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Abstract

The non-interacting and high-speed nature of light makes it an ideal carrier of information
that is essential for transmission of quantum information. Indeed, many proposals and
demonstrations of quantum cryptography rely on the use of fibre-optic networks. Con-
struction of a memory that can store light and preserve its quantum properties will be
useful in a range of quantum information systems such as secure quantum communication
and quantum computation. This is why a quantum memory for light is a remarkable
objective.

The key to quantum memory is to store the probability amplitude of the possible out-
comes of measurement but without measurement. An important criterion for a quantum
memory is that the efficiency of the recall must exceed 50%. This is the crucial no-cloning
limit for security of information, since it guarantees that nobody can access the infor-
mation by copying it. This benchmark is important because any kind of deterministic
amplification of quantum information is fundamentally impossible. On-demand retrieval
of information and ability to controllably manipulate the quantum information are also
important for quantum applications.

When light is absorbed by atoms, it is actually possible to reverse the absorption
process. In our memory system: light is absorbed by an ensemble of atoms and, using
careful conditioning and control, we can cause the stored light to be regenerated and
released at a later time. This is done by applying a gradient of magnetic field along the
atomic ensemble that is the basis for our optical memory. To recall the light we flip the
sign of the gradient field. This kind of reversible absorption is called photon echo, hence
the name of our scheme: The Gradient Echo Memory (GEM). This simple protocol is used
in our experiment and can be applied to a range of different atomic systems.

We have extended the GEM protocol and experimentally implemented a memory using
three-level atoms. We used an off-the-shelf Rb vapour cell operating above room temper-
ature as the memory medium. In this realisation, we broke the efficiency record with 87%
recall of the input light pulse. Moreover, through complete state tomography of coherent
states we have demonstrated the ability of our memory to noiselessly store quantum states
of light.

We have also demonstrated that the memory can store a string of pulses and then recall
the pulses ondemand in arbitrary order allowing re-sequencing of the stored information.
Furthermore, we have shown that pulses could be time-compressed, time-stretched or
split into multiple smaller pulses and selectively recalled in several pieces. This technique
enables the construction of an optical random-access memory for quantum information.
Moreover, the scheme to manipulate the spectral properties of optical data, stored inside
the memory, has been introduced. We have also investigated the possibility of obtain-
ing large nonlinear phase shifts between single photons inside the memory. Such strong
interactions can be used for the implementation of universal quantum gates.
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Chapter 1

Introduction and Motivation

“I wanted to rock back and forth between myth and distant futures, yesterday, today, and
tomorrow. It felt a bit like prophecy and a bit like storytelling”.

George Murray (poet)

Storing information has been important to humanity since the time when the most
sophisticated artificial memory was a cave wall. The evolution of human intelligence in-
creases the need for more sophisticated memories every day. Nowadays we are surrounded
by storage devices, such as hard disks, DVDs and phones. Information in all of our digital
technology is encoded in a binary format (0s and 1s).

The non-interacting and high-speed nature of light makes it an ideal carrier of informa-
tion. The bandwidth and versatility of optical devices has revolutionised communication
in the past decades. In conventional optical information systems, data storage is not a
problem. One can just detect the light and store the information in an electronic memory.

There is, however, a new frontier emerging: quantum information technology. Quan-
tum information technology promises vastly more powerful computing and perfectly secure
cryptographic systems, but there are complications. Principal amongst these is that one
cannot record quantum information in a regular memory. A quantum memory must pre-
serve the quantum properties of the information. Many proposals and demonstrations of
quantum communication and computation rely on the use of photons for carrying quan-
tum information. If we can construct a memory that could store light and preserve the
quantum state of that light, then it will be directly applicable to a range of quantum
information systems. This is why a quantum memory for light will prove a significant
breakthrough. Apart from the intriguing applications, a coherent memory for the fastest
particles in the universe is fundamentally interesting.

According to the Heisenberg uncertainty principle, performing measurement on a sys-
tem will impact the state of the system. For instance, if quantum information is encoded
into the amplitude and phase of photons, measuring amplitude or phase of even a small
fraction of the photons will destroy the information. Therefore, unlike the conventional
memories, storage of quantum information cannot be achieved by measuring the informa-
tion and then storing the results of the measurement. The key to quantum memory is
that, regardless of any factor, you can never know or measure what you have stored.

Another important criterion for a quantum memory is that the efficiency of the recall
must exceed 50%. This is the crucial no-cloning limit for the security of information since
it guarantees that the transmitted information cannot be stolen by secretly reading out
the memory. Light can travel without absorption or loss for great distances in transparent
media such as optical fibres. One way to store light is, therefore, to use an enormous coil
of fibre. Such a device, while feasible, is just a delay line. For a useful optical quantum
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4 Introduction and Motivation

memory we also require the ability to recall on demand and even to manipulate the
information. The trick is to stop the light somehow and then release it later as required.

Atoms provide an ideal quantum interface for photonic interactions. The marriage of
optics and atomic physics has initiated a wide range of applications in technology. The
invention of the laser has revolutionised various aspects of technology. Interaction between
atoms and light can be controlled in such a way as to manipulate the properties of one
using the other. In particular, the ability to stop and manipulate photons using atoms
has attracted a lot of interest in science and technology in the last decade.

A few milliseconds of laser light propagating in free space spreads over hundreds of
kilometres of the space. Recent progress in scientific research has provided the power to
compress and store such a long propagating optical field into a centimetre-long atomic
memory. This is equivalent to a medium with a refractive index of millions. Furthermore,
the properties of such a memory can be controlled externally in order to manipulate
properties of the stored light. Using the electromagnetically induced transparency (EIT)
technique, for example, the light can be slowed down a hundred million times from its
vacuum speed. This is done by controllably tuning the refractive index of an atomic
medium.

Furthermore, atoms can preserve the quantum nature of the light thanks to its coher-
ent interaction with photons. Photons can carry information encoded, for example, into
their different polarisation states. If the photon is in an equal superposition of horizon-
tal and vertical polarisations of light, it means that, upon measurement, there is a 50%
chance of finding the photon in the vertical polarisation, and a 50% chance of finding it
in the horizontal polarisation. The only way that a classical memory (like a computer
hard disk) can store such information is to perform a measurement first on the photon,
find the polarisation of the photon, and store the final result of the measurement; there-
fore all classical memories in the market, at maximum, can store only 50% of quantum
information. Conversely, a quantum memory can store the probability distribution of the
photon polarisation states so that after storage the retrieved photons represent the same
probability distribution as the input photons. In a quantum memory, information can
be mapped into atomic coherence. In this example, the correlation between polarisation
of photons can be imprinted into electrons inside atoms which are in a superposition of
two atomic energy states. The stored information in the form of atomic coherence can be
converted to an optical field and retrieved from the memory on demand.

The field of quantum information technology is one of the primary applications of
quantum memory devices where storing information carrying quantum signatures is crucial
to any step of information processing. Since photons are the best carriers of information,
the need for an optical quantum memory has motivated many groups around the world to
pursue its implementation. Substantial research has been dedicated to the development
of quantum memory using various methods and resources. These will be summarised in
Chap. 3.

In this thesis we investigate a promising technique for coherent manipulation and
storage of optical pulses in an ensemble of warm Rb atoms. This scheme of optical storage
is known as gradient echo memory (GEM). The structure of the thesis is schematically
described in Fig. 1.1. The thesis is divided in to 3 parts. Part I includes a general
introduction to light storage and contains 2 chapters. The basic concepts and background
theory are introduced in Chap. 2. In Chap. 3, we provide a review on the optical storage
and quantum storage literature. In Part II of the thesis containing 6 chapters dedicated to
semi-classical light storage using GEM technique. In Chap. 4 we describe the theoretical
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Part I
Introduction to Light Storage

Literature Review on Light Storage

Part II
Semiclassical Light Storage Using 

GEM

Background Theory of Atom-Light 
Interaction

Part III
 Optical Quantum Memory 

Conclusion

Quantum Optical Storage and Processing 
Using 

Raman Gradient Echo Memory

Appendices

ac-Stark GEM

XMDS Simulation

Experimental Details 

High Efficiency Storage

Theory and Experimental Techniques 

Polariton Description

Spectral Manipulation

Time-Sequencing and Shaping of 
Optical Pulses

Atom-Light  Interference 

Four-wave mixing in double-Λ 
system under the GEM condition

Quantum Storage of Coherent States

Nonlinear Polaritonic Interaction

Introduction to Quantum 
Information Technology

Figure 1.1: Thesis structure

framework and experimental methods required for light storage. In Chap. 5 we describe
the physics of the system by associating a quasi-particle with the light-atom interactions
inside the memory. In Chap. 6 we investigate the spectral manipulation that can be done
on the input data pulses using GEM. In Chap. 7, we explain how the memory can be used
as a pulse sequencer. The experimental evidence of high efficiency storage is provided
in Chap. 8. Interference of atomic optical fields in the memory is studied in Chap. 9.
We investigate the effect of four-wave mixing on storage using GEM in Chap. 10. Part
III of the thesis includes 4 chapters in which we focus on quantum application of our
memory system and we study quantum properties of the memory. In Chap. 11 we provide
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an introduction to quantum communication technology and the motivation for quantum
memory study. In Chap. 12 we study quantum storage of optical states. In Chap. 13 we
investigate the possibility of non-linear cross phase modulation between two single photons
inside the memory. Finally in Chap. 14 we provide an overall conclusion of the thesis.

The majority of this thesis has been published by, submitted to, or accepted for
publication in international journals. Some selected articles resulted from the work done
during my Ph.D. and included in this thesis are:

- Photon echoes generated by reversing magnetic field gradients in a

rubidium vapor G. Hétet, M. Hosseini B. M. Sparkes, D. Oblak, P. K. Lam, and B. C.
Buchler, Opt. Lett. 33 No.20, 2323 (2008).

- Coherent optical pulse sequencer for quantum applications M. Hosseini, B.
M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam and B. C. Buchlerm Nature 461, 241-245
(2009).

- Precision spectral manipulation of optical pulses using a coherent photon

echo memory B. C. Buchler, M. Hosseini, G. Hétet, B. M. Sparkes, P. K. Lam, Opt.
Lett. 35, 1091 (2010).

- High efficiency coherent optical memory with warm rubidium vapour M.
Hosseini, B. M. Sparkes, G. Campbell, B. C. Buchler, P. K. Lam, Nat. Commun. 2, 174
(2011).

- High Efficiency Gradient Echo Memory with 3-Level Atoms B. C. Buchler,
M. Hosseini, G. Htet, B. M. Sparkes, J. J. Longdell, M. J. Sellars and P. K. Lam, AIP
Conf. Proc. 1363, pp. 383-388; doi:10.1063/1.3630216 (2010).

- A Room Temperature Quantum Optical Memory M. Hosseini, B. Sparkes, G.
Campbell, B. Buchler, and P. K. Lam, International Conference on Quantum Information,
OSA Technical Digest (CD), paper QTuG1 (2011).

- Unconditional room temperature quantum memory M. Hosseini, G. Camp-
bell, B. M. Sparkes, B. C. Buchler, P. K. Lam, Nat. Phys. 7, 794-798 (2011).

- Time and frequency domain polariton interference G. Campbell, M. Hosseini,
B. M. Sparkes, P. K. Lam, and B. C. Buchler, New J. of Phys. 14, 033022 (2012).

- Light Storage and Manipulation using Raman Gradient Echo Technique

M. Hosseini, B. M. Sparkes, G. Campbell, B. C. Buchler, P. K. Lam, Accepted for
publication in J. Phys. B. (2011).

- Quantum Memory with Built-in Cross Phase Modulation M. Hosseini, B.
M. Sparkes, S. Rebic , J. Twamley, B. C. Buchler, P. K. Lam, arXiv:1112.2010[quant-ph]
(2011).
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-A Room Temperature Quantum Memory M. Hosseini, G. Campbell, B. M.
Sparkes, P. K. Lam and B. C. Buchler, in Proceedings of the International Quantum
Electronics Conference and Conference on Lasers and Electro-Optics Pacific Rim 2011,
(Optical Society of America, 2011), paper I354.

Other articles resulted from the work done during my Ph.D. are:

- ac Stark gradient echo memory in cold atoms B. M. Sparkes, M. Hosseini, G.
Hétet, P. K. Lam, and B. C. Buchler , Phys. Rev. A 82, 043847 (2010).

- Experimental demonstration of coherent spectral manipulation of optical

pulses using the gradient echo memory scheme B. M. Sparkes, C. Cairns, M.
Hosseini, D. Higginbottom, G. Campbell, O. Pinel, P. K. Lam, and B. C. Buchler,
Accepted for publication in Phys. Rev. X (2012).

- Spatial mode storage in a gradient echo memory D. B. Higginbottom, B. M.
Sparkes, M. Rancic, O. Pinel, M. Hosseini, P. K. Lam, B. C. Buchler, arXiv:1204.3981
[quant-ph] (2012).

- Quantum benchmarking with realistic states of light N. Killoran, M.
Hosseini, B. C. Buchler, P. K. Lam, and N. Lütkenhaus, arXiv:1205.1424 [quant-ph]
(2012).
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Chapter 2

Theory of Atom-Light Interaction

“Whenever a theory appears to you as the only possible one, take this as a sign that you
have neither understood the theory nor the problem which it was intended to solve.”

Karl Popper

It is indeed possible to manipulate the external, as well as internal, degrees of freedom of
atoms using photons. Understanding interactions between electromagnetic fields and atoms is
fundamental for interpretation of various phenomena in nature. Particularly in this thesis, atom-
light interactions are the main phenomena that govern the physics of the system and are thus
crucial to introduce.

In this chapter we discuss the basic ideas and concepts required to understand how the laser
field interacts with atomic systems. We start by looking at semi-classical and quantum properties
of optical fields in Sec. 2.1. Interaction of light and atomic fields is considered in Sec. 2.2. For
further information regarding the quantum optics theory and atom-light interactions I suggest
Ref. [1, 2] to the reader.

2.1 Quantum Optics Theory

The field of quantum optics started in 1899 when Max Planck modelled blackbody radiation and
found that light might be quantised. Later on, Bohr showed that the atomic energy levels were
also quantised, in the sense that they could only emit discrete amounts of energy. Following these
developments, there was a considerable amount of interest in the understanding of the interaction
between light and matter that not only formed the basis of quantum optics but was also crucial
for the development of quantum mechanics as a whole.

It is only quite recently that the quantum properties of laser light and its role in studying
various aspects of quantum physics have been understood. Among the major breakthroughs made
in quantum optics are squeezing, quantum non-demolition (QND) and entanglement, which have
attracted a lot of interest in the past decade thanks to their application in quantum information
technology [1] and quantum metrology [3].

The ability to generate and detect light with less quantum fluctuations than the vacuum
(squeezed light) makes optics a fertile testing ground for quantum measurement theory. An ideal
laser source emits a light field that has an amplitude and phase fluctuations identical to those of
vacuum fluctuations. The amplitude or phase noise of a laser can be reduced below the shot noise
(fluctuations of the number of detected photons) level so that the output of the laser may exhibit
sub-Poissonian statistics (see Sec. 2.1.9). In other words, the amplitude or phase fluctuations may
be reduced below the vacuum fluctuations. The generation of squeezed states requires a nonlinear
phase-dependent interaction. In 1985 R.E. Slusher [4] first observed the squeezed states at the Bell
Laboratories using four-wave mixing in atomic sodium. This was soon followed by demonstrations
of squeezing in an optical parametric oscillator by H.J. Kimble [5] and by four-wave mixing in
optical fibres by M.D. Levenson [6]. Squeezing, like photon anti-bunching, is a consequence of the
quantisation of the light field. The application of squeezed light in optical interferometry was first
demonstrated in experiments by Grangier [7], Kimble [5] and others.
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10 Theory of Atom-Light Interaction

The idea of QND is to measure the value of an observable without disturbing it, so that sub-
sequent measurements can be made with equal accuracy as the first. Demonstrations of quantum
non-demolition measurements have been achieved in optics in experiments by M.D. Levenson and
P. Grangier [8].

Quantum entanglement is associated with the peculiar nonclassical correlations that are pos-
sible between separated quantum systems.

Below we introduce some basic concepts and theory of quantum optics that are required for
the rest of the thesis.

2.1.1 Quantisation of field and energy

Quantum mechanics postulates that the electromagnetic (EM) field consists of discrete energy wave
packets or photons. One way to derive the quantisation of the EM field is to use its equivalence to
an infinite set of harmonic oscillators. Each harmonic oscillator is quantised using the canonical
procedure [1]. Eigenstates of the Hamiltonian are states of definite energy satisfying

Ĥ|n〉 = h̄ω(â†â+ 1/2)|n〉 = En|n〉 (2.1)

where the non-hermitian operators â† and â are defined by

â = 1/
√
2mh̄ω(mωx̂+ ip̂)

â† = 1/
√
2mh̄ω(mωx̂− ip̂) (2.2)

where m and ω are effective mass and frequency of the oscillator. In the case of the electromag-
netic field, the eigenstate of the energy is a representation of the field as a sum over modes at
frequencies ωi , each with a definite number ni of excitations, or quanta. Therefore, the energy of
the electromagnetic field can be written as

E = h̄
∑

i

ωi(ni + 1/2) (2.3)

In order to quantise the electromagnetic field one needs to solve the Maxwell equations for the
electric (E) and magnetic (H) fields in terms of basis functions ei(k.r−ωkt). The electric and
magnetic field operators, using the analogy of the harmonic oscillator, are given by

Ê =

√

h̄

2ε0V

∑

k

εk
√
ωkâkuk(r)e

−iωkt +H.c. (2.4)

Ĥ =

√

h̄

2ε0V

1

cµ0

∑

k

(k̂ × εk)
√
ωkâkuk(r)e

−iωkt +H.c.

where uk(r) =
eik.r
√
2π

is the spatial mode, ωk = c|k|, V is the quantisation volume, and εk is a unit

polarisation vector. The operator Êk depends on mode k of the electromagnetic field, and V is the
interaction volume. Each eigenstate |nk〉 of the Hamiltonian satisfies

Ĥk|nk〉 = h̄ωk(â
†
kâk + 1/2)|n〉 (2.5)

The term â†kâk represent the total number of photons in the system. The factor of 1/2 accounts
for vacuum fluctuations of the field.
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2.1.2 Optical quadratures

In optical phase space, operators that represent the real and imaginary parts as

x̂ =
â† + â√

2
(2.6)

p̂ = i
â† − â√

2
(2.7)

define quadratures of the complex amplitude. The quadratures satisfy the commutation relation

[x̂, p̂] = i (2.8)

x and p are in fact the amplitude and phase quadratures of the electromagnetic field.

2.1.3 The Heisenberg uncertainty principle

“The more precisely the position is determined, the less precisely the momentum is known in this
instant, and vice versa.” Heisenberg, uncertainty paper, 1927 [9].

Heisenberg’s uncertainty principle is one of the fundamental concepts of quantum physics, and
is the basis for the initial understanding of fundamental uncertainties in one’s ability to measure
more than one quantum observable at a time. Attempting to measure a particle’s position to the
highest degree of accuracy, for example, leads to an increased uncertainty in measurement of the
particle’s momentum to an equal degree of accuracy. For any non-commuting observables (for
example x̂ and p̂) with commuting relationship [x̂, p̂] = ih̄, the Heisenberg’s Principle is typically
written mathematically in the form of

δx̂.δp̂ ≥ h̄/2 (2.9)

This principle can appear in other forms for other non-commuting quantum observables, like am-
plitude and phase quadratures of a laser field. δ here represents the standard deviation.

2.1.4 Quantum superposition and entanglement

In classical mechanics the state of a system is essentially a list of the system’s properties; more
precisely, it is the specification of a set of parameters from which the list of properties can be
reconstructed, for example the amplitude and phase of a laser field. The quantum state of a
system should be understood as a probability amplitude for the measurement outcomes of the
system.

Quantum superposition is an expression that defines an event’s final outcome as the combina-
tion of all possible outcomes. All the possible outcomes put together define a quantum superposi-
tion event. If a system, for instance, is in superposition between spin up and down of an atom we
can write the spin state as

|ψ〉 = α| ↑〉+ β| ↓〉 (2.10)

that means by measuring the spin of the atom, one can find the system in “up” state (| ↑〉) with
probability of |α|2 and in “down” state (| ↓〉) with probability of |β|2, where |α|2 + |β|2 = 1.

Quantum entanglement is a physical concept associated with the peculiar nonclassical corre-
lations that are possible between separated quantum systems. Two systems are entangled, if the
properties of the system as a whole can no longer be described by the state of each part in isolation.
In other words, a system composed of multiple parts A,B, ... is entangled if it is in a state Ψ that
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cannot be described as a tensor product Ψ = ΨA ⊗ΨB ⊗ ..., where Ψi denotes the wave-function
of part i.

Entanglement forms one of the cornerstones of the new field of quantum information. Quantum
entanglement is applied to enhance and to extend the power of conventional information processing.
Quantum information usually carries the entanglement and superposition as two signatures of
quantum mechanics. A pair of quantum systems in an entangled state can be used as a quantum
information channel to perform computational tasks that are impossible for classical systems.
The general study of the information-processing capabilities of quantum systems is the subject of
quantum information theory.

Entanglement can be measured, transformed, and purified. For example, the strong correlations
between entangled particles enable one to transfer the quantum properties from one particle to
another by quantum teleportation. Based on Heisenberg’s principle one cannot measure conjugate
quantum observables of a system simultaneously. However, by applying a clever application of
entanglement, one can take an alternative route to overcome some difficulties associated with this
principle. The degree of entanglement, which can be monitored independently, allows one to check
whether an eavesdropper is listening or whether the transmission is really secure. This is known
as quantum key distribution (QKD). This perspective of quantum optics is further discussed in
Chap. 11.

There exist four maximally entangled states, known as Bell states, that can be written as

|Φ±〉 = 1/
√
2(|00〉± |11〉)

|Ψ±〉 = 1/
√
2(|01〉± |10〉) (2.11)

where |0〉 and |1〉 are two particular states of two entangled systems.

The EPR paradox

“If, without in any way disturbing a system, we can predict with certainty... the value of a physical
quantity, then there exists an element of physical reality corresponding to this physical quantity.”
Einstein, Podolsky and Rosen (1935) [10]
In their argument, Einstein, Podolsky and Rosen introduced a physical description that nature
should obey: one system can influence the properties of a distant system, at most, with the speed
of light and a measurement result is predetermined, even if we do not perform the measurement.
Then they pointed out that the results of measurement on entangled particles, when obeying the
above conditions, lead to contradictions with Heisenberg’s uncertainty principle. Shortly after, in
response to this paradox, Schrödinger described entanglement as the essence of quantum mechanics
exhibiting the difference to classical mechanics in the most pronounced way [11]. Two entangled
particles have to be seen as a whole. If one focuses on only one of the two, just as EPR had done,
one misses important features of the coupled system. This argument is known as the EPR paradox.

2.1.5 The density operator

The density operator is a generalisation of the wave function to include the possibility of uncertainty
in the preparation of the wave function. In other words, it includes information about all possible
ways that a wave function can collapse. If we know only that the system is described by an
ensemble of quantum states, |Ψn〉, with probabilities pn, then the appropriate density operator is

ρ̂(t) =
∑

n

pn|Ψn(t)〉〈Ψn(t)| (2.12)

here ρ̂ is the density operator and for any complete set of basis states it can be represented as a
matrix (the density matrix). If the complete set of basis states {|i〉} is orthonormal, we can write
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ρ̂ =
∑

ij

|i〉〈i|ρ̂|j〉〈j| =
∑

ij

|i〉ρij〈j| (2.13)

The diagonal matrix element ρii are the probabilities of finding the system in state |i〉; the off-
diagonal elements ρij are often described as coherences between states i and j. The density
operator is Hermitian, i.e. ρ̂† = ρ̂ and therefore it has real eigenvalues. If the states {|Ψn〉} are
orthonormal, these eigenvalues are just the pn. The eigenvalues must therefore lie between 0 and
1. Assuming the states |Ψn〉 are properly normalised, the sum of the probabilities pn is 1, and one
can then write

Tr[ρ̂] =
∑

i

〈i|ρ̂|i〉 =
∑

n

pn
∑

i

|〈i|Ψn〉|2 =
∑

n

pn = 1 (2.14)

The expectation value of any operator Ô can be calculated if ρ̂ is known:

〈Ô〉 =
∑

n

pn〈Ψn|Ô|Ψn〉 (2.15)

=
∑

ij

∑

n

pn〈Ψn|i〉〈i|Ô|j〉〈j|Ψn〉

=
∑

ij

Oijρji = Tr[Ôρ̂]

The time-dependence of the density operator (in a closed system) is given by:

∂ρ̂

∂t
=

∑

n

pn(∂t|Ψn(t)〉)〈Ψn(t)|+ |Ψn(t)〉(∂t〈Ψn(t)|)

=
1

ih̄

∑

n

pnĤ|Ψn(t)〉〈Ψn(t)|−
1

ih̄

∑

n

pn|Ψn(t)〉〈Ψn(t)|Ĥ

=
1

ih̄
[Ĥ, ρ̂] (2.16)

where Ĥ is the Hamiltonian of the system. This equation holds in the Schrödinger representation,
where the wave functions are time-dependent but the operators are not. The solution to this
equation may be formally written

ρ̂(t) = Û(t, t0)ρ̂(t0)[Û(t, t0)]
† (2.17)

where Û is a unitary operator. It is worth mentioning that this equation might look like the
equation for the time-dependence of an operator Ô in the Heisenberg representation:

dÔ

dt
=
∂Ô

∂t
+

1

ih̄
[Ô, Ĥ] (2.18)

but it is, indeed, very different.

Reduced density matrix

Consider two systems A and B, each with their Hilbert space HA and HB, so the total Hilbert
space of the composed system is HA ⊗HB . The reduced density matrix appears in the frame of
composed systems. In a tensor product basis |ψAi〉 × |ψBj 〉, the total density matrix ρ is written
as
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ρ̂ =
∑

ij

∑

kl

ρklij |ij〉〈kl| (2.19)

We can define the reduced density matrix for system A only as

ρ̂A =
∑

i

∑

k

σik|i〉〈k| (2.20)

where σik is the partial trace over system B, σik =
∑

j

ρkjij .

All observables which are only related to A can be calculated with only the reduced density
matrix of A, ρ̂A.

Entangled state

In general, in Hilbert space HA ⊗HB we can write the state of a system as

|ψ〉AB =
∑

i,j

cij |i〉A ⊗ |j〉B (2.21)

This state can be separated into two states defined by Hilbert spaces HA and HB if cij = cAi c
B
j ,

and we can write |ψ〉A =
∑

i c
A
i |i〉A and |ψ〉B =

∑

j c
B
j |j〉B. The two systems are inseparable or

“entangled” if cij *= cAi c
B
j .

Consider two basis vectors, for instance, {|0〉A, |1〉A} of HA and two basis vectors {|0〉B, |1〉B}
of HB, one possible entangled state might have the following form:

1√
2

(

|0〉A ⊗ |1〉B − |1〉A ⊗ |0〉B
)

(2.22)

For discrete variables, the entanglement is usually characterised by measuring the correlation of
properties of single particles. The entanglement condition in a continuous variable (CV) regime
can be written [12] as

Var[x̂+ + x̂−] + Var[p̂+ − p̂−] < 2 (2.23)

where canonical quadrature operators obey [x̂±, p̂±] = i. For a vacuum state Var[x̂vac] =
Var[p̂vac] = 1/2. Var here is variance function.

Pure and mixed states

A pure quantum state is a state that can be represented as a linear superposition of basis states,
|i〉. A pure quantum state is given by

|ψ〉 =
∑

i

λi|i〉 (2.24)

The density matrix elements for a pure state are given by ρij = λiλj and Tr[ρ] =
∑

i λi. The
density matrix of a pure state |ψ〉 has only one nonzero eigenvalue. Hence if ρ is of order n, then
one of its eigenvalues is 1 and all other eigenvalues are 0. In consequence, the density matrix of a
pure state has the special property that Tr[ρ] = 1 and ρ2 = ρ.

A quantum state may not be always a pure state. A mixed quantum state is a statistical
distribution of pure states. For the density matrix of a mixed state we have
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ρ =
∑

ψ

Pψ|ψ〉〈ψ| (2.25)

where Pψ is probability of finding the system in state ψ and therefore
∑

ψ Pψ = 1. Also, for a
mixed state

Tr[ρ2] < 1 (2.26)

2.1.6 Quantum optical states

Quantum states have certain features that cannot be understood by classical theory. The non-
classical nature of a quantum state can exhibit itself in different ways. In quantum optics, man-
ifestations of the nonclassical states of light include, for instance, the photon anti-bunching, the
sub-Poissonian distribution of photon numbers (see Sec. 2.1.9), the degree of quadrature squeezing,
and oscillations of the photon number distribution.

The Fock state

Any quantum state in Fock space can be written as a superposition of a well-defined number of
particles, i. e. the number basis |N〉, N = 1, 2, ..., which is a complete orthonormal basis. A Fock
state is an eigenstate of the number operator and can be defined as

|ψn〉F = 1/
√
N !(a†0)

N |0〉

In the case of an optical Fock state, the variance in the photon number is zero and the photon
number is completely determined. It is true that the photon number is directly related to the
energy, but this does not imply that the amplitude of the electromagnetic fields is completely
determined. This is because the frequency of the photon is undetermined. A Fock state is not
a wavelike field in the classical sense. The field’s frequency cannot be specified due to the field’s
random phase.

The coherent state

Due to its quantum nature, the electric field of a freely propagating light wave carries some intrinsic
quantum noise. This can be understood by considering Heisenberg’s uncertainty relation. The
operators of phase- and amplitude- quadrature of the light field do not commute, similar to the
position and momentum of a particle. The product of phase- and amplitude-uncertainty has a
fixed lower limit. States of the light field with the smallest possible amount of overall quantum
noise are called minimum uncertainty states. An example of such a state is the coherent state.
The light emitted by an ideal monomode laser is a coherent light exhibiting noise in amplitude
and phase quadratures equal to that of the vacuum. This means that the uncertainty in either the
amplitude or phase quadrature measurement of the laser light is equal to the vacuum fluctuation.
The resulting distribution of the amplitude and phase of a coherent state can be described by a
Gaussian distribution. Mathematically a coherent state can be written as

|α〉 = e−|α|2/2eαa
†
0 |0〉 (2.27)

This is a superposition of states with a definite particle number (Fock states).
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The squeezed state

An interesting demonstration of Heisenberg’s uncertainty principle can be given by reducing the
quantum noise in one quadrature of the coherent laser field (for example the phase) at the expense
of increasing it in the complementary observable (i.e. the amplitude). This can be done using
nonlinear interaction, for example parametric amplification and de-amplification. These generated
states of the light field are called squeezed states, since the quantum noise in one quadrature
becomes squeezed.

Squeezed states have been investigated in many experiments in past years, since they can be
used to reduce the amount of noise in specially designed optical precision measurements [7, 5].
The possibility of overcoming the quantum limit in optical detection by making phase-sensitive
measurements, which utilises only the quadrature with reduced quantum fluctuations, has attracted
attention. Two entangled beams can also be generated, for instance, by interfering two squeezed
beams at a beam splitter.

The squeezing operator is given by

Ŝ(r, θ, t) = exp(
r(e−2iθ â(t)2 − e2iθâ†(t)2)

2
) (2.28)

where r is the squeezing parameter and θ is the squeezing quadrature angle. The squeezed vacuum
is obtained by applying the squeezing operator on a vacuum state. The squeezed vacuum and
displaced squeezed states are given respectively by

|0, r, θ, t〉 = Ŝ(r, θ, t)|0〉
|α, r, θ, t〉 = D̂(α)Ŝ(r, θ, t)|0〉 (2.29)

where D̂ = eαâ
†−α∗â is the displacement operator. The squeezing factor, r, is real and positive and

can be directly related to the standard deviation of the squeezed quadrature in frequency domain

∆X̂θ(ω) = e−r(ω). (2.30)

2.1.7 Wigner function representation

Quasi-probability functions are important to study the quantum features of the state under con-
sideration. One of these functions is the Wigner function. The density matrices of a system can
be equivalently represented as the Wigner function. This function was found and developed by L.
Szilard and E.P. Wigner in 1932 [13]. The Wigner function is a phase space distribution similar to
the Maxwell-Boltzmann distribution of position and momentum of an ensemble of particles known
from classical statistical mechanics. However, it is not a probability distribution and due to the
non-commutativity of its position and its momentum (i.e. phase- and amplitude-quadrature in
the case of the light field) it may take on negative values. The negativity in the Wigner function,
written in amplitude and phase space, is a quantum signature of the system. The wave packet is
the density projection of the Wigner function distribution under various phase angles. The Wigner
function can be determined from experimental quadrature noise measurements via tomographical
reconstruction techniques.

The Wigner distribution P (x, p) is defined as:

P (x, p) =
1

πh̄

∫ ∞

−∞
Ψ&(x+ y)Ψ(x− y)e2ipy/h̄dy (2.31)

The Wigner function of a general Gaussian state is given by [14]
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W (α) =
2

π
√
V +V −

e[−
2

V + (αr cosφ+αi sinφ−δr)2− 2

V − (αi cosφ+αr sinφ−δi)2] (2.32)

where V ± are variances of two orthogonal distributions of amplitude and phase. The above equa-
tion describes a coherent state of amplitude δ = δr + iδi when V ± = 1. φ is the phase of the state.
For a pure squeezed state we have V + × V − = 1 and V + *= V −.
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Figure 2.1: Wigner representation of (a) a coherent state (b) a squeezed state, (c) a superposition

of two coherent states. Projection of the Wigner function in the x-p plane shows the size of the

uncertainty in the two quadratures.

For a coherent state (Fig. 2.1 (a)), the corresponding phase space distribution is symmetric
and Gaussian. The ball-on-stick representation of a coherent state is shown in the x − p plane of
Fig. 2.1 (a). The length of the stick is equal to

√
n and size of the ball represents the uncertainty

in amplitude (x)-phase(p) plane. The corresponding phase space distribution of a squeezed state
has an elliptical shape as shown in Fig. 2.1 (b) for displaced squeezed state.

Besides the Wigner representation, there are other distribution functions such as the Glauber-
Sudarshan P -function [15] and Q function [16]. As for the quasi-probability distribution, the P
function is highly singular, involving an infinite sum of higher order derivatives of a delta function
and represents the probability density to find a state. The Q function is always non-negative and
does not exhibit a clear signal for non-classicality. One notices that Wigner distribution (W ) is
narrower than Q, and P distribution is narrower that W .

Coherent superposition

Studies on nonclassical properties of the quantum superposition of coherent states are of great
interest because of their applications in quantum information theory such as quantum communi-
cation. A familiar example of such states is the superposition of two classical-like coherent states
of the same amplitude but with a phase difference of 180o

|ψ〉 = N(|α〉 − e−iφ|− α〉)

For φ = 0, the above equation describes the odd coherent state, while for φ = π, it describes the
even coherent state. The Wigner representation of superimposed coherent states is given by

W±(β) = N2
±[W|α〉(β) +W|−α〉(β) +Wint(β)] (2.33)

where N2
± = 1/(2±2e−2|α|2) is a normalisation constant andW|±α〉(β) denotes the Wigner function

of the single coherent state. The term Wint(β) accounts for quantum interference between the two
coherent states.

Fig. 2.1 (c) shows the Wigner representation of two superimposed coherent states, i.e.
Schrödinger cat states. When the Wigner function takes on negative values, it is a clear sig-
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nature of nonclassicality. Fringes at the centre of the plot are the result of quantum interference
between two states. The larger the two states are, the finer the fringes will be. The generation of
optical Schrödinger cat states is important for applications in quantum communications [17, 18],
and quantum computing [19, 20].

Overlap

The fidelity of a final state to its initial one is a criterion of teleportation. The fidelity can be
obtained by calculating the overlap between the two states. In general cases where the Gaussian
states are input, the classical fidelity Fc and quantum fidelity Fq are defined [14] as

Fc = [

∫

d2α
√

P1(α)P2(α)]
2 (2.34)

Fq = |Tr[
√√

ρ1ρ2
√
ρ2]|2 (2.35)

where P1 and P2 are probability distributions of a system, and ρ1 and ρ2 are density matrices.
If the two density matrices belong to two pure states, i. e. ρ1 = |ψ〉〈ψ| and ρ2 = |φ〉〈φ|, then
Fq = |Tr[√ρ1ρ2ρ2]|2 = |〈φ|φ〉|2.

The density matrix can also be equivalently represented as a Wigner function. In the case when
the input states are pure, the noise added to the state causes a significant change to the Wigner
function describing the output state, with the result being a poor overlap between the input and
output states. In the case of a pure input state the fidelity is given by the overlap of their Wigner
functions

Fq = |〈ψ2|ψ1〉|2 = π

∫

d2αWin(α)Wout(α) (2.36)

In the case of a Gaussian state, knowing the input quadrature variances of V ±
in and output variances

of V ±
out, it is possible to estimate the fidelity of the system. It can be shown [14] that the overlap

between the input and output states is

Fq = 2e
− 2δ2x

V
+

in
+V

+
out

−
2δ2y

V
−
in

+V
−
out /(

√

(V +
inV

−
out + 1)(V −

inV
+
out + 1)−

√

(V +
inV

−
in − 1)(V +

outV
−
out − 1)) (2.37)

where δx/y is the quadrature value difference of the input and output states in phase
space. The x (+) and y (-) represent amplitude and phase quadratures. This expression
can be used to calculate the fidelity of any Gaussian distribution states such as coherent
or squeezed sates. Using this expression we have plotted the fidelity between two Gaussian
states (input and output states) as a function of loss and mean photon number in Fig. 2.2
(a) and (b), respectively.

No-cloning limit

Quantum mechanics postulates that cloning a quantum state is impossible [21]. This
principle is important in understanding some quantum key distribution protocols [22].
Attempts to clone quantum information using, for instance, splitters and linear amplifiers
result in quantum back-action. This cloning operation will add a vacuum of noise to
conjugate variables and therefore the fidelity between the initial and final states will be
deteriorated. Considering this noise penalty, the no-cloning fidelity limit [23] can be
calculated, above which the output of a quantum device or channel is the best possible
copy.
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Figure 2.2: (a) Fidelity between two optical coherent states as a function of relative intensity loss

plotted for different mean photon numbers. (b) Fidelity between two coherent states as a function

of mean photon number plotted for different values of relative intensity loss γ. (c) No-cloning

fidelity limit as a function of input variance normalised to vacuum noise.

For coherent states, the cloning fidelity limit is about 2/3 (0.68%) for Gaussian (non-
Gaussian) cloners [24, 25]. If the input variances of the two quadratures are larger than
the vacuum fluctuation (incoherent source) the no-cloning fidelity limit is different and can
be calculated using Eq. 12.2. Figure 2.2 (c) shows the no-cloning fidelity limit calculated
using Eq. 12.2, assuming one vacuum of noise added to both quadratures, as a function
of input quadrature variances.

2.1.8 Detection of optical quantum states

Homodyne detection

Ordinary photodetectors detect light intensity or photon flux n; homodyne detection by
contrast measures the quadrature values of the electric field. It is a particularly important
technique for the study of phase-sensitive phenomena. Consider two beams, a weak signal
field and a strong light field known as a local oscillator (LO), interfering on a beamsplitter.

ε

ε
LO

Ι1

Ι2

ε
1

ε
2

η

Figure 2.3: Homodyne detection setup

Balanced homodyne detection is usually preferred to eliminate the contribution of the
local oscillator noise. In this case, two photodiodes are used after a 50:50 beam splitter as
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shown in Fig. 2.3; the sum and difference of photocurrents are electronically obtained. If
the signal port is blocked, the difference of photocurrents exhibits the shot noise level of
the local oscillator beam, even if the actual noise level of that beam is different. The latter
noise level can be obtained in addition by taking the sum of the photocurrents. That sum
exhibits the same noise as for direct detection of the local oscillator beam with a single
photodiode. When the signal beam interferes with the LO beam, the difference in the
signal of the detectors allows one to simply compare the signal noise with the shot noise
limit. For the squeezed quadrature of light, the sum of the photocurrents exhibits a lower
noise than the difference. In many cases, the local oscillator power is made so high that
the corresponding shot noise provides a large signal-to-noise ratio.

Consider setup depicted in Fig. 2.3 where two optical modes

ELO(t) = (ELO + δX1LO(t) + iδX2LO(t))e
iφLO (2.38)

E(t) = E + δX1(t) + iδX2(t) (2.39)

interfere on a beamsplitter with a reflectivity of η where φ is the phase difference between
the LO and the signal beam. The amplitude of the light on one arm of the interferometer
is given by

E1(t) =
√
ηELO(t) +

√

1− ηE(t) (2.40)

and therefore the intensity measured by the detector is

I1 = 〈E1(t)†E1(t)〉 = η〈ELO(t)†ELO(t)〉+ (1− η)〈E(t)E(t)†〉

+
√

η(1− η)(〈ELO(t)〉〈E(t)†〉+ 〈E(t)〉〈ELO(t)†〉) (2.41)

which can be approximated assuming|ELO| + |E| and η = 1/2 to

I1 , 1/2[|ELO|2 + ELO(δX1(t) cos φLO + δX2(t) sin φLO))]. (2.42)

Similarly, the current for the other detector can be found. The difference current I− is
then given by

I− = ELO(δX1(t) cos(φLO) + δX2(t) sin(φLO)) (2.43)

which only represents amplitude fluctuations of the weak field while fluctuations in the
LO field are eliminated.

Homodyne detection can also be used to measure quadrature values of a pulsed signal
field. In this case, the amplitude of the pulse varies depending on the phase of the LO and
by integrating I− over the pulse duration ∆t. One can associate a single quadrature value
with the entire pulse. The integration will effectively limit the measurement bandwidth
to 1/∆t. Alternatively, one can obtain quadrature values corresponding to different parts
of the signal pulse.
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Heterodyne detection

Heterodyne detection is a slight modification to homodyne detection where the signal
and the LO fields have different frequencies. Consider two optical beams mixing on a
photodiode. We can write the classical amplitude of the two beams as, Es(t) = Esei(ωst+φ)

and ELO(t) = ELOei(ωLOt+φ). Neglecting terms oscillating at 2ω, the ac photodetector
current is given by:

Iac = (Es + ELO)
2 , EsELO cos (∆ωt+ φ) (2.44)

which indicates a signal beating with a frequency equal to the frequency difference between
the signal and LO field, ∆ω = ωs−ωLO. Here, φ is the phase difference between the signal
and LO. This signal can be demodulated using analogue or digital demodulation to arrive
at a signal similar to the homodyne signal. The demodulated signal will be sensitive to the
phase, φ, and its amplitude will fluctuate if the optical path is not locked. The heterodyne
signal can be demodulated in a way that cancels the effect of the change in the relative
phase between the LO and the signal. This is done by splitting the RF signal in two parts
and demodulating one with sin(∆ωt) and the other with cos(∆ωt). Afterwards, squaring
the signals and adding them together will result in a φ-independent output signal. This
demodulation method is schematically shown in Fig. 2.4.
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Figure 2.4: Schematic setup for demodulation of the heterodyne signal in order to perform phase

insensitive measurement. The square operation can be done digitally. LPF: low pass filter, BS:

beam splitter, I2: square operation on the signal.

Using heterodyne detection for quantum measurements, one can measure the ampli-
tude and phase of a signal simultaneously, at the expense of one added vacuum of noise.
Simultaneous measurement of the two quadratures also provides information about the
photon statistics of the state [26]. The annihilation and creation operators of an arbitrary
field may be expressed in the Heisenberg picture as a sum of the amplitude and phase
quadrature operators. We have Â(t) = Ā+ δÂ(t) and Â†(t) = Ā† + δÂ†(t). The variance
of an arbitrary input field in the frequency domain is given by

V ±(ω) = 〈δA(ω)†δA(ω) + δA(−ω)†δA(−ω)± δA(−ω)δA(ω)± δA(−ω)†δA(ω)†〉+ 1. (2.45)

The average number of photons in both the positive and negative sidebands (at frequency
ω) for a continuous variable measurement of the variances is given [26] by
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n̄(ω) =
V +(ω) + V −(ω)− 2

4
. (2.46)

2.1.9 Photon statistics of optical states

The Poisson distribution is used to model the number of events occurring within a given
time interval. An ideal laser light source is a coherent state and has a Poisson distribution,
and a thermal radiation source has Bose-Einstein distribution. For the Poisson distribu-
tion, the expectation value and variance of the photon number are equal. On the other
hand, the variance of the thermal photon number distribution goes beyond its expectation
value and follows Maxwell-Boltzmann distribution. The photon number distribution of an
amplitude-squeezed state is sub-Poissonian.
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Figure 2.5: Poisson distribution shown for (a) λ = 5 and (b) λ = 20

The formula for the Poisson probability function is

Pλ(k) = e−λλk/k! (2.47)

where λ is the shape parameter which indicates the average number of events in the given
time interval and k is an integer value. The number distribution of any coherent state is
Poissonian.

Figure 2.5 is the plot of the Poisson probability density function for two values of λ
as a function of k. In general, the photon number distribution of a squeezed state is given
[27] by

P (n) = |〈n|α, r, θ〉|2 (2.48)

where

〈n|α, r, θ〉 =

√

einθ tanh rn

2nn! cosh r
exp(−1/2(|α|2 + (α%)2eiθ tanh r))Hn[

α+ α%eiθ tanh r√
2eiθ tanh r

] (2.49)

and Hn[x] are the Hermite polynomials. This photon distribution can be broader or
narrower than the Poissonian distribution evident for coherent states, depending on the
coherent amplitude α and the quadrature of the squeezing θ.
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2.1.10 Maximum likelihood reconstruction in homodyne measurement

The quantum state of a system can be accurately described if the measurement is complete,
i.e. all of the projectors corresponding to the data yield the decomposition of the unity
operator. Provided that the data do not exhaust all the values, the measurement is
incomplete. In this case, the full quantum description of a system may be accomplished
using the maximum likelihood (MaxLik) estimation [28, 29, 30]. The method is to perform
set of measurements on various known quantum states and then estimate the unknown
measurement from the collected data.

Reconstruction corresponds to normalisation of incompatible observations that are
done on the subspace where the measured projectors reproduce the identity operator (R̂).
This approach handles noisy data corresponding to realistic incomplete observation with
finite resolution. In other words one can determine “what quantum states seem to be
most likely for that measurement”. This type of reconstruction can be used to estimate
the quantum state of a system using quadrature homodyne measurement.

This detection of discretised quadrature components reproduces the identity operator
as

R̂ =
∑

i

Π̂(xi) (2.50)

where xi denotes the position of a particular bin in x-coordinate and

Π̂(xi|θ) = ∆x
∞
∑

n=0

n
∑

m=0

φnm(xi)η
m(1− η)n−m n!

m!(n−m)!
|n〉〈n|, (2.51)

φnm(x|θ) =
1

2(m+ n)n!m!
√
π
e−i(n−m)θe−x2

H2
m(x)H2

n(x). (2.52)

Here η denotes the detection efficiency and Hm is the Chebyshev-Hermite polynomial of
mth order. By analogy to the ordinary binomial distribution, we may call the random
number m the number of successes in a series of n independent experiments. The re-
construction of ρ can be done using iterative method solving the nonlinear equation for
density matrix

R̂(ρ̂)ρ̂ = ρ̂ (2.53)

In this derivation, the condition of normalisation, Tr[ρ̂] = 1, is used such that

R̂ =
∑

i

fi
ρii

Π̂(xi|θ) (2.54)

ρii = Tr[ρ̂ ˆΠ(xi|θ)] (2.55)

where fi is the probability amplitude of measuring quadrature value xi. This method is
used to reconstruct the density matrix elements from the experimental quadrature data.
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2.2 Atom-light interaction

Atoms are an exceptional medium for development of an efficient coherent interface with
light. Theoretical treatment of this problem provides a framework that can be used to
analyse atom-light interaction as it appears in quantum optics. A fully self-consistent
quantum mechanical treatment of atoms interacting with electromagnetic fields requires
that we treat the field, as well as the matter, quantum mechanically. In many cases we can
use a simplified theory called semiclassical theory in which the atoms are treated quantum
mechanically, while the fields are taken to be c-number solutions of the classical Maxwell
equations.

Atomic operators

To theoretically investigate atom-light interactions, it is convenient to define some atomic
operators similar to electromagnetic field operators. These operators are Pauli vectors
defined by

σ̂ = σ̂xī+ σ̂y j̄ + σ̂zk̄. (2.56)

The Pauli spin matrices, σ̂x, σ̂y and σ̂z represent the intrinsic angular momentum compo-
nents of electron spin. We define atomic operators as

σ̂+ = σ̂x + iσ̂y = |e〉〈g| (2.57)

σ̂− = σ̂x − iσ̂y = |g〉〈e| (2.58)

σ̂z = |e〉〈e| − |g〉〈g| (2.59)

where g and e denote ground and excited states of a two-level atom, respectively. The
operators σ̂± are also called atomic transition operators and account for atomic coherence.

2.2.1 Interaction with a two-level atom

We begin our treatment with a general description of an electromagnetic field interacting
with a two-level atom. We will assume the field is monochromatic with angular frequency
ω to model the laser field

E(t) = ε̂E0 cos (ωt) (2.60)

we can write the total Hamiltonian for the atom and light field as a sum of the free atomic
Hamiltonian HA and the atom-light interaction Hamiltonian HAL

H = HA +HAL. (2.61)

The atomic Hamiltonian in terms of spin operators is given by

HA =
1

2
h̄ωef (|e〉〈e| − |g〉〈g|) = 1

2
h̄ωef σ̂z (2.62)
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where we chose halfway energy between the levels as the zero point energy (reference
energy).

The atom-field interaction Hamiltonian in the dipole approximation is

HAL = −µ.E = h̄Ω (2.63)

where µ is the atomic dipole operator, given in terms of the atomic electron position re
as µ = −ere, Ω = µ.E

h̄ is known as the Rabi frequency that is the frequency of population
oscillation for a given atomic transition in a given light field. Since the field strength of
interest is usually an order of magnitude weaker than the internal Coulomb electric field
of the atom, the interaction will not change the atomic level structures in any significant
way. The only part on which we will be focusing here is the interaction term −µ.E. In
general, the atomic dipole can be written in terms of atomic spins as

µ = 〈g|re|e〉(σ + σ†) (2.64)

where |g〉 and |e〉 stand for ground and excited states of a two-level atom, respectively.

Rotating-Wave Approximation

Considering time dependencies of µ± = µ0e∓iω0t and E± = E0e∓iωt we can write

HAL = −(µ+ + µ−).(E+ +E−) (2.65)

Assuming that |ω−ω0| - ω+ω0, we can imply rotating-wave approximation (RWA). This
approximation focuses on slow dynamics, replacing terms rotating at optical frequencies by
their zero average value. This is reasonable since optical detectors are bandwidth limited.

Thus, the atom-field interaction Hamiltonian in the RWA becomes

HAL = −µ+.E− − µ−.E+ (2.66)

Moving from the Schrödinger picture into the interaction picture, we can also write the
atom-light Hamiltonian for a single atom in the rotating frame using the atomic operators
as

ĤRWA(t) ≡ h̄ωeg

2
σ̂z − h̄g

(

â†σ̂−ei∆t + âσ̂+e−i∆t
)

. (2.67)

where g = µ
√

ω/2ε0h̄V is the atom-light coupling strength, and ∆ is the frequency dif-
ference between the optical field and the atomic transition. We can also include the
Hamiltonian of the light field and drop the zero-point energy term, because it does not
contribute to the dynamics of the system

HRWA(t) ≡ HL +HA +HAL ≡ h̄ω0â
†â+

h̄ωeg

2
σ̂z − h̄g

(

â†σ̂−ei∆t + âσ̂+e−i∆t
)

. (2.68)

This Hamiltonian is also known as Jaynes-Cummings Hamiltonian [1] and is of great
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interest in quantum optics.

2.2.2 Dressed state picture

The Jaynes-Cummings Hamiltonian in Eq. 2.68 is the entire Hamiltonian of the system,
but for strong atom-field coupling the complete state of the system can no longer be
described as either a state of the atom or a state of the field. Instead we should specify
the system via states of both atom and field. In the energy eigenstate representation,
the basis states of the optical field are |n〉 with n being a positive integer. The Jaynes-
Cummings Hamiltonian couples the states |e, n〉 or |g, n + 1〉 and therefore

〈g, n + 1|H|e, n〉 = h̄g
√
n+ 1 (2.69)

and the energies of the uncoupled system are given by

Ee,n = 〈e, n|H|e, n〉 = h̄(nω0 + ωeg/2) (2.70)

Ee,n+1 = 〈g, n + 1|H|g, n + 1〉 = h̄((n+ 1)ω0 − ωeg/2)

= Eeg + h̄∆. (2.71)

By diagonalising the entire Hamiltonian we can find the eigenvalues of the combined
system

E±
n = h̄∆/2± h̄Ωn (2.72)

with corresponding eigenstates of

|±n〉 = 1/
√

N±(Ωn ∓∆/2)|g, n + 1〉± g
√
n+ 1|e, n〉 (2.73)

where Ωn =
√

g2(n+ 1) + (∆/2)2 is the generalised Rabi frequency, and N± = g2(n +
1) + (Ω ∓∆/2)2. These are the dressed states of the atom, and the coupling to the field
causes an avoided crossing in the energy level structure of the atom. This is schematically
shown in Fig. 2.6.

The dressed picture of atom-field interaction has been very successful in the physi-
cal interpretation of peculiar features exhibited in resonance fluorescence and absorption
spectra.

2.2.3 Bloch sphere

The Bloch sphere is a geometric representation of a two-level quantum system as points
on the surface of a unit sphere. The idea behind the Bloch sphere is to use the expectation
values 〈σi〉 as dynamical coordinates [2] for the evolution of a two-level atom. This concept
can be applied to any other system in the quantum superposition of two states. In the
case of evolution of a two-level atom, the three coordinates are defined as
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Figure 2.6: Splitting of atomic levels shown in dressed picture

〈σx〉 = 〈σ〉+ 〈σ†〉 = ρeg + ρge

〈σy〉 = i〈σ〉 − i〈σ†〉 = i(ρeg − ρge)

〈σz〉 = ρee − ρgg (2.74)

where 〈σ〉 and 〈σ†〉 are the Pauli operators and ρ is the atomic density matrix.
An arbitrary state ψ can be written in terms of probability amplitudes as

|ψ〉 = cos θ |0〉+ eiφ sin θ |1〉. (2.75)

The parameters φ and θ uniquely specify a point on the unit sphere of Euclidean space.
The measurable quantities are the probability amplitudes of the state, α = cos θ and
β = eiφ sin θ.
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Figure 2.7: Bloch sphere representation of a two-level system on the superposition state |ψ〉 =
cos θ |0〉+ eiφ sin θ |1〉.

The role of Pauli operators is to rotate the Bloch vector about x, y or z axes.
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2.2.4 Spin and photon echo

Spin echo [2] refers to the refocusing of atomic nuclear spin precession by an electromag-
netic pulse. Echo phenomena are important features of coherent spectroscopy which have
been observed and used in various fields such as nuclear magnetic resonance (NMR) [31].
The photon echo phenomenon, described below, mimics the spin echo process.

To explain the photon echo phenomenon, we consider a 2-level atomic ensemble with
inhomogeneous broadening, where each atom effectively has a slightly different resonance
frequency, as happens with Doppler broadening in atomic vapour or in dipole-dipole in-
teractions of ions embedded in crystal. Excitation pulses are frequently used in the obser-
vation of echoes. Such pulses change the angle of the Bloch vector by θ =

∫ τ
0 d.E(t)/h̄dt.

A pulse that leads to θ = π/2 is called π/2 pulse, which elicits the largest transverse spin
component. A pulse that leads to θ = π is called π pulse or inverse pulse, which is used
to induce photon echo. In fact a π pulse inverts the population between the ground and
excited states. Firstly, a π/2-pulse is sent to the atomic sample to put the atoms in a
superposition of the ground and excited states. After the excitation pulse, the spin of each
atom precesses at a slightly different frequency, leading to a spread in phase angles that
increases with time. As shown in Fig. 2.8(a) and (b), some Bloch vectors evolve faster
than others.

After the atoms have dephased, sending a π-pulse to the atoms effectively time-reverses
the process and the dipoles start to rephase. Thus, the dipoles begin to come back together
to the same phase. In the Fig. 2.8(c) and (d), after the π pulse, the faster dipoles are now
behind the slower ones, and thus the slower ones can now “catch up”. The other way to
look at this is that the reflection due to the π-pulse is effectively equivalent to flipping
the precession axis, and thus time-reversing the evolution. The dipoles come back to the
mirror image of the original orientation. If the π-pulse is applied a time τ after the original
preparation pulse, the spin echo occurs at time 2τ .

z

x
y

π/2

π

π/2

(a) (b) (c) (d)

Figure 2.8: Sequences of spin echo in Bloch sphere representation: (a) A π/2 pulse excites the

atoms to a superposition state; (b) and then Bloch vectors start to dephase; (c) a π pulse rephases

the atomic spin; (d) when spins are phase matched a π/2 pulse is re-emitted.

The photon echo phenomena, as is discussed in the next chapter, can be used as a
method of light storage. This technique also forms the basis of the storage mechanism
that was used in our experiment.
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2.2.5 Free induction decay

When a pulse of light excites an atomic ensemble with energy levels |1〉 and |2〉, it generates
a coherence between |1〉 and |2〉 where the spins of atoms have initially the same phase.
In the rotating frame, the net spin vector decays as spins lose phase coherence as shown
in Fig. 2.76 (a). This is because atoms experience slightly different electric or magnetic
field strengths due to interaction between spins (via their own oscillating magnetic fields).
Slightly different magnetic fields mean slightly different precession (Larmor) frequencies.
This causes some spins to “lag behind” the average, and some to “progress ahead” of the
average. Eventually the spins point in arbitrary directions and the Sxy component of the
net spin vector is lost. The oscillations between the |1〉 → |2〉 transition damp away in a
drift time of order T2 = 1/δω0, where δω0 measures the inhomogeneously broadened width
of the atomic transition, and ω0 is the frequency splitting between the two atomic levels,
see Fig. 2.76 (b). This time constant contains information about related dipole-dipole
interactions and additional loss of phase coherence due to imperfections in the external
field, and to magnetic susceptibility effects. The damping of the ensemble-averaged dipole
moment due to dephasing is called free-induction decay (FID).

The FID in the lab frame is described mathematically by

Sxy = Sxy(0)e
−t/T2 cos (ω0t) (2.76)

where ω0 is the frequency of magnetic field oscillations.
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Figure 2.9: Dephasing of spins causes Sxy to decay away. This is shown schematically as Bloch

sphere representation in (a). (b) The amplitude of the atomic coherence shows a free induction

decay with a T2 envelope.

The FID effect can be observed by using both microwave and optical signals. In both
cases, the atomic sample is exposed to a short, strong resonant signal to create atomic
excitations. The decay of the atomic excitation can be observed by detecting the output
signal from the sample. The output signal amplitude is at its maximum when atoms are
in-phase and burst a strong emission. This method is a common technique in measuring
the coherence time.
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2.2.6 Adiabatic following

Consider an ensemble of atoms all in the ground state of energy, so that the Bloch vector
points along the z axis. By applying an intense and far-detuned field ( |∆| + Ω ), the
precession vector is aligned with the Bloch vector. The precession of the Bloch vector is
very simple, since it just stays in place. Now by scanning the detuning through resonance,
the precession vector moves along the x-axis and up towards the +z-axis. As long as
we change the detuning slowly enough on the time scale of the Rabi frequency, i.e. the
frequency chirp r = d∆/dt - Ω2, the Bloch vector will follow the precession vector [2].
Furthermore, the adiabatic following condition requires that the flipping time Ω/r should
be much longer than the coherence lifetime T2 and much shorter than the light pulse
duration.

2.3 Optical Bloch Equations

The interaction of a two-level atom with the electric or magnetic field can be described
by the Bloch equations. Using the evolution of the density operator we can write the
Schrödinger-von Neumann equation [2] in the rotating frame

∂tρ = −i/h̄[HA +HAl, ρ]. (2.77)

We can work out the equations of motion for the density matrix elements

∂tρee = iΩ/2(ρeg − ρge)

∂tρgg = −iΩ/2(ρeg − ρge) (2.78)

∂tρge = −i∆ρge − iΩ/2(ρee − ρgg)

where ∆ is detuning from excited state and Ω is the Rabi frequency. We can now include
the phenomenologically damping terms with the Hamiltonian-evolution terms to obtain
the optical Bloch equations:

∂tρee = iΩ/2(ρeg − ρge)− Γρee

∂tρgg = −iΩ/2(ρeg − ρge) + Γρee (2.79)

∂tρge = −(γ + i∆)ρge − iΩ/2(ρee − ρgg)

where Γ is the excited state population decay rate. The coherence damping rate γ can be
written as

γ = Γ/2 + γc (2.80)

where γc models dephasing effects such as atom-atom collisions that do not affect the
populations. We can also write the damped optical Bloch equations [2] in terms of the
Bloch vector by replacing σij = ρijeiωijt



§2.3 Optical Bloch Equations 31

∂tσ̂ee = iΩ/2(σ̂eg − σ̂ge)− Γσ̂ee

∂tσ̂gg = −iΩ/2(σ̂eg − σ̂ge) + Γσ̂ee (2.81)

∂tσ̂ge = −(γ + i∆)σ̂ge − iΩ/2(σ̂ee − σ̂gg)

where σ̂ij = ı〉〈j| is the internal state atomic operator between the |i〉 and |j〉 states in the
rotating frame.

Steady state solution

In realistic situations, due to relaxations the system eventually irreversibly relaxes to some
steady state. The steady state solution to the Bloch equations for 2-level atoms is reached
when the time derivatives vanish. For instance, solving first the equation in 2.82 in the
steady state, we have

σee(t → ∞) =
Γ

4γ

s

(1 + s)2
(2.82)

where s is the saturation parameter [2] and is defined as

s =
Ω2/γΓ

1 +∆2/γ2
. (2.83)

The steady state solution is very useful in finding a simple physical picture of the combined
atom-light system and will be used frequently throughout this thesis.

Mapping a single mode field into N atoms

Consider the interaction of a single mode field, â, with N two-level atoms (|1〉 and |2〉) .
This interaction is firstly formulated below in the dressed state picture. When all of the
atoms are prepared initially in level |1〉, the only states coupled by the interaction are

|A〉 = |1N20, 1a〉 (2.84)

|B〉 = |1N−121, 0a〉. (2.85)

These states are initially degenerate, and to be clear state |A〉 represents a state with N
atoms in atomic state |1〉, zero in |2〉 and one photon in mode a. The dynamics of this
system is described by the interaction Hamiltonian

Ĥ = h̄gâσ̂†2σ̂1 +H.c. (2.86)

Given that

âσ̂†2σ̂1|A〉 = âσ̂†2σ̂1|1N20, 1a〉 =
√
N |1N−121, 0a〉 (2.87)

=
√
N |B〉. (2.88)
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The matrix elements of the Hamiltonian can be calculated as

〈A|Ĥ |B〉 = h̄g∗
√
N (2.89)

〈B|Ĥ|A〉 = h̄g
√
N (2.90)

〈A|Ĥ |A〉 = 0 (2.91)

〈B|Ĥ|B〉 = 0. (2.92)

The eigenvalues and eigenstates of the system can then be obtained as λ = ±h̄g
√
N and

|Ψ〉 = 1√
2
(|A〉 ± |B〉), respectively.

This is equivalent to assuming N photons interacting with a single atom in a cavity,
which is a well-known cavity quantum electrodynamic (QED) problem. In this case, the
states and Hamiltonian of the system can then be equivalently written as

|A′〉 = |1120, 1a〉 (2.93)

|B′〉 = |1021, 0a〉 (2.94)

Ĥ ′ = h̄g
√
Nâσ̂†2σ̂1 +H.c. (2.95)

This Hamiltonian is essentially the single atom, Jaynes-Cummings type of Hamiltonian
with g → g

√
N .

Now we take an alternative approach to this problem and describe the system us-
ing the bare atomic levels. Again we will show that the effective atom-light coupling is
strengthened by a factor of

√
N due to N possible ways of distributing one photon among

N atoms. The initial and final collective atomic states can then be written as

|A〉 = |11...1〉 (2.96)

|B〉 = 1√
N

N
∑

i

|11...2i...1〉. (2.97)

The
√
N appears due to the permutation of a single excitation amongN atoms. This factor

would be different if there is more than one excitation. For instance for two excitations
we would have:

|BB〉 = 1
√

2N(N − 1)

N
∑

j '=i=1

|11...2i...2j ...1〉. (2.98)

The Hamiltonian is given by

Ĥ = h̄gâ
N
∑

i

|1〉i〈2|i +H.c. (2.99)

and the elements of the Hamiltonian matrix for a single excitation are then calculated as
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〈A|Ĥ |B〉 = h̄g〈11...1|
∑N

i,j |1〉i〈2|i|1...2j ...1〉√
N

= h̄g
1√
N

N
∑

i,j

δij = h̄g∗
√
N (2.100)

〈B|Ĥ|A〉 = h̄g
√
N (2.101)

〈A|Ĥ |A〉 = 0 (2.102)

〈B|Ĥ|B〉 = 0. (2.103)

The eigenvalues of the system can then be obtained λ = ±h̄g
√
N . This treatment has

been used in some literature [32, 33] to find the equations of motion, where the term
∑N

i |1〉i〈2|i is replaced by
√
NŜ12 and Ŝ12 refers to a collective atomic operator.

In order to generalise this theory to multimode fields we discuss the propagation of
light in three-level media under conditions of electromagnetically-induced transparency
(EIT) in the following section.

2.4 Light interaction with a Λ-atom

Consider a three-level atom interacting with two coherent light fields (probe and control
fields) as shown in Fig. 2.10. The interaction Hamiltonian of this system can be written
as

Hint = −h̄/2(Ωpσ̂31e
i∆pt + Ωcσ̂32e

i∆ct +H.c.) (2.104)

where Ωp and Ωc denote the Rabi frequency associated with the probe and control fields,
respectively. The frequency detuning of the probe and control fields from the excited state
are ∆p and ∆c, respectively.

Ω
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Figure 2.10: A three-level atom, with frequency spacings ω31 and ω32, interacts with a probe

field with frequency ωp and Rabi frequency Ωp and control field ωc and Rabi frequency Ωc in a Λ

configuration. The ground and excited state decay rates are γ12 and γ13. ∆p/c is the detuning of

the probe/control field from the excited state.

The dynamics of laser-driven atomic systems are governed by the master equations
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[34] for the atomic density operator that can be obtained considering a small quantum
system coupled to a large system with infinite states (reservoir or bath) [1]. The master
equation for the system depicted in Fig. 2.10 is given by

dρ

dt
= 1/(ih̄)[Hint, ρ] + γ31/2(2σ13ρσ31 − σ33ρ− ρσ33)

+γ32/2(2σ23ρσ32 − σ33ρ− ρσ33) (2.105)

+γ12/2(2σ22ρσ22 − σ22ρ− ρσ22)

where the second and third terms on the right-hand side describe spontaneous emission
(Langevin noise) from state |3〉 to states |1〉 and |2〉, with rates γ13 and γ23, respectively.
The last term describes population shuffling and dephasing between two ground states.
The master equation is written in the Schrödinger picture. In the following section, how-
ever, we take an alternative approach and derive the equations of emotion in the Heisenberg
picture, for simplicity.

2.4.1 Electromagnetically induced transparency

When light frequency matches energy splitting between particular atomic levels, a reso-
nance condition occurs and the optical response of the medium is greatly enhanced. Light
propagation is then accompanied by absorption and dispersion. However, in a Λ-scheme,
where a strong control field (or even intra-cavity vacuum field [35]) resonantly interacting
with the excited states and an auxiliary state, the optical response of the medium can be
significantly altered. In this regime , known as electromagnetically induced transparency
(EIT) [36, 37], the two possible pathways in which light can be absorbed by atoms un-
dergo quantum interference. Due to destructive interference, the absorption vanishes and
a narrow transparency window is opened inside the opaque medium and is accompanied
by strong dispersion. The combination of these two effects stimulates the atoms into a
superposition of the two ground states, which is decoupled from the excited state. The
atoms are then said to be in the “dark states”.

Description of slow light propagation

To mathematically describe the EIT regime, we consider the interaction of a multi-
mode field with N three-level atoms. The Λ structure under consideration is depicted
in Fig. 2.10. A quantised electromagnetic field with the positive frequency part of the
electric component is defined as

E =

√

h̄ω

2ε0V

∑

k

εkâkuk(r)e
−iωt (2.106)

that couples the transition between the ground state |1〉 and the excited state |3〉 with
Rabi frequency of Ωp = µ13.E/h̄. Furthermore, the upper level |3〉 is coupled to the stable
state |2〉 via a coherent control field with Rabi frequency Ωc.

The interaction of the light with an ensemble of atoms can be described through
collective atomic operators [38]. The atomic ensemble, with the total atom number N and
length L, is divided into thin slices dz along the propagation axis. Each slice is assumed
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thick enough to contain Nz + 1 and thin enough that the resulting collective field can be
considered continuous. The slowly varying operators are introduced as

ˆ̃σµν(t, z) =
1

Nz

Nz
∑

i=1

σ̂iµνe
−iωµν(t−zi/c) (2.107)

ˆ̃σµµ(t, z) =
1

Nz

Nz
∑

i=1

σ̂iµµ (2.108)

Ê(t, z) =
∑

k

âke
ikz. (2.109)

We assume a continuum of annihilation operators âk for the field modes of different k that
satisfy the commutation relation

[âk, â
†
k′ ] = δ(k − k′). (2.110)

Using the collective operators defined in Eqs. 2.107, the interaction Hamiltonian of the
three-level system can be expressed in terms of the collective atomic operators [38] by
replacing

∑Nz
i=1 by N

L

∫

dz as

Ĥint = h̄g
N

L

∫ L

o
(Ê(t, z)ˆ̃σ31(t, z) + Ωce

i∆ctσ̃32 +H.c.)dz (2.111)

where g = µ13

√

ω
2h̄ε0V

is the atom-light coupling constant. We also performed a transfor-

mation into a frame that rotates with the laser frequency.

To find the equations of motion for the envelope field operator Ê we write the Heisen-
berg equation of motion for a field Ê(t, z)

∂

∂t
Ê(t, z) =

1

ih̄

∫

dk[âk, Ĥint + ĤL]e
ikz (2.112)

where ĤL = h̄
∑

k â
†
kâkωk is the light field Hamiltonian. Using

[

Ê(z), Ê†(z′)
]

= Lδ(z − z′) (2.113)

[âk(t, z),HL] = h̄ckâk(t, z) (2.114)

and the spatial Fourier transform of Eq. 2.114, we obtain an equation of motion for the
collective evolution of the all optical modes

(
∂

∂t
+ c

∂

∂z
)Ê(t, z) =

1

ih̄

[

Ê(t, z), Ĥint

]

(2.115)

= igN σ̃13 (2.116)

The atomic evolution is governed by a set of Heisenberg-Langevin equations. Using
Eqs. 2.107 and 2.108 and considering the following relations
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Nz
∑

j=1

σj13,
Nz
∑

i=1

σ̂i31



 =
Nz
∑

j=1

σj11 − σj33 = Nz(σ̃11 − σ̃33) (2.117)





Nz
∑

j=1

σj12,
Nz
∑

i=1

σ̂i23



 =
Nz
∑

j=1

σj13 = Nzσ̃13 (2.118)

we arrive at

˙̃σ12 = −(γ12 − iδ)σ̃12 + iΩ%
c/2σ̃13 − igÊ σ̃32 + F̂12

˙̃σ13 = −(γ31 − i∆)σ̃13 + igÊ/2(σ̃11 − σ̃33) + F̂13

˙̃σ32 = −(γ32 − i∆)σ̃32 + iΩ%
c/2(σ̃33 − σ̃22)− igÊ%σ̃12 + F̂32 (2.119)

where δ = ∆p −∆c is the two-photon detuning and ∆ = ∆c is the one photon detuning.
The Langevin noise operators [1] Fij , whose explicit form is not of interest here, describe
the coupling of the atoms to vacuum modes of large reservoirs and include spontaneous
emission noise and ground state dephasing. Solving the above equations in the steady
state, assuming all population are initially pumped to state |1〉 and neglecting noise terms
(Fij = 0), one can obtain an expression for the linear susceptibility of the medium [37]

χ(1)(ω) = µ2
13N/ε0h̄V [

4δ(|Ωc|2 − 2δ∆) − 4∆γ212
||Ωc|2 + (γ13 + i2∆)(γ12 + i2δ)|2

+i
8δ2γ13 + 2γ12(|Ωc|2 + γ12γ13)

||Ωc|2 + (γ13 + i2∆)(γ12 + i2δ)|2 ] (2.120)

This linear susceptibility contains many of the important features of EIT. The real and
imaginary parts of susceptibility are plotted in Fig. 2.11 (a) and (b) respectively (solid red
lines) as a function of the two-photon detuning δ assuming ∆ = 0. Maximum transmission
occurs when the two beams are on resonance.

The steep variation of the real part of susceptibility for frequencies inside the trans-
parency window indicates a large refractive index change. This means that light with
frequencies inside the transparency window propagates through the medium with a group
velocity much lower than c. The imaginary part of the susceptibility describes absorp-
tive properties of the medium (thereby modifying the signal-field intensity transmission
coefficient T), whereas the real part determines the medium refractive index n:

T (ω) = e−Im[χ(ω)]kL,

n(ω) = 1 + Re[χ(ω)]/2. (2.121)

The associated reduced group velocity and transparency frequency bandwidth can be
written as

vg =
dωp

dkp
= cΩ2

c/(Ω
2
c + g2N) , ΩcL

dγ
(2.122)



§2.4 Light interaction with a Λ-atom 37

0 0.5 1 1.5-0.5-1-1.5
0

1

0.8

0.6

0.4

δ/γ

N
o

rm
al

is
ed

 I
m

[χ
]

-0.4

0.4

0.2

0

-0.2N
o

rm
al

is
ed

 R
e[

χ]
(a) (b)

0 0.5 1 1.5-0.5-1-1.5
δ/γ

Figure 2.11: Real (a) and imaginary (b) parts of susceptibility plotted as a function of two-

photon detuning. The solid line and dashed line indicate susceptibility for three- and two-level

atoms, respectively.

and

∆ωtrans ,
√
dvg
L

(2.123)

respectively, where γ = γ13 , γ23 is the spontaneous emission rate from the excited state,
L is the length of the atomic ensemble and d = g2NL/γc is the optical depth (OD).
In fact, the OD of a sample specifies the strength of atom-light interaction. Note that
approximation in Eq. 2.122 is only valid at limits of large OD. From the above expressions
it can be seen that the group velocity and width of the transparency window can be
controlled by the control field Rabi frequency. One can reduce the group velocity of light
by decreasing the control field intensity at the expense of losing the bandwidth, because
the transparency window becomes narrower. Low group velocities for large-frequency
bandwidth pulses of light can be simultaneously achieved only at large optical densities,
d + 1. In other words, the delay-bandwidth product ∆ωtransτ (where τ = L/vg) of EIT
scales with the square root of the optical depth. Using EIT in cold atomic samples, group
velocities down to 17 m/s have been achieved [39].

We note here that for a Doppler-broadened atomic ensemble (with a Doppler width of
Γd), at low Ωc, the EIT width is given by

∆ωtrans , γ12 +
Ω2

c√
d(Γd+γ)

. (2.124)

Using this equation one can measure the ground state decoherence rate (γ12) by varying
the control field power [40] and extrapolating values to zero power.

In the next chapter, we will discuss that how the EIT phenomenon can be used to
store light in an atomic memory.
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2.4.2 Raman scattering

Raman scattering refers to a category of light-matter interactions during which incident
photons interact with atomic energy levels of the material so that new photons with a
different frequency are generated. Many different types of Raman scattering interactions
[41] exist, in particular, coherent anti-Stokes Raman scattering (CARS) and stimulated
as well as spontaneous Stokes Raman scattering.

Spontaneous Stokes Raman scattering is a process by which an atom in its ground
state is first pumped into an excited state and then decays to a lower excited electronic
state while spontaneously emitting a photon with an energy equal to the energy difference
between the ground and excited states. In the case that this process continues in the
presence of the first emitted photon, the newly generated photon will have the same
frequency, phase and direction as the previous one. The spontaneous fluorescence process
can then turn into the stimulated emission process that resembles the operation of most
lasers and optical amplifiers. The schematic atomic transition schemes of Stokes and anti-
Stokes Raman scattering are shown in Fig. 2.12 (a) and (b), respectively. The energy of
the Stokes/anti-Stokes photon is less/more than the absorbed pump photon.

Δ Δ

l g > l a >

l e >

l g > l a >

l e >(a) (b)

ω
s

Figure 2.12: Schematic of (a) Stokes and (b) anti-Stokes Raman scattering.

The stimulated Stokes Raman scattering (SSRS) is often the most dominant non-
spontaneous Raman process, however, in practice it is always accompanied by two other
non-spontaneous Raman processes, namely CARS and stimulated anti-Stokes Raman scat-
tering (SARS). Whereas SSRS generates Stokes photons with a frequency ωs that is Raman
down-shifted with respect to the pump frequency ωp, CARS is able to generate so-called
anti-Stokes photons with a frequency ωas that is Raman up-shifted with respect to ωp.
CARS is generally described as a nonlinear four-wave mixing (FWM) process - an inter-
action involving four electromagnetic waves - that can only take place in a Raman-active
medium.

2.4.3 Light shift

When light of intensity I(r, z), frequency ωl , and polarisation q = 0,±1 [corresponding
to linear, right (+) and left (-) circular polarisations, respectively] is shone onto an atom,
there will be a change in the energy of the internal states. This is known as the ac
Stark effect. For alkali-metal atoms, this effect can be calculated for a given ground state
|g〉 = |1/2, F,mF 〉 from second-order time-dependent perturbation theory [42] to be
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UF,mF (ωl, q, I) =
I(r, z)

2cε0h̄

∑

a

|〈a|er̂.εq|g〉|2
ωl − ωag

(2.125)

where er̂ is the electric dipole, and |g〉 and |a〉 are ground and excited atomic states with
which light is interacting.

2.5 Summary

We have introduced the basic concepts and theory of atom-light interactions that can gen-
erally be applied to various systems. Most of the theory described here will be frequently
used throughout this thesis to describe particular schemes.
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Chapter 3

Literature Review on Optical

Storage

“My journey has been as long as yours. I had to learn to hold a light, lest its brilliance
destroy me.”

Andromeda: Fear Burns Down to Ashes

The bandwidth and versatility of optical devices has revolutionised information tech-
nology systems and communication networks. Precise and arbitrary control of an optical
field that preserves optical coherence is an important requisite for many proposed photonic
technologies. For quantum information applications, a device that allows the storage and
on-demand retrieval of arbitrary quantum states of light would form an ideal quantum
optical memory.

An ideal quantum optical memory must be capable of coherently storing multiple
quantum states of light for on-demand recall with memory fidelity beyond the classical
limit. Arriving at this goal is a challenge for experimentalists and extensive research efforts
have been dedicated to the development of such a quantum memory for the last decade.

In this chapter, we review different techniques proposed, to date, to coherently store
optical states. In the first three sections we discuss memory schemes that do not require
coherent interaction of light with atomic ensembles and are based on either free space
optical loops or parametric processes. The rest of the chapter is dedicated to optical
memory schemes that rely on the controlled coherent interaction of light with atoms to
store, manipulate and retrieve optical pulses. These schemes can be divided into two
categories: those that utilise transmissive properties of materials to slow down or store
light, such as electromagnetically induced transparency (EIT), four-wave mixing (FWM),
and off-resonance Faraday interaction protocols, and other schemes that rely on absorptive
properties of the medium such as photon echoes and Raman processes.

3.1 Delay and storage in optical waveguides

3.1.1 Optical Fibres and Cavities

The easiest approach to delay the light is to increase the distance travelled by photons using
an optical delay line, such as an optical fibre or cavity. The development of high-quality
optical fibres with good transmission capabilities has significantly impacted the global
communication network. The 2009 Nobel prize was awarded for work dedicated to optical
fibres due to its impact on technology. The success of fibre technology is due to its wide
bandwidth, its unique low-loss performance, and also its extremely low production cost.

41
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Fibre delay lines have been used as the simplest form of quantum memory to synchronise
and transform signals [43]. However, to induce a delay of 50 µs, light needs to propagate
through a 15 km fibre in which, with current technology, at least 50% of the light will
be lost through propagation. On the other hand, for fibres to be adapted as a coherent
memory, or even as classical delay channels (used to optimise the flow of data traffic in
future networks), the lack of a tuneable delay is a severe drawback of simple delay lines.
Experimental demonstration of an all-optical cyclical quantum memory (CQM) [44] device
based on the storage of photonic qubits in a simple free-space optical loop was performed
for down-converted photons [45].

Alternatively, light can be delayed in a high-Q cavity that allows photons to transmit
through the cavity with variable probability depending on the mirror separation. When
the cavity is on-resonance with the incoming light, the light cycles back and forth between
the reflecting mirrors, allowing it to stay inside the cavity. The light can then be retrieved
by dynamically driving the cavity off-resonance. For instance, it was demonstrated in
a basic experimental setup that 600 round trips between two 15 cm-diameter mirrors
spaced 2.5 m apart provides ten microseconds of time delay, with an optical insertion
loss of 12 dB [46]. To date, some proposals have been suggested which rely on optical
cavities as a method for light storage [47, 48]. It was proposed by Lloyd et al. that
quantum entanglement over long distances can be created and stored by using a single
atom in a high-Q cavity [49]. Furthermore, experiments were performed to demonstrate
the storage of single photons generated by parametric down conversion [50, 51]. It was
recently shown that coherent light pulses (with a duration of 1.90 ns) can be stored for
1.45 ns in wavelength-scale photonic crystal cavities that have a tuneable Q factor [52].
In this experiment the dynamic Q-tuning was done using timing-controlled pump pulses,
which allows control over the storage time. However, due to the short cycle time, the
light must make many round trips inside the cavity to provide the minimum storage time
required and this will limit the storage efficiency due to the insertion loss.

3.1.2 Stimulated Brillouin Scattering

One way to accomplish tuneable delay in optical fibres is to use the stimulated Brillouin
scattering (SBS) technique. Brillouin scattering is an interaction of light waves (photons)
with acoustic or vibrational waves (phonons). This interaction is an inelastic scattering
process in which a phonon is either created (Stokes process) or annihilated (anti-Stokes
process). The energy of the scattered light is slightly changed: the energy is decreased for
a Stokes process and increased for an anti-Stokes process. Brillouin scattering is similar
to Raman scattering, discussed in the previous chapter, where both phenomena represent
inelastic scattering processes of light. In a Raman scattering process, the photons are
usually scattered by interactions with the rotational transitions of atomic dipoles (resulting
in a change of the atomic angular momentum), while in the case of Brillouin scattering
the scattering of photons happens due to interactions with acoustic waves (phonons).

The electric field or light field itself can generate acoustic waves stimulated by elec-
trostriction (elastic deformation of a dielectric induced by an electric field) in media such
as optical fibre. The beam may undergo Brillouin scattering from these acoustic vibra-
tions, usually in the opposite direction to the incoming beam. This parametric process is
known as stimulated Brillouin scattering (SBS).

Phonons created using SBS can efficiently grow while having a long lifetime. SBS
can be adapted to delay or store optical fields. The first experimental demonstrations of



§3.1 Delay and storage in optical waveguides 43

Write pulseData pulses 

Optical fibre

Read pulse

Optical fibre Optical fibre

Acoustic waves

Optical fibre

Write pulse

Acoustic waves Read pulse Retrieved data pulses 

(a) (b)

(c) (d)

Data Storage

Data Retrieval
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SBS-induced slow light in optical fibres were reported in 2005 [53] and independently soon
after by a different group [54]. In the simplest configuration, two optical waves, an intense
write field and a weak signal field, to be stored and propagating in opposite directions in
a single-mode fibre, create a longitudinal acoustic wave which induces a dynamic Bragg
grating in the fibre core. As a result of the slow velocity (around 5,800 m.s−1) of the
phonons compared with the photons in the fibre, the phase-matching criteria require that
the two lightwaves must counter-propagate, and phase matching is only possible under
very strict conditions. An efficient conversion to the acoustic wave is observed only if the
frequency difference between the optical waves is precisely set to a value known as the
Brillouin frequency shift, which is equal to the acoustic wave frequency.

Coherent large bandwidth optical storage via SBS also appears to be a promising
approach [55]. In this storage process, a short, intense write pulse that is red-detuned
from the signal field frequency by the Brillouin frequency shift causes the data pulses to
become depleted (Fig. 3.1 a) with the information being stored as an acoustic wave in the
medium (Fig. 3.1(b)). In the retrieval process (Fig. 3.1 (c)), a short intense read pulse at
the same frequency as the write pulse depletes the acoustic wave and converts the data
back to the original optical frequency, thereby producing a replica of the incident data
pulses (Fig. 3.1(d)). The results of this experiment [55] show that stored pulses can be
retrieved later, after a time interval of 12 ns which is mainly limited by the lifetime of
the acoustic excitation. The results were reported for storage of a single pulse; 2 ns-long
pulses are stored with a readout efficiency of 29% at 4 ns storage time and 2% at 12
nanoseconds. It is shown also that this memory is capable of storing multiple pulses of
light, which indicates that this approach has the potential to be used as a broadband
optical delay line.

The SBS process is described mathematically by one-dimensional coupled wave equa-
tions involving a forward data field, a backward control field, and a forward acoustic field
[56]. It can be shown that complete storage of the data signal requires the fulfilment of
four conditions. The first condition is that the area of the pulse should be equal to π/2
for both the write and read pulses. The second condition is that the write and read pulses
must have a bandwidth larger than any data pulses to be stored. Third, the storage time
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must be less than the acoustic lifetime. Finally, the spatial extent of the data packet must
be less than twice the length of the storage material. Under these conditions, the entire
spectrum of the data pulses can be reliably recorded and retrieved.

3.1.3 Trapped light in a metamaterial waveguide

Recently, materials with negative refractive indices have attracted attention for many
applications. Probably the most important among them are so called “perfect lenses” [57],
which focus all Fourier components of a 2D image, including evanescent modes, thus
providing resolutions beyond the diffraction limit. Very recently Tsakmakidis et al. [58]
showed theoretically that a material with a negative refractive index can be adapted to
store optical data coherently. To understand this scheme, let us first look at the properties
of materials with negative refractive indices.

Although there is no naturally-occurring material with a negative refractive index,
methods were proposed for its practical implementation [59, 60]. Some composite mate-
rials, if built properly, show negative permeability and permittivity for microwaves. This
can be attained by putting split-ring resonators and metallic wire strips together in a peri-
odic structure inside some materials. Materials built this way are called metamaterials. It
can be mathematically shown that when the permeability and permittivity of a material
is negative the refractive index of the materials is negative [61] because of causality.
Materials with negative refractive indices are also called left-handed materials(LHM).

Consider a light beam propagating through an optical pipe where a ray of light bounces
back and forth off the walls and propagates. Due to total internal reflection, light expe-
riences a phase shift and consequently a lateral displacement each time it strikes the
interfaces of the core [62]. This displacement is called Goos-Hanchen displacement [63]
which is negative for LHMs. Negative Goos-Hanchen displacement in left-handed materi-
als seen by the light field is the key to this method of light storage. Due to the negative
Goos−Hanchen displacement, the point at which the incident and reflected rays meet will
sit inside the left-handed core and the effective thickness of the guide will be smaller than
its physical thickness. The combined effect of the phase shifts from the walls can be such
that the thickness of the waveguide core becomes effectively zero (2α + x1 + x2 = 0), see
Fig. 3.2. Since this displacement is frequency dependent, for some particular frequency
and physical core thickness light does not propagate and is stopped in the waveguide.
When the lateral displacement differs such that the effective thickness becomes larger or
smaller than zero, the light field will propagate forward or backward, respectively.

Knowing this fact, one can store multifrequency optical pulses in a tapered waveguide
constructed from LHM. Since the lateral displacement of the light depends on the fre-
quency of the light, it is expected that by gradually reducing the physical core thickness
along the waveguide, there would be a point for each frequency of light where the effective
thickness of the guide will vanish and each frequency component of light will be stopped
longitudinally at a different positions. In principle, using a tapered waveguide, it is possi-
ble to stop different frequencies of the optical data at different positions of the waveguide.
In this scenario, releasing optical pulses cannot be easily achieved.

An immediate question is whether the negative index-of-refraction property can be im-
plemented at optical frequencies. The first LHM built at the University of California [61],
based on split-ring resonators and metallic wires with dimension control on a unit cell
of about 3 cm, was used to show experimental scattering data at microwave frequencies
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inside a tapered waveguide made of left-handed materials (LHM). Figure taken from Ref. [58]

which exhibits a frequency band where the effective index of refraction is negative. Today,
thanks to current technology, nanofabrication of split ring resonators to build metameta-
materials in the infrared range is feasible [64, 65], which is promising for experimental
implementations of this memory scheme in the near future.

3.2 Transmissive Atomic Memories

In the rest of this chapter we focus on memory schemes based on the coherent interaction
of light with atomic ensembles. In this section, we consider controlling the group velocity
of the light propagating through atomic ensembles as a storage mechanism.
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3.2.1 EIT light storage

The electromagnetically induced transparency (EIT) phenomenon was introduced in the
previous chapter. To date, EIT has been suggested and used in various applications in
optics and spectroscopy such as magnetic field imaging [66] and formation of solitons [67].
In 2000, Fleischhauer and Lukin suggested EIT as a method of coherent light storage [68].
Here we describe how this phenomenon can be used to store optical information.

To describe light-atom dynamics inside the EIT medium, let us consider the propa-
gation of a single pulse of light in an ensemble of Λ-type atoms. Initially the pulse is
outside the medium in which all atoms are in their ground states |1〉. Assuming the pulse
bandwidth fits within the transparency window, after the front edge of the pulse enters
the medium it is rapidly decelerated, whereas the back edge still propagates with vacuum
speed c. As a result, upon entering the medium, the spatial extent of the pulse is com-
pressed by the ratio c/vg, while its peak amplitude remains unchanged. The energy of the
light pulse is much lower when it is inside the medium compared to a freely propagating
field. A small fraction of energy is expended to change the state of the atom, with any
excess energy carried away by the control field. Energy is given back to the pulse from
the control field as the pulse exits the medium[69, 70]. The spatial extent increases again
and the atoms return to their original ground state.

Inside the medium the collective atomic excitation evolves together with the light field.
The energy is exchanged back and forth between the electric field and atomic polarisation
as the light pulse propagates through the medium.

After the pulse enters the medium and is spatially compressed, one can adiabatically
reduce the control field intensity to zero to reduce the group velocity and map the in-
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formation into the ground state atomic coherence. In this protocol the group velocity of
light is tuned by the control � eld intensity so that on demand recall is feasible. After a
controllable time, the intensity of the control � eld can be intensi� ed to increase the group
velocity and couple the light out of the medium. A detailed treatment of EIT can be
found in Ref. [71, 72]. A schematic of this process is presented in Fig. 3.3 (b). It was
shown theoretically that the control � eld intensity can also be switched in a non-adiabatic
manner [73].

(a) (b)

Figure 3.4: An input Gaussian pulse is stored and retrieved either into its original pulse shape

(a) or into a ramp pulse shape (b). Figure taken from Ref. [74]

For the optimum storage of a data pulse, a medium is required to provide both a wide
transparency window and a low group velocity in order to spatially localise the entire
pulse inside the ensemble. Otherwise a fraction of data will leave the medium without
interaction. This is shown in Fig. 3.3 (a) where the control � eld is switched off between τ1
and τ2 while a part of the input pulse is transmitted without storage. It is worth noting
that the stored entity is not energy but information. The energy of the probe � eld is given
to the control � eld and leaves the medium, but information is imprinted into the atomic
coherence. After the control � eld is turned back on, energy is returned to the signal � eld
to retrieve the stored information in the form of an optical � eld.

To date, various experiments have been performed to store classical light pulses as well
as quantum states of light via the EIT scheme. The experimental demonstration of light
storage via EIT was � rst performed in 2001 independently by two different groups [75, 76]
where a single pulse of coherent light was stored and recalled after 1 ms [75].

Recently, Gorshkov et al. [33] proposed an optimal control strategy for the storage and
retrieval of a photon wave packet of any given shape (provided prior knowledge of the pulse
shape). This strategy relies on shaping the control � eld intensity in time to minimise the
loss and to optimise the storage and retrieval process at a given OD. Using this approach,
this group achieved efficiency of 42% in warm 87Rb atoms in a glass cell mixed with 30
Torr of Ne buffer gas [77, 74]. Furthermore, it was experimentally demonstrated that
using this method, one can shape the output pulse by choosing the correct control � eld
shape; see Fig. 3.4. One of the limitations of this method of light storage is that prior
knowledge of the input light pulse is required. Achieving a higher memory efficiency with
EIT in warm atomic ensembles is currently limited by four-wave mixing processes, where
a generated Stokes � eld contaminates the output signal � eld [77].

The temporal multimode capacity of an optical memory is a crucial requirement for
many optical communication applications. This is measured as a quantity which is nor-
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Figure 3.5: Optical squeezed state of the input (left column) and retrieved (right column) states.

(a) Data of quadrature noise as a function of phase of the LO. (b) The density matrices obtained

using maximum-probability reconstruction in the Fock basis (absolute values), Wigner functions

(c) and quadrature noise variances (d) are displayed, [78]. Figure taken from Ref. [78].

mally referred to as the delay-bandwidth product (DBP) (product of data pulse rate and
delay). In most EIT experiments the DBP is found to be on the order of one or even
less. As mentioned before, the DBP of an EIT system is scaled by the square of the
optical depth. The maximum DBP achieved, to date, with slow light is roughly 140,
corresponding to a 50-pulse delay, in a hot rubidium experiment using two absorption res-
onances [79]. There are two effects that limit the bandwidth of EIT: frequency-dependent
group velocity that broadens the pulse as it propagates, and also a frequency-dependent
transmission that spectrally narrows a pulse [80]. Very recently, the group at University
of Calgary experimentally demonstrated that a comb-shaped transparency spectrum en-
hances the delay-bandwidth product and the light storage capacity for a probe pulse by a
factor of about 50 compared to a single EIT line [81]. Furthermore, using EIT arbitrary
two-dimensional images have been slowed and stored in warm atomic vapour for up to
30 µs [82].

In principle, EIT can be used for storage of quantum states of light and it can be shown
that it does not add extra noise to the output state [83, 84]. Several experiments have
been performed to prove that EIT is capable of storage and retrieval of quantum states of
light such as a squeezed vacuum state [85, 78]. In 2008, J. Appel et. al. experimentally
presented storage and retrieval of a squeezed state of light [78] and measured a fidelity of
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F = 0.89, which is significantly higher than the classical fidelity of 0.74. The results are
presented in Fig. 3.5, where the properties of the input and recalled light are shown on
the left and right of the figure, respectively.
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turned off 100 ns after the retrieval from the source ensemble begins; after waiting for a storage

time of ts = 460ns, the control field is turned back on, resulting in the retrieved pulse centred

at 600 ns. The control field switching dynamics is depicted above. (b) Conditional probability

(per 300 ns) of detecting a photon retrieved from the target ensemble for different storage times.

The decay of probability is fitted by an exponential with a 1/e characteristic time of about 1 ms;

this is consistent with the diffusion of atoms from the interaction volume [86]. Figure taken from

Ref. [87].

M. D. Eisaman et. al. in 2005 [87] performed an experiment to measure the time
delay associated with the reduced group velocity of single-photon pulses and reported
observation of the storage and retrieval of single photons (Fig. 3.6). In this experiment,
single photons are created via Stokes and anti-Stokes scattering. The direction, bandwidth,
and central frequency of the single-photon anti-Stokes pulse is determined by the direction,
intensity and frequency of the retrieving laser beam [88].

Furthermore, Choi et al. [89] demonstrated the creation of entanglement between two
atomic ensembles by the coherent mapping of an entangled state of light (generated by
splitting a single photon). They showed that entanglement can be reconstructed after
a programmable delay with an overall efficiency of 17%. To date, the largest storage
time using EIT was achieved by the team at the Australian National University, where
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coherence times of seconds have been demonstrated for hyperfine transitions of rare earth
ions doped in crystal at cryogenic temperatures [90].

Using the EIT technique, a group in China observed reversible mapping of entangled
photons into and out of a remote optically thick cold atomic memory [91]. The entangled
photons were generated by building a 5 MHz frequency-uncorrelated double cavity source.
The storage of a triggered single photon with arbitrary polarisation is shown to reach an
average fidelity of 92% for 200 ns storage time. Also in this experiment, polarisation-
entangled photon pairs are prepared, and one of the photons is stored in the atomic
memory with the other photon freely propagating. Violation of Bell’s inequality was
observed for storage time up to 1 µs. This demonstrates that entanglement is stored and
survives during storage.

Very recently, it was shown that a single photon created in the atom-cavity system is
transported to a Bose-Einstein condensate (BEC) and stored into a collective excitation in
the BEC, thus establishing entanglement between the atom inside the optical cavity and
the BEC [92]. After a variable delay, this entanglement is converted into photon-photon
entanglement. The total fidelity of all concatenated operations was shown to be 95%. This
hybrid system could be extremely useful in the field of quantum information.

3.2.2 Light storage using four wave mixing

Four-wave mixing (FWM) refers to a process where three wavelengths interact in a nonlin-
ear medium, and give rise to a fourth wavelength (conjugate beam) which is formed by the
scattering of the incident photons. CARS is the most common of all the FWM processes.
In this process two photons of frequency ω1 interact in a nonlinear medium with a single
photon of frequency ω2 to create an output field with a frequency of ωs = 2ω1 − ω2. The
two input frequencies are chosen so that ω1−ω2 is near a transition of the medium; this is
a coherent version of Raman scattering. The sharp gain feature obtained with four-wave
mixing in a double-lambda system [93] leads to a large dispersion over a small frequency
range and therefore a large reduction in group velocity.

The ultraslow propagation of matched pulses in nondegenerate four-wave mixing in a
hot atomic vapour were observed by a group at NIST in Maryland [93] where probe pulses
as short as 70 ns were delayed by a tuneable time of up to 40 ns with little broadening
or distortion. Very recently the same group at NIST [94] showed that a four-wave mixing
process based on a double-Λ scheme in hot 85Rb vapour allows one to obtain an optically
tuneable delay for EPR entangled beams of light. In this experiment a significant delay,
on the order of the width of the cross-correlation function, is achieved. The delay can
be controlled by changing the value and bandwidth of the gain, which in the case of a
gas medium can be done by changing the temperature and pump power used for the
four-wave mixing. In principle, it is possible to combine both the temperature and pump
power tuning capabilities of the system to obtain even greater delays. However, reducing
the pump power decreases the bandwidth of the memory. On the other hand, the gain,
associated with the four-wave mixing process itself is the main source of excess noise
responsible for the degradation of the output quantum state. It was also shown [94] that
FWM can preserve the quantum spatial correlations of entangled beams, see Fig. 3.7.

Recently, a group at the University of Rochester in New York [95] reported an experi-
ment on pulse storage in hot atomic rubidium vapour, in which a four-wave-mixing normal
mode is stored using a double-Λ configuration. In this work, the entire waveform of the
input signal is recovered after about 120 µs, and a new optical mode (idler) is generated



§3.2 Transmissive Atomic Memories 51

3.0

2.5

2.0

1.5

1.0

0.5

0.0
–100 –50 0 50 100 150

Delay (ns)

Conjugate

Probe
(reference)

Probe
(delayed)

Probe
(pump blocked)

Delay = 27 ns
   = 1.79(3) < 2

C
ro

ss
-c

o
rr

e
la

ti
o

n
 (
a
.u

.) Delay = 0 ns
   = 1.40(3) < 2
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by the four-wave-mixing process.

3.2.3 Off-resonant Faraday interaction

Faraday interaction between light and atomic spin can also be used to map information
into atomic spin. In this scheme, coherent storage of light is achieved in three steps:
first an interaction of off-resonance photons with atoms; second, a subsequent polarisation
measurement of the transmitted light; and third, feedback onto the atoms conditional on
the measurement result. The proof of principle experiment performed on warm Cs atoms
shows mapping of quantum information to/from an atomic spin wave [96].

In this experiment, initially the atomic ensemble is prepared by optical pumping where
the quantisation is defined by a magnetic field along the x axis; hence all the atomic spins
will be along the x axis. Whereas, due to the quantum uncertainty principle, the other
two projections of spin angular momentum are not zero:〈δJ2

y 〉 = 〈δJ2
z 〉 = 1/2Jx. Consider

a light pulse detuned from atomic transition and polarised along y axis interacting with
this atomic ensemble. The z component of angular momentum will cause Faraday rotation
of the optical field. This rotation can be measured after the atomic ensemble and results
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Figure 3.8: Schematic experimental setup for quantum memory based on the off-resonant Fara-

day interaction between light and atoms. Here, quantum information is encoded in the polarisation

of photons. After propagating through the cell, the pulse is subjected to a polarisation measure-

ment, the result of which is then fed back to the atoms by applying a magnetic field pulse of a

known magnitude and duration

are fed back by a feedback gain to the atomic spins through an RF signal. A schematic
of the experiment setup is shown in Fig. 3.8. In the ideal case, where gain and atom-
light interaction are maximum, the mapping of light into the atomic spins is perfect. In
the read out stage, a π/2 RF pulse is followed by a read pulse to reconstruct the input
state. It has been demonstrated in this work that fidelity of the output state stays above
the best classical recording for up to 4 ms storage. For instance, after storage of a 1 ms
pulse containing an average photon number of n= 4, for 0.7 ms, the fidelity of the output
state was measured to be about 70%, which is better than its classical limit (54%). The
uncertainty in the y component of the angular momentum will limit the fidelity and can
be overcome by initially preparing the atoms in the spin-squeezed state [97]. It was also
theoretically demonstrated that by directing the light through the atomic sample such
that it crosses the medium twice under an angle of 90◦ in the plane orthogonal to the
axis of the magnetic field, it is possible to avoid measurement and feedback to the atomic
ensemble [98]. Furthermore, utilising Faraday interaction, a quantum state encoded in a
light pulse has been teleported to an atomic ensemble containing caesium atoms [99]. In
this experiment deterministic teleportation is achieved for coherent states for mean photon
number n = 20 with fidelities of 0.58 and for n = 5 with a fidelity of 0.60, higher than
classical state transfer.

Very recently, the same group succeeded in demonstrating a quantum memory for
continuous variable entangled states [100]. It was shown that various two-mode 6.0 dB
squeezed states obtained by varying the orientation of squeezing and the displacement of
the states can be stored in an ensemble of caesium atoms. The two components of the
entangled state are stored in two room-temperature cells separated by 0.5 m, one for each
mode, with a memory time of 1 ms. These multi-photon states are two-mode squeezed
by 6.0 dB with a variable orientation of squeezing and displaced by a few vacuum units.
The true quantum character of the memory is proved by showing that the experimental
memory fidelity 0.52± 0.02 exceeds the best possible classical memory. The schematic of
the experimental setup is shown in Fig. 3.9.
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3.3 Absorptive Atomic Memories

In comparison with the EIT technique, coherent optical memory schemes discussed in the
following sections utilise full absorption in an optically dense medium. Two and three-
pulse photon echo, an off-resonance Raman memory, controlled reversible inhomogeneous
broadening (CRIB), and atomic frequency comb (AFC) are four memory schemes that are
discussed in the following sections.

3.3.1 Off-resonance Raman memory

We start by introducing a memory scheme based on a simple Raman transition between
two ground states. The signal field and the control field create a Raman transition via
a virtual state. This far-detuned Raman transition provides absorption of broadband
pulses. In the Raman memory, the bandwidth is generated dynamically by off-resonance
write/read control pulses. Furthermore, off-resonance Raman memory guarantees that any
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unstored light is transmitted with small attenuation and there is also a small probability
of spontaneous emission. In the experiment performed by Reim et al. [101] a strong write
pulse and a weak signal pulse are overlapped and sent together into a caesium vapour cell
where the Raman interaction with the storage medium takes place. The signal pulse is
mapped via a two-photon transition with the write pulse into a collective atomic excitation.
At a later time a strong read pulse converts back the atomic excitations into an optical
output signal.

The storage and retrieval of weak coherent light pulses at the single-photon level in
warm atomic Cs vapour with an efficiency of 30% has recently been demonstrated [102].
Furthermore, it was shown that noise introduced from the memory to the recalled state is
sufficiently low.

The off-resonance Raman memory can, in principle, provide 100% efficiency only if
stored data is recalled in the backward direction. Although this type of memory is capable
of storage of large bandwidth pulses (GHz), it would be difficult to store and recall multi-
pulses of data. If multiple pulses are stored in the ensemble, in the reading stage, most of
the information will be recalled with the first read pulse. This will limit the multimode
capacity of the memory.

3.3.2 Pulse photon echo storage

The phenomenon of spin echo [103] introduced more than half a century ago is used
extensively in material sciences and especially in nuclear magnetic resonance (NMR).
This concept was discussed in the previous chapter. The corresponding phenomenon in
photonic systems is called the photon echo, first introduced as two-pulse [104, 105] and
then three-pulse photon echoes [106, 107, 108].

The two-pulse photon echo is carried out by two off-resonance pulses interacting with
an ensemble of two-level atoms. The first pulse with an area of π/2 creates a coherent
superposition between the ground and excited atomic states. As a result, the coherence
between the oscillating dipoles decays with a rate corresponding to the homogeneous
linewidth of the excited state. The second pulse, of area π, exchanges the population
between the ground and excited levels in the coherent superposition, therefore the sign of
the phase is reversed for each atom. After an additional evolution time, equal to the time
delay between the first and second pulses, the phase shift for each atom would be zero,
which leads to a rephasing of the coherence and an intense burst of coherent emission,
known as the photon echo. This process can be elegantly described by Bloch vector
evolution inside the Bloch sphere (see Fig. 2.8).

While two-pulse photon echoes are very good at storing classical information they are
incapable of storing quantum information. The reason is that the rephasing optical π
pulses are applied to transitions that are populated; therefore this type of photon echo is
accompanied by spontaneous emission from the excited state. On the other hand, if one
wants to completely store the input data, an optically thick atomic ensemble is required,
however in the regime of high OD there is a chance of absorption of the π pulse. This will
cause the π pulse to be partially absorbed which means not all the atoms will see a perfect
π pulse and therefore the efficiency would never be perfect [109]. Further discussion on
this subject is provided in Ref. [110].

A similar idea can be used in order to store optical data using a different pulse sequence.
In this case, a preparation pulse is first applied with a bandwidth equal to or larger than
the maximum data rate. This pulse creates a spectral absorption grating that will cause



§3.3 Absorptive Atomic Memories 55

absorption of the data input pulse sent later to the medium. The amplitude and phase of
the input pulse is imprinted onto the frequency modulated atomic sample. After a wait
of τ , applying another π/2 pulse (read pulse) negates the relative phase of the precessing
dipoles which then rephase. After a further wait of τ the sample produces a photon echo.
This phenomenon is known as three-pulse echo or stimulated echo (see Fig. 3.10). Photon
echo based experiments, in rare-earth doped materials, have demonstrated the ability to
store thousands of pulses per optical spot [111] and perform signal processing at gigahertz
bandwidths [112]. For the same reason as in the case of the two-pulse echo, the traditional
three-pulse echo is not appropriate for storing quantum information.

Data Pulse Echo Pulse

Write pulse Read pulse

τ τ
t

Figure 3.10: Extension of three-pulse photon echo for data light storage.

An experiment performed by a group in Switzerland on two LiNbO3 waveguides, doped
with erbium ions with absorption frequency of 1.53 µm, demonstrated storage of optical
states of light in several temporal modes and retrieved from the optical memories using
two-pulse photon echoes [113]. The stored and retrieved optical pulses, when combined at
a beam splitter, showed almost perfect interference, which demonstrates both phase pre-
serving storage and indistinguishability of photon echoes from separate optical memories.
Setup and result of interference is shown in Fig. 3.11 (a), (b) and (c).

In a different experiment by the same group, using the stimulated photon echo tech-
nique, interfering photon echoes produced in a single-mode Ti:Er:LiNbO3 waveguide were
observed [114]. Because the efficiency of the memory is at best a few percent, most of
the stored excitation is left in the atomic ensemble after the read pulse. Therefore, more
echoes can be produced by sending in several read pulses. In this experiment, two sub-
sequent read pulses were used to produce two copies of the data pulse and make them
interfere. Even though the probability of retrieval from the memory is only a few percent,
limited by the efficiency of the photon echo process and by decoherence processes in the
storage material, close to 100% visibility was measured. The interference between the
echoes shows that the memory preserves the phase of the input states.

A modified version of three-pulse photon echo was also suggested [115] for quantum
applications where the information is transferred to the long-lived ground state coherence
and recalled later using additional pulses. Very recently, by applying this technique, more
than 50% retrieval efficiency was experimentally measured by Ham and Hahn [116].
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3.3.3 Controlled Reversible Inhomogeneous Broadening

Besides the recently modified stimulated echo procedure that makes the photon echo
suitable for quantum applications, other ideas have also been proposed for the imple-
mentation of quantum memory techniques by modifying the original photon echo proce-
dure [117, 118, 119, 120]. It was suggested that an approach to time reverse the storage
process can overcome difficulties associated with the storage of quantum information using
a photon echo scheme in gaseous and solid state media. An ideal photon echo quantum
memory utilises full absorption in an optically dense medium and a completely reversible
reconstruction process between the light and medium. Such reversibility is realised by the
control of atomic coherence dephasing in an inhomogeneously broadened system. This
scheme is known as controlled reversible inhomogeneous broadening (CRIB). CRIB uses
a non-optical method to time-reverse the absorption process due to the inhomogeneous
broadening of the transition. The photon echo memory on the other hand uses an optical
pulse to reverse the dephasing of the Bloch vectors that is accompanied by spontaneous
emission. To realise CRIB, the atomic coherence dephasing is reversed by switching atomic
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detuning from ∆ to −∆. In the simplest form, the retrieval efficiency of an ideal system
using the above method is limited to 54% in the forward direction retrieval [121] due to
the reabsorption of the pulse by the atoms as it leaves the ensemble. However, it has been
proved theoretically [117, 122] that using Raman-coupled hyperfine states, it is possible
to avoid reabsorption in the forward direction and therefore an efficient quantum memory
can be constructed.

A Doppler-broadened atomic gas was initially suggested [117] for the realisation of
the CRIB procedure as opposite Doppler shifts automatically occur for the counter-
propagating light fields. The information is mapped by a “write” pulse which follows
the input pulse and drives the atoms to an auxiliary ground state. Here the information is
stored in the ground state coherence. To retrieve the information a counter-propagating
“read” pulse drives the atoms back to the excited state causing the re-excited atomic
dipoles to rephase. The medium can then irradiate the photons of the data signal as an
echo pulse in the opposite direction. Two pulses can be separated in time, and between
them the coherence is stored in the ground state transitions.

A similar procedure can be applied to a solid state sample where the inhomogeneous
broadening is provided by dipole-dipole interactions in the solid [119]. It was initially
suggested that the frequency inversion can be performed by applying an additional radio
frequency (RF) π-pulse. This pulse inverts the states of all atoms, which changes the
interatomic interactions.
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3.3.4 Atomic frequency comb

Similar to CRIB memory, a photon echo type QM based on an atomic frequency
comb (AFC) was proposed by Afzelius et al. [123] and since then many light storage
experiments have been performed based on this protocol. In the simplest case where an
ensemble of two-level atoms is used, the basic requirement is that the transition between
ground state and excited state needs to be inhomogeneously broadened. To produce
narrow absorbing peaks (a frequency comb), a large number of preparation pulses with
linewidth γ and peak separation ∆ are sent to the sample, see Fig. 3.12. If the ensemble
is initially prepared in state |aux〉, for instance a third hyperfine state, the preparation
pulses can frequency-selectively transfer populations to ground state |g〉 and therefore
create narrow absorbing peaks. Provided the input data bandwidth is larger than ∆,
data can be uniformly absorbed through the entire spectrum. This is due to the fact that
absorption is localised in time. This method, to some extent, is analogous to three-pulse
photon echo.

A photon-echo type emission couples the stored light out of the atomic ensemble
after a pre-determined time of T + 2π/∆. To control the storage time one can use a pair
of control pulses resonantly interacting with the excited state and another metastable
state |s〉. The first control pulse is sent to the medium right after the input modes to
transfer the excitations to the metastable state. The second control pulse is sent after
a controllable time to transfer the excitations back to the excited state. Eventually the
photon echo is emitted after an extra wait of 2π/∆. The effective optical depth of the
AFC system is defined as d′ = d/F where d is the optical depth of atomic ensemble and
F = ∆/γ is AFC finesse. To obtain maximum absorption, high finesse and as high optical
depth are required. In principle, AFC efficiencies close to 100% in the backward direction
can be obtained in regimes of high optical depths.

The number of modes that can be stored in an AFC medium is independent of opti-
cal depth, therefore an AFC memory has the potential for providing multimode storage
capacity [124, 123]. The multimode capability of AFC was experimentally demonstrated
by a group at the University of Geneva [125]. In this experiment interference of multiple
optical bits was also investigated. Optical bits with different phases are stored and anal-
ysed after interfering two partial readouts. The measured net visibilities were observed to
be above 95% for various values of n between 0.4 and 1.7, which demonstrates the high
coherence of the storage process, even at the single-photon level. This phase preservation
results from the collective enhancement and the almost complete suppression of back-
ground noise. Several other experiments have been performed using the AFC protocol
by different groups around the world [126, 127] with the aim of storing optical quantum
states and, to date, a maximum efficiency of 35% has been achieved [128].

Very recently, storage of entanglement using the AFC protocol has been demonstrated
by two different groups separately. In the first experiment [129], one photon from an
energy time entangled pair (down conversion) is mapped onto the crystal and then released
into a well-defined spatial mode after a predetermined storage time. The other photon
(at telecommunication wavelength) is sent directly through a 50-metre fibre link to an
analyser. This experiment illustrated that non-classical intensity correlations between the
two photons still exist after storage and retrieval. The classical efficiency of this memory
was measured to be about 20%. In the second experiment [130], a thulium-doped lithium
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Figure 3.13: (a) Bloch sphere representation of projection measurements. The measurement

settings for the 795-nm (or 1,532-nm) analyser are depicted on the upper (or lower) Bloch sphere.

(b), Results for joint projection measurement after storage. The top (bottom) histogram displays

joint detection events for the projection onto σz ⊗ σz and σz ⊗ −σz (−σz ⊗ σz and −σz ⊗ −σz)
as a function of the time difference between detections of the 795-nm and the 1,532-nm photons.

The red-highlighted windows are the desired events. (c), Density matrices calculated using a

maximum-likelihood estimation for the two-photon states before and after storage. Figure taken

from Ref. [130]

niobate waveguide is used with a bandwidth of 5 GHz. The entanglement preserving
nature of storage through Bell inequality violations has been assessed by comparing the
amount of entanglement contained in the photon pairs before and after storage. The
density matrices ρin and ρout, depicted in Fig. 3.13 , were obtained using a maximum
likelihood reconstruction method. The storage, in this experiment, yielded a conditional
input-output fidelity of 95.4 % and it has been shown that the storage process preserves
the entanglement without significant degradation. The classical efficiency of the system is
measured to be about 15%.

Although AFC offers extremely large memory bandwidth, efficient retrieval is only
possible in the backward direction. The efficient retrieval in the backward direction is not
even possible when the memory spectral width is limited. In this regime, the dispersive
part of the susceptibility no longer vanishes, and the retrieved signal is no longer spa-
tially phase-matched to the atomic coherences. This will have a negative impact on AFC
quantum efficiency and fidelity [131].

A modified AFC scheme that restores spatial phase matching and its reversibility has
been recently proposed [131] that uses absorption lines on the sides of the AFC. This
scheme can potentially enhance the efficiency and fidelity of the AFC memories.

In this thesis, we focus on a similar photon echo based light storage technique known
as the Gradient Echo Memory (GEM). The GEM scheme is a variant of CRIB that uses
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an external gradient field to prevent the re-absorption of light by atoms at the recall stage.

3.4 Optomechanical light storage

Optomechanical resonators, in which optical fields couple to mechanical oscillations
(phonons) via radiation pressure, provide another potential avenue for light storage. This
novel approach to light storage involves an optical waveguide coupled to one or an array
of mechanical oscillators, where light in the waveguide can be dynamically and coherently
transferred into long-lived mechanical vibrations of the system [132].
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Figure 3.14: (a) A simplified optomechanical system consists of a Fabry-Perottype cavity with

a movable boundary. The cavity has an intrinsic photon loss rate κ and is coupled to an external

optical mode at the rate κex. The response of this driven optomechanical system is probed by

a weak probe field sent toward the cavity. The inset shows the probe power reflected from the

resonator as a function of the control field detuning. (b) The control field is detuned from the cavity

resonance frequency by ∆ , −ωm. The probe laser’s frequency is offset by a tuneable frequency

from the control laser. The cavity has a linewidth of κ = κ0+κex. (c) The equivalent level scheme of

the optomechanical system. The control field is tuned close to red-sideband transitions, in which a

mechanical excitation quantum is annihilated (mechanical occupation nm → nm−1) when a photon

is added to the cavity (optical occupation np → np+1), thereby coupling the corresponding energy

eigenstates. The probe field probes transitions in which the phonon occupation is unchanged.

A generic optomechanical system is shown in Fig. 3.14 (a). The radiation pressure
interaction between a near-resonant cavity light field and mechanical motion results in
the shift of the optical mode’s frequency. By driving the system with an intense red-
detuned optical “control” beam at frequency ωc, as shown in Fig. 3.14 (b), the form of
the effective interaction changes. In phonon-photon interactions, a photon maybe scat-
tered into the Stokes or anti-Stokes sidebands, heating or cooling the system, respectively.
The control beam induces anti-Stokes scattering that cools the mechanical motion and
allows for quantum state transfer between motion and light. This beam is also responsible
for weaker, off-resonant heating via Stokes scattering. The energy level structure of the
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simplified system is shown in Fig. 3.14 (c). The number of photons and phonons are de-
noted by np and nm, respectively. The optomechanical driving amplitude ωc couples states
|nm + 1, np〉 ↔ |nm, np + 1〉, while the probe light couples states |nm, np〉 ↔ |nm, np + 1〉.
The two couplings create a set of Λ-type transitions. With the control beam detuning
from the optical cavity resonance (∆) set equal to the mechanical frequency ωm, the light
scattered from the control field (Stokes field) is frequency shifted and matches the fre-
quency of the probe field. The intra-cavity mode will then destructively interfere with the
probe field via the phononic excitations causing a transparency window to appear on the
reflected light. This phenomenon is known as optomechanically induced transparency and
is analogous to EIT in atomic systems.

The probe light travelling through the OMIT window experiences a steep variation in
the refractive index and its group velocity consequently decreases. Experimental demon-
strations of OMIT have been provided both in a defect cavity photonic crystal [133] and a
toroidal microcavity [134]. In theory, the delay-bandwidth product of a single mechanical
oscillator is limited to 2. However, undistorted pulse propagation is only possible by fab-
ricating a cascade of near identical oscillators in order to achieve large delay-bandwidth
products. This is analogous to using an ensemble of atoms instead of only one.

Another limiting factor for quantum applications of optomechanical systems is the re-
thermalisation time of the mechanical resonator, defined as τth = h̄Qm/kT , where Qm is
the mechanical Q-factor of the resonator. Reducing the temperature of the system to a
value below 100 mK (routinely attained in a dilution refrigerator) can potentially increase
the re-thermalization time and should also result in a significant increase in the mechanical
Q-factor. At these temperatures, it is likely that one could achieve storage times on the
order of 100 ms [133].

Very recently, an experimental demonstration of storing optical information as a me-
chanical excitation in a silica optomechanical resonator has been demonstrated [135]. The
technique used in this experiment was analogous to the Raman storage method discussed
in Sec. 3.3.1. The storage lifetime of 3.5 µs was determined by the relatively long damping
time of the mechanical excitation at room temperature.

3.5 DLCZ protocol

Finally in this chapter, we review a scheme proposed by Duan, Lukin, Cirac and Zoller
(DLCZ) in 2001 for creating long-lived, long-distance entanglement between atomic en-
sembles [136]. An elementary step towards the realisation of the DLCZ protocol is to
create a stored collective excitation in an ensemble of Λ-type atoms. In contrast to other
optical memory schemes, this excitation is produced not by an external photon entering
an ensemble but by the ensemble itself interacting with an off-resonance classical (write)
optical field, and is heralded by the emission of a Stokes photon. This excitation can be
retrieved later in the form of a signal photon (anti-Stokes photon) by applying a control
(read) field to the ensemble.

Initially, all the atoms are prepared in the ground state. A sample is illuminated by
a short, off-resonant laser pulse that induces Raman transitions into the states |a〉, see
Fig. 3.15. The off-resonant classical laser pulse couples the transition |g〉 to |e〉, resulting in
the forward-scattered Stokes light comes from the transition |e〉 to |a〉, which has a different
polarisation and frequency to the write beam. This emission is a result of spontaneous
Raman scattering collectively from the atomic ensemble. To ensure that atoms emit one
photon at a time, we assume off-resonant coupling with a large detuning ∆. The mode
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Figure 3.15: Schematic set-up for entanglement generation. (a) Generation of a Stokes photon by

applying an off-resonance classical beam with relevant level structure of the atoms in the ensemble

shown on the left. (b) Retrieval of anti-Stokes photon from stored excitations again with the

relevant atomic level structure on the left, where |g〉, the ground state, |a〉 the auxiliary state for

storing a qubit, and |e〉, the excited state. (c) Schematic demonstration of DLCZ for generating

entanglement between the two atomic ensembles, A and B.

in which the single photon is detected defines the mode in which the collective atomic
excitations emit the photon. Once the photon is emitted, the single photon and the
collective atomic excitations are in an entangled state. To generate entanglement between
two atomic ensembles, the forward-scattered Stokes photons from the two ensembles are
collected separately via polarisation and frequency-selective channels to filter the classical
light. The two Stokes fields interfere at a 50-50 beam splitter, with the outputs detected
respectively by two single-photon detectors D1 and D2. If there is a click in D1 or D2, the
process is finished and the entanglement between the ensembles is successfully generated.
This is because a click in one of the detectors registers a photon from one of the ensembles
and it is impossible to tell which one. If the process fails, a repumping laser pulse is
applied to the ensembles, to set the state of the ensembles back to the ground state. The
same process is repeated until finally we have a click in the D1 or the D2 detector. The
entanglement can be stored in the ground state coherence, and then be recalled on-demand
after applying a read pulse in the backward direction.
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The DLCZ scheme is ideally suited for quantum communication applications, but can
not be directly applied to information encoded in arbitrary optical states. There has been
a significant amount of work done on applying the DLCZ protocol to various quantum
optics experiments [138, 87, 139, 140]. Storage of a collective excitation left in the atomic
ensemble after emission of the Stokes photon was demonstrated for a few milliseconds
using the magnetically insensitive clock transition of atoms [141, 142].

Taking full advantage of the DLCZ idea, a memory-built-in teleportation experiment
for an unknown polarisation state of a single photon was performed over 7 m onto a remote
atomic quantum bit that also serves as a quantum memory [143]. In this experiment the
teleported state was stored and successfully read out up to 8 µs later.

Very recently Choi et al. succeeded in demonstrating measurement-induced entan-
glement stored in four atomic memories using the DLCZ scheme [137]. The schematic
experimental setup is shown in Fig. 3.16. In this experiment, a coherent transfer of
the atomic entanglement to four optical channels and characterisation of the quadripar-
tite entanglement was fully investigated. The measurement results revealed high-fidelity
measurement-induced entanglement between modes stored among the four laser cooled
atomic memories.
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3.6 Summary

The emiclassical and quantum storage of optical states have come a long way in a short
time, as the history outlined in this chapter has demonstrated. With this context in
mind, in the next chapter, I introduce the gradient echo memory scheme as an alternative
method for light storage, which is the core of this thesis.
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Part II

Semiclassical light storage using GEM
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Chapter 4

Gradient Echo Memory; Theory

and Experimental Techniques

“With the magnificence of eternity before us, let time, with all its fluctuations, dwindle
into its own littleness.”

Thomas Chalmers
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Figure 4.1: The evolution of the collective atomic spin created after storage of light can be time

reversed.

In the previous chapter, we provided an overview of various optical storage techniques
such as the photon echo approach. In this chapter we introduce a memory scheme known
as the gradient echo memory (GEM). This is a photon echo based memory and can be
applied to two- or three-level atomic media. The GEM scheme is a particular form of
CRIB where the inhomogeneous broadening is controlled by an external field gradient. In
this chapter, we discuss the theoretical concepts and the experimental techniques used to
implement this type of memory.

The relevant publication for this chapter is

Photon echoes generated by reversing magnetic field gradients in a ru-

bidium vapour G. Hétet, M. Hosseini B. M. Sparkes, D. Oblak, P. K. Lam, and B. C.
Buchler, Opt. Lett. 33 No.20, 2323 (2008).

67
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4.1 Theoretical description of GEM

The principle behind CRIB is to construct a reversible absorption process. After ab-
sorption in an inhomogenously broadened atomic medium, some mechanisms can be used
to invert the detunings of the individual absorbers that are spatially distributed in the
medium. This reversal in detuning gives rise to a photon echo and thus the retrieval of
stored optical information. CRIB was proposed in gas cells [144] and solids [145, 146],
and was first demonstrated in 2006 using a cryogenic ensemble of two-level rare-earth
ions [147]. It was then realised in 2008 that the application of a detuning gradient longi-
tudinally along the length of the storage medium allowed for high recall efficiencies in the
forward direction [148] by preventing reabsorption of the light. This overcame the limit of
54% recall efficiency that had previously been determined [121]. The use of a longitudinal
gradient to control the broadening of the atomic ensemble is referred to as longitudinal-
CRIB or gradient echo memory (GEM). In 2010, ensembles of cryogenic rare-earth ions
were used in a GEM system to demonstrate the first unconditional quantum memory with
69% recall efficiency [149].

In this chapter we review the basics of the GEM scheme. We discuss the particular
issues that relate to the gaseous rubidium vapour that is the basis of our experiments. We
also present the first experimental results of light storage in a warm Rb vapour cell.

4.1.1 Basic concepts

The GEM is a variant of CRIB that relies on inhomogeneous broadening being introduced
as an atomic frequency gradient along the length of the storage medium. In theory, GEM
is ideally 100% efficient [148, 150].

The GEM protocol works without any need for π-pulses, as opposed to traditional
photon echo techniques. Rephasing is controlled by the linear atomic frequency spectrum,
δ(z, t) = η(t)z, that is induced along the length of the storage medium. η(t) is the slope
of the gradient, that can change in time, and z is the position along the propagation
axis. Consider, for example, an ensemble of two-level atoms as shown in Fig. 4.2(a).
Each frequency of the probe optical pulse is absorbed by the ensemble at a different point
along its length and stored in the atomic polarisation. The atomic polarisation in the
z direction is thus proportional to the Fourier spectrum of the electromagnetic field as
shown in Fig. 4.2(b). To release the stored light, the gradient η is simply inverted at time
τ and the optical field is regenerated as a photon echo at time 2τ , as shown in Fig. 4.2(c).
In this most basic two-level scheme the input pulses emerge in the forward direction but
shape-reversed [151].

The Bloch sphere representation of light storage with GEM is shown in Fig. 4.3. After
the light pulse is absorbed by the atomic medium, it drives the atomic spin to a particular
point on the sphere. Different atoms then start to dephase with a rate corresponding
to their detuning from the unperturbed transition frequency. Rephasing of atomic spins,
caused by inverting the sign of the detuning, generates a photon echo, ideally identical to
the input light pulse.

4.1.2 Model

We start by deriving the equations of motion for the two-level GEM. We then show that a
Λ-system driven off-resonance by a strong coupling beam and a weak probe is equivalent
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Figure 4.2: (a) The atomic storage medium with an atomic frequency spectrum (ηz). The

bandwidth of the atomic broadening covers the input modulated pulse spectrum. (b) Fourier

spectrum of the input pulse is absorbed and stored as an atomic polarisation. (c) To release the

pulse, the atomic detuning (η) sign is inverted (−η) at time τ and the stored light emerges at time
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Figure 4.3: Bloch sphere representation of the gradient echo technique in light storage. (a) A

light pulse interacts with an inhomogeneously broadened atomic sample (with gradient slope η)

and creates a collective atomic excitation. The angle of the Bloch vector is shown nearly as π/2 for

clarity, but in fact the stored pulses are very weak and excitation angle is very small. (b) Atoms

at different positions of the memory (zi) dephase at different rates controlled by the field gradient.

(c) When the gradient sign is flipped at t = τ , atomic spins start to rephase causing time-reversal

of the absorption process. (d) A photon echo is emitted at t = 2τ when phase matching is satisfied.

to a two-level system driven by the weak probe and therefore the same storage protocol
can be used.
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Two-level atoms

We use an ideal two-level system to model the storage and retrieval dynamics. We consider
the interaction between a collection of two-level atoms with total number of atoms N
inside the quantisation volume V and a quantum optical field with slowly varying envelope
Ê(t, z) =

∫

âkeik.rdk.
The interaction Hamiltonian which is the two-level atom Jaynes-Cummings Hamilto-

nian can then be written as

Ĥ = −h̄
N

L

∫

[δ(z, t)σ22 + g(Ê†σ̂12 +H.c)]dz (4.1)

Here σij is the collective atomic operator. Assuming that all of the atoms are initially in
the ground state |1〉 we describe the system evolution by the following Heisenberg/Maxwell
equations

˙̂σ12(t, z) = −(γ + iδ(z, t))σ̂12(t, z) + ig Ê(t, z) + F̂12 (4.2)
∂

∂z
Ê(t, z) = iN σ̂12(t, z) (4.3)

with atom-light coupling constant g, and effective linear atomic density N = gN/c. The
atomic polarisation σ̂12(t, z) and the electric field Ê(t, z) are found by numerically solving
of Eqs. 4.2 and 4.3. The two-photon detuning δ(z, t) can be varied in time and be made
linear with a magnetic or electric field δ(z, t) = η(t)z, i.e. the linearly varying detuning
from resonance. We also introduced γ as a decay rate from the excited state and the
corresponding Langevin operator (F̂12) that accounts for noise arising from spontaneous
emission.

To calculate the dispersion relation associated with the two-level atoms, one can take
the Fourier transform of the Eqs. 4.2 and 4.3 and finds ω = −gN/k0 assuming γ = 0.
This solution is only true assuming η → 0 after the pulse enters the medium and k0 is the
value of the spatial frequency at the time that the gradient is switched off. Therefore, the
group velocity of the light can be written as vg = gN

k20
. This is the group velocity of the

light inside the medium given that the intensity of light also scales linearly with N .

Efficiency of 2-level GEM

To find the efficiency of the 2-level GEM, one needs to calculate the transmission factor
of the medium during the writing and reading stage. By solving Eqs. 4.2 and 4.3 in the
Fourier domain and integrating along the z axis [152], −z0 → z, one arrives at

E(z,ω) = ζ(z,ω)E(−z0,ω) (4.4)

where E is the electric field inside the medium and

ζ(z) = (
γ − i(ηz + ω)

γ − i(−ηz0 + ω)
)−iβ (4.5)

is the transmission factor of the medium; further, β = gN/η is the optical depth of the
atomic sample. Substituting z = z0 and assuming γ = 0 in the above equation for each
spectral component of the input light after propagating through the memory, but before
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switching the field,

ln
E(z0, t)
E(−z0, t)

= β ln [−1]i = −πβ. (4.6)

This means that the input pulse is attenuated by a factor of e−πβ, which means (1−e−πβ)
part of the light is stored in the memory. The total efficiency after rephasing (after
switching the electric field) can also be evaluated by considering a light field propagating
backwards and using auxiliary light pulses [152]. Therefore, the intensity efficiency can
be written as ε = (1 − e−2πβ)2. Fig. 4.4 shows the efficiency of a 2-level GEM system as
a function of the optical depth. We note here that in the above calculations it is assumed
that the bandwidth of the memory is much greater than the atomic linewidth, i.e. ηL + γ.
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Figure 4.4: Efficiency plot of a two-level GEM system against OD of atomic medium.

4.1.3 Three-level atoms

Let’s now consider the simplified level structure depicted in Fig. 4.5 (a) where the coupling
and probe fields, with Rabi frequencies of Ωc = d.Ec(t)/h̄ and Ωp = g|Ê | are interacting
with a three-level atom. The coupling field amplitude is assumed to be a strong classical
field and defined as

Ec(t) = εcE(t) cosωct (4.7)

where εc is the polarisation vector.
The normalised transmission of the probe field is depicted in Fig. 4.5 (b) for different

coupling field detuning as a function of probe field detunings. When the two-photon
detuning is zero, a transparency window is opened inside the medium on two-photon
resonance and outside the EIT window incoherent absorption occurs. As the coupling
field detuning is increased, instead of transmission, we move to a Raman absorption line
centred around two-photon resonance. If the ground state decoherence, γ0, is very small
then by increasing the one-photon detuning, ∆p, the Raman line becomes more and more
symmetric and absorption does not decrease significantly. This suggests that in cold atomic
ensembles, where the decoherence between |1〉 and |2〉 is small, a Raman line can be far-
detuned to avoid scattering whilst maintaining large absorption. If γ0 *= 0, increasing the
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detuning will cause a reduction of the Raman absorption. This effect is apparent in warm
vapour cells where the ground state decoherence is larger due to inelastic collisions.
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Figure 4.5: (a) Schematic level structure of a Λ atom interacting with two laser fields (probe and

coupling fields) with Rabi frequency of Ωc and Ωp, respectively. The |1〉 → |2〉 decoherence rate is

γ0, detunings of the two fields from the excited state are ∆p and ∆c. The excited state linewidth

is γ. (b) Normalised transmission of the probe signal as a function of its detuning from the excited

state for different coupling field detunings. When both fields are on resonance with the excited

state, the EIT transparency window is apparent in the middle of the plot. Raman lines on the

right side of the EIT window are plotted assuming zero decoherence. The Raman lines on the left

side of the EIT window correspond to the non-zero decoherence rate.

Weak probe approximation

We consider the three-level system depicted in Fig. 4.6 (a) with a one photon detuning
∆, a classical coupling beam Ωc, and a weak quantum field Ê . One difference between
the off-resonance Raman scheme and EIT is that in the steady state and under normal
experimental conditions, the atoms are not fully pumped by the coupling field to the level
|1〉. To ensure that this is the case, an initial pumping step is required. Here we suppose
that this has been performed, and assume all the population to be in state |1〉 initially.

The system Hamiltonian is given by

Ĥ = −h̄
N

L

∫

[gÊ σ̂31 + Ωcσ̂32 + h.c]dz. (4.8)

From this interaction Hamiltonian, we can obtain a set of Heisenberg-Langevin equations
(see Sec. 2.4.1)

˙̂σ11 = γσ̂33 − igÊ σ̂31 + igÊ†σ̂13 + F̂11 (4.9)
˙̂σ22 = γσ̂33 − iΩcσ̂32 + iΩ∗

c σ̂23 + F̂22 (4.10)
˙̂σ13 = −(γ + γ0/2 + i∆)σ̂13 + igÊ(σ̂11 − σ̂22) + iΩcσ̂12 + F̂13 (4.11)
˙̂σ32 = −(γ + γ0/2 + i∆)σ̂32 − igÊ†σ̂12 + iΩ∗

c(σ̂33 − σ̂22) + F̂32 (4.12)
˙̂σ12 = −(γ0 + iδ(z, t))σ̂12 + iΩ∗

c σ̂13 − igÊ σ̂32 + F̂12 (4.13)
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˙̂σ33 = −( ˙̂σ11 + ˙̂σ22) (4.14)

(
∂

c∂t
+

∂

∂z
)Ê = iN σ̂13. (4.15)

The Langevin operators F̂ij account for noise arising from the coupling of the atoms to
vacuum modes of large reservoirs. It has been demonstrated that no significant excess
noise is generated from these processes [83]. In this thesis we ignore the Langevin terms
in our analysis and assume that their impact on the output field is small. We also ignore
population redistribution terms for simplicity, in order to ensure that once the atoms are
prepared in state |1〉 they stay there.

Using the the steady-state solution for σ32

σ̂32 ,
−igÊ†σ̂12
γ + i∆

, (4.16)

and the population preservation relation to the first order in the weak probe approximation

σ̂11 = 1 (4.17)

σ̂33 = σ̂22 = 0, (4.18)

we obtain the following approximated equations

˙̂σ13 = −(γ + γ0/2 + i∆)σ̂13 + igÊ + iΩcσ̂12 + F̂13 (4.19)
˙̂σ12 = −(γ0 + iδ(z, t) + φ)σ̂12 + iΩ∗

c σ̂13 + F̂12 (4.20)

(
∂

c∂t
+

∂

∂z
)Ê = iN σ̂13 (4.21)

where φ = g|Ê|2
γ+i∆ is small in the weak probe regime and with large detuning, and so can

be neglected.
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Figure 4.6: (a) Level structure of the three-level atom. (b) Quasi-two-level atom.

Using Eqs. 4.20-4.21, the susceptibility of the medium can be written [37] as
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χ =
gN
k

[i
(8δ2γ + 2γ0(Ω2 + γ0γ)

|Ω2 + (γ + 2i∆)(γ0 + 2iδ)|2 +
(4δ(Ω2 − 4δ∆)− 4∆γ20

|Ω2 + (γ + 2i∆)(γ0 + 2iδ)|2 ]. (4.22)

The real and imaginary parts of susceptibility are important quantities in understanding
absorption and dispersion properties of Raman memories. This expression will be used in
Sec. 4.3.3 to describe dispersion effects of the Raman line. We now simplify the equations
further by performing an adiabatic elimination of the excited state, and using a far off-
resonance approximation.

Adiabatic elimination and far off-resonance approximation

We adiabatically eliminate fast excited state fluctuations [153] by assuming ∂
∂t σ̂13 - ∆σ13,

or equivalently 1/T - ∆, where T is the fastest time-scale of the system. We also assume
a large detuning compared to the spontaneous emission rate (∆ + γ). By solving the
Maxwell equation for the probe field and substituting it back into the equations of motion
for σ̂13 we can show that 1/dT - γ and ∆ + γ, are sufficient conditions for elimination
of the exited state. This is due to the collective coupling between the optical modes and
the many atom state. Assuming the coupling beam to be real, combining the above three
equations yields

˙̂σ12 = (−γ0 + iδ(z, t) − i
Ω2
c

∆
)σ̂12 − i

gΩc

∆
Ê (4.23)

(
∂

c∂t
+

∂

∂z
)Ê =

igN
∆

Ê + i
NΩc

∆
σ̂12. (4.24)

The term Ω2
c/∆ is the ac-Stark frequency shift caused by the coupling field and can

be cancelled by changing the coupling field frequency. Performing the transformations

E → Eei
igNc
∆ t and Ωc → Ωce

−i igNc
∆ t we can remove the first term on the right hand side of

the Maxwell equation. We also perform the transformation z′ = z + ct, i.e. moving to a
frame with speed of light, to reach

˙̂σ12 = −(γ0 + iδ(z′ − ct, t))σ̂12 − i
gΩc

∆
Ê (4.25)

∂

∂z′
Ê = i

gNΩc

∆
σ̂12. (4.26)

The equations for two-level GEM are [154]

˙̂σ12 = −(γ12 + iδ(z, t))σ̂12 − igÊ (4.27)
∂

∂z
Ê = iN σ̂12 (4.28)

which are formally equivalent to the above Raman situation if we set N → NΩc
∆ , g → gΩc

∆
and γ12 → γ0. Therefore, one can see that the GEM storage mechanism described above
for two-level atoms is also a good description for the 3-level system in certain regimes.
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Efficiency of Λ-GEM

The effective optical depth of Λ-GEM is defined as β′ = gN
η (Ωc

∆ )2 ,with the coupling field
Rabi frequency Ωc and the one photon detuning ∆ contributing to the optical depth of the
memory. Therefore to achieve the same efficiency as a 2-level system one needs to increase
the OD of a three-level system by a factor of ∆2

Ω2
c
compared to the two-level system.

Since the excited state linewidth of Λ-type atoms is large compared to the typical
memory bandwidth, the assumption that we used previously, i.e. ηL + γ, is not always
valid. Thus, we generally write the efficiency of a Λ system as

ε = (1− e
−β′(2π+ 4γηL

γ2+(ηL)2
)
)2. (4.29)

In the limit of large broadening, ηL + γ, the efficiency is simply given by: ε = (1−e−2πβ′

)2.
The theoretical plot of efficiency as a function of optical depth,β′, and also the (Ωc/∆)2, is
shown in Fig. 4.7 (a). In Fig. 4.7 (b), the coupling field-induced scattering is included in
the model as an extra loss term for efficiency. As can be seen, the loss due to the scattering
can be significant at large OD or large Ωc/∆ and dominates the efficiency. This is further
discussed in the following section.
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Figure 4.7: Efficiency plot of a Λ-GEM scheme vs. optical depth, gN/η and Ωc/∆ (a) without

and (b) with scattering loss taken into account. The loss due to the scattering was estimated for

storage time equal to one pulse duration of 4 µs.

4.2 Atomic vapour properties

In our experiment, we used an 87Rb vapour cell above room temperature as the memory
medium. Before we explain the experimental setup, here we provide an overview of the
Rb atomic structure and its properties.

4.2.1 87Rb Atomic level structure

87Rb has 37 electrons, only one of which is in the outermost shell. The 52S1/2 → 52P1/2

(D1 line) and 52S1/2 → 52P3/2 (D2 line) transitions are the components of a fine-structure
doublet. The D1 line transition of 87Rb has a wavelength of 795 nm and is shown in
Fig. 4.8 (a). The saturation absorption lines of Rb are shown in Fig. 4.8 (b), (i) trace.
The corresponding transitions in (a) and (b) are shown by (a, b, c, d). The D2 line has a
wavelength of about 780 nm and the excited state contains 4 hyperfine levels.
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Figure 4.8: (a) Atomic level structure for D1 line of 87Rb. (b) (i) Saturation absorption trace for

a natural mixture of Rb as a function of detuning frequency, (ii) Absorption trace of 87Rb with

0.5 Torr Kr buffer gas. The features in the middle of the trace (ii) (between b and c transitions)

are due to the mode hopping of the diode laser.

4.2.2 Broadening phenomena in atomic vapour

In far-detuned Raman absorption situations, where the different frequencies of the two
lasers coincides with the energy spacing of the ground states, the two ground states do
not take part in fluorescence cycles. The linewidth of the Raman line is governed by the
ground-state relaxation rate. In a warm vapour cell there are some other phenomena
such as diffusion, collisional decoherence, and power broadening that can affect the total
linewidth and therefore the ground state coherence. The crossing angle between the probe
and control beams can also affect the linewidth of both EIT and Raman lines. In the
following sections we discuss these phenomena in more detail.

Coupling field-induced power broadening and scattering

If the Raman detuning is not large enough, the coupling field can drive the population
in the levels |1〉 or |2〉 and cause spontaneous Raman scattering (SRS). This can reduce
the coherence time of the memory after the light is stored. The scattering of light with
frequency ωl in a multi-level atom can be written [155] as

ΓF,mF (ωl, p, I) =
I(r, z)

6πε20h̄
3c4

∑

j

(ωl − ωji)
3 × |

∑

k,p

µjkµki

ωki − ωl
|2 (4.30)
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where µij is the dipole moment for transition i → j, ωij is the frequency of the transition
i → j and p is the polarisation of the scattered photon.

At large detuning, the scattering rate or the FWHM of the Raman line asymptotically
follows the laser power, Γscatt = γΩ2/(γ2 +∆2). At low coupling field powers the FWHM
of the Raman line is the ground state linewidth γ0. In order to reduce the coupling field
induced scattering, we typically switch off the coupling field during the storage time. This
will increase the coherence time by almost an order of magnitude [156].

Doppler broadening

In order to describe the properties of warm vapour cells used in our experiment, we need to
consider Doppler effects caused by the thermal motion of Λ systems. Taking into account
the Doppler shifted frequencies of a Λ atom, which moves at velocity v with respect to the
propagation direction of the two laser beams [157], for the position of the single-frequency
Raman absorption line we have

ωR , ω12(1 + v/c). (4.31)

The velocity spread of the contributing velocity class can be roughly determined by taking
into account the resonant absorption linewidth of the excited stated. The velocity spread
leads to a Doppler broadening of the observed Raman line in the laboratory frame. This
width at T , 70◦ C is around 500 MHz and can be estimated from the linewidth of the
one-photon absorption lines in Fig. 4.8 (b), (i) trace. Far-detuned two-photon absorption
would be insensitive to the Doppler broadening of the excited state as long as the two
fields are co-propagating. The angular dependency in the presence of Doppler broadening
is discussed in the next section.

The effect of Doppler-broadening of a medium on the EIT linewidth has been theoret-
ically investigated by A. Javan et al. [158]. An explicit expression for the FWHM of an
EIT resonance in a Doppler-broadened medium can be found

Γ2
EIT =

γ0
γ
Ω2(1 + x)[1 + (1 +

4x

(1 + x)2
)1/2] (4.32)

where x = γ
2γ0

Ω2/W 2
D and WD is the FWHM of the Doppler-broadened resonance. This

equation is plotted for two different Doppler broadenings in Fig. 4.9 (a). As it is apparent
from Eq. 4.32, in the regimes where x + 1 the linewidth shows a quadratic dependence
on the coupling field Rabi frequency, Ω. In the regimes where x - 1, linewidth increases
linearly with Ω.

In most light storage experiments, the ground state decoherence rate (γ0) is low, and
the Doppler broadening is on the order of 50γ; therefore a quadratic dependence is expected
for the EIT linewidth as a function of Ω.

The Raman line shows similar behaviour as a function of Ω. We follow a similar method
to the one described in Ref. [158] and solved the integrals numerically to calculate the
FWHM of the Raman line for different coupling field Rabi frequencies. The results of
numerical calculations of the Raman linewidth for two different detunings as functions of
Ω are depicted in Fig. 4.9 (b).

It is worth mentioning that the presence of a buffer gas leads to completely differ-
ent physics from the usual Doppler approach to hot gases, due to the velocity-changing
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Figure 4.9: (a) FWHM of the EIT line plotted using Eq. 4.32 for two different Doppler broad-

enings, WD = 50γ (blue line) and WD = 500γ (ref line). Parameters used for this calculation are:

∆ = 0, γ0 = 10−3γ and γ = 2π5.6× 106. (b) FWHM of the Raman line plotted using numerical

integration. Parameters used for this calculation are: ∆ = 100γ (i), ∆ = 300γ (ii), γ0 = 0 and
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Figure 4.10: Schematic diagram showing the crossing angle between optical and atomic beams.

The reference coordinates are V|| and V⊥, representing the quantisation axis and its perpendicular,

respectively. Va is the velocity of the atom.

collisions.

Angular dependency of absorption and transmission lines

The mode-matching and crossing angle between the control and probe beams are crucial
for the performance of both EIT- and Raman-based memories. To determine the proper
orientation between the two beams the following analysis is required.

Consider the angular configuration of optical and atomic beams shown in Fig. 4.10,
where the angle between the control and probe is shown as θ and the atomic velocity
makes an angle α with the quantisation axis.

In a vapour cell, due to the non-zero crossing angle between the beams, the one-photon
and two-photon detunings have to be modified to include the extra frequency shift [159] in
order to describe the physics of the system more accurately. The change in the detuning
of the probe and coupling fields as a function of their wave vectors, kp and kc, can be
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written as

δ → δ − kp.v

∆ → ∆+ (kp − kc).v (4.33)

where

− kp.v = −kpvacos(θ/2 + α) = −kpvp

(kp − kc).v = 2kpv⊥sin(θ/2) (4.34)

and bold letters represent vectors. The velocity vp is the component of atomic velocity
along the probe beam and v⊥ is the component of atomic velocity perpendicular to the
quantisation axis. Taking these frequency shifts into account, Eq. 4.22 for one atom can
be rewritten as

Im[χ] =
(8(δ − kpvp)2γ + 2γ0(Ω2 + γ0γ)

|Ω2 + (γ + 2i(∆ + kpv⊥sin(θ/2)))(γ0 + 2i(δ − kpvp))|2
(4.35)

The atomic velocity in each direction is defined by the Maxwell-Boltzman distribution

N(vz)dz = N
√

m

π2kBT
exp

− mv2z
2kBT dvz (4.36)

where N is the number of atoms, m is atomic mass, kB is the Boltzman constant, and vz is
the velocity in one dimension. We assume that the velocity is isotropic in the vapour cell,
such that the distribution of vz is the same as the distribution of v⊥ and vp. Therefore,
the absorption coefficient of the medium is given by

α ∝
∫ ∞

−∞

∫ ∞

−∞
Im[χ](vp, v⊥)N(vp)N(v⊥)dvpdv⊥ (4.37)

This integral can be numerically solved at T > 0 to find the absorption coefficient and
FWHM of Lorentzian-shaped EIT or Raman lines. The results of numerical calculations
for the absorption coefficient and width of the transparency window of an EIT line are
shown in Fig. 4.11 (a) and (b), respectively. As can be seen in Fig. 4.11 (a), the EIT
resonance decreases rapidly as the crossing angle between the control and probe increases.
As the temperature of the ensemble increases, the EIT resonance dies away at a non-zero
crossing angle. Also the linewidth of the EIT resonance (see Fig. 4.11 (b)) is quadratically
increasing with the crossing angle. These behaviours have been experimentally investi-
gated in Ref. [160].

Similar numerical results for Raman absorption are shown in Fig. 4.12. The absorption
of the Raman line has a maximum value that approaches the zero crossing angle at ∆/Ω +
1. The absorption coefficient for two different values of Ω as a function of the crossing
angle is plotted in Fig. 4.12 (a). The Raman linewidth relationship with the crossing angle
is linear, as shown in Fig. 4.12 (b), as opposed to that in EIT which is quadratic.
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Figure 4.11: (a) Normalised absorption coefficient calculated by the numerical integration of

Eq. 4.37 for different crossing angles of the control and probe beams. (b) FWHM of the Lorentzian
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Buffer gas in vapour cells

In most light storage experiments that have been performed on warm Rb vapour cell, inert
gases (buffer gases) such as Ne, Kr, He etc. have been used to increase the time of flight of
atoms inside the laser beams due to velocity-changing collisions. However, the collisions
with buffer gas will shuffle the population in the excited state and can cause collisional
broadening [157] of the excited state. The collision rate is given by

Γcol =
p

kBT
σkv̄ (4.38)

where p is the gas pressure, T is the temperature and v̄ is the average velocity of the
atoms. σk is the kinetic cross section; and is around 4 × 10−15 cm2 for Rb-Ne. At room
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temperatures, the collisional broadening for Rb-Kr is ΓRb−Kr
col = 17.1 MHz/Torr and for

Rb-Ne is ΓRb−Ne
col = 9.84 MHz/Torr [161].

Apart from broadening of the excited state of atoms due to collisions with the buffer
gas, the hyperfine atomic energy level also shifts due to the inelastic collisional process.
The frequency shift of the 87Rb ground-state hyperfine levels for different buffer gases are
given in Table 4.1.

Buffer gas Frequency shift (Hz/Torr)
He 720
Ne 392
Ar -52
Kr -580
H2 660
N2 520

Table 4.1: Buffer gas-induced frequency shift of 87Rb ground-state hyperfine levels in Hz/Torr

for different buffer gases [162].

At zero crossing angle between probe and coupling beams, the two-photon detuning
of Raman transition in a Doppler broadened medium is given by

δ′ → δ(1− vn/c).

(4.39)

where δ is two-photon detuning between two Raman fields.

To study the effect of collisional broadening [157] on the atomic coherence, one can
use the Liouville-von Neumann equations of motion

dρn
dt

=
1

ih̄
[Ĥ, ρn] +

Nv
∑

m=1

Wnmρm (4.40)

whereWnm is called the collision kernel and represents the population losses and dephasing
of atoms with the velocity classes n. Nv is the number of atoms moving with velocity vj for
j ∈ [1, ..., n]. The collision kernel is simplified [157] by neglecting the velocity dependency
of the collision rate as

Wnm = ΓcolPn n *= m

Wnm = Γcol(Pn − 1) n = m (4.41)

where Pn = e−(vn/vw)2

∑Nv
n=1

e−(vn/vw)2
indicates the probability of finding the atom in the velocity

classes n. Here, vw =
√

2kBT/m is the most probable velocity. This equation can be
solved numerically in order to see the effect of the buffer gas on the coherence of atoms in
a warm vapour cell.

We note here that, in our experimental regime, collision rate between Rb atoms is
much smaller than collision rate between Rb and buffer gas atoms. This is because, the
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Rb pressure is at least 3 orders of magnitude smaller than the buffer gas pressure.

Dicke narrowing

If the collision rate between the Rb atoms and the buffer gas is much higher than the
optical decay rate, Γcol + γ, a Doppler-broadened spectrum can be dramatically narrowed
due to frequent velocity-changing collisions. This regime is known as Dicke narrowing
[163]. The narrowing factor, known as the Dicke parameter, is proportional to the ratio
between the mean free path, D = vth/Γcol. In the Raman transition scenario, the wave
vector to be considered is kp − kc. Dicke narrowing occurs when collisional velocity
changes hinder the buildup of the Doppler phase

∫ t
0 (kp − kc).v(t′)dt′. The Doppler phase

builds up coherently during the time interval Γ−1
coll. Hence Dicke narrowing occurs if

|kp − kc|vw/Γcol - π.
Dicke narrowing was previously observed for optical transitions [164]. A narrowing

of the expected Doppler width for two-photon transitions, such as coherent population
trapping (CPT) was also observed and was attributed to a Dicke-like narrowing [165, 166].

Atomic diffusion in a gas cell

A major relaxation process appears due to spatial diffusion out of the laser beams. In our
case, we use a cylindrical geometry with a transverse diameter of a few millimetres, and
a length of 7-20 cm. We are interested in how long it takes for an atom to diffuse out of
the transverse cross-section (i.e. the interaction volume). In two dimensions, the standard
deviation in position σr (defined such that approximately 32% of atoms have moved a
distance greater than σr) is given by [167]

σr = 2
√
2Dt (4.42)

where D is a diffusion coefficient with units of cm2/s that is defined as

D = D0(
P0

P
) (4.43)

Here P0 = 760 Torr, P is the buffer-gas pressure in Torr, and t is the time. The diffusion
constant D0 for Rb-Kr is calculated at the temperature of 45◦ to be about 0.16 cm2/sec
[162]. The diffusion constant above room temperature also scales with T 3/2 [162].

Furthermore, if an atom moves longitudinally by a distance δz during the storage time,
it will experience a frequency shift of ηδz at read out due to the applied atomic frequency
gradient. The random frequency shift of atoms might result in the frequency blurring of
the output spectrum. The effect of longitudinal motion in our experiment is negligible
because ηδz is small compared to the unbroadened Raman linewidth.

Collisions with walls

The decay rate of atomic coherences (dark states) in a gas cell is related to depolarisation.
In the presence of a buffer gas the decay rate is mainly a function of collisions with the cell
walls and collisions with buffer gas atoms. Alkali atom vapour cells with anti-relaxation
coatings are used in many experiments in quantum optics [96] to provide long relaxation
times of atomic polarisation. This is necessary for these types of experiments, and new
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coating materials can improve the spin relaxation time due to wall collisions in the absence
of optical pumping.

The traditional paraffin coated cells show a large improvement in the atomic coherence
time. It was shown very recently that cells prepared with a single compound alkene-based
coating show a spin relaxation times [99, 168] a few order of magnitude longer than the
paraffin-coated ones. Using this alkene coating, minute long spin relaxation has been
observed [169].

The transverse beam profile effect on transmission and absorption

In a Rb vapour cell or any other thermal gas of free particles, the translational motion
of atoms plays an important role and can affect the resonance line shape. This occurs
primarily through the Doppler shift of the resonance frequency, as discussed in Sec. 4.2.2,
or transit-time effects due to the finite interaction time of the atoms with the laser beam.
In the transit-time regime, it has been shown [170] that the power-broadening contribution
to the linewidth is at a minimum when the beam radius is approximately equal to the
mean free path. The other factor that can influence the interaction is the intensity profile
of the laser beam.

The transverse profile of both the probe and control beams is crucial in optimising the
absorption (in the case of Raman) or transmission (in the case of EIT). Depending on the
type of buffer gases and pressure, temperature, wall coating and scheme (EIT or Raman)
used, there exists an optimum beam profile. This can be different for the probe and the
control beams.

The dependency of the EIT line shape on the transverse intensity distribution has been
studied by A. V. Taichenachev et. al [171], where a dramatic difference in the resonance
line shape was found when comparing a beam with a top-hat profile to a beam with a
Gaussian profile. This important factor leads to significant changes in the resonance as
well as the off-resonace shape and width of the absorption line.

We assume that atoms have a large relaxation rate of Γr, i.e. the rate of redistribution
of atoms among internal degrees of freedom, so that for a vapour cell with buffer

Γr + D/r20 (4.44)

and with no buffer gas

Γr + v/r0 (4.45)

where D is the diffusion constant, r0 is the radius at 1/e of the maximum intensity and v
is the root-mean-square thermal velocity of the atoms. Using this assumption, the excess
linewidth for a beam with a Gaussian profile can be written as

ΓG , 0.86
Ω2
p +Ω2

c

γ
(4.46)

and for a beam with a top-hat profile

ΓTH , 2
Ω2
p + Ω2

c

γ
(4.47)
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where Ωp and Ωc are the Rabi frequencies of the probe and coupling fields, respectively,
and γ is the excited state linewidth. The linewidth of a top-hat beam is larger than that of
a Gaussian beam. Moreover, a top-hat beam profile leads to a more standard Lorentzian
line shape while a Gaussian profile has a more complicated line shapes.

In our experiment, we work in an off-resonance Raman regime where a large coupling
field is used to enhance the absorption. In this regime the power broadening is significant
and similar behaviour to that described for EIT is expected.

4.2.3 Interaction of Rb with external magnetic fields

Each of the hyperfine (F ) energy levels contains 2F +1 magnetic sub-levels that determine
the angular distribution of the electronic wave function. In the absence of external mag-
netic fields, these sub-levels are degenerate. However, when an external magnetic field is
applied, their degeneracy is broken. For weak magnetic fields, the interaction Hamiltonian
perturbs the zero-field eigenstates. To the lowest order, the levels split linearly according
to

∆E|Fmf 〉 = µBgFmfBz (4.48)

where the Lande factor gF is given by

gF , gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
(4.49)

and gJ is defined as

gJ , 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(4.50)

Here, µB is the Bohr Magneton, J and F are the total electron angular momentum and
the total atomic angular momentum, respectively, and mf is the Zeeman sub level. The
coefficient mf determines the Zeeman sub-level. This implies that, for instance, the split-
ting between the ground state of 87Rb is ∆E/BF=2,1 , ±1.4/2 MHz/G. For the excited
state , 52P1/2 this splitting is less; approximately ±1.4/3 MHz/G [172].

4.3 Experimental techniques

In this section we discuss experimental elements and techniques used to implement the
gradient echo memory. The experimental setup is explained in Sec. 4.3.1 and experimental
evidence of photon echoes generated using this scheme is presented in Sec. 4.3.2.

4.3.1 Experimental setup

The first photon echo generated via the gradient echo technique in a warm vapour cell was
observed using the experimental setup shown in Fig. 4.13 (a) and (b). The vapour cell
(length and diameter of 75 mm and 22 mm, respectively) contains isotopically enhanced
87Rb and helium buffer gas at a pressure of 5 Torr. An arrangement of 4 coils, shown in
Fig. 4.13(a) is used to generate the required magnetic fields. There is a small gap between
each pair of coils with the same diameter to allow a gradient to be created. The ratio of
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Figure 4.13: (a) Cross-section of the magnetic coil configuration around the Rb cell. (b) Diagram

of the optical layout AO1,2,3 are acousto-optic modulators, and QW are quarter-waveplates.

current between the two coils defines the strength of the gradient. The outer coils are used
to generate a B-field with an average of 3.4 G at the centre of the gas cell and a slope that
could be tuned to accommodate the Fourier width of the light pulse to be stored. The
inner coils are switchable and allows us to reverse the sign of the B-field gradient over a
period of 1 µs.

A schematic of the optical set-up is shown in Fig. 4.13(b). The Ti:sapph laser was red
detuned by 600 MHz from the hyperfine transition Fg = 2 → Fe = 1 of the 87Rb D1 line.
The two Zeeman sub-levels of Fg = 2, mf = 0, 2, were Raman coupled. The frequency of
the control and the probe could be tuned to match the two-photon detuning introduced
by the constant magnetic field offset (3.4 G) and the light shift (50 kHz). The two beams
had opposite circular polarisation creating a Λ-transition between two Zeeman sub-levels
(mf = 0, 2) of the Fg = 2 hyperfine state. The control and probe beams had diameters of
2 and 0.3 cm respectively. An external cavity diode laser could be used to pump atoms
from the Fg = 1 to the Fe = 2 hyperfine levels.

To observe the Raman absorption line, shown in Fig. 4.14(a) (i), the control beam fre-
quency was scanned and the probe absorption was monitored. The width of the absorption
line was observed to be 170 kHz. Compared to the transmission without the control beam
(iii) we have about 75% absorption at the line centre. Trace (ii) shows the Raman line
after Zeeman broadening is applied using the spatially varying B field. Even with the laser
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600 MHz detuned from the Doppler-free transition frequency, the background absorption
present in trace (iii) is 50%.

One of the first steps towards generating photon echoes is observing free induction
decay (FID) [2]. After exciting the atoms participating in the Raman absorption by
a pulse shorter than the inverse of the linewidth, the atomic macroscopic coherence will
cause coherent light re-radiation. A long FID signal indicates a long macroscopic coherence
time and therefore a small ensemble linewidth. To observe the FID, we use heterodyne
detection and excite the atoms with a short weak pulse of 250 ns. Fig. 4.14(b) (i) shows an
FID observed without applying a broadening magnetic field. Oscillations of the amplitude
are observed for about 2.5 µs. The decay time of the intensity of the signal is then about 1.2
µs, consistent with the width of the unbroadened Raman feature (1/(2π170 kHz) ≈ 1 µs).
Trace (ii) shows the result of the same experiment but with the Raman feature broadened
by the chirped Zeeman shift. The FID then decays much faster and the oscillations are
almost completely eliminated.

The decay of the unbroadened FID depends mainly on the time-of-flight of the atoms
in the beam. In an EIT experiment, the probe and control beams are resonant with
the upper atomic level so that only atoms of a single velocity class can contribute. In a
Raman system, atoms of any velocity class can absorb. This means the optical depth could
potentially be larger but on the other hand the decoherence due to the atomic motion is
likely to be more severe. To observe the Raman line, we scan the control beam frequency
(δ) and monitor the probe absorption. Fig. 4.14 (c) shows the evolution of the absorption
profile for different values of one-photon detuning (∆) and a constant coupling field (Ωc).
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Figure 4.14: (a) The Raman absorption is shown in (i). The broadening of the Raman line

induced by the magnetic field is shown in (ii). (iii) was obtained with the control beam blocked

and (iv) shows the level when the probe light is blocked. Experimental parameters were: ∆ = 600

MHz, control and probe beam powers of 40 mW and 1 µW respectively, and a cell temperature

of 60◦C. (b) The FID shown in (i) has an amplitude decay time of about 2.5 µs. With a linearly

varying B-field, the FID decay is much faster, as can be seen in (ii). (c) The transition between

the EIT or Raman absorption profile is evident when the one-photon detuning ∆ is scanned from

0 to 20γ.

When one-photon resonance, ∆ = 0, we find the EIT profile with a Lorentzian shape.
By increasing the detuning, the transparency window becomes more and more asymmetric.
For detunings larger than the Doppler width [173], the transparency window vanishes and
a Raman absorption profile appears. No parameters, other than the laser frequency, were
changed for this measurement. The absorption efficiency of the Raman process is not
optimised here. In practice, the Faraday polarisation self-rotation effect [174] depends on
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the one photon detuning; for a given laser frequency the power of the coupling field and
the polarising optics (λ/4 plates) have to be re-optimised. Such a self-rotation mechanism
comes from ac-Stark shifts induced by the off-resonant atomic levels. The magnitude of
the self-rotation depends on the amount of population in the two ground states situated in
the middle of the manifolds. As the optical pumping to the mF = −2 state reduces with
one photon detuning, the ground state population becomes evenly distributed across the
manifolds. This causes the off-resonant levels to disturb the dark-state preparation and
also causes a significant rotation of the light polarisation. See, for example, Ref. [175]. In
the following section we present the first proof of principle demonstration of light storage
using the GEM in a warm vapour cell.

4.3.2 First observation of echo in warm vapour

A narrow Raman absorption line was prepared and broadened using monotonically vary-
ing and reversible magnetic fields. The first observation of a photon echo generated by
reversing the magnetic field gradients in a rubidium vapour is shown in Fig. 4.15 (a) [176].
Trace (i) shows an input pulse, of around 1 µs long, being measured by blocking the cou-
pling field. Trace (ii) shows the amount of light that is being transmitted through the
cell without being absorbed. The shape of the transmitted pulse is a consequence of the
filtering of high-frequency components of the input by the Zeeman-shifted medium. We
indeed notice that the fast variations of the pulse are not absorbed as efficiently. Using
a broader Zeeman shift reduced the strength of these fast variations, but also the total
efficiency, as the optical depth for each spectral component decreased[154].
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Figure 4.15: (a) The input pulse (i) is shown without Raman absorption, although its height is

reduced by a factor of 2 due to the residual loss in the gas cell. The absorption is strongly enhanced

by the Raman beam, as shown by the left-hand side of (ii). After switching the B-field, an echo

emerges as seen on the right-hand side of (ii). (iii) The model shows good agreement with the

experiment. Parameters used in the model are γ0=500 kHz, η=0.2 G/cm and a B-field switching

time of 300 ns. (b) As the B-field switch was delayed in steps of 200ns, we observe a corresponding

delay in the echo.

After flipping the magnetic field slope at t = 3.5 µs we retrieved part of the stored
excitation. This is shown on the right-hand side of trace (ii). About 30% of coherently
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absorbed light was retrieved as an echo. This result was well predicted by numerical simu-
lations using the two-level atom model[154]. Trace (iii) shows the result of the simulations,
using a decay time of 500 ns, an optical depth of 0.4, and magnetic field gradient of 0.2
G/cm and accounting for the finite switching rate of the current. The main features of the
experiment are reproduced by the model. The reason that the shape of the unabsorbed
pulse is different from the input is due to low frequency absorption of the input pulse. The
memory bandwidth, in this case, is not large enough to encompass the entire input pulse
and therefore high-frequency components will leave the medium without absorption. To
enlarge the bandwidth of the memory, one should increase the gradient field as well as the
vapour density. In principle, large-memory bandwidth can be achieved, provided that the
memory bandwidth is much smaller than the one-photon detuning of the Raman transi-
tion. In practice, the main limitation of increasing the memory bandwidth is increasing
the optical density of the memory.

It is important to point out that the efficiency of the whole storage process cannot
be assessed from the present results only. As the laser was operated close to the Doppler
profile, there was about 50% absorption of the input beam when the control beam was
off. Moving further off resonance reduced this incoherent absorption (thereby making the
Raman feature more symmetric) but also reduced the depth of the Raman absorption.

To characterise the light storage mechanism further we measured the evolution of the
efficiency as a function of storage time. Fig.4.15 (b) shows the echo output as a function
of time, as the input pulse was shifted further away from the switching point. The input
pulse was moved backwards by steps of 200 ns. The echo emerges further away from
the magnetic field switching, as expected from the dipoles’ time-reversed evolutions. The
decay time constant of the echoes, determined using an exponential decay function, was
found to be 600ns.
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Figure 4.16: (a) Normalised transmission of the probe signal as a function of two-photon detuning

for unbroadened (i) and broadened (ii) Raman lines as well as the real part of susceptibility

corresponding to the broadened line (iii). Parameters used to obtain susceptibility are: Ωc =

20MHz, γ0 = 5kHz, ∆ = 2GHz, and ηL = 200kHz for the broadened line. (b) Storage of

slow light. (i) Input pulse (ii) unabsorbed transmitted pulse, (iii) recalled light. Inset shows the

transmitted light when the coupling field stays on. The top section of the figure shows the switching

protocols for the coupling and magnetic fields. Dashed lines show the corresponding curve obtained

from numerical simulation.
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4.3.3 Slow light contribution

The normalised transmission of the probe field and the real part of the susceptibility
is depicted in Fig. 4.16 (a) as a function of two-photon detuning, δ. The absorption
of the unbroadened line (trace (i)) is significant due to the large OD, and applying a
broadening of 200 kHz does not noticeably alter the maximum absorption (trace (ii)).
The susceptibility shown as trace (iii) indicates the group velocity of the light for different
frequency components. From this plot, it can be seen that the frequency components of
the light outside the edge of the Raman line, which are not absorbed, propagate with a
slow group velocity due to the steep variation of susceptibility.

As discussed earlier in this chapter, for a medium with a small number of atoms the
effective optical depth of the memory is inversely proportional to the frequency gradient
η. So using a decoherence-free medium, pulses with smaller frequency bandwidths can be
stored more efficiently. However, a pulse with a small frequency bandwidth corresponds
to a long duration pulse, which requires a system with long-lived coherence for photon
echoes to be efficiently recalled. In the case of a pulse that has a frequency bandwidth
slightly larger than the memory bandwidth, part of the input pulse is slowed down as
mentioned above. This slow light, similar to EIT, can be stored in spin-state coherence
by adiabatically switching the coupling field intensity to zero, and recalled later on by
increasing the coupling field intensity.

The slow light observed in the experiment is shown in Fig. 4.16 (b). The inset is
obtained by keeping the coupling field on all the time. This will cause part of the input
pulse, i.e. frequency components near the outer edge of the Raman line, to be delayed.
The slow light can be mapped onto the atomic excitations by turning off the coupling field
after the pulse enters the medium. Increasing the coupling field intensity again, after a
few µs, causes the stored slow light to be coupled out ( shown in trace (iii)).

4.3.4 Summary

In summary, we described the theory of GEM in two- and three-level atomic systems.
In particular, we considered the practical implementation of such a memory scheme in
an ensemble of warm Rb atoms in a vapour cell. We also studied different phenomena
expected from interactions between a laser beam and Rb atoms in a warm vapour cell.
Furthermore, we provided the first experimental results of light storage in a warm Rb cell
by means of the GEM technique.
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Chapter 5

Light Storage in the Polariton

Picture

“I believe neither in what I touch nor what I see. I only believe in what I do not see, and
solely in what I feel.”

Gustave Moreau

Quasi-particles are a particular class of mathematical objects formed by a superposition
of two disparate quantised fields. Their main purpose is to predict the physical behaviour
of complex systems. There are many quasi-particles associated with various physical
systems and they prove to be successful in explaining physical mechanisms. For instance,
an exciton is a superposition of an electron and hole, or a Plasmon is a quasiparticle
resulting from the quantisation of plasma oscillations (oscillation of free electron density).

The surface plasmons (plasmons that are confined to surfaces) interact strongly with
light resulting in a polariton. The polariton is a form of quasi-particle that results from
the coupling of the electromagnetic field with atomic excitations. The frequency of the
surface plasmons is blue-shifted compared to thefrequency in the bulk. Gerard Milburn
pointed out that this is illustrated by The Lycurgus Cup in the British Museum (see
Fig. 5.1). Also, Mark Stockman states in Physics Today (issued on February 2011, page
39):“The resonant properties of plasmonic metal nanoparticles are readily apparent to the
naked eye because the excitations absorb and scatter light at optical frequencies. The most
ancient example is the famous fourth-century CE Lycurgus cup from the British museum,
whose glass looks green in reflected light but ruby red in transmitted light. Those colors
are complementary, evidence that there is little optical loss inside the glass. Investigation
has shown that the dichroic glass contains nanocrystals of a gold-silver alloy at a fraction
of less than 1%” [177].

A similar effect can be seen in the stained glass used in the windows of Sainte-Chapelle
and rose window of Notre-Dame de Paris. In Sainte-Chapelle at sunset, the scattering of
light by gold nanoparticles in the windows creates a pronounced red glow that appears to
slowly move downward. This is because the intensity of the red light strongly depends on
the incident and viewing angles. However, the intensities of blue tints from ions of copper
or cobalt remain the same. “The artistic impression, probably intended, suggests a stream
of blood slowly flowing downward” [177].

Quasi-particles, like real particles, can have bosonic or fermionic statistics. Polaritons,
like photons, have bosonic statistics [178] and, in fact, Bose-Einstein condensation of
exciton polaritons has been observed in a microcavity [178]. For instance, a polariton can
also be associated with a light field propagating through a medium with a group velocity
less than c to provide an intuitive picture of the atom-light interactions. Particularly,
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Figure 5.1: The Lycurgus cup from the British museum, whose glass looks green (on the left) in

reflected light but ruby red in transmitted light (on the right).

theoretical models for light storage based on polariton evolution can provide a powerful
tool for understanding the physics of such systems and this information can then be used
to manipulate the system’s properties.

In this chapter, we introduce a polaritonic description of light storage in an atomic
medium. We start by describing the polariton associated with an electromagnetically
induced transparency (EIT) medium and then compare it with its counterpart in a gradient
echo memory (GEM) system. We show how some of the detailed physical phenomena
behind these light storage techniques can be precisely described using this theoretical
picture.

5.1 The EIT dark-state polariton

Employing an EIT mechanism, one can change the response of a medium for a weak
resonant field using a strong resonant control field, thanks to quantum interference between
the two absorption paths. In that case, the system is said to be in the dark state [68]
and is decoupled from the excited state. As long as the pulse is inside the medium,
the information remains as a form of a partial electromagnetic field and partial atomic
coherence. The latter term refers to an excitation of the atomic spin state, |1〉 and |2〉,
coherence. In this interaction regime, the system cannot be described by the individual
atomic or electric fields and it is possible to associate a quasi-particle with its propagation.
This quasi-particle is called a dark-state polariton [68]. The adiabatic dark state polariton
can be written as

Ψ̂(z, t) = cos θÊ −
√
N sin θσ12 (5.1)

where

cos θ = Ωc/
√

Ω2
c + g2N
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sin θ = g2N/
√

Ω2
c + g2N (5.2)

Here, we dropped the operator sign for atomic operators for simplicity. The state Ψ̂(z, t)

Time (μs)

z 
 (

cm
)

0 10 20 30 6040 50
0

5

10

15

20

0

1

A
b

s|ε
|

0515 1020

z  

Figure 5.2: Absolute value of the EIT normal mode presentation in z − t plane. The temporal

profile of the input modulated pulse is obtained by taking cross sections along the z axis and is

shown in the inset. The control field is turned off during t =15-50 µs. In this time window the

polariton is entirely atomic (cos θ = 0 and sin θ *= 0).

obeys the following equation of motion

[∂/∂t+ vg∂/∂z]Ψ̂(z, t) = 0 (5.3)

which describes shape-preserving propagation of the polariton with velocity vg = c cos2 θ.
Using this picture we can describe propagation and storage of a light pulse through an EIT
medium as evolution of the dark-state polariton: As the light pulse enters the medium, the
combined atom-light system is gradually driven from entirely photonic to a superposition
of photonic and atomic modes. The ratio between the these modes is defined by the
Rabi frequency of the control field, Ωc, and atom-light coupling, g

√
N . This is one of

the most interesting aspects of dark-state polariton that allows one to coherently control
and manipulate atom-light interference coupling properties by changing Ωc. Thus one can
drive the system from all-photonic to all-atomic by reducing the control field power to
zero. In this case the amplitude and phase information of the light pulse is mapped into
the atomic coherences and so the light field is stored coherently. By increasing the control
field power, the system can be driven back to the superposition state and the polariton can
be reaccelerated and eventually becomes all photonic as the light pulse leaves the medium
with the vacuum speed c. The EIT normal mode (polariton) is depicted in Fig. 5.2 in z−t
plane for a modulated input pulse. Before the control field is adiabatically switched to
zero (t <15 µs), the system is in a superposition of the atomic and photonic fields, where
the light field is propagating with a group velocity (vg - c). After the control field is
switched to zero, the information is mapped into the atomic coherence and the polariton
becomes all-atomic. As it is shown in the inset, the temporal profile of the input pulse
is obtained by taking cross section along the propagation axis. By turning back on the
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control field, the light field is regenerated and eventually released at the end of the sample
and propagates with vacuum speed, vg = c.

5.2 GEM Normal mode

Similarly to EIT, one can associate a quasi-particle (polariton) with the light field and
spin wave inside the GEM system. The evolution of the polaritonic mode inside the GEM
system yields a clear insight to the physical picture of the system.

To obtain a mathematical description of a polariton in a GEM system we solve Eqs. 4.2
and 4.3 while making a plane-wave decomposition of the optical and atomic fields via a
spatial Fourier transform. Neglecting the decoherence and taking the spatial Fourier
transform of Eqs. 4.2 and 4.3 we arrive at

∂

∂t
σ12(t, k) = −η ∂

∂k
σ12(t, k) + igÊ(t, k) (5.4)

kÊ(t, k) = Nσ12(t, k) (5.5)

and therefore

(
∂

∂t
+ η(t)

∂

∂k
− i

gN
k

)σ12(t, k) = 0 (5.6)

A similar equation can be written for the electric field (E). Thus, a single mode polariton-
like operator in time and k space for two-level atoms is obtained [151], ψ̂(k, t) = kÊ(k, t)+
N α̂(k, t), which has the following equation of motion

(
∂

∂t
+ η(t)

∂

∂k
− i

gN
k

)ψ̂(k, t) = 0 (5.7)

k here is the spatial frequency component of the joint system.

One can write another solution for the above equation of motion as ψ̂(k, t) = kÊ(k, t)−
N σ̂(k, t). It can be shown, however, using the Maxwell equation that kÊ(k, t) is equal
to N σ̂(k, t) and therefore this mode will never be excited. The normal mode equation of
motion (Eqn. 5.7) indicates that ψ(k, t) propagates in the k-axis with a speed defined by the
slope of the gradient. As the polariton reaches higher k values the electric field amplitude
gradually decreases in time. As each frequency component of light propagates through the
medium and gets absorbed by resonant atoms, dispersion due to the neighbouring atoms
having slightly different resonant frequencies will affect propagation and absorption. This
is, in fact, the origin of the photonic part of the polariton and also the phase shift of the
echo [179]. The intensity of the atomic excitation, created after the input light enters the
medium, remains unchanged during the storage time. Flipping the gradient (i.e. η → −η)
time reverses the absorption process so that when the polariton reaches k = 0 (the phase
matching condition) photon-echo emerges from the ensemble in the forward direction. We
note here that at each particular time, the system is described by a normal mode with
different amplitudes for optical and atomic fields; therefore it makes more sense to picture
the GEM storage as a continuum of evolving polaritons and not just a single polariton.

In a three-level atomic ensemble, in the far-detuned and adiabatic regime, using
Eqs. 4.25and 4.26 a similar polaritonic mode can be described as ψ̂(k, t) = kÊ(k, t) +
N ′σ̂(k, t), where N ′ = NΩ/∆. The second term in this equation necessarily goes to zero
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if the coupling field is switched off during storage. Therefore, as it is still the case that
kE = N ′σ, the slowly propagating electric field vanishes and the polariton becomes all
atomic.

The real parts of the electric field and atomic polarisation, for a modulated input pulse,
are plotted in Fig. 5.3 (a) and (b), respectively, using XMDS [180] numerical simulation
of Eqs. 4.27 and 4.28. It can be seen that the light is nearly stopped at the centre of the
ensemble after the pulse enters the medium and its intensity gradually decreases. The
atomic field is quickly generated after the pulse enters the memory. We also see that as
time progresses the spatial structure of the atomic and electric fields becomes increasingly
fine before gradient switching. Fig. 5.3 (c) represents the polariton evolution of a two-level
atomic sample in the k− t plane. The atomic excitations emit a burst of light (echo) when
the polariton returns to k = 0 (i.e. when the phase matching condition is satisfied).

The group velocity of the light field propagating inside the medium is given by vg =
gN/k2. The further away the polariton is from k = 0, the less intense the electric field
and also the smaller the group velocity. The group velocity and amplitude of light inside
the medium can be controllably tuned by varying the coupling field intensity. In a Λ-
GEM scheme, however, the group velocity and light amplitude can be controlled by both
the coupling field and the detuning of the gradient fields. This extra control over the
information provides a fertile ground for data manipulation.

The spatial cross section of the atomic polarisation at any time during the storage
is the Fourier spectrum of the input pulse. This explicitly demonstrates the frequency-
encoding nature of GEM. Inversely, any cross section of the polariton, ψ̂(k, t), along the
k axis (see Fig. 5.3 (c)) shows the temporal profile of the pulse [151] as a second Fourier
transform into k-space returns the original pulse shape, i.e. σ(z, t) → σ(k, t). This is
shown in Fig. 5.3 (c) where the normal mode for a modulated pulse is plotted. The cross
section of the normal mode at the switching time is also shown in the inset.

5.2.1 Steering of the GEM polariton

The microscopic dynamic characteristics of the GEM polariton allow one to precisely
control and manipulate the state of the system in time. This control is even more versa-
tile in Λ-GEM thanks to the contribution of the coupling field and detuning gradient in
determining the state of the system.

Atomic detuning

The detuning gradient causes the different frequency components of the light to be ab-
sorbed spatially along the atomic memory. In the polaritonic picture, the rephasing con-
dition is equivalent to k = 0. After the light is stored, η can be switched to any arbitrary
shape in time. However, the photon echo is only emitted when the atoms are rephased
and the coupling field is on (in the case of Λ-GEM). The shape of the frequency detuning
is chosen to be monotonic in order to avoid any re-absorption. Obviously, one can use
other forms of frequency detuning to avoid reabsorption, but a linearly shaped detuning
is practically easier to implement.

The shape of the detuning can be engineered in such a way as to optimise storage of
a light pulse with a particular frequency spectrum. The size of the frequency gradient
determines the bandwidth of the memory and by applying a larger gradient field the
storage bandwidth increases. On the other hand, for a simple linear gradient, the efficiency
of GEM is inversely proportional to the size of the gradient. Therefore there is always a
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Figure 5.3: Numerical simulation of the storage of an intensity-modulated pulse. (a) The real

part of the electric field in z − t plane. Inset shows the temporal shape of the pulse at the input

and at the output. The electric field decreases in strength until the atomic frequency gradient is

switched at t = 75 µs. It then increases and eventually an echo is emitted. (b) The real part of the

atomic polarisation in the z − t plane. A cross-section of the atomic polarisation along the z-axis

reveals the Fourier spectrum of the input probe light. The inset shows the absolute value of the

polarisation at the indicated position. (c) Absolute value of the polaritonic excitations in the k− t

plane. k = 0 indicates that the rephasing of the atomic spin is completed to produce a coherent

emission. A cross section of the polariton along k reveals the temporal shape of the stored pulse

(as shown in the inset). Parameters used for this simulations are: gN/η = 1.74, ηL = 16γ, and

γ0 = 0.

trade-off between the bandwidth and storage efficiency. For efficient storage of broadband
information, a large OD is required.
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The frequency gradient can be switched to higher or lower values or even to zero during
the storage time without affecting the storage protocol. In Fig. 5.4 we show the numerical
simulation for the evolution of the normal mode in the k − t plane where η is switched
to different values. Firstly, a recall gradient four times larger than the input gradient
is introduced and therefore the atomic field evolves four times faster towards the origin.
Shortly after, before the polariton reaches k = 0, η is switched to zero which stops the
evolution and freezes the polarisation at a constant k value. In other words, the system
can be described as a single polariton. Eventually, after η=−η0, light is emitted after
atomic excitations are phase-matched at k = 0.
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Figure 5.4: Numerical simulation of GEM showing the absolute value of the polaritonic excitation

in k − t plane. (a) Multiple switches of the atomic gradient field. The switching protocol of the

gradient detuning is depicted on top where η is switched to η = −4η0, then η = 0, η = 4η and

finally to η = −η0. (b) Arbitrary probe retrieval. The coupling field is turned on during the

writing stage and only for a short period during the reading stage when the condition k = 0 for

the middle pulse is satisfied. This guarantees that only the second pulse is recalled. The top part

of the figure shows the switching protocols for coupling field intensity , Ic, and detuning gradient,

η. The inset shows the temporal profiles of the input and echo pulses.

Tuneable coupling strength in Λ-GEM

The role of the classical coupling field in Λ-GEM is to couple the weak probe light via
Raman transition to the ground states.

The coupling field is also required at the reading stage when the photon echo is emitted
to transfer the energy from the atomic field back to the light field. In an ideal system,
the dynamics of the coupling field during the storage time would not affect the storage
process, but practically it is beneficial to turn off the coupling field during the storage
time to reduce scattering and therefore loss. The scattering process is further discussed
in the experiment section.

The coupling field intensity determines the effective atom-light coupling and therefore
the optical density. Decreasing the coupling field intensity at the writing stage will reduce
the recall efficiency. At the reading stage this can result in partial retrieval. In other
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words, the intensity of the coupling field when the normal mode reaches k = 0 determines
how much stored excitation is converted to the electric field and how much is left inside
the memory.

Fig. 5.4(b) shows a simulation of the atomic polarisation evolution in the k − t plane
in the Λ-GEM system. The coupling field intensity is switched to zero shortly after the
three light pulses enter the medium and their information is transferred into the atomic
excitations. After the gradient is flipped and the excitations reach k = 0, the coupling
field is turned back on only for the time window of t = 16− 18 in order to couple out only
the second pulse. In this case, the information imprinted into the atomic ensemble from
the two other pulses will remain inside the memory.
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Figure 5.5: (a) Schematic optical transition and level structure required for generating two

polaritons. (b) Un-broadened (i) and broadened (ii) Raman lines of non-degenerate ground state

F = 1 of 87Rb.

5.2.2 Polariton-Polariton interaction

Let’s now consider the interaction of a probe field with all Zeeman sub-levels of the F = 1
hyperfine ground state of 87Rb atoms. Interaction of the probe and coupling fields with
three sets of Zeeman sub-levels is shown in Fig. 5.5 (a). The unbroadened and broadened
probe absorption lines are shown in Fig. 5.5 (b) (i) and (ii), respectively. These lines have
been experimentally observed by scanning the coupling field frequency in the presence
of a uniform magnetic field parallel to the propagation axis. Since the mf = 0 level is
insensitive to the magnetic field, the mf = ±1 of the F = 1, 2 hyperfine ground state
levels can simultaneously be used for storage of light.

Applying a positive magnetic field gradient in the z direction will lead to a positive
frequency gradient to the mf = +1 and a negative frequency gradient to the mf = −1
Zeeman sublevel. In this manner, two detuning gradients with opposite signs will be
introduced to the ensemble. The two frequency gradients are not centred around the same
frequency. The magnitude of the frequency shift per Gauss of magnetic field is the same
for the both mf = ±1 states. Using a phase-modulated, or dual-frequency, coupling field
it is then possible to map the light into the left, σ1′2′ , and right, σ12, atomic coherences,
simultaneously.

The polariton picture for this storage scenario is shown in Fig. 5.6 (a) in the k − t
plane where two frequency gradients with opposite signs create two polaritons propagating
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Figure 5.6: (a) Absolute value of normal mode plotted in the k − t plane for a light pulse stored

simultaneously in two Zeeman sub-levels (mf = ±1) of an atomic ensemble. (b), (i) Electric field

intensity at the the beginning of the memory. The output field corresponding to storage in mf = 1

state and both mf = ±1 states are shown in trace (ii) and (iii), respectively.

in opposite k directions. For this reason, the two atomic fields are out of phase considering
the Maxwell equation kE(t, k) = Nσ12(t, k). From this equation, it can be seen that for
positive k values the electric field amplitude and atomic field have the same phase, but for
negative k values they are out of phase. This results in suppression of the echo signals at
the recall stage. This effect has been demonstrated using numerical simulation in Fig. 5.6
(b). The echo intensity is much smaller when two set of Zeeman sub-levels mf = ±1
are used compared to the case of storage using only one set of mf states. The phase of
the interference can be controlled using the relative phase between the two coupling fields
during the recall stage.
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Chapter 6

Spectral Processing of Stored

Light

The frequency-encoding nature of GEM provides us with knowledge about the position
of the stored frequency components of a light field. One can take advantage of this fact
to manoeuvre the bandwidth of the retrieved light and also selectively address different
stored spectral components.

In this chapter we first study the inherent linear and nonlinear frequency shift that
a GEM, and in general a CRIB, system can exhibit. We then discuss the spectral
properties of the memory in detail and consider manipulation of the atomic frequency
gradient to allow fine control of the optical field recalled. To simulate the system, we use
a decoherence-free atomic system as considered in Ref. [151] to model the storage and
retrieval dynamics.

The relevant publication for this chapter is

Precision spectral manipulation of optical pulses using a coherent pho-

ton echo memory B. C. Buchler, M. Hosseini, G. Hétet, B. M. Sparkes, P. K. Lam,
Opt. Lett. 35, 1091 (2010).

6.0.3 Self-induced frequency shift

The frequency shift in the two and three-level CRIB systems has been theoretically studied
in Ref. [179]. It was shown that a three-level CRIB system can show frequency shift
and frequency chirp in the echo field, particularly at short interaction times (τstorage <
10 δtduration), high optical densities, and large memory bandwidth. In this regime, the
non-linear phase shift can potentially reduce the fidelity of the memory. In this section,
we investigate the phase shift induced to the recalled light in a GEM scheme.

To understand the reason for the phase shift, we consider the schematic light storage
picture in Fig. 6.1 where the absorption lines of a few atoms are shown along the prop-
agation axis z. Consider a single frequency component ω0 of the input light, resonant
with the blue atom, traveling from the left to the right. The neighbouring atoms have
different resonance frequencies due to the applied gradient. The dispersion and absorption
caused by neighbouring atoms will affect the amplitude and group velocity of light, as it
travels towards the blue atom. If the interaction time is long enough compared to the
pulse duration, the field will eventually reach the blue atom and be totally absorbed by
the atom. However, if the gradient is switched before the field is completely absorbed, a

101
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frequency shift will be induced to the echo field due to the incomplete time reversal. If
the interaction time (storage time) is long or the field gradient η is large, the light field
will be rapidly absorbed. Therefore, when the gradient is flipped, the echo process is
time symmetric and the frequency shift effect will be negligible. If, on the other hand,
the gradient is flipped before full absorption, the process is not time symmetric and the
gradient flip will lead to a frequency shift of the photons that are yet to be absorbed.

ω0

ω0

ω1ω2ω3ω4

ω=ηz

...

T
ra

n
sm

is
si

o
n

Figure 6.1: Schematic representation of light storage at the microscopic level. A single frequency

field component resonant with the blue atom which is traveling from the left will experience a

phase delay due to dispersion from neighbouring atoms.

Numerical simulations of the GEM in this regime reveals a clear k dependent frequency
shift. These results are plotted in Fig. 6.2. The observed frequency shift here is linearly
dependent on the inverse of k = ηt (see Chap. 5) so that the longer the storage time is, or
the larger the atomic frequency gradient is, the smaller the linear frequency shift will be.
We note here that for large values of ητ , the remaining electric field amplitude inside the
memory will be small.

To find a theoretical description of the phase shift that the memory induces on the echo
signal we first need to obtain an expression for the spatial shape of the atomic excitation
that reproduces the data pulse spectrum. This can be obtained through the susceptibility
equation [179, 152]

χ(z) = (
γ − i(ηz + ω)

γ − i(−ηL/2 + ω)
)−iβ (6.1)

where β = gN
η is the optical depth of the atomic sample extended from −L/2 to L/2.

Using this expression, Moiseev et al. [179] showed that the echo signal gains a phase shift
expressed as

δφ(t) = β ln[
ηL

2
(t+ τβ − τs)] (6.2)
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where τs is the storage time and τβ = 2β
ηL . It was shown that this phase shift can be

decomposed into three terms: a constant phase shift, a constant frequency shift and a
frequency chirp term [179]. The total phase shift for different sets of parameters is plotted
in Fig. 6.3 (a)-(d). It can be seen that for a large optical depth β and a short storage time
(τs), a frequency chirp can be observed across the pulse envelope. One should notice that
the frequency chirp for interaction times longer than the pulse duration (minimum possible
storage time) is important. The effective optical depth in our experiment is around β , 1
and pulse duration is around 2-3 µs. Under these conditions, the effect of the frequency
chirp is almost negligible as observed in our experiment.

Along with the non-linear phase shift mentioned above, the storage process in a two-
level or three-level GEM system can induce a constant phase shift and frequency shift to
the output light [181, 179].

Now we investigate the frequency shift under various circumstances by monitoring the
electric field at the output. Fig. 6.4 (a) shows the real part of the light field inside the
atomic sample, presented in the time-space domain, where the interaction time is 10 times
the length of the input pulse. As depicted in Fig. 6.4 (b) and (c), increasing the interaction
time [154] or applying a larger field gradient can significantly reduce the frequency shift.
The amount of the frequency shift of the light can be estimated by the angle of the wave
front near the end of the memory.

An alternative method involves applying a DC detuning offset to actively cancel out
the above-mentioned frequency shift of the output echo. Fig. 6.4 (d), shows the real part
of the light field inside the two-level atomic sample where a DC detuning is applied after
flipping. The frequency shift is completely removed by choosing the right DC offset.

Fig. 6.4 (e) and (f) show the real part of the electric field inside a three-level atomic
ensemble when the coupling field is on and off during the storage time, respectively. By
switching off the coupling field during the storage time (see Fig. 6.4 (f)), the light field
is mapped into the atomic excitations before it gets fully absorbed by resonant atoms.
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Figure 6.3: The real part of the echo signal plotted for a Gaussian pulse using the expression 6.2

as a function of interaction time and echo time τecho for (a) β = 5, ηL = 2MHz, pulse width of 1

µs, (b) β = 5, ηL = 2MHz, pulse width of 0.5 µs, (c) β = 1, ηL = 2MHz, pulse width of 0.5 µs,

and (d) β = 1, ηL = 2MHz, pulse width of 1 µs. The insets in (b) and (d) show the corresponding

echo amplitude for storage time of 1.5 µs and 3 µs, respectively.

This effectively reduces the interaction time of unabsorbed light with atoms and therefore
induces a larger frequency shift to the recalled light.

6.1 Controlled frequency shifting

A simple frequency shift of the retrieved light can be achieved by adding/subtracting
energy to/from light while it is stored into the atomic coherence. An offset (δ) can be
added to the atomic frequency spectrum as it is inverted so that η(z, t)L → −η(z, t)L+ δ.
In this way every frequency component in the pulse is shifted by δ on retrieval. An
example is shown in Fig. 6.5. Panels (a) and (b) show the real part of the optical field
during storage with δ = 0 and δ = 0.5 MHz respectively. The rapid phase rotation of the
output in Fig. 6.5(b) indicates a shift of the output frequency relative to the frame of the
simulation that is rotating at the input optical frequency. Fig. 6.5(c) shows the Fourier
spectra of the output pulses correspondingly shifted for five values of δ between -1 and
1 MHz. Apart from being an interesting processing capability, being able to frequency
shift in this way enables compensation of inherent frequency shifts that can occur in GEM
under conditions of short storage time [154] (this is discussed in Sec. 6.0.3). In the case
of three-level GEM a frequency shift can be introduced by changing the frequency of the
coupling field that controls the connection between the two atomic ground states. This
may be easier in practice since a precise frequency shift could be dialled up by using an
acousto-optic modulator to control the coupling beam frequency in a similar manner to
EIT experiments that show frequency shifts [182].
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Figure 6.4: Numerical plot of the real part of the electric field inside a two-level atomic ensemble

indicating the frequency shift of the echo for, (a) a short interaction time, (b) a long interaction

time. Parameters used for this plots are: ηL = 8 MHz, gN/η = 2.2. (c) A steeper detuning

gradient (ηL = 14 MHz) is applied for a short interaction time to reduce the frequency shift. (d)

A constant detuning offset of 100 kHz is applied after flipping the gradient field to cancel the

frequency shift, with other parameters the same as (a). (e) The real part of the electric field inside

a three-level atomic sample when the coupling field is on during the storage time. (f) the coupling

field is switched off during the time window t = 10− 35µs. The frequency shift from each plot can

be estimated by the angle of the dashed line along which the phase is constant.

6.1.1 Experimental observation of frequency shift

As mentioned above, the frequency shift is experimentally observable by applying various
techniques. One way to achieve this is to vary the frequency of the coupling field used at
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the recall stage. One can store the light with a coupling field on the Raman resonance
with the input light field, and then change the frequency of the control field at the reading
stage only before the echo is emitted. The other method is to apply a DC magnetic field
after the gradient is flipped. This will change the two-photon detuning and as a result it
causes the output light frequency to change.

The experimental result of a frequency-shifted echo pulse is shown in Fig. 6.6. This
was achieved by applying an offset magnetic field after the magnetic field gradient was
flipped to increase the splitting of the atomic ground states. On the recall stage, the pulse
is shifted by the added splitting, which in this case is 600 kHz, as seen by the interference
fringes in the heterodyne signal.

6.2 Bandwidth manipulation

Since the storage bandwidth of GEM is determined by the size of the gradient applied along
the memory, one can coherently alter the bandwidth of the recalled light, to some extent,
by changing the read gradient. This will allow time-compression and -decompression of
the input pulse after recall. For instance, applying a steeper gradient after flipping the
detuning forces all the Bloch vectors to rotate backward faster and this causes the time
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magnetic field gradient. The red curve denotes the straight transmitted pulse and the recall pulse.

The interference pattern shows that the pulse is coherent with the original light field and is shifted

by 600 kHz.

compression of the echo. Similarly, decompression of the pulse can be obtained when
a shallower gradient is applied at the reading stage compared to the initial gradient.
Fig. 6.7 (a) and (b) show numerical results for (i) compression and (ii) decompression
of light pulses. The recall gradient is 5 times steeper than the input gradient. The
atomic polarisation evolves faster towards k = 0, and the second pulse leaves the memory
compressed in time. Immediately following the first echo the gradient is changed to 5
times smaller than the input gradient so that the excitations evolve very slowly towards
k = 0, and a time-stretched echo is emitted.

An experimental demonstration of time-compressed and stretched echoes are provided
in Fig. 6.7 (c). In principle, the ability to coherently control the bandwidth of the output
light can ultimately be used for generating on-demand, tuneable-bandwidth single photons.
Fig. 6.7 (d) shows the amplitude of a retrieved modulated pulse in the frequency domain
(with a carrier and 4 sidebands) when the bandwidth of the memory is tuned by altering
the slope of the recall gradient to 4 times larger, or smaller, than the input gradient.
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(c) Compression and expansion: Separate experiments show; (i) time-compressed retrieval with

η = −4η0. and (ii) time-stretched retrieval with −0.6η0. Data shown without magnification

and the top part of the figure shows the corresponding switching protocol of the gradient field.

The numerical simulation is shown as dashed lines on the pulses. (d) Amplitude of a retrieved

modulated light pulse shown in the frequency domain when the ratio between input and output

bandwidth of the memory is 1(i), 0.25 (ii), 4 (ii).



Chapter 7

Arbitrary Manipulation of Optical

Bits

k

 

Figure 7.1: A conveyor belt for optical pulses

The bandwidth and versatility of optical devices has revolutionised information tech-
nology systems and communication networks. Precise and arbitrary control of an optical
field that preserves optical coherence is a requisite for many proposed photonic technolo-
gies. In this chapter we present storage of multiple pulses of light within a chosen frequency
bandwidth. Stored pulses can be recalled in arbitrary order with any chosen delay between
each recalled pulse. Furthermore, we show that pulses can be split into multiple smaller
pulses and recalled in several pieces at chosen times. This memory can play the role of a
random access memory for optical bits.

The relevant publication for this chapter is

Coherent optical pulse sequencer for quantum applications M. Hosseini, et
al. Nature 46, 241-245 (2009).
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7.1 Time sequencing

Using the polariton description introduced in Chap. 5, we show how optical information
can be coherently manipulated in an arbitrary manner. We discuss the possibility of
coherent pulse sequencing, first-in-last-out (FILO) , first-in-first-out (FIFO), arbitrary
recall and backward retrieval of information using Λ-GEM.

One of the intrinsic properties of GEM, as we have discussed it so far, is that the
photon echo is a time-reversed copy of the input pulse. When the optical field frequencies
are stored spatially along the z-axis, flipping the gradient triggers the time-reversal process
so that the pulse sequence is reversed. This process is well understood using the normal
mode picture.

Fig. 7.2 (a) shows the numerical simulation of a polariton for first-in-last-out (FILO)
storage of four input pulses, depicted in k− t plane. The evolution “speed” of the normal
mode in the k-direction is given by the frequency gradient η(t). Using the normal mode
picture discussed in Chap. 5, the reason for the pulse sequence reversal is made clear: the
last pulse to enter the system returns to k = 0 first, and is thus re-emitted first.

A natural question is whether it is possible to avoid reversing the pulse shape. One
approach is to use two memories and do FILO storage twice. This will introduce more
loss to the light and more complexity to the storage protocol.

Shape-preserving storage in a single-memory device would require that the normal
mode returns to k = 0 travelling in the positive k direction. The last pulse in would
then be the last pulse out. With a two-level system this would seem impossible without
loss: after reversing the frequency gradient there is no way to suppress the emission when
the normal mode returns to k = 0. FIFO storage can be achieved in a single memory
operation based on two-level GEM, but for the expense of loss. This can be done by
switching the gradient to a very steep value and the opposite sign after storage as shown
in Fig. 7.2 (b). This will effectively reduce the optical depth (OD) of the system (see
Sec. 4.1.2) at the first reading stage and therefore most of the excitation will remain inside
the memory. The left-over excitations, which contain most of the information, can be
recalled later by applying a gradient similar to the one at the writing stage. In principle,
exp(−2βLπ)[1 − exp(−2βLπ)] part of the light field, where L is the length of the atomic
sample, remains inside the sample [152] after the echo is emitted as leftover excitations.
These decay over time due to the decoherence. Provided the coherence time of the atoms
is long enough, part of the leftover excitations can be converted back to the light field
by flipping the field gradient multiple times. In fact, multiple switching of the gradient
allows atomic excitations to travel back and forth in k space and each time they pass
through k = 0, a fraction of the excitations will contribute to the photon echo emission
until, eventually, all the leftover excitations become depleted. Ignoring decoherence, the
fraction of the input light released in the nth echo is [1−exp(−2βLπ)]2 exp[−2βLπ(n−1)].

With a three-level system, however, we are free to turn off the coupling beam. In this
case, although the dipoles will rephase when the normal mode reaches k = 0, no light can
be emitted. This is seen in Fig. 7.2 (c), which shows |ψ(t, k)|2 for the switching scheme
shown above the figure. With the coupling beam off, the normal mode passes straight
through k = 0 to negative k values. We can then switch the frequency gradient again to
obtain a normal mode travelling in the positive k-direction. Now with the coupling field
back on, the normal mode is converted into a photon echo at k = 0 without pulse shape
reversal. In this way we can construct a first-in-first-out (FIFO) memory.
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Figure 7.2: Numerical simulation of the polaritonic excitations showing, (a) first-in-last-out and
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the effective OD of the memory. The two pulses are retrieved in FIFO manner after switching the

gradient once more to its original slope. In this case, around 7% of the light is retrieved as FILO at

the first readout stage. (d) Storage of a train of four pulses in 1,2,3,4 order and recalled in 3,2,1,4

order. The switching scheme of the coupling field intensity and gradient detuning is plotted on top

of each part. Insets show the temporal shape of input (blue) and echo (red) pulses.

7.1.1 Arbitrary retrieval

Combining the FIFO and FILO techniques, our system can be thought of as a k-space
conveyer belt for the stored light pulses. The normal mode can be moved back-and-forth
along the k-axis by controlling the frequency gradient, η. Furthermore, we are able to
push pulses off the conveyer belt whenever they pass through k = 0 by turning on the
coupling beam. In this way we are able to construct a system that can recall the pulses
in any order we choose. A decoherence-free model of the on-demand retrieval is shown
in Fig. 7.2 (d), where 4 pulses are stored in the memory, and after the first field switch,
pulses 3 and 2 are recalled by turning the coupling field on, only during the time window
that these two pulses cross k = 0. The other two pulses are recalled later after the second
field switch. One can choose any other combination in the reading stage by controlling
the detuning gradient and also the coupling field switching.
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g = 3γ; Pp,max = 2.5× 10−7Pc; ∆ = 1000γ; γ0 = 0;γ = 1; and optical depth gNL/γ = 600.
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7.1.2 Optical conveyor belt

Fig. 7.3 shows the various types of manipulation that can be done on the optical data using
abovementioned protocols [183]. This figure demonstrates not just arbitrary recovery of
pulses, but also methods for manipulating the pulses during storage. We start with seven
pulses of different size. The pulses are first read into the memory with η = η0, then held
in a steady state with η = 0. Reversing the motion in k-space with η = −η0 allows us
to couple out some pulses in reverse order as they pass through k = 0. By timing the
coupling field correctly we recover pulses (3) and (4) at t = 15τp, where τp is the width of
a single pulse. Next we hold the normal mode for some time at negative k-values, before
switching to a positive velocity on the k-axis. Again choosing the coupling beam timing
correctly, we recover pulses (5) and (6) without reversal at t = 27τp. The remaining pulses
move to positive k. On the next pass through k = 0, we reduce the power of the coupling
beam by a factor of 2. This allows us to couple out half the power of pulses (1) and (2)
in reverse order at t = 34τp. This system amounts to a beamsplitter with a variable time
delay on one port since we are free to recover the rest of these pulses at a later time.
We now switch back to a positive slope, but this time with a higher frequency gradient,
η = 4η0. As explained in the previous chapter, this causes pulse compression because
increasing η expands the range of frequencies covered by the atomic ensemble and a wider
Fourier width leads to shorter pulses. This is seen intuitively in k-space since the normal
mode moves faster through k = 0, leading to faster pulse recovery. In this way, half of
what remains of pulses (1) and (2) is compressed and released from the memory in their
original order at t = 37τp. In the last stage, we reduce η to achieve pulse stretching. The
expanded remains of pulse (1) and (2) are thus released from the memory in reverse order
at t = 45τp. The last pulse (7) is left in the atomic medium.

7.2 Experimental Implementation

The experiment has been performed using a cylindrical (length and diameter were 75 mm
and 25 mm, respectively) cell containing 87Rb atoms mixed with 1Torr Kr buffer gas
in order to increase time of flight of atoms inside the beam. The optical layout of the
experiment is shown in Fig. 7.4 (a). The previous experimental setup [151] was based
on the coherence built on Zeeman sub-level ground states of F = 2 of Rb atoms, where
the signal and the coupling field with orthogonal circular polarisation were detuned from
F ′ = 1 so that coherence is built between mf = 2 and mf = 0 of F=2 ground state.
However, in thermal equilibrium and after repumping, more population is expected in
F = 1 ground state [184] than F = 2. For this reason, we used a 6.8 GHz frequency
shifted signal beam, generated using fibre-coupled EOM (FC-EOM), to address F = 1 to
F ′ = 2 transition with higher coupling strength compared to the previous setup. We split
the Ti:Sapph laser beam, red detuned by ∼2 GHz from the transition Fg = 2 to Fe = 1
of the 87Rb D1 line, into two beams. The signal beam after FC-EOM goes through the
cavity on resonance with +6.8 GHz sideband to filter out carrier and -1 sideband. The
second laser beam was used as the coupling beam. Both the coupling and the signal fields
pass separately through AOMs which frequency-shift the fields by 80 MHz and 85 MHz,
respectively, to match the splitting between the ground state levels. Finally the coupling
and signal beams were collimated to 7 mm and 15 mm respectively with orthogonal
linear polarisation and were mixed in a polarising beam splitter before the cell. The
typical peak coupling field and signal field powers were 200 mW and 50 µW, respectively.
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The temperature of the cell was controllably tuned around 75oC using a bifilar resistive
heater wound around the cell. At 65oC, for instance, Rb vapour has a density of 3× 1011

cm−3. However, at the maximum case only 60% of these atoms are in F = 1,mF = 1
state due to the corresponding Clebsch-Gordan coefficient. An initial repumping using
a resonant beam with a circular polarisation can place most of the atoms in the desired
atomic state.
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Figure 7.4: (a) The optical layout. Orthogonal linearly polarised coupling and probe fields were

sent through a warm Rb87 enhanced cell with 1 Torr of Kr buffer gas. The double layer µ-metal

shielded gas cell was surrounded by two variable pitch coils that were used to apply magnetic field

gradients in opposing directions. The D1 |Fg = 2 >→ |Fe = 2 > transition was used for the probe

beam, while the D1 |Fg = 1 >→ |Fe = 2 > was used for the coupling beam. (b) Current flowing

through the two coils during the gradient switching time. Trace (i) and (ii) show the current flowing

through the inner coil (being switched off) and outer coils (being switched on), respectively.

The Raman absorption of the probe typically had a visibility of 85% and a width of
120 kHz. To create the atomic frequency gradient (η) we used a solenoid with variable
winding pitch to create a linearly varying magnetic field. For photon echo recall, a second
variable-pitch solenoid with opposing current was used to invert η. In this setup, the
magnetically broadened ensemble had Raman absorption widths up to 1 MHz. The current
flowing in two coils during the switching time period is shown in Fig. 7.4 (b). The magnetic
broadening decreases the effective optical depth so that the absorption was reduced to
∼60%. Resistive bifilar wires were used to heat up the two end-sides of the gas cell more
than the middle in order to prevent Rb from condensing on the sides.

We have observed the FID (see Sec. 2.2.5) from our Rb vapour cell under the Raman
absorption situation. A coupling beam with power of 10 mWwas used on Raman resonance
with the probe pulse and 1 GHz detuned from the excited state. The Raman absorption
line in the CW regime is shown in Fig. 7.5 (a) suggesting a linewidth of 6 KHz. At such a
low coupling field power, where the effect of power broadening is negligible, this width is
close to the ground state decoherence rate. Fig. 7.5 (b) shows the FID decay of atoms after
the probe pulse is being absorbed while the coupling field is on during the entire time.
The plot in Fig. 7.5 (c) shows the Raman linewidth as a function of the coupling field
power and as can be seen the linewidth linearly increases with the coupling field power.
The linear fit returns a 3.1 kHz intercept that corresponds to a ground state decoherence
rate.
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FID decay rate is about 6 kHz. (c) FWHM of Raman line as a function of the coupling field power.

The solid line is a linear fit with intercept of 3.1 kHz.

7.2.1 Experimental results

FILO and FIFO storage

To use our system as a coherent optical memory in its simplest form, a coupling beam and
atomic frequency gradient were applied using the pattern shown in Fig. 7.6 (a) to store
a train of four pulses. It is not a requirement that Ec is switched off during the storage
phase, but it is beneficial in practice since it eliminates spontaneous emission from the
excited state. The experimental data is shown in Fig. 7.6 (c). The most striking feature
of this result is that the shape of the input pulse train is reversed in time, as predicted
previously [185]. In this scenario, GEM is a first-in-last-out (FILO) memory. A train of
four pulses enters the cell, which spans the length of the z-axis, and is absorbed. The
pulse train emerges in the forward direction symmetrically about the point of frequency
gradient switching. The inset of Fig. 7.6 (c) shows the evolution of |ψ(t, k)|2 for the
real space data of Fig. 7.6 (d). The mode starts at k = 0 and evolves to higher k at a
rate determined by η(t) until the frequency gradient is switched, leading to a reversal in
propagation direction. The pulse is re-emitted when the mode returns to k = 0. A cross
section through |ψ(t, k)|2 at any time is proportional to the temporal profile of the input
optical field intensity. Including ground state decoherence (γ0) and N as free parameters
in our numerical model, we could fit the data in Fig. 7.6 (c) with excellent agreement, as
shown by the dashed lines.

The numerical simulation of FIFO storage can be seen in Fig. 7.6(f), which shows
|ψ(t, k)|2 for the switching scheme in Fig. 7.6 (b). With the coupling beam off, the normal
mode passes straight through k = 0 to negative k values. We can then switch the frequency
gradient again to obtain a normal mode travelling in the positive k-direction. Now with
the coupling field back on, the normal mode is converted into a photon echo at k = 0
without pulse shape reversal. This is demonstrated experimentally in Fig. 7.6(e). In this
way we have constructed a first-in-first-out (FIFO) memory. As with the case of FILO
memory, our numerical model (dashed curve) shows excellent agreement.
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Figure 7.6: FILO and FIFO memory. Switching scheme for (a) FILO and (b) FIFO storage

showing the frequency gradient (η) denoted by dashed lines and the presence of the coupling field

(Pc) denoted by grey shading. (c) Experimental observation of FILO storage. (i) The input pulses

and (ii) the photon echo showing order reversal. The frequency gradient was flipped at t = 30 µs.

Dashed lines show a numerical simulation using the parameters ∆ = 320γ, ηL = 0.08γ, γ0 = 4 kHz

and optical depth gNL/γ = 1.5. The output echo and simulation are magnified 10×. The inset

shows the the dynamics of |ψ(t, k)|2 for this storage scenario. (d) A decoherence-free numerical

simulation showing the power of the optical excitation, Pp, in the (t, z) plane for FILO memory.

The input pulse sequence (red) is reversed at the output (blue). (e) Experimental observation of

FIFO retrieval. (i) The input pulses and (ii) the photon echo showing order preservation. The

dashed line shows numerical modelling with the same parameters as the FILO retrieval except

with γ0 = 3 kHz. The output echo and simulation are magnified 10×. Pp, Pc and η are plotted

with normalised units. (f) A decoherence-free numerical simulation of |ψ(t, k)|2 for FIFO storage.

In this case, the coupling beam is off when the normal mode crosses k = 0.

Arbitrary recall and pulse splitting

Fig. 7.7 (a) and (b) shows pulse reordering and splitting of a pair of pulses over two
recall events, respectively. Beam splitting can be achieved by reducing the coupling beam
power at reading stage. In our experiment, however, we find that we can split pulses with
constant Ec. This is due to the low optical depth in our system, which limits both the
writing and readout stages of the photon echo. Inefficient recall allows us to simply read
out twice without changing Ec, as discussed in Sec. 7.1. Numerical modelling again shows
excellent agreement with our experimental data. The numerical simulations performed for
Gaussian pulses with (a) γ0 = 5 kHz, ηL = 0.06γ, (b) γ0 = 1 kHz, ηL = 0.08γ, and in
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shown by grey shading. (a) Pulse reordering: (i) Four input pulses are written into the memory.

(ii) After the first frequency gradient switch FILO retrieval of pulses 4 and 3 is observed. (iii)

A second frequency gradient switch produces FIFO retrieval of pulses 1 and 2. The output echo

and simulation are magnified 10×. (b) Pulse splitting: (i) Two input pulses are written into the

memory. (ii) Partial FILO retrieval of the input follows immediately. (iii) A second partial FIFO

retrieval of the input follows at later time. The output echo and simulation are magnified 10×.

(c) High efficiency single pulse storage: (i) is the the input pulse, (ii) shows 42% recall efficiency

and (iii) 31% recall efficiency. (iv) 20% of the input leaks through the cell due to limited optical

depth. The dashed lines show numerical simulations of Gaussian pulses.

all cases the optical depth was gNL/γ = 1.5 and detuning ∆ = 320γ. Fig. 7.7 (c) shows
single pulse storage with 42% efficiency.

Shape mirroring

One of the intrinsic properties of GEM is that the recalled photon echo has the same
shape as the input signal, but it is time reversed. Fig. 7.8 shows the experimental proof
of the shape preservation for a double Gaussian and ramp shape input pulse, respectively.
Output echoes are indeed a mirror-image copy of the input pulses due to the time-reversed
nature of the process.

7.3 Backward retrieval and stationary light

Light stored using the EIT method can be retrieved in forward or backward direction
by applying forward or backward control field after storage, respectively. Simultaneous
retrieval with forward and backward control fields, however, suppresses emission of the
recalled signal from the memory. This is because the standing light wave created by the two
control fields modulates the refractive index and effectively creates a Bragg grating that
traps the light. Andre and Lukin in 2002 [186] showed that dynamic control of such a band
gap can be used to coherently convert a propagating light pulse into a stationary excitation
with a nonvanishing photonic component. When two counter-propagating control fields
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are applied, signal light propagating near atomic resonance in the forward direction can
undergo Bragg scattering into the backward propagating mode. Therefore, a range of
frequencies (photonic band gap) can appear for which light propagation is forbidden. The
photonic band structure of the medium can be written using the Blochs theorem [186],
E(z + a) = E(z)eiKa, as

cos(Ka) = − cosh[a/vg

√

Ω2/∆− (δ1 −
vg
c
δ2)2] (7.1)

where ∆ is the control field detuning from the excited state, δ1 is detuning of the probe
from the centre frequency, δ2 is detuning of the probe centre frequency from the excited
state, K is the Bloch wave vector and a = λ/2 is the periodicity. If the light shift term,
Ω2/∆, is larger than the effective two-photon detuning, δ1 − vg

c δ2, the Bloch wave vector
acquires an imaginary part and the propagation of waves inside the medium is impossible.
This effect has also been experimentally demonstrated [187, 188]. The results of numerical
simulation, shown in Fig. 7.9 (a) and (b), represent the forward , Ê+, and backward , Êi,
probe field inside the medium where counter-propagating control fields were used at the
retrieval stage.

Furthermore, it has been shown [188] that even if the counter-propagating fields have
totally different wavelengths (795nm and 780 nm) a stationary light is still achievable.
This can be explained in terms of balanced multi-wave mixing (MWM) processes [189, 190]
without the need for introducing standing wave fields.

Photon echoes created using two-level GEM always co-propagate with the input pulse
and there seems to be no way to recall information propagating in a backward direction.
However, similar to EIT [187], Λ-GEM is capable of recalling stored information in both
backward and forward directions. Writing the equations of motion for forward and back-
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Figure 7.9: (a) Forward and (b) backward propagating probe fields inside the EIT medium. The

forward propagating probe signal is slowed down using the co-propagating control field which is

on during the time t = 0− 7µs. The forward propagating control field is adiabatically switched to

zero to store the optical pulse inside the medium. At time t = 12µs both forward and backward-

propagating control fields are switched on to generate a Bragg grating and therefore stationary

light. In this case, a backward propagating field is generated inside the medium as shown in

(b) that has the same amplitude as the forward-propagating component. The overall effect thus

prohibits the probe light from propagation.

ward propagation, one can arrive at two sets of coupled equations with the same phase
shift induced on the excitations owing to counter-propagating coupling fields. When the
forward coupling field is turned off, the slow light vanishes, and a collective spin excitation
is created. Finally, when the coupling beam is turned back on, the signal pulse is recreated
propagating with the coupling field.

To mathematically describe the system we write the Maxwell-Bloch equations of
motion for pair of counter-propagating fields. Assuming Ωc = Ω+e−ikz + Ω−eikz and
Ê = Ê+e−ikz + Ê−eikz, we arrive at the following equation for the atomic fields [191]

∂σ12
∂t

= −(γ0 + iηz)σ12 + iΩ+σ
+
13 + iΩ−σ

−
13 (7.2)

∂σ+13
∂t

= −(γ + γ0/2 + i∆)σ+13 + igÊ+ + iΩ+σ12

∂σ−13
∂t

= −(γ + γ0/2 + i∆)σ−13 + igÊ− + iΩ−σ12
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whereas the Maxwell equations for the electric fields are given by

∂Ê+
∂t

= iNσ+13 (7.3)

∂Ê−
∂t

= iNσ−13

In regimes of large detunings, ∆ + γ, one can adiabatically eliminate the excited state
and reduce the above equations to

∂σ12
∂t

= −(γ0 + iηz + iδLS)σ12 + ig
Ω+

∆
Ê+ + ig

Ω−
∆

Ê− (7.4)

(7.5)

whereas the Maxwell equations for the electric fields are given by

∂Ê+
∂z

= iN Ω+

∆
σ+13 (7.6)

∂Ê−
∂z′

= −iN Ω−
∆
σ−13

where z′ = z − ct and light shift term δLS = i |Ω+|2+|Ω−|2
∆ . Use of a pair of counter-

propagating coupling fields allows us to excite the coherence term σ−13 which is also coupled
to the long-lived coherence σ12 and therefore results in retrieval of stored light in the
backward direction.
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(iii) are amplified by a factor of 2. The top section shows the switching protocol for the forward

(blue) and backward (red) propagating coupling fields. Due to the low OD, part of the input light

leaks from the memory without absorption.

To experimentally demonstrate backward retrieval of the echo, we used a coupling field
propagating in the opposite direction with respect to the input pulse. Initially, the input
pulse was stored with a co-propagating coupling field. At the read-out stage the photon
echo was retrieved either in the forward or the backward direction by means of forward or
backward coupling field after the gradient flip, we observed counter-propagating photon
echoes recalled from the memory. The results are shown in Fig. 7.11 where photon echoes
were retrieved in the forward (trace (ii)) or backward (trace (iii)) directions.

When two counter-propagating coupling fields are applied, the echo signal propagating
in the forward direction can undergo Bragg scattering into the backward propagating
mode. The physics of trapping the light in this case is similar to the stationary light
generated in an EIT medium as discussed in the previous section.

Fig. 7.12 shows results of the numerical simulation using XMDS [180] for forward and
backward propagating probe fields. When the gradient is switched to zero just before
the echo is emitted, the system polariton is very close to k = 0. At this point most
of the polariton is in the photonic mode and the light field is propagating with a group
velocity vg = gN/k2. Due to the non-zero group velocity, the light field eventually leaves
the memory in the presence of the coupling field. This is shown in Fig 7.12 (a), where
the coupling field co-propagating with the probe is on and the gradient is switched off.
This leads to the retrieval of the echo in the forward direction. However, if the counter-
propagating coupling fields are switched on after the gradient is turned off, a stationary



122 Arbitrary Manipulation of Optical Bits

 

 

0 0.04 0.08 0.12 0.16

5

10

15

20

25

30

 

 

0 0.04 0.08 0.12 0.16

5

10

15

20

25

30

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.2

0.4

0.6

0.8

1.0

T
im

e 
(μ

s)
T

im
e 

(μ
s)

(b)

(c)

|ε
in
|

|ε
+
|

|ε
in
|

|ε
-
|

 

5

10

15

20

25

30

T
im

e 
(μ

s)
(a)

 
0 0.04 0.08 0.12 0.16

0.0

0.2

0.4

0.6

0.8

1.0

|ε
in
|

|ε
+
|

z (cm)

Figure 7.12: (a) Forward propagating probe signal in the presence of forward-propagating cou-

pling field. The frequency gradient is switched off before the phase matching condition (k = 0)

is satisfied. The photonic part of the polariton is propagating with a non-zero group velocity

and eventually leaves the memory. (b) and (c): forward and backward-propagating probe signals,

respectively, when the counter-propagating coupling fields are switched on after switching off the

gradient field. The light propagation is then forbidden and stationary light is generated.

light pulse which remains inside the memory is generated. The amplitude of the forward
and backward propagating probe field are shown in Fig. 7.12 (a) and (b), respectively.
The physics of the trapping light in this case is similar to the stationary light generated
in an EIT medium.

It is worth mentioning that by applying the counter-propagating coupling fields during
the writing stage we observed that the probe absorption on the Raman resonance was
suppressed. Instead we observed that the probe signal was divided in half, propagating
with the two coupling fields. The technique can potentially be used as an all-optical switch
[192, 193, 194] where the direction of the fields can be switched optically with a tuneable
delay.
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7.4 Conclusion

We presented storage of multiple pulses of light within a chosen frequency bandwidth,
and stored pulses can be recalled in arbitrary order with any chosen delay between each
recalled pulse. Furthermore, we show that pulses can be time-compressed, time-stretched
or split into multiple smaller pulses and recalled in several pieces at chosen times.

Although our experimental results are, so far, limited to classical light pulses, our
technique should enable the construction of an optical random-access memory for time-bin
quantum information, and have potential applications in quantum information processing.
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Chapter 8

High Efficiency Light Storage

One of the key requirements of a practical optical memory that can also be used for
quantum applications is high-efficiency storage of optical information. The minimum
efficiency required for any unconditional quantum memory is 50%. Using other storage
techniques, the most impressive efficiencies so far attained are 43% using EIT[195] and
35% using AFC[128].

Using GEM based on two-level praseodymium ions, recall efficiencies of 69% have been
experimentally demonstrated [149]. In this solid state system, the frequency gradient
is applied using an electric field to induce a Stark shift. In this chapter we discuss the
construction of a high efficiency 3-level GEM memory. In the previous chapter the best
efficiency achieved was 42%. Through modifications to the experiment, we show how it is
possible to increase the efficiency to 87%, which is so far the highest recorded efficiency
for a quantum memory prototype.

The relevant published paper to this chapter is

“High efficiency coherent optical memory with warm rubidium vapour

M. Hosseini, B. M. Sparkes, G. Campbell, B. C. Buchler, P. K. Lam, Nat. Commun. 2,
174 (2011).”

8.1 Experimental arrangement

In theory, as described in Chap. 4, the efficiency of gradient echo memory can reach unity
at large optical depths. To reach the unity efficiency limit in the lab, one needs to increase
optical depth of the memory. This was achieved in our experiment by using a long Rb
vapour cell and increasing the temperature of the cell.

The experimental setup is similar to what was described in the previous chapter
(Sec. 7.2) with a few modifications as is shown in Fig. 8.1 (a). In this setup we have
used a long cell with a length and diameter of 20 cm and 25 mm, respectively, to increase
the OD of the memory. To determine the optimum buffer gas pressure we examined gas
cells with various Kr and Ne pressures ranging from 0-100 Torr. We have observed the
maximum absorption in the vapour cell with 0.5 Torr Kr buffer gas. At buffer gas pres-
sures higher that 5 Torr (Ne or Kr) we observed enhanced incoherent absorption of the
probe and the coupling field limiting the absorption efficiency. This can be attributed to
the collisional broadening of the excited state. Although large buffer gas pressures can po-
tentially provide longer storage times as demonstrated in EIT storage schemes [196, 195],
the amount of loss introduced to both beams at large buffer gas pressures could not be
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tolerated, in our scheme, in order to obtain high efficiency storage.
The temperature of the cell was controllably tuned to an average temperature of ∼80oC

using a bifilar resistive heater wound around the cell. At this temperature a Rb atomic
density of , 1012 cm−3 was expected. The heater was designed so that the cell windows
become warmer than the middle of the cell in order to prevent Rb from condensing on the
windows. This caused a 5-10 oC temperature difference between the middle and ends of
the cell.

The signal beam, as described in Sec. 7.2, was prepared using a FC-EOM and the
sideband was extracted using a ring cavity. Signal pulses were prepared with a peak
power of < 2 µW. The signal pulses and coupling beam were then combined with the
same linear polarisation, but different mode size, using another cavity (also finesse=100)
resonant with the signal field. Using the same polarisation for two beams is crucial for the
observation of high-efficiency echoes and reducing the FWM processes (this is explained
further in Chap. 10). Using the cavity is the most efficient way of combining two beams
with the same polarisation. The coupling and signal fields were converted to circular
polarisation and sent into the gas cell. The signal beam was collimated to a diameter of 6
mm while the coupling field covered almost the entire cell cross section. This arrangement
of beam sizes was chosen through various iterations to optimise the absorption of the
probe beam. After the cell, the signal field was coupled to a single-mode fibre and sent to
a heterodyne detection system. The coupling field was mostly rejected from the fibre due
to its larger mode diameter. We found the polarisation and alignment of the two beams
crucial to observation of high efficiency storage.

The magnetic coil arrangement was similar to what was described in the previous
chapter. The switching times were 0.5 and 2.5 µs, respectively. The DC magnetic field
was set to 6 G and the typical value of the gradient field is 20 mG/cm. The cell and
coils were surrounded by double µ−metal shielding to reduce the influence of the Earth’s
magnetic field. The coils were designed to be more than twice the length of the cell. This
provides enough distance (>10 cm) between ends of the cell and coils. For this reason we
found the effect of µ-metal end-caps, on the background magnetic field, to be negligible.

Fig. 8.1 (b) shows the magnetic field created by one of the coils measured in three
dimensions along the propagation axes, in the middle of the vapour cell. As can be seen,
the field variation is quite linear along the length of the memory and contribution of
transverse fields in the middle of coils is negligible. Fig. 8.1 (c) shows the current flowing
through the two coils during the time period when the fields are being switched.

8.2 High efficiency storage results

Figure 8.2 (a), shows the Raman absorption line as a function of two-photon detuning
(detuning from the Raman resonance) (i) with and (ii) without the applied magnetic field
gradient. The absorption is sensitive to alignment, which in this case was optimised for
the broadened feature. This is the reason for the larger absorption seen by the broad-
ened Raman line compared to the unbroadened one. Furthermore, these Raman lines are
results of heterodyne detection averaged over 10 traces and the signal-to-noise ratio of
the absorbed signal is not high enough to accurately measure the maximum absorption
point. With the applied broadening the absorption is ∼99%. This limits the maximum
possible recall efficiency of our memory[152] to 0.992=98%. As mentioned previously, the
shape of the Raman line is very sensitive to the polarisation and alignment of the beams.
For orthogonal linear polarisation of the beams, we observed amplification of the signal
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Figure 8.1: (a) Schematic view of the experiment. Experimental setup showing the coupling

(red) and signal (blue) beams with 6.8 GHz frequency difference, collimated at different sizes and of

identical circular polarisation when they go through the cell. Heterodyne measurement is performed

after the memory on the signal field. BS: Beam Splitter, HD: Heterodyne Detection, SMF: Single

Mode Fibre, AOM: Acousto-Optic Modulator, FC-EOM: Fibre-Coupled Electro-Optic Modulator,

Es and Ec: signal and coupling field amplitudes, respectively. (b) Measurement of the 3-D magnetic

field along the propagation axis, z. (c) Current flowing into the coils during the switching period

beam for gas temperatures between 80-90 oC. This is discussed in more detail in Chap. 10.
For co-circular (or co-elliptical) polarisation this effect observed to be negligible. Slightly
different polarisation and alignment can distort the Raman line shape and can result in
unpredicted absorption spectra. This high degree of sensitivity was only observed in a
20 cm cell at high temperatures. The absorption line was optimised by firstly selecting
circular polarisation for both beams. The alignment was then optimised for the broadened
line at low coupling field powers. The cell positioning was then adjusted to make sure the
two gradients overlapped and the broadened Raman line was symmetric.

The results of storage and recall experiments are shown in Fig. 8.2 (b). The input
pulse, shown in black, has a 1/e2 width of 2 µs. We measure the power in this input
pulse by recording the far off-resonance transmission through the gas cell without the
coupling field. We measured no noticeable absorption from the atomic ensemble under
these conditions and we can use the total energy in this pulse (the area under the curve)
to normalise the recall efficiency of our storage experiments.

In Fig. 8.2 (b) after flipping the magnetic field gradient we recall the signal light with a
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Figure 8.2: Raman Absorption line and input-echo pulses. (a) (i) The Raman absorption

line before broadening. (ii) The Raman absorption line after application of the magnetic field

gradient. This was observed with a single frequency cw signal beam, while the frequency of the

coupling beam was scanned. (b) Storage and recall data with an input pulse duration of 2 µs.

(c) Storage and recall data with an input pulse duration of 3 µs and the coupling field is turned

off during storage time to reduce the decay rate of the storage. For both (b) and (c) the far

off-resonant transmitted input pulse, which is used to normalise our recall efficiency, is shown in

black. The coupling field power was 370 mW.

maximum efficiency of 87%. The storage time in this case is 3.7 µs peak-to-peak, or exactly
one pulse width between the 1/e2 points power levels to ensure complete separation of the
input and recalled pulses. The recall efficiency drops rapidly for longer storage times,
although for these data the coupling field was on at all times. In Fig. 8.2 (c) we show the
results of recall experiments where the coupling field was switched off during the storage
phase of the experiment. In this case we find slower decay of the recalled pulse since we
have now reduced the decoherence caused by the coupling field. The pulses in these data
are slightly compressed on recall due to a higher magnetic field gradient used to recall
the signal light, which is the reason for the peak recalled power exceeding the input peak
power. We can achieve slightly higher efficiency using compressed pulses since the total
storage time in the medium is reduced.

8.2.1 Atomic decoherence

Fig. 8.3(a) (i) shows the efficiency as a function of storage time when the coupling field is
on. Taking into account the signal beam radius of 3 mm and 0.5 Torr Kr buffer gas, one
can calculate the diffusion time of the atoms, defined as the time that a fraction 1/e2 of
atoms have moved a distance greater than the radius of the signal beam, to be τd = 22 µs.
This value was fixed in our model allowing us to fit only the ground state decay time,
which was determined to be τ0 = 4 µs corresponding to a decay rate of 2π40 kHz. This
is consistent with the scattering rate of 2π × 30 kHz calculated above, from which we
conclude that our system is limited in this regime by coupling beam-induced scattering.

One would expect the same decay rate for the atomic coherence as the FWHM of
the unbroadened Raman line. This is only true if the Raman line is Lorentzian (not
saturated) and unbroadened. In situations where the two beams are not spatially mode-
matched or are slightly angled with respect to each other, the absorption line could be
inhomogeneously broadened due to the Doppler effect. The excess broadening was shown
quadratic in the angular deviation for an EIT scheme [160]. The angular dependency of
the Raman line is discussed further in Chap. 10. Also, in presence of background magnetic
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field, the absorption line could be inhomogeneously broadened. For very low coupling field
powers and in the absence of a background magnetic field, the width of the Raman line
directly reflects the ground state decoherence. At high coupling field powers, however,
power broadening or scattering introduces extra loss to the atomic coherence. In our
system, this scattering rate is calculated to be 2π × 30 kHz.

This scattering effect results in an exponential decay of atomic coherence after light
is stored. We note, however, that this may not be the case for very short storage times
where the decay is not exponential and does not agree with our simple model. This effect
can be attributed to the highly photonic nature of the memory for short storage times.
The pulse, in this case, has yet to be fully mapped into the atomic spin wave. The impact
of the scattering, collisional and diffusion decay terms will vary as the light is absorbed
into the atomic ensemble leading to decay of the memory that differs from the model at
short times.
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Figure 8.3: coupling field effect on efficiency and noise. (a) Echo efficiency as a function of

storage time. (i, red) Data taken for a 3 µs pulse while the coupling field with power of 380 mW

was switched off during the storage time. (ii, blue) Data taken for a 2 µs pulse while the coupling

field with power of 290 mW was kept on during the storage time. Error bars indicate the detection

error derived from fluctuation of the amplitudes of pulses. (b) Efficiency of photon echoes of a 3 µs

pulse as a function of coupling field power. The solid line is the theoretical predictions taking into

account diffusion time of 22 µs, coupling field induced scattering and ground state decoherence

rate of 2π×3.5 kHz.

To understand the contribution of the coupling field-induced scattering we investigated
memory behaviour both in the presence and absence of the coupling field during the storage
time. We can gain some insight into our system by considering a simple model that includes
an atomic diffusion time, τd, a total ground state decoherence rate, τ0, and a maximum
possible memory efficiency, η0, limited by the optical depth. The efficiency ηm will then
be given by

ηm = η0e
−(t/τd)2e−t/τ0 . (8.1)

The scattering rate can be minimised by switching off the coupling field during the stor-
age time. Atomic diffusion then becomes the dominant decay mechanism; hence a more
Gaussian-like decay is expected. The curve in Fig. 8.3 (a) (i) is the result of a convolu-
tion of a Gaussian decay function (τd = 22 µs) due to diffusion and an exponential decay
function due to the ground-state decoherence. The fitted exponential decay time in this
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case is τ0 = 60 µs, giving a decay rate of 2π × 2.6 kHz. This is still much higher than
the collision-limited ground-state dephasing time, but this is expected because the decay
rate in this case varies as the coupling beam is switched on and off over the course of the
experiment.
We also studied the effect of the coupling field power on the memory efficiency for storage
times of one-pulse width. As can be seen in Fig. 8.3 (b), the recall efficiency saturates
with increasing coupling field power. This is because increasing Ωc can effectively provide
a higher optical depth as long as ∆ + Ωc. In this case the effective atom-light coupling
strength can be described as g′ = gΩc/∆. If Ωc is further increased beyond this limit, the
system can no longer be described by a simple quasi two-level atomic ensemble and there
is no further improvement in optical depth.

Based on our experimental conditions, the rate of spontaneous emission due to the
signal beam is found to be 2π × 1 Hz at pulse peak intensity. The scattering rate due to
the coupling field, on the other hand, is found to be ∼ 2π × 30 kHz at power of 370 mW.

8.3 Multi-pulse storage

Multimode storage of photonic information is crucial for optical communication as well
as quantum information technology. To date, various techniques have been proposed for
the implementation of an optical memory that satisfies this requirement [197, 198, 199,
124, 185]. Among these proposals the atomic frequency comb (AFC) has been proven to
have high multimode capability regardless of the ensemble’s OD [200, 201]. The GEM
technique has also multimode storage capacity [151]. Similar to AFC, GEM can store
wide input spectra regardless of OD, although with small efficiencies at low OD. Below,
we present experimental results for storage of multiple optical pulses inside warm atomic
vapour using GEM technique.

In Fig. 8.4 we show the storage and recall of 20 Gaussian pulses with an overall efficiency
of 2%. For this experiment the coupling field power was reduced from 370 mW to 64 mW
to reduce the decay rate of the memory. The lower optical depth in this case limits the
efficiency of the storage and recall. From this data we can infer a delay-bandwidth product
(DBP)[202] of ∼40 for the our memory. The highest multimode capacity demonstration
was achieved using AFC where 1064 pulses were delayed [201].
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Figure 8.4: Results of 20 pulse storage Amplitude of 20 Gaussian input (black) and echo

pulses (red) with total recall efficiency of 2 %.

It can be seen that the amplitude of the echo pulses decays differently in time for short



§8.3 Multi-pulse storage 131

and long storage times. This is in agreement with the abovementioned discussion about
diffusion and scattering effects resulting in different decoherence mechanisms. One can
obtain echoes with constant amplitude by flipping the gradient twice and retrieving it in
the first-in-first-out manner. This way, all of the pulses will experience the same decay
time inside the memory.

The maximum number of pulses that can be stored, in this case, is limited by the
decoherence rate of the memory. The bandwidth of the memory can be increased by
applying large detuning gradient η as long as ∆ + ηL.

8.3.1 A pillar that pacifies the oceans

In free space, the 20 optical pulses shown in Fig. 8.4 occupy more than 6000 meters of the
space that during storage are squeezed in a few-cm-long memory. This is equivalent to a
medium with a refractive index of approximately 60000! This ability to control light by
tuning its group velocity is unique to the atomic-based memories.

Figure 8.5: The “Monkey King” is the main character of a classical Chinese novel dating back

some four hundred years ago. Image from: Jon Sigurdsons Collection (http://chinaposters.org)

There is a veiled analogy between a multimode optical memory and a character in
a classical Chinese epic novel that I would like, if I may, to draw here. Sun Wukong,
also known as the Monkey King is the main character in the Chinese novel “Journey to
the West”. In the novel, he was a monkey born from a stone who possessed an immense
amount of power. In search of a weapon, Sun Wukong gain the Golden-banded staff,
which could change its size and multiply itself. A poster of him by Jon Sigurdson is shown
in Fig. 8.5. The staff was originally used to measure ocean depth and later became the
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”Pillar that pacifies the oceans”. It weighed 8.1 tons and he could wield it as a staff and
keep it inside his ear as a sewing needle.

A long-lived optical memory is able to do a similar trick by squeezing kilometres of light
in a centimetre-long medium. At the recall stage, light can be compressed or stretched
ondemand depending on the application.

8.4 Conclusion

In conclusion, we have shown light storage in warm vapour gas up to 87% memory efficiency
using Λ−GEM technique. All measurements were performed using coherent heterodyne
detection. We have demonstrated a time-bandwidth product of ∼ 40. The decay rate
of our memory can be controlled, to some degree, by minimising the use of the coupling
beam to the extent that for longer storage times we become limited by atomic diffusion.



Chapter 9

Atom-Light Interference

“Constantly regard the universe as one living being, having one substance and one soul;
and observe how all things have reference to one perception... observe too the continuous
spinning of the thread and the contexture of the web.”

Marcus Aurelius

In this chapter we present experimental observation of interference between an atomic
spin coherence and an optical field in a Λ-type gradient echo memory. The interference
is mediated by a strong classical field that couples a weak probe field to the atomic spin
coherence through a resonant Raman transition. Interference can be observed between
a prepared spin coherence and another propagating optical field, or between multiple Λ
transitions driving a single spin coherence. In principle, the interference in each scheme
can yield a near unity visibility and could be used as a coherent all-optical switch.

The relevant published paper to this chapter is

“Time and frequency domain polariton interference G. Campbell, M. Hos-
seini, B. C. Buchler, P. K. Lam, Submitted to New J. Phys. (2011).”

9.1 Introduction

Coherent manipulation of atomic systems using photons is a key element of many quantum
atom-optics experiments. The ability to controllably tune atom-light interactions while
preserving the quantum properties of a system has also great potential with regard to the
development of quantum information technology. Many of the techniques employed in
quantum atom-optics involve the interaction of light with ensembles of atoms that have
long-lived coherences between hyperfine energy levels. In such systems, a two-photon tran-
sition between hyperfine states can be used to manipulate the atomic state in a coherent
manner. Examples of this include stimulated Raman adiabatic passage (STIRAP) [203],
electromagnetically induced transparency (EIT) [204] and photon echoes [205], all of which
have been proposed as central elements in a range of protocols for storing and processing
optical quantum information.

Within the range of schemes that exploit light-atom interactions, a number of them,
particularly photon echo schemes, pertain to interference effects between the quantum
modes. A time-delayed quantum interferometer has previously been proposed as a method
for quantum interference between two single photons [206]. Experimental observation
of interference between backward-propagating stimulated photon echoes has also been
reported [205], where two echoes have been selectively chosen in time to destructively
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interfere while the information contained in the suppressed echo was not recovered from the
sample. Furthermore, the phase-preserving nature of storage was previously investigated
by interfering echoes generated from separate optical memories [207].

Δ>>γ,δγ
δ

(a)

(b)

ε
p

α

B
-s

w
it

ch

B
-s

w
it

ch

Coupling field

0

Ωc

|1>

|2>

ε
s

ε
2

ε
1

ε
p

ε
s

T1=0
R1=1

T2, R2

Time

1

T3=0
R3=1

z

Atomic 
ensemble

|1>

|2>

ε
2

ε
1

ε
p

ε
s

Ω
c1

=ε
c

Ω
c2

=ε
c
e-iδt + φ

Ω
c1

=ε
c

Ω
c2

=ε
c

B-switch

T
im

e

z

τ1 τ2

Figure 9.1: (a) Schematic representation of atom-light interference in the memory. The probe

pulse, Ep, is fully absorbed in the atomic spin coherence (α). The second steering pulse, Es, enters
the memory at the precise time that the first echo is being emitted so that it can interfere with

the recalled light. The interference is determined by the relative phase of the pulses and the

effective beamsplitter (T2, R2), which is controlled by the strength of the Raman coupling field.

The remaining atomic coherence can be recalled later as E2. (b) Left: Double-Λ level structure

and optical fields used for interference of two Raman absorption paths of signal fields (probe and

steering) with different frequencies. Both Λ transitions drive the same coherence. Right: The

procedure used for observing double-Raman interference. The probe and steering pulses are sent

into the memory each with a corresponding coupling field. Interference between the unabsorbed

probe pulses, E1, and the atomic coherence, which is recalled from the memory as E2, can be

observed by varying the relative phase of the two Λ transitions.

In the following sections, we investigate the coherent interference of atomic polarisa-
tion and an optical field using the three-level gradient echo memory. We treat the read
and write stages of the memory as being analogous to a beam-splitting operation acting
between an optical mode and an atomic spin coherence. Both the splitting ratio and the
interference phase are controlled optically via the strength of the Raman coupling field.
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9.2 Method

We explore the nature of atom-light coupling through two separate mechanisms. The first
scheme (Fig. 9.1(a)) is a time-domain interferometer. We prepare the atomic polarisation
by storing a pulse of light in the atomic memory. A second steering pulse is sent into
the memory just as the stored field is being recalled. The two pulses are observed to
interfere as polaritonic modes. The second scheme (Fig. 9.1(b)) is a frequency domain
interferometer. In this case the atomic coherence is simultaneously driven via two distinct
Raman transitions. Interference is then produced between the two nondegenerate absorp-
tion paths. We first briefly introduce the storage technique in general and then explain
each scheme in more detail.

Similar to our previous setup as described in Sec. 8.1, our experiment was performed
using a 20 cm long vapour cell of warm Rb atoms and a linear switchable varying magnetic
field. The coupling and probe fields are passed through acousto-optic modulators (AOMs)
which allow us to create the required pulse sequences by driving them with appropriate
RF signals. To generate the probe and steering pulses, the RF signals were created using
separate, but phase-locked, arbitrary waveform generators and were combined together
before the AOM (details are in the supplementary material). In this manner, the frequency,
phase and amplitude of the coupling, probe and steering fields can be independently
controlled. The coupling field power used for maximum coupling between the optical and
atomic modes was 330 mW and was adjusted to control the coupling. The probe and
steering pulses were on the order of few µW. In order to generate and control the phase,
timing, and amplitude of the signal and coupling fields, the method shown in Fig. 9.2 (a)
and (b) respectively was used.

9.2.1 Time-domain interference

Our first experiment investigates interference of light pulses with a mode stored in the
atomic memory. Following on from Ref. [152], this effect can be thought of as a time-
delayed beamsplitter system. The effective optical depth (OD) of a Λ-GEM is defined
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as

β =
gN

η
(
Ωc

∆
)2. (9.1)

For the writing stage the transmissivity, T (β), of the effective beamsplitter is the fraction
of the input light field that is leaked through the memory so that T (β) = e−2πβ , while
the fraction of the light written into the memory is given by the reflectivity R(β) =
1 − T (β). For the reading stage, the R(β) will be the fraction of the polariton that is
converted into a recalled optical field, while T (β) will be the fraction that remains in
the memory. Since T (β) and R(β) are defined by the strength of the coupling field, one
can tune the transmissivity of the beam-splitting through the power of the coupling field.
A series of reading and writing events, as shown in Fig. 9.1(a), can then be described
using appropriate reflectivities. The amount of light recalled in the first echo is given by
E1 =

√
R1R2e−γ0τEp+eiθ

√
T2Es, where Ep is an initial probe pulse and Es is a second pulse,

which we label the steering pulse, that enters the medium at the time that the probe pulse
is recalled. The exponential term arises from the decay of Ep, at a rate γ0, during the
storage time τ . The phase θ can be chosen at will. This equation shows that interference
can arise between recalled fractions of Ep and Es and, in particular, if

√
R1R2e−γ0τ =

√
T2

and θ = π then E1 can be fully suppressed. This simple analysis ignores other details
such as the matching of the temporal modes of the pulses. Other factors that limit ideal
interference will be discussed later when we analyse the results of our experiments.

We use the polariton picture to visualise the dynamics of the time-domain beamsplit-
ting operation. Figure 9.3 shows a numerical simulation of this interference scheme. The
simulation shows the evolution of the electric field in real space (the z − t plane) and the
atomic spin coherence in Fourier-space (the k − t plane). In this numerical simulation
the atomic and electric fields are out of phase. This results in a suppression of the echo
from the first pulse. The constructively interfered atomic polarisation is recalled in field
E2 after the second gradient switch.

The result of the interference is observed as either an atomic or an optical field. The
interference happens through the entire atomic medium and results in transfer of amplitude
and phase information between the atomic coherence and the optical field. The simplified
picture provided above using the beam splitter analogy misses some physical details about
the interference processes which happen at the microscopic level. From the Maxwell
equation, one can find that kE(t, k) = Nα(t, k) and it suggests that when k < 0 the
electric field and atomic field are out of phase. Here, N in the effective linear atomic
density. The extra π phase shift between the atomic and electric field at k < 0 agrees
with the conservation of energy principle expected from such unitary operation similar to
a beam splitter. This effect is demonstrated by numerical simulation of the amplitude of
the electric field and atomic polarisation plotted in the z− t plane in Fig. 9.4 (a) and (b),
respectively. The amplitude of the electric and atomic fields, which is plotted in time at
the beginning of the memory (z = 0) on the top of the figure, shows the phase difference
between the steering pulse and the atomic field.

We stored a 4 µs probe pulse in the memory and recalled it after a storage time of
τ1 = 10 µs. The steering pulse was injected just as the atomic coherence excited by the
probe returned to k = 0. We label the light detected at this time as E1, and integrate the
detector signal over the pulse duration to obtain a value for the pulse energy. The polariton
that remains in the atomic medium after the first recall is itself recalled after storage time
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Figure 9.3: Numerical simulation showing interference between the electric field, plotted on

the z-t plane, and atomic excitations, plotted on the k-t plane, where the second light pulse is

out of phase with the first echo field. The parameters used in the simulations are: gNL/γ = 40,

Ωc/∆ = 0.75, Ωc(t = 4 µs) = 0.7Ωc(t = 2 µs) and φEs − φEp = π

τ2 = 10 µs. We detect it in the same manner as E1 and label it E2. Figure 9.1(a) shows
the sequence of pulses that are stored, interfered and retrieved along with the coupling
field intensity for each step.

The energies of the recalled pulses, E1 and E2, were measured as a function of the rel-
ative phase of the probe and steering pulses. The phase of the atomic coherence depends
on the relative phase of the coupling and probe fields. It is therefore possible to control
the phase of the interference by scanning the phase of either the steering pulse or the cor-
responding coupling field. Fig. 9.5(a) shows interference fringes for E1 (blue, dashed line)
and E2 (red, solid line) obtained by varying the phase of the coupling field corresponding
to the steering pulse. This was accomplished by varying the phase of the RF signal that
drives the coupling field AOM during the interference event relative to its phase during
the storage of the probe pulse. For this data, the powers of Ep and Es were equal and the
coupling field power during the interference event was tuned to find the maximum fringe
visibility on E2, which was found to be 68%. The visibility of E1 echo, 23%, is substantially
lower due to the power mismatch of the steering pulse and the recalled atomic coherence
required to optimise the interference in E2. The reflectivity corresponding to the recall of
E1 is 37%.

Control over the effective beamsplitter ratio is demonstrated in Fig. 9.5 (b). It can
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Figure 9.5: (a) Atom-light interference fringes at different times resulted from interaction of the

steering pulse with echo generated from the probe pulse. The first arm of the interferometer which

is in the optical mode leaves the memory(blue data) and the second arm is stored as an atomic

coherence that is transformed back to the light field after re-switching the B-field (red data). These

data were taken by optimising experimental parameters such as efficiency. The dashed blue and

solid red lines are sinusoidal fits to the corresponding data. The red and blue data yield a fringe

visibility of 68% and 23%, respectively. (b) Visibility of fringes for two pulses separated in time

at the first (blue points) and second (red points) reading stage as a function of the normalised

coupling field power.

be seen that by varying the coupling field power the effective splitting ratio can be tuned
to find a maximum in the interference. For this data, the power contained in the steering
pulse was adjusted to provide good visibility for both E1 and E2. It is interesting to note
that for strong coupling fields, one optical pulse is written into the memory while another



§9.2 Method 139

is being recalled with little interference between the two, analogous to a high-reflectivity
beamsplitter. For a weak coupling field, on the other hand, the effective beamsplitter be-
comes fully transmissive, again meaning no interference between the pulses as the steering
pulse passes straight through without storage and the probe pulse remains trapped in the
atomic coherence.

9.2.2 Frequency-domain interference

Now we consider the second experiment, in which the interference results from driving a
single atomic coherence with multiple two-photon transitions as depicted in Fig. 9.1(b).
In this case, the probe and steering pulses are co-propagating and enter the medium
simultaneously but are separated in frequency by more than the memory bandwidth. In
the far-detuning and adiabatic regimes, this double-Λ system is equivalent to a quasi-two-
level system interacting with two fields of different Rabi frequencies (see Fig. 9.1 (b)).
The interference between the two Λ transitions will change the response of the medium
to the probe and steering pulses. When they interfere destructively, the absorption of
the probe and steering fields is suppressed and both pulses are transmitted through the
medium. When the two Λ transitions are in-phase, both pulses are coherently absorbed
and can be recalled later ondemand.

As with our first experiment, the properties of the interference can be controlled
through the coupling fields. The relative intensity and phase of the two coupling fields
control the superposition of the probe and steering pulses that is transferred to the atomic
coherence. This effect has been explored in EIT experiments [208, 209]. Unlike EIT,
however, the optical modes that are not coupled to the atomic coherence in the Λ-GEM
scheme propagate through the atomic medium with little loss.

The frequency difference between the probe and steering fields was set to 1 MHz,
which was greater than the memory bandwidth of 300 kHz to avoid overlap between two
broadened Raman lines. Each of the probe and steering fields has a corresponding coupling
field which is tuned to the Raman resonance. The pulse length, 4 µs, was chosen to give
a slightly smaller bandwidth than the memory bandwidth. Fig. 9.6 shows the interference
fringe obtained by varying the relative phase between the two Raman absorption lines.
This was done by sweeping the phase of one of the coupling fields. The powers of the
coupling fields are equal, 160 mW each, and remain constant throughout the storage and
retrieval process. E1 is the portion of the probe and steering pulses that does not get
stored in the memory and E2 is the portion that is retrieved from the memory after a 10
µs storage period. The energies of E1 and E2 are measured by integrating the detector
signal over the pulse period.

From an operational standpoint, this second experiment can be thought of as the
frequency-domain counterpart to the first. While the first experiment demonstrated a
beamsplitting operation between two pulses separated by time, the second demonstrates
a beamsplitting operation between simultaneous pulses separated by frequency.

In both the time and frequency-domain interference experiments we attribute the less-
than-unity fringe visibility primarily to a spatial and temporal mode mismatch between
the probe polariton and the steering pulse. We believe that this is mainly due to the
atomic motion and non-zero transverse magnetic field, which affects the echo signal for
long storage times. This can be justified by the larger visibility measured in the frequency-
domain interference scheme, where interference occurs between pulses that simultaneously
interact with the atomic coherence. During the storage time, atomic diffusion can change
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respectively.

the spatial mode of the coherence and as a result, the echo signal will have a slightly
different mode compared to the input signal. This effect is negligible for shorter storage
times. The presence of a transverse magnetic field can induce an extra spatial frequency (kx
and ky) during storage. The transverse k vector is imprinted to the echo signal at readout,
diverting the output optical field slightly from the steering pulse. In the beamsplitter
analogy, this amounts to a poorly aligned interferometer. An inhomogeneous longitudinal
magnetic field can alter the shape of the echo signal compared to its input leading to
temporal mode mismatch. We anticipate, therefore, that visibility could be improved by
increasing the buffer gas pressure or using a cold atomic sample in order to increase the
time of flight of the atoms and taking extra care with the magnetic environment to prevent
pulse deflection and distortion. For the time-domain interference, numerical simulations
(see supplementary material) reveal that, in the limit of large OD, the interference visibility
of the system can approach unity for both interfereometer outputs.

9.3 Summary

In summary, we have demonstrated interference effects between propagating optical fields
and a collective atomic spin coherence. Fringe visibilities of 68% and 73% were observed for
time-domain and frequency-domain interference schemes, respectively. These schemes may
have relevance to manipulating optical quantum information. Unlike previous schemes,
interference in a gradient echo memory could offer dynamic, optically addressable linear
operations on optical qubits with little loss. These gates could operate on either time-
bin or frequency multiplexed qubits or even a combination thereof. The time-delayed
beamsplitter scheme can also be used for optical quantum state engineering [210, 211]
and also for optimal Gaussian purification of coherent states from several imperfect copies
[212]. The ability to construct this type of interferometer is also of interest in building a
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coherent all-optical switch [213, 214, 215].
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Chapter 10

Four-wave mixing in a double-Λ

system under the GEM condition

Four-wave mixing (FWM) is a phenomenon in which interactions between three laser
beams with different frequencies (non-degenerate FWM) results in the production of a
fourth wavelength (conjugate), i. e. ν4 = ν1 + ν2 − ν3. FWM can also happen between
three frequencies, i.e. ν3 = ν1 + ν1 − ν2. The latter phenomenon is called degenerate
FWM.

Consider, for example, the double-Λ interaction scheme shown in Fig. 10.1 (a). With
the pump interacting with |1〉 and the probe interacting with |2〉, a Raman transition is
created. The pump field can also interact with |1〉 and as a result a Stokes field (conjugate
beam) is produced to close the transition loop. The conjugate field is generated with the
same polarisation as the probe. If the probe and pump enter the Λ-atomic system with
a non-zero crossing angle, the conjugate beam will be spatially separated from the probe
as is shown in Fig 10.1 (b). The output probe field is consequently amplified through the
FWM process. It has been shown that the intensity difference between the probe and the
conjugate is less noisy than the vacuum fluctuations [216]. To date more than 9 dB of
relative intensity squeezing has been observed using the FWM process in a hot Rb vapour
cell [217].

The presence of gain in the system causes a steep variation of the real part of suscepti-
bility that modifies the group velocity of the probe propagating through the gain window.
This makes it, in principle, possible to create delay lines and achieve fractional delays
limited only by pulse broadening. The group velocity reduction effect due to nondegener-
ate four-wave mixing (FWM) in hot rubidium vapour has been studied previously [218].
Using this delay process, a tuneable delay of EPR entangled beams and images has been
experimentally demonstrated [94].

In this chapter we investigate the interplay between the FWM coupling of the
probe/conjugate and the Raman or EIT coupling of the probe/pump in a warm vapour
cell.

10.1 FWM in double-Λ systems

Consider the interaction scheme depicted in Fig. 10.1 (a) where the pump Ω and probe
E interact with the ground state |1〉 and metastable state |2〉 of an atom with hyperfine
splitting ∆hf . Both fields are on Raman resonance and are detuned from the excited states
|3〉 by ∆. The pump also interacts with the other ground state and generates the Stokes
field, Es. The second Λ transition is detuned from the excited state |4〉 by ∆′ = ∆+∆hf .

143
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Figure 10.1: (a) Schematic interaction scheme of degenerate FWM in a double-Λ configuration.

(b) Schematic setup showing propagation of the pump, probe and conjugate to/from the atomic

ensemble.

The coupling strength for the latter interaction can be different from the former, due to
different Clebsch-Gordan coefficients for different transitions. The interaction Hamiltonian
of the system in a rotating frame is given by

Ĥ/h̄ = −(δ + δac)|2〉〈2| − (δ + 2δac)|3〉〈3| − (δ + 2δac)|4〉〈4|
−[gE|3〉〈1| + Ω|3〉〈2| + g′Es|4〉〈2| + Ω′|4〉〈1| +H.c.] (10.1)

The Maxwell-Bloch equations can therefore be written as follows

dσ21
dt

= (−γ0 − i(δ + δac))σ21 + iσ31Ω+ iσ42g
′E ′ (10.2)

dσ31
dt

= (−γ − i∆− i(δ + 2δac)σ31 + igE + iΩσ21 (10.3)

dσ42
dt

= (−γ − i∆′ − i(δ + 2δac)σ41 + iΩ′ + ig′E ′σ21 (10.4)

dE
dz

= i
gN

c
σ31 (10.5)

dEs
dz

= i
g′N

c
σ42 (10.6)

where δ is the two-photon detuning between the pump and probe and the Stokes fields,
δac =

Ω2

∆ is the light shift (or ac Stark shift) induced by the pump field, and Ω′ and g′Es are
the Rabi frequencies of the pump and Stokes fields interacting with the ground states |1〉
and |2〉, respectively. γ0 and γ are the ground- and excited-state decay rates, respectively.
In the regimes that we are studying here we can safely assume that ∆′ + γ, therefore we
can adiabatically eliminate the excited state |4〉. This can be done by solving Eq. 10.4 in
the steady state and replacing σ42 in Eq. 10.2.

Similar results can be obtained using the Floquet theory [219] to eliminate the fast
oscillation of the system. Thus, the interaction Hamiltonian of the system in the rotating-
frame [220] is given by
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Ĥ/h̄ = −(δ + δac)|2〉〈2| − (δ + 2δac)|3〉〈3|

−[gE|3〉〈1| + Ω|3〉〈2| + g′Ω′

∆′ Es|2〉〈1| +H.c.] (10.7)

The Maxwell-Bloch equations of motion in both cases can be simplified as

dσ21
dt

= −Γ0σ21 + iσ31Ω+ i
g′Ω′

∆′ Esσ14
dσ31
dt

= −Γσ31 + igE + iΩσ21

dE
dz

= i
gN

c
σ31 (10.8)

dEs
dz

= i
g′Ω′

∆′
N

c
σ21

where

Γ0 = (γ0 + i(δ + δac)) (10.9)

Γ = (γ + i(∆ + δ + 2δac)). (10.10)

In the following section we solve Eqs. 10.8 and analyse the behaviour in EIT and Raman
echo systems.

10.2 FWM and EIT in a dense atomic sample

When the Λ transition created by the probe and pump is resonant with the excited state,
∆ = 0, the system undergoes electromagnetically induced transparency where the probe
beam is transmitted through the EIT window with a reduced group velocity. In high
optical density regimes, EIT can be accompanied by FWM of the pump and the Stokes
field that will strongly affect the probe pulse propagation. The FWM phenomenon in
EIT systems was first studied in Ref. [221] and experimentally observed later in cold [222]
and warm [195, 223] atomic samples. It was shown that FWM in EIT can limit the
storage efficiency at higher optical depths [224]. While non-classical correlations between
the signal and Stokes fields can individually carry quantum information [225] and produce
entangled images, it was shown that any information originally encoded in a seeded Stokes
field is not independently preserved during the storage process [220]. The conversion of
the signal field into the Stokes field may reduce the read-out efficiency [226]. However,
under certain conditions, FWM may lead to gain in both the signal and Stokes fields,
which could compensate for any optical losses [227] that can also result in excess noise.

To investigate the problem quantitatively, we consider the interaction of σ+ polarised
light (for the probe and pump) with the D1 transition line of an ensemble of 87Rb atoms.
In this case, Ω′ = −

√
3Ω, g′ = −1/

√
3g due to the Clebsch-Gordan coefficient and ∆hf =

2π6.8 GHz. Under EIT conditions, Eqs. 10.8 can be analytically solved [223, 228] and
the amplitude of the probe and Stokes fields at the output of the medium, when the
two-photon detuning is chosen such that the light shift is canceled, can be approximately
written as
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|E| = E(z = 0)|e2iαL − r
Ω2

∆hfδ
(1− e2iαL)|

|E ′| = E(z = 0)| Ω2

∆hf δ
(1− e2iαL)− r| (10.11)

where α = dγΓ0
Ω2+ΓΓ0

is the absorption coefficient, d = g2N
γc is the linear optical density of

the medium, and r = Es(z=0)
E(z=0) is the ratio of the seeded signal field to the probe field.

The presence of the Stokes field strongly affects the signal pulse propagation, and the
propagation of both the signal and the Stokes fields is determined by the interplay of EIT
and FWM processes.

We note here that the amplification observed in EIT systems is further enhanced due
to the additional seeded Stokes field. In this case, it is the Stokes field generated via
stimulated emission that results in the amplification of the signal field. This effect is
shown in Fig. 10.2 where the amplitude of the probe and Stokes fields for different optical
densities , OD = g2NL/γc, and input seed signals is plotted. For large OD (Fig. 10.2(b)
and (c)) the interference and amplification of the EIT line is apparent. To precisely
calculate the EIT lines, we numerically solve Eqs. 10.8 assuming a pressure broadening
of Γp = 290 MHz that can be induced by 30 Torr of Ne buffer gas (consistent with the
experimental condition in Ref. [195]). It is worth emphasising that gain due to FWM in
an EIT medium is significant because the probe transmission is enhanced on two-photon
resonance, where the maximum gain occurs.

10.3 FWM and Raman absorption in a dense atomic sample

With high OD, FWM phenomenon can also be observed in a GEM. We consider the level
scheme shown in Fig. 10.1 (a) to derive the equations of motion. Assuming a linearly
varying two-photon detuning δ(z) = ηz and a far-detuned Raman transition, ∆ + γ, we
can arrive at the following equation for the probe (E) and Stokes (Es) fields at the centre
frequency

∂

∂z

(

E(z)
E∗
s (z)

)

= ia0

(

a11 a12
a21 a22

)(

E(z)
E∗
s (z)

)

(10.12)

where

a0 =
N

γc(Ω2 + ΓΓ0)
a11 = igΓ0

a12 = a21 = −g′ΩΩ′

∆′

a22 = −iΓ
g′Ω′2

∆′2 (10.13)

and

Γ0 = (γ0 + iδ)

Γ = (γ + i(∆ + δ)) (10.14)
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Figure 10.2: Transmitted amplitude of the probe and Stokes fields normalised to the input probe

amplitude for OD=17, (a) and (a′), OD=61, (b) and (b′) and OD=117, (c ) and (c′) . Parameters

used for these numerical simulations are: Γp = 25γ, γ0 = 0.002γ, Ω = 1.6γ, r = 1, 0.01.

The susceptibility matrix elements a0aij were obtained by solving Eqs. 10.8 in steady state.
We solve these equations numerically in different regimes to understand the contribution
of the FWM process in a Raman absorptive medium.

We first consider an atomic system similar to what was described above for an EIT
scheme, i.e. a warm 87Rb vapour cell mixed with 30 Torr of Ne buffer gas. In such
high buffer gas pressures, one can neglect the Doppler effect due to Dicke narrowing
[229, 160, 160]. At room temperatures, the collisional broadening for Rb-Ne is ΓRb−Ne

col =
9.84 MHz/Torr [161] and, therefore, one must take into account the buffer gas-induced
pressure broadening instead.

Figure 10.3 shows the calculated transmission of the probe and Stokes fields for two
different values of resonant OD= g2NL/γc and two different values of the initial Stokes
field amplitude, parameterized by r = Es(z = 0)/E(z = 0). In our experiment, a non-
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(á)

Δ
hf
>>γ

δ/γ

OD=280

δ/γ

 S
to

k
es

 t
ra

n
sm

is
si

o
n

-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1
0.0

0.5

1.0

1.5

2.0

2.5

r=1

r=0.01

OD=280

(b)

(b́)

0.0

0.5

1.0

1.5

P
ro

b
e 

tr
an

sm
is

si
o

n

r=1, Δ
hf
=1100γ

r=0.01, Δ
hf
=1100γ

Δ
hf
>>γ

Figure 10.3: Transmitted amplitude of the probe, (a) and (b), and Stokes fields, (a′) and

(b′), normalised to the input probe amplitude. Parameters used for this numerical simulation are:

Γp = 4γ, γ0 = 0.002γ, Ω = 3γ, OD = g2NL/γc = 65, 280, r = Es(z=0)
E(z=0) = 1.0, 0.01 and ∆ = 200γ..

By assuming ∆hf + 1 we can effectively switch off the FWM process.

zero Stokes seed is a possibility. The probe field is formed by one sideband of a phase
modulation that is filtered by one or more resonant cavities. If the leakage of these cavities
is too high, the other sideband of the phase modulation can form a Stokes seed. It can be
seen that for large OD, probe amplification occurs around the edges of the Raman line. The
results show that 4WM amplification of the probe can be suppressed by minimizing the
seed light of the Stokes field (making r small) and by using an atomic system where ∆hf +
γ. The amplitude of the Stokes field, as well as the gain, is also substantially reduced at
the point of maximum probe absorption. The Stokes field is also absorbed around two-
photon resonance. FWM inside a vapor cell at 140◦C has been experimentally investigated
in a detuned double-Λ configuration (with ∆ = 150γ) [218], where the maximum gain was
observed 20 MHz away from the Raman resonance. In a dense atomic medium and at
Raman resonance, the competition between large amplification and large absorption leads
to complex dynamics which can result in a breakup of the probe pulse. The interference
between the probe and Stokes transition can be seen in Fig. 10.3(b)

10.3.1 Polarisation effects on FWM

Using linear polarisation instead of σ± polarisation can significantly enhance the FWM
process in a Rb vapour cell. Linear polarisation is treated by the atoms as a superposition
of left and right circular polarisation and will therefore interact with multiple excited state
sublevels, as shown in Fig. 10.4. This will effectively increase the atom-light coupling that
enhances the non-linear process of FWM. Fig. 10.5 (a) shows the results of numerical
calculations for the transmitted probe and Stokes signals for two different ODs at a buffer



§10.3 FWM and Raman absorption in a dense atomic sample 149

|1〉

|2〉

|3〉
Δ

Δ
hf
~6.8 GHz

Δ+Δ
hf

|4〉 Δ
hf

|1〉

|2〉

pump

probe

probe

Stokes

σ+σ−

Figure 10.4: Schematic picture of the Rb level structure and possible optical transitions that can

result into FWM. Blue arrows represent the signal field with a Rabi frequency of Ωp and green

arrows represent coupling field beams with a Rabi frequency of Ωc. The red dashed arrows are

Stokes photons generated via the FWM process (Ωs). Right and left circular polarisations are show

as σ+ and σ−. The two lower and upper hyperfine states are shown as Fg and Fe, respectively.

gas pressure of 0.5 Torr. The experimental results of broadened Raman lines for various
coupling field powers and temperatures have also been shown in Fig. 10.5 (b). We note
here that, in the experiment configuration, all of the beams are co-propagating together
and therefore the phase matching condition is satisfied for FWM process. However, the
Raman gain can be suppressed if the two Λ transitions destructively interfere. The phase
of the seeded Stokes field in the experiment is not controlled and we believe that the
observed gain is largely due to the vacuum seed. In our model, however, we consider
phase of the seeded Stokes field such that the gain is maximal.

These experimental results were obtained using a 20 cm gas cell containing 87Rb and
0.5 Torr of Kr buffer gas, while the coupling and probe signal fields have orthogonal linear
polarisations. A mode cleaner cavity (with a finesse of ∼100) was used after a fibre-coupled
EOM to reject the seed Stokes field. The measurement was performed using heterodyne
detection. The results calculated in Fig. 10.5 (a) are obtained assuming a zero crossing
angle between the pump and probe.

Using circular polarisation, however, we observed maximal absorption of the probe
while the gain was negligible. Fig.10.6 shows the heterodyne signal for the broadened
Raman line and, as can be seen, significant absorption without gain can be obtained in
this regime. This result was obtained by using two mode-cleaner cavities for the probe
beam that suppress the seed signal by a factor of 104 (r = 0.01). Using a similar setup we
demonstrate in Chap. 12 that storage can be noiseless and efficient [230]. In the following
section we discuss the angular dependency of the FWM process.

10.3.2 Angular dependency of FWM in a Doppler broadened medium

To include the Doppler effect in our model, similar to what was described in Chap. 4, we
have numerically integrated Eqs. 10.12 over different atomic velocity classes, by utilising
Eqs. 4.33-4.37.
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Figure 10.5: (a) Transmitted amplitude of the probe and Stokes fields normalised to the input

probe amplitude. Parameters used for these numerical simulations are: γ0 = 0.002γ, Ω = 3 and

5.2γ, g2NL/γc = 470, 1550, r = 0.01, ∆ = 200γ and ηL = 0.08γ, T = 85o C. (b) Experimen-
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because of the DC offset magnetic field.
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Figure 10.6: The heterodyne signal showing the broadened Raman absorption line for the same

circular polarisation of the pump and probe fields with pump power of 350mW. The probe power

in all cases was ∼1 µW. The envelope shown is a visual guide.

Increasing the angle between the pump and probe field increases the residual Doppler
broadening in a warm atomic medium.We numerically calculate the probe and Stokes field
amplitude for a non-zero crossing angle using Eqs. 4.33-4.37. Fig. 10.7 (a) and (b) shows
the transmitted amplitude of the probe and Stokes field, respectively, for three different
crossing angles. As can be seen, the amplification is substantially reduced after a 0.5 mrad
misalignment between the probe and pump.
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10.3.3 The effect of inhomogenous broadening on FWM

As previously stated, strong absorption of the probe signal close to the two-photon res-
onance at high ODs significantly reduces the gain and the generated Stokes field. In a
GEM system, applying inhomogenous broadening is necessary for the storage and recall
of light. Applying the detuning gradient increases the absorption bandwidth for the probe
and therefore widens the region around the two-photon resonance in which gain is substan-
tially suppressed and the memory can operate noiselessly [230]. Fig. 10.8 shows the results
of numerical calculations for the transmitted probe and stokes fields in an inhomogenously
broadened medium with various broadening. In regimes with large ODs, applying a gra-
dient does not noticeably reduce the maximum absorption of the probe. The broadening
does, however, strongly suppress the gain and generated Stokes field.

One signature of the Raman gain mechanism is that gain for negative pump detuning
(∆ < 0) is obtained for a signal frequency below the pump frequency (δ < 0) and vice
vera. This is explained by the fact that the Zeeman sublevel most shifted by light is also
the most populated [231, 232].
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We calculate the total amplitude of the Stokes field around the two-photon resonance
and 0.04γ from the resonance (where the amplification is maximum) for different optical
depths in an inhomogenously broadened medium. As can be seen in Fig. 10.9(a) and
(b), the amplitude of the probe and of the Stokes field around the two-photon resonance,
ξ(ω0 = 0) =

∫ δ
−δ E(ω − ω0)dω, rapidly decreases as the optical depth of the medium is

increased. However, 0.04γ away from the resonance the probe and Stokes amplitude,
ξ(ω0 = 0.04γ) =

∫ δ
−δ E(ω − ω0)dω, increase with OD.
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Figure 10.9: Total (a) probe and (b) Stokes amplitude within a frequency window of 2δ = 0.04γ

around zero two-photon detuning (dashed black line) and ω0 = 0.04γ away from the two-photon

resonance (solid red line) calculated for different ODs. Both axes are normalised to the input probe

amplitude. Parameters used for this numerical simulation are: γ0 = 0.002γ, ∆ = 200γ, Ω = 3γ,

r = 0.01, ηL = 0.08γ.

The significant reduction of the Stokes field around the centre of the Raman line
(Fig. 10.9 (b), black dashed line) at large ODs indicates a large suppression of the FWM
process and therefore lack of amplification in that region. The situation is reversed in the
dense EIT medium we initially investigated, where the probe transmission was enhanced.

We conclude by noting that in a dense atomic system it is feasible to build a mem-
ory based on the inhomogenously broadened Raman absorption that can reach close to
unity efficiency while the noise and amplification due to the FWM process remains low.
This result suggests that the Λ-GEM system, as has been experimentally demonstrated
previously, provides efficient and noiseless storage of optical information and therefore is
a good candidate for quantum information storage applications.
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Part III

Optical Quantum Memory
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Chapter 11

Introduction to Quantum

Information Technology

“So I hope you accept Nature as She is - absurd.”

Richard Feynman

The ability to coherently manipulate the quantum properties of a system allows one
to treat information in a fundamentally different way. This ability can potentially provide
the means for secure transmission of information or an efficient solution to computational
problems for which no efficient classical algorithm is known.

Current information technology is based on classical algorithms and binary encoding.
Computers that use this type of technology will soon come up against physical limitations
in terms of size and speed. The integration of quantum physics and information technology
is one way to keep pushing this technology forward in the future. In this chapter we
introduce some basic concepts of quantum computing and information technology and
discuss their potential realisation in particular systems.

11.1 Quantum Information Technology

Quantum information technology promises to revolutionise communication and compu-
tation technology in the future. Extensive research has been dedicated to this area of
physics around the world and, to date, astonishing proof-of-principle experiments have
been demonstrated to support the future development of such technology.

There are numerous problems that scale poorly on classical computers. As the size
of the problem increases, the execution time scales exponentially. Examples include fac-
torisation [233], travelling salesman problems [234] and database searches [235]. Quantum
computers allow these problems to be solved in polynomial time [236].

According to Moore’s Law, the fastest processor on the market doubles in speed about
every 18 months, and typical memory capability in electronic equipment shows a similar
exponential growth. This is because as electronic components get smaller they work faster.
The closer electronic components can be packed on a silicon chip, the less time is required to
communicate between components. Eventually, silicon will encounter practical problems,
such as insulating oxide layers becoming too thin, conducting tracks becoming too narrow
and transistor operations being subject to shot noise as the number of electrons becomes
too small. Even if all these practical difficulties can be overcome, we will run into physical
barriers.

The fundamental building blocks of matter do not behave in the same way as macro-
scopic or even microscopic pieces of matter; in fact they can exhibit explicit effects of
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quantum mechanics. Quantum computing exploits these quantum effects, rather than
trying to fight them. This technology, if realised, will revolutionise future communication
and computation technology. Quantum physics offers powerful methods of encoding and
manipulating information that can lead to secure communication, rapid integer factoring,
and quantum simulation.

In this section we start with an overview of some important concepts of quantum
theory that are applied to quantum information technology.

11.1.1 The quantum bit

The fundamental resource and basic unit of quantum information is the quantum bit
(qubit), which behaves like a classical bit enhanced by the superposition principle. From
a physical point of view, a qubit is represented by an ideal two-state quantum system.
After measurement, the qubit is projected into a single state (classical bit), but before
measurement, it is in a continuum of states and this is a main strength of quantum
information. Examples of such systems include the superposition of photons with vertical
and horizontal polarisation, electrons and other spin 1/2 systems (spin up and down),
and systems defined by two energy levels of atoms or ions. The two-state system plays a
central role in studies of quantum mechanics. It is the most simple quantum system, and
in principle all other quantum systems can be modelled as a collection of qubits. A qubit
can be represented as a Bloch vector in a Bloch sphere as shown in Fig. 11.1. Any point
on the Bloch sphere represents a qubit with different complex probability amplitudes.

θ

ϕ

u

v

w

|ψ〉

Figure 11.1: Qubit representation on the Bloch sphere

11.1.2 Quantum gates

Quantum gates are necessary for processing qubits. Like the classical NOT gate, applying
the quantum NOT gate to a bit, for instance, has the effect of flipping the state of the
bit. The quantum version of the NOT gate exchanges the two logical states α|0〉+β|1〉 →
α|1〉+β|0〉 . Other examples of quantum gates are Hadamard and Controlled-NOT(CNOT)
gates. The Hadamard gate turns state |0〉 → 1√

2
/(|0〉+ |1〉) and |1〉 → 1√

2
/(|0〉− |1〉). The

CNOT gate flips the second qubit if and only if the first qubit is set to 1.
A Fredkin gate is a three-bit universal reversible gate, whose truth table is shown

in Fig. 11.2 (a). The implementation of a quantum Fredkin gate as a universal gate is
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Figure 11.2: (a) The truth table of a Fredkin gate. (b) The optical circuit diagram for the

implementation of a Fredkin gate using a nonlinear medium.
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Figure 11.3: (a) The truth table and (b) circuit representation of a CNOT gate.

possible using Kerr-nonlinearity [237]. The optical circuit diagram of such a gate is shown
in Fig. 11.2 (b) where a nonlinear Kerr medium is used to apply a cross phase modulation
(XPM) on the input “a”. One can generate the Bell states with a Hadamard gate and a
CNOT gate as shown in Fig. 11.4. The first qubit is passed through a Hadamard gate and
then both qubits are entangled by a CNOT gate.

H

Figure 11.4: A diagram representing the simple operation needed to create Bell states using a

Hadamard and a C-NOT gate.

11.1.3 Quantum computation

The rapidly growing field of quantum computing has attracted considerable interest since
the work of Deutsch (1985) [238], Shor [236] and Grover [239]. A quantum computer, if one
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day realised, is expected to perform certain tasks that are far beyond the power of todays
classical machines. Deutsch showed how quantum information and quantum entanglement
can be used to find a global property of an operation which would classically take two steps.
Peter Shor in 1994 [236] formulated a framework in which the integer factorisation problem
(finding prime factors of an integer N) could be efficiently solved on a quantum computer
by harnessing quantum entanglement.

To date, there have been various proposals for the implementation of such computing
devices. Amongst these proposals, devices based on trapped ions [240, 241, 242], electron
spins, nuclear spins [243], and superconducting qubits [244] show great promises. Proof-of-
principle experiments have also been accomplished, demonstrating operational quantum
devices at small scales. For instance, a quantum computing device based on nuclear
magnetic resonance (NMR) and using spins of nuclei in molecules as qubits has been
demonstrated [245, 246]. In this case, the two qubit states were the two spins (up and
down) of the nuclei in a magnetic field. NMR computing, however, seems limited to
systems of less than ten-qubits, while it appears that a quantum computer that could
factor a 2048-bit key would need to have at least 106 qubits [247]. It was shown that
30-40 qubits would suffice to perform quantum simulations of multidimensional fermionic
systems [248]. A variety of solid state concepts applied to realise quantum computing
devices that work based on the phenomena of superconductivity have been demonstrated
[249, 243, 250, 251, 252]. Short surveys of these have been presented by Mooij (2005)
[253] . Fig. 11.5 shows a few different experiments demonstrating the implementation of
nano-fabricated devices for quantum information applications.

(c)

(b)
(a)

Figure 11.5: (a) An STM image of a four-terminal quantum dot device with source (S) and drain

(D) leads and two in-plane gates (G1, G2). The close-up image of the central dot, on the left,

showing the number of desorbed silicon dangling bonds in the dot area. Picture taken from Ref.

[254]. (b) A photomicrograph of four superconducting phase qubits, fabricated with aluminium

(light areas) on a sapphire substrate (dark areas). The coupler is the cross-shaped structure in the

centre. The entire sample is mounted in a superconducting aluminium box and cooled to 25mK.

Picture taken from Ref. [255]. (c) An SEM image of the nanowire device with gate electrodes used

to electrically control qubits, and source and drain electrodes used to probe qubit states. (Image:

Kavli Institute of Nanoscience at the Delft University of Technology)

Despite the progress made in the field of quantum computing, the implementation of
a large number of qubits has not yet been realised, and there are many difficulties still
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facing the implementation of such systems.

Scalability is perhaps the most difficult task ahead. For instance, the major difficulty
with spin-based implementations of quantum computing is that they require the measure-
ment and control of single electron spins or nuclear spins, a task that is only now on the
threshold of realisation. Scalable spin-based quantum computing will probably require the
development of new technologies in which single atoms can be accurately positioned to
create devices with the precision necessary for quantum computation. Fortunately, several
promising approaches to the fabrication of these single-atom devices are currently being
explored [256].

11.1.4 Quantum communication

The fundamental difference between quantum and classical information is that cloning and
measuring an unknown quantum state is impossible (due to the no-cloning theorem [21]).
In general, for quantum information there is no information gain without disturbance.
This fundamental difference is the basis of the application of quantum information to
cryptography and secure communication.

Quantum cryptography

There are quantum protocols that Alice and Bob can exploit to share a secret random
key, which they can then use to communicate privately. This is known as “quantum
cryptography” [22, 257]. These protocols involve the exchange of classical and quantum
information so that any attempt by an eavesdropper, Eve, to monitor the communication
between Alice and Bob will be, in principle, detectable. This is because Eve cannot gain
any quantum information without disturbing or adding detectable noise to the quantum
communication channel. Moreover, the no-cloning theorem prohibits Eve from copying
the quantum information and processing it off-line.

Quantum repeaters

Quantum communication in free space or through optical fibres is currently limited to
about 100 km, due to loss and channel noise [258]. Quantum error correction can be
used to protect the quantum information against noise. This requires error correction to
be performed before the influence of noise exceeds about 1% [259]. For this, the error
correction needs to be done at intermediate local nodes. However, the acceptable error
rates for local operations are far below achievable accuracies with current technology.

The alternative approach for long-distance quantum communication is the quantum
repeater [260]. The main function of a quantum repeater is entanglement purification, i.e.
quantum teleportation [261, 262], and entanglement swapping. Entanglement swapping
can be obtained, for instance, if one photon from an entangled pair is teleported between
two nodes. The general idea consists of first establishing entanglement between “not-too-
distant” nodes, then teleporting the entanglement from one node to the next. However,
quantum processing, like entanglement swapping, is probabilistic in nature and entangle-
ment between all of the nodes can not be established all at once. For this reason, quantum
memories are an essential part of quantum repeaters to store entanglement once gener-
ated. The general principle is illustrated schematically in Fig. 11.6. A generic quantum
repeater consists of 2N + 1 distinct nodes.
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terminal quantum memory elements, separated by L = 2nL0, are entangled
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The first step of the process generates entanglement between adjacent memory elements
in successive nodes with probability P0 . An entanglement connection process then extends
the entanglement lengths from L0 to 2L0 by means of a Bell measurement, for instance.
Successful entanglements are stored in quantum memories. This entanglement connection
succeeds with probability P1 , followed by subsequent entanglement-length doublings with
probabilities P2, ..., Pn , until the terminal quantum memory elements, separated by L =
2nL0, are entangled.

There are several approaches to quantum repeaters including protocols based upon
photon storage in atomic ensembles [136] and a scheme that uses solid-state photon emit-
ters as the intermediate nodes of the channel [263]. Proof of principle demonstrations
of the DLCZ technique has been demonstrated by different groups [138, 143, 140]. The
development of a fully operational quantum repeater is a grand challenge for quantum
communication and there has been progress in this field. To date, however, there has
been no demonstration of such a device. We note that the implementation of a quantum
memory is not only useful for quantum repeaters, but also for quantum computation.

Quantum memory criteria

To date there have been many impressive demonstrations of quantum state storage in
various systems including cold atomic ensembles [264, 91, 265, 266], rare-earth ions in
solid state systems [149, 130, 129], and ensemble of Rb atoms in the gaseous state [267,
268, 78, 269] to store quantum states of light. So far, the different approaches have been
motivated by the degree of freedom chosen to encode the quantum state. These and
many more approaches are now being actively pursued within international collaborative
programmes around the world. In Chap. 3, we reviewed some of the work that has been
done towards the implementation of a quantum memory in various systems. In the next
chapter, we present noise measurement results and discuss the quantum properties of the
GEM system.

Here we discuss the key criteria of a quantum memory and their relevance for different
applications and implementations [270].

Fidelity. The precise operational meaning of fidelity depends on the specific applica-
tion. For memories that store single photons, the fidelity is defined as the overlap between
the input single-photon wave packet and the one that is recovered from the memory. This
fidelity is conditioned on the detection of the photon. If the efficiency of the memory is
low, it will reduce the rate at which information can be stored but it is still possible to
achieve high fidelity storage.

For memories that are meant to store general states of light, conditional fidelity is
not an appropriate concept, and one has to consider unconditional fidelities. This can be
measured by overlap between the input and output states. An unconditional quantum
memory can be used for information storage in either discrete or continuous variable
regimes.

A quantum memory should be able to store information with a fidelity of more than
0.5, which is the classical fidelity limit. Both loss and noise can affect the unconditional
fidelity. The conditional or unconditional fidelity benchmark depends on the physical
system and application. Fidelities greater than the classical fidelity have been observed
both in DV [130, 91] and CV [100, 230] regimes.

Efficiency. While high-recall efficiency is clearly desirable, it is not always necessary
to be very close to 100 % for the memory to be useful, for example, in proof-of-principle
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demonstrations of quantum memories. The conditional fidelity can be high even if the
memory is a few percent efficient. However, for most applications, such as teleportation of
an unknown state or fast quantum repeaters, whether in DV or CV regimes, high efficiency
storage is required. Therefore, it is fair to say that the combined fidelity times efficiency
must be higher than the classical limit (0.5).

To date, maximum classical efficiencies of 43% using EIT[195], 35% using AFC[128],
69% using 2-level GEM [149], 30% using Raman memory [102], and 87% using Λ-GEM
have been achieved [156].

Storage time. In the context of quantum repeaters, the memory time should be longer
than the time required for the generation of long distance entangled pairs. The time to
generate long-distance entangled pairs on an intercontinental scale has been estimated to
be on the order of seconds [271]. This imposes a lower bound on the storage time of a
realistic quantum memory. A quantitative study of the effect of storage time limitations
was recently performed in Ref. [272].

The coherence time in cryogenically cold crystals [90], cold atomic gases [273], and
even in warm vapour cells [168, 169] is proven to reach seconds.

Bandwidth. Again the required bandwidth depends on the desired application. For
quantum repeater applications, the memory bandwidth can be just as large as the source
bandwidth. In general, the memory bandwidth determines the achievable repetition rates,
and also the multiplexing potential.

Using the AFC technique in a thulium-doped lithium niobate waveguide a memory
bandwidth of 5 GHz[130] has been observed. Implementation of the Raman memory in a
warm vapour cell was also demonstrated with GHz bandwidth [102].

Multimode capacity. The capacity to store several modes is a natural capability for
certain ensemble implementations. It is thus of interest to quantify the maximum number
of photons (modes) that can be stored. The ability to store multiple spatial modes, i.e.
to generate quantum holograms, which is inherent to atomic ensembles, is one exciting
prospect.

In terms of the multi-temporal mode storage capacity, storage of 1064 modes using an
AFC in crystals [201] and 20 modes using a Λ-GEM in warm vapour cells [230] has been
experimentally demonstrated.

Wavelength. It is important that the wavelength of photons that propagate over long
distances is within the region of small absorption in optical fibres (unless one considers
free-space transmission, e.g. to satellites). Depending on the protocol considered, this
may constrain the operating wavelength of the respective quantum memory. Most of the
quantum storage experiments have been done around the visible range. Classical storage
at telecommunication wavelengths has been done using an AFC with 0.3% efficiency [274].

A summary of quantum memory experiments demonstrated in various systems has
been provided in Table 11.1.

We note here that all the criteria required for a true quantum memory have been
achieved to date, but in different systems and using different wavelengths. The implemen-
tation of a quantum memory that has all the criteria for a quantum repeater in a single
platform is still an open research topic.
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Method Stored quantum state Efficiency Storage time Fidelity Bandwidth

EIT

Entangled single
photons [91] and
squeezed optical

pulses [78] at 795 nm

∼0.1 [91] ∼1µs [91]
0.92 [91]

(conditional)
5.5 MHz [91]

Off-resonant
Faraday

interaction

Entangled squeezed
state at 795 nm [100]

∼ 0.43 ∼1 ms
0.52

(unconditional)
-

Raman
Coherent state at 852

nm [102]
∼ 0.3 ∼1.5 µs - 1.5 GHz

FWM
Entangled squeezed
state at 795 nm [94]

- ∼ 30 ns - ∼ 10 MHz

AFC
Entangled single
photons at 795

nm [130] (883 nm[129])

0.1 [130]
(0.21 [129])

∼ 7 ns [130]
(200 ns [129])

0.95 [130]
(conditional)

∼ 5 GHz [130]
(120 MHz [129])

2-level GEM
Coherent state at 606

nm [149]
0.61 ∼3 µs - ∼ 1.6 MHz

Λ-GEM
Coherent state at 795

nm [230]
0.78 ∼ 15 µs

0.98
(unconditional)

∼ 0.5 MHz

Highest
performance of
above techniques

-
0.87 (classical
efficiency) [156]

∼ 2.3 sec
(classical

storage) [90]

0.98 [230]
(unconditional)

∼ 5 GHz [130]

Table 11.1: The most recent successful quantum memory demonstrations in various platforms.
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Chapter 12

Quantum Measurements

“Had I known that we were not going to get rid of this damned quantum jumping, I never
would have involved myself in this business!”

Erwin Schrödinger

As mentioned previously, the natural bound that a quantum memory must overcome
is the classical limit [23]. This is the storage performance that would be achieved via in-
dependent measurements of conjugate quantum observables. Attempts to simultaneously
measure conjugate variables always result in quantum back-action, so this measurement-
based approach for storage can never allow perfect reconstruction of the input state. To
unconditionally overcome this limit, a quantum memory must have an efficiency greater
than 50% and work in a way that does not involve any projective measurement in order
to avoid quantum back-action. If this can be done, a new interesting performance bench-
mark can be surpassed, namely the no-cloning limit [23]. If this limit is overcome then
it is guaranteed that the output of the quantum memory is the best possible copy of the
original input state. For coherent states, the cloning fidelity limit is 0.68 [25].

To date there have been a number of impressive demonstrations of optical memories,
which were claimed to be quantum memory [129, 130, 137, 268]. In all of these quantum
memory demonstrations, the memory efficiency is around or below 30% which makes them
conditional quantum memories. In order to break the classical memory limit using uncon-
ditional measurements, a minimum efficiency of 50% is required.The first unconditional
quantum memory was demonstrated using the GEM technique in a cryogenic solid state
system [149].

In this chapter, we present a complete tomographic reconstruction of quantum states
that have been stored in the spin states of rubidium in a vapour cell operating at around
80◦C. Without conditional measurements, we show recall fidelity up to 98% for coherent
pulses containing around one photon. In order to unambiguously verify that our memory
beats the quantum no-cloning limit we employ state-independent verification using
conditional variance and signal transfer coefficients.

The relevant publication for this chapter is

Unconditional quantum memory M. Hosseini, G. Campbell, B. M. Sparkes, P.
K. Lam and B. C. Buchler. Nat. Phys. 7, 794 (2011).
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12.1 Quantum performance prediction

The best way to quantify the efficacy of a quantum memory will depend on the application.
In order to quantify how the measured efficiency of our memory would translate into a
coherent state quantum memory, we can follow the model presented by He et al. [275]
where it is shown that a linear quantum memory has fidelity (F c

n)

F c
n >

1

1 + n̄(1−√
ηm)

(12.1)

for coherent states with average photon number n̄ and memory efficiency ηm. Given that
our memory is linear, and assuming that no extra noise is added to the stored states, we
can calculate the range of coherent amplitudes for which it can act as a quantum memory,
as shown in Fig. 12.1. This shows, for example that we could store coherent states up to
n̄ = 10 for times less than 6 µs, or states with n̄=1 for 21 µs.
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Figure 12.1: Implied quantum memory performance for coherent state storage. The

quantum limit is calculated assuming the efficiency fitted to experimental data in Fig. 8.3a(i) and

Eq. 12.1

12.2 Experiment and method

The experimental setup is similar to that described in Sec. 8.1 with slight modifications.
Here, the signal and coupling fields, after the memory, are separated using a filtering
cell [276, 91] instead of a single-mode fibre. The filtering cell containing 85Rb atoms
provides more than 60 dB suppression of the coupling field. The temperature of the
filtering cell was set to ∼140 oC. The coupling-field one-photon detuning of 1 or 3 GHz
from Fg = 2 → Fe = 2 transition of the 87Rb D1 line implies almost resonant interaction
with Fg = 3 → Fe = 2, 3 or Fg = 2 → Fe = 2, 3 transition of 85Rb atoms. The coupling
field leakage observed through the filtering cell is well below the local oscillator power
and has a different frequency and spatial mode from the signal beam. It therefore does
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not contaminate the homodyne detection results. On the other hand, the signal field is
well away from any atomic transitions and the absorption is low. The single-mode fibre
often has substantially more leakage of the control field, depending on the alignment of
the control beam.

The filtering cell attenuates the signal beam by 30% which is mostly due to lack of an
anti-reflection coating on the windows of the cell and the presence of 87Rb atoms in the
cell. This loss could be reduced by using a pure 85Rb isotope with anti-reflection-coated
windows. When the coupling field was guided through the filtering gas cell at T> 120oC
we observed purple light scattered off the cell. Using a filtering gas cell together with a
cavity one can suppress the coupling field down to the single-photon level [91].

12.2.1 Noise measurement

The presence of the strong coupling field could lead to noise sources in our memory due
to Raman scattering into the mode of the probe beam. To investigate these possible noise
sources we measured the noise spectrum of the probe mode as shown in Fig. 12.2. With
no coupling field present, we observed the shot noise of our detection system (blue) which
lies 10 dB above the electronic noise floor (black). With the coupling field switched on
(red), we observed no change in the noise level recorded by our heterodyne system. If there
were photons added to the mode of the probe field, then we would see added noise around
8 MHz, which is the frequency offset of the heterodyne beam from the probe frequency.
The absence of extra noise at this frequency is strong evidence that our memory is not
prone to noise sources that could impact on quantum state storage.
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Figure 12.2: Variance of the probe field mode measured using heterodyne detection. Curves

represent electronic noise (black), shot noise (blue) and noise with the coupling field switched on

(red). Measurements were made with a Resolution Bandwidth=3 kHz, Video Bandwidth=30 kHz

and 5 averages. The coupling beam was filtered out of this measurement using an additional gas

cell containing warm 85Rb.

To perform proper noise measurement of the memory and accomplish quantum state
tomography we recorded more than 100,000 homodyne measurements for each input and
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output state. The input pulses had a duration of 2 µs and were stored for 3 µs. The
bandwidth of the pulses was matched to the chosen memory bandwidth of 0.5 MHz to
maximise the single-mode efficiency of the system.

The coupling field was switched off for 1 µs during storage to minimise decoherence
due to the scattering. The storage time was made sufficiently long to avoid electronic noise
associated with the magnetic field switching. To determine the phase of each pulse, we sent
a strong reference pulse at a different frequency 9 µs prior to the input pulse. This pulse
was tuned far away from the atomic resonance so that they were fully transmitted by the
memory gas cell. This was done for a range of different pulse amplitudes. The separation
between the reference and the probe pulse is small compared to the time scale of phase
fluctuations in the experiment, so that we can reliably infer the phase of the input and
echo pulses relative to our reference pulse. The error obtained from the least-squares fit to
the pulse data indicates that the phase estimation uncertainty is 29 mrad. Our measured
efficiency of 78±5% therefore quantifies the memory process alone. The other efficiency
parameters of the experiment will be discussed in greater detail when we consider the the
quantum nature of the memory.
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Figure 12.3: Quadrature amplitude as a function of local oscillator phase for, (a) input and (b)

output pulses with mean photon number of 〈N〉 = 3.4, normalised to the vacuum. Quadrature

amplitude for (c) input and (d) output pulses with a mean photon number of 〈N〉 = 0.67. The

amplitudes of input and output signals are shown as Sin and Sout, respectively. Insets show

histograms of the quadrature values at the indicated phase. The plots each show 100,000 pulse

quadrature measurements.

We integrated the amplitude of the input and the echo pulses over the pulse duration
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to find a quadrature value and then used the reference pulse to associate a phase with
each integrated quadrature value. Fig. 12.3 (a) and (b) , (c) and (d), show the quadrature
measurement results as a function of local oscillator phase for input and output pulses,
respectively, with a mean input photon number of 3.4 and 0.67.

12.3 State Tomography

The quadrature measurements were used to reconstruct the density matrix elements, the
results of which are plotted in Fig. 12.4 for two coherent states with different amplitudes.
The iterative MaxLik method [277] (see Sec. 2.1.10) was used to reconstruct the density
matrix elements of 100000 pulses obtained from a set of balanced homodyne measurements
[278]. Assuming a particular density matrix ρ, one can evaluate the probability of acquir-
ing a particular set of measurement results. The purpose of the MaxLik method is to
find a density matrix that maximises the probability of obtaining the given experimental
data set. In practice, the iteration algorithm is executed with the density matrix in the
photon number (Fock) representation. Since the Hilbert space of optical states is of infi-
nite dimension, the implementation of the algorithm requires its truncation so that Fock
terms above a certain threshold are excluded from the analysis. The diagonal elements of
the density matrix represent photon number probability amplitudes and the off-diagonal
elements are coherences.

12.3.1 Photon number distribution and Wigner function

The density matrix results allowed us to investigate the photon statistics of our light pulses
before and after the memory. In Fig. 12.5 (a) and (b), we plot the photon number distri-
bution of the input and output pulses. The solid blue lines show a Poissonian distribution,
fitted to the measured mean photon number of 3.4. The good agreement of our data with
this model shows that our output states are also near Poissonian, as we would expect for
near coherent input states. This distribution can be compared to the photon statistics
that would be obtained in the case of a memory with equal efficiency but contaminated
by extra noise. To do this we assume equal amounts of Gaussian noise are added to the
phase and amplitude quadratures of our output state and then find the resulting photon
number distributions. In Fig. 12.5 (b) we show curves that illustrate the photon statistics
we would obtain assuming Gaussian noise that degrades the fidelity of our memory to
the classical and no-cloning limits. This data clearly shows that our memory does not
introduce significant noise to the output pulses and easily exceed the no-cloning limit.

The Poissonian distributions shown in Fig. 12.5(a) and (b) are theoretical fits using
only the mean photon number calculated by summing over the relevant photon probability
distribution. To obtain the photon distributions for the no-cloning and quantum limits
we assume our memory is a source of Gaussian noise that is added equally to the phase
and amplitude quadratures. We add just enough noise to each quadrature to reach these
limits then reconstruct the photon number distributions as we did before. In the case of
the no-cloning limit we assume the added quadrature variance of 2η − 1 where η is the
efficiency of the memory. The added noise in the case of the quantum limit can be shown
to be 2η (see supplementary information in [149]. This assumption is truly valid only if
the input state is a coherent state.

To get an intuitive picture from quantum-state tomography we reconstruct the Wigner
function [279], which is a quasi-probability distribution in phase space. Among various
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Figure 12.4: Density matrix elements for two sets of input and output pulses. (a) and (b)

Density matrix elements for input and output states, respectively, with 〈N〉 = 3.4 yielding a

fidelity of 93%. (c) and (d) Density matrix elements for input and output states, respectively, with

〈N〉 = 16 yielding a fidelity of 82%

phase space plots, the Wigner distribution is used frequently to measure probability in
coordinate and momentum space. Fig. 12.5 (c)/(e) and (d)/(f) show the reconstructed
Wigner functions of the input and output states with 〈N〉 = 3.4/〈N〉 = 0.67. The
projected probability distributions along the two marginal distributions, amplitude (x)
and phase (p) represent a Gaussian distribution for x and p quadratures.

12.3.2 Fidelity Measurements

In order to quantitatively characterise the memory performance in the quantum regime
we analyse the storage fidelity by evaluating the overlap between the input and out-
put states. The fidelity (F) can be computed as the overlap integral of the input
and output Wigner functions, or directly from the density matrix using the equation
F = |Tr(

√√
ρinρout

√
ρin)|2 [14]. After reconstruction of the density matrix for each state

the fidelity can be easily calculated using this equation. These results are presented in Fig.
12.6 (a). The observed fidelity is as high as 93% for 〈N〉 = 3.4 and 98% for 〈N〉 = 0.67. In
the limit of storing pulses with no photons, i.e. a vacuum, the efficiency of the memory no
longer plays a role in determining the fidelity, since a memory with low efficiency can still
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Figure 12.5: (a) and (b) Photon number distribution for input and output pulses, respectively.

The blue solid lines show the fitted Poissonian distribution. The green dotted line represents the

no-cloning limit and the dashed red line shows the boundary for the quantum limit. The error

bars are statistical errors obtained from 100 subsets of data. (c) and (d) Reconstructed Wigner

functions of input and output states for 〈N〉 = 3.4. (e) and (f) Reconstructed Wigner functions of

input and output states for 〈N〉 = 0.67. x and p represent the amplitude and phase, respectively,

of the coherent state.

output a pure vacuum state. For low photon numbers the fidelity is, however, sensitive
to added noise. The high fidelity that we observe at low photon numbers is therefore
indicative of a memory that does not add noise to the output state. Also shown in this
plot are the classical (trace(i)) and optimal fidelity (trace(ii)) limits for coherent states of
1/2 and 0.68, respectively. The Gaussian no-cloning limit is obtained if δx = δy = 0 and
V ±
out = V ±

in + 1. For coherent states we have V ±
in = 1, and the maximum cloning fidelity is

therefore 2/3 [280]. Using a non-Gaussian cloner one can obtain slightly higher fidelity for
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1-to-2 cloning of coherent states, FNG−cloning =0.6826 [25]. All our data points are at or
beyond the coherent state no-cloning limit. This is, however, only of real significance for
the two smallest photon numbers where the states are, to good approximation, coherent.

Photon number

(a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1.0

F
id

el
it

y

0.83

0.86

0.67

0.77

0.74

(i)

(ii)

0 5 10 15 20 25 30
0.0

0.2

0.4

0.6

0.8

1.0

Theory I

Theory II

NC limit

Photon number

(b)

Figure 12.6: (a) Fidelity of the memory for various optical states with different photon numbers.

The measured memory efficiency for each data set is shown next to each symbol. Trace (i) shows

the maximum fidelity that is expected from a classical memory. Trace (ii) is the no-cloning limit

of 0.68. The statistical error in measuring the fidelity is smaller than the size of the symbols. (b)

Different fidelity benchmarking. The red points are the experimental data points as (a). Black

lines (Theory I) are the maximum fidelity predicted by theory taking into account the input noise,

efficiency and non-amplification of the state. The green lines (NC limit) are specifying the no-

cloning limit taking into account the input noise and assuming linear amplifier for Eve. Finally, the

blue symbols indicate the maximum fidelity that could be achieved by allowing linear amplification

of experimental data and taking into account the extra noise induced via this operation.

As expected from a real experiment, our pulses have some amount of noise above the
vacuum fluctuations. This added noise, mostly due to small instabilities in our cavity lock-
ing servos, increases with the photon number. Since the fidelity is highly state-dependent
the quantum and no-cloning benchmarks obtained for the coherent state are not valid
for states with higher photon numbers and therefore benchmarks for each state must be
defined taking into account the input noise. Knowing the input/output quadrature vari-
ances, the fidelity between two optical states with Gaussian quadrature distributions [14]
can also be calculated as

F =
2e

− 2δ2x
V +
in

+V +
out

−
2δ2y

V −
in

+V −
out

√

(V +
inV

−
out + 1)(V −

inV
+
out + 1)−

√

(V +
inV

−
in − 1)(V +

outV
−
out − 1)

(12.2)

where δx/y is the distance between the two states in the phase space along the amplitude
(x) and phase (y) axes. V ±

in/out are the amplitude (+) and phase (-) quadrature variances
of the input and output states.

In Fig. 12.6 (b) we present the different benchmarking as small lines for each state
together with the experimental data (red points). To calculate the optimal memory per-
formance (small black lines in Fig. 12.6 (b)) we used the input parameters in Table 12.1
and Eq. 12.2. We then found the distance between the input and output states and also
the output noise by assuming a beamsplitter relation for the memory, where the transmis-
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sivity of the beamsplitter is the efficiency of the memory. Therefore, this limit takes into
account the measured input state, the measured efficiency and the absence of any addi-
tional noise other than vacuum fluctuation introduced due to the sub-unity efficiency. As
can be seen in Fig. 12.6 (b), these predictions, shown as small black lines (TheoryI), are
very close to the experimental points verifying negligible added noise from the memory to
the output states. The red lines in this figure (NC limit) are the no-cloning limit estimated
by calculating the fidelity between Eve’s state and the best possible output state. In this
calculation, it was assumed that Eve adds a vacuum of noise to the state by copying the
state taking into account the input noise. It is worth mentioning that the experimental
points and also black lines (TheoryI) were achieved without linear amplification to gain
maximum fidelity (just like Eve). If we allowed ourselves to linearly amplify the output
state from the memory, while taking into account the added noise, we would obtain fi-
delity values higher than the no-cloning limit as shown in Fig. 12.6 (b) blue lines (Theory
II). This shows that with some local operations, all our data points appear to break the
no-cloning limit.

〈N〉 V +
in V −

in η F
0.67 1.20 1.10 0.86 0.98
3.41 1.14 1.40 0.83 0.93
12.0 1.63 4.52 0.67 0.76
16.3 1.57 2.08 0.77 0.82
22.4 2.03 7.51 0.74 0.68

Table 12.1: Experimental parameter table. Mean photon number 〈N〉, input variances (V ±
in ),

efficiency (η) and fidelity (F) of different optical states used in Fig. 12.6 (a) and (b).

12.3.3 T-V representation

As the above analysis shows, the state dependent nature of the fidelity means that it is
not an easy-to-use measure of the memory performance. In the case where the memory
is being probed with various input states with different levels of added noise, each input
state has its own unique no-cloning limit for fidelity. To unambiguously quantify the
performance of our memory it would be advantageous to use a state independent criterion.
This can be done using a signal-transfer and conditional-variance characterisation known
as a T-V diagram. This method was originally proposed for characterising quantum non-
demolition measurements [281] and later adapted to quantum teleportation [282, 283] and
quantum memory [83, 284]. The conditional variance of the amplitude V + and phase V −

quadratures is a measure of the noise added by the memory. An ideal memory adds no
noise so the conditional variance between the input and output would be 0. The classical
limit would be the case where the noise added by the memory is one unit of vacuum noise
on each quadrature so that V + = V − = 1. The amplitude and phase signal transfer
coefficients (T+ and T− respectively) are a measure of how well the memory preserves
a signal. If the signal-to-noise ratio of the output is equal to the input, as would be
the case for an ideal memory, then the transfer coefficient is unity. The classical limit is
T+ = T− = 0.5. It can be shown that if the two quantum benchmarks of V +

cv × V −
cv ≤ 1

and T++T− ≥ 1 are satisfied then the memory device surpasses the no-cloning limit [23].
The transfer coefficient (T ) and conditional variances (V ) for two orthogonal quadra-
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Figure 12.7: The T-V diagram based on the same raw data as Fig. 12.6 (a). The symbols used

here are the same as those in Fig. 12.6 (a) to allow comparison of the data. The shaded region on

the bottom-right is the no-cloning regime. The error bars represent the statistical uncertainties.

tures are defined, respectively, as T± = η/(1 + V ±
out − V ±

in ) and V ±
cv = (1 − T±)V ±

out from
which the two quantum limits of V +

cv × V −
cv ≤ 2 and T+ + T− ≤ 1 are obtained. When

calculating the conditional variance it is important to account for the total detection effi-
ciency of the experiment. In our analysis the quantum efficiency of the detectors (90%),
fringe visibility of the homodyne (97%), and transmission of the signal through the filter-
ing cell (70%) have been taken into account while calculating the conditional variances
by extrapolating the variances of the input and output to the state prior to these losses.
With this state-independent measurement, the results demonstrate that our system has
convincingly surpassed the no-cloning limit of quantum memory for a range of photon
numbers.

In the current experiment, the coherence time of the memory (∼10 µs) is limited by the
diffusion and collision of atoms. It was recently shown that by preparing cells with single-
compound alkene-based coatings, spin relaxation times of up to a few seconds can be easily
achieved even at high temperatures [168]. This spin relaxation time is comparable to the
best coherence time measured in cold atomic ensembles. However, whether long coherence
times in cells with alkene-based coatings can be observed in GEM system requires further
investigation. In terms of the miniaturisation of these types of memories, extensive work
has been done to manufacture microscopic vapour cells for alkali atoms [285, 286, 287, 288].
Hollow-core waveguides also show great promise in developing integrated coherent photonic
structures[289]. All of these developments together with the results presented here suggest
that Rb vapour could be a reliable and scalable platform for quantum memory.

12.4 Conclusion

In this chapter, we have shown experimental results of noise measurement and state-
tomography of the λ-GEM. We have demonstrated that our gaseous memory, operating
above room temperature, is capable of storing quantum information with a fidelity higher
than the no-cloning fidelity limit. The simplicity of the scheme, as well as efficient and
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noiseless operation of the memory, indicate its various potential applications in quantum
communication technology.
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Chapter 13

Nonlinear Polaritonic Interaction

In this chapter we analyse a cross-phase modulation (XPM) scheme that exhibits an
enhanced nonlinearity in a Rb-based gradient echo memory system. We present numerical
simulation along with a proposed experimental scheme that shows large nonlinearity at
the single photon level. Furthermore, we present some preliminary experimental results of
XPM between coherent states at high signal power obtained using the warm vapour cell.

13.1 Introduction

The optical Kerr effect is the case in which the electric field due to the light itself causes
a variation in index of refraction, which is proportional to the local intensity of the light.
The refractive index change with intensity, I, in a Kerr medium is given by

n = n0 + n2I (13.1)

where n0 is the linear refractive index, and n2 is the second-order nonlinear refractive index
of the medium. The refractive index variation, dn

dt = n2
dI
dt , is responsible for the nonlinear

optical effect of phase modulation. This effect is present in most of the materials but
only becomes significant with very intense beams or after long interaction times. When
a light pulse (probe) propagates through a Kerr medium, the variation in the refractive
index produces an instantaneous phase shift on the probe pulse. This effect is known as
self-phase modulation (SPM). The phase shift due to SPM results in a frequency shift
of the pulse due to intensity-dependent (and therefore time-dependent) phase shifts such
that the front edge of the pulse shifts to lower frequencies and the tailing edge to higher
frequencies, while the peak of the pulse is not shifted. The extra frequencies generated
through SPM broaden the frequency spectrum of the pulse symmetrically.

Cross-phase modulation (XPM) refers to a process in which the phase of a probe pulse
is modulated by the strength of another field (signal field). In the limit of extreme nonlin-
earity, individual photons could be persuaded to interact strongly with one another and
induce cross-phase modulation (XPM). This kind of interaction is a basis of the deter-
ministic control-not gate and phase-not gates that lie at the heart of quantum computing
algorithms [290, 291]. A strong XPM has applications in creating strongly correlated
states of interacting photons [292], generating macroscopic quantum superpositions [293],
realising universal quantum gate operations [294, 295, 296], and providing nonlinear opti-
cal switching [297]. Below, we briefly discuss different applications of XPM at the single
photon level in optics-based quantum information.

A quantum Fredkin gate can be constructed [290] based on Kerr nonlinearity and is
suitable for reversible computing. The idea is that two of the inputs control whether

177
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there is a transformation on the other input. A Fredkin gate is a three-qubit universal
(reversible) gate, i.e. any other quantum gate can be constructed from this gate. To con-
struct such a gate, large and noiseless XPM on the order of π is required. The realisation
of such a large phase shift has been a great challenge for the experimentalists around the
world in the past decade and the largest phase shift observed, to date, was 10−6 rad.
Munro et al. [298] proposed that by successive weak cross-Kerr interactions between a
strong coherent-state probe beam and a pair of single-photon qubits beam it is possible
to realise a deterministic parity gate from which a CNOT gate can be constructed.
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XPM medium
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(b)
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Figure 13.1: (a) Schematic experiment for generation of cluster states using a Kerr nonlinear

medium. Here we assume that vertical polarization reflected from the beamsplitters gives a negative

phase shift and horizontally polarized photons result in a positive phase shift. (b) A nonlinear Kerr

medium can be used to generate entanglement photonic qubits via parity check done by homodyne

quadrature measurement of coherent states at low nonlinearities.

To see how a Kerr medium can be used to build a parity gate, consider the setup
shown in Fig. 13.1 (a). A coherent state |α〉 is sent through two Kerr media together with
two photons in superposition of vertical and horizontal polarisations, 1/

√
2(|V 〉+ |H〉). If

the photon is in the vertical state it is reflected from the beamsplitter and introduces a
negative phase shift on the coherent state, and vice versa. Homodyne measurement (HD)
on the output coherent state can be seen as a parity operator which, 25% of the time,
projects the state of the photons into a Bell state, i.e. |HV 〉 + |V H〉 (see Fig. 13.1(b)).
Minimum displacement between possible output coherent states is necessary to guarantee
distinguishability. At low nonlinearities, this can be satisfied by increasing the amplitude
of the coherent state, α. A cascade of Kerr media can be used to generate highly entangled
cluster states. Potentially, this should allow for a high fidelity of entanglement.

An alternative approach to quantum computation is the one-way quantum comput-
ing [299, 300] proposed by Raussendorf and Briegel, which uses continuous variables and
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highly efficient measurements. This proposal is based on the generation of highly en-
tangled cluster states [299] where a sequence of single-qubit measurements with classical
feedforward of the measurement shapes the entire body of quantum computation protocol.
A proof of principle experiment of this scheme has also been implemented [240]. The main
difficulty of this protocol is the generation of large cluster states that can be useful for
realistic problems. It was proven [291] that even weak cross-phase modulation between
single photons can be used in yielding an entangling operation with a success probability
greater than 1/2 (natural bound of previous scheme due to the single beam-splitter success
probability) and therefore initialising cluster states. If realised, this approach could pave
the way for the scalable implementation of such a scheme [301, 302, 291].

Moreover, large nonlinearity can be used to generate bright Schrödinger cat states
[303]. Nonclassical properties of the quantum superposition of coherent states of certain
forms have already been studied [293]. Various schemes have been suggested to produce
such states, such as photon-subtracted squeezed states [304]. A familiar example of such
states is the superposition of two classical-like coherent states of the same amplitude but
with a phase shift of π:

|ψ〉 = |α〉+ eiφ|− α〉 (13.2)

For φ = 0, Eq. 13.2 describes the even coherent state, while for φ = π , it describes the
odd coherent state.

To date, there have been various proposals aimed at realizing this strong interaction,
particularly, nonlinearity in optical fibres [305], cavity quantum electrodynamics (CQED)
[306, 307] and nonlinearity present in electromagnetically-induced transparency (EIT)
[308, 292, 309, 310, 295]. Experiments have realised XPM in optical fibre with δφ = 10−7

rad [311] per photon, CQED with δφ = 0.5 [312] rad and EIT systems with δφ = 10−6rad
[313, 314] per photon.

In the following sections we briefly discuss and compare different methods proposed for
the realisation of an experiment capable of producing large XPM at single photon level.

13.2 XPM between single photons inside nonlinear fibre

Nonlinearity in optical fibre has been shown to be an important property for manipulating
and generating light in applications including soliton transmission [315], light amplification
[316], all-optical switching [317], and super-continuum generation [318]. Optical fibres are
also an attractive XPM medium [311]. While they may not be highly nonlinear, the
interaction times can be extended simply by using longer fibres.

The experimental observation of optical nonlinearity, on the order of 10−7 rad, at the
single photon level in 4.7 m of optical fibre was recently reported [311]. Due to the small
nonlinearity in the fibre, one needs to use hundreds of kilometres of fibre to achieve phase
shifts on the order of π. A single photon propagating through the fibre for a long time
will disappear due to the loss in the fibre.

The XPM between single photons propagating through optical fibres relies on maxi-
mum interaction between photons; therefore one would need ideal spatial and temporal
mode matching between the incoming (multimode) photons. Spatial mode matching can
be resolved by precise engineering of the system. However, the temporal mode matching
is a problem and seems to fundamentally limit the maximum phase shift or fidelity of the
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operation [319, 320].
It is known that a typical optical fibre has a response time of τ =1-10 fs which is

much shorter than the duration of a typical single photon wave packet, δt . This almost
instantaneous response of the medium causes a nonlinear phase shift on a randomly-
distributed-in-time portion of the probe photon. This fast-response property of optical
fibres significantly reduces the overall accumulated phase shift and therefore precludes it
from being useful for quantum computation applications. In a slow-response regime, on
the other hand, Shapiro showed [319, 320] that the phase noise imposed due to the free-
field commutator relations for the output field operators can severely degrade the fidelity
of the gate operation.

13.3 XPM in EIT media

Another method of facilitating long interaction times for XPM is via light interaction with
an atomic ensemble. An EIT-based XPM scheme exploits slow-light effects in an atomic
ensemble to enhance the nonlinear interaction of light fields via the ac-Stark effect [321]. It
has been shown that light pulses propagating through an EIT medium can exhibit strong
nonlinear interactions [308, 292, 309, 310, 295] leading to XPM. A phase shift almost two
orders of magnitude larger than that in optical fibres has been observed using EIT for
single photons [313, 314].

Two pulses propagating under a double EIT condition can show XPM, for example,
in the configuration shown in Fig. 13.2. Probe (Ep) and signal (Es) fields interact with
transitions |1〉 → |4〉 and |2〉 → |4〉, respectively. A double-EIT configuration can be
obtained by applying a control field on the |3〉 → |4〉 transition and consequently the
probe and signal fields can be simultaneously slowed down. In the presence of a fifth
atomic level (|5〉) the signal field also off-resonantly couples to the |3〉 → |5〉 transition.
The latter interaction can nonlinearly modulate the phase of the probe field via the ac-
Stark effect.

A similar EIT-based XPM scheme was proposed by Wang et al. [309]. For the reali-
sation of such a scheme, two control fields were used to independently control the group
velocity of two light pulses. To obtain maximum nonlinearity, precise velocity matching
[309, 322] between the two pulses is required. To date, similar XPM schemes based on
EIT have been proposed and also experimentally implemented in 87Rb atomic ensem-
bles [292, 309, 310, 295]. The single-photon-level XPM is inferred to be about 1.3× 10−5

rad [313].
In the EIT scenario, when a photon interacts with a single atom in a cavity or ensem-

ble of atoms, Shapiro’s simple model may not be applicable to explain the phase noise
introduced on photons. The finite size of the input pulse means that it is essentially in a
superposition of many temporal modes. Most of these modes will couple equally strongly
to the atoms, and any nonlinearity that is strong enough to imprint a large phase shift
should also be strong enough to generate large cross-spectral correlations that may distort
the pulse substantially. In addition to this, there will always be a large number of empty
temporal modes, also with a large coupling to the atoms, into which a photon could be
emitted. It has been theoretically demonstrated that EIT-based XPM suffers from severe
loss in regimes where large phase shifts are expected [323]. Gea-Banacloche [323] showed
that spontaneous emission into the initially unoccupied temporal modes is responsible for
the small XPM in an EIT medium. In this scenario, a large phase shift is only possible
in the limit in which the pulse bandwidth matches the medium bandwidth [323]. The
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Figure 13.2: Simplified atomic level configuration for creating XPM between two light pulses (Es
and Ep) under the double-EIT condition

EIT medium in this regime, however, becomes ineffective and noisy. This is because some
frequency components of one light field, lying outside the EIT window, can lead to spon-
taneous emission that is ultimately responsible for weak and low fidelity XPM. Moreover,
the storage efficiency limit of 50% [324] in EIT-based systems poses a practical limit on
the fidelity of the output states.

13.4 XPM between light and atomic coherence

The temporal mode-matching matters only if the two photons are propagating through a
nonlinear medium. It has been shown that nonlinear interaction can also be obtained in
a memory-based XPM scheme [325, 326, 327]. When a single photon is stored inside an
atomic memory, the atomic coherence can still experience a nonlinear phase shift due to
another photon flying through the memory. This phase shift can then be mapped back to
the electric field on the retrieval stage.

Fig. 13.3 shows a simple interaction scheme for such XPM process. The probe photon
can be coherently stored inside atomic coherence, |1〉〈2|. The signal pulse which freely
propagates through the memory, detuned from the |2〉 → |3〉 transition, can change the
phase of the atomic coherence that can later be transferred to the recalled probe photon.

13.4.1 GEM-based XPM experiment

In this section, we present a proof-of-principle demonstration of XPM in a warm mem-
ory. The experimental setup is similar to what was described in Sec. 12.2 with slight
modifications that are shown in Fig. 13.4 (a).

The probe was stored for approximately 15 µs while the coupling field was switched off.
During that time, a signal field generated from a diode laser and detuned by δ3 , 2 GHz
from F = 2 → F ′ = 3 of 87Rb D2 line was sent through the memory. This field was
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Figure 13.3: A simplified level structure where a signal pulse Es interacts with the atomic coher-

ence, generated by the probe pulse. Here, γ is the linewidth of the excited state.

counter-propagating with respect to the probe and coupling fields to avoid measurement
contamination. The signal field gave rise to an ac-Stark shift of the spin coherence. On
recall, therefore, the stored probe field will be phase shifted proportional to the strength
and duration of the signal field. To measure the size of the phase shift, we ran two storage
experiments in quick succession, without and with the signal field, as shown in Fig. 13.4 (b)
(i) and (ii) respectively. A phase reference for the two recalled probe pulses was provided
by a pulse that passed through the memory cell 10 µs before the start of each experiment.
This reference pulse allowed us to compare the recalled probe phase with and without the
signal field, as has been done in the figure.

The results of the phase shift as a function of Rabi frequency of the signal pulse
is plotted in Fig. 13.5 (a), where the solid line represents the theoretical expectation
calculated [325] using

ΦXPM =
Ω2
sδ3

2(γ2 + δ23)
τ (13.3)

where Ωs = gEs is the Rabi frequency of the signal pulse and τ is its duration. This
expression was derived simply by integrating the ac-Stark shift term over the duration of
the pulse.

Based on the experimental data presented in Fig. 13.5 (a), we estimate a phase shift
on the order of 10−12 rad for signal and probe fields containing single photons. In our
experiment, the large detuning of the signal field (2 GHz) severely reduces the available
nonlinearity, but it is necessary due to the large Doppler broadening of thermal atoms. In
fact, even with this detuning the signal field leads to substantial scattering of the atomic
coherence. In Fig. 13.4(b), for example, the probe recall is reduced from 53% to 7% by
the signal field. Crucially, our scheme has no measurable SPM, as shown in Fig. 13.5
(b), where the recalled probe phase is seen to be independent of the probe intensity. In
cold atomic ensembles [325] this detuning could be reduced by two orders of magnitude,
allowing, in principle, a phase shift two orders of magnitude larger. Even if larger phase
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Figure 13.4: (a) Schematic experimental setup. The probe field (Ep) is shifted by 6.8 GHz with

respect to the coupling field (Ec) using a fibre-coupled electro-optic modulator (FC-EOM) and is

combined with the coupling field using a ring cavity. The counter propagating signal pulse (Es) at
780 nm is generated using a diode laser. The two beams are sent through the memory and filtering

cell and heterodyne detection (HD) is performed afterwards. A counter-propagating signal pulse

at 780 nm was used to induce the phase shift on the atomic coherence. All three beams are shaped

in time using acousto-optic modulators (AOM). PBS: polarising beam splitter, λ/4 quarter wave-

plate. (b) Heterodyne data showing normalised amplitude of the modulated phase reference, input

and echo probe pulses. The top trace shows the switching protocol of the coupling field intensity.

Traces (i) (blue) and (ii) (red) show the amplitude of Ep measured at the output of the memory

without and with the signal pulse, respectively. Trace (ii) is taken 60 µs after (i) and overlapped

using the reference pulse as a timing signal.

shifts can be achieved using cold atomic samples, this particular nonlinear interaction
scheme might not be useful for single photon interactions. The signal field is not stored
in the memory, meaning that the interaction time with the probe will be limited. We will
now analyze a scheme in which the probe and signal fields are simultaneously stored in a
double-GEM system. As before, the origin of this XPM is the ac-Stark effect, but the the
available phase shift can be increased by increasing the interaction time.
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13.5 XPM between two stored photons

We now propose a scheme in which the two fields (probe and signal) are simultaneously
stored while exhibiting nonlinear interactions. In this scenario, it is the polariton that
is phase shifted. To understand the XPM process in the memory, we use a polariton
that is a superposition of the electric field, Ê and atomic coherence, σ̂12, in the spatial
Fourier domain [151], defined as ψ̂(t, k) = kÊ(t, k)+NΩc/∆σ̂12(t, k), where k is the spatial
frequency, N is the effective linear atomic density, ∆ is the Raman detuning from the
excited state, σ̂12 is the atomic spin coherence and Ωc is the coupling field Rabi frequency.
During storage, the polariton evolves to higher k-values at a rate proportional to η. When
using GEM for XPM, it is the polariton that will be phase shifted, leading to a phase shift
of the photon echo on recall from the memory.

There are three properties of the polariton that are important to the following discus-
sion i) The Fourier transform of the Maxwell equation gives kÊ(t, k) = N σ̂12(t, k)Ωc/∆
[151]. Because the spin coherence has a constant amplitude during storage, the Maxwell
equation implies that E is inversely proportional to k. ii) The polariton can be stopped
in k-space by switching η to 0. For a pulse stored with η = 0, the group velocity of the
optical component is found to be vg = gN/k2(Ωc/∆)2. iii) The polariton is purely atomic,
|Ê | = 0, when the coupling field is off.

The 87Rb level structure and nonlinear interaction scheme between two photons stored
inside the memory are shown in Fig. 13.6. In this case the two photons (with Rabi
frequencies of gÊp and gÊs) can be stored independently in two atomic coherences, σ̂12
and σ̂1′2′ , using two coupling fields with Rabi frequencies of Ωc and Ω′

c. This can be
done by introducing a linearly varying magnetic field to induce two detuning gradients
with opposite slopes, resulting from the mf = 1 and mf = −1 Zeeman sublevels. If the
coupling field on the right atomic coherence is turned off (Ωc = 0) after storage of the
probe field, the photonic part of the polariton vanishes and the amplitude and phase of
the probe field will be mapped to the ground-state coherence σ̂12.

Pulses enter the medium at slightly different times; therefore, by choosing the proper
timing of the two coupling fields, it is possible to map each pulse independently in a
different coherence. The coupling field Ωc can then be turned off to map the probe photon
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into σ̂12 and also reduce the decoherence due to the scattering during the storage time.
The gradient can also be switched off in order to stop polariton evolution in k space. At a
constant spatial frequency (k), the electric field’s amplitude, as well as its group velocity,
will remain unchanged (see Chap. 5).

The coupling field, Ω′
c, will generate a slow light corresponding to the signal photon Ês.

This slow light, as explained in the polariton description, corresponds to the photonic part
of the polariton in that its strength and maximum interaction time with the atomic field
can be tuned using the gradient field and the coupling beam. The slowly propagating light
field can then modulate the phase of the coherence σ̂12. After a controllable interaction,
the frequency gradient can be switched on to couple out the stored pulse. When the echo
is emitted, the phase shift induced in the coherence is transferred to the output electric
field. The intensity of the probe and signal fields, as well as the corresponding normal
modes, are shown in Fig. 13.7 (a) and (b), respectively. The two polaritons remain at a
constant spatial frequency (k) by switching the detuning gradient to zero soon after the
signal pulse enters the medium.

The proposed scheme can be implemented in a cold atomic system where a long inter-
action time, as well as a large coupling strength can be achieved.
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Figure 13.6: Schematic atomic-level structure of 87Rb showing a scheme for the proposed nonlin-

ear interaction. The probe Ep and signal Es pulses arrived at different times and are independently

mapped to atomic coherence |1〉〈2| and |1′〉〈2′| using two coupling fields Ωc and Ω′
c, respectively.

The signal field can modify the phase of the atomic coherence (|1〉〈2|) via the ac-Stark effect.

13.5.1 Analytical solution

To find the conditional phase shift at the single-photon level, we solve the semiclassical
equations of motion in two stages. Firstly, we consider the storage of two single photons
(coherent states with mean photon number of 1) inside the memory. At this stage the
gradient field and both coupling fields are on. Secondly, at time t = τ1 when the gradient
field and the coupling field Ω is switched off, we solve the equations of motion in the steady
state using the results from the first part as initial the condition to find the conditional
phase shift.
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The interaction Hamiltonian of the system with the level scheme depicted in Fig. 13.6
(a) can be written as

HI =
h̄N

L

∫

[gÊpσ̂31 + Ωcσ̂32 + gÊsσ̂42

+gÊsσ̂3′1′ + Ω′
cσ̂3′2′ +H.c]dz (13.4)

where σij is the collective atomic spin operator, g = µeg

√

ω0
2εV h̄ is the atom-field coupling

strength, and N is the total number of atoms in the quantisation volume V .

The simplified Heisenberg/Maxwell equations, assuming all of the populations are
distributed between states |1〉 and |1′〉, can then be derived

˙̂σ13 = −(γ + i∆)σ̂13 + igÊpσ̂11 + iΩcσ̂12 (13.5)
˙̂σ1′3′ = −(γ + i∆′)σ̂1′3′ + igÊsσ̂1′1′ + iΩcσ̂1′2′ (13.6)
˙̂σ1′2′ = −(γ0 + iδ1′2′(t, z))σ̂1′2′ + iΩ∗

c σ̂1′3′ (13.7)
˙̂σ12 = −(γ0 + iδ12(t, z))σ̂12 + iΩ∗

c σ̂13 + igÊ%
s σ̂14 (13.8)

˙̂σ14 = −(γ0 + iδ12(t, z) + iδ4)σ̂14 + igÊsσ̂12 (13.9)
∂

∂z
Êp = i

gN

2c
σ̂13 (13.10)

∂

∂z
Ês = i

gN

2c
σ̂1′3′ . (13.11)

δij is the two-photon detuning between level |i〉 and |j〉 that can be controlled in time and
z using the external field. We also assume that the excited state decay rate γ is equal for
all three excited states.

Using the steady state solution of Eq. 13.5 and spatial Fourier transform of Eq.13.10
we arrive at

kÊp(t, k) =
gN

2c
(
Ωc

∆
)σ̂12(t, k) (13.12)

This expression suggests that the relative phase of the electric field Êp and the atomic
coherence σ̂12 are always constant. Therefore, by tracking the atomic coherence phase one
can infer the phase of the probe field at the output. The above expression also shows that
the electric field amplitude linearly decreases in time as the spatial frequency k increases.

To find the phase shift induced by Es during the interaction time, η(τ1 < t < τ2) = 0,
we solve Eqs. 13.5 and 13.9 in the steady state, insert the results into Eq. 13.8 and obtain

dσ12
dt

= (−γ0 + i
|gEs|2
γ + iδ4

)σ12 (13.13)

The total loss and phase shift of the coherence σ12 during the interaction time are then
respectively given by

α =
∫ τ2

τ1
[γ0 +

|gEs(t− τ1)|2γ
γ2 + δ24

]dt (13.14)
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φXPM =
∫ τ2

τ1

|gEs(t− τ1)|2δ4
γ2 + δ24

dt (13.15)

One can find a regime where the above loss term is negligible. In those regimes, the
signal field amplitude inside the medium will remain constant during the interaction time,
i. e. Es(t−τ1) = Es(τ1). The maximum interaction time is then proportional to the medium
length and inverse to the group velocity vg =

β
ητ21

.

13.5.2 Numerical simulation

We performed numerical simulations using XMDS [180] to investigate the behaviour of
the system considering realistic parameters. We numerically solve the Maxwell-Bloch
equations of all seven atomic levels as depicted in Fig. 13.6(a) and monitor the phase of
the signal pulse under different circumstances.
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Figure 13.7: (a) Normalised intensity of the probe (i) and signal (ii) fields inside the memory, at

different times, integrated over the space. The top part of the figure shows the switching protocols

for the two coupling fields.(b) The total atomic coherence in spatial Fourier space (k) and time

representing the evolution of two atomic fields in the k − t plane. The gradient field is switched

off during 8 < t < 18. The top part of the figure shows the coupling field switching protocols.

(c) Semiclassical simulation results showing a nonlinear phase shift between two coherent states

with a mean photon number of one as a function of interaction time. The parameters used were:

Ωc = Ω′
c = 10γ, photon bandwidth= γ, ∆ = ∆′ = 60Ωc, δ4 = 15γ, g = 0.085γ and number

of atoms N = 107. (d) Results of quantum simulations for phase shift and phase gate fidelity

as a function of interaction time. We assumed that the light is coupled to a 7-level atom with

g13 = g
√
N , g24 = g, g1′3′ = g

√
N , and Ωc = Ω′

c = 20γ. Other parameters are similar to the ones

used in (c).
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Fig 13.7 (a) shows the normalised intensity of the two fields integrated along the length
of the memory at different times. As can be seen the probe field intensity drops to zero
immediately after the coupling field Ωc is switched off while the field is nonzero due to the
signal pulse during the storage time because Ω′

c *= 0.

The normal modes resulting from the signal and probe fields are shown in Fig. 13.7 (b),
where the spatial frequency of the two fields remains constant by switching the detuning
gradient to zero soon after the signal pulse enters the medium.

We have observed a linear increase in the phase of the retrieved probe field as a function
of the signal field intensity. The simulation shows no change in the phase of the probe field
as its intensity increased, showing immunity to self phase modulation (SPM) [328]. The
interaction strength is limited by the storage of the signal field which still has a non-zero
group velocity in the memory. In order to increase the interaction strength and interaction
time, one can use a pair of counter-propagating coupling fields to generate stationary light
inside the memory. The application of a counter-propagating coupling field for the signal
field would allow stationary trapping of the signal light (see Sec.7.3). The phase shift on
the probe field due to the signal field is shown as a function of interaction time between
them in Fig. 13.7 (c). Similar results have been obtained for the phase shift of a strong
coherent state (α ∼ 102) resulting from interaction with a signal pulse with a mean
photon number of one. Although the nonlinear phase shift for the proposed scheme is
smaller than π, the current scheme can be used to implement parity or phase gates where
the strength of the coherent states can offset the weakness of the nonlinearities [298, 291].
The simulation results suggest that αθ > π is achievable in our scheme and therefore the
error in discriminating in the final states (even and odd parity states) can be less than
10−3 [296, 298] which is near-optimal.

13.5.3 Quantum simulation

We also perform quantum simulations by solving the master equation numerically. The
interaction scheme in this case is simplified so it can be solved using our available ultrafast
computer. The quantum simulation, performed on the system during the interaction time
(τ1 < t < τ2), yields useful information regarding the noise and gate imperfections. For this
type of simulation, it is assumed that initially a photon is encoded in a coherence between
|1〉 and |2〉 so the initial state of the atomic system becomes ρat = 1/2 (|1′〉〈1′|+ |ψ0〉〈ψ0|),
where |ψ0〉 = (|1〉 + |2〉)/

√
2. The initial state of the incoming signal photon is then

given by ρph = |0p,ψs〉〈0p,ψs|, where |ψs〉 = (|0s〉+ |1s〉) /
√
2, giving the total initial state

ρ(0) = ρat ⊗ ρph. We also assume that the signal photon interaction is in the form of
stationary light.

We solved the master equation including Langevin noise terms. From the resulting den-
sity operator, the conditional phase shift between a single photonic qubit in state |ψs〉 and
the polaritonic qubit encoded in the atomic coherence |ψ0〉 is calculated as a function of
interaction time. The conditional phase shift φ and gate fidelity are shown in Fig. 13.7 (d)
for parameters closely corresponding to the semiclassical simulations. The fidelity calcu-
lated here is that of a two-qubit controlled phase gate using single photons [329]. This
fidelity is low, as expected, since the interaction between single photons is very fragile.
This is not such an issue for the parity gate described above since the interaction between
a single photon and a large coherent state is more robust against noise. Decoherence
sources such as decay of the signal field amplitude due to Raman scattering (with lifetime
of τsc , (∆/2Ω)2/γ , 200/γ), spontaneous emission decay, and atomic spin dephasing
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are included in the model. We found that the noise due to spontaneous emission is the
dominant source of fidelity degradation.

13.5.4 Discussion

In the proposed scheme, far-detuned interactions, as well as tuneability and control over
the strength and duration of the interaction, could potentially resolve the temporal mode-
matching issue associated with other proposed XPM schemes. Although the nonlinear
phase shift for the proposed scheme is smaller than π, the current scheme can be used to
implement parity or phase gates where the strength of the coherent states can offset the
weakness of the nonlinearities [298, 291].
Performing the experiment in a confined dipole trap system will also enhance the atom-
light coupling strength by approximately three orders of magnitude due to the reduction
in interaction volume, thus enhancing the phase shift by six orders of magnitude. Fur-
thermore, interaction of atomic spin with the stopped single-photon wave packet (with
duration of about ∼500 ns), instead of a freely propagating pulse of a 10 µs duration, can
in principle enhance the phase shift per single photon by nearly two orders of magnitude.
Accounting for all these enhancement factors, our experimental results support the opti-
mal predicted phase shift of 10 mrad. The predicted phase shift is orders of magnitude
larger than that available in EIT systems [314, 323].

13.6 Conclusion

We conclude by noting that, in addition to the demonstrated efficient quantum storage
and capability to arbitrarily manipulate optical pulses, the versatility of GEM can be
extended to implement a parity gate from which a CNOT gate can be constructed [298].
The lack of SPM and the demonstrated noiseless high-efficiency storage in our scheme
suggests that the proposed method is a potential candidate for implementing practical
XPM between single photons and coherent states, as well as other applications in optical
quantum technology. Further multimode analysis in the Schrödinger picture is required
to ensure that there are no obstacles in the realization of this scheme.
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Chapter 14

Summary, Conclusion and Future

Direction

“Where the storyteller is loyal, eternally and unswervingly loyal to the story, there, in the
end, silence will speak. Where the story has been betrayed, silence is but emptiness. But
we, the faithful, when we have spoken our last word, will hear the voice of silence.”

Karen Blixen

14.1 Summary and conclusion

We have implemented an efficient and noiseless quantum optical memory using Rb vapour.
We have demonstrated that more than 85% of the input light can be coherently recalled
from the memory. We characterised the noise performance of the memory by storing single
photon-level coherent pulses, measured the fidelity and conditional variances, and showed
that the memory can in fact be used for quantum storage of optical information.

We have also demonstrated the ability of the memory in the manipulation of optical
bits. These manipulations include: time-sequencing, spectral manipulation, backward
retrieval, and arbitrary retrieval of optical pulses.

We have also demonstrated interference between polaritons inside the memory. The
inference of light pulses with different frequencies mediated by an atomic field has also
been shown.

Furthermore, we have shown a proof of principle demonstration of a conditional phase
shift (non-linear phase modulation) between two coherent states. We also propose a new
memory-based scheme for obtaining giant cross-phase modulation between single photons.
The proposed method may ultimately pave the way for the implementation of universal
quantum gates and the creation of cluster states applicable to one-way quantum comput-
ing.

14.2 Future directions

The future of the GEM project can potentially take different directions. Below we briefly
mention a few experiments that can be done in future.

14.2.1 Observation of stationary light

As discussed in Chap. 7, using a pair of counter-propagating coupling fields it is possible
to trap light inside the atomic sample. Experimental demonstration of this effect may
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contribute to the possibility of obtaining large cross-phase modulation between single
photons.

14.2.2 Simultaneous storage of two frequency sidebands

Using multiple pairs of Zeeman sublevels of the Rb ground state, it is possible, in principle,
to simultaneously store multiple sideband frequencies. Storage of two sidebands can be
experimentally demonstrated using a single-frequency coupling field in 87Rb. Two of the
Zeeman sublevels of the Hyperfine ground state F = 1 (mf = ±1) should be separated by
a frequency difference between the two optical sidebands. This demonstration could be
useful for storage of squeezed sidebands without the need for a large memory bandwidth. A
proof-of-principle demonstration of this possibility will also support the idea of enhancing
low-light-level cross-phase modulation, as the scheme proposed in Chap. 13 relies on the
simultaneous storage of two single photons at different frequencies.

14.2.3 Storage of a single photon, squeezing and entanglement

A quantum memory should be able to preserve entanglement after the storage and recall of
information. This is crucial in the implementation of quantum repeaters. The long-term
plan of the experiment is to demonstrate that the Raman GEM is capable of preserving
quantum properties both in the CV and DV regimes. The CV entanglement generated by
interfering two squeezed beams, as well as heralded single photons, will also be used as
quantum sources to characterise the memory.

14.2.4 GEM in dipole trap

Implementation of GEM in a cold atomic sample such as a dipole trap can potentially
increase the storage time to more than 3 orders of magnitude. The possibility to generate
the frequency gradient required for storage using an ac-Stark gradient, instead of a mag-
netic field gradient, has been studied by B. Sparkes [155]. This technique will be used in
the construction of the gradient echo memory in a cold atomic ensemble.
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Appendix A: Experimental details

A.1 Rb vapour properties

Some of the basic physical properties of 87Rb atoms are provided in Table A.1. The
52S1/2 → 52P1/2 (D1 line) and 52S1/2 → 52P3/2 (D2 line) transitions are the components
of a fine-structure doublet.

Atomic Number 37
Neutrons and Protons 87

Relative Natural Abundance 27.83(2)%
Atomic Mass 1.44316060(11) × 10−25 kg

Density at 25oC 1.53g/cm3

Melting Point 39.31C

Boiling Point 688oC
Vapour Pressure at 25oC 3.0× 10−7 Torr

Nuclear Spin 3/2
D1(52S1/2 → 52P1/2)

Transition Dipole Matrix Element 2.537(3) × 10−29Cm

Table A.1: 87Rb physical properties. All values are taken from Ref. [2]

The D2 line transition of 87Rb has a wavelength of 780 nm and three hyperfine levels
(F=0,1,2) in the upper state. D1 and D2 line transitions together with hyperfine and
Zeeman level structure of 87Rb is shown in Fig. A.1 (a). Fig. A.1 (b) shows the saturation
absorption of the D2 transition line of Rb.

In a vapour cell the atomic density of Rb is highly dependent on the temperature of
the cell. Atomic density of 87Rb as a function of temperature is shown in Fig. A.2 for
temperatures above the melting point.

A.2 Magnetic coil design

Spectral manipulation can be performed inside the memory by proper engineering of the
detuning field. Rather than just inverting a simple linear gradient, we can invert different
parts of the gradient at different times, add shifts to the atomic frequency spectrum, and
change the recall gradient by invoking a more general atomic frequency spectrum η(t, z).
To perform this task, one should be able to generate a detuning field and switch the field
at different segments of the memory independently and at different times.
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To generate the magnetic field that we need, we can either spatially vary the coil
spacing or vary the current flowing inside the coil. Constructing the variable-pitch coil
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Figure A.2: Calculated number density of 87Rb using the pressure-temperature relation from

Ref. [2] and the ideal gas law.
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Figure A.3: (a) The shape of the solenoid required to generate a linear field as predicted by

theory. (b) The ideal linearly varying magnetic field along the propagation axis (blue dotted line)

and expected field (red solid line) from the solenoid shown in (a). (c) An arbitrary magnetic field

along the propagation axis predicted by an 8-segmented-coil design. The solid blue line is the ideal

shape and the red line is the expected field if all eight segments are placed next to each other with

a particular current flowing in each segmented coil as shown in Fig. A.5 (a).

at a fixed current is simple since there is only one current to switch. The drawback is
that the field is fixed since the coil spacing cannot be modulated. The advantage of the
multi-segment design is that one can dynamically tune the field. The downside is that it
is complicated to feed in all those different currents.

To create a magnetic field with a particular shape along the memory cell we modified
a code originally written by Simon C. Bell in Mathematica that predicts the shape of the
solenoid for particular fields.

A.2.1 Single coil design

To generate a linear magnetic field we designed a solenoid more than twice as long as the
memory cell to reduce the end effects. The shape of the solenoid required to generate a
linear field is shown in Fig. A.3 (a). Fig. A.3 (b) shows the ideal linearly varying magnetic
field along the propagation axis (dotted line) and the expected field (red solid line) from
the solenoid design shown in Fig. A.3 (a).

For fast switching of current in the coils we used a resistor in series with a super-fast
solid-state switch. Fig. A.4 (a) and (b) show the switching circuit and the solid state
switch used in the circuit, respectively.
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Figure A.4: (a) Switching circuit and (b) solid state super fast switch used to switch the current

in the circuit. The switch was purchased from www.vsholding.com

A.2.2 Multiple coil design

A multiple coil was also designed to be used to perform the spectral manipulation exper-
iment [330]. This design was first created with the help of Pete Uhe. The key to this
design is to put different currents in the segments built nearly identical to each other. The
schematic coil design is shown in Fig. A.5 (a). The solid line in Fig. A.5 (b) shows an
arbitrary shape of the magnetic field expected from eight individual coils placed along the
memory. The blue points are the magnetic field measured at the centre of the coil along
the propagation axis.

A.3 Oven design for the filtering cell

An oven was designed for the filtering cell as shown in Fig. A.6(a). The aim of this design
was to reduce the air current at high temperatures around the cell windows that can affect
the mode matching of the homodyne detection.

A bifilar resistive wire was used as heater and designed such that the cell windows
became warmer than the middle of the cell to avoid Rb condensation on the windows.
The cell was mounted on two hollow cylindrical Teflon tubes to guide the laser beams.
This reduced the air current around the windows. The entire setup was placed inside
aluminium shielding that allowed us to fit cells with various lengths. The two holes in the
middle of the shielding were to guide the air current and to make the middle of the cell
colder than the windows.

A picture of the filtering cell is shown in Fig. A.6(b) in which the coupling field shone
from the left is absorbed and blue light is scattered. The reason for the blue scattered
light is excitation of Rb atoms to the 5D excited state and spontaneous emission of 420
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Figure A.6: (a) Schematic design of an oven for the filtering cell. (b) A picture of the filtering
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of the coupling field power.
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nm light. This phenomenon is only seen at very high temperatures (> 120◦C) where the
thermal energy of the atoms is high.
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Figure A.7: (a) Schematic experimental setup showing a repumping beam backward propagating

with linear polarisation. (b) Atomic level structure showing the control, probe and repumping

beam transitions. (c) The Raman absorption line with (i) and without (ii) the repumping beam.

The repumping also increases the incoherent absorption of the probe field.

A.4 The effect of re-pumping on storage

One of the differences between EIT and GEM is that in the case of EIT, due to resonant
interaction of the control field, populations are mostly pumped to the ground state, |1〉,
where the signal field is interacting. In GEM, however, off-resonant interaction of the
coupling field suggests the possibility of some remaining population in other atomic states.
An initial repumping can ensure that all population are in |1〉 to start with. We observed
a noticeable effect by applying a repumping beam to resonantly interact with 2S1/2, F =
2 → 5P3/2, F

′ = 2. This effect was observed in the setup shown in Fig. A.7 (a). The
repumping beam is counter-propagating with the signal and the coupling beams. The
coupling field which interacts with the sample long before the probe pulse arrives will play
the role of the repumping beam and move the population to either Fg = 1,mf = 1 or
Fg = 2,mf = 2. As shown in Fig. A.7 (b), a counter-propagating resonant beam will pump
most of the population from Fg = 2,mf = 2 to Fg = 1,mf = 1. This will considerably
enhance the optical depth of the sample. The Raman lines with and without repumping
beams are shown in Fig. A.7 (c). As can be seen, applying the repumping beam increases
the absorption. We note here that the repumping beam should be turned off during the
storage sequence in order to avoid further loss through spontaneous emission.
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A.5 Combining and separating beams using ring cavities

Fig. A.8 shows how beams with different frequencies are being combined or separated via
ring cavities. A laser beam going through the fibre-coupled EOM is frequency modulated
at 6.8 GHz. The “-1” sideband and carrier is filtered using mode-cleaner cavity 1(MCC1)
and “+1” sideband (+6.8 GHz) is transmitted through the cavity. The output of the
cavity is divided into 3 parts. The first part is used to lock the second MCC after going
through AOM1 and selecting the frequency-shifted beam. AOM 2, is used to generate
and shape the signal beam transmitted through the MCC 2. AOM 1 and AOM 2 have
different frequencies, and MCC2 is locked to the TEM01 mode, which allows transmission
of the signal field with the TEM00 mode at the AOM1 frequency. This is done to avoid
transmission of the coupling field through the cavity and also back-reflection of the locking
beam through the cavity from the detector. The last part of the beam is used as the LO
beam for homodyne detection (HD). The coupling field has a frequency difference of 6.8
GHz and is shaped via AOM 4. The coupling field is reflected from the MCC2 and together
with the signal beam is guided though the vapour cell.

A.6 Optimum storage

The storage of a light pulse can be optimised in two ways. The shape of the magnetic
field along the vapour cell can be designed in such a way to maximally absorb the input
light pulse. This is possible by producing a Raman absorption line that matches the
shape of the Fourier transformed input pulse. To generate such a Raman line, it requires
precise engineering of the field as well as precise switching of the field. Alternatively, the
input pulse shape can be optimised for storage by an iterative process similar to EIT
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Figure A.9: Fourier transform of an experimental Raman line broadened to 500 kHz

optimisation protocol [195]. In principle, the optimum shape of the input pulse should
match the Fourier transform of the broadened Raman absorption line, which in the ideal
case resembles the shape of a Sinc function. The Fourier transform of the broadened
Raman line (experimental) is shown in Fig. A.9.



Appendix B

Appendix B: AC Stark gradient

echo memory in cold atoms

In this appendix we discuss an alternate gradient-creation mechanism using the ac Stark
effect to provide an improvement in the flexibility of gradient-creation and field-switching
times. We propose this scheme in concert with a move to cold atoms (1 mK). These
temperatures would increase the storage times, and the small ensemble volumes would
enable large ac Stark shifts with reasonable laser power.

This idea has been investigated in detail by Ben Sparkes and the results of this work
appeared in the following article:

ac Stark gradient echo memory in cold atoms, B. M. Sparkes, M. Hosseini, G.
Hetet, P. K. Lam, and B. C. Buchler, Phys, Rev. A 82 043847 (2010).

B.1 Introduction

One option for improving gradient creation and control would be to move away from
magnetic fields, and the coils necessary to create them, to an ac Stark shift. This would
allow for an all-optically controlled quantum memory. This gradient-creation method was
first put forward by Kraus et al. [331]. Another option for improvement is to move from
warm to cold atoms. The low decoherence rates in cold atomic ensembles would allow
for longer storage times and large on-resonance optical depths, due to the increase in
density of the atoms. Implementing these improvements in concert would be beneficial as
the ac Stark effect is intensity-dependent and cold atoms can be induced to occupy small
volumes, reducing the necessary laser power.

B.2 Scheme

To change an initially Gaussian beam to one with an intensity profile requires a beam
shaper. These devices [for instance, deformable mirrors, phase plates, or liquid-crystal
spatial light modulators (LCSLMs)] can be highly efficient (> 0.9) and can be used to
create nearly any desired beam shape with a resolution on the order of 1000× 1000 pixels
for LCSLMs. This not only provides us with a method for optimising the ac-Stark laser
intensity profile, but would also allow for spectral manipulation of the pulse to be carried
out with the ability to produce complex gradients and switching arrangements.

To induce rephasing of the atomic dipoles, we must be able to invert the detunings of
the atoms. There are two ways to invert the gradient generated by the ac-Stark effect. The
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first method involves reversing the intensity profile along the ensemble I(z) → I(L − z).
This is equivalent to the field-switching method in which by reversing the intensity profile
about the centre of the trap (z = L/2), the detunings are also reversed about this point,
that is, δt(z) → δt(L− z). This process involves no change in the frequency of the stored
pulse with respect to the input pulse.

The second method involves switching the polarisation of the field q → −q while
keeping the same intensity gradient. This is a slightly more complicated process as the
detunings are no longer reversed around the centre of the ensemble, with δt(z) → δt(z).
This method still results in an echo being produced; however, the stored pulse will now
be frequency shifted with respect to the input pulse. This is because a switch from
δt(z) → δt(z) is equivalent to a switch about the centre with an offset added. In a three-
level system, this frequency shift can be overcome by altering the coupling-field frequency
in such a way as to cancel the initial shift.

The first switching method would allow for different gradients but involves much longer
switching times (on the order of milliseconds for LCSLMs). The second switching method
would suggest itself as the easiest to implement as all that is required to switch δ(z) would
be a Pockels cell, which has switching times down to nanoseconds. It would not, however,
allow for different frequency gradients and consequent filtering or manipulation of the
pulse.

The envisaged experiment is shown in Fig. B.1. The combination of beam shapers
(BShs) and Pockels cells (PCs) shown in Fig. B.1 (a) allows for flexibility in beam shaping
and fast switching times. If no spectral filtering is desired, then only PC2 and BSh1 are
needed, with the beam shaper determining the shape of the gradient and the polarisation
switch causing the rephasing of the atoms. To allow different gradients to be used, an
extra Pockels cell PC1 and beam shaper BSh2 can be used. In this case, the second
gradient can be prepared in advance and PC1 used to select which beam shaper to use.
The acousto-optic modulator (AOM) can be used to switch the ac Stark beam on or off
to decrease the scattering rate due to this field.

A critical parameter that must be determined is the wavelength of the ac Stark laser to
be used, as this will set a limit on the maximum frequency splitting possible for a given laser
power and intensity distribution, as well as the scattering rate of the system. To optimise
the wavelength, one must balance the desired behaviour (i.e., frequency splitting) with the
undesired effect of light scattering by the atoms.

We find that memory bandwidths on the order of MHz can be produced with exper-
imentally achievable laser powers and trapping volumes, with high precision in gradient
creation and switching times on the order of nanoseconds possible. By looking at the
different decoherence mechanisms present in this system, we determine that coherence
times on the order of tens of milliseconds are possible, as are delay-bandwidth products
of approximately 50 and efficiencies over 90%.
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Figure B.1: The proposed experiment. (a) Envisioned setup for a GEM experiment using cold
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been taken to be 1 cm and R = 10 µm, which are determined by the radius of the trapping laser.
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Appendix C: XMDS programming

The eXtensible Multi-Dimensional Simulator (xmds) is open source software, developed
by P. T. Cochrane, G. Collecutt, P. D. Drummond, and J. J. Hope, released under the
GNU General Public License, and is written to assist in the solution of various differen-
tial equations. A high-level description of the problem at hand is written in XML (the
extensible markup language) and XMDS transforms this into C language code. This code
can then be compiled by a C/C++ compiler to produce a binary executable which solves
the problem about as quickly and efficiently as might be achieved with code written by an
expert. In this appendix we provide two sample codes written in XMDS (version 1 and 2)
used to simulate an atomic memory which works based on the gradient echo technique.

C.1 Sample XMDS script

A sample xmds code provided below was used to solve the propagation of an electric field
in the GEM system. This code was modified and used to simulate many other problems
related to the Λ-GEM scheme.

<?xml version=”1.0”?>
<!−− Example Simulations illustrating GEM Storage in Three Level Atom −− >
< author > Originally written by G. Hetet and modified by M. Hosseini < /author >

< simulation >
<!−− Each xmds simulation is enclosed within a set of < simulation > tags −− >

< error check > yes < /error check >
<!−− Optional. Whether or not to run the simulation at the half-time step as well as at
the full time step and give the difference between the results. Defaults to yes −− >

< prop dim > z < /prop dim >

<!−− The propagation dimension of the cross propagating vector −− >

<!− − In the following part, globals are used to define any numerical constants that
are useful to have globally available to all sections of code−− >

< globals >
<![CDATA[
const double g = 1.0;
const double sample length = 1.0;//Length of the sample
const double time input = 3;//mm
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const double sigma = 1.5;
const double inp hgt = 1.0;
const double gama = 1.0;
const double eta = 2;
const double omc = 12.0;
const double gama0 = 0.001;//Normalzied to gamma
const double gamac = 0.001;//Normalzied to gamma
const double timeswitchz = 10.0;
const double N = 5200;
const double delta = 700.0;
]] >
< /globals >

<! − − The following part is a container for the other information that we are using
to describe the field. If no name is given for the field, it defaults to “main”. The vector is
written in terms of the dimensions of the field. It is possible to define other vectors that
are part of the field, but the vector of the field that is integrating is the main vector−− >

< field >
< dimensions > t < /dimensions >
< lattice > 12000 < /lattice >
< domains > (0.0, 20.0) < /domains >
< samples > 1 1 < /samples >

< vector >
< name > main < /name >
< type > complex < /type >
< components > E < /components >
E = inp hgt ∗ exp(−(t− time input) ∗ (t− time input)/(sigma ∗ sigma));
< /vector >
<! − −The CDATA section gives the C code version of what equations of motion
describes.−− >

< vector >
< name > cross < /name >
< type > complex < /type >
< components > alpha12alpha13 < /components >
<![CDATA[
alpha12 = 0.0;//atomic coherence
alpha13 = 0.0;//atomic coherence
]] >
< /vector >

< /field >

<! − −In the sequence section we tell xmds how to actually perform the integration
of the field. It may have as many of the other sub-elements as desired to perform the
calculation. An algorithm tag is optional and will default to SIEX for stocastic simulations
and to RK4EX for non-stochastic simulations. The length of the integration interval, the
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total number of steps to take, and the number of samples for each output moment to take
within these steps are denoted by the < interval >, < lattice > and < samples > tags
respectively. The differential equation is described in terms of the C language code that
xmds is to use to evolve the solution forward−− >

< sequence >
< integrate >
< algorithm > RK4EX < /algorithm >
< interval > sample length < /interval >
< lattice > 800 < /lattice >
< samples > 400 400 < /samples >
< vectors > maincross < /vectors >
<![CDATA[
dE dz = i ∗ g ∗N ∗ (alpha13);
]] >
< cross propagation >
< vectors > cross < /vectors >
< prop dim > t < /prop dim >
<![CDATA[
double sw = (t < timeswitchz ? −1.0 : 1.0);
dalpha13 dt = (−1.0 ∗ gama − 1.0 ∗ gama0/2 − gamac/2 − i ∗ delta) ∗ alpha13 + i ∗ g ∗
E + i ∗ (omc) ∗ alpha12;
dalpha12 dt = (−1.0 ∗ gama0 − gamac − i ∗ (sw ∗ eta ∗ (z − sample length/2) + (omc ∗
omc)/delta)) ∗ alpha12 + i ∗ alpha13 ∗ (omc);
]] >
< /cross propagation >
< /integrate >
< /sequence >

<!−−Output element: The < output > element is just a container for the other tags
that specify what is to be output. The < filename > tag (fairly obviously) specifies the
filename of the output data file. This tag is optional and defaults to the simulation name.
The < group > tag contains a description (and to a degree the definition) of the moments
of the output data. −− >

< outputformat = ”binary” >

< group >
< sampling >
< type > complex < /type >
< lattice > 400 < /lattice ><!−−fort−− >
< moments > probereal probeimag coupling < /moments >
<![CDATA[
probereal = real(E);
probeimag = imag(E);

]] >
< /sampling >
< /group >
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< group >
< sampling >
< vectors > maincross < /vectors >
< type > complex < /type >
< lattice > 400 < /lattice ><!−−fort−− >
< moments > alpreal12 alpimag12 alpreal13 alpimag13 < /moments >
<![CDATA[
alpreal12 = real(alpha12);
alpimag12 = imag(alpha12);
alpreal13 = real(alpha13);
alpimag13 = imag(alpha13);
]] >
< /sampling >
< /group >

< /output >
< /simulation >

C.2 Sample XMDS2 script

XMDS2 is the second version of xmds developed to simulate more complicated systems.
We used this version to simulate counter-propagating fields inside a GEM system. A
sample code describing counter-propagation fields inside a three-level GEM is provided
below.

<?xmlversion = ”2.0” encoding = ”UTF − 8”? >
<simulation xmds-version=”2” >
< name > thlcp < /name >
< author > M.Hosseini < /author >
< description >
Three level atom example simulation. Illustrates a counter-propagating fields.
< /description >

< features >
< benchmark/ >
< error check/ >
< bing/ >
< fftwplan = ”patient”/ >
< globals >
<![CDATA[
const real g = 1;
const real samplelength = 1; //cm
const real time input = 2;
const real sigma = 0.5;
const real inp hgt = 1;
const real gama = 1;
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const real eta = 500;
const real om = 30;
const real gama0 = 0;
const real gamac = 0.0;
const real w12 = 1.0;
const real timeswitchz = 5.0;
const real timeswitchc = 5.0;
const real N = 20000;
const real delta = 600;
]] >
< /globals >
< /features >

<! − − In the following part, all of the dimensions used in the problem are defined,
but in this case, only the dimensions of “time” and “z” are needed −− >

< geometry >
< propagation dimension > t < /propagation dimension >
< transverse dimensions >
< dimension name=”z” lattice=”16000” domain=”(0,1)” / >
< /transverse dimensions >
< /geometry >

<!−− In the following part “b” stands for the backward propagating field −− >

< vector name=”main” initial space = ”z” type=”complex”>
< components > alpha12 alpha13 alphab13 alphab12 < /components >
< initialisation >
<![CDATA[
alpha12 = 0;
alpha13 = 0;
alphab13 = 0;
alphab12 = 0;
]] >
< /initialisation >
< /vector >

< vector name = ”cross1” initial space = ”z” type = ”complex” >

< components >
E
< /components >
< /vector >

< vector name = ”cross2” initial space = ”z” type = ”complex” >

< components >
Eb
< /components >
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< /vector >

<!−− Here we define what differential equations need to be solved and what algorithm
we want to use −− >

H < sequence >
< integrate algorithm = ”ARK89” interval = ”10” steps = ”8000”
tolerance = ”1.0e − 6” >
< samples > 400 400 < /samples >

< operators >
< operatorkind = ”cross propagation” algorithm = ”RK4” propagation dimension =
”z” >
< integration vectors > cross1 < /integration vectors >
<!−− You can have a dependencies tag here. −− >
< dependencies > main < /dependencies >
< boundary conditionkind = ”left” >
<![CDATA[

E = inp hgt ∗ exp(−(t− time input) ∗ (t− time input)/(2 ∗ sigma ∗ sigma));

]] >
< /boundary condition >
<![CDATA[
dE dz = i ∗ g ∗N ∗ (alpha13);
]] >
< /operator >
< operatorkind = ”cross propagation” algorithm = ”RK4” propagation dimension =
”z” >
< integration vectors > cross2 < /integration vectors >
<!−− You can have a dependencies tag here. −− >
< dependencies > main < /dependencies >
< boundary conditionkind = ”right” >
<![CDATA[
Eb = 0;
]] >
< /boundary condition >
<![CDATA[
dEb dz = −i ∗ g ∗N ∗ (alphab13);

]] >
< /operator >

< integration vectors > main < /integration vectors >

<![CDATA[
real swz = (t < timeswitchz ? − 1.0 : 1.0);
real omc = om ∗ (t < timeswitchc ? 1.0 : 0.0);



§C.2 Sample XMDS2 script 211

real omcb = om ∗ (t < timeswitchc ? 0.0 : 1.0);

dalpha12 dt = (−1.0 ∗ gama0 − gamac + i ∗ swz ∗ eta ∗ (z − samplelength/2.0) − i ∗
(omc ∗ omc+ omcb ∗ omcb)/delta) ∗ (alphab12)+ i ∗alpha13∗ (omc)+ i ∗ omcb ∗alphab13 ∗
(cos(2 ∗ w12 ∗ t) + i ∗ sin(2 ∗ w12 ∗ t));
dalphab12 dt = (−1.0 ∗ gama0 − gamac − i ∗ swz ∗ eta ∗ (z − samplelength/2.0) − i ∗
(omc ∗ omc+ omcb ∗ omcb)/delta) ∗ (alpha12) + i ∗ omcb ∗ alphab13+ i ∗ alpha13 ∗ (omc) ∗
(cos(2 ∗ w12 ∗ t)− i ∗ sin(2 ∗ w12 ∗ t));
dalphab13 dt = (−gama− 1.0 ∗ gama0− gamac/2− i ∗ delta) ∗ alphab13 + i ∗ g ∗Eb+ i ∗
(omcb) ∗ (alphab12);
dalpha13 dt = (−gama − 1.0 ∗ gama0 − gamac/2 − i ∗ delta) ∗ alpha13 + i ∗ g ∗ E + i ∗
(omc) ∗ (alpha12);
]] >
< /operators >
< /integrate >
< /sequence >

< output format = ”binary” filename = ”thlcp.xsil” >
< group >
< samplingbasis = ”z(800)” initial sample = ”yes” >
< moments > alpreal12 alpimag12 alprealb12 alpimagb12 alpreal13 alpimag13 <
/moments >
< dependencies > main < /dependencies >
<![CDATA[
alpreal12 = (alpha12 + alphab12).Re();
alpimag12 = (alpha12 + alphab12).Im();
alpreal13 = alpha13.Re();
alpimag13 = alpha13.Im();
]] >
< /sampling >
< /group >
< group >
< samplingbasis = ”z(800)” initial sample = ”no” >
< moments > probereal probeimag proberealb probeimagb < /moments >
< dependencies > cross1 cross2 < /dependencies >
<![CDATA[
probereal = E.Re();
probeimag = E.Im();
proberealb = Eb.Re();
probeimagb = Eb.Im();
]] >
< /sampling >
< /group >
< /output >
< /simulation >

More information about XMDS programming can be found on http://www.xmds.org/



212 Appendix C: XMDS programming



Bibliography

[1] P. Lambropoulos and D. Petrosyan, Funamentals of Quantum Optics and Quantum
Information (Springer, 2006). 9, 10, 25, 34, 36

[2] D. A. Steck, Quantum and Atom Optics (available online at
http://steck.us/teaching, 2007). 9, 26, 28, 30, 31, 86, 193, 194

[3] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beat-
ing the standard quantum limit, Science 306, 1330 (2004). 9

[4] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Observation
of squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev.
Lett. 55, 2409 (1985). 9

[5] L.-A. Wu, M. Xiao, and H. J. Kimble, Squeezed states of light from an optical
parametric oscillator, J. Opt. Soc. Am. B 4, 1465 (1987). 9, 16

[6] M. D. Levenson, R. M. Shelby, and S. H. Perlmutter, Squeezing of classical noise
by nondegenerate four-wave mixing in an optical fiber, Opt. Lett. 10, 514 (1985). 9

[7] P. Grangier, R. E. Slusher, B. Yurke, and A. LaPorta, Squeezed-light–enhanced
polarization interferometer, Phys. Rev. Lett. 59, 2153 (1987). 9, 16

[8] P. Grangier, J. A. Levenson, and J.-P. Poizat, Quantum non-demolition measure-
ments in optics, Nature 396, 537 (1998). 10
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[80] J. Tidström, P. Jänes, and L. M. Andersson, Delay-bandwidth product of electro-
magnetically induced transparency media, Phys. Rev. (2007). 48

[81] G. Campbell, A. Ordog, and A. I. Lvovsky, Multimode electromagnetically induced
transparency on a single atomic line, New J. of Phys. 11, 106021 (2009). 48

[82] M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, Storing images
inwarm atomic vapor, Phys. Rev. Lett. 100, 223601 (2008). 48

[83] G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, Characterization of
electromagnetically-induced-transparency-based continuous-variable quantum mem-
ories, Phys. Rev. A 77, 012323 (2008). 48, 73, 173



218 Bibliography

[84] M. T. L. Hsu et al., Quantum study of information delay in electromagnetically
induced transparency, Phys. Rev. Lett. 97, 183601 (2006). 48

[85] K. Honda et al., Storage and retrieval of a squeezed vacuum, Phys. Rev. Lett. 100,
093601 (2008). 48

[86] M. D. Eisaman et al., Electromagnetically induced transparency with tunable single-
photon pulses, Nature 438, 837 (2005). 49

[87] T. Chaneliere et al., Storage and retrieval of single photons transmitted between
remote quantum memories, Nature 438, 834 (2005). 49, 63

[88] M. D. Eisaman et al., Shaping quantum pulses of light via coherent atomic memory,
Phys. Rev. Lett. 93, 233602 (2004). 49

[89] K. S. Choi, H. Deng, J. Laurat1, and H. J. Kimble, Mapping photonic entanglement
into and out of a quantum memory, Nature 452, 67 (2008). 49

[90] J. J. Longdell, E. Fraval, M. J. Sellars, and N. B. Manson, Stopped light with storage
times greater than one second using electromagnetically induced transparency in a
solid, Phys. Rev. Lett. 95, 063601 (2005). 50, 162, 163

[91] H. Zhang et al., Preparation and storage of frequency-uncorrelated entangled pho-
tons from cavity-enhanced spontaneous parametric downconversion, Nat. Phot. 5,
628 (2010). 50, 161, 163, 166, 167

[92] M. Lettner et al., Remote entanglement between a single atom and a bose-einstein
condensate, Phys. Rev. Lett. 106, 210503 (2011). 50

[93] V. Boyer, C. F. McCormick, . E. Arimondo, 1, and P. D. Lett, Ultraslow propagation
of matched pulses by four-wave mixing in an atomic vapor, Phys. Rev. Lett. 99,
143601 (2007). 50

[94] A. M. Marino, R. C. Pooser, V. Boyer, and P. D. Lett, Tunable delay of einstein–
podolsky–rosen entanglement, Nature 457, 859 (2009). 50, 51, 143, 163

[95] R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, Four-wave-mixing stopped light
in hot atomic rubidium vapour, Nature Photon 3, 103 (2009). 50

[96] B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurasek, and E. S. Polzik, Experimental
demonstration of quantum memory for light, Nature 432, 482 (2004). 51, 82

[97] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A 47, 5138 (1993). 52

[98] C. A. Muschik, K. Hammerer, E. S. Polzik, and J. I. Cirac, Efficient quantum
memory and entanglement between light and an atomic ensemble using magnetic
fields, Phys. Rev. A 73, 062329 (2006). 52

[99] J. F. Sherson et al., Quantum teleportation between light and matter, Nature 443,
557 (2006). 52, 83

[100] K. Jensen et al., Quantum memory for entangled continuous-variable states, Nat.
Phys. 7, 13 (2010). 52, 53, 161, 163



Bibliography 219

[101] K. F. Reim et al., Towards high-speed optical quantum memories, Nat. Phot. 4,
218 (2010). 54

[102] K. F. Reim et al., Single-photon-level quantum memory at room temperature, Phys.
Rev. Lett. 107, 053603 (2011). 54, 162, 163

[103] E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950). 54

[104] I. D. Kurnit, N. Abella, and S. R. Hartmann, Observation of a photon echo, Phys.
Rev. Lett 13, 567 (1964). 54

[105] U. G. Kopvil’em and V. R. Nagibarov, (in russian), Fiz. Met. Metalloved 2, 313
(1963). 54

[106] T. W. Mossberg, A. Flusberg, R. Kachru, and S. R. Hartmann, Total scattering
cross section for na on he measured by stimulated photon echoes, Phys. Rev. Lett
42, 1665 (1979). 54

[107] M. K. Kim and R. Kachru, Multiple-bit long-term data storage by backward-
stimulated echo in eu3+:yalo3, Opt. Lett. 14, 423 (1989). 54

[108] T. W. Mossberg, Time-domain frequency-selective optical data storage, Opt. Lett.
7, 77 (1982). 54

[109] K. Heshami, N. Sangouard, J. Minár, H. de Riedmatten, and C. Simon, Precision re-
quirements for spin-echo-based quantum memories, Phys. Rev. A 83, 032315 (2011).
54

[110] W. Tittel et al., Photon-echo quantum memory in solid state systems, Laser and
Photon. Rev. , 1 (2009). 54

[111] H. Lin, T. Wang, and T. Mossberg, Demonstration of 8-gbit per in areal storage
density based on swept-carrier frequency-selective optical memory, Opt. Lett. 20,
1658 (1995). 55

[112] K. Merkel et al., Multi-gigahertz radar range processing of baseband and rf carrier
modulated signals in tm:yag, J. Lumin. 107, 62 (2004). 55

[113] M. U. Staudt et al., Interference of multimode photon echoes generated in spatially
separated solid-state atomic ensembles, Phys. Rev. Lett. 99, 173602 (2007). 55, 56

[114] M. U. Staudt et al., Fidelity of an optical memory based on stimulated photon
echoes, Phys. Rev. Lett. 98, 113601 (2007). 55

[115] B. S. Ham, Ultralong quantum optical data storage using an optical locking tech-
nique, Nat. Phot. 3, 518 (2009). 55

[116] B. Ham and J. Hahn, Ultralong photon echo storage using optical locking,
arXiv:0912.2756v2 [quant-ph] (2009). 55

[117] S. A. Moiseev and B. S. Ham, Photon-echo quantum memory with efficient multi-
pulse readings, Phys. Rev. Lett. 87, 173601 (2001). 56, 57

[118] Y. Rostovtsev, Z. Sariyianni, and M. O. Scully, Photon echo pulse shape storage,
Laser Phys 12, 1148 (2002). 56



220 Bibliography

[119] S. A. Moiseev, V. F. Tarasov, and B. S. Ham, Quantum memory photon echo-like
techniques in solids, J. Opt. B: Quantum Semiclassical Opt. 5, S497 (2003). 56, 57

[120] S. A. Moiseev and M. I. Noskov, The possibilities of the quantum memory realization
for short pulses of light in the photon echo technique, Laser Phys. Lett. 1, 303 (2004).
56

[121] N. Sangouard, C. Simon, M. Afzelius, and N. Gisin, Analysis of a quantum memory
for photons based on controlled reversible inhomogeneous broadening, Phys. Rev. A
75, 032327 (2007). 57, 68

[122] A. L. Alexander, J. J. Longdell, M. J. Sellars, and N. B. Manson, Photon echoes
produced by switching electric fields, Phys. Rev. Lett. 96, 043602 (2006). 57

[123] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Multi-mode quantum
memory based on atomic frequency combs, Phys. Rev. A 79, 052329 (2009). 58

[124] J. Nunn et al., Multimode memories in atomic ensembles, Phys. Rev. Lett. 101,
260502 (2008). 58, 130

[125] H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, A solid-state
light–matter interface at the single-photon level, Nature 456, 773 (2008). 58

[126] T. Chaneliere, M. Afzelius, and J.-L. L. Gouet, Efficient light storage in a crystal
using an atomic frequency comb, New J. of Phys. 12, 023025 (2010). 58

[127] M. Afzelius et al., Demonstration of atomic frequency comb memory for light with
spin-wave storage, Phys. Rev. Lett. 104, 040503 (2010). 58

[128] A. Amari et al., Towards an efficient atomic frequency comb quantum memory, J
Lumin 130, 1579 (2010). 58, 125, 162

[129] C. Clausen et al., Quantum storage of photonic entanglement in a crystal, Nature
469, 508 (2011). 58, 161, 163, 165

[130] E. Saglamyurek et al., Broadband waveguide quantum memory for entangled pho-
tons, Nature 469, 512 (2011). 58, 59, 161, 162, 163, 165

[131] S. A. Moiseev and J.-L. L. Gouet, Rephasing processes and quantum memory for
light: reversibility issues and how to fix them, arXiv:1108.6169v1 (2011). 59

[132] D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, Slowing and stopping
light using an optomechanical crystal array, New J. of Phys. 13, 023003 (2011). 60

[133] A. H. Safavi-Naeini et al., Electromagnetically induced transparency and slow light
with optomechanics, Nature 472, 69 (2011). 61

[134] S. Weis et al., Optomechanically induced transparency, Science 330, 1520 (2010).
61

[135] V. Fiore et al., Storing optical information as a mechanical excitation in a silica
optomechanical resonator, Phys. Rev. Lett. 107, 133601 (2011). 61



Bibliography 221

[136] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long-distance quantum com-
munication with atomic ensembles and linear optics, Nature 414, 413 (2001). 61,
161

[137] K. S. Choi, A. Goban, S. B. Papp, and S. J. van Enk andH. J. Kimble, Entanglement
of spin waves among four quantum memories, Nature 468, 412 (2010). 63, 165

[138] C. W. Chou et al., Measurement-induced entanglement for excitation stored in
remote atomic ensembles, Nature 438, 828 (2005). 63, 161

[139] C. Simon et al., Quantum repeaters with photon pair sources and multimode mem-
ories, Phys. Rev. Lett. 98, 190503 (2007). 63

[140] B. Zhao, Z.-B. Chen, Y.-A. C. andJorg Schmiedmayer, and J.-W. Pan, Robust cre-
ation of entanglement between remote memory qubits, Phys. Rev. Lett. 98, 240502
(2007). 63, 161

[141] R. Zhao et al., Long-lived quantum memory, Nature Photon 5, 100 (2009). 63

[142] B. Zhao et al., A millisecond quantum memory for scalable quantum networks,
Nature Photon 5, 95 (2009). 63

[143] Y.-A. Chen et al., Memory-built-in quantum teleportation with photonic and atomic
qubits, Nat. Phys. 4, 103 (2008). 63, 161

[144] S. Moiseev and S. Kroll, Complete reconstruction of the quantum state of a single-
photon wave packet absorbed by a doppler-broadened transition, Phys. Rev. Lett.
87, 173601 (2001). 68

[145] M. Nilsson and S. Kroll, Solid state quantum memory using complete absorption
and re-emission of photons by tailored and externally controlled inhomogeneous
absorption profiles, Opt. Commun. 247, 393 (2005). 68

[146] S. A. Moiseev, V. F. Tarasov, and B. S. Ham, Quantum memory photon echo-like
techniques in solids, Journal of Optics B: Quantum and Semiclassical Optics 5, S497
(2003). 68

[147] A. Alexander, J. Longdell, M. Sellars, and N. Manson, Photon echoes produced by
switching electric fields, Phys. Rev. Lett. 96, 043602 (2006). 68

[148] G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Electro-
optic quantum memory for light using two-level atoms, Phys. Rev. Lett. 100, 023601
(2008). 68

[149] M. Hedges, J. Longdell, Y. Li, and M. Sellars, Efficient quantum memory for light,
Nature 465, 1052 (2010). 68, 125, 161, 162, 163, 165, 169

[150] J. J. Longdell, G. Hetet, P. K. Lam, and M. J. Sellars, Analytic treatment of
controlled reversible inhomogeneous broadening quantum memories for light using
two-level atoms, Phys. Rev. A 78, 032337 (2008). 68

[151] G. Hetet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Multimodal
properties and dynamics of gradient echo quantum memory, Phys. Rev. Lett. 101,
203601 (2008). 68, 94, 95, 101, 113, 130, 184



222 Bibliography

[152] J. J. Longdell, G. Hetet, P. K. Lam, and M. J. Sellars, Analytic treatment of
controlled reversible inhomogeneous broadening quantum memories for light using
two-level atoms, Phys. Rev. A 78, 032337 (2008). 70, 71, 102, 110, 126, 135

[153] G. Hetet, Quantum Memories for Continuous Variable States of Light in Atomic
Ensembles, PhD thesis, The Australian National University, 2008. 74

[154] G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Electro-
optic quantum memory for light using two-level atoms, Phys. Rev. Lett. 100, 023601
(2008). 74, 87, 88, 103, 104

[155] B. M. Sparkes, M. Hosseini, G. Hétet, P. K. Lam, and B. C. Buchler, An ac stark
gradient echo memory in cold atoms, Phys. Rev. A 82, 043847 (2010). 76, 192

[156] M. Hosseini, B. M. Sparkes, G. Campbell, B. C. Buchler, and P. K. Lam, High
efficiency coherent optical memory with warm rubidium vapour, Nat. Commun. 2,
174 (2010). 77, 162, 163

[157] M. Erhard and H. Helm, Buffer-gas effects on dark resonances: Theory and experi-
ment, Phys. Rev. A 63, 043813 (2001). 77, 80, 81

[158] A. Javan, O. Kocharovskaya, H. Lee, and M. O. Scully, Narrowing of electromagnet-
ically induced transparency resonance in a doppler-broadened medium, Phys. Rev.
A 66, 013805 (2002). 77

[159] G. T. Purves, Absorption And Dispersion In Atomic Vapours: Applications To
Interferometery, PhD thesis, Department of Physics University of Durham, 2006.
78

[160] M. Shuker et al., Angular dependence of dicke-narrowed electromagnetically induced
transparency resonances, Phys. Rev. A 76, 023813 (2007). 79, 128, 147

[161] M. D. Rotondaro and G. P. Perram, Collisional broadening and shift of the rubidium
d1 and d2 lines (2s12 52p12, 52p32) by rare gases, h2, d2, n2, ch4 and cf4, J. Quant.
Spec. Rad. Trans. 57, 497 (1997). 81, 147

[162] W. Happer, Optical pumping, Rev. Mod. Phys. 44 (1972). 81, 82

[163] R. H. Dicke, The effect of collisions upon the doppler width of spectral lines, Phys.
Rev. 89, 472 (1953). 82

[164] G. Dutier et al., Collapse and revival of a dicke-type coherent narrowing in a sub-
micron thick vapor cell transmission spectroscopy, Euro. Phys. Letters 63, 35 (2003).
82

[165] A. Nagel, C. Affolderbach, S. Knappe, and R. Wynands, Influence of excited-state
hyperfine structure on ground-state coherence, Phys. Rev. A 61, 012504 (1999). 82

[166] J. Vanier, M. W. Levine, D. Janssen, and M. Delaney, Contrast and linewidth of the
coherent population trapping transmission hyperfine resonance line in 87rb: Effect
of optical pumping, Phys. Rev. A 67, 065801 (2003). 82

[167] J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards
(IOP Publishing Ltd., 1989). 82



Bibliography 223

[168] M. V. Balabas et al., High quality anti-relaxation coating material for alkali atom
vapor cells, Opt. Exp. 18, 5825 (2010). 83, 162, 174

[169] M. V. Balabas, T. Karaulanov, M. P. Ledbetter, and D. Budker, Polarized alkali-
metal vapor with minute-long transverse spin-relaxation time, Phys. Rev. Lett. 105,
070801 (2010). 83, 162

[170] J. E. Thomas and W. W. Quivers, Transit-time effects in optically pumped coupled
three-level systems, Phys. Rev. A 22, 2115 (1980). 83

[171] A. V. Taichenachev et al., Nonlinear-resonance line shapes: Dependence on the
transverse intensity distribution of a light beam, Phys. Rev. A 69, 024501 (2004).
83

[172] D. A. Steck, Rubidium 87 d line data, available online at http://steck.us/alkalidata/
80, 023425 (2009). 84

[173] E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, Buffer-gas-induced
absorption resonances in rb vapor, Phys. Rev. A 70, 033806 (2004). 86

[174] W. H. Bragg, Faraday’s diary, Rev. Mod. Phys. 3, 449 (1931). 86

[175] A. B. Matsko, I. Novikova, M. S. Zubairy, and G. R. Welch, Nonlinear magneto-
optical rotation of elliptically polarized light, Phys. Rev. A 67, 043805 (2003). 87

[176] G. Hétet et al., Photon echoes generated by reversing magnetic field gradients in a
rubidium vapor, Opt. Lett. 33, 2323 (2008). 87

[177] M. I. Stockman, Nanoplasmonics: The physics behind the applications, Phys. Today
64, 39 (2011). 91

[178] J. Kasprzak et al., Bose-einstein condensation of exciton polaritons, Nature 443,
409 (2006). 91

[179] S. A. Moiseev and N. M. Arslanov, Efficiency and fidelity of photon-echo quantum
memory in an atomic system with longitudinal inhomogeneous broadening, Phys.
Rev. A 78, 023803 (2008). 94, 101, 102, 103

[180] G. Collecutt, P. D. Drummond, P. Cochrane, and J. J. Hope, extensi-
ble multi-dimensional simulator, Documentation and source code available from
http://www.xmds.org . 95, 121, 187

[181] G. Hetet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Electro-
optic quantum memory for light using two-level atoms, Phys. Rev. Lett. 100, 023601
(2008). 103

[182] G. Campbell, A. Ordog, and A. I. Lvovsky, Multimode electromagnetically induced
transparency on a single atomic line, New J. of Phys. 11, 106021 (2009). 104

[183] M. Hosseini et al., Coherent optical pulse sequencer for quantum applications, Na-
ture 461, 241 (2009). 113

[184] M. Shuker et al., Ramsey-like measurement of the decoherence rate between zeeman
sub-levels, Phys. Rev. A 78, 063818 (2008). 113



224 Bibliography

[185] G. Hetet, J. J. Longdell, M. J. Sellars, P. K. Lam, and B. C. Buchler, Multimodal
properties and dynamics of gradient echo quantum memory, Phys. Rev. Lett. 101,
203601 (2008). 115, 130

[186] A. Andre and M. D. Lukin, Manipulating light pulses via dynamically controlled
photonic band gap, Phys. Rev. Lett. 89, 143602 (2002). 117, 118

[187] M. Bajcsy, A. S. Zibrov, and M. D. Lukin, Stationary pulses of light in an atomic
medium, Nature 426, 638 (2003). 118

[188] Y.-W. Lin et al., Stationary light pulses in cold atomic media and without bragg
gratings, Phys. Rev. Lett. 102, 213601 (2009). 118

[189] S. A. Moiseev and B. S. Ham, Quantum manipulation of two-color stationary light:
Quantum wavelength conversion, Phys. Rev. A 73, 033812 (2006). 118

[190] S. A. Moiseev and B. S. Ham, Quantum control and manipulation of multi-color
light fields, Opt. Spectrosc. 103, 210 (2007). 118

[191] F. Carreño and M. Antón, Coherent control of light pulses stored in a gradient echo
memory, Opt. Commun. 284, 3154 (2011). 119

[192] S. Nakamura, Y. Ueno, and K. Tajima, Femtosecond switching with semiconductor-
optical-amplifier-based symmetric mach – zehnder-type all-optical switch, App.
Phys. Lett. 78, 3929 (2001). 122

[193] R. R. P. . M. L. Vilson R. Almeida, Carlos A. Barrios, All-optical control of light
on a silicon chip, Nature 431, 1081 (2004). 122

[194] X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, Picosecond and low-power all-
optical switching based on an organic photonic-bandgap microcavity, Nat. Phot. 2,
185 (2008). 122

[195] N. B. Phillips, A. V. Gorshkov, and I. Novikova, Optimal light storage in atomic
vapor, Phys. Rev. A 78, 023801 (2008). 125, 145, 146, 162, 200

[196] E. E. Mikhailov, I. Novikova, Y. V. Rostovtsev, and G. R. Welch, Buffer-gas-induced
absorption resonances in rb vapor, Phys. Rev. A 70, 033806 (2004). 125

[197] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Multimode quantum mem-
ory based on atomic frequency combs, Phys. Rev. A 79, 052329 (2009). 130

[198] K. Surmacz et al., Efficient spatially resolved multimode quantum memory, Phys.
Rev. A 78, 033806 (2008). 130

[199] S. A. Moiseev, S. N. Andrianov, and F. F. Gubaidullin, Efficient multimode quantum
memory based on photon echo in an optimal qed cavity, Phys. Rev. A 82, 022311
(2010). 130

[200] I. Usmani, M. Afzelius, H. de Riedmatten, and N. Gisin, Mapping multiple photonic
qubits into and out of one solid-state atomic ensemble, Nat Comms 1, 1 (2010). 130
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[295] S. Rebić et al., Polarization phase gate with a tripod atomic system, Phys. Rev. A
70, 032317 (2004). 177, 179, 180

[296] K. Nemoto and W. J. Munro, Nearly deterministic linear optical controlled-not
gate, Phys. Rev. Lett. 93, 250502 (2004). 177, 188

[297] W. E. Williams, M. Soileau, and E. W. V. Stryland, Optical switching and n2
measurements in cs2, Opt. Commun. 50, 256 (1984). 177

[298] W. J. Munro, K. Nemoto, and T. P. Spiller, Weak nonlinearities: a new route to
optical quantum computation, New J. of Phys. 7, 137 (2005). 178, 188, 189

[299] H. J. Briegel and R. Raussendorf, Persistent entanglement in arrays of interacting
particles, Phys. Rev. Lett. 86, 910 (2001). 178, 179

[300] R. Raussendorf and H. J. Briegel, A one-way quantum computer., Phys. Rev. Lett.
86, 5188 (2001). 178

[301] Q. Lin and B. He, Efficient generation of universal two-dimensional cluster states
with hybrid systems, Phys. Rev. A 82, 022331 (2010). 179

[302] S. G. R. Louis, K. Nemoto, W. J. Munro, and T. P. Spiller, Weak nonlinearities and
cluster states, Phys. Rev. A 75, 042323 (2007). 179
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