, generating squeezed light (red) which is coupled in the
single mode fiber.

The system that I am implementing in this thesis is a linear cavity between a curved
mirror of radius of curvature of 5mm and an HR coated crystal with a glued fiber
on the other face of the crystal to couple the output mode, see Figure 7.2. The
high reflectivity coating is deposed on the crystal rather than the fiber, and we stick
the fiber on it. If the fiber surface is perfectly parallel to the crystal surface and
the contact is made, the result is the same as coating the fiber. The new surface
behaves like another layer in a coating already composed of many other layers. As
long as the distance between the crystal and the fiber doesn’t change, the change of
reflectivity is not really perceptible. This design allows more flexibility to switch to
other fibers if needed.
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The pump beam at 532nm (green) is coupled into the system through the curved
mirror, see figureFigure 7.2. The crystal is HR coated for 532nm and the curved
mirror is coated for a reflection R = 95% to make sure that the green light is
essentially leaving the cavity by the curved mirror and not by the fiber.
The squeezed light generated in the cavity is at 1064nm (red). The reflectivity of
the curved mirror is as high as possible to be sure that no squeezing will leave the
cavity by this way, and the other mirror, the one between the fiber and the crystal,
is of relatively low reflectivity to make all the squeezed light escape this way.
In this experiment two types of fibers are used for the output fiber carrying squeez-
ing: a standard single mode fiber at 1064nm and a polarization-maintaining single
mode photonic fiber with a mode field diameter of 15µm.

Input 
pump

Squeezed
light

Crystal

Peltier

Fiber

a) b)

HR coated
 surface

AR coated
 surface

Figure 7.2.: a) The cavity is made between a curved mirror and an HR coated non
linear crystal. The pump is sent to the cavity through the curved mirror, and the
squeezed light generated is leaving the cavity through the fiber. A peltier element
allows us to control the temperature of the system to achieve the phase matching
condition. b) An image through the crystal of the fiber applied on the surface of
the crystal with some liquid index spreading around it.

7.1.1. Coupling Mirror

7.1.1.1. Mirror

In order to build a compact system and to have the cavity as far from hemispherical
condition as possible, the coupling mirror had to be relatively small, but cutting
and coating a curved mirror on such a scale is difficult, so it becomes hard to find a
manufacturer that will agree to make such a mirror. Jakob Reichel’s team was able
to find a company to coat mirrors much smaller (several 100th of µm of curvature)
and on a much smaller system (the fiber’s surface) ([19], [26]). However, it is difficult
to procure them in small quantities. Ultimately, I engaged the company Altechna
([20]) to create these mirrors (Table 7.1). The mirrors are 3mm thick and have
a 5mm radius of curvature with a diameter of 3mm. The back face also has a
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Mirror

a) b)
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c)Ring
Piezo

Mirror
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Z
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Figure 7.3.: a) Schematic of the mirror holder. A 1-inch ring with an aperture and
a screw thread that allows us to mount a lens is glued to a ring piezo actuator
and a smaller cylinder holding the mirror. b) An image of the mirror holder on a
standard mirror mount. c) The other face of the mirror mount with a standard
mounted lens fixed on it.

curvature to reduce somewhat the divergence of the beam. Without that, the beam
becomes very large after the cavity, with issues of clipping of the beam on the mirror
mount.

Material: BK7
Diameter: 8 mm (+0/-0.1 mm)
Mirror diameter: 3 mm (+/-0.1 mm)
Radius of curvature: Concave ROC1: 5 mm (spherical)

Convex ROC2: 7 mm (spherical)
Surface quality: 40/20 S/D
Surface figure: L/4@633nm Centering: <3 arcmin
Protective chamfers: 0,2 mm x 45 deg
Coatings: S1 (ROC1):

PR(R=95%+/-1.5%)@532nm +
HR(R>99,5%)@1064 nm, AOI=0 deg
S2 (ROC2): AR(R<0.25%)@1064nm
+ 532nm, AOI=0 deg

Price: 240 EUR/pc (for 5) / 180 EUR/pc
(for 10)

Table 7.1.: Mirrors characteristics.

7.1.1.2. Mirror Mount

The mount for the mirror needed to be compact as well as compatible with a 1-
inch mirror mount. It significantly reduces the stability of the system, but on the
other hand, it allows us to change the configuration of the cavity to avoid eventual
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problems of conception, and it gives two rotational degrees of freedom that could
have been useful. In practice, they were not very useful, and they could have been
easily replaced by a monolithic block which would allow the system to be lower and
would enhance mechanical stability.
The mirror mount is placed on a positioning stage (Nanomax [67]) with a little alu-
minum plate to match the screws. This system is quite handy because it allows very
easy modification of the whole system in case of a problem. The 3 axis positioning
(0.5mm core screws + micro-metric precision screws) makes the alignment of the
cavity very fast and easy. The average time to align the system is a few hours.
Moreover, the long piezo in the cavity axis is very useful to have access to several
Free Spectral Ranges (FSRs). But once the cavity is aligned, it is quite unlikely to
be adjusted again. A good solution would be to hold the system with the Nanomax,
to align it, and to use glue to fix everything in place indefinitely. Gluing cavities is
a technique used by Jakob Reichel’s team ([43]) . With a very slow-hardening glue,
we can flood the system and realign it a little bit with the Nanomax during the
hardening to compensate for the expansion of the glue. The glue expands mostly at
the beginning, and less and less during the process. I have not tried this technique
with the system, but it is very likely that we will consider it for the next generation
of miniOPO.
The mount allows the control of the three degrees of translation and the degree
of rotation around the Z axis (vertical) and around the X axis (Figure 7.5 (c)).
Mostly, it is only the translations that are useful. I wanted to have as many degrees
of freedom as possible for the mirror. This allows us to really know which degrees
of freedom are useful, and which ones can be removed later, and it makes it easier
to adapt to conception mistakes.
The mirror mount is made from two cylindrical plastic parts connected by a ring
piezo transducer from Noliac (NAC2125-A01 ([28])). All the parts are glued to each
other using epoxy.
The part which is holding the mirror is a bit smaller than one inch so it can go
through a standard mirror mount. It has a little notch so as not to have the head of
the screw in the way of the mount. The notch also needs to be big enough to allow
the passage of the head of a screw driver. The screw that I used was an M2 screw.
The other part is a 1 inch cylinder that fits in the mirror mount. I added to it an
M9 screw thread to fit a mounted Thorlabs lens. The beam is diverging rapidly, so I
wanted to be able to get a lens in the middle of the piezo ring to colimate the beam
with a minimal beam waist to avoid clipping.
All the system is made of plastic and the part which is fixed to the mirror mount is
a bit light, it does not make a very good counterweight for the piezo. Making this
part heavier could certainly increase the piezo response of the mirror.
We have two piezos for the same directions: the ring piezo from the mirror mount is
a fast piezo but with a small range (I can see just a little bit more than an FSR at
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1064nm); and the Nanomax piezo in the Z axis, which has a very long range (20µm),
but is very slow. To control the resonance of the system, we used the combination
of both piezos.
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Figure 7.4.: In red, the Thorlabs Nanomax piezo frequency response; in blue, the
Noliac piezo frequency response. The Thorlabs piezo has a resonant frequency at
150hz which is not visible here.

7.1.2. Crystal and Crystal Mount

Once again, the main concern for me was to make the system as small as possible
to make it easy to integrate, at the same time, we still needed to allow access to
the fiber holder to touch the crystal, as well as good temperature stability and good
mechanical stability.
The Nanomax (Figure 7.5.c) is large in size, and constrains everything else to be
quite high, so I had to make a long foot (Figure 7.5) for holding the peltier and the
crystal oven (Figure 7.5.a). This setup is not, however, ideal in terms of mechanical
stability. A peltier (TEC3-2.5 ([67]))(Figure 7.5.a) is sandwiched between the foot
and the crystal oven, and attached with plastic screws (Figure 7.5.a) to avoid losing
too much thermal energy. The horizontal extension of the crystal holder should not
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Figure 7.5.: a) Oven holding the crystal. b) Zoom of the oven hole for the crystal
without the two screws and washers holding the crystal. c) An image of the whole
miniOPO. On the left is the curved mirror holder on a nanomax, in the middle
is the oven, and on the left is the fiber holder with the fiber touching the crystal.
The fiber holder used here is the one holding the photonic crystal; the fiber holder
holding the standard fiber is of a custom design (Figure 7.6).

be too large, because the fiber holder will have to go on top of it to reach the crystal
with the fiber, and a too-large foot would decrease the total mechanical stability
by allowing the fiber holder to oscillate with vibrations. If it is too small, it could
become a bit tilted when we attach the peltier with the two plastic screws, reducing
the thermal transfer and making the alignment much harder.
The crystal oven is of an L shape, made of copper and is seated on the peltier element.
It allows us to have a fast thermal exchange, and to be mechanically stable. The
crystal can be slid into the compartment (Figure 7.5.b) and held with the plastic
washers. The compartment is adjusted vertically, but is a bit larger horizontally.
This allows us to slide in the crystal more easily. Manipulating the crystal increases
our likelihood of causing scratches, so to minimize risk of damage, it should not be
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too hard for us to fit the crystal in the holder. The horizontal slack also allows us to
adjust the crystal somewhat if we realize that we are at the edge during alignment.
On the other hand, we do not want it to be too slack, because we want to be able to
remove the crystal and to put it back without altering too much the angle between
the crystal and the vertical axis.
On the other side of the oven, we tried to make an opening to be able to have
access with the camera on the side to see the contact between the fiber and the
crystal. We found that a better technique was to use the white light interferometer
(Figure 7.14). The crystal is held with plastic washers (Figure 7.5.a) to make sure
that it cannot move even if some compressed air is used to clean the dust from the
crystal or if the fiber is touching it. Plastic screws allow us to use a bit of strength
on the crystal without scratching or breaking it.
The crystal used in this project is a PPKTP crystal from Raicol ([32]) of 1× 1× 2
mm3 with one face AR coated for 1064nm and 532nm, and one face wit a reflecting
coating R ∼ 95% for 532nm and R ∼ 85% for 1064nm Figure 7.5. The cavity when
aligned possesses a finesse of 35 for 1064nm and 110 for 532nm.
On the crystal oven, I glued a 10KOhm thermistor (TK10K [67]) (Figure 7.5.c)
using a thermal paste resin to allow us to measure the temperature of the crystal
and feed it back to the peltier.

7.1.3. Fiber and Fiber Mount

Ferrule

M3 M3
M3

M3

second
sheath

fiber
uncoated
fiber

first
sheath

Piezo

a) b)

Figure 7.6.: a) A schematic of the fiber holder for the standard fiber. A groove
with M3 screws can hold a ferrule in front of a groove holding the fiber sheath,
allowing us to put the fiber easily in the ferrule. A piezo glued to this piece and
another piece allows us to control the translation of the fiber. The small middle
hole is too small for the piece to be made in one time; a very long and thin drill
bit would be required. A simple solution is to make two pieces and glue them
together. b) An image of the fiber holder on a mirror mount.

The cavity is directly coupled to a fiber placed against the high reflective coated
surface of the crystal. The end surface of the fiber needs to be as flat as possible
and perfectly parallel to the crystal surface otherwise the transmitted beam will not
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be optimally coupled to the fiber and some losses will appear. (Figure 7.9) shows
the effect of misalignment on the coupling.
Two types of fibers have been used in this thesis: a standard single mode fiber
for 1064nm (P3-980A-FC-5 [67]) and a large mode area polarization maintaining
photonic crystal fiber (LMA-PM-15 [67]). They do not have the same diameters,
so different fiber mounts had to be used. For the photonic fiber, a commercial
fiber holder (BFTU [67]) is fixed in a 1 inch custom ring that can be fixed into a
standard mirror mount (Figure 7.5.a). The alignment is hard because the fiber is
held far away from the crystal and only on one point. It usually creates a large angle
with the mount which needs to be compensated for during alignment, moreover the
system gets a lot of acoustic noise and may move when moving the fiber. The single
mode fiber is held by a more carefully designed system (Figure 7.6) which gives a
much better stability and makes the alignment easier.
The end of the fiber is made flat by using a cleaver from Nyfors ([29]). But it
necessitates the removal of a few centimeters of coating sheath from the fiber, which
makes it quite fragile, especially the single mode fiber which has a smaller diameter
(125µmcompared to 230µm for the photonic fiber).
A ferrule is used to hold the uncoated fiber. It is difficult to put the fiber in , but the
ferrule holds it very well and in a very convenient axis, simplifying the alignment.
Moreover, the holder makes the placement of the fiber in the ferrule quite easy.
A ferrule is slid into the front of the holder and falls where the diameter becomes
thinner, see Figure 7.6. A screw hole allows us to fix the ferrule to make sure that
it doesn’t slide during the process. The fiber is placed in a plastic sheath ([31]) and
slid at the back of the holder in the small diameter part of the holder. The fiber
usually emerges exactly in front of the hole of the ferrule and slides into it. When
the coated part of the fiber meets the ferrule, it can’t go through and it blocks the
fiber. The ferrule can be unscrewed and will slide to the end of the mount. Another
screw hole allows us to fix the ferrule at the end of the holder giving a very good
stability to the system. Two screws at the back of the holder gently squeeze the fiber
to prevent it from moving at all. By using several sheaths of different diameters that
can slide in each other (PTFE AWG 30 T and PTFE 0,9 x 2,4 mm [31]) I made sure
that all the fiber is covered to protect it against bending and to also thermalize it.
The holder also contains a piezo sandwiched between two pieces of plastic. Moving
this piezo can be useful during an initial alignment. But with a good illumination
used in the white light interferometry system (Figure 7.14) it is very easy to see
fringes without it. In a future design, the piezo will be removed and the holder
shortened which will add a lot to the mechanical stability of the system.
The holder is designed in a 1 inch cylindrical shape to fit into a mirror mount. It gives
two degrees of rotation allowing us to align the fiber perpendicular to the crystal.
Unfortunately, the holder is quite long so moving the rotation degrees can create
a big translation laterally and vertically. It is necessary to be able to compensate
in those two directions. The mirror mount is attached to a regular sliding foot to
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be able to adjust the height. This sliding foot is itself fixed on two micro-metric
translational stages (M-UMR5.16 [65]): one to adjust the lateral mismatch, the
other one to control the distance between the fiber and the crystal to get contact
between them when the alignment is well done. The micro metric translation and
especially the sliding fit are contributing to the instability of the system and how
much acoustic noise gets coupled to the cavity. In a future design, the holder will
be shorter and the mechanical alignment of every piece simpler. Hopefully, it will
not be necessary anymore to compensate in those two directions allowing the mirror
mount to be mounted on a rigid piece and increasing a lot the general stability.

7.1.4. Base

To decrease a bit the global acoustic coupling from the table, I installed the cavity
on a big piece of aluminum to give rigidity to the whole system, see Figure 7.5.
There are some very small grooves of an L shape to place the other components
(Nanomax with the mirror mount, crystal holder and fiber holder). It allows us to
remove the components and put them back in almost without changing alignment.
It saved a lot of time and made it very easy to move the entire system.
A fine layer of material has also been removed on the other side of the mount,
making the contact with the table on four very small squares. By minimizing the
contact surface in this way, we decrease the acoustic coupling between the table and
the system which allows a better stability. Some grooves on the side have also been
added to be able to clamp it easily to the optical table.

7.2. Other experimental consideration

7.2.1. Laser Source

In this experiment, a Diablo laser from Innolight ([25]) producing light at 1064nm
and 532nm have been used. This laser is using a Nd:YAG crystal pumped with a
diode laser to create light at 1064nm. The crystal is coated on each side to make
a monolithic cavity with a very small linewidth (around 1kHz). The light is then
brought to a second cavity with a doubler crystal to generate light at 532nm. The
temperature of the Nd:YAG can be changed from 20°C to 43°C which changes the
refractive index of the crystal, changing the frequency of the laser to around 60Ghz.
This effect is very slow and some mode hops corresponding to jumping to another
FSR will appear every 12-16Ghz. Another way of changing the frequency of the
laser is available by using a piezo actuator attached to the Nd:YAG crystal. By
modulating its length it allows us to adjust the frequency at a rate of 2 to 4MHz/V
allowing a modulation between -100V to 100V with a bandwidth of around 1Khz.
The laser noise can be attenuated with a noise eater. It is an active feedback signal
on the diode current to get a beam close to shot noise limit in the MHz regime.
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Figure 7.7.: The Diablo laser (a) providing two different light frequencies, 1064nm
(red) and 532nm (green). Inside the laser (b) a YAG laser is providing some light
at 1064nm which is brought to a cavity with a doubler crystal to create 532nm
light.

7.2.2. Fibered Elements

Fibers are interesting because they allow easy integration and propagation of the
light from one experiment to another, but they also allow a lot of direct control of the
light parameters. By stressing the fiber it is possible to change the polarization of the
light. So by looping the fiber in a specific way, it is possible to create λ/2 and λ/4 in
the fiber path. Two fibers can be partly fused together in well-controlled condition
to allow evanescent coupling between the two guided fields which makes a fiber beam
splitter. An electric field can be applied on the fiber to change its refractive index
and to control precisely the phase of the propagating light. Connectors which make
two fibers very close in front of each other connect them with losses between 20
percent down to a few percent. And by cleaving and splicing fibers, a very good
connection between two fibers of the same type can be achieved.
In this experiment, two fibers have been tested to couple the squeezing out from the
cavity: a standard single mode fiber which requires a very small mode size in the
cavity, and a photonic fiber which is single mode for a long range of frequencies and
allows a larger mode size. I usually used a 4 or 5 meter connected fiber and cut it in
the middle with a cleaver to have two usable fibers for the system. The connectors
on the other part of the fiber are very useful. It is usually a FC/PC or a FC/APC.
The FC/PC has a flat end face perpendicular to the fiber axis. Because the other
surface on the other side is also perpendicular to the fiber axis, a parasitic cavity
can appear in the fiber. But it is better when one has to connect two fibers together
with a connector. The FC/APC has 8° between the normal of the end surface and
the fiber axis avoiding the reflecting beam to come back into the fiber and therefore
to build a cavity. Both FC/PC and FC/APC are quite reliable. The screw and the
groove allows them to be removed and plugged back in an adapted female connector
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on a stable post without losing too much coupling in the fiber. It allows very easy
and fast modification of the system.

a) b) c)

Figure 7.8.: a) Cleaved face of a standard fiber. b) Cleaved face of a photonic
polarization-maintaining fiber. c) Mode coming out of the photonic fiber.

7.2.2.1. Standard Single-Mode Fiber:

Single mode fibers at 1064nm generate only around 2dB of losses per kilometer
which is negligible in this experiment. Their big advantage is the fact that they are
very common. They are very cheap and available with plenty of different connectors,
sheaths and lengths by standard. The technology is well established so it is easy
and cheap to get some compatible elements that can work with it. One can find
fiber phase shifters that can change the phase of as much as 50π ([30]), fiber beam
splitters (like the FC1064-50B-APC ([67])) or polarization controllers to change the
polarization of the beam from any point of the block sphere to any other point (like
the FPC030 ([67]) ). It is also possible to fuse two of these fibers with a splicer with
a very small amount of losses.
The inconvenience of these fibers is the very small size of its core. For being single
mode, the core of the fiber needs to be smaller than a threshold value, to forbid
the propagation of higher order modes. It constrains the mode field diameter at
the output of the fiber to be 6.2µm. And because the fiber mode will define the
mode of the cavity in our system, it will constrain the waist radius of the cavity to
be of 3.1µm which is very small. It makes the cavity very close to Hemispherical
conditions.

7.2.2.2. Thorlabs Endless Single Mode, Large Mode PCF Fiber:

The Photonic Crystal Fibers (PCF) are standard fibers with the core engineered
with a lot of holes to propagate only one mode with a very large mode diameter
at the output of the fiber (up to 25µm of mode field diameters ([67]) and 5dB/km
of attenuation). It is possible to design them to be polarization maintaining, which
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means they will propagate only two specific polarizations and keep them constant
for the entire length of the fiber. In practice, in this experiment a 15µm mode field
diameter with polarization maintaining has been used.
These fibers allow us to have a waist size much bigger in the cavity which means to
be a bit further from hemispherical condition, but the technology is not as spread, so
all the components like beam splitters or phase shifters do not necessarily exist, or
are very expensive and they are usually sold without connectors. Furthermore, the
mode in these fibers is not perfectly Gaussian and not rotation invariant. To fuse
correctly two of these fibers, it is necessary to have a very good alignment which is
hard to do. The fusing will collapse the holes creating an index change in the fiber
potentially producing some reflection at the interface and some losses.

7.2.2.3. Cleaving Fibers:

For both fibers, the end interface which will be in contact with the crystal needs to
be very well made. It needs to be very smooth to avoid scattering, and needs to be
nicely perpendicular to the axis of the beam in the fiber. This surface will be joined
to the surface of the cavity, so any angle difference with the axis of the fiber will
end up in a difference between the mode field going out of the cavity and the mode
of the fiber. If this difference is not zero, it will mean some losses in the squeezing.
(Figure 7.9).
A good way to obtain a quality surface with the fiber is by cleaving it. First, with a
stripping tool (T06S13 ([67])), the coating is removed from a fiber with a naked end
(without connector and without protective sheath). Then a tiny scratch is made
on the side of the fiber with a sharp object. And by pushing the end of the fiber
(after the scratch) one makes the scratch propagate in the fiber, creating a very neat
cut. There are several ways to do this: the scratch can be made with a sapphire
blade (S90R ([67])). The scratch is usually huge and there is still a part of the fiber
damaged on the edge after cleaving. But mostly, it is very unlikely that the initial
scratch is done straight, so the fiber will end up with a massive angle between the
surface and the mode axis. More generally to make a nice cut, we can use a machine
that will make the scratch and pull the end of the fiber. There exist mechanical
(CT-30 ([24])) and higher quality ones ([29]). For this experiment, the latter has
been used. It allows us to have an angle smaller than a 0.3° for the standard single
mode fibers and 0.6° for the photonic fibers. It also allows us to have a high voltage
spark on the final surface to smooth it a bit more by heating it. For the photonic
fiber, it collapses the holes which avoids dust going in the fiber. A good practice
is to collapse them three times and turning the fiber around its axis each time to
obtain a good collapsed shape. For the Photonic fiber in the experiment the holes
were not collapsed at the end of the fiber touching the crystal to avoid losses, but
they were on the other end.
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Figure 7.9.: Losses in the fiber as a function of the angle between the fiber end
and the crystal.

7.2.2.4. Coupling Light into a Fiber:

Coupling light into a fiber from scratch, when no other fibers have been coupled
before, can be frustrating. This process requires the position of the beam, the
angle and the waist position to be very close to optimal to be able to see any light
going through. When a fiber has a connector, there are commercial lens couplers
to facilitate the coupling. These lenses are designed to be already very close to the
optimal position for a collimated beam. It allows us to just care about the degree of
freedom of positions and angles of the beam in the fiber coupler. With two mirrors
it is possible to control these parameters. If a little bit of the light is already coupled
in the fiber and monitored using a detector, it is possible to “walk” the beam to
converge toward the maximum. It means moving out of the optimal by moving one
mirror (in horizontal in one direction for example) and correct it with the other
mirror. If the good direction has been chosen, the coupling increases; if not, one
has to optimize the other direction. In walking the beam in this way, the optimal
position of the two mirrors can be obtained. This method can be generalized with
the lens’ positions. For the optimal coupling the waist position is not enough, the
waist size also needs to be optimal. A good method is to start with a collimated
beam (usually from the laser) using one long focal lens converging or diverging to
change the size of the beam, then two identical short focal convergent lenses to
collimate the beam, and a last short focal lens in front of the fiber to control the
waist position (usually this one is the fiber coupler). It is possible to walk the lenses
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by moving the first long focal lens for example, and correcting with the short focal
lens in front of the fiber. The initial alignment of the fiber can be a bit difficult. It
is much easier when some light already leaves this same fiber. One can often achieve
that when the other end of the fiber has a connector and another fiber coupler is
aligned somewhere else. It is possible to unscrew a fiber connector and screw another
one in without moving too much the fiber coupler. It allows us to have a bit of light
going out of a fiber that needs to be aligned (it still works when the fibers are not
the same type, e.g. multi-mode/single-mode or different frequencies; the light is just
weaker). When light comes out of the fiber, one just has to check with a good viewer
card if the two contra-propagating beams are overlapping up to the laser. Usually
after this process when checking for coupling, there is already a bit of light going
into the fiber, and it can then be improved by walking the beam.

7.2.3. Crystal Temperature Control

The temperature control of the crystal is essential for reaching the phase matching
condition and double resonance. The temperature is monitored using a thermistor
TH10K ([67])) glued very close to the crystal with a thermal paste. This resistance
changes its value with temperature (10 kΩ at 25° and ~5 kΩ at 40°). The temper-
ature is controlled with a peltier (TEC3-2.5 ([67]))placed under the crystal holder,
see subsection 7.1.2. This peltier is made to receive up to 6 A with ±1.8 V. It cor-
responds to a lot of power that may damage electric components. It is important
to design correctly the circuit to isolate the sensitive parts and to use heat sinks to
dissipate heat. The power comes from a 12 V power supply, controlled with two
transistors, PNP and NPN, in series (Figure 7.10). It is very important to add heat
sinks on these two elements, otherwise they will burn immediately because of the
power. A resistor in series with the peltier is also used to reduce the voltage to
acceptable values. This resistor also gets a lot of electrical currents and will heat
a lot. It is important to also add a heat sink to it. To control the heating, I used
an Arduino Due ([21]) . It is an inexpensive open source micro-controller with 12
analog input and 2 analog output, each one with 12 bits of resolutions. The output
from the Arduino is followed by an amplifier (OP27) allowing to add an offset and a
gain on the control. To measure the temperature, I used an output of the Arduino
with 3.3 V connected to the thermistor, a fixed 10 kΩ resistor and the Arduino mass
in a voltage divisor system to have a measurement of the temperature in tension
that I can send to the input of the micro-controller directly.
The code of the Arduino is very simple: it measures the temperature, compares it
with a reference, and consequently heats or cools the peltier. It is important to
have pauses in the code to leave some time for the heat transfers, otherwise the
temperature will oscillate. I reached a stability of around a few hundredths of a
degree with this system.
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Figure 7.10.: Schematic of the temperature controller of the crystal.

7.2.4. High Voltages Amplifiers:

The two piezos controlling the position of the curved mirror are driven by two high
voltage amplifiers: one is the Thorlabs MDT630B controller used to control the
Nanomax positioning stage, and the second is a custom high voltage amplifier built
by our electrical workshop at the LKB. The response in frequency of these HV
amplifiers is given in Figure 7.11.
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Figure 7.11.: Phase and amplitude response of the High Voltage amplifiers: (red)
from Thorlabs to control the nanomax, and (blue) a custom one to control the
piezo of the mirror holder.

7.2.5. Homodyne Detectors

The squeezing from the fiber is measured using homodyne detection. The light going
out of the fiber from the cavity is mixed with the Local Oscillator (LO), which is
coming from a similar fiber using a 50/50 Non Polarizing Beam Splitter (NPBS). The
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two fibers have identical out-coupler lenses to collimate both beams in the same way
and the distance between the two fibers and the NPBS are very close to match the
divergence of the two arms. The LO also goes through a polarization beam splitter
and a λ/2 to make sure that the polarization is linear, and to be able to control its
direction. The two output beams from the NPBS are sent to two identical detectors
(with two InGAs photo-diodes p/n FD500W-1064, with no window purchased from
Fermionics ([23])) with identical mirrors and lenses to match the losses between
both. The subtraction of the diode photocurrents is the measurement of our signal.
With the signal from the cavity blocked, it is possible to measure how good is the
splitting and how good is the difference. By measuring the signal from the difference
of the two detectors with a spectrum analyzer, Figure 7.12, and by blocking one of
the detectors we can observe the modulation of the light due to the laser (Figure 7.12
(a)). By unblocking the detector, the classical noises disappear and we observe the
shot noise.
The fiber also couples light at 532nm from the cavity which will be propagating with
the light at 1064nm, but as long as the mirrors used are not reflecting for 532nm,
only a very small amount of green will actually hit the detectors, and InGAs is
almost insensitive to 532nm, so no effect should be observed because of it.
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Figure 7.12.: a) Signal from the homodyne subtraction with one detector blocked
and the signal fiber blocked. b) With the other detector unblocked (shot noise),
the classical noise is almost completely removed. c) With both detector blocked
(dark noise). The peak at 12 MHz is the modulation coming from the laser. It is
completely canceled with the two detectors.
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7.2.6. Optical Suspension Table

All the optics, the laser and the cavity are screwed onto our optical table. The legs
of this table use active vibration isolation to limit vibration noises from the ground
coupling to the experiment. Pneumatic chamber systems in the legs are connected
to an air compressor to isolate low frequency vibrations.

7.3. Alignment of the Cavity

7.3.1. Schematic of the Set Up
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Figure 7.13.: The Diablo laser creates light at 532nm (green) and 1064nm (red).
The green is sent to the cavity through an isolator and the reflection returned to
the isolator is sent to a detector. The red beam is divided into three beams: (a)
is used for alignment of the cavity, (b) is used for the LO and (c) is for sending a
seed to the cavity. The fiber coming from the cavity S is sent to the homodyne
detection to be measured.
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The Diablo laser (Figure 7.13) provides the two light frequencies that will be used in
this experiment, 532nm (green) and 1064nm (red). On each path, λ/2 wave plates
and Polarizing Beam Splitters (PBS) are used to control the power of the beams
used in the experiments. The green beam is spatially cleaned with a pin hole and
sent to an isolator. The isolator provides access to the return beam, which can be
sent to a detector, rather than returning to the laser. The transmitted beam goes
through a λ/2 and a λ/4 waveplates for the polarization control and is sent to the
cavity through a dichroic mirror. The red beam is split in two by a λ/2 waveplate
followed by a PBS. One of the arms (a) in Figure 7.13 is used for alignment. A
mirror on a piezo controls its phase and sends it, with a flip mirror, to the fiber
coupler of the signal (S). The flip mirror stays on only during the alignment of the
cavity, otherwise, it is flipped off to let the signal beam go through to the homodyne
detection. The second red beam is sent to another isolator and split in two. One
of the beams (b) is sent to the fiber coupler of the local oscillator with, once again,
a piezo to control its phase. The other beam (c) is mixed to the green path with
the dichroic mirror and sent to the cavity as a reference beam. The polarization
in both fibers can be tuned with polarization controllers (FPC030 ([67])), that is,
cylinders containing several loops of fiber that change the polarization by bending
the fibers. They correspond to two λ/2 and one λ/4 waveplates in the middle. This
configuration can transform any polarization of the Bloch sphere to any other one.
I only had these polarization controllers for standard fibers. For photonic fibers,
the fibers themselves are polarization maintaining and I used standard λ/2 and
λ/4 waveplates to control the polarization. The two fibers are taped to the table
to avoid thermal fluctuations. In the homodyne part (Figure 7.13), the LO goes
through a PBS to make sure that the polarization is as good as possible and a λ/2
to control the direction of this polarization. The LO and the signals are mixed on a
non polarizing 50/50 beam splitter and detected by InGaAs detectors.

7.3.2. Crystal Alignment with White Light Interferometry

Figure 7.14.: Interference pattern between the crystal face and the fiber end ob-
served with the camera. From left to right the fiber alignment is better and better
until the two faces are parallel (right).
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7.3.2.1. Fiber Holders:

To align all the system one needs to start with the fibers. With standard single mode
fibers, it is possible to buy a long connected fiber, cut it in the middle and cleave
the bare parts. The connected parts of the fiber can then be fitted into standard
coupling systems, which are relatively easy to align. With a photonic fiber, one still
needs to cleave one side, but these fibers usually come without connectors, so it will
be necessary to create a connector to hold the fiber at the other end and couple
light in it; however, this will impair our ability to disconnect and reconnect a fiber,
and still maintain a relatively good coupling.
Even with standard connectors, for fibers at the level of the homodyne, disconnect-
ing and reconnecting the LO fiber or the signal fiber means having to realign the
homodyne detections, so it is something to avoid. It is important to notice that
pulling too much on these fibers close to the connectors can misalign them slightly,
so it is a good idea to always tape the fibers carefully to the table after the connectors
to avoid movements.
I usually start by aligning the signal fiber coupler to have some light in the cleaved
fiber end with only the fiber holder placed on the base (Figure 7.5.c). In the
schematic Figure 7.13 it corresponds to align the alignment beam (a) into the cou-
pler of the fiber signal with the flip mirror up. For the standard single mode fiber,
I used standard FC/APC connectors and couplers (F220APC-1064 ([67])) for the
photonic fiber I used an old version of the cavity fiber holder with a 1 inch cylinder
to go in a standard mount and a fine tube holding the bare fiber in a sheath with
a screw. I put this holder in a translational stage (SM1Z ([67])) with a lens with a
short focal to make the coupler. Then I aligned the other fiber corresponding to the
LO (beam (b)) with two similar couplers.
When the signal fiber is in position in the fiber holder (Figure 7.6), it is a good idea
to clean the end of it, because it could have become dirty going in the mount. I
usually check the surface (Figure 7.8) with a camera attached to a microscope lens
(X20) and clean the fiber with a lens tissue.

7.3.2.2. Crystal Holder and White Light Interferometry:

The crystal needs to be placed in the crystal holder with the HR face in the direction
of the fiber, then the holder is placed on the foot with the peltier in the middle.
The foot is then screwed to the base in front of the fiber holder along the L shape
designed for it. It is possible to look on the side with a camera (in this experiment
we used the DNT DigiMicro camera ([22]) which is cheap and can see the light at
1064nm, with a good resolution and which is quite reliable for this kind of camera).
It is possible to get the fiber under a few millimeters to the crystal without touching
it, but to get closer and to align the fiber to the crystal, a more precise system is
required. I used a camera (DCC1545M ([67])) connected to a beam splitter (CM1-
BP145B1([67])) and a X20 microscope lens placed behind the crystal to create a
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Figure 7.15.: White light interference system. The light from a red LED is col-
limated and sent to the crystal and the fiber end through a beam splitter. The
light interferes between these two surfaces and returns to the camera. If the two
surfaces are close enough, we observe interferences.

white light interferometer (Figure 7.15) to see interference patterns between the
crystal and the face of the fiber. With this system, I can look at the fiber end
through the crystal and measure the separation and the misalignment very precisely.
The beam splitter of the interferometer is in a cage that allows other components
like tubes, cameras and microscopes to be screwed to it. I used a simple red LED
with a short focal lens to make the illumination, and the whole is placed on two or
three translational stages to be able to move the system in all directions.
Finding the fiber with the camera is not always easy. A good trick is to use some light
going in the fiber by the other end from the laser. With enough power the light is
everywhere and it is easy to find the center and to focus it with the camera reducing
each time the power to avoid burning the camera. When the light is perfectly in one
dot, we can usually see the image of the fiber very well. The distance between the
fiber and the crystal can then be reduced in moving the translational stage of the
fiber holder until some interference patterns can be seen (Figure 7.14). This step is a
bit dangerous at first, because it is hard to know if the interference patterns are not
visible because the distance is still too far, or if the fiber and the crystal are already
touching, but there is too much of an angle to see anything or the light illumination
is not focused correctly leading to the damaging of the crystal. I used to use the
piezo on the fiber mount moving at low frequency. The movement is visible with the
camera because of the very long arm, so the contact becomes obvious, but when the
lighting in the white light interferometer is set correctly, the interferences are very
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visible and this step becomes useless. When the interference pattern can be seen,
it is possible to know what is the angle between the surface of the end of the fiber
and the crystal, and in which direction is the misalignment. Then I usually back
the fiber off a little bit for safety and I adjust the mirror mount of the fiber holder
to move the fiber in an orthogonal direction from the interference pattern. This
movement also needs care, because moving the angle of the fiber mount generally
also moves the distance between the two interfaces, and one doesn’t want to scratch
the crystal with the fiber. If the camera is not moved it is possible to continue to
monitor the fiber and the appearance of the interference pattern. The fiber may
have arrived at the end of the crystal during this procedure. If the misalignment is
horizontally, it can be adjusted by the other translational stage of the fiber holder.
If the misalignment is vertically, it will be necessary to back off the fiber a bit
more, and move the mirror mount’s height . A fiber holder less long and better
care during the initial manufacturing of the holders may make these steps useless,
making the need for an adjustable mount unnecessary and therefore increase the
general stability of the system. When the interference pattern is flat, the fiber and
the crystal are aligned.
At this point it is possible to back off completely the fiber with the translation stage
and come back without changing the angle. So it is possible to back off, touch very
slightly the fiber with a drop of index liquid (G608N3 ([67])) and go back to contact.
It is not possible to see the pattern anymore with the index liquid, but the contact
is very obvious, as the liquid spreads at the contact with the crystal. The liquid
adds a little bit of stability to the system, because it is a bit elastic and a bit sticky,
but it doesn’t change substantially the reflection coefficient.

7.3.3. Temperature Tuning

Some red light is going through the fiber crossing the mirror. If the power is high
enough, the polarization correct, and the temperature close to the functioning tem-
perature given by the constructor, it should be possible to see some green light
appearing. By collecting this light in a green detector with a dichroic, and by scan-
ning the temperature, it is possible to find the optimal temperature of the crystal
(Figure 7.16) .

7.3.4. Homodyne Alignment:

In the homodyne, the fiber mount connections are not stable enough for us to be able
to remove a fiber and put it back without misaligning it a bit. So when the fibers
for the signal and the local oscillator (LO) are in place, they can’t move anymore.
It would make sense to align the homodyne after aligning completely the cavity, but
it means we need to be able to lock the cavity during a long time to have a reference
beam to align to the LO. Another solution is to align the homodyne before putting
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Figure 7.16.: Second harmonic generation efficiency as a function of the tempera-
ture of the crystal. The phase matching condition temperature peaks is usually
more then 10°C width[38]. But the double resonance in the cavity make the peak
resonance for a very narrow temperature width.

the curved mirror in the cavity. I aligned the reference beam Figure 7.13 (c) to the
fiber behind the crystal. (I can have a beam going out of this fiber, and the HR
coating of the crystal is not very high, so it is not much harder to align than a
normal fiber.) After that, a beam goes out of the signal fiber in the homodyne, and
if the LO fiber Figure 7.13 (b) is also aligned, it is possible to start to align the two
beams in the homodyne (with, of course, the flip mirror down).
I usually start to align the LO without the signal. The NPBS needs to be perfectly
50/50 to make sure that the difference signal from the two detectors is zero. In
practice the NPBS is not perfectly 50/50 and not perfectly polarization insensitive.
It is possible to adjust the angle of the NPBS or to move the polarization direction
of the LO to generally obtain a very good extinction (it assumes, of course, that the
two detectors are identical, which can be verified by switching them). When the LO
is equally split between the two arms, the signal can be aligned to it. A good way to
do this is to modulate the phase of the LO with the piezo before the fiber (around
50hz). The piezo needs to be glued nicely in the middle of the mirror and to be
close to the fiber, or the modulation may induce some amplitude modulation due to
angle jitter of the beam at the coupling in the fiber. With the same power for the
LO and the signal on one detector, and with good initial alignment, oscillation due
to interference appears in the oscilloscope from the detector. By increasing these
oscillations, the alignment and the polarization of the two beams can be optimized.
When the beams are perfectly aligned, the interferences should reach zero. By
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measuring the visibility:v = Vmax−Vmin
Vmax+Vmin with Vmax the maximum of intensity of the

oscillation and Vmin the minimum, we can measure how good is the alignment of the
homodyne. The remaining misalignment will correspond to losses on the squeezing:
L = (1− v2).
In this thesis, the visibility for the standard fiber homodyne is v = 96%, the visibility
for the photonic fiber homodyne is 92%.
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Figure 7.17.: Oscillation of the interference fringes (green and red) for both de-
tectors of the homodyne during the scan of the phase of the LO (yellow). Blue is
the signal when both detectors are blocked.

7.3.5. Curved Mirror:

At this point some light should be coupled in the fiber, it is then possible to add
the curved mirror on the Nanomax. The alignment of this mirror is quite easy, by
scanning the distance with the nanomax piezo, and by looking behind the mirror
with the DNT camera with enough light in the fiber and the curved mirror close
enough to the crystal, it is usually possible to see a tiny bit of light flashing. Usually
one can see two light spots. With the translation screws of the Nanomax, it is
possible to bring these spots together, and some TEM modes should appear. (the
finesse for red is around 35.) With the Nanomax screw controlling the length of the
cavity, it is possible to get rid of most of the high order modes. Unfortunately it
is not possible to completely get rid of the higher order modes (Figure 7.18). This
means that the squeezing generated in the cavity will experience losses in entering
into the fiber. By measuring the area under the peaks, it is possible to have an
idea of how much losses correspond to this mismatch of mode. We obtain 55% of
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losses for the standard fiber and 23% for the photonic fiber. This issue is due to
the very long length of the cavity for such waist sizes. The cavity is very close to
hemispherical condition which could explain those losses. A curved mirror with a
smaller curvature or a bigger fiber should reduce the problem in the future. At this
point, when scanning slowly, it should be possible to see the transmitted light with
an IR card and align a detector. If the temperature is not too far from the phase
matching condition, some green light from SHG may also be visible.
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Figure 7.18.: Optimal coupling between the mode of the fiber to the TEM00 mode
of the cavity for (a) the standard fiber, and (b) the photonic fiber. The light at
1064nm is coming from the fiber and measured (red) after the curved mirror
during a scan of the length of the cavity (yellow). By comparing the integral
under the peaks we can have an estimation of the losses due to the mismatch
between the mode of the fiber and the mode of the cavity. We get 55% of losses
for the standard fiber, and 23% for the photonic fiber.

7.3.6. Alignment of the Green and Red:

Now that there is a red beam going out of the cavity, it is very easy to use it
to roughly aligned the reference beam to the cavity. Then one of the homodyne
detectors can be used to maximize the coupling (with the alignment flip mirror
down). The same holds for the green beam. With the right temperature (around
35°C ) and the right polarization of the reference beam (with the alignment flip
mirror up), the green TEM00 is visible when scanning the cavity length and can
be used to roughly align the pump to the cavity (the finesse is around 110). The
detector after the green isolator is used to finally maximize this alignment.
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Figure 7.19.: a) Curvature of a beam from an ideal fiber as a function of the
distance from the waist for: (blue) a standard fiber with 3.1µm of waist size,
(red) a photonic fiber of 7.5µm of waist size (the photonic fiber used in this
experiment), and (green) a photonic fiber of 12.5µm of waist size. (Such fibers
exist, but haven’t been used in this thesis.) The black dot corresponds to the
curvature of the mirror used in this thesis (5mm). b) Size of the beam (five times
the waist) in function of the distance from the waist for (blue) the standard fiber,
(red) the 7.5µm photonic fiber and (green) the 12.5 photonic fiber. The purple
line corresponds to the radius of a mirror with a radius of curvature equal to the
distance.

7.4. System Limitations

7.4.1. Curvature Matching

To couple all the light from the cavity to the fiber, it is necessary that the mode of
the fiber and the mode of the cavity be matched. It means that the waist position
needs to be at the level of the fiber and the waist size of the cavity needs to be
the same as the waist of the fiber. It is a very big constraint because to stay single
mode, a standard fiber needs to have a very small core, which implies a very small
waist size. A standard single mode fiber at 1064nm has a waist of 3.1µm, and the
PCF fiber that I used in this experiment has a waist of 7.5µm. These waist sizes
are really small and will make the cavity very close to hemispherical conditions and
very sensitive to any fluctuations.
A Gaussian beam field is given by:

E(z, r) = E0
w0

w(z) exp
{
− r2

w2(z)

}
×exp

{
−i
(
kz − tan−1

(
z

zR

)
+ kr2

2R(z)

)}
(7.1)

where w(z) = w0

√
1 +

(
z
zR

)2
, zR = kw2

0/2, z is the distance from the waist and

R(z) = z
(

1 +
(
zR
z

)2
)

is the radius of curvature of the beam. Figure 7.19 (a) is
showing the curvature of the beam in function of the distance exiting three different
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fibers, that is, the two fibers used in this thesis, and a larger core PCF fiber that has
not been tested in these experiments. We can see that the curvature is asymptoti-
cally linear. This asymptote actually corresponds to the instability position, when
the equivalent length of the cavity d = L + Lcry( 1

n
− 1) is equal to the radius of

curvature of the mirror d = Rm, with n the index of the crystal, L the length of the
cavity, Lcry the length of the crystal and Rm the radius of curvature of the mirror.
The Rayleigh length of the cavity is given by:

zRc = d

√
Rm

d
− 1

If we calculate the coefficient (in power) of the projection of the Gaussian mode
of the cavity (with Rayleigh length ZRc) onto the Gaussian mode exiting the fiber
(with Rayleigh length ZRf ) , we obtain:

P = 4zRfzRc
(zRf + zRc)2 , . (7.2)

We can obtain the losses due to the mismatch between the mode of the fiber and
the mode of the cavity as a function of the length of the cavity (Figure 7.20).
Moreover, we know that the length of the cavity has to respect L+Lcry(n−1) = pλ/2
with p an integer. We can notice that for the standard fiber a distance of λ/2 from
the optimal position corresponds already to 12% of losses. Such a sensibility in the
matching of the mode is due to the hemispherical conditions.
Those losses are too small to explain the losses observed in the mismatch between
the two modes (Figure 7.18) or the losses measured on the squeezing (Figure 8.2),
but It shows that the hypothesis of a spherical phase surface for the Gaussian beam
can’t be applied anymore.

7.4.2. Asphericity of the phase surfaces

The phase surface of the Gaussian beam is given by:

ϕ(z, r) = kz − tan−1
(
z

zR

)
+ kr2

2R(z) = Cst

The mirror is very far from the waist, so the variation of tan−1
(
z
zR

)
and R(z) are

slow, the phase surface become z + r2

2R = Cst and we obtain a parabolic function.
The surface of a spherical mirror of curvature R0 is given by:

zm(r) = d0 −R0 +
√
R2

0 − r2
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Figure 7.20.: Coupling of the mode of the cavity into the mode of the fiber as a
function of the radius of the mirror (5mm) minus the equivalent length of the
cavity d, for: (blue) a standard fiber with 3.1µm of waist size; (red) a photonic
fiber of 7.5µm of waist size (the photonic fiber used in this experiment); and
(green) a photonic fiber of 12.5µm of waist size. The blue dash lines correspond
to the position of maximum coupling and a distance of half a wavelength from
maximum coupling for the standard fiber.

where d0 is the position in the z coordinate of the center of the mirror. Figure 7.21
(a) shows the difference between the phase surface at z = 5mm of the Gaussian beam
of waist wf = 3.1µm and the surface of a spherical mirror of curvature Rm = 5mm.
This de-phasing means that the mode of the cavity won’t be Gaussian anymore, but
by still considering it Gaussian anyway, and considering the projection of the mode
of the light after reflection on the mirror on the initial Gaussian mode of the cavity,
we obtain the coupling of higher order Laguerre Gaussian modes:

L = 1−
∫
|E|2 exp(2∆ϕ)dxdy

/∫
|E|2dxdy

(Figure 7.21 (b)) with ∆ϕ the de-phasing at the mirror. The order of the Gaussian
mode is zero, and only modes of the same order are resonant in the cavity in the
same time, so this coupling can be considered as intra cavity losses. ([35]). By
using Eq. 7.2 we get an estimation of equivalent losses due to the asphericity of the
phase surface of the beam in the coupling of the cavity with the light coming from
the three fibers (considered as Gaussian) as a function of the waist of the Gaussian
mode in the cavity (Figure 7.22).
It is also possible that the mirror used in this experiment is not perfectly spherical
and that the curvature radius changes in function of the parameter r:

zre(r) = d0 −Rre(r) +
√
R2
re(r)− r2
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Figure 7.21.: (a) (green) Constant phase surface for a Gaussian beam of Waist
wf0 = 3.1µm at a distance d = 5mm, (red) a spherical surface of radius R0 = 5mm
and (green) a surface with a radius of curvature increasing linearly (rer = 20%)
(blue). In red dash is the radius of the beam at the mirror wf (z = 5mm). (b)
(red) relative intensity of the beam on the mirror as a function of the radius of
the mirror. (yellow) cos2(∆ϕ) with ∆ϕ the difference of phase between the center
of the point of radius r on a spherical mirror of radius of curvature R0 = 5mm.
The dash red line correspond to the same radius then in (a).

If we suppose a curvature radius changing linearly with r: Rre(r) = R0 +rer ∗r with
rer the radius relative error for the mirror we can use the same principle to show
how much losses in the coupling can appear due to the asphericity of the mirror.
(Figure 7.22) shows the losses for different radius relative error. and (Figure 7.21
(a)) shows the surface of a mirror with a radius relative error of 20%.
The losses obtained are very large and it is possible that considering the cavity
mode as a Gaussian and considering the coupling of the higher order modes is not
perfectly exact. A better way would be to calculate the exact shape of the cavity
mode and get the overlap with the mode of the fiber, but the orders of magnitude
of the losses should be respected.
The effect of asphericity of the phase surface and the mirror shape can be reduce by
changing the radius of curvature of the mirror (supposing that the radius relative
error stays constant) (Figure 7.22).
Cutting mirrors with small curvature is hard for standard industry, but a good
solution would be to use another fiber as the curved mirror with a spherical surface
made by shooting a CO2 laser pulse on the surface ([57]). With a multi-mode fiber
it is possible to have a very large core (up to 1mm) and we can imagine a curvature
of less than 1mm for the mirror making the system relatively easy to work with.
Figure 7.19 (b) gives the size of the waist of the beam in function of the distance.
Knowing that the index of the crystal is working in our favor in this system, we
could imagine a cavity smaller than 1mm for our system. This experiment should
in the future aim to this direction.
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Figure 7.22.: Losses as a function of cavity waist determined by the distance of
the cavity for the three fibers: (blue) standard fiber with a waist wf = 3.1µm
(red) a PCF fiber with wf = 7.5µm and (green) a PCF fiber with wf = 12.5µm.
(the beam from the fibers are supposed Gaussian). For each fiber, the light colors
with dash lines correspond to a spherical mirror (rer = 0) and the increasingly
dark colors correspond to a radius relative error rer = 5% and rer = 20%. The
four plots are calculating for a mirror with a radius of curvature R0 = 5mm
(a), R0 = 1mm (b),R0 = 0.5mm (c), and R0 = 0.1mm (d). We considered the
coupling mirror (between the fiber and the cavity) to have a reflectivity R = 0.85,
and the spherical mirror to have a reflectivity R = 1.

7.4.3. Grey Tracking and Damaging:

A lot of power is sent to the crystal which can sometimes locally deteriorate the
quality of the crystal and substantially increase the losses. Two phenomena can
appear with a lot of power. The first is that the crystal locally burns and the dam-
age is irreversible. The crystal cannot be used anymore at this point. Fortunately
the damage is usually only done at the focused point and a displacement of a few
hundreds of µm is enough to find a new good spot. The second phenomena is grey
tracking ([50]) (sometimes called photo-darkening or photo-chromatic damage). It
is a slight structural deformation of the crystal which usually decreases the perfor-
mance of the non linearity. This damage has the advantage of being able to be cured
with time and high temperature. Both types of damages can be greatly reduced by
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Figure 7.23.: Coupling between the mode of the fiber to the TEM00 mode of
the cavity for (a) the standard fiber, and (b) the photonic fiber after too much
power has been applied to the system. (To be compared to the normal behavior
Figure 7.18).

working in a pulsed regime with a relatively long pulse (µs).
In our system, after using very large power for too long for taking results, by checking
the coupling between the fiber and the resonator, sometimes I can see some changes
in the modes compared to the normal behavior Figure 7.18 indicating some damage
as shown in Figure 7.23 . It would be a good idea for a future system to decrease
the transmission at the face of the crystal to increase the finesse of the red light in
the cavity and so decrease the threshold power for the pump.

7.5. Locking the System

7.5.1. PDH locking

In most cases an optical cavity needs feedback locking to stay in resonance or all the
little fluctuations of the cavity distance due to diverse vibrations in the environment
will send it out of resonance. The very small waist of the cavity and the modularity
of the general design makes the whole system quite unstable and so very hard to
lock. The usual locking method used for a standard cavity is PDH locking ([77]).
It consists of phase modulating (usually around a few MHz) the beam going in the
cavity, and demodulating the signal coming from the detector in reflection from the
resonator. By using a low pass filter to remove the high frequency, we obtain an
error signal proportional to the derivative of the resonance peak (Figure 7.24 (a)).
Feeding back this signal to the piezo controlling the cavity length after appropriate
proportional and integrating processing can set up an active feedback loop, keeping
the system in resonance (Figure 7.24 (c)).
The Diablo laser provides a phase modulation of the beam at 12 MHz that can be
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used for this purpose, but in practice the system is quite unstable and locking the
green light by this method caused it to go out of lock all the time, especially with a
lot of power. At high pump power, thermal effect starts to play an important role.
The crystal will absorb a bit of light and change its temperature locally. The length
and the index of the crystal are changing with the temperature, which is changing
the optical length of the cavity and so changing the locking condition of the cavity.
This process is non linear and can bring a lot of instabilities into the system.([37])
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Figure 7.24.: a) Green reflection from the cavity (green) and error signal (red)
during a scan of the cavity (yellow). b) and c) are the same trace without scanning
with the error signal fed back to the system (PDH locking), with (b) too much
feedback, and (c) optimal feedback..

7.5.2. Self Locking

Fortunately, it is also possible to use this effect to our advantage. The thermal
effect can be a slow active feedback, changing the frequency of resonance to the
eventual fluctuation of the frequency of the light, or the change of cavity length due
to vibrations (([37], [74]) ).
The transmission power P in an impedance matched Fabry-Pérot cavity without
absorption loss is given by:

Ptrans
Pinc

= 1
1 + F sin2(kd) , (7.3)

where F is the coefficient of finesse, k the wave vector, and d the optical length of
the cavity. The phase kd depends on the temperature of the cavity:

kd = ω(t)d0(1 + β∆T )/c

with ω the frequency of the light, c the speed of light, d0 the optical length at
ambient temperature and β a coefficient accounting for index and length fluctuation
with distance.
If we assume that the temperature in the crystal T has a simple first order impulse
response h(t) of characteristic time constant τ0,

h(t) =
{ 1

τ0
exp(− t

τ0
) for t ≥ 0

0 for t < 0
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∆T (t) = αPtrans(t) ∗ h(t)

with f ∗ g the convolution of f and g, and α a positive constant. Substituting in
equation Eq. 7.3 we get the transmission power Ptrans in a Fabry Perot cavity given
by:

Ptrans
Pinc

= 1
1 + F sin2

(
ω(t)
c
d0 (1 + βαPtrans(t) ∗ h(t))

) (7.4)

By considering v = dω
dt

= constant, we can solve the equation Eq. 7.4 numerically
(Figure 7.25).
If we decouple the scan fluctuation and the fluctuation due to self locking, saying
that these fluctuations are small compared to the wavelength, we get:

Ptrans
Pinc

= 1
1 + F sin2

(
ω0+vt
c
d0 + ω0

c
βαd0Ptrans(t) ∗ h(t)

) (7.5)
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Figure 7.25.: a) Ptrans
Pinc

in function of time for a finesse F = 150, a length of cavity
d0 = 5.7mm, a characteristic time τ = 0.002s, an input power Pinc = 10mW for
a light at 1064nm and αβ = 6 ∗ 10−4W−1. The scan speed is 3THz/s for (1) and
−3THz/s for (3). For (2) we keep the same scan speed as for (1), but we take
αβ = 0. b) is the experimental data for scanning the cavity at the same speed
but positive for 1) and negative for 2), and we reduced a lot the input power for
3) but renormalized the peak to remove thermal effects. In this experiment, the
thermal effect is very fast because of the very small waist in the cavity.

When the scan is fast enough, it is possible to completely neglect dynamic thermal
effect and we will observe a normal Lorentzian (Figure 7.25 (2)). Changing temper-
ature in this condition will simply change the position of the Lorentzian by changing
the length of the cavity of the index.
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Now by considering dynamical thermal effect (by scanning slowly enough or increas-
ing the power), but when the cavity is far from resonance, there is no power in the
cavity, there is no absorption, so no change of temperature. Thermal effects are not
doing anything. When the system is approaching resonance, for example during the
scan of the frequency of the light in the cavity, when the cavity gets close to reso-
nance, the power in the cavity increases, increasing the temperature which changes
the “normal position” of the peak. If the scan speed is negative (dν

dt
< 0) and the

length and index thermal fluctuation coefficient is positive β > 0 (Figure 7.25 (3)),
the change due to thermal fluctuation will go in the opposite direction to the scan, so
it will correspond to a “slower scan”, which means the peak looks spread during its
positive slope (blue detuning). After resonance, the power decreases and eventually
the temperature will also decrease bringing back the peak to its “normal position”,
but because of the delay in response of the temperature the scan still looks a bit
slower in the negative slope (red detuning).
If the scan speed is positive (dν

dt
> 0) (Figure 7.25 (1)) the thermal effects and the

scan move in the same direction, corresponding to a faster scan during the positive
slope (red detuning) bringing the system to resonance very quickly. The temperature
doesn’t have the time to increase a lot, so the negative slope (blue detuning) part
of the scan looks pretty much like the case without thermal fluctuations.
Rather than moving the frequency of the light, we can move directly the length of
the cavity and observe the same effect (Figure 7.25 (b)). In one direction of the
scan, the peak looks bigger, and in the other direction it looks smaller, and this
effect increases with the power.
Thermal absorption can be used to lock the cavity at low frequencies. If the cavity is
brought almost to resonance from the direction that usually makes the peak bigger
(blue detuning if β > 0 and red detuning if β < 0; we suppose here β > 0 ). If
we stop a bit before maximum transmission to avoid reaching the other part which
is unstable, it is possible to achieve self locking (Figure 7.26). The temperature
of the crystal will increase creating a kind of reservoir to reduce fluctuation. If
the frequency of the laser decreases for one reason or another (going from O to A
inFigure 7.26), it means that the cavity goes closer to resonance, the power in the
cavity increases, decreasing the frequency of resonance of the cavity (going from
the curve (b) to the curve (a) inFigure 7.26 and from the point A to B). If the
frequency of the light increases, it will reduce the power in the cavity decreasing the
temperature, increasing the resonance frequency (going from (b) to (c) and from
O to D). In this way, any fluctuation at a frequency low enough will be canceled
by the cavity allowing it to stay at a power almost constant. This explanation can
be transposed to length fluctuations of the cavity, the temperature fluctuation will
help to cancel every fluctuation due to low frequency vibration of the mirrors and
the table around the cavity. In practice this locking system can be very efficient
and efficiently lock some systems that a PDH locking couldn’t lock easily otherwise.
More experiment data will be provided in the next chapter (section 12.6).
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Figure 7.26.: Frequency response of the cavity for different temperatures (suppos-
ing β < 0). If the system starts in O and moves to A because the frequency
decreases, the temperature in the cavity increases going from (b) to (a) and the
power decreases to B. If from O, the frequency increases to D, the temperature in
the cavity decreases going from (b) to (c) and the power increases to D. So if the
fluctuations in frequency are not too fast, the power stays almost constant.

7.5.3. Locking with a Micro-Controller

To lock properly the cavity, I used a micro-controller (ADuC7020) from Analog
Devices with five 12-bit analog to digital converter inputs and four 12-bit digital
to analog converter outputs connected to Operational Amplifiers (OP27). The big
advantage of this system is to be able to lock a cavity without error signals. The
detector reads directly the signal from the cavity in transmission or reflection, and
controls the scan. It can detect the level of the peaks to know when the system
is locked or not. And then it is a simple research of maximum algorithm. The
mirror controlled by the micro-controller goes in a specific direction of one increment,
and the system compares the value of the signal from the detector to the previous
value. If this new value is bigger, the controller continues to move the mirror in this
direction; if it is smaller, it moves it in the other direction. In this way, the cavity
stays locked at the top of the amplitude transmission peak, jittering around the
top. It is also possible to compare the value to a reference to lock at any particular
point. This technique has first been developed by Julien Laurat’s team ([52]) and
it allows usually a lock bandwidth around a few kilohertz. The programing of the
micro-controller also allows us to add plenty of complexity features to the locking,
like stopping the jitter after 90% of the maximum of the peak, pre-scanning the
cavity to find the highest peak and locking only to this one, and rescanning and
re-locking when the system when out of lock.
The locking system was still a bit unstable, and often pushed out of the lock by
environmental noises. The best solution was to put the cavity close to locking
position, and stay on the side of the peak at 50% of its maximum hight helped by
self-locking, let the system stabilize a bit, and slowly getting closer to resonance
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until reaching 70-80% of the peak and taking measurements.
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8. Results

8.1. Second Harmonic Generation and Amplification
De-Amplification

To characterize the non linearity of the system without doing squeezing one can ob-
tain Second Harmonic Generation (SHG) ([46]) in the cavity or look at amplification
de-amplification of the red light in the cavity. After characterization of the losses
due to coupling the red light in the fiber through the flip mirror (before mounting
the curved mirror) it is possible to measure what is the non linearity of the cavity
by measuring the power of green light generated as a function of the red light sent
to the cavity. Locking is not necessary for this measurement, simply looking at the
height of the red peak and the generated green peak on the detectors after good
calibration allows us to plot the power of green as a function of the power of red
(Figure 8.1).
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Figure 8.1.: Second harmonic generation in function of the red power sent in the
cavity with the standard fiber. The red line is the fit of the curve corresponding
to Pgreen = γP 2

red with γ = 0.87W−1.

Amplification de-amplification can be observed by sending the pump at 532nm in
the cavity and a bit of light at 1064nm, the seed. By changing the phase of the input
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pump or the input seed, by sending the transmitted red light to a detector, and by
tuning the temperature of the PPKTP crystal until the red peak and the green peaks
are aligned, one can observe the red peak going up and down (Figure 8.2). With
enough power in green, when stopping the scan, it is possible to lock the system by
hand. Using self locking we can then measure the oscillations directly (Figure 8.3),
but they are not as pronounced as when scanning. Maybe the crystal has been a
bit damaged between the two experiments.
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Figure 8.2.: Amplification and de-amplification for (a) and (c) the standard fiber
and (b) and (d) the photonic fiber during the scan of the cavity. The scan is
in the direction of self locking for (a) and (b), and in the direction of anti-self
locking for (c) and (d). The green traces are the green peak, the red peaks are
the red light with the pump blocked, and the blue peaks are the amplification
and de-amplification of the red peak due to the pump when both frequencies are
resonant.

8.2. Squeezing

To obtain squeezing, I usually start by checking the homodyne. With the signal
blocked, I set the power of the LO to a bit before saturation and I turn its polariza-
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Figure 8.3.: Amplification and deamplification of the light at 1064nm for (a) the
standard fiber cavity and (b) the photonic fiber cavity when the pump is turned
on (red) and the seed phase is scanning, and when the pump is turned off (blue).
The blue line is made by scanning the length of the cavity without the pump and
getting the top of the peaks of the red light, the red lines correspond to the red
power when scanning the phase of the pump and putting the cavity on resonance
by changing the length of the cavity by hand (with the piezo). (Yellow) is the
signal without light.

tion to make sure that the difference signal is zero in DC. The difference signal in AC
is sent to the spectrum analyzer and I look at the noise around 1 MHz with a span of
0 and no gain or attenuations. The difference of noise between this situation (with
the LO, but the signal blocked) called the shot noise, and the situation when both
detectors are blocked (no light is going on them) called the dark noise, is around
12dB. Then, by scanning the cavity length with the pump and a seed going to the
cavity and by blocking the LO and looking at the DC of one of the homodyne de-
tectors, I tune the temperature of the crystal to have the peaks of the green and the
peaks of the red almost aligned. Usually I leave them with a little offset to have the
red peak at the beginning of the ramp of the green self lock peak. Then I stop the
scan and self lock the green by changing the length of the cavity from the direction
allowing self locking. I can lock the system by hand and observe the data and get
only one shot, or lock with the micro-controller. The lock from the micro-controller
is stable enough that I can slowly change the temperature of the crystal and keep
the lock, and I can choose to lock at different points of the green peak. By changing
the temperature, I get double resonance by looking at the coupling of the red seed.
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I usually scan the phase of the red seed, so I can see amplification de-amplification
on the screen and stay at the point where they are maximal. Then I block the seed
and unblock the LO. The phase of the LO is scanning at a few Hertz and I look at
the noise level in the spectrum analyzer. Usually the noise will be oscillating, and if
everything is set correctly and enough pump power is in the cavity, the minimum of
oscillation will be lower than the shot noise (Figure 8.4). I usually take a shot noise
measurement just after to be sure that nothing has drifted. It is also possible to
look at the squeezing as a function of the frequency by making the span non zero in
the spectrum analyzer and comparing the squeezing traces with the shot noise. The
oscillation between squeezing and anti-squeezing due to the scan of the LO phase,
and the frequency scan of the spectrum analyzer, are desynchronized. It gives us
the squeezing and anti-squeezing as a function of frequency (Figure 8.5). Knowing
that the cavity is very short (FSR=27GHz) and that the red cavity finesse is around
35, the bandwidth of the squeezing should be around 800MHz, but the detector
bandwidth is much smaller, and we can only detect squeezing to 40MHz.
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Figure 8.4.: Squeezing and anti-squeezing at 3MHz for (a) the standard fiber with
70mW of power and (b) the photonic fiber with 100mW of power at 3Mhz. We
observe 0.56dB of squeezing and 1.05dB of anti-squeezing for the standard fiber
and 0.9 of squeezing and 1.8dB of anti-squeezing for the photonic fiber.

We demonstrated a squeezing of 0.56 ± 0.05dB (1.05 ± 0.05dB of anti-squeezing)
with the standard fiber setup with 96% of visibility in the homodyne and 0.9± 0.05
of squeezing (1.8 ± 0.05dB of anti squeezing) with 92% of homodyne visibility for
the photonic fiber set-up with a pump power around 30mW. The detectors used in
the two setups are the same with 92% of quantum efficiency each and a dark to shot
noise of 8dB. The correction from the visibility, the quantum efficiency, the shot to
dark, the losses due to the different optics 2%, and the light leaving the fiber with
an index around 1.5 to the air of index 1, 4% of losses gives 0.9dB of squeezing for
the standard fiber and 1.6dB of squeezing for the photonic fiber.
We tested both fibers in front of a HR mirror for looking at the mismatch between
the mode of the fiber and the mode after reflection after the mirror. We got ∼ 0%
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of losses for the standard fiber (the reflected mode come back very well in the fiber)
and 12% with the photonic fiber. The correction of those losses correspond to 1.7dB
of squeezing for the photonic fiber. If we correct from the losses due to the coupling
from the cavity to both fibers we get 2.2 dB of squeezing with the standard fiber
(with 55% of losses) and 2.2dB of squeezing for the photonic fiber (with 23% of
losses).
Changing the power of the pump doesn’t really change the squeezing and anti-
squeezing for the standard fiber, but changes the anti-squeezing considerably for the
photonic fiber, increasing it up to 8dB, still with a squeezing close to 1dB (with a
pump power around 100mW).
The total losses corrections, considering both squeezing and anti-squeezing, infers
3.5dB of squeezing in the cavity for the standard fiber setup and 78% of losses, and
4.4dB of squeezing for the photonic fiber with 70% of losses, for optimal power, and
14dB of squeezing with 80% of losses for high power, but with that much losses
those values are just very approximate indications. By applying the model from the
introduction Eq. 5.4.3 with losses L = 1% we expect 6.8dB of squeezing from the
cavity.
The losses in both setups are very large, and mostly originate from the mismatch
between the cavity mode and the fiber. We think that those losses are mostly due to
the fact that the waist of the cavity for both fibers is extremely short for the length
of the cavity. If the curvature of the mirror doesn’t match perfectly the shape of
a Gaussian beam coming from the fiber on all its surface, the mode of the cavity
won’t be Gaussian anymore. The cavity length and the waist are very small which
make the phase surface not anymore circular, and if in addition, the mirror is also
not perfectly circular (in the bad direction) around 70% of losses could appear. For
this point, the photonic fiber should be less affected because the mode of the cavity
is allowed to be larger. A better coupling between the fiber and the resonator can
be achieved which explains why we obtained a bit more squeezing with it. (We
measured 55% of losses due to misalignment for the standard fiber and 23% for the
photonic fiber (Figure 7.18)).
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9. Conclusion

In conclusion we demonstrated that squeezed states of light can be obtained by
coupling directly a fiber to a linear OPO cavity by sticking the fiber end directly at
the output of the cavity without any other optics, obtaining a squeezed state in a
fiber ready to be used on any other experiment.
Moreover, the mode of the squeezed state being defined by the fiber, it is very easy
and fast to obtain a good visibility in the homodyne detection in free space, or it
is even possible to think about using a fiber beam splitter which would make the
alignment of the homodyne no longer necessary. The implementation of a lot of
complicated experiments using CV variables would be greatly simplified. Of course
this convenience means that all the difficulty is transfered to the OPO. The matching
between the OPO cavity and the fiber needs to be done extremely well to avoid a
very high level of losses.
The system presented in this thesis is far from optimal, as reaching 0.56dB with a
standard single mode fiber and 0.9dB with a photonic fiber is still much too modest
to be used as a useful fiber source of squeezed states, but a lot of improvement still
can be done. We demonstrated that the size of the fiber is an important parameter,
that increasing the size of the fiber allowed a better coupling between the fiber and
the resonator. With photonic fibers, large mode field diameters can be achieved.
Single mode fibers with a waist of 12.5µm can be found easily and could be a good
way to increase the coupling efficiency of our system. Another possibility would be
to use a multi-mode fiber with a very large core but only a few modes (in practice
a single mode fiber for a higher frequency light would work). By tapering this
fiber to a smaller diameter ([49]) to reach the single mode regime on one side, it is
possible to keep a very good coupling between this mode and the main Gaussian
mode going out of the large core fiber. If the diameter of this fiber at the small side
is the same as a standard single mode fiber, it is possible to cleave it and splice it
to a standard fiber and keep all the advantage of the standard single mode fibers.
Another improvement can be found in the curved mirror. A smaller curvature would
decrease the constraints on the matching and also increase a lot the coupling to the
fiber. A good candidate could be to use a multi-mode fiber and shoot it with a CO2
laser on its end to create a curved surface and coat it to create a mirror (Figure 6.1
(a)). Some improvements can also be found by optimizing a bit more the coating
of the crystal to match the losses of the cavity. An optimum can be found between
the losses due to the crystal and the finesses of the red and the green lights in
the cavity. And finally the cavity is only a few millimeters, all the mechanicals
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surrounding it can be made much more compact and much more stable. If all these
improvements were to be implemented, I am sure that this system should be able to
reach a relatively high level of squeezing and to be used as a fiber squeezed source
for larger experiments.
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10. Introduction:

Figure 10.1.: Schematic of the resonator. An optical crystal is cut into a squared-
shaped monolithic resonator that uses total internal reflection to define an optical
mode. Two opposite faces are spheroidal to confine the optical mode while the
remaining two faces are used to evanescently couple the circulating mode to a
free-space optical mode via a prism.

The design that I will present in this part has been constructed in Australia un-
der the main supervision of Ping Koy Lam and Thomas Symul. The idea behind
this experiment is based on Whispering Gallery Mode Resonator (WGMR) systems
([97],[87],[76],[86],[81]) to try to generate squeezed light. Just before the beginning
of my PHD, the group purchased a very high precision lathe ([98]) that allows a
great deal of freedom in the cutting process of materials, so we tried to investigate
different geometries that could fit our purpose. Rather than a cylinder shape like
the WGMR, where the light is continuously guided at the surface by total internal
reflection (TIR), we used a square shape (Figure 10.1) where the light is bouncing
four times on the four faces of the square with TIR to form an optical mode. The
precision of the lathe allows us the control of the geometry of the faces. We can add
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Chapter 10 Introduction:

different curvatures in the horizontal and vertical directions for each face. We used
two flat surfaces to be able to bring two prisms close to the resonator to couple the
light using frustrated total internal reflection and two curved surfaces to make the
mode in the resonator stable.
Such TIR monolithic cavities have previously been investigated for wavelength con-
version ([94],[79]) and proposed for the production of quantum light ([93]). The
first successful demonstrations, however, have only recently been performed using
WGMR to generate bright twin-beam squeezing ([82]) or single photon ([80]).
The goal of the project was to use a non linear material for the square resonator to
create an Optical Parametric Oscillator (OPO) to generate Type I vacuum squeez-
ing. The Square OPO (SqOPO) is made of Lithium Niobate with the extraordinary
axis perpendicular to the direction of propagation. Some light at 532nm (green) po-
larized in the direction of the extraordinary axis is sent to the resonator by one prism
and the squeezed light at 1064nm (red) polarized in the perpendicular direction is
generated and coupled through the other prism.
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11. Resonator Coupling

11.1. Evanescent Prism Coupling

The SqOPO is working with total internal reflection beams in the resonator crystal
on the four surfaces. But pure total internal reflection doesn’t allow any light to
enter or exit the resonator (at least with a surface ideally smooth). So it is necessary
to have a way to be able to couple the light in or out of the resonator. For this
function, we use frustrated internal reflection. With a piece of crystal (usually a
prism) close enough to the resonator, frustrated internal reflection can occur, which
means that if the prism is placed in the evanescent part of the light coming from the
resonator, and if its index allows for propagation, some light will be coupled from
the resonator to the prism. In the same way, if some light is sent in the appropriate
mode in the prism, it will be coupled to the resonator. The strength of the coupling
depends on the distance between the prism and the resonator ([90],[95],[92]).
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Figure 11.1.: (a) Schematic of the coupling media. On the left the resonator, in
the middle the gap of air, and on the right one of the prism couplers. (b) The
three different prisms that can be used as the third medium. An isotropic prism
in SF11, or two anisotropic prisms in calcite with the extraordinary axis allowing
us to couple only the red light, or only the green light.

We consider three different prisms that have been used in this thesis (Figure 11.1
(b)):

• A prism made of SF11 (SCHOTT) which is an isotropic material of index
n = 1.75 for 1064nm and n = 1.79 for 532nm. It can couple both frequencies
(Figure 11.1 (b)).
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Chapter 11 Resonator Coupling

• A prism made of Calcite which is a uniaxial anisotropic material with the
extraordinary axis along the vertical axis. For the green the indices are: ne =
1.4882 and no = 1.64246, and for the red: ne = 1.4796 and no = 1.6425. We
call this prism the red calcite prism because it can only couple the red light
(which is polarized horizontally) (Figure 11.1 (b)).

• A second Calcite prism with the extraordinary axis in the horizontal plane
with an angle of 40° with the normal of the coupling face. We call this prism
the green calcite prism because it can only couple the green light (which is
polarized vertically) (Figure 11.1 (b)).

For the calculation of the coupling, similarly to the calculation section 3.2, we will
consider two interfaces between three media where plane waves are propagating
(Figure 11.1 (a)). The first medium, on the left, is considered as a semi-infinite
medium of uniaxial anisotropic material. It is the resonator material of Lithium
Niobate. (no = 2.2321, for 1064nm, ne = 2.2336 for 532nm.) The extraordinary
axis is in the vertical direction, orthogonal to the wave vectors. The incident beam is
propagating from the left and experiences total internal reflection in the first surface.
The second medium (Figure 11.1 (a)) is a gap of air of length L, it is an isotropic
material of index ng = 1. The beam is by hypothesis evanescent in this part.
The last medium, on the right, is a semi infinite material corresponding to the
prism (or any other coupler material, like a fiber for example). We consider three
possibilities for this calculation (Figure 11.1 (b)). The prism is either isotropic
(SF11), or uniaxially anisotropic with the extraordinary axis in the vertical direction
(red calcite prism), or uniaxially anisotropic with the extraordinary axis in the
horizontal plan (ex,ez) making an angle θ = 40° with the direction ez (green calcite
prism). For the generality of the calculation, we will write nio and nie the indexes
of the first medium, ng the index of the gap material, and nto and nte the indexes
of the third material ((Figure 11.1 (a))).
We start with an incident plane wave of wave vector ki. By hypothesis, the field
is propagating in this medium in the horizontal plane, so the components of ki are
real and given by

ki =

 nik0 sin(θi)
0

nik0 cos(θi)

 ,
where ni is the index of refraction of the first medium (the ordinary or extraordinary
index of the resonator, depending on the polarization of the incident field), k0 = ω

c
,

ω is the frequency of the light, c the speed of light in vacuum, and θi the angle
between ki and the direction ez (Figure 11.1 (a)). (For the resonator discussed in
this thesis, θi = π/4, but for the purpose of generality, we conserve the variable θi.
It allows the result to also be used for WGMR or more complex shapes.)
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11.1 Evanescent Prism Coupling

We call kr the wave vector of the reflected beam, k1 and k2 the wave vectors of the
beams in the second medium and kt the wave vector in the last medium ((Figure 11.1
(a))), by using the conservation of k‖(first Snell Descartes law) and the fact that
|k1| = |k2| = ngk0, |kr| = nik0 and |kt| = ntk0 we can deduce all the other wave
vectors:

kr =

 kix
0
−kiz

 =

 nik0 sin(θi)
0

−nik0 cos(θi)

 kt =

 kix
0
ktz



k1 =

 kix
0
iα

 k2 =

 kix
0
−iα



where ktz =
(
(ntk0)2 − (kix)2

)1/2
can be real or purely imaginary, with nt being

the refractive index of the last prism, and α is a real number such that α =√
(kix)2 − (ngk0)2 . We consider the three cases:
• If the third medium is the SF11, nt is just the index of the prism.
• If the third medium is the red calcite prism, in the s-polarization case nt is

the extraordinary index of the prism nt = nte and in the p-polarization case
nt is the ordinary index nt = nto.

• If the third medium is the green calcite prism, in the s-polarization case nt is
the ordinary index of the prism nt = nte and in the p-polarization case nt =(
k2
tz+k2

ix

k2
0

)1/2
where the z component of the wave vector ktz = −kixn

2
p1

γ
+n2

p1∆1/2

where ∆ = k2
0

n2
p1
− k2

ix

(
1

n2
p1n

2
p2
− 1

γ2

)
, 1
n2
p1

= cos2(θ)
n2
to

+ sin2(θ)
n2
te

, 1
n2
p2

= cos2(θ)
n2
te

+ sin2(θ)
n2
to

and 1
γ

= cos(θ) sin(θ)
(

1
n2
to
− 1

n2
te

)
. With the angle between the extraordinary

axis of the prism and ez: θ = 40°. (We can notice that in this case nt and ktz
are complex). (Demonstration in Appendix B)

It is important to notice that the s-polarization (with the electric field polarization
along ey) and the p-polarization (with the electric field polarization in the plan
(ex, ez) are a good decomposition for the problem. In the resonator, the extraordi-
nary axis is perpendicular to the wave vector, so the extraordinary beam polarization
is along the extraordinary axis (ey) and the ordinary beam polarization is in the
plane (ex, ez) perpendicular to the wave vector. Obviously the decomposition is
correct in the gap which is isotropic. For the third medium, for the SF11 and the
red calcite prism, the same arguments occur, for the green calcite the ordinary beam
polarization is orthogonal to the wave vector and to the extraordinary axis, so it
is in the direction of ey. The extraordinary beam polarization is orthogonal to the
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Chapter 11 Resonator Coupling

ordinary beam polarization, so also in the plan (ex, ez). (subsection 2.2.2, and [78]
)
We can also notice that for the first two cases (SF11 and red calcite), and for
the third case for the s-polarization, there is coupling between the prism and the
resonator if and only if ni sin(θi) < nt, and when there is propagation in the prism,
the transmission wave vector kt makes an angle θt with the direction ez given by
the expression ni sin(θi) = nt sin(θt), as if there were no gap between the two media
and we were applying Snell’s laws. If ni sin(θi) > nt, kt is purely imaginary.
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Figure 11.2.: Reflectivity R = |r|2 and dephasing =(r) versus distance L between
the prism and the resonator for 1064nm (red) and 532nm (green) for the SF11
prism (a,d), for the red calcite prism (b,e) and for the green calcite prism (c,f).

11.1.1. S-Polarization

For the s-polarization case (in practice the green light case), the incident and re-
flected electric fields Ei and Er, the two electric fields in the gap E1 and E2, and
the transmitted field Et are all along ey.
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11.1 Evanescent Prism Coupling



Ei = E0ey exp[i(kixx+ ikizz)]
Er = rsE0ey exp[i(kixx− ikizz)]
E1 = E10ey exp[i(kixx− αz)]
E2 = E20ey exp[i(kixx+ αz)]
Et = tsE0ey exp[i(kixx+ iktzz)]

.

where rs and ts are the reflection and transmission coefficients, E0 the amplitude of
the incident field, and E10 and E20 the amplitude of the fields in the gap.
The continuity of the transverse electric fields at the two interfaces give the equa-
tions:

{
E0(1 + rs) = E10 + E20

E10 exp(ik1zL) + E20 exp(−ik1zL) = tsE0
(11.1)

By using the Maxwell-Faraday equation ∇×E = iωB and the fact that the electric
fields are only along ey. It gives in the ex direction: ∂Ey

∂z
= iωBx. Knowing that the

transversal component of the magnetic field is continuous, we deduce that the field
∂Ey
∂z

is also continuous at the interfaces. We get two more equations:

{
kizE0(1− rs) = k1z(E10 − E20)

k1z (E10 exp(ik1zL)− E20 exp(−ik1zL)) = ktztsE0
. (11.2)

Eq. 11.1 and Eq. 11.2 can easily be solved, we obtain:

ts = 2
( 1
iα

[iα cosh(αL) + ktz sinh(αL)] + 1
kiz

[iα sinh(αL) + ktz cosh(αL)]
)−1

,

rs =
1
iα

[iα + ktz tanh(αL)]− 1
kiz

[iα tanh(αL) + ktz]
1
iα

[iα + ktz tanh(αL)] + 1
kiz

[iα tanh(αL) + ktz]
.

We can check that if the distance L goes to zero, we get the usual coefficients for one
surface between the first and the third media and if the distance L goes to infinity
the transmission ts goes to zero and the reflection rs goes to one in absolute value.
We can notice that if ni sin(θi) < nt, which means kt is purely imaginary, |rs| = 1,
there is still total internal reflection in the resonator whatever the distance L, but
the reflected beam acquires a phase =(rs) which depends on L (Figure 11.2).
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Chapter 11 Resonator Coupling

The coefficients in energy are obtained by calculating the Poynting vectors Π =
1
2< (E×H∗). The magnetizing field in each medium can be calculated from the
electric field with the Maxwell-Faraday equation: H = Ey

ωµ0
(kzex − kxez), we obtain

the reflection and transmission of the energy:

R = Πrz

Πiz

= |rS|2

T = Πtz

Πiz

= |tS|2
<(ktz)
kiz

The phase shift and reflectivity experienced by the beam at this double interface
are shown in Figure 11.2.

11.1.2. P-Polarization

For the p-polarization case (in practice, the red light case), the incident and reflected
magnetizing fields Hi and Hr, the two magnetizing fields in the gap H1 and H2,
and the transmitted field Ht are all along ey.



Hi = H0ey exp[i(kixx+ ikizz)]
Hr = rHH0ey exp[i(kixx− ikizz)]
H1 = H10ey exp[i(kixx− αz)]
H2 = H20ey exp[i(kixx+ αz)]
Ht = tHH0ey exp[i(kixx+ iktzz)]

.

Where rH and tH are the reflection and transmission coefficients of the magnetizing
field, H0 is the amplitude of the incident field, and H10 and H20 are the amplitudes
of the fields in the gap.
In the same way than for the s-polarization, the continuity of the transverse fields
at the two interfaces gives the equations:

{
H0(1 + rH) = H10 +H20

H10 exp(ik1zL) +H20 exp(−ik1zL) = tHH0
(11.3)

For the two other equations we use the Maxwell-Ampère equation ∇×H = ∂Hy
∂z

ex−
∂Hy
∂x

ez = −iωD = −iωε0εE with ε the relative permittivity tensor of the material.
The transverse component of the electric field is continuous, so that means that the
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11.1 Evanescent Prism Coupling

field
(
ε−1

(
∂Hy
∂z

ex − ∂Hy
∂x

ez
))

ex
is continuous at both interfaces. For the resonator this

corresponds to iH0kiz/n
2
io for the incident field and −irHH0kiz/n

2
io for the reflected

beam. In the evanescent gap, it corresponds to iH10k1z/n
2
g and −iH10k1z/n

2
g with

k1z = iα the z coefficient of the wave vector in the gap.
For the case of the isotropic SF11 prism or the red calcite prism, we get itHktz/n2

t ,
and so we obtain


kiz
n2
io
H0(1− rH) = k1z

n2
g

(H10 −H20)
k1z
n2
g

(H10 exp(ik1zL)−H20 exp(−ik1zL)) = ktz
n2
to
tHH0

(11.4)

These four equations Eq. 11.3 and Eq. 11.4 are analogous to the s-polarization case
(Eq. 11.1 and Eq. 11.2) with the replacements E → H, ts → tH , rs → rH and
kz → kz/n

2.

tH1,2 = 2
n2
g

iα

[
iα
n2
g

cosh(αL) + ktz
n2
t

sinh(αL)
]

+ n2
io

kiz

[
iα
n2
g

sinh(αL) + ktz
n2
t

cosh(αL)
]

rH1,2 =
n2
g

iα

[
iα
n2
g

+ ktz
n2
t

tanh(αL)
]
− n2

io

kiz

[
iα
n2
g

tanh(αL) + ktz
n2
t

]
n2
g

iα

[
iα
n2
g

+ ktz
n2
t

tanh(αL)
]

+ n2
io

kiz

[
iα
n2
g

tanh(αL) + ktz
n2
t

]

One more time, we can check that if the distance L goes to zero, we get the usual
coefficients for one surface between the first and the third media.
Similarly if ni sin(θi) < nt, we also have |rH1,2 | = 1, there is still total internal
reflection in the resonator whatever the distance L, and the phase of the reflected
beam acquires a phase =(rH) which depends on L Figure 11.2.
By applying the Maxwell-Faraday equation, we can calculate the electric field in
the prism and obtain the energy coefficient. The coefficient of reflection in energy
is given by R = |rH1,2|2, and the coefficient of transmission in energy is given by
T = |tH |2 n

2
io

n2
to

<(ktz)
kiz

.

For the green calcite, we need to apply a rotation θ around ey to the inverse of the
permittivity tensor of the prism to get its value in the reference frame (ex, ey, ez)

ε−1 =

 1/n2
p1 0 −1/γ

0 1/n2
o 0

−1/γ 1/n2
p2

 . (11.5)
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The continuous field in the prism is: itHH0

(
ktz
n2
p1

+ kix
γ

)
. Defining ktp = ktz

n2
p1

+ kix
γ

and noting that ktp is purely imaginary (see Appendix B for the demonstration), we
get the equations:


kiz
n2
io
H0(1− rH) = k1z

n2
g

(H10 −H20)
k1z
n2
g

(H10 exp(ik1zL)−H20 exp(−ik1zL)) = ktptHH0
(11.6)

Eq. 11.3 and Eq. 11.6 give the solutions:

tH3 = 2
n2
g

iα

[
iα
n2
g

cosh(αL) + ktp sinh(αL)
]

+ n2
io

kiz

[
iα
n2
g

sinh(αL) + ktp cosh(αL)
]

rH3 =
n2
g

iα

[
iα
n2
g

+ ktp tanh(αL)
]
− n2

io

kiz

[
iα
n2
g

tanh(αL) + ktp

]
n2
g

iα

[
iα
n2
g

+ ktp tanh(αL)
]

+ n2
io

kiz

[
iα
n2
g

tanh(αL) + ktp

]
By applying the Maxwell-Faraday equation and by using the tensor expression
Eq. 11.5, we can calculate the electric field in the prism: E = tHH0

ω
ε−1 (−kzex + kxez) =

− tHH0
ω

(
ktpex +

(
ktz
γ

+ kix
n2
p2

)
ez

)
. We deduce the coefficients in energy: in reflection

R = |rH3|2 = 1 and in transmission T = |tH3|2n2
io
<(ktp)
kiz

= 0 because ktp is purely
imaginary.
The phase shift and reflectivity experienced by the beam at this double interface
are shown in Figure 11.2.

11.2. Resonator

As we saw in the previous chapter, the prism can allow a fraction of a light beam in
total reflection in the prism to enter the resonator. The amount of light coupling in
the resonator controlled by the distance between the prism and the resonator can
fluctuate continuously between ~80% to 0% ([92]). If the angle in the resonator is
exactly 45◦, the light will bounce on every other surface with total internal reflection
and come back exactly along the same path. It is a resonant cavity (Figure 11.4) with
one tunable coupling mirror and 3 mirrors with transmission T = 0, but eventually
some losses. The reflected intensity Ir in function of the incident intensity Ii is given
by (section 4.2)):

Ir = FIi

 (r1−(1−Lm)(1−L))2

4r1(1−L) + (1− Lm) sin2(kd)
1 + F sin2(kd)

 (11.7)
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11.2 Resonator

Where Lm is the losses due to the coupling, L is the losses in the cavity during a
round trip, k is the wave vector in the resonator, d is the round trip length of the
resonator and F is the coefficient of finesse of the resonator given by F = 1/ sin2( π

2F )
where F is the finesse of the cavity. We also sometimes use the linewidth to describe
the resonator which is given by:l = FSR/F where FSR is the free spectral range
of the cavity (19GHz for our cavity).
The losses in the resonator L come essentially from two sources: the scattering
in the mirrors and material absorption. The scattering is due to imperfections
in the mirrors. All dust or micro scratches at the interface could make a part
of the light experience a different surface angle causing a bit of the light not to
be resonant anymore, and even transmitting out. This problem can be solved by
carefully polishing the surface of the mirrors to a better quality surface.
The absorption is more of an issue because we can’t really do a lot for it. It is just the
matter of getting the most quality material possible to avoid unnecessary impurities
absorbing more of the light at the frequency that we are using. Lithium Niobate
has an absorption loss at 1064nm of ∼ 0.05%/mm and ∼ 0.25%/mm at 532nm. For
a resonator of diameter d=2.3mm (total propagation length of 2

√
2d = 6.5mm), it

corresponds to ∼ 1.5% of losses by round trip for green and ∼ 0.30% for red. (Or
a maximum finesse around ∼ 400 and a minimum linewidth of ~40MHz for green
and a maximum finesse of ∼ 2000 and a minimum linewidth of ∼ 10MHz for red.)
The linewidth of the light also depends on how much coupling there is between the
prism and the resonator, something that we can tune with the distance between the
prism and the resonator (Figure 11.3).
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Figure 11.3.: (a) Schematic of the resonator with an electrode for applying voltage
and a control of the coupling distance L. (b) Example of scan obtained by varying
the applied voltage at the electrode (around 600V for 532nm light (green).) The
zoom shows the effect of the movement of the coupling distance L on the resonant
peak.

At resonance, the square sine in Eq. 11.7 is zero, and only the term (r1−(1−Lm)(1−L))2

4r1(1−L)
matters. When the prism is far r1 > (1− Lm) (1− L) (under coupling regime
(Figure 11.4)), the losses of the resonator are mostly due to the scattering and
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Chapter 11 Resonator Coupling

the absorption in the resonator, and the finesse is the largest, but the light directly
reflected by the resonator is larger than the light coming from the resonator and they
can’t cancel each other perfectly at resonance, the reflected light doesn’t reach zero.
When the prism gets closer, eventually, r1 = (1− Lm) (1− L) (critically coupling
regime (Figure 11.4)) and the coupling is the highest possible, only limited by the
mode matching. If the mode matching is perfect, the light directly reflected by the
first mirror is perfectly canceled by the light coming from the resonator at resonance.
When the prism continues to get closer, r1 < (1− Lm) (1− L) (over coupling regime
(Figure 11.4)) the finesse is the smallest, and the light coming out of the resonator
at resonance is larger than the light directly reflected leading to a smaller coupling.

Distance (μm)

Distance (μm)

C
o
u

p
li

n
g

 
F

in
e
ss

e
 

-0.2

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6

0

500

1000

1500

2000

0 0.1 0.2 0.3 0.4 0.5 0.6

Over Coupling

Ereflected

Eresonator

Ereflected < Eresonator

Critical Coupling

Ereflected

Eresonator

Ereflected = Eresonator

Under Coupling

Ereflected

Eresonator

Ereflected > Eresonator

Finesse

Figure 11.4.: Schematic of the three coupling regimes, over-coupling, critical cou-
pling, and under-coupling, and experimental data of coupling (1- normalised re-
flection) and finesse for 1064nm (red) and 532nm (green) in function of the dis-
tance between the prism (SF11) and the resonator. The coupling doesn’t reach
one because of mode matching.

The design of the system allows another prism to be added in the other side
(Figure 11.5). It means adding another coupler to the detector equivalent to a
back cavity mirror for a standard cavity (with a tunable reflectivity from 20% to
∼ 100% ). The beam exiting can be sent to a detector or used for alignment pur-
pose. It is easy when there is a first beam exiting the prism, to align another one
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11.2 Resonator

in a contra propagating way. The light exiting from the back prism can be consid-
ered as additional losses for the resonator, and it is possible to a certain extent to
always change the position of the input prism to reach the critically coupling regime
(Figure 11.5) whatever the distance of the output prism. That means, for a large
range of finesses, having all the light going through the cavity and exiting the other
side.
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Figure 11.5.: (a) Schematic of the system to achieve impedance matching for dif-
ferent linewidths of the resonator. By scanning the resonator frequency and by
tuning the two distances between the resonator and the prism we demonstrate
constant impedance matching of the resonator. (b) shows the normalized power
in reflection (red) and the transmission power (blue) during the scan of the fre-
quency for different distances between the resonator and the second prism (on the
side of the blue detector) for some experimental data for 1064nm.

11.2.0.1. Electro-Optics Tuning

To make the light resonate in the cavity it is possible to change the frequency of
the light to match the cavity, but it is not really appropriate when dealing with
more than one system. It is much more interesting to be able to directly move the
frequency of the resonator. In a standard cavity, we can move the position of the
mirrors to change the frequency of the resonator, but this monolithic design doesn’t
allow it. Fortunately, the refractive index of Lithium Niobate can be tuned with an
applied voltage with the Pockel effect ([85][89]). It provides a similar result then
moving a mirror in a standard cavity, allowing us to match the frequency of the
resonator to the frequency of the laser.
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∆n = 1
2rn

3
0
V

h

with V the applied voltage, h the length of crystal between the two electrodes, n0
the index at V = 0 and r the electro-optic coefficient. The green light is polarized
vertically in the resonator which correspond to the r22 electro-optic coefficient of
33pm/V . The red light is polarized horizontally and correspond to the r33 electro-
optic coefficient of 7pm/V .
With 600V of HV tuning, it is possible to scan a bit more than an FSR for the
green (Figure 11.3) which is useful for alignment purposes. Unfortunately the red
coefficient is much smaller so it is not possible to observe one full FSR. The initial
alignment is harder, but when the TEM00 peak is identified, a change of temperature
of the crystal or frequency of the laser will make the peak in the range of the scan.
The monolithic aspect of the resonator makes the system very stable, and almost
no drift of the peak is experienced. (The resonator is 200µm thick, and allows us to
get a tuning of 40MHz/V for green and 6MHz/V for red (FSR = 19GHz)).
Electro Optic tuning also has the advantage to be very fast. It is possible to modulate
the cavity frequency at hundredth of MHz directly by adding a modulation in the
voltage (Figure 11.6) . In Figure Figure 11.6(d) we modulate the voltage at 249MHz
and demodulate the signal to create an error signal for the red light without any
external EOM on the beam.
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Figure 11.6.: (a-c) A few volts of modulation applied directly to the electrode
during the scan of the resonator (with the voltage of this same electode) with
532nm light (green). ((a) is the reference without modulation.) (d) Error signal
obtained by modulating the voltage at the electrode at 249MHz and demodulating
the reflected signal (magenta) during the scan of the frequency of the light of the
laser at 1064nm (red).

11.3. Phase Control

Even when a prism doesn’t couple out some light because the indices doesn’t allow
for propagation, there is still a very noticeable effect on the phase of the light in the
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11.5 ABCD Matrix Considerations and Stability of the resonator

resonator (Figure 11.7). By moving the green calcite coupler close enough to the
resonator, we observe a broadening of the linewidth of the green peak like expected,
but also a displacement of the red peak (with the green peak almost unmoving)
(Figure 11.7 (c-e)) . This displacement can go as far as from double resonant with
a peak of the green light to almost double resonant with the next FSR of the green
light (Figure 11.7). It is explained by the fact that the applied voltage mostly moves
the index of the green light, almost without changing the red light index. So a very
small change of phase for the red light will have a huge effect on the coincidence
between green and red during the scan of the applied voltage.
The linewidth of the red shouldn’t be affected at all by the green calcite prism, but
in practice it is. It is explained by the fact that the prism and the resonator axis may
not be perfectly in the vertical axis leading to some light still being a bit coupled in
the prism, but as long as the distance is large, the coupling should be negligible and
there is a possibility to use this control to achieve double resonance in the resonator.
We are using this technique to perform squeezing with this resonator.
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Figure 11.7.: (a) Relative phase between 1064nm light and 532nm light during the
scan of the applied voltage in function of the distance between the green calcite
prism and the resonator. (b) Linewidth variation of the light for 1064nm (red)
and 532nm (green). (c-e) are examples of scans where the distance between the
green calcite coupler and the resonator is decreased (from (c) to (e)).
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Figure 11.8.: Schematic of the resonator. The resonator is made of four curved
mirrors and four times a propagation of L = d

√
2 where d is the diameter of the

resonator. For leaving the resonator, the beam goes through the two interfaces
that modified its waist. (b-e) are some of the modes of the resonator with light
at 1064nm (red) exiting by the SF11.

11.4. TEM Modes

11.5. ABCD Matrix Considerations and Stability of
the resonator

A big advantage of this resonator, compared to a Whispering Gallery Mode Res-
onator (WGMR), is the fact that there are only four reflection surfaces (Figure 11.8).
The system is equivalent to a ring cavity with four mirrors and unlike the WGMR
([96]) , the finite number of reflections allows the resonant modes to be the familiar
Hermite-Gaussian TEM modes of a free space cavity. It is possible to use ABCD
matrices (subsection 2.1.4,section 4.3) to know the shape of the modes and the sta-
bility of the resonator. The resonator is made of two surfaces in front of each other
of curvature R1, R2 and 4 propagation lengths l which are the 4 sides of a square of
diagonal d = 2.3mm (Figure 11.8). The matrix of the resonator is given by:

T = L ∗ CR1 ∗ L ∗ CR2 ∗ L ∗ CR1 ∗ L ∗ CR2

where L =
(

1 l
0 1

)
with l = d/

√
2 and CR =

(
1 0

−2/Re 1

)
with Re = R cos(θ)

in the horizontal plane, and Re = R/ cos(θ) in the vertical plane, and with R =
{R1, R2} and θ = 45° the angle between the beam and the mirror normal in the
horizontal plane. The mirrors have been design to make the beam almost spherical
in the resonator. (In the horizontal plane: R1 = 13mm, R2 = 17mm, and in the
vertical plane: R1 = 55mm, R2 = 5.5mm.) We deduce that the system is stable and
corresponds for the red light to a waist of wr = 21µm in the horizontal plane and
wr = 25µm in the vertical plane, and for the green light to a waist of wg = 15µm for
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11.5 ABCD Matrix Considerations and Stability of the resonator

the horizontal plane and wg = 18µm for the vertical plane. The beam has 4 waist
positions arranged in a symmetric way very close to the two coupling surfaces.
It is important for the waist not to be too small in the resonator or the instability
due to electro-optic effect becomes too pronounced. A few of the systems that we
worked with had too-small waists and were completely impossible to work with.

11.5.0.1. Coupling Mode

The beam exiting the resonator has to go through the prism with an angle θp =
arcsin

(
nr
np

sin(45°)
)
, and leaves this same prism with an angle α (given in Figure 12.1

for each prism). The interface between the resonator and the prism (Figure 11.8)
can be considered in the same way as an interface between two media of indices
n1 and n2 (without gap) met with an angle of incidence of 45°. (We neglect the
curvature of the coupling surface, a more complete resolution can be done using
([88].) It means that for the two surfaces we can use the matrix:

Mn1,n2(α) =



√√√√1−
(
n1
n2

sin(α)
)2

cos2(α) 0

0 n1
n2
∗
√

cos2(α)

1−
(
n1
n2

sin(α)
)2

 for α ∈ [−π2 ,
π

2 ]

In the vertical direction, there is no angle at any surface, so the beam just prop-
agates through the different materials. For the horizontal direction, the beam is

transformed by the matrix: M = Mn1,n2(α) ∗
(

1 l
0 1

)
Mn1,n2(45°) with l the dis-

tance traveled by the light in the prism, and α the angle with which the light exits
the prism. Unfortunately the mode in the resonator used in this thesis hasn’t been
corrected for the propagation by the prism. But it has been demonstrated ([73])
that it is possible to design an elliptical beam in the resonator which leaves the prism
with a spherical shape by tuning correctly the curvature in the resonator. Such a
correction should be considered in a future system. The waists leaving the resonator
for the SF11 are: for red wr = 17µm in horizontal direction and wr = 36µm in ver-
tical direction. And for green, wg = 13µm in horizontal direction and wg = 25µm
in the vertical direction. Figure 11.8 are some of the modes of the beam going out
of the resonator.
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12. Experimental Methods

12.1. Creation of Resonators

The Lithium Niobate comes in rods of ~5 mm radius and length of a few centimeters.
We slice these rods into small cylinders of around 1 mm thick with a high speed
blade, and glue them with epoxy on a rod of brass with a screw base made by our
mechanical workshop (Figure 12.6). We reduce the thickness of the cylinder with a
lathe and glue another small cylinder of brass on top of it to make the top electrode.
The top cylinder of brass is made a bit rough with some acid to make sure that the
glue holds well; for the bottom brass rod, the rough surface of the crystal cylinder
is enough to make the glue hold well. To give the final shape of the resonator we
use the lathe to cut the surface of the resonator. The lathe is a very high precision
machine, a Moore 250 UPL 4 axis ([98]), which has a very sensitive high speed
spindle (10,000 turn/minute maximum around the X axis), two horizontal axes of
translation (X and Y axis) and another axis of rotation (around Z), with a precision
of a few nm when it is not doing anything and a few tenth of nm when it is cutting).
The spindle turns the brass rod around its axis and a diamond tool cuts the crystal
on the side. The diamond cut movements are synchronized to the rotation of the
spindle to make the square shape, then the diamond tool is slowly translated along
the axis of the crystal cylinder to give the shape to all the resonator. This technique
allows us to create mirror shapes with a different curvature along the two axis, it
can help for shaping the beam to obtain a spherical beam at the end of the prism
after coupling. The lathe first roughly reduces the radius of the rod keeping the
cylindrical shape then with a small depth, four square faces of ∼ 100µm width
only are cut to avoid large movements of the spindle. For the resonator that I am
describing in this thesis, the two coupling faces have the curvature: R1 = 13mm
horizontally , and R2 = 17mm vertically, and the two other faces have the curvature
R1 = 55mm vertically and R2 = 5.5mm horizontally. The cut of the resonators
with the lathe have been made by Shen Yong and Geoff Campbell ([73]).

12.1.1. Polishing

After the cut with the lathe, the quality of the resonator’s faces is not yet good
enough for the experiment. The maximum finesse for the light at 1064nm will be
a bit less than 100 and the maximum finesse of the green a bit lower again. It is
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necessary to polish these faces to a higher quality. After the cut, with some white
light interferometery done on the face of the resonator on the lathe, it is possible
to see some tiny scratches from the tool during the cut. These imperfections can
be removed with some hand polishing. I used some polishing diamond paste ([69])
on a polishing pad or a simple clean lens tissue ([67]) to improve the quality of the
surfaces. I usually add water to the diamond paste, it makes the polishing longer,
but softer. The polishing paste comes with different particle sizes. I usually start
with 1 µm particle to remove the big scratches and slowly decrease to 0.5 µm, then
0.25µm and finally 0.1µm. The 1µm particle will actually add more scratches visible
with the white light, but will help to remove the biggest ones rapidly. 0.5µm and
0.25µm will allow me to remove completely any visible scratches with the white
light, and 0.1µm will be the very fine final polishing. The result can only be checked
by actually aligning the resonator and measuring the finesse of it. The pad and
the particle paste need to be very clean, since if there are any big particles in the
mix during the polishing (like dust), it ends up with more scratches and usually it
needs to be polished again from the 1µm particle paste. It is not necessary to polish
Lithium Niobate too much, because the material absorption is quite high and will at
one point be the main limitation for the losses of the system. For the resonator that
I am using in this thesis (a square of side 2.3mm), I got a polishing corresponding
to a linewidth of 9MHz which corresponds more or less to the absorption of the bulk
material. ([83]).
Too much polishing can be counterproductive. At one point the shape of the surfaces
will be affected by the polishing and it can lead to a shape of mode not Gaussian
anymore.

12.2. Prisms

SF11 Prism Green Calcite Prism

O.A
40°

Red Calcite Prism

O.A
60°

13.50°

47.59° 21.5°

11.1°

9.65°

Figure 12.1.: Different prisms used in this thesis with their coupling angles.

Three different prisms have been used for different purposes in the system Figure 12.1.
The simplest one is the SF11 prism. It is an equilateral piece of SF11 material of
1cm side length. It is isotropic and allows the red light and the green light to be
coupled. An inconvenience is that it is not possible to look at the interface through
it directly with the camera, but we can still do it indirectly (with a bit of trouble)
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12.3 Mechanical System

by looking at the reflection of the image from one face of the crystal. The index of
the material is nt = 1.75 for red and ng = 1.79 for green.
The second prism is the red calcite. It is made of birefringent material (calcite)
with the extraordinary axis in the vertical direction. (For the green: ne = 1.4882
and no = 1.64246, and for the red: ne = 1.4796 and no = 1.6425.) It can couple
the red light (polarized horizontally), but not the green light (polarized vertically),
and can move the phase of the green light in the resonator, but only if it is brought
very close to the resonator. The prism is made in a trapezoid form to be able to see
the interface through the prism with the camera. And its angle is made to have the
beam leaving the resonator with a Bruster angle to limit losses.
The third prism, the green calcite, is also made of calcite but with the extraordinary
axis on the horizontal plane making an angle of 40◦ with the normal of the coupling
face. It allows the coupling of the green light, but not the red light. It does, however,
still allow us to change the phase of the red light in the resonator Figure 11.7. The
prism is also made in a trapezoid shape to facilitate the alignment of the surfaces.
The different combinations of prisms allow us to choose in which regime of linewidth
we can tune the system (Figure 12.2).
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Figure 12.2.: Available linewidths for green and red in the cavity that the system
can reach (in yellow) with (a) the two calcite prisms , (b) an SF11 prism and a
green calcite prism and (c) a SF11 prism and a red calcite prism. The dots are
experimental data.

12.3. Mechanical System

Lasers: We used two different lasers for studying this resonator. The first is the
Diablo laser as described in the section on the mini-OPO (subsection 7.2.1). It has
the advantage of being powerful and of having the two frequencies that we need for
squeezing (1064nm and 532nm). But changing its frequency produces mode hopping
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Chapter 12 Experimental Methods

which usually collapses the double resonance. We also used a less powerful laser,
the TLB-6721 Velocity diode laser ([65]), which provides only 1064nm light with
only 40mW of power. This makes this laser not suitable for generating squeezing,
but it has the advantage to be very highly and rapidly tunable in frequency (22GHz
of fast tuning and 22nm of slow tuning free from mode hops) The resonator has an
FSR of 18GHz, which makes it hard to align with the Diablo laser, but the large
scan range of the diode laser is really helpful for alignment purposes.

a) b)

c)

L shape

L shape

Resonator
Peltier

Resistors

Thermistor
hole

M4

Figure 12.3.: (a) Dome holding the resonator brass holder (Figure 12.6). (b) Piece
of copper holding a peltier with a square shape adjusted to the dome to be able
to remove the dome and put it back without changing alignment. (c) Schematic
of the base holding all the system with two L shapes to place the prism holders
and to be able to switch between different prisms without changing alignment.

Dome The resonator brass holder is not really convenient to screw and unscrew.
Since it would need realignment all the time, we created a little dome Figure 12.3(a)
in copper with a square shape perfectly adjusted to the square hole of the second
copper piece Figure 12.3(b). It can be removed and replaced without disturbing
too much the alignment, and the curved shape allows easy access to the resonator
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12.3 Mechanical System

with the prism mounts. A similar square hole on a piece of aluminum, which can be
attached to the lathe spindle, allows the resonator to go back and forth between the
optic table and the lathe for polishing and measuring finesse. A little hole is also
made in the dome to be able to add the thermistor to measure the temperature of
the system.

Base The second copper piece Figure 12.3 (b) is holding a peltier (TEC3-2.5 ([67]))
with four plastic screws to the T base Figure 12.3 (c) to allow control of temperature.
The temperature that needs to be reached is around 60°C which is a bit high for
fast tuning with the peltier, so we also added some holes on the side of the T base
Figure 12.3(c) head for adding resistors on each side to have constant heating of
the whole system. If the resistors are used, it is important to use one on each
side, or the gradient of temperature can deform too much the total mount making
it harder to use. On each side of the top of the T base, there are two M4 holes
to fix the clamp that will hold the HV electrode. The two sides of the T base
also have an L shape imprint. There are small grooves (1mm) in the shape of an
L to be able to remove the prism holders and put them back without changing
alignment. It is pretty reliable, I usually don’t need to realign the prisms when
swapping to another mount already pre-aligned. For moving the prisms, we need
precise positioning, but also long range translation for being able to remove one
prism without damaging the whole system. We are using a translation stage (M-461
([65]) ) with a precision adjustment screw which gives a few centimeters of coarse
translation and fine translation. The translation stages are directly screwed onto
the base using the L shapes to position them in a repeatable way. It is useful to
have three of them at least with a prism mount and a prism on them to be able to
switch from one to another without changing any alignment.

Prisms Holder The prism is held at the limit of the platform in aluminum Figure 12.4
(c)). The top surface of the platform has three M4 screw holes to be able to fix a
clamp somewhere to be able to hold the prism with the coupling face a bit beyond
the limit of the platform. (It makes the contact with the resonator easier.) It is a
simple design, but it allows us to hold any kind of prism, and it gives less chance
to have something in the path of the beam of one of the prisms, or to be in front
of the point that we want to observe with the microscope or the white light inter-
ferometer. The three holes that we can see in the schematic Figure 12.4 (c)) are
grooves for screws to be able to fix the aluminum piece to the platform of the rota-
tion stage (Figure 12.4 (b)). There are also two holes horizontally which go through
the aluminum with a very small quantity of material left (around 1mm for each
flexure lines). It allows the platform to bend elastically at those points and allows
a small horizontal translation of all the top part of the platform. This movement
is done by a piezo (Figure 12.4 (d)) with an M9 screw step on its side, fixed to the
rotation stage (Figure 12.4 (b) and pushing the platform. For holding the platform,
we used two systems: a Radyan Dyes mirror holder (Figure 12.4 (a)) ([66]) with an
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M4
M4

M4

Flexure lines

Place for

 the prism

a)
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Resonator

High Voltage

Electrode

Figure 12.4.: (a) Image of the SqOPO with the two different prism holders. (b)
Schematic of the custom prism holder with the two flexure lines. (c) Platform
holding the prism with a clamp. (d) Piezo (FPSt 150/4/20 M8 ([70])) used in the
experiment.

L platform with three screw holes for fixing the platform and a custom M9 screw
hole for holding the piezo. It is a compact system, but the strings of this mount are
not really stiff which makes the system less stable. We also used a custom flexure
stage (Figure 12.4 (b)) using the same principal as the platform, but with only one
flexure line for each rotation and some M4 screws pushing in one direction or the
other to control the angle. The prism and the resonator faces need to be very well
aligned to allow us to be as close as possible. So by using one screw on each side
of a flexure line and by unscrewing a bit one and tightening the other, the rotation
stage bends and turns a bit the prism in one direction. With the two flexure lines,
we have the two degrees of freedom that we need. The rotation stage is fixed to the
translation ((Figure 12.4 (b)) ) stage by two M6 screws in the middle, and because
the two horizontal flat surfaces move and may contact the screw’s head, the system
needs a big empty area at this level to provide against this problem. Similarly for
the piezo, the vertical plane on the right contains a M9 screw hole, and the other
plane has a hole big enough to allow movement of the core of the piezo during the
rotation of the stage without colliding the piezo. This configuration is stable enough
that I don’t really need any feedback for the position of the prisms compared to the
resonator, we observe a drift in the position (and so, in the coupling) only after
several minutes.

140



12.4 High Voltage

12.4. High Voltage

The voltage applied to the resonator should be done only with very low current,
but the voltage is high enough (600V) to need to be careful with the electrodes.
We used a copper wire and a plastic M4 screw to isolate the positive electrode. We
heated the wire with a soldering iron, and melted the middle of the screw with it by
passing it through. The wire exceeded the screw at the end with just enough length
to go between the two prisms and when the wire cooled down, the plastic stuck to
it very well, giving a very good insulation. The wire and the screw are recovered by
some heat shrink gain to avoid electrical contact, and I screwed the plastic screw
to a clamp (PM3 ([67]) ) directly fixed to the T base M4 holes. There are two M4
holes on the T base on each side, because the clamp is usually exactly in the way of
one of the beams, which can be problematic. I solved this difficulty by gluing a tiny
mirror to the rod holding the clamp to get the light in reflection Figure 12.4 (a))).

12.5. Alignment

12.5.1. How to Align Prisms and Resonators

The coupling between the prism and the resonator is done by frustrated internal
reflection. It requires both media to be very close to each other (few hundreds of
nanometers) at the point where the beam is reflected. The two surfaces are more
or less flat, so to be able to make them that close, it is necessary to have them as
parallel as possible. Moreover, if the surfaces are not parallel at the reflecting point,
one side of the beam will experience a bigger distance than the other one, making
the coupling bigger on one side comparing to the other, creating a mode with some
TEM01 components.
We first used a microscope (Figure 12.6 (b)) attached to a camera on a flexible arm
to be able to look at the surfaces from the side and from the top. It is a good
first way to align the prism but it is usually not enough. Moreover when no light
is aligned yet in the resonator, there is no real way to know if the prism and the
resonator are contacting and starting to damage each other, or if they are still too far
from each other to see any coupling. It makes the first alignment of the beam very
frustrating. A very good solution is to use white light interferometry and observe
newton rings.
Depending on the prisms that are in place and how many of them, the illumination
of the surface will be different, but mostly we need to have some light with low
coherence sent perpendicularly to the surfaces, and imaging it with a lens. The
calcite prisms have a flat back surface, so some light can be send through it and
with a 50 cm lens, we can image the surface to a camera. We can sent the light
through the resonator from the other side, or from the same side using a Beam
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SF11 or 
red Calcite

Calcite
(red or green)

Piezo

λ/2
λ/2

a)

b)

c)

Screen

SqOPO

Figure 12.5.: Schematic of the experiment. For both sides of the SqOPO resonator,
it is possible to choose which prism to use. The Diablo laser is sending a green
beam (the pump at 532nm) to the green calcite prism in the bottom. With a
SF11 prism on the top, the green light is coupled out and sent to a screen which
allows to observe the mode during locking. The laser also generates some red light
(sub-harmonic at 1064nm) that we divide in three. (a) is aligned to the SF11 or
the red calcite on top to observe double resonance, (b) is aligned to the red calcite
prism in the bottom for alignment of the homodyne with the light going out of
the top prism, and (c) is the LO of the local oscillator. The two calcite prisms in
the bottom can be switched without disturbing the alignment of the homodyne,
but not the top ones.

splitter before the camera. The SF11 prism doesn’t have any flat back surface, but
it is equilateral, so the light going through one surface with a normal incidence, will
be reflected on the next side inside the prism, and go through the last surface with
a normal incidence. In this way we can observe the surfaces or illuminate them
through the side of the prism. The microscope is just a camera ([67]) connected to
a lens tube (SM1L20 [67] ) and a 50 cm lens. This system is fixed on a translation
stage that allows to mostly image one face of the resonator or the other. In practice,
I image both faces at the same time to be able to see how close the prisms are, to
make sure that I am not contacting too much which would damage the surfaces. I
can also observe how good is the alignment by looking at the interference between
the two surfaces. At the beginning of the alignment, I mostly see lines, but by
turning the prism rotation stages accordingly, I can align the surfaces to a very
good parallelism. The limited factors are the alignment of the illumination and the
microscope, that can make you miss where the contour of the resonator surface are,
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a) b)

Figure 12.6.: (a) Image of the resonator from the side with the camera on a mi-
croscope tube (InfiniProbe ([64])) (b).

and so where is the middle point where the light is reflected. The surface of the
resonator is curved, so we can see rings, but it is not completely obvious where
should be the center (it should be where the light is reflected). The light that I used
is a SLG150T-WT which gives 3 different illumination colors, I use the red color
which allows to start to see rings after a few tenth of microns of distance, then I
usually switch to green which gives only a few rings visible before contact.
Even after alignment, the white light is always turned on to monitor the distance
between the surfaces. When there are no peaks on the oscilloscope, it is important
to still have an idea of how close the prism and the resonator are.

12.5.2. How to Align the Beam with Contra-Propagating Beams

When the prisms are aligned, the alignment of the beam can start. For the first
alignment of a beam, it helps a lot to have two prisms that can couple the light that
we intend to align. Even if the second prism needs to be a prism that doesn’t couple
this light and is already aligned, it is interesting to swap it against another one. The
L shape on the T base allows us to switch between prisms almost without realigning
anything, and this will make it easy to return later to another configuration. I
used a collimated beam with the correct polarization and the waist corresponding
to the lens that I intend to use as coupler, and without the coupling lens, I align the
beam as much as possible on the face of the prism with the height at the level of the
resonator with the angle that the Fresnel calculation (section 12.2) gives, and I make
sure that the beam is as horizontal as possible. I use the camera and the white light
to place the prism that I am aligning in contact with the resonator and the other one
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Figure 12.7.: (a-b) Schematic of the white light interferometry to observe the align-
ment between the prisms and the resonator, (a) with illumination from the SF11,
and (b) using a beam splitter for the illumination. (c) Image of the Newton rings
with the camera.

far enough not to have any coupling (a few fringes of the white light are enough). I
make sure that the high voltage is scanning ~600V at a speed around ~1Hz. I put
the coupling lens in the path of the beam a bit too far from the resonator to have
a spot big enough to simplify the first alignment.
With enough input light, and with the exposure time of the camera (of the white
light interferometer) long enough, I should be able to see the beam spot on the
camera (the camera can see close infrared (IR)). Then I usually move around the
coupling lens by hand to move the light spot point, moving up and down a bit if I
need to. When the light spot is close enough to the contact point, all the resonators
start to shine with some moving scattering light everywhere. With the IR card, we
can observe the reflected beam at the other end of the resonator, it has usually a
very strange shape and usually is moving. I send the reflected beam to a detector
with a large window with a lens, and observe the signal with an oscilloscope. At
this point I may just see some weak oscillations. I can very slightly increase the
distance between the prism and the resonator to increase its finesse and play a bit
with the lens, bringing it slowly closer to the resonator moving it side to side by
hand, still adjusting the position of the prism with the piezo when I need to. At
this point I usually can see some small cavity peaks in reflection. Then I get closer
with the second prism until I can see some light going out the other way. It will
be a compromise between a high finesse cavity with the two prisms far enough but
almost no light exiting, or enough light exiting but a shape of the beam hard to
interpret. Seeing the output beam makes it easier to align to a more spherical shape
and find the TEM00. It is also sometimes a good idea to align rapidly another beam
in the other direction (from the other prism) to have the TEM00 going out from the
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prism that we want to align, and put all the optics to have the beam nicely in the
center, and perfectly collimated to get the best coupling possible.

12.5.3. Temperature Tuning of the Crystal

To control the temperature of the crystal, we have two resistances for the coarse
tuning and a peltier for the fine tuning. The two resistances are connected to
the same power supply to heat the system close to the temperature expected in a
constant way. A thermistor on the dome allows us to read the temperature precisely
and send its fluctuation to a PID controller (LFI-3751 ([68]) ) to feed it back to the
peltier. In that way we can obtain a sensibility of a millidegree. To get the optimal
temperature for squeezing, we generate second harmonic generation (SHG) with a
powerful 1064nm beam in the resonator, and look for the best efficiency temperature.
This method has some inconvenience that SHG will vary with the coupling of the
prisms, and the distances will change with the change of temperature. The solution
was to align a beam on the side of the resonator and generate SHG in single pass
through the side. In this way we can get the maximum coupling temperature for
the crystal. Another issue for optimal temperature is the fact that the thermistor
is still far from the resonator itself, and green light is absorbed significantly in the
resonator changing the local temperature in the crystal. So for the same temperature
measured by the thermistor, different green light powers in the resonator can change
in an important way the real temperature in the crystal.

12.5.4. Homodyne Alignment

To align correctly the homodyne detection, it is necessary to have a beam of light
exiting the resonator in the same mode as the expected squeezed mode. It means
that we need two prisms able to couple the red light. One will be the out coupler
for the squeezing (the SF11or the red calcite), the other one is a red calcite or a
SF11 to couple some red light inside the resonator. After alignment, it is obviously
not possible to move the out coupler prism anymore, but the input coupler can be
later switched to another prism more ideal for coupling the green light. I usually
lock the resonator with the HV using PDH locking system (with the modulation
at 12MHz of the Diablo laser) to have some continuous light leaving the resonator.
Then, in the same way as the miniOPO in the previous chapter (subsection 7.2.5),
the beam is mixed with a strong beam, the Local Oscillator (LO) in a NPBS. A
λ/2 on the path coming from the resonator allows us to make sure that the beam
splitter is perfectly 50/50, and another λ/2 on the LO path allows us to match the
two polarizations. The beam coming from the resonator is still slightly elliptical for
the SF11 and very elliptical for the red calcite which makes the homodyne harder to
align, and repetitive polishing on this specific crystal may have changed the shape
of the resonator leading to a beam not necessarily perfectly Gaussian anymore.
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Figure 12.8.: Second harmonic generation with a beam sent through the resonator
by the side (there is no cavity involved, the beam just goes through the bulk
material) fitted by sinc2(α(T − T0) with α = 0.19°C−1.

Moreover, the SF11 doesn’t allow an easy access to the face making the alignment
between the prism and the resonator harder. If the two faces are not parallel the
beam will experience a different coupling for different positions of the beam leading
to a TEM01 component. All these things should explain why we obtain only 84%
of visibility in the homodyne for the measurement with the SF11 and 85% for the
measurement with the red calcite. But it has been recorded in a similar resonator
in Lithium Niobate with a SF11 prism a coupling of 90% ([73]), so it should be
possible to design another resonator with a better geometry and using a prism in
a trapezoid shape to be able to have perfectly parallel surfaces and a better mode,
allowing us to obtain much better visibility in the homodyne.

12.5.5. Prism Switching and alignment for Squeezing

When the homodyne is aligned with the SF11 prism or the red calcite as input
coupler prism, it is necessary to switch to a prism that can couple the green light
and doesn’t perturb the squeezed light . The SF11 could couple the green light, but
the characteristic distance to couple the green light is slightly smaller than the one
to couple red leading to a finesse too small for the red to have squeezing and some
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leaking of the squeezing, so we need to switch it for the green calcite. The green
calcite should have been previously aligned properly to facilitate the alignment. The
L shape groove on the base (section 12.3) allows us to remove the translation stage
with the red calcite and switch it to the one with the green calcite without changing
too much the alignment. When the prism is contacted with the resonator (monitored
with the white light interferometer), the green beam should already be aligned or
very close to it. When the green TEM00 is identified and optimized, it is possible
to start the measurement of the squeezing.

12.6. Lock and Self Locking

HV locking: The system can be locked in frequency with a PDH locking ([77])
feedback to the HV electrode. We usually use a phase modulator in the path of
the beam (red or green), or we use the modulation already coming from the laser
at 12MHz. The light in reflection from the resonator is collected by a detector, and
the AC signal from it is demodulated at the same frequency with a mixer and a low
pass filter to obtain the error signal. This signal is more or less the derivative of the
reflecting power vs the frequency, it allows us to know in real time on which part of
the peak the cavity is located and to be able to correct for it. This signal is sent to
an FPGA controlled by a Labview program made by Seiji Armstrong (Armstrong
[71]) to create the lock. Two signals are generated from the error signal: one is just
a rescaling of the first one (proportional gain), and the other one is an integration
of the error signal (integral gain). The sum of these two signals are sent back in real
time to the HV amplifier, then to the HV electrode of the resonator to correct any
little fluctuations from resonance. The Labview controller (NI PXI 1042Q, NI PXI
7833R) allows us to control how much of integral and proportional gain to use to
optimize the lock.
This locking system is working well for the red, even with quite high power, as long
as there is no SHG generated, and it also works well with green light at low power
(few mW). In these regimes, it is even possible to change the position of the prisms
relatively far without losing the lock. At high green power, the light is absorbed
by the crystal and the temperature is locally increasing making the voltage locking
point moves to the limits of the amplifier. It is possible to increase the performance
of the lock by sending a copy of the error signal to the temperature of the laser to
be able to follow this drift, but it doesn’t really help at very high power, the laser
eventually meets a mode hop and the resonator loses the lock. Second harmonic
generation also usually makes the locking very unstable. The green light generated
disturbs the system leading to some oscillatory regimes. Some more studies are
needed to be able to get a stable second harmonic generation with such a system.

Self Locking Lithium Niobate has a significant absorption coefficient for green
light, moreover, the system has four waists where the light is focused. It induces
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strong thermal effects susceptible to affect the behavior of the resonator and makes
the locking of the system difficult. But it can also allow us to use self locking ([74]).
Self locking was also used in the previous chapter about the miniOPO. I refer the
reader to it for a detailed explanation of self locking (subsection 7.5.2). During the
scan, thermal absorption will broaden the linewidth in one direction of the scan,
and narrow it in the other direction. This effect is enhanced by increasing the power
of the field, or by decreasing the scan speed. The power of the beam increases the
effect in a continuous way, but decreasing the speed of the scan seems more like
a threshold behavior where nothing happens until the scan speed is slowing down
enough and the self lock effect appears suddenly. (Figure 12.9) We use this effect to
lock the system at high green power (in the condition for squeezing),.We move the
frequency of the laser in one direction to push the resonance of the resonator until
the power of the green is high enough. We are in self locking condition. This regime
is stable enough to change the position of all the prisms and to measure squeezing
without perturbing the lock. This lock is only sensitive to low frequency and won’t
affect high frequencies. It could be imagined to be combined with a high frequency
lock made with HV using the DC power with an high pass filter as an error signal,
but this amelioration hasn’t been implemented yet in the experiment.
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Figure 12.9.: (a) Self locking in function of the speed of the scan (on the left for
the positive slope, on the right for the negative slope). (b) Self locking in function
of the power of the input beam (renormalized). (c) Frequency noise response
measured with a network analyzer by sending noise in the piezo of the laser and
by measuring the response of an error signal made with a phase modulation on
the beam.
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Figure 12.10.: (a-c) Effect of self locking on the peaks during the scan of applied
voltage. (a) is with low power and relatively good alignment. By increasing power
from (a) to (c), more peaks can be noticed and chaotic behavior starts to appear.
(d) Self locking and self anti-locking in the same scan slope during the scan of high
voltage meaning that there is a change of sign of the index thermal fluctuation
coefficient which may means that the effect is actually not thermal.

Self Locking Limitations An interesting thing is that the self locking behavior
with the applied voltage is different at high voltage and low voltage (Figure 12.10(d)).
As explained in subsection 7.5.2, if the index thermal fluctuation coefficient is always
the same, for one particular scan speed, we should always observe a broadening of
the linewidth or a reduction of it, but not both at the same time. In our system, if
the scan is large enough to observe two peaks, we observe the two effects happening
on the same scan slope (Figure 12.10 (d)). It means that the change of index with
the high voltage and the power has a non linear component. It explains certainly
the great difficulty to lock the green light with the high voltage with high green
power.
Another limitation is about the alignment. The green alignment is made at low
power and can easily reach a good visibility (80% of visibility has been obtained
with the green light), but when the power is increased, the peak behaviors change
completely (Figure 12.10(a-c)), and some secondary modes start to be enhanced. It
is really useful to have a prism that out couples the green to be able to see the shape
of the mode and to be able to self lock on the TEM00 and not on other things.

Distance lock: Changing the coupling with prism distance is relatively stable,
but it still fluctuates in the long term. Moreover, fluctuation of the distance due
to acoustic noises could in principle be fed to the resonator, resulting in eventual
amplitude and phase noise after the resonator. Far from critical coupling, it is
possible to simply use the reflection power as a measure of the distance and feed it
back in the control of the distance to enhance the stability, but close to the critically
coupling distance, the coupling reaches an extrema, and the reflected power can’t
be used anymore as an error signal to increase stability. Nevertheless, it is still
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possible to create an error signal in distance on the critical coupling point ([75]).
For the cavity at resonance, the reflection intensity Iref in function of the reflectivity
coefficient r1 of the first coupler and the incident intensity Iinc is given by:

Iref = Iinc

(
r1 − (1− Lm) (1− L)

1− r1 (1− L)

)2

with L the losses in the resonator and Lm the losses at the input mirror. The
important point is that there is a change of sign from r1 < (1− Lm) (1− L) (un-
der coupling) to r > (1− Lm) (1− L) (over coupling), so by modulating the input
beam in amplitude, and by demodulating the signal from the detector in reflec-
tion, it is possible to create an error signal for the distance to the critical coupling
point r = (1− Lm) (1− L).(Figure 12.11 (a)) We demonstrate (Figure 12.11 (b))
an improvement of the stability by sending some noise to the distance controller,
and measuring the response of the resonator in frequency with this error signal feed
back to the distance at the critical coupling.
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Figure 12.11.: (a) Error signal in distance (blue) during the scan of the prism
distance (yellow) with the cavity locked in frequency by a standard PDH locking
fed back to the applied voltage. (Red) gives the coupling in the resonator. This
error signal is made by sending an amplitude modulation on the beam and by
demodulating the signal in reflection.

This method allows us to enhance stability of the system, but in practice the prisms
are stable enough for most experiments. This locking system demonstrated here
hasn’t been used for the measurement of squeezing made later in this thesis.
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13. Results

13.1. Non Linearity

13.1.1. SHG and De-amplification

Before generating squeezing, a few different intermediate results can be achieved to
characterize the non linearity in the resonator. The first one is to create second
harmonic generation. By sending some light at 1064nm in the resonator (a few
milliwatts) through the SF11 and by measuring the green light leaving the resonator
by the green calcite during the scanning of the applied voltage, I can measure the
conversion efficiency of the green light (Figure 13.1). It is theoretically possible to
tune the coupling of the prisms to maximize the conversion efficiency for any input
power of red ([72]). But in practice the green generation immediately changes the
characteristic of the resonator related to electro-optic tuning, making the optimal
point very hard to find and moving with time (Figure 12.10). We were able to
demonstrate a conversion efficiency of 37% during the scan (Figure 13.1). A better
result would necessitate active compensation of the prism distances. It is possible to
lock the red light to the resonator with the applied voltage, but the green generation
becomes completely chaotic and starts to oscillate. More work would need to be done
in this direction to be able to generate reasonable second harmonic with this system.
A second thing that can be observed before doing squeezing is down conversion.
The high possible finesse for red and green in this system allows us to reach over-
threshold behavior for a green power∼ 10mW , so by sending enough green light in
the resonator, we can observe red light appearing in the detector (Figure 13.1).

13.1.2. Squeezing

To obtain squeezing, we use an SF11 prism and a calcite prism as output coupler
already aligned to the homodyne (subsection 12.5.4) and a green calcite prism to
couple the green light (pump). We also align some red light in the output coupler
going into the resonator, then into the homodyne detection, to be able to notice the
double resonance. This light doesn’t need to be perfectly well aligned and will be
blocked during the vacuum squeezing measurement.
We scan the applied voltage on the resonator to see the peaks of the sub-harmonic
(red) and pump. The temperature of the crystal should be already close to the phase
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Figure 13.1.: (a)SHG (green) during scan of the applied voltage with 37% of effi-
ciency. Some light at 1064nm (red) is sent to the resonator with the SF11, the
green light at 532nm generated is observed with the green calcite prism. (b1-
b3) Down conversion by sending some green light (green) and measuring the red
light (red) generated for different powers of green during the scan of the applied
voltage.

matching temperature (subsection 12.5.3). We tune it a little bit or we change
slightly the frequency of the laser (by changing its temperature) to have the two
peaks at low applied voltage (during the scan) and very close to each other. Then
we stop the applied voltage and change the frequency of the laser in the correct
direction to obtain self locking of the pump. It is important to self lock to the
correct pump mode (TEM00) because a lot of modes are enhanced by self locking.
The SF11 as a output coupler is easier to use because it is possible to see the pump
mode leaving from it. When a wrong mode is self locked, I block the beam suddenly,
to drop the lock of this particular mode and move a bit more the frequency to reach
the next mode.
When the TEM00 mode of the pump is obtained, it is still possible to move slowly
up and down the frequency of the laser to reach roughly the resonance of the red
light. Then by adjusting the position of the green calcite prism, I can control the
phase of the sub-harmonic and place it to resonance.
Then I block the red light coming to the resonator and observe the homodyne signal
with a spectrum analyzer when the phase of the LO is scanned (Figure 13.2). I
usually observe oscillation of the noise. By blocking the input signal beam coming
to the homodyne, I can measure the shot noise level which is usually higher than
the minimum of the noise oscillation. The difference between the shot noise and the
minimum of the oscillation is the squeezing (Figure 13.2).
With the SF11 as an output coupler, we demonstrated 1.4±0.1dB (2.5dB corrected)
of squeezing at a sideband of 3Mhz and 4dB of anti-squeezing. The finesse of the
cavity for the sub-harmonic is around 50, and around 10 for the pump, and the
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pump power used is around 200mW . The correction of the squeezing takes into
account the 84% of visibility of the homodyne detection, 7.4% of losses due to the
squeezed beam leaving the SF11 prism through a non coated face, 1.6% of losses due
to the various optics and 98% of quantum efficiency of the detectors. No correction
is made for the intra cavity losses due to scattering, absorption or leakage through
the green calcite prism.
With the red calcite as an output coupler, we demonstrated 2.6 ± 0.5dB (4.7dB
corrected) of squeezing and 5dB of anti-squeezing. The finesse of the cavity for the
sub-harmonic is around 100, and for the pump around 200, and the pump power
is around 10mW. The correction of the squeezing takes into account the 85% of
visibility of the homodyne detection, 1.6% of losses due to the various optics and
98% of quantum efficiency of the detectors. The squeezing leaves the red calcite
prism with a Brewster’s angle so no losses are considered due to the second face of
the prism.
The small size of the resonator also allows the squeezing to be relatively high band-
width. The FSR of the system is 19GHz and the finesse of the resonator in red
during squeezing is around 100, which should correspond to a squeezing bandwidth
around 190MHz. With the SF11 output coupler, we demonstrated 0.28 ± 0.08dB
(0.8dB corrected) of vacuum squeezing at 100MHz and 0.16 ± 0.018dB (0.5dB
corrected) of vacuum squeezing at 150MHz.
The amount of squeezing observed is still quite modest, but a few known inefficiencies
in our system can be redressed. The relatively low visibility of the system can be
mostly explained by excessive polishing of this specific resonator, astigmatism of
the beam and misalignment of the prism and the resonator. A trapezoid shape for
the prism, a better observation system for the white light interferometry and a new
geometry allowing round beams to leave the resonator should help a lot to address
these points.
With the SF11 output coupler The majority of the losses correspond to some leakage
of the squeezed light in the green calcite coupler. To obtain a good escape efficiency,
it is necessary to have the squeezing prism coupler (SF11) as close as possible, but
it is still also necessary to have enough pump power in the system. The pump is
leaking out by the SF11 coupler, so to build enough pump power it is necessary to
make the green calcite prism also closer (because the power of the pump is limited
by the laser) which makes the losses for the squeezing much larger. The total
correction of the losses considering squeezing and anti-squeezing at 3MHz is 7.4dB
of squeezing generated in the cavity with 66% of total losses. By removing the losses
already considered, it means that around 47% of losses which should correspond to
the absorption of the resonator, the scattering from the faces and the leakage from
the green calcite. It is possible to obtain a linewidth of 9MHz at 1064nm for this
resonator which corresponds to 0.30% of losses by round trip and so 3% of losses
only for a considered finesse of 100. It means that 45% of losses are due to either
GRIIRA effects ([84]), the coupling from the resonator to the SF11 or should appear

153



Chapter 13 Results

because of the losses due to the green calcite being too close.
With the red calcite prism output coupler the total correction of all losses corre-
sponds to a total of 6.7dB of squeezing and anti-squeezing generated in the cavity
with 42% of total losses. After removing the losses already considered, we get 18%
of losses. By removing the 3% of losses due to the absorption we get 15% of losses
which are, one more time, due to either GRIIRA effects or the coupling from the
resonator to the red calcite prism.
In the two cases the losses in the output coupling prism can also be due to a mis-
alignment of the vertical axis of the resonator and the axis of the extraordinary axis
of the crystal.

13.1.3. Conclusion

We investigated in this part of the thesis a very stable, highly tunable and compact
system and demonstrated the feasibility of producing quantum states of light with
it. We presented the first demonstration of vacuum squeezing from a monolithic res-
onator using only total internal reflection. The resonator is coating-free, and allows
independent tunable coupling rates between the pump and the squeezed beam, and
the frequency stability can be assured passively with self locking of the resonator to
the pump field.
The amount of squeezing obtained up until now is still quite low, but the technique
with this resonator is still young and a lot of improvements can be made. A more
careful design in the curvature of the resonator and a better alignment of the couplers
should allow a much better mode to be produced making the measurement simpler,
and a more careful control of the axis of the crystals should reduce the amount of
losses in the resonator. With all these improvements and some more time spent
on this system, it should be possible to achieve the same performance as similar
systems in free space using bulk crystals ([91]) in a potentially more compact way.
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A. Fourier Transform of the
Polarisation Field versus the
Susceptibility

The polarization at the second order is given by:

Pi(t) = ε0

∫
χ1
ij(t− τ)Ej(τ)d︸ ︷︷ ︸

P 1(t)

+ ε0

∫∫
χ2
ijk(t− τ1, t− τ2)Ej(τ1)Ek(τ2)dτ1dτ2︸ ︷︷ ︸

P 2(t)

The first term P 1 doesn’t imply any particular difficulty, it is a convolution of two
terms we have:

P 1(ω) = χ1
ij(ω)Ej(ω)

For the second order, we use the Fourier development of the susceptibility:

P 2(t) = ε0

∫∫ ∫∫
χ2
ijk(ω1, ω2) exp(iω1(t−τ1)) exp(iω2(t−τ2))Ej(τ1)Ek(τ2)dτ1dτ2dω1dω2,

P 2(t) = ε0

∫∫ ∫∫
χ2
ijk(ω1, ω2) exp(i(ω1+ω2)t)Ej(τ1) exp(−iω1τ1)dτ1Ek(τ2) exp(−iω2τ2)dτ2dω1dω2.

We recognize the Fourier transform of Ej and Ek:

P 2(t) = ε0

∫∫
χ2
ijk(ω1, ω2) exp(i(ω1 + ω2)t)Ej(ω1)Ek(ω2)dω1dω2.

By using ω = ω1 + ω2, we get

P 2(t) = ε0

∫∫
χ2
ijk(ω1, ω − ω1) exp(i(ω)t)Ej(ω1)Ek(ω − ω1)dω1dω.
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Which is the Fourier decomposition of P 2(t):

P 2(ω) = ε0

∫
χ2
ijk(ω1, ω − ω1)Ej(ω1)Ek(ω − ω1))dω1.

The energy density associated to the electric field is given by:

U = 1
2 〈D.E〉

We can consider independent the energy due to the linear field at the first order Up1
and the non linear field at the second order Up2.
For the linear field, the expression of the electric displacement is given by: Di(t) =
ε0
∫

(δij + χ1
ij(ω))Ej(ω)eiωtdω, which give the energy

U1 = ε0
2

∫
E∗i (ω).Ei(ω)dω + ε0

2

∫
E∗i (ω)χ1

ij(ω)Ej(ω)dω.

It can be considered as the energy density of the field in the vacuum, plus the energy
corresponding to the polarization of the medium.
If we consider only the energy due to the polarization of the medium and we consider
independent the energy due to the linear field at the first order Up1

Up1 = ε0
2

∫
E∗i (ω)χ1

ij(ω)Ej(ω)dω.

This value is real so if we subtract it by its conjugate:

Up1 − U∗p1 = 0 = ε0
2

∫ (
E∗i (ω)χ1

ij(ω)Ej(ω)− Ei(ω)χ1∗
ij (ω)E∗j (ω)

)
dω

We can inverse the coefficient i and j in the second expression:

∫
E∗i (ω)Ej(ω)

(
χ1
ij(ω)− χ1∗

ji (ω)
)
dω = 0

For every value E(ω) it imply:

χ1
ij(ω) = χ1∗

ji (ω) for every ω.
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Because χ1
ij(ω) is real,

χ1
ij(ω) = χ1

ji(ω).

For the second order, we get:

Up2 = ε0
2

∫∫
E∗i (ω1 + ω2)χ2

ijk(ω1, ω2)Ej(ω1)Ej(ω2)dω1dω2.

The order of the frequencies and the coefficients of the susceptibility are arbitrary,
so we have invariance by permutating them:

χ2
ijk(ω1, ω2) = χ2

jik(ω1 + ω2,−ω2) = χ2
kij(ω1 + ω2,−ω1).
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B. Index calculation for the green
calcite coupler in p-polarization
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Figure B.1.: (a) Schematic of the coupling media. On the left the resonator, in
the middle the gap of air, and on the right one of the prism couplers. (b) The
three different prisms that can be used as the third medium. An isotropic prism
in SF11, or two anisotropic prisms in calcite with the extraordinary axis allowing
us to couple only the red light, or only the green light.

In Chapter (Figure 11.1) we said that the wave vector in the prism is given by:

kt =

 kix
0
ktz



where kix is the x component of the incident wave vector which is real and known,
and ktz =

(
(ntk0)2 − (kix)2

)1/2
with nt being the refractive index of the prism and

k0 = ω
c
. The prism considered here is the green prism, it has the extraordinary

axis in the horizontal plan (ex,ez) making an angle θ = 40° with the direction ez
(green calcite prism). We can use the Fresnel anisotropic equation in the axis of the
anisotropy of the prism:

k2
0 = k2

z′

n2
o

+ k2
x′

n2
e

(B.1)
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where no and ne are the ordinary and extraordinary indices of the prism, and
(kx′ , ky′ , kz′) the coordinates of the wave vector kt in the reference frame of the
anisotropic axis of the prism. Those coordinates can be transformed to the refer-
ence frame of the problem by applying kx′ = ktx cos(θ) − ktz sin(θ), ky′ = kty = 0,
and kz′ = ktz cos(θ) + ktx sin(θ), with θ being the angle between the extraordinary
axis and ex. Eq. B.1 becomes:

k2
0 = (ktz cos(θ) + ktx sin(θ))2

n2
o

+ (ktx cos(θ)− ktz sin(θ))2

n2
e

k2
0 = k2

tz

(
cos(θ)
n2
o

+ sin(θ)
n2
e

)
+k2

tx

(
cos(θ)
n2
e

+ sin(θ)
n2
o

)
+2ktzktx cos(θ) sin(θ)

(
1
n2
o

− 1
n2
e

)

k2
0 = k2

tz

n2
p1

+ k2
tx

n2
p2

+ 2ktzktx
γ

. (B.2)

where 1
n2
p1

= cos(θ)
n2
o

+ sin(θ)
n2
e
, 1
n2
p2

= cos(θ)
n2
e

+ sin(θ)
n2
o

and 1
γ

= cos(θ) sin(θ)
(

1
n2
o
− 1

n2
e

)
. For

θ = 40°, and no = 1.64246 and ne = 1.47964, the values for the light at 1064nm,
we obtain: np1 = 1.5689, np2 = 1.5408 and γ = −23.595. Eq. B.2 is a second degree
equation in ktz.

ktz = −
kixn

2
p1

γ
± n2

p1∆1/2

where ∆ = k2
0

n2
p1
−k2

ix

(
1

n2
p1n

2
p2
− 1

γ2

)
. For the light at 1064nm ∆ < 0, so ktzis complex.

The beam is evanescent and decreases in amplitude so the value to consider is the
one with a positive imaginary part: ktz = −kixn

2
p1

γ
+ n2

p1∆1/2.

It is interesting to note that the value ktp = ktz
n2
p1

+ kix
γ

is purely imaginary.
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