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Abstract

English

We present in this thesis a study of the spatial properties of light at the quantum level.

More specifically, we focus on techniques to manipulate the quantum fluctuations of dif-

ferent degrees of freedom in a beam’s transverse plane, and on the quantum protocols we

can implement using these specific fluctuations.

We begin by providing an experimental characterization of different methods to manipu-

late the quantum fluctuations of multiple transverse profiles, or modes, in one beam. While

manipulating the quantum fluctuations of a mode, a process known as squeezing, for a

single mode beam can be performed very efficiently using a conventional optical paramet-

ric oscillator, we present implementations of different, less conventional techniques able to

generate a beam carrying multiple squeezed modes.

Conventionally, the squeezed modes we can generate using these techniques are fixed by

the optical design. We present a new optical system, called a Unitary Programmable Mode

Converter (UPMC), able to reshape these modes at will. We show theoretically that such

a UPMC can in principle perform any desired reshaping of the modes. We present the

performances of an experimental implementation of the UPMC, both in a classical and

quantum context. We find that the UPMC performs as predicted, and we present a method

to optimize the UPMC settings taking into account experimental restrictions.

The UPMC, combined with a technique to build a beam carrying multiple squeezed modes,

allows us to generate a beam with squeezing in any desired set of spatial modes. In order

to detect these fluctuations, we built a multipixel homodyne detection, a detection system

able to record simultaneously the quantum fluctuations in all these modes. We provide

in this thesis our solutions to overcome the electronic challenges associated with such a

device, and present an experimental characterization of the performances of our multipixel

homodyne detection.

Finally, we combine these experimental characterizations to discuss how these techniques

help us implement different quantum protocols involving multiple spatial modes, more

specifically quantum enhanced detections and cluster states quantum computation.
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French

Nous présentons dans cette thèse une étude des propriétés spatiales de la lumière au

niveau quantique. Nous nous attachons plus particulièrement aux fluctuations quantiques

des différents degrés de libertés qui caractérisent le profil spatial transverse d’un rayon

lumineux, et à différentes manières de les manipuler et de les utiliser.

Manipuler des fluctuations quantiques d’un profil transverse, un mode, à l’aide d’un

OPA (amplificateur paramétrique optique) est un procédé bien connu, appelé squeezing.

L’OPA nous permet de réduire les fluctuations quantiques d’un degré de liberté. Mais

afin de générer un faisceau laser dont plusieurs modes sont squeezés, il nous faut utiliser

des techniques moins conventionnelles. Nous présentons dans cette thèse des résultats

expérimentaux pour trois d’entre elles. Nous montrons que la technique la plus simple,

qui consiste à utiliser des OPA conventionnels et à superposer les modes produits au sein

du même faisceau, est la technique la plus fiable.

Les faisceaux ainsi produits contiennent plusieurs modes spatiaux squeezés. Ces modes

sont cependant fixés par la méthode choisie pour créer le faisceau. Nous introduisons

donc un nouvel outil, l’UPMC (Unitary Programmable Mode Converter). Ce système

optique programmable est capable de réaliser n’importe quelle transformation spatiale du

champs lumineux, donc de transformer les modes spatiaux squeezés en n’importe quels

autres modes. Nous avons construit un tel UPMC et nous présentons dans cette thèses les

résultats de nos tests. Ces résultats confirment que l’UPMC est bien capable de transférer

les fluctuations quantiques d’un mode à un autre.

A partir d’un faisceau contenant de multiple modes squeezés et d’un UPMC, nous sommes

donc capable de générer un faisceau dont n’importe quel ensemble de modes serait squeezé.

Afin de détecter ces fluctuations quantiques, nous avons mis au point une détection ho-

modyne multipixel. Ce système de détection est capable d’enregistrer simultanément les

fluctuations de tous les modes transverses du faisceau. Nous présentons tout d’abord les

solutions techniques aux défis électroniques soulevés par ce type de détecteur, et nous le

caractérisons ensuite expérimentalement.

Pour finir, nous combinons nos résultats expérimentaux pour deux études de cas. Nous

étudions tout d’abord la capacité de notre système combinant production, manipulation

et détection à améliorer la mesure d’un paramètre spatial quelconque en réduisant le bruit

quantique correspondant. Puis nous utilisons ces mêmes résultats pour évaluer à quel

point notre système peut constituer une alternative à des ensembles de faisceaux pour

l’implémentation de protocoles de calcul quantique.
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Chapter 1

Introduction

The particle and wavelike behaviors of light at the quantum level are a fundamental

evidence of quantum theory (Cohen-Tannoudji 06). The wavelike behavior is a well un-

derstood phenomenon, formalized in Maxwell’s equations(Siegman 86). These classical

equations fully predict the spatial transformations the light undergoes throughout its

propagation through air, through lenses, or through any complex optical system (Yee 66).

Armed with these models, we can design optical tools able to reshape the light, such as

microscopes or telescopes for optical investigation (Török 07; Herschel 61), or even cor-

rective glasses to correct myopia or astigmatism (Eames 49).

While at the classical level the discreet nature of light can be neglected, its parti-

cle behavior has clear manifestations at the quantum level(Gleyzes 07). One of these

manifestations is the quantum noise: because it is composed of photons, the light can-

not be a perfect continuous wave(Morizur 08). This discreet nature adds a fundamental

noise to any continuous signal. It sets a limit to the signal to noise ratio of any optical

communication(Gallion 09). Thus, in the case of a conventional laser beam, on top of the

technical noise resulting from the different classical processes involved in the generation

of the light, which could be reduced to zero with enough care, the quantum noise is an

ever present reminder of the quantum properties of the light (Glauber 65).

While we cannot completely remove this noise, we can manipulate it using devices

such as optical parametric amplifiers. These manipulations allow us to transfer noise from

one property of the light field to another (Slusher 84; Wu 86), thus creating a beam with

specific quantum fluctuations. This noise manipulation is called squeezing.

Our work focuses on the spatial evolution of these quantum properties. We study how

they change with propagation, and how we can use optical elements to engineer desired

changes. Our main investigative tool to study this spatial evolution are quantum fluctu-

ations (Grynberg 10). We use specific quantum fluctuations, such as squeezed light, as

an unforgeable signature of the quantum properties we are following, allowing us to track

their evolution with propagation. Studying their spatial evolution allows us to confront

our theoretical understanding of this evolution to experimental results. Moreover, gen-
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erating, reshaping and detecting quantum fluctuations is at the core of several protocols

based on the quantum properties of a beams transverse profile.

In this thesis, we develop techniques to generate squeezing in specific spatial profiles,

to manipulate these profiles and finally to detect the quantum fluctuations. We build on

previous studies, from very early results, which described the spatial evolution of quantum

fields in relation to the classical models of light propagation (Grynberg 10), to more recent

ones which introduced techniques to generate beams carrying a complex set of quantum

fluctuations (Lassen 07; Delaubert 06), or which described ways to measure simultane-

ously these fluctuations in different parts of a beam (Beck 01; Dawes 01).

The first part of this thesis provides an overview of the relevant theoretical aspects

of the spatial evolution of quantum fluctuations. We first present the classical models

for propagation, and the notion of spatial mode, a solution of Maxwell’s equations. We

then introduce the notion of quantum fields and how they relate to this classical notion

of modes. We finally present how the quantum fluctuations of the fields are described by

their quantum states.

We finish this part with the description of two applications of our study of the spatial

properties of quantum fluctuations. We first present how the quality of a measurement

system can be improved by using squeezing to reduce the quantum noise in the spatial

profile most relevant to the quality of this measurement. We show that in order to bring

forth this improvement (first presented in (Treps 03)) for any detection, we need to be

able to reshape at will the mode carrying the reduced quantum fluctuations (Treps 05).

Another application of our study is quantum computation. Indeed, while conventional

quantum computation protocols are designed for a set of separate beams (Aoki 09b;

Yukawa 08b), they can be replaced by the multiple spatial modes carried simultaneously

in a single beam. Such a replacement has obvious scalability advantages, since the ma-

nipulation of additional beams requires an ever increasing amount of resources. But we

show that on the other hand such a replacement requires an efficient method to generate a

beam carrying these multiple spatial modes, a flexible method to manipulate these modes

and a scalable detection system.

In the second part of the thesis, we first present an experimental implementation of

different methods to produce a beam carrying multiple squeezed modes. We use these

different implementations to assess the experimental advantages and drawbacks of each

methods, and we find that the simplest and most scalable one is simply to generate the

squeezed modes independently and then superpose them.

We then present the experimental characterization of a multipixel homodyne detection, a

device able to detect the fluctuations in multiple transverse profiles of the beam simulta-

neously. After a theoretical overview of the capabilities of such a device, we present the

technical challenges we overcame to build it. While the idea of a multipixel homodyne

detection is not new (Beck 01), its implementation to detect simultaneously the quantum
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fluctuations in different complex modes was a completely new challenge.

The third part brings in recent developments in optical engineering, namely deformable

mirrors, to fully control the spatial evolution of our quantum fields. We show that, the-

oretically, a succession of deformable mirrors and optical Fourier transform can generate

any possible spatial transformation of the beam of light. We call such a device a UPMC,

Unitary Programmable Mode Converter. The UPMC allows us to expand the possible

spatial manipulations of the quantum fields beyond what was available with conventional

optical elements. Instead of being limited to rather simple modes, we can now theoreti-

cally reshape quantum fluctuations into any spatial profile. Moreover, we can manipulate

different modes simultaneously, thus providing us with as much freedom to manipulate

transverse modes as we would have with separate beams.

We test this new result experimentally, both in a classical and quantum context. We show

that even if the theoretical result calls for a large number of reflections, a limited number

of reflections coupled with an optimization algorithm to perform the desired transform as

well as possible gives us good results. We show experimentally that we can change the

transverse profile of a squeezed mode, and benchmark the efficiency of such a process.

Finally, we tie up this thesis by applying our different experimental results to two case

studies, examples of the two applications we proposed in the first part. We first show

that the combination of an optical parametric amplifier to generate squeezing, a UPMC

to reshape it and multipixel homodyne detection allows for the improvement of any mea-

surement of small fluctuations of a light field. We quantify this improvement in a practical

case, combining our experimental characterizations of all these devices.

A second case study presents how with a UPMC and a multipixel homodyne detection on

a beam carrying multiple squeezed modes we can implement a specific kind of quantum

computations. Similarly, we also present for this case quantitative prediction on the qual-

ity of such a computation.
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Chapter 2

A quantum description of light

Quantum optics is the field of physics that studies light at the quantum level. In this

thesis we focus more specifically on the relationship between quantum mechanics and the

spatial properties of the light. We begin here with a brief overview of the theoretical

concepts underlying these issues. We first deal with the concept of spatial mode in a

classical context. This concept is at the core of a significant proportion of the theoretical

subtleties in this thesis, and can be understood without quantum mechanics. We then

introduce the quantization of the light, and describe more specifically the Gaussian states,

the class of quantum states we work with.

2.1 Classical wave optics

2.1.1 Maxwell’s equations

The classical description of light as a wave is governed by Maxwell’s equations. These

equations successfully explain the full behavior of any field of light when its quantum

properties are neglected. Let us name the electromagnetic field �E(x, y, z, t). In the absence

of electric charges and currents, �E is solution of the homogeneous equation:

�
∆− 1

c2
∂2

∂t2

�
�E = 0 (2.1)

where ∆ is the Laplacian operator, and c the speed of light. For a given set of boundary

conditions, the homogeneous equation has a unique solution.

In our work, we focus specifically on the spatial properties of the light. We consider only

the case of monochromatic light, when �E is oscillating constantly in time, at a frequency

ν0. We restrict ourselves to the cases when the light is propagating in a beam, and call

the direction of propagation the z axis.

We can write

�E(x, y, z, t) = �x
�
Ex(x, y, z)e

−i2πν0(t− z
c ) + E ∗

x (x, y, z)e
i2πν0(t− z

c )
�

+�y
�
Ey(x, y, z)e

−i2πν0(t− z
c ) + E ∗

y (x, y, z, t)e
i2πν0(t− z

c )
�

(2.2)
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where Ex and Ey are the electric field envelopes for the two orthogonal polarizations �x

and �y, respectively. The term e−i2πν0(t− z
c ) is the carrier for a wave propagating in vacuum

along �z. �x and �y are the two transverse directions of polarization. For the sake of sim-

plicity, we consider only the polarization �x, and rename Ex in E , with the understanding

that all the results we develop can be applied to the polarization �y.

Since the light is propagating in a beam, the variations of E along the z axis can be

neglected compared to the variations of ei2πν0t−ik0zE (∂E
∂z � k0E ). This is called the

paraxial approximation, and it assumes that no part of the field �E deviates significantly

from the propagation axis z. It leads to the reduced propagation equation on the envelope

field E (Siegman 86):
∂E
∂z

= −∆⊥E
2ik

(2.3)

Here ∆⊥ is the transverse Laplacian operator, in this case ∆⊥ = ∂2

∂x2 + ∂2

∂y2 .

Equation 2.3 describes the evolution of the spatial shape of a beam of light, as we travel

along the propagation axis in vacuum. If, for a given position z0 along the propagation

axis, we know the full transverse profile of the envelope E (x, y, z0), we can use 2.3 to

compute directly the envelope E at any other position (x1, y1, z1) (Yee 66). Optical com-

ponents, such as lenses, curved mirrors or more complex structures, affect the evolution of

the spatial shape of the beam. Taking these components into account in the propagation

of E simply requires additional computing resources (Sterkenburgh 97).

A specific kind of propagation, of particular importance for us, is the unitary prop-

agation. It is the class of propagation in which we do not add nor subtract light. It

corresponds to propagation through transparent media. In this case, the light power re-

mains constant throughout the propagation.

As it can be noticed in equation 2.3, the three directions �x and �y and �z do not play

equivalent roles: �z is singled out as the direction of propagation. We adapt our notation

to this situation, by replacing (x, y, z) by (�ρ, z), where �ρ = (x, y).

2.1.2 Spatial Modes

Let us consider a solution E (�ρ, z) to the equation 2.3. It is uniquely defined by giving its

transverse profile at any given position along the z axis: for any z0 ∈ R , defining E (�ρ, z0)

in the transverse plane (for all �ρ ∈ R2) fully specifies E (�ρ, z). Moreover, since equation 2.3

is linear, if E1 and E2 are both solutions, then any linear combination E3 = αE1 + βE2,

where (α, β) ∈ C2, is also a solution of equation 2.3.

A spatial mode is a normalized solution of equation 2.3. We denote it u(�ρ, z). On any

given plane z = z0 ��

�ρ∈R2
u∗(�ρ, z0)u(�ρ, z0)d

2�ρ = 1 (2.4)
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If the propagation is unitary, if a given envelope is normalized at a position z0, it remains

normalized throughout its propagation.

Let us consider two modes u1 and u2. We say that they are orthogonal when

��

�ρ∈R2
u∗1(�ρ, z0)u2(�ρ, z0)d

2�ρ = 0 (2.5)

The left term of equation 2.5 is the scalar product of the two modes. It is kept constant

by a unitary propagation: calculating the scalar product at z0 or z1 gives the same result.

2.1.3 Mode basis

Let us now introduce a set of modes uk, k ∈ K. This set of modes is a basis if and only

if the modes are orthogonal to each other, and linear combinations of these modes span

the set of all the possible envelopes. This last property is known as the completeness

of the basis. It is part of the definition of a basis in a mathematical context, but in an

experimental context arbitrarily complex fields are not achievable. We can relax the com-

pleteness condition to consider that a set of modes is a basis when they span all the modes

our optical system deals with. In most of the basis we consider, K is either N or N2. But

if we only consider a finite basis (using a relaxed definition for the completeness) K can

be K = [1, 2, ..., N ], with N the number of modes in the basis.

Let us consider the basis uk. The modes are defined by their transverse profiles in

the plane z = z0: uk(�ρ, z = z0). Because the uk are complete, any envelope E can be

decomposed in

E =
�

k∈K
ekuk (2.6)

Where the coefficients ek ∈ C are the scalar products between the envelope E and the

modes uk:

e(k) =
��

�ρ∈R2
u∗k(�ρ, z0)E (�ρ, z0)d

2�ρ (2.7)

A property of the ek is that they have the same norm as the envelope considered:

�

k∈K
e∗
kek =

��

�ρ∈R2
E ∗(�ρ, z0)E (�ρ, z0)d

2�ρ (2.8)

The decomposition 2.6 simplifies the process of computing how a given field profile

E (�ρ, z = z0) propagates through transparent media. Indeed, if we know the trans-

verse profiles of the modes uk(�ρ, z), we can begin by projecting the field profile onto

the uk(�ρ, z = z0). Then, the spatial shape of E evolves simply as a linear combination of

the spatial shapes of the uk. This method can prove easier to implement than the direct

computation of the propagation if we consider specific modes uk, chosen so that their

propagation through the transparent media considered is easy to calculate. (Fleck 80)
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Let us now present two specific mode basis of particular importance to us. We provide

here a limited set of properties, for a more in depth presentation, please see (Siegman 86).

Hermite Gaussian modes

First of all, a very important spatial mode basis is the Hermite Gaussian basis. This basis

is of particular interest to us as it is the basis of the spatial modes resonant in optical

cavities. The basis elements, denoted TEMmn, are defined as

TEMmn(�ρ, z) =
Cmn

w(z)
Hm

�√
2x

w(z)

�
Hn

�√
2y

w(z)

�
e
−x2+y2

w(z)2
+ik0

x2+y2

2R(z) −i(n+m+1)ΦG(z)
(2.9)

with

Cmn = 1√
π2n+m+1n!m!

zR =
πw2

0
λ0

R(z) = z + z2

zR

w(z) = w0

�
1 +

�
z
zR

�2

ΦG(z) = arctan
�

z
zR

�

(2.10)

where λ0 is the wavelength of the light, w0 is the beam waist, zR is the beam Rayleigh

range, R(z) is the radius of curvature, ΦG(z) is the Gouy phase shift with regard to the

fundamental mode and Hn is the Hermite Polynomial of n-th degree. A planar wavefront

only occurs for z = 0. A useful definition of Hn is given by the recurrence relation

H0(x) = 1, H1(x) = 2x and Hn+1(x) = 2xHn(x)− 2nHn−1(x) (2.11)

The quantity w(z) is independent of m and n. In the case where n = m = 0, it corre-

sponds to the beam radius. When m and n are not 0, the spatial extension of the mode

increases. A TEMmn mode has m zeros along the �x axis, and n zeros along �y. This means

that it has m + 1 and n + 1 lobes along the �x and �y axis respectively. The position of

the furthest lobe from the center scales with �ρ = (
√
mw(z),

√
nw(z)). Fig. 2.1 presents

transverse profiles of a few of these modes at z = 0.

This mode basis is particularly convenient to describe the effects of propagation and Gaus-

sian optical components such as spherical lenses and spherical mirrors. Indeed, the shape

of the mode remains unchanged by free space propagation: its size w(z) and the radius or

curvature R(z) change, but the overall transverse profile of the mode, defined by Hm and

8



TEM00 TEM20 TEM33

Figure 2.1: Transverse profile of TEM modes, at z = 0

Hn remains the same. In the case of Gaussian optical components, the change in waist

size and position induced by the curvature of the lenses and mirrors does not change the

orders m and n either.

Binary modes and pixel modes

Let us now define another basis of modes, that we call binary modes, or flip modes. This

basis, less conventional, is particularly useful to describe the effect of a deformable surface

or phase plate on a light beam.

It is first based on a TEM00 mode, defined by w0 at the position z = 0. We then define

higher order binary modes by introducing localized π phase shifts on the spatial profile of

this mode at z = 0. For example, the flip-mode, presented in Fig. 2.2 is a TEM00 with a

π phase shift for x < 0. As presented in Fig. 2.2, we add additional phase shifts to build

the other higher order modes. The spacing between the phase shifts is set so as to ensure

orthogonality, taking into account the beam waist w0 of the TEM00.

This family of modes can be made a basis. These mode do not keep their shapes with

propagation but are nonetheless very useful to describe the effect of a phase plate on a

beam.

A final family of interest are the pixel modes. They are of particular interest to describe

how light is detected by an array of pixels. These spatial modes are defined in a similar

fashion as the binary mode: we consider a TEM00 mode, defined by w0 at z = 0, and we

then define the pixel modes at z = 0 by:

vm,n(�ρ, z = 0) = TEM00(�ρ, z = 0) if �ρ ∈ Sm,n

vm,n(�ρ, z = 0) = 0 if �ρ /∈ Sm,n

(2.12)

with the surfaces Sm,n corresponding to square pixels. These modes, like the binary modes,

9



Flip-mode Higher order binary mode

Figure 2.2: Transverse profile of binary modes, at z = 0

do not retain their shapes as they propagate. For a pixel array of a given size, the number

of surfaces Sm,n is finite. Therefore the family of the vm,n can only be a basis if we relax

the completeness condition. Indeed, if the pixels have a given size, any feature below

this size cannot be distinguished by this family. We can only consider that the vm,n form

a basis of modes if none of the fields we consider has any feature smaller than the pixel size.

2.1.4 Basis change

Let us now consider two different mode basis: uk and u�l, with (k, l) ∈ K2. A given

envelope E can either be decomposed on the modes uk, with the coefficients ek or on

the modes u�l, with the coefficients e �
l . The coefficients ek and e �

l are linked by the linear

relation:

ek =
�

l∈K

��

�ρ∈R2
u∗k(�ρ, z)u

�
l(�ρ, z)d

2�ρe �
l (2.13)

with z any position along the propagation axis.

When we can consider that the mode basis are finite, we can define the matrix Ukl of

this transformation:

Ukl =

��

�ρ∈R2
u∗k(�ρ, z)u

�
l(�ρ, z)d

2�ρ (2.14)

If we turn the coefficients ek into the vector �e and the coefficients e �
l into �e � with:

�e =




e1
e2
...



 (2.15)
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and

�e � =




e �
1

e �
2

...



 (2.16)

the matrix U is defined so that

�e = U�e � (2.17)

Since the coefficients e �
l and ek relate to the same envelope E we have:

�

k∈K
e∗
kek =

�

l∈K
e �∗
l el (2.18)

This means that U preserves the norm. It belongs to the group of the unitary matrices

(Serre 02).

Let us now describe two specific kinds of basis changes, which we will use extensively in

the rest of this work.

Basis change induced by an optical system

When we consider a field envelope E , the evolution of the transverse shape of E with the

propagation along the z axis takes into account all the different media the beam is going

through. It takes into account the lenses, curved mirrors or interfaces that we set in the

beam path. Here we want to characterize the effect of a given unitary optical system on

the beam, as presented in Fig. 2.3.

uk

u�
k

u�
k

uku�
k(
−→ρ , z1)

= uk(
−→ρ , z1)

u�
k(
−→ρ , z2)

�= uk(
−→ρ , z2)

Optical System

Figure 2.3: Schematic of the basis change induced by an optical system

To do so, a conventional method is to introduce two mode bases: the first basis is uk,

it is the reference basis in the absence of optical system. A second basis is u�k: for any z1

before the optical system we want to study, we set uk(�ρ, z1) = u�k(�ρ, z1) for any k ∈ K.

Then the modes u�k propagate through the optical system we want to characterize. At a

position z2 after the optical system, u�k(�ρ, z2) is now different from the original uk(�ρ, z2).

We can calculate the basis change matrix U defined above in equation 2.14 between the

profiles uk(�ρ, z2) and u�k(�ρ, z2). This matrix fully describes the unitary optical system by
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describing its effect on a basis of modes: the addition of the unitary optical system turns

the modes uk into the modes u�k.

The unitary optical system we want to characterize can be a lens, a deformable re-

flective surface, simple propagation through different transparent media or a combination

thereof. An interesting property of this matrix representation of the optical systems is that

we are able to compose them. Indeed, if our beam goes through a first unitary system A,

which applies the basis change matrix matrix UA and a second unitary system B with the

basis change UB, going through both system sequentially applies the basis change UBUA,

described by the product of these two unitary matrices.

Beamsplitters

Finally, let us focus on a different basis change, one which we use extensively in this

work. A beamsplitter is a simple half reflecting mirror. We align two beams so that the

transmitted part of a beam is superposed with the reflected part of another, as presented

in Fig 2.4. Consider first that the beamsplitter has a perfect reflectivity R = 1. In this case

we have two independent beams A and B, never superposed. An imperfect reflectivity lets

some light through, and parts of beam A and B are swapped. Still, the transverse shapes of

the spatial modes are untouched by the beamsplitter. If we introduce two identical mode

bases (uAk and uBk), on the two beams A and B respectively, we find that a beamsplitter

defined by the reflectivity R = cos(θ)2 transforms the modes uAk and uBk in:

�
u�Ak

u�Bk

�
=

�
cos(θ) sin(θ)

− sin(θ) cos(θ)

��
uAk

uBk

�
(2.19)

This relationship applies to all the spatial modes k ∈ K.

R

A A

B B

uAk
u�
Ak

uBk
u�
Bk

Figure 2.4: Schematic of a beamsplitter, with reflectivity R

2.2 Quantization of the electro-magnetic field

After this brief recall of important classical properties of the electro-magnetic field, let

us now focus on the theoretical framework underlying the justification of this work: the
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quantum nature of the light. Before introducing the necessary formalism, we first provide

an experimental justifications for the quantization, developed as a teaching experiment as

part of this work. Then, after having presented the Hamiltonian for the electromagnetic

field, we finish with the Heisenberg picture of the evolution of field observables.

2.2.1 Why quantization?

Maxwell’s equations are extremely successful at describing the dynamics of the average

value of an electro-magnetic field. Teaching the quantization of the electro-magnetic field

is made easier when we can exhibit phenomena which reach the limits of these equations.

To do so we either need to detect very weak fields, or consider the smallest fluctuations

of the electro-magnetic field. In the first case, using photomultiplier tubes or avalanche

photodiode, the discreet nature of the energy of the electromagnetic field can be made

clear to students.

Another justification can be found in the quantum noise, the fluctuations of an intense

electro-magnetic field arising from its quantum nature. We present here a teaching pub-

lication (Morizur 08), written during the course of this work. It presents a classroom

experiment built using a low cost commercial laser and electronics, able to demonstrate

the existence of a quantum noise.

The teaching experiment is based on a simple laser beam, split in two by an edged

mirror. We detect both the outputs using good quality photodiodes. We then use either

an oscilloscope or a computer to analyse the two signals we detect on the photodiodes.

With this set-up, the laser intensity noise originating from the laser is shared between the

two detectors, and we detect a strong correlation of the two traces. Modulating the laser

intensity increases this correlation between the channels.

On the other hand, when we increase the intensity of the beam, we find that the anti-

correlated noise increases too. This shows that there is an added light related noise source,

and that this other noise source introduces intensity anti-correlations. Moreover, we show

that the variance of this anti-correlated noise scales as the light intensity. These are clear

manifestations of quantum noise.
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I. INTRODUCTION: THE PROPERTIES OF
OPTICAL QUANTUM NOISE

The quantum properties of light are often associated with
wave-particle duality.1,2 By using modern photodetectors it is
possible to record the arrival of each photon in a beam as an
individual event, if the photon flux is relatively low. This
ability can be used to demonstrate some quantum effects,
such as single particle interference.3 The quantum nature of
light also has consequences for the properties of much stron-
ger beams.4 Shot noise or optical quantum noise is the result
of quantum fluctuations of the intensity of a laser beam. The
formalism of quantum optics has been spectacularly success-
ful in describing the quantum state of a laser beam, using the
coherent state or Glauber state.5 This formalism has been
well tested and extended to include nonclassical or squeezed
states of light6 in which quantum noise is lowered for one
property, for example, the phase, while increased for another,
the amplitude; the total amount of uncertainty is kept con-
stant.

In recent years many optical instruments have been per-
fected so that optical quantum noise, or shot noise as it has
been called, is the dominant remaining source of noise.
Quantum noise thus limits the signal-to-noise ratio for many
optical tools such as absorption spectrometers,7

interferometers,8,9 and even laser pointers.10 In brief, optical
quantum noise is important as a fundamental consequence of
quantum mechanics and as a limiting effect in the develop-
ment of modern instruments.

In this paper we describe a method of detecting quantum
noise in a teaching context and describe a convincing dem-
onstration of the properties of quantum noise. The emphasis
is on a simple, reliable, and low-cost apparatus using, when-
ever possible, readily available components.

There are three defining features of quantum noise1,4 that
allow a clear distinction between classical noise and quan-
tum noise:

1. The quantum fluctuations of the intensity of a laser beam
have a specific noise spectrum. The noise power is inde-
pendent of the frequency at which it is detected. Such a
spectrum is called white noise, and differs from many
other noise sources which increase for lower frequencies,
for example with a 1 / f dependence.

2. Another property of quantum noise is the scaling of the
noise variance with the intensity. For quantum noise the
variance Vqn scales as

Vqn!P" % P . !1"

In contrast the standard deviation &Vcl of classical noise is a
fixed percentage of the total power. Hence,

Vcl!P" % P2. !2"

Likewise, the scaling law resulting from a modulation of the
laser intensity is

Vmod!P" % P2. !3"

3. A feature of quantum noise is its behavior in relation to
beam splitting. The classical fluctuations and modulations
of the beam intensity are shared between the reflected and
the transmitted beams, equivalent to Kirchoff’s law in
electrical circuits, and result in two perfectly correlated
beams hitting the detectors. In contrast, quantum noise
introduces uncorrelated noise. One way to understand this
property is to remember that quantum noise comes from
the random arrival of photons. The photons are not split in
half by the beam splitter, but have a 50% probability to be
transmitted or reflected. This randomness gives rise to
uncorrelated noise in the detectors. If a laser beam is
quantum noise limited and the classical noise is negli-
gible, the noise in the two output beams from the beam
splitter is completely uncorrelated.

In our experiment we demonstrate properties !2" and !3".
The spectral properties !1" can be demonstrated using an
electronic spectrum analyzer, but this kind of device is out-
side the scope of most teaching laboratories. To demonstrate
the scaling and correlation properties, a light source with as
little classical noise as possible is necessary. Such a source is
readily available as a low-cost diode laser. Detectors and
amplifiers that contribute less electronic noise than quantum
noise are also required. For this purpose we use photodetec-
tors with custom-made preamplifiers and commercial low
noise amplifiers.11,12 A conventional oscilloscope is used to

1022 1022Am. J. Phys. 76 !11", November 2008 http://aapt.org/ajp © 2008 American Association of Physics Teachers
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detect the output signal, and a straightforward analysis
method is available using an oscilloscope with an x-y dis-
play.

The apparatus shown in Fig. 1 enables us to measure both
the correlation and scaling properties of optical quantum
noise and to demonstrate some quantum features of light.
Most optical experiments either focus on the frequency do-
main using spectrum analyzers and measure the noise spec-
trum of intense beams.13 Alternatively, they focus on count-
ing the clicks from individual photons with avalanche
photodiodes14 to study the correlations between the clicks
from one or more detectors. Our design allows us to inves-
tigate correlations in an intense beam using a continuous
noise signal.

II. THE EXPERIMENT

Because the goal is to design a teaching and demonstration
experiment, our emphasis is on simplicity. Accordingly, the
apparatus is small !the entire experimental setup fits on a
210 mm!300 mm breadboard" and uses a conventional os-
cilloscope. The trick is to use an oscilloscope as a detector
for correlations. The laser beam is split into two beams 1 and

2 of equal power by sliding mirror M2 half-way across the
beam. Each beam is detected separately and the photocur-
rents are amplified and displayed simultaneously on the x
and y axis of the oscilloscope. If the two photocurrents,
which are proportional to the intensities I1!t" and I2!t" of the
beams, are correlated, the display will be on the diagonal
axis. That is, correlated noise will be seen as fluctuations
along the diagonal axis, at 45° to the x and y axes, if the
intensities and gains in the two beams are the same. Uncor-
related noise will lead to independent fluctuations in both the
x and y axes and produce a fuzzy area on the screen. For
equal intensity and gain this area will be circular. The oscil-
loscope displays all frequencies up to its cutoff frequency or
the detector’s or the amplifier’s. To demonstrate quantum
noise we have to be very careful to avoid any extraneous
noise, for example from stray magnetic fields. Reducing ex-
traneous noise can be achieved by good design and electro-
magnetic shielding.

The apparatus employs a relatively low power laser diode
pointer !#8 mW" emitting a beam at 632 nm with a slightly
elliptical shape. The laser is housed in an aluminium casing
secured to the custom-made aluminium breadboard. The la-
ser beam intensity can be changed by adjusting the diameter
of an aperture mounted directly outside the diode laser. The
laser beam is then focussed by a lens !200 mm focal length"
on the detectors to maximize the detection efficiency. After
the lens the beam is reflected by mirror M1 and split into
equal parts by a second mirror M2. One half of the beam is
redirected onto the first photodetector while the other half
misses the mirror and proceeds to the second photodetector.
The beamsplitting mirror is mounted on a miniature transla-
tional stage !Thorlab MR 1.4" which allows it to move in and
out of the beam and the splitting ratio to be adjusted. The
mirror M2 could also be replaced by a half-silvered mirror, at
the expense of loosing the ability to adjust the splitting ratio.

The two detectors are custom made and are matched to
produce very similar outputs when exposed to the same
power. The aim is to create the largest quantum noise signal
and suppressing the electronic noise from the first amplifier
inside the detector is critical. The direct current !dc" signals
from the detectors are monitored to ensure that the power P
is equally split between the photodiodes; the alternating cur-
rent !ac" signals are connected to a pair of high-gain/low
noise commercial amplifiers !MITEQ, frequency
1–100 MHz". Several rechargeable battery packs make this
system completely portable and reduce noise inputs from
power supply. A picture and the layout of the system can be
found in Fig. 1.

The laser intensity can be modulated with the electronic
voltage created by the amplified crystal oscillator !IQXO-
350". The degree of modulation is adjusted by the user. The
modulation frequency must be high enough so that the
modulated signal is not affected by low-frequency noise
sources, including the 1 / f noise resulting from the electron-
ics, and is above the lower cutoff frequency of the amplifiers
!1 MHz". The frequency also must not exceed either the
maximum modulation frequency of the laser or push to the
limits the low-noise amplifiers inside the detectors. For this
reason an intermediate value of 2 MHz was chosen. Because
the evidence of quantum noise that we seek does not depend
on this modulation frequency, it remains fixed throughout the
experiments.

(a)

(b)

Fig. 1. The total laser beam power is adjusted using an aperture in front of
the laser source. The laser intensity is modulated using a custom-built am-
plified crystal oscillator which produces a sinusoidal modulation at 2 MHz.
The two beams are simultaneously detected by photodiodes 1 and 2 and the
amplified signals are displayed on an oscilloscope in x-y mode.

1023 1023Am. J. Phys., Vol. 76, No. 11, November 2008 Morizur, Colla, and Bachor
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III. RESULTS

With the two photodiodes aligned and the laser turned on,
the two signals originating from the photodetectors are dis-
played in x-y mode. Different investigations are possible by
varying the intensity of the beam and the modulation ampli-
tude.

The electrical noise, that is, dark noise, of the detectors
and amplifiers is first measured by turning the laser off. This
noise calibration is critical because we need the quantum
noise to be significantly larger than the dark noise.

By turning on the laser without introducing any modula-
tion, the beams create additional fluctuations. They are the
result of the optical quantum noise for which the two signals
from photodiode 1 and 2 are uncorrelated and the residual
classical noise in the laser. This classical noise introduces
correlations between the two photodiode channels. Figures
2!a" and 2!b" show oscilloscope traces of the signal for no
beam, that is, dark noise, and for an 8 mW beam, respec-
tively.

Noise along the C axis is correlated noise, and noise along
the A axis is anticorrelated. The C axis is not perfectly at 45°
because the gains of the amplifiers are not perfectly bal-
anced. Both dark noise and quantum noise, because they
produce noncorrelated signals on the two detectors, intro-
duce fluctuations equally on the A and C axes. In contrast,
classical noise and modulation of the laser intensity intro-
duce correlations between the two signals and give fluctua-
tions only on the C axis. Thus, a comparison of Figs. 2!a"
and 2!b" makes it easy to evaluate the different components
of the noise encountered. Along the A axis the difference of
the noise level between Figs. 2!a" and 2!b" can be attributed
to quantum noise. This simple comparison provides us with a
first demonstration of the uncorrelated nature of quantum
noise and a clear assessment of the quality of the detectors.
We show a ratio of 3.5 between the variance of the noise
from a 8 mW beam and the variance of the electrical noise,
without filtering the output signal. Using bandpass filters in

the 3–5 Mhz range improves the ratio to 5.5, and introduces
phase differences between the two output signals. These
phase differences do not allow for a clear linear shape when
introducing modulation and thus were not used in our mea-
surements. Second, comparing the noise levels along the C
and A axes in Fig. 2!b" emphasizes the correlated nature of
the classical noise of the beam.

Further analysis is possible by using the modulator, which
introduces strong classical fluctuations. Their correlated na-
ture is obvious in Fig. 2!c", with overextended fluctuations
along the C axis, while fluctuations along A remain similar to
Fig. 2!b". Thus, the analysis of several oscilloscope traces
demonstrates the uncorrelated nature of quantum noise. By
setting the modulation amplitude to the maximum value be-
low the amplifier’s saturation and changing the average beam
intensity, it is possible to observe the scaling laws. Figure 3
shows the variance of the fluctuations as a function of the
beam intensity. We observe both the linear scaling of the
quantum noise and the quadratic scaling of the classical
noise.

Finally, recording the trace is possible, either by using a
digital oscilloscope with relevant connectivity !for example a
Tektronix TDS 2004 B" or a USB oscilloscope !Voltcraft
DSO-220 USB". The distribution of the data points recorded
with a modulated beam provide further confirmation of the
correlated nature of classical fluctuations. As can be seen in
Fig. 4 the shape of the distribution is clearly non-Gaussian
along the C axis because it is the result of the sinusoidal
modulation of the intensity. In contrast, along the A axis, the
distribution remains Gaussian, thus indicating that no fluc-
tuations on the A axis result from the modulation. The A axis
is thus truly uncorrelated noise, that is, dark noise and quan-
tum noise. If we consider that the total fluctuations of the
signal are a result of the modulation, classical noise, dark
noise, and quantum noise, the fit of the theoretical distribu-
tion to the data gives very accurate results.

In conclusion, our simple experiment provides evidence of

Fig. 2. Display of the oscilloscope used for measuring the noise and corre-
lation. The x and y axis display the photocurrent generated by detectors 1
and 2, respectively. Any correlated noise will appear on the diagonal axis
labeled C; any uncorrelated noise will appear equally on the A and C axes.
!a" The laser is turned off, !b" the laser beam at 8 mW without modulation,
and !c" the laser beam at 8 mW and maximum modulation.

Fig. 3. Variance of the intensity fluctuations as a function of the average
intensity of the beam in photocurrent units. !a" The variance along the cor-
related axis with a quadratic dependence on the intensity. !b" The variance
along the anti-correlated axis with a linear dependence on the intensity.

1024 1024Am. J. Phys., Vol. 76, No. 11, November 2008 Morizur, Colla, and Bachor
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the properties of quantum noise in intense beams. It can also
be used as a benchmark to compare the performance of
equipment to the quantum noise limit.
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2.2.2 Formalism

Quantization

A complete introduction of the quantization process is out of the reach of this work, it

can be found in (Grynberg 10) or (Mandel 95). Rather, this section aims at emphasizing

the role of observables in our approach of quantum optics (Balian 88) while introducing

the notations used in the rest of the work.

Quantifying the electric field means considering that �E. �ex is not a defined value any-

more, but the result of an observation on a quantum state. The mean value of these

observations is of course the classical �E. �ex, but additional fluctuations of these observa-

tions arise due to the quantum nature of the state considered. To explain the fluctuations

recorded experimentally, we replace the classical envelope field E by the operator Ê , and

we introduce â(�ρ, z), the photon annihilation operator at the position (�ρ, z) defined by

Ê (�ρ, z) =

�
�2πν0
2�0cT

â(�ρ, z) (2.20)

with T an integration time. â(�ρ, z)†â(�ρ, z) is homogeneous to a number of photons (an in-

teger) per square meter, incident at position (�ρ, z), detected during a time interval [t, t+T ].

Our work focuses on spatial properties of the quantum fluctuations. We work with

stationary fields. Thus we can write â(�ρ, z) without the dependency in the time t: the

expectations for the results of any given measurement in our system does not depend on

the time at which we take this measurement. The value of T is set depending on the

detection system. It corresponds to the inverse of the sampling rate.

Creation and annihilation operators

The operator â(�ρ, z) is the annihilation operator. Its conjugate, â†(�ρ, z) is the photon

creation operator. These two operators are not Hermitian, so they cannot be observables.

However, they are the building blocks of quantum optics, and to that extend have a few

interesting physical properties. First of all, as a consequence of the definition 2.20, the

local electric field can be decomposed using these two operators:

�̂E(�ρ, z, t). �ex =

�
�2πν0
2T�0c

�
â(�ρ, z)e−i2πν0(t− z

c ) + â†(�ρ, z)ei2πν0(t−
z
c )
�

(2.21)

The number of photon crossing a given surface S in our integration time T can also be

expressed using â(�ρ, z) and â†(�ρ, z):

N̂(z, S) =

��

�ρ∈S
â†(�ρ, z)â(�ρ, z) d2�ρ (2.22)

18



This quantity can for example be detected using a photon counter. The commutator of

these two operators has a simple expression when we consider annihilation and creation

operators on the same propagation plane defined by z = z0:

�
â(�ρ1, z0), â(�ρ2, z0)

†
�
= δ2(�ρ1 − �ρ2) (2.23)

When they are not in the same propagation plane, these two operators are not indepen-

dent anymore, and their commutator depends on the optical system between them.

The observables amplitude and phase

Let us name amplitude x̂(�ρ, z) and phase p̂(�ρ, z) the observables defined by:

x̂(�ρ, z) = â†(�ρ, z) + â(�ρ, z)

p̂(�ρ, z) = i
�
â†(�ρ, z)− â(�ρ, z)

�

(2.24)

These two observables, also named quadratures of the electro-magnetic field at the

position (�ρ, z) are closely related to the the observable �̂E(�ρ, z, t). �ex. Indeed, the expression

2.21 can be rewritten using x̂(�ρ, z) and p̂(�ρ, z) as:

�̂E(�ρ, z, t). �ex =

�
�2πν0
T�0c

�
cos

�
2πν0

�
t− z

c

��
x̂(�ρ, z) + sin

�
2πν0

�
t− z

c

��
p̂(�ρ, z)

�
(2.25)

This formulation of �̂E(�ρ, z, t) shows that depending on the phase of 2πν0(t− z
c ), the electro-

magnetic field is either proportional to the amplitude x̂(�ρ, z) or the phase p̂(�ρ, z).

These two observables describe the electro-magnetic field, and detecting a quantum

state can result in any value in R, depending on the state. As opposed to â(�ρ, z)†â(�ρ, z),

which can only lead to discreet values (a number of photons) in a detection volume, they

are continuous. In this thesis, we only deal with this kind of observable: we remain in the

continuous variable regime.

The commutator of x̂(�ρ1, z0) and p̂(�ρ2, z0) is

[x̂(�ρ1, z0), p̂(�ρ2, z0)] = 2iδ2(�ρ1 − �ρ2) (2.26)

When they are not in the same propagation plane, as for the creation and annihilation

operators, their commutator depends on the optical system between the planes.

Finally, let us introduce x̂θ(�ρ, z) and p̂θ(�ρ, z). We define them as rotations of x̂(�ρ, z)
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and p̂(�ρ, z):

x̂θ(�ρ, z) = cos(θ)x̂(�ρ, z) + sin(θ)p̂(�ρ, z) (2.27)

p̂θ(�ρ, z) = sin(θ)x̂(�ρ, z)− cos(θ)p̂(�ρ, z) (2.28)

We call x̂θ(�ρ, z) and p̂θ(�ρ, z) the θ-quadratures of the electro-magnetic field, and we have

[x̂θ(�ρ1, z0), p̂
θ(�ρ2, z0)] = 2iδ2(�ρ1 − �ρ2) (2.29)

The θ-quadratures of the electro-magnetic field correspond to the original x̂(�ρ, z) and

p̂(�ρ, z) with a θ phase shift in �̂E(�ρ, z, t). �ex:

�̂E(�ρ, z, t). �ex =

�
�2πν0
T�0c

�
cos

�
2πν0

�
t− z

c

�
− θ

�
x̂θ(�ρ, z) + sin

�
2πν0

�
t− z

c

�
− θ

�
p̂θ(�ρ, z)

�

(2.30)

In the literature, the notations for the amplitude and phase quadratures of the electro-

magnetic field are not consistent. We can find X̂+ and X̂− (Delaubert 06; Grosse 06), x̂

and ŷ (Beck 01), or X̂ and X̂⊥ (Hage 10). Our choice, x̂ and p̂, also used in (Adesso 06;

Aoki 09a; Duan 00; Grosshans 01; Hage 08), is more traditional. Still, confusions may

arise between the spatial coordinate x and the field amplitude quadrature x̂. In this work,

both the notations and the context will provide a disambiguation.

Modal operators

Local operators, such as â(�ρ, z) or x̂(�ρ, z) are defined at a given, localized position. This

kind of localization, while theoretically useful, is not physically sound. Instead, let us

introduce modal operators: for a given spatial mode u defined by its transverse profile

u(�ρ, z = 0) in the plane z = 0, we define the modal operators âu, x̂u and p̂u as:

âu =
��

�ρ∈R2 â(�ρ, z = 0)u(�ρ, z = 0)∗ d2�ρ

x̂u =
��

�ρ∈R2 x̂(�ρ, z = 0)u(�ρ, z = 0)∗ d2�ρ

p̂u =
��

�ρ∈R2 p̂(�ρ, z = 0)u(�ρ, z = 0)∗ d2�ρ

(2.31)

For these new operators, the commutation relations are now simply

[âu, â
†
u] = 1 (2.32)

and

[x̂u, p̂u] = 2i (2.33)

Because the commutator of x̂u and p̂u is not 0, there is a fundamental limit to the
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simultaneous measurement of x̂u and p̂u. Indeed, Heisenberg’ uncertainty principle states

that, for any two observables Â and B̂

�
∆2Â

��
∆2B̂

�
≥ 1

4
|
�
[Â, B̂]

�
|2 (2.34)

Hence, the uncertainty relation between x̂u and p̂u is simply:

�
∆2x̂u

� �
∆2p̂u

�
≥ 1 (2.35)

Whatever the nature of the quantum state, 2.35 means that the variances of the measured

values of x̂u and p̂u are related. There is a minimum to the product of these variances.

States which variances
�
∆2x̂u

�
and

�
∆2p̂u

�
satisfy

�
∆2x̂u

� �
∆2p̂u

�
= 1 are called quan-

tum limited states. Furthermore, the equal repartition of the fluctuations between
�
∆2x̂u

�

and
�
∆2p̂u

�
gives

�
∆2x̂u

�
=

�
∆2p̂u

�
= 1, and the limit

�
∆2x̂u

�
= 1 is called the quantum

noise limit for x̂u. Similarly,
�
∆2p̂u

�
= 1 is the quantum noise limit for p̂u.

Propagation of modal operators

In the above definition of the operators âu, x̂u and p̂u, we did not not use the fact u is an

electro-magnetic field mode. The transverse profile of u evolves with the propagation to

satisfy Maxwell’s equations. This property is reflected in the quantization: for any other

position z1, the same operators âu x̂u and p̂u can be expressed as:

âu =
��

�ρ∈R2 â(�ρ, z1)u(�ρ, z1)∗ d2�ρ

x̂u =
��

�ρ∈R2 x̂(�ρ, z1)u(�ρ, z1)∗ d2�ρ

p̂u =
��

�ρ∈R2 p̂(�ρ, z1)u(�ρ, z1)∗ d2�ρ

(2.36)

Conversely, if we now consider a basis of modes uk, k ∈ K and name the corresponding

operators âk we have

â(�ρ, z) =
�

k∈K uk(�ρ, z)âk

x̂(�ρ, z) =
�

k∈K uk(�ρ, z)x̂k

p̂(�ρ, z) =
�

k∈K uk(�ρ, z)p̂k

(2.37)

Another way to understand these operators is to consider the envelope coefficients

ek resulting from the decomposition of a classical field in a mode basis uk presented in

2.6. The quantization transformed the value of the envelope E (�ρ, z) into an observable

Ê (�ρ, z). Similarly, the quantization transforms the coefficients ek into the observables êk.
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And we find that:

êk =

�
�2πν0
2�0cT

âk (2.38)

The position dependence of the quantum operators is entirely transferred to the mode

basis uk(�ρ, z). This gives us the ability to propagate our operators through optical systems.

And we have the commutators

[âuk , â
†
ul
] = δkl (2.39)

[x̂uk , p̂ul ] = iδkl (2.40)

Basis change

Like in the classical case, we introduce âk and â�l, two sets of modal operators which

correspond to the two mode basis uk and u�l, respectively. The operators âk and â�l are not

independent. Indeed, using the same relation as in the classical case, only this time with

the modal operators, we have

â(�ρ, z) =
�

l∈K u�l(�ρ, z)â
�
l

=
�

k∈K uk(�ρ, z)âk

(2.41)

Thus, by defining the same transfer matrix U as in the classical case (see equation 2.14),

we find a direct relationship between the modal operators:

âk =
�

l∈K
Uklâ

�
l (2.42)

If we introduce the notations �̂a and �̂a�, which denote the vectors of operators âk and â�l,

we can write simply:
�̂a = U�̂a� (2.43)

Even if U acts on quantum operators, it is completely defined by the classical equation

2.14. We have seen classically that transparent media and beamsplitters produce specific

unitary transforms U on the classical envelope coefficients ek. Similarly, in a quantum

context, these optical elements apply the same unitary transform U to the quantum op-

erators âk.

2.2.3 Quantum states

Quantum observables are hermitian operators within the space of the quantum states.

We have presented relationships between these properties, such as equation 2.35. These

relations are true independently from the quantum state measured. But observables cor-

respond to physical measurements of properties of an underlying quantum state. Let us

now present a few properties of the quantum states we deal with in the course of this

work.

22



Generalities

The quantum state of a physical system is represented by a vector in a Hilbert space. We

call it |ψ�, and its conjugate |ψ�† = �ψ|. This vector represents the complete physical state

of the experimental apparatus. In our case, if we limit our experiment to a single mode,

|ψ� represents the quantum state of the light in this spatial mode. If the experiment is

more complex and deals with multiple modes and beams, |ψ� represents the state of the

light in all these beams.

Schrödinger’s description of quantum mechanics is based on the idea of an evolving

quantum state (Cohen-Tannoudji 06; Haroche 06). In this picture, we start from a specific

quantum state |ψ0� and the experimental apparatus makes this state evolve. This evolution

is described by a unitary operation in the Hilbert space U so that after the evolution we

have the state |ψ1� = U |ψ0�. We then use observables to detect the output state |ψ1�. For
example, the mean of the detection of observable Â is then:

�
Â
�
= �ψ1|Â|ψ1� = �ψ0|U †ÂU |ψ0�. (2.44)

This description of quantum mechanics is best suited to systems for which we can prepare

a well-defined starting state |ψ0�. It is especially well suited to describe Rydberg atoms

for example (Guerlin 07). In quantum optics, such a precise state preparation is crucial

when dealing with protocols based on single photon states (Hübel 10; Knill 01).

On the other hand, Heisenberg’s description of quantum mechanics is based on the

evolution of observables (Grynberg 10; Mandel 95). Indeed, instead of letting the state

evolve under U , we choose to represent the same evolution by letting all the observables

evolve: Â → U †ÂU , keeping the state fixed at |ψ0�. This means that instead of focusing

on the quantum state itself, we describe our physical apparatus by how it changes the

operators. For example, this is what we did in equation 2.43 where we described the effect

of a beamsplitter or transparent media by their effect on a set of operators. Heisenberg’s

description is widespread in quantum optics, especially when dealing with continuous vari-

able systems, i.e. with observables with a continuous spectrum of results, which is our

case (Duan 00; Loock 07b; Janousek 08a).

Gaussian states

We only deal with a specific family of quantum states: the Gaussian states, sometimes

referred to as a ”Gausson” (Simon 88), in the continuous variable regime. The Gaussian

states are fully specified by giving, for all the observables x̂u and p̂u (for all the modes

u considered), their means and all their covariances. For example, if we consider a two

mode Gaussian state, (the modes being u and v), it can be fully defined by measuring
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their mean: 



�x̂u�
�x̂v�
�p̂u�
�p̂v�




(2.45)

and their covariance matrix:

C =





cov (x̂u, x̂u) cov (x̂u, x̂v) cov (x̂u, p̂u) cov (x̂u, p̂v)

cov (x̂v, x̂u) cov (x̂v, x̂v) cov (x̂v, p̂u) cov (x̂v, p̂v)

cov (p̂u, x̂u) cov (p̂u, x̂v) cov (p̂u, p̂u) cov (p̂u, p̂v)

cov (p̂v, x̂u) cov (p̂v, x̂v) cov (p̂v, p̂u) cov (p̂v, p̂v)




(2.46)

with cov (x̂v, x̂u) = 1
2 �x̂vx̂u + x̂ux̂v� − �x̂v� �x̂u� and cov (x̂v, p̂u) = 1

2 �x̂vp̂u + p̂ux̂v� −
�x̂v� �p̂u�.

Combinations of moments can be calculated from the results of these measurements

in a fashion similar to the computation of moments of Gaussian distributions. These

properties make Gaussian states easier to characterize using the observables x̂u and p̂u:

measuring the means and the covariance matrix fully defines the state.

Let us now discuss further two specific, single mode, Gaussian states: the coherent

state and the squeezed state.

Coherent state

The coherent state is a Gaussian state first introduced by Glauber in his seminal paper

(Glauber 65). A thorough description of the state can be found in (Zhang 90). If we

consider a single mode u, a coherent state in mode u is an eigenstate of the annihilation

operator âu. This means that there is a complex number α so that the coherent state |ψ�
has the property

âu|ψ� = α|ψ� (2.47)

We name these states by their eigenvalues α, so that the coherent state with the eigenvalue

α is simply written |α�. These state have a few interesting properties. First of all, they

are the states generated by a perfect, noiseless, laser. If the laser cavity is resonant in the

mode u, at its output there is a coherent state |α� in mode u.

A second property of the coherent state is that it is quantum noise limited, with specific

variances:
�
∆2x̂u

�
=

�
∆2p̂u

�
= 1. Both of its variances are at the quantum noise limit.

Let us introduce the phasor representation (the ”ball on stick” picture). It is presented

in Fig 2.5. The ”stick” represent the means of the observables x̂u and p̂u, while the sizes

of the ball represent the variances
�
∆2x̂u

�
and

�
∆2p̂u

�
. Since

�
∆2x̂u

�
=

�
∆2p̂u

�
= 1, we

also have
�
∆2x̂θu

�
= 1 for all the values of θ.

A final interesting property of the coherent state is that the vacuum is, by definition,
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a coherent state: âu|0� = 0. The vacuum is an eigenstate of âu. The vacuum has the

same noise properties as the other coherent states. It is presented in Fig. 2.5, and we have
�
∆2x̂u

�
=

�
∆2p̂u

�
= 1. The quantum noise limit is the vacuum noise.

x̂u

p̂u

�p̂u�

�x̂u�

�(∆x̂u)
2�

�(∆p̂u)
2�

x̂u

p̂u

�p̂u�

�x̂u�

�(∆x̂u)
2�

�(∆p̂u)
2�

Figure 2.5: Phasor diagrams of a coherent state and of the vacuum state

Squeezed states

Another class of single mode Gaussian states that we can experimentally generate are

the squeezed states (Walls 83; Davidovich 96). They were first experimentally reported in

(Slusher 84).

A single mode Gaussian state in mode u is fully specified by its means:

�
�x̂u�
�p̂u�

�
(2.48)

and its covariance matrix

C =

�
cov (x̂u, x̂u) cov (x̂u, p̂u)

cov (p̂u, x̂u) cov (p̂u, p̂u)

�
(2.49)

This covariance matrix can be diagonalized by rotating x̂u and p̂u. Indeed, if we consider

the observables x̂θu and p̂θu, the means are changed to:

��
x̂θu

�
= cos(θ) �x̂u�+ sin(θ) �p̂u��

p̂θu
�
= sin(θ) �x̂u� − cos(θ) �p̂u�

�
(2.50)

and we can find θ to that the covariance matrix becomes

C � =

��
∆2x̂θu

�
0

0
�
∆2p̂u

�
�

(2.51)
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We know that
�
∆2x̂θu

� �
∆2p̂θu

�
≥ 1. For a coherent state, we have

�
∆2x̂θu

�
=

�
∆2p̂θu

�
=

1. Any state with
�
∆2x̂θu

�
< 1 or

�
∆2p̂θu

�
< 1 is called a squeezed state. Without loss of

generality, let us assume that we have
�
∆2x̂θu

�
< 1. In that case the state is squeezed along

the quadrature x̂θu. We necessarily have
�
∆2p̂θu

�
> 1. p̂θu is the anti-squeezed quadrature.

Fig. 2.6 presents the phasor diagram of such states.

x̂u

p̂u

�p̂u�

�x̂u�

�(∆x̂θ
u)

2�

�(∆p̂θu)
2�

Figure 2.6: Phasor diagrams of a squeezed state

Typical values of squeezing are given in dB compared to the quantum noise limit:

s = 10 log
��

∆2x̂θu

��
(2.52)

s is the squeezing level. The best experiment currently report s = −11.5dB of squeez-

ing (Mehmet 10), and in this thesis we typically work with s = −5dB (Wagner 08;

Morizur 10b). The anti-squeezing level a defined as a = 10 log
��
∆2p̂θu

��
is above −s.

Indeed, Heisenberg inequality correspond to a + s ≥ 0. A pure squeezed state is a state

for which a+ s = 0.

An interesting property of the squeezed state is its sensitivity to losses. Indeed, if we

consider a squeezed state in mode u, with a squeezing s and anti-squeezing a, applying

a loss of R can be modelled as a beamsplitter of reflectivity R, as presented in Fig. 2.4 ,

with a vacuum state for second input. The output state is still squeezed but with different

ratios:

s� = 10 log
�
R+ (1−R)10

s
10

�
(2.53)

a� = 10 log
�
R+ (1−R)10

a
10

�
(2.54)

(2.55)
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These expressions for the new squeezing and anti-squeezing s� and a� show that whatever

the input squeezing, the amount of squeezing is now limited by 10 log(R). For example,

if we have 50% loss in the system, the output squeezing is limited to −3dB. Squeezing is

extremely sensitive to losses.
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Chapter 3

Quantum protocols with

transverse spatial modes

Conventionally, quantum protocols are implemented using the fundamental spatial mode

of one or more beams. However, higher order modes also carry information, and our vision

is that we can use them, instead of multiple beams, to perform quantum protocols.

In this chapter, we present two situations for which we can achieve more with multiple

transverse modes than with multiple beams, and we introduce the tools we need to build

these protocols. The first situation is quantum imaging, where we reduce the quantum

noise related uncertainty for the measurement of a parameter in a light field. The sec-

ond problem, more general, deals with the implementation of general continuous variable

quantum computing protocols.

3.1 Quantum enhanced detection

3.1.1 Quantum noise and parameter estimation

Measuring a physical parameter using an optical system with the best achievable precision

is a common imaging problem (Treps 03; Török 07; Treps 05; Fade 08).

Let us introduce an example: a cell under the objective of a microscope. We want

to estimate its diameter. To do so, we record the image at the output of the microscope

using a photographic plate or a camera. Then, using this image, we determine its diam-

eter. The precision of our diameter estimation depends on the resolution of the image,

and on how truthful the image is to the actual parameter. For example, a defocus or a

jitter of the cell decrease the accuracy of the diameter estimation. While these sources

of inaccuracy can be eliminated, quantum noise will remain as a fundamental source of

uncertainty (Delaubert 08).

The light intensity measured by the camera or the photographic plate is proportional
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to the number of photons that hits each of its pixels. In the limit of small number of

photons, there is not enough signal on the camera to even see the cell, let alone measure

its diameter, and the image is completely dominated by the quantum noise. When the

photon flux increases, the quantum noise becomes less and less dominant, but still remains

as a fundamental source of noise, due to the nature of the light.

3.1.2 Single mode sensitivity of a parameter estimation

Let us introduce a field envelope E (�ρ) which evolves with a parameter p as E (�ρ, p). We

want to estimate p from a measurement of the field, with minimal uncertainty. Without

loss of generality, we can decompose p as p = p0 + δp, where we have δp = 0. With this

decomposition, in the first order, we have

E (�ρ, p) = E (�ρ, p0) + δp
∂E (�ρ, p)

∂p

����
p=p0

(3.1)

We introduce the spatial mode u(�ρ) defined by

u(�ρ) =

∂E (�ρ,p)
∂p

���
p=p0����

∂E (�ρ,p)
∂p

���
p=p0

����
(3.2)

This mode carries all the information about δp.

It has been shown in (Delaubert 08) and (Fade 08) that all the quantum related uncer-

tainty on the evaluation of p comes from quantum noise in the spatial mode u. To increase

the precision on the estimation of p, one needs to reduce the quantum noise in u. Such a

reduction can be achieved using squeezing.

An example of such a quantum noise reduction can be found in (Delaubert 06). This

experiment, part of the foundations behind our work, proves that introducing squeezing

in a specific transverse mode can improve the measurement of a beam’s deflection. The

transverse profile of a laser beam is a TEM00 mode, with a waist of w0. We want to

detect d the lateral displacements of this beam. In this case, the relevant spatial mode u

which carries all the information about d is the TEM10 mode, as presented in Fig. 3.1.

In (Delaubert 06), amplitude squeezing in the TEM10 mode was superposed to a bright

beam, and the detection of a lateral displacement p was thus improved.

It is worth noting that the conjugate quadrature of the amplitude of the TEM10, i.e.

the phase of the TEM10, corresponds to small tilts of the TEM00 beam. This implies that

reducing the quantum noise variance on the lateral displacement of the TEM00 increases

the noise variance of its tilt.
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76 Chapter 3. Optimal information extraction from an optical image

by an angle θ1. Displacement is naturally defined relative to the propagation axis z of

a non displaced TEM00 beam, i.e. with the beam centered on x = y = 0 all along the

propagation, as shown in Fig 3.1a). Tilt is defined on the other hand relative to a pivot

point centered on the beam waist for simplicity2, as represented in Fig. 3.1b).

The displaced field can always be expanded into the following development

Ed(x) = E(x) + d · ∂E(x)

∂x
+

d2

2
· ∂

2E(x)

∂x2
+ ... (3.1)

and, in the regime where the displacement d is much smaller than the beam size, i.e.

d � w0 where w0 is the beam waist of the incident TEM00 mode, the mean displaced field

reduces at first order to3

Ed(x) ≈ E(x) + d · ∂E(x)

∂x
(3.2)

We see from this expression that the zeroth order term is not dependent on d, and that the

displacement is directly proportional to the first derivative of the field amplitude ∂E(x)
∂x ,

whose amplitude profile is found to exactly identify with the one of a TEM10 mode4 . A

representation in the transverse plane of the decomposition of a displaced beam into its

TEM00 and TEM10 components is given in Fig. 3.2.

d0 0 0
d

0
wx x x

y y y

Figure 3.2: Representation of a displaced beam in the transverse plane. The displacement

information d is carried by the TEM10 component, at first order, and is proportional to

its amplitude. w0 is the beam waist of the incident TEM00 mode.

On the other hand, the electric field profile for a tilted beam is given by

Ep(x) = e
i2πx sin θ

λ E(x cos θ) (3.3)

where E(x) is the non-tilted electric field profile, λ is the optical wavelength, and where

naturally appears the transverse momentum of the beam p, which is given in the limit of

small angles by the following expression

p =
2π sin θ

λ
� 2πθ

λ
, (3.4)

1Note that a rotation of the entire transverse plane of the beam about the propagation axis, i.e. a torque

action, corresponds to a different property, namely to angular momentum, as we will detail in section 3

A.3.
2Choosing the reference point at the waist position is arbitrary. We will see in section 5 A that it can

be more appropriate to define the reference for both displacement and tilt in another plane, namely the

plane of a moving object, which does not necessarily coincides with the beam waist position.
3A discussion on the limit of validity of this assumption is given at the end of this subsection.
4This simple calculation relies on the mode expressions given in Eq. 1.60.

Figure 3.1: Lateral displacements d of a beam in the TEM00 mode are proportional,
in the first order, to the amplitude of the TEM10 mode. Quantum fluctuations in the
TEM10 mode are the source of quantum noise related uncertainty on the evaluation of d.
Squeezing in the TEM10 mode reduces this uncertainty.

3.1.3 Squeezing a complex mode

As a conclusion, information about a system can be carried in complex spatial modes.

Using squeezed light improves our ability to detect this information, but the quantum

noise reduction needs to be in the specific detection mode. In the case of the displacement

of a TEM00, this mode is the rather simple TEM10 mode. But if we aim at more complex

parameter estimations, for example measuring the diameter of a cell or the displacement of

a complex structure, we need squeezed light in complex modes, specific to each detection

problem.

Producing complex squeezed modes is a challenging task. A first way to do it is to

produce the squeezed light directly in the desired complex mode (Lassen 07; Wagner 08).

But, as we will describe later in II, squeezed light is most often produced in the resonant

mode of a cavity (Vahlbruch 08; Takeno 07; Suzuki 06). Thus, with this method, we can

only produce squeezing in a limited set of modes, and we cannot achieve quantum en-

hanced detection for any parameter.

An alternative approach is to produce the best squeezed light possible (typically in the

TEM00 mode), and then convert the spatial mode of the beam into the desired complex

mode. This conversion needs to be performed losslessly in order to retain squeezing in the

desired mode: the conversion needs to be unitary. This means that only a unitary mode

converter allows general quantum enhanced detection. We invented such a device during

the course of this work, and we present it in 6.2.2.

3.2 Quantum information protocols

Quantum information protocols use the properties of quantum mechanics to secure or

process information more efficiently than classical protocols (Childs 10). Quantum key

distribution focuses on sharing secret keys in a protected way: the fact that no eavesdrop-

per has intercepted these keys is guaranteed by quantum mechanics (Ekert 91; Shor 00;
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Grosshans 01). On the other hand, quantum computing uses the properties of entangle-

ment and superposition to solve specific mathematical problems faster than classical com-

puters. For example, Shor’s Algorithm (Shor 94; Shor 97), which necessitates a quantum

computer, computes the prime factors of a large integer in a time that scales asO((logN)3),

where logN is the bit size of the integer. The best public algorithm that runs on a classical

computer computes the prime factors in a time that scales as O(exp(logN)1/3(log logN)2/3)

(Lenstra 93). The significant improvement between the classical sub-exponential time and

the quantum polynomial time derives from the efficiency of the quantum Fourier Trans-

form.

3.2.1 Continuous variable quantum computing

Quantum information protocols were originally developed with discreet physical systems

in mind (Shor 94; DiVincenzo 95; Childs 10), especially two-level systems (Mooij 99) for

which the Bloch sphere description allows for an intuitive understanding of the protocol.

Later on, these discreet protocols were generalized to continuous variable systems by

showing that continuous variables could be used in a discreet way (Gottesman 01). More

than that, quantum protocols were developed specifically for continuous variable systems

(Lloyd 99; Menicucci 06).

Entanglement: the fundamental resource

The strength of quantum computing over classical computing resides in entanglement.

Entanglement is a property of the quantum state of a physical system with two or more

subsystems. It occurs when measurements on the subsystems are linked so that we cannot

adequately describe a subsystem independently from the others. A very simple example

of an entangled state is:

|ψ� = 1√
2
(|0�A|α�B + |α�A|0�B) (3.3)

with A and B the two subsystems. The state of the subsystem A alone is a statistical

superposition of either the vacuum state or the coherent state |α�. This statistical super-
position means that A alone is not in a pure state, while the complete system A and B

is. Assuming α is real, detecting the amplitude x̂A gives statistically either 0 or α, while

detecting the sum x̂A + x̂B systematically gives the result α (with the quantum noise

around it, of course). Thus, we can say that these two subsystems are entangled.

In continuous variables, especially when performing detections in noisy environments,

it can be difficult to prove that two subsystems are entangled. This is the reason why

entanglement criteria are introduced. When we find a set of observables on the two sub-

systems which satisfy a given inequality, they are deemed entangled for this criterion.

Criteria are chosen to reflect a specific quantum property of entanglement. Of course,

perfectly entangled subsystems satisfy all these criteria, but for specific protocols, some

criteria can be more important than others. In the course of this work, we used two com-
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mon entanglement criteria: Duan’s inseparability (Duan 00), a very general criterion, and

the Einstein-Podolsky-Rosen (EPR) paradox inequality (Reid 89), which is very impor-

tant in teleportation protocols.

First of all, consider two pairs of non-commuting observables (x̂1, p̂1) and (x̂2, p̂2) so

that [x̂1, p̂1] = 2i and [x̂2, p̂2] = 2i on two different beams.

For Duan’s inseparability criterion, we introduce two operators, linear combinations of

these x̂i and p̂i so that

x̂ =
1√
2

�
|a|x̂1 +

1

a
x̂2

�
(3.4)

p̂ =
1√
2

�
|a|p̂1 −

1

a
p̂2

�
(3.5)

If there exists an a ∈ R for which

�
∆2x̂

�
+

�
∆2p̂

�
< a2 +

1

a2
(3.6)

then the state measured by the system is inseparable: it means that a measurement on a

part of the system allows the experimentalist to predict the outcome of a measurement on

another part of the system better than the quantum noise limit. The quantum description

of the system cannot be limited to describing each of its parts independently. The state

is inseparable.

The EPR paradox, of the ”spukhafte Fernwirkung”, ”spooky action at a distance”

in Einstein’s words, underlines the strange nature of quantum mechanics. Consider the

same two pairs of non-commuting observables (x̂1, p̂1) and (x̂2, p̂2). When the conditional

variances of x̂1 knowing x̂2 and of p̂1 knowing p̂2 satisfy the relationship:

�
�∆2x̂1|x̂2� �∆2p̂1|p̂2� < 1 (3.7)

the EPR paradox occurs. Indeed, Einstein Podolsky and Rosen assume that if we can

predict with certainty the outcome of a measurement, then there is a physical reality

corresponding to this outcome. They also assume that there is no action at a distance:

measuring in 2 does not affect the system in 1.

If by measuring either x̂2 or p̂2 we can predict the outcome a measurement of x̂1 or p̂1

(respectively) then there must be an element of physical reality that carries that infor-

mation in the system in 1. But the system in 1 has not been detected yet, and a precise

measurement of the conjugate observable (p̂1 or x̂1, respectively) is possible. This contra-

dicts the non-commuting nature of the observables x̂1 and p̂1 that limits the precision of

a simultaneous measurement of x̂1 and p̂1 to

�
∆2x̂1

� �
∆2p̂1

�
> 1 (3.8)

As a result, either quantum mechanics is incomplete, and there is a better description
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of the physical system which would not limit the precisions to
�
∆2x̂1

� �
∆2p̂1

�
> 1 or we

cannot assume there is an element of physical reality in 1 which carries the information

about the measure we performed in 2. As a result, we need to consider both pairs of

observables (x̂1, p̂1) and (x̂2, p̂2) when we describe the system.

Our ability to build and detect entangled systems reflects our ability to perform quan-

tum protocols. This makes detecting entanglement an important indicator of the perfor-

mance of a given physical system for quantum computation.

Continuous variables quantum protocols

A first kind of protocol is quantum teleportation (Furusawa 98; Yonezawa 04; van Loock 00;

Zhang 08). The main resource of a teleportation protocol is a pair of two entangled beams.

The first beam of the pair is combined with the state to be teleported, and measurements

of the amplitude x̂ and phase p̂ of this combination are performed. The results of this

measurements are carried by classical channels and used to correct the other beam of the

entangled pair, in a process called feed-forward. This recreates the original state.

The quality of the teleportation, defined as the fidelity between the input state and the

output state, is limited by the quality of the entanglement. An imperfect entanglement

introduces noise in the system, which reduces the fidelity.

Another possible application of continuous variable entanglement is quantum comput-

ing. The conventional way to envision quantum computing (the evolution of qbits under-

going a succession of linear operations and projections (Childs 10)) does not apply well to

beams of light: their continuous nature and the difficult coupling between different beams

make this conventional method impractical. One-way computing, on the other hand, is

far more adapted to beams of light. Introduced in 2001 in (Raussendorf 01), it sets forth

a succession of measurements on a set of entangled systems. In this method, the quantum

resource for the computation comes originally from a specific entangled state, the cluster

state (Nielsen 06), with a large number of entangled systems. Then, a measurement is

performed on the first system, and depending on the classical result of this measurement

and the desired computation, a different measurement is performed on the second system.

It is the complete succession of these measurements, as well as their classical results, that

provides the result of the quantum computation.

In 2006, this scheme of computing was generalized to continuous variables in (Menicucci 06).

A method to build a specific kind of continuous variable cluster states, the Gaussian cluster

states, using optical parametric oscillators and linear optical elements was later developed

in (Loock 07b). In this scheme, the qbits of the original one-way quantum computer are

replaced by continuous variable systems, such as beams of light. Similar entanglement

relations between the systems are required, and the computation itself is still performed

using a succession of different measurements.
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Some examples of possible Gaussian cluster states computations can be found in

(Loock 07a; Menicucci 07), but there are practical limitations to implement these the-

oretical propositions. First, it remains difficult to generate a big enough cluster state:

apart from proposals of cluster states computation using frequency combs (Menicucci 08),

it seems that the only option to generate a Gaussian cluster state with N entangled states

is to use N input squeezed states and combine them (Yukawa 08a; Ukai 10; Aoki 09a). A

second issue is the difficulty to build and integrate in this system a non-Gaussian mea-

surement. Indeed, cluster-state computation is based on a succession of measurements

(Loock 07a). Any Gaussian measurement can be performed using an homodyne detec-

tion, but non-Gaussian measurements such as photon counting require different devices

(Menicucci 06).

Multimode Gaussian states: building a covariance matrix

In general, multimode Gaussian states are Gaussian quantum states carried by multiple

modes. Gaussian cluster states are but one example of this class of states. Gaussian states

are fully described by their mean and covariance matrices.

An interesting question is on what condition a given symmetric matrix M is a covari-

ance matrix, and how can we produce a Gaussian state which has this covariance matrix.

The symplectic group (de Gosson 06) is a mathematical tool which provides a formalism

to answer this question. Since a complete demonstration of the following can be found in

the literature, we focus on the main results, and give references whenever needed.

Symplectic matrices describe how a quadratic hamiltonian affects a covariance matrix.

Quadratic hamiltonians include interferences between modes, squeezing production, down-

conversion (Arvind 95) (Braunstein 05)... Let us assume that M is a 2N × 2N symmetric

matrix, which would correspond to a N mode state. Let us introduce a matrix Ω defined

as

Ω =

�
0N×N 1N×N

−1N×N 0N×N

�
(3.9)

A real matrix S is symplectic if and only if SΩS∗ = Ω, where S∗ denotes the conjugate of

S, which here is equivalent to its transpose, because S is real.

Williamson’s theorem states that any symmetric matrix M can be decomposed as

M = S∗DS , where S is a symplectic matrix and D is a diagonal matrix composed of two

identical diagonal blocks of size N × N with the same diagonal coefficients Di ≥ 0. The

values of Di are unique (to a reordering), and provide us with a lot of information on M .

First of all, M is a physical covariance matrix if and only if all the Di are above or equal

to 1. Furthermore, M is the covariance matrix of a pure state if and only if Di = 1 for

all the coefficients. If one or more of the coefficients Di is strictly above 1, M describes a
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state which is not quantum limited: there is additional randomness.

We now focus on the second part of our inquiry: how can we build a given physical

M . We begin with the covariance matrices M describing pure states. In this case, ap-

plying Williamson’s theorem, we find that there is always a symplectic matrix S so that

M = S∗S. The implications of this result can be understood physically. It means that

if we apply the quadratic hamiltonian operation represented by S on N vacuum modes,

we are able to produce N modes with the specified covariance matrix M . We now use

Euler’s decomposition presented in (Arvind 95). It can also be found, although without

the symplectic formalism, in (Braunstein 05). It is related to the Block-Messiah reduc-

tion: any symplectic matrix S can be decomposed in the product S = KDU , where K

and U belong to the n-dimensional unitary group, which represents the basis changes of

the modes, and D is a diagonal matrix which represents squeezing operations. Physi-

cally, this decomposition implies that any covariance matrix M describing a pure state

can be built from vacuum modes by applying a basis change U , squeezing, and another

basis change K. The first basis change U , which acts on vacuum modes, is not important

in the case of a pure state: even after a basis change, vacuum modes remain vacuum modes.

This means that any covariance matrix M describing the results of a set of observ-

ables x̂u and p̂u on a pure state can be built by producing a set of squeezed modes and

applying a basis change on these modes. This result can be expanded to more complex,

non-pure states, as can be found in (Arvind 95; Adesso 06). Still, additional noise is al-

most always detrimental in the quantum protocols we aim at. To that extend, we try to

build quantum states which are as pure as possible, using only squeezers and basis changes.

This result means that in order to build any Gaussian multimode entangled state, and

cluster states in particular, we need to be able to produce independent squeezed modes,

and mix these modes in a basis change.

3.2.2 Higher order modes for multimode entanglement

The conventional approach

A conventional approach to continuous variable multimode entanglement consists in using

multiple light beams as the carriers of the entangled systems (Yukawa 08a; Aoki 09a).

Squeezed beams are first generated in the TEM00 mode using optical parametric oscilla-

tors. Then these beams are mixed together using beamsplitters: the output field operators

â�i and â�j are linear combinations of the input field operators âi and âj :

�
â�i
â�j

�
=

�
cos(θ) sin(θ)

− sin(θ) cos(θ)

��
âi

âj

�
(3.10)
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The angle θ is related to the power reflectivity of the beamsplitter mirror by R = cos(θ)2.

The relative phase of these two modes at the position of the beamsplitter is another

degree of freedom. Indeed, different path lengths for the two beams introduce different

phase shifts: �
â�i
â�j

�
=

�
eφi 0

0 eφj

��
âi

âj

�
(3.11)

A succession of beamsplitters with carefully controlled relative phases can apply any uni-

tary transform to the array of beams (Serre 02; Reck 94). After the mixing is complete,

and the desired unitary transform has been applied to the array of squeezed beams, the

entanglement between the n outputs â�1, â
�
2, . . . â�n can be characterized by measuring the

covariance matrix between the x̂ or p̂ quadratures of all these beams. This measurement

can be performed using one homodyne detection per output beam. The covariance matrix

gives a full characterization of the Gaussian entangled state.

Such a scheme is synthesized in Fig 3.2, where the production, mixing and detection

phases are outlined.
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Figure 3.2: Conventional approach to create and characterize Gaussian multipartite en-
tanglement. N independent optical parametric oscillators generate N TEM00 squeezed
beams. These squeezed beams are then combined on beamsplitters with specific reflectiv-
ities which, in combination with controlled phase delays between the beams, control the
Gaussian entanglement between the N outputs. The desired entanglement relation is then
checked by measuring the covariance matrix of the observables x̂i and p̂i.

After building a specific Gaussian entanglement between the beams and checking its co-

variance matrix, the entangled beams are then used to perform quantum information

protocols.
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This conventional procedure to build N entangled beams suffers a few drawbacks.

First of all, all the interferences on the beamsplitters require a precise phase control. Any

undesired relative phase changes dramatically the nature of the entanglement produced

(Yukawa 08a). For all the interferences, there needs to be a control mechanism that mea-

sures the relative phase between the beams and adjusts it continuously to the desired

position. While such a scheme can be simple for independent controls, here the feedback

loops are nested: the first interference needs to be stabilized before the second one is.

This technical difficulty, as well as the ever increasing amount of resources needed to

include more beams in the entangled output mean that such experiments with a high

number of squeezed beams are extremely challenging.

Equivalence multiple beams / multiple modes

In the conventional approach the light is carried by a single transverse mode per beam

(the TEM00 mode resonant with the optical parametric oscillator). The other transverse

modes are vacuum. Thus, building a N -partite entanglement with this method requires

N different output beams.

However, fundamentally, N -partite entanglement only requires N pairs of observables

x̂�i, p̂
�
i with some variance relations between them. These pairs of observables do not need

to be all in different beams. Higher order modes within a single beam can carry these

observables.

For example, instead of using N different beams, one can use the N transverse modes

TEMi0 with i = 1..N of the same beam. The pairs of observables are then x̂TEMi0 and

p̂TEMi0 . The main advantage of using copropagating transverse modes is that a single

beam carries all the multipartite entanglement: since all the transverse modes go through

the same optical media, the propagation does not change the relative phases between the

modes.

Multipartite entanglement on a single beam of light

In this thesis, we provide the set of tools required to build and detect entanglement between

multiple modes in a single beam. The idea of using multiple higher order modes within

a beam to carry more quantum resources is not new (Lassen 07). Still, we demonstrate

in this work that it is possible to produce within a beam the multimode Gaussian state

necessary for one-way computation protocols. As an alternative to Fig. 3.2 we propose

Fig 3.3, a method able to build and characterize any multimode Gaussian state required

for the computation.
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Figure 3.3: Practical method to build and characterize copropagating multipartite entan-
glement, in the form of entanglement between higher order modes in the same beam.

Our method requires the production and the detection of a beam carrying multiple

squeezed modes, and the unitary manipulation of the modes in-between. While our ap-

proach of the production and the detection processes, detailed in the next part, is based

on improvements of existing techniques, our unitary mode converter, presented in the last

part of this work, is a completely new device.
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Part II

Production and detection of

copropagating squeezed modes
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Chapter 4

Producing a multimode squeezed

beam

We aim at building and detecting an entangled state between multiple spatial modes in

a beam. The first step in creating such a state is producing a beam carrying multiple

squeezed modes. These are the fundamental resources we then manipulate to build the

desired multimode state. To produce the squeezed modes, we use optical parametric

amplifiers (OPA). We begin this chapter with a brief presentation of the principles of

squeezing generation in OPA. We then present our technical choices to achieve high levels

of squeezing while retaining a good reliability of the OPAs. Finally we present different

methods to produce a multimode squeezed beam.

4.1 Principles of squeezing generation

Optical parametric amplifiers are resonant cavities with a non-linear crystal set inside. Let

us briefly describe here its theoretical principles. In the non-linear crystal, the quantum

state evolve with the Hamiltonian (Walls 08):

Ĥ = χ2

�
â2(â

†
1)

2 + â†2(â1)
2
�

(4.1)

where â2 is the annihilation operator at the frequency ν2, â1 is the annihilation operator

at the frequency ν1 and χ2 is the constant defining the strength of this process. It is a

subtle process, and the spatial (Delaubert 07a; Delaubert 07b; Chalopin 09) and temporal

properties (Hage 10) of optical parametric amplifiers have been discussed thoroughly in

the literature (Walls 08; Bachor 03) and in previous thesis (Janousek 08b; Delaubert 07b;

Bowen 03; Lam 98). We only present here the fundamental workings of the device. During

the evolution of the field in the non-linear crystal, photons of the intense pump beam at

ν2 are down-converted to be replaced by two photons at frequencies close to ν1 = ν2
2 .

Actually, the frequencies of the two generated photons are so that ν1+ν �1 = ν2. Thus, this

process generates a stream of photons in a single spatial mode with correlated frequencies.

This correlation is the source of the noise reduction.
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We use a cavity around the non-linear crystal to enhance this effect. The cavity selects

a specific mode u resonant, and the squeezed state is produced in this mode. We can

choose to seed the cavity: to introduce a coherent state in the mode u. In that case,

the output of the optical parametric amplifier is a squeezed state with a non zero mean

(Vahlbruch 08; Masada 10). On the other hand, non-seeded optical parametric amplifiers

generate vacuum squeezing (Lam 99).

4.2 Technical description of the optical parametric amplifier

After this very brief explanation of the physical principles underlying the OPAs, let us

present here different implementations of these devices, with different geometries, locking

techniques and non-linear crystals. We present a set of experimental squeezing measure-

ments for our few different set-ups.

4.2.1 Geometrical design

Let us begin with the common OPA geometrical designs: linear cavities and Bow-Tie

cavities.

Linear cavity

The simplest design for an OPA is linear (Vahlbruch 08; Mckenzie 04; Lam 99; Wu 86). In

this case, a resonant cavity is created by two reflective surfaces, and a non-linear crystal

is added in the cavity to make it, with the addition of a pump beam, an OPA. A very

conventional improvement consist in coating one side of the non-linear crystal so as to use

it as one of the reflective surfaces. Such a cavity is presented in Fig 4.1.

The waist of the eigenmodes of the cavity is defined by the radii of curvature of the

two surfaces. Fig 4.2 presents as an example the relation between the radius of curvature

of one of the mirrors and the resulting waist of the eigenmode, for a very simple linear

cavity of length 10cm, the other reflective surface being flat. As can be noted on Fig 4.2,

there is a stability region, outside of which there is no eigenmode. When the radius of

curvature is in the stability region, all the modes TEMmn with the right waist at the right

position are possible eigenmodes of the cavity.

Now, a very fine length control of the cavity decides which of these modes will be reso-

nant: because each of the TEMmn accumulates a different Gouy phase shift by looping in

the cavity (Siegman 86), and because a mode is resonant only if it interferes constructively

in the cavity, a small change in the cavity length (less than a wavelength) allows to switch

the resonance from one higher order mode to another.

One of the reflective surfaces is transparent to the pump beam, so that the eigenmode

of the cavity and the pump beam enter both the non-linear crystal. Fig 4.1 presents such

situation. We choose the pump beam shape depending on the TEMmn eigenmode of the
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CHAPTER 7. THEORY AND EXPERIMENTAL REALIZATION OF SPATIAL
ENTANGLEMENT

Figure 7.9: Schematics of the MgO:LiNbO3 based OPA.

the squeezed and carrier fields, for locking the MZI, for locking the relative phase of
the two nonclassical fields on the entanglement BS and finally for locking the relative
phase between the analyzed and LO fields at the HD systems. We seeded the OPA
cavity with 20 mW of power, which results in 18 µW of power transmitted through
the OPA cavity (power of the transmitted seed field prior to deamplification). Both
OPA cavities have almost identical finesse of 137, free spectral range 4 GHz and the
frequency bandwidth γa/2π=29 MHz.

Both OPAs operating in the TEM10 mode were pumped with a TEM00 SH field
through its OC. The pump field was carefully mode-matched into the active volume of
the nonlinear material in order to maximize squeezing generation. Using the TEM00

SH field is, however, not an ideal pumping scheme, as this would require the pump
field being in the TEM20 mode as discussed in sec. 4.2.4, but still provides a sufficient
nonlinear gain of the OPA. As we already discussed, an OPA can either amplify or
deamplify its seed field depending on the relative phase between the seed and pump
fields. We operated both OPAs in the deamplification regime, which results in the
OPA fundamental output being amplitude squeezed. For generating the error signal
for locking the OPA to deamplification, we again used the same detected reflected field,
which was mixed down at the second PM frequency of 21.3 MHz placed on the seed
field. The resulting error signal was fed to a PID controller and then via a high voltage
amplifier to a PZT actuator in the green beam. The advantage of locking the OPA to
deamplification using the reflected field is that the squeezing generation is completely
independent of the squeezing detection at the HD systems. Thus one has a freedom in
using the squeezed beams in any quantum optics experiment.

The squeezed field exiting the resonator through the front of the OPA, i.e. through
the OC mirror, was separated from the SH pump field with a dichroic mirror, and then
used for subsequent measurements. Our primary objective was to design a stable
OPA with high efficiency to provide a source of squeezed light for running the spatial
entanglement experiment. Both of the OPAs were producing -3.2 dB of squeezed light
without relocking the control loops for around 30 min. The dim OPA1 amplitude
squeezed field of the TEM10 spatial mode was combined with the TEM00 carrier field
in a mode combiner in order to generate the position squeezed beam, and this was
interfered with the dim OPA2 amplitude squeezed field of the TEM10 spatial mode on
the entanglement BS.
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Figure 4.1: Detailed schematic of our linear cavity. The cavity is formed between a
reflective surface on the non-linear crystal, and a curved mirror. The cavity is seeded with
a phase modulated beam. Part of the seed is coupled into the cavity. Another part is
reflected on the input mirror. Because of cavity properties, the phase modulation of the
seed is transformed in the reflected beam into an amplitude modulation, which depends on
the length of the cavity. This modulation is detected on the photodiode, and the signal is
demodulated to produce an error signal. We use a proportional integrator derivator (PID)
controller to integrate this error signal and produce a control signal, which, amplified, is
used to drive the piezo-electric actuator (PZT). In order to achieve higher bandwidth, the
PZT is pre-loaded using a rubber band. Source (Janousek 08b)

cavity we want to couple it with (Lassen 07). For example, the optimal waist size for the

pump beam in the simple case when both the pump and the desired squeezed eigenmode

are TEM00 is simply wpump =
wsqz√

2
(Delaubert 07b).

One of the cavity mirror is not as highly reflective as the other. It is the output mirror

of the cavity: the squeezed beam will exit the OPA from this mirror. The light that exits

the other mirror is equivalent to loss in the cavity, and we use a highly reflective surface

to avoid it.

A big advantage of this linear design is its stability. Today, the best squeezing re-

sults are achieved with linear designs (Mehmet 10; Vahlbruch 08), and they can be made

very compact, even to the level of shaping and coating both sides of a non-linear crys-

tal so that the cavity is contained within the crystal (monolithic cavity) (Yonezawa 10).

In this particular case, locking the OPA cavity to the laser frequency is the main challenge.

Another advantage is its full cylindrical symmetry. Indeed, apart from the non-linear

crystal, the rest of the optical components are fully invariant for any rotation around the
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Figure 4.2: Waist of the eigenmodes of a simple linear cavity 10cm in length, as a function
of the radius of curvature of one of its mirrors. The other mirror is set flat. Notice the
instability region, in which there is no eigenmode.

propagation axis. We will detail further in 4.3.2 how this particular property can be used

to achieve multimode squeezing.

We found that the main issue of the linear design for OPAs is the lack of independent

input/output ports. It has an impact on the available locking techniques, and requires ef-

ficient dichroic mirrors to superpose and separate the pump and the seed/squeezed beams.

Fig 4.1 details our layout for the input and output beams of our linear cavity.

Bow-Tie cavity

Another OPA design consist in having the beam propagating in a loop, instead of a back

and forth motion in the case of a linear cavity. Such a loop can be implemented in a

Bow-Tie shape (Masada 10; Takeno 07; Suzuki 06). See Fig. 4.3 for reference. This

specific shape is chosen to minimize the reflection angles: when a beam hits a spherical

mirror at an angle, the horizontal and vertical curvatures are different. These differences,

on all the reflections, make the eigenmode of the cavity elliptic, which is difficult to correct.

The bow-tie design of the OPA means that the eigenmode has two different waists in

the cavity, at two different positions. The non-linear crystal is located at the smallest of

these waists, and the pump is superposed to the infrared beam in this crystal. Like in the
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J. Janousek 5.2. GENERATION OF SQUEEZED VACUUM STATES

Figure 5.6: Schematics of a bow-tie cavity OPA based on a PPKTP nonlinear material.

designed pre-loaded system together with OC, which is pushed by the PZT against
a rubber o-ring. As we already discussed in sec. 3.5 the effect of the pre-loading is
simply to increase the spring constant and damping coefficient of the PZT. Careful
design of this pre-loaded mount results in rather high resonance frequency of 55 kHz,
which increases mechanical stability of the OPA and thus reduce the phase jitter in the
system. The whole OPA cavity is built into a solid block of aluminium and enclosed by
a plastic cover in order to reduce thermal fluctuations and sound vibrations. The OPA
cavity is locked on resonance by detecting the transmitted locking field on detector LD3

and employing the PDH locking technique. The generated error signal is then fed back
to the cavity through a PZT actuator. Here we used the same modulation signal of
18.72 MHz as for MCC as this modulation gets easily transmitted through this rather
low finesse cavity (F = 57). The frequency bandwidth of the cavity is γa/2π = 19 MHz
and the free spectral range is 1.1 GHz.

The locking field is actually counter-propagating in the OPA relative to the squeezed
beam. This means that this cavity can be locked even without a seed field incident on
the input coupler, and in effect we can generate vacuum squeezed states, which was the
purpose of this experiment. The power of the locking beam was minimized in order
to avoid any contamination of the vacuum squeezed field by the noise on the locking
beam, but still keeping the lock robust. By measuring the output power from the OPA,
we inferred the intra-cavity power to be less than 1 mW for the locking beam. Assum-
ing AR coating of the PPKTP crystal to reflect 0.2% of incident light on each of its
surfaces into the squeezed counter propagating mode, we can consider |α|2 → 0. The
seed field denoted alignment beam in fig. 5.5 is used to align the pump beam with the
OPA intra-cavity mode in order to maximize the nonlinear interaction. For measuring
vacuum squeezing, we block this alignment beam, pump the OPA with the SH field,
and by sweeping the LO phase we measure the amplitude and phase quadratures of a
squeezed state. The spatial profile of the LO beam corresponds to the TEMn0 mode
of the squeezed beam, so such a HD selectively extracts information from the squeezed
beam contained in the TEMn0 component.

Green mode cleaning cavity

As we will see in the following it is very important to remove excess noise from the
pump field. In particular, the amplitude noise is a source of phase jitter and degrades
the measurement of squeezing. For cleaning the pump beam, we implemented a MCC
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Figure 4.3: Detailed schematic of a Bow-Tie cavity. Unlike in the case of the linear cavity,
in this case we do not detect the amplitude modulation on a reflected beam. Rather,
we send a seed beam in a contra-propagating way (propagation in the other direction in
the cavity as the squeezed mode), and we are able to detect the transmitted part of this
modulated seed beam. This kind of lock is especially useful to achieve vacuum squeezing.
We either use this technique, or use the more conventional locking in reflection. Source
(Janousek 08b)

linear cavity situation, the optimum size of the pump depends on the desired eigenmode,

and is given by wpump =
wsqz√

2
in the simple case when both the modes are the fundamental

TEM00.

As can be seen in Fig. 4.3, the inputs and outputs do not share the same beam:

because of the small reflection angle on the cavity mirrors, the beam that is coupled in

the cavity is not superposed to the beam that is coupled out. This gives more options

as far as locking techniques are concerned, and reduces the difficulties related to the su-

perposition of the intense pump beam and the weak infrared beam. On the other hand,

such a cavity design is less stable and compact, with more sources of loss (more reflections).

4.2.2 Locking

The geometrical design of a cavity defines its possible eigenmodes. For a mode to be

resonant in the cavity, the cavity length must be precisely controlled so that after one

loop, the field interferes constructively with itself. Air fluctuations, vibrations, make the

cavity length change. Ensuring resonance requires an active feedback to compensate for

these effects. We first present different locking techniques, required for different systems:

cavities, OPAs, and simple interferences. Then we proceed to looking at new possible

locking techniques, based on digital locking.
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Locking cavities

A standard method to lock a cavity is to use a seed beam (also named probe beam

(Takeno 07)). This infrared beam, which has the shape of the eigenmode we want to lock

to, is first phase modulated at a relatively high frequency (in our set-ups between 2MHz

and 16MHz) using an electro-optic modulator. It is then injected into the cavity. On the

injection mirror, a small part of the beam is reflected, and the intensity of this reflected

beam is measured on a photodiode. The signal from the photodiode is demodulated at

the frequency used for the phase modulation, which provides us with an error signal. A

similar error signal can be obtained from the detection of the output of the cavity. See

Fig. 4.3 for a design example with the relevant electronic components.

This method is called the Pound-Drever-Hall technique (Drever 83; Black 01). It is

based on the fact that the two sidebands created by the phase modulation are reflected by

the cavity. Recombining the reflected sidebands using the demodulation and the low pass

filter performs the difference between the transfer function 2MHz above and 2MHz below

the laser frequency (for a 2MHz phase modulation). Since the cavity transfer function

is symmetric around its resonant frequency, when this difference is 0 the cavity is well

tuned to the laser frequency, otherwise the sign of the difference tells us on which side of

the resonance we are. We use a piezoelectric actuator (PZT) to control the cavity length

based on the error signal.

Once the cavity length is controlled, one only needs to control the relative phase be-

tween the seed and the pump. Indeed, the squeezing conditions are optimal when the

pump deamplifies the seed. To perform this lock, a piezo-electric actuator, located either

on the seed beam or on the pump beam, is driven using a specific error signal. To pro-

duce this error signal, the pump beam is phase modulated, and the squeezed beam (or

alternatively a beam leaked from the OPA cavity because of an imperfect reflection) is

detected and demodulated using the same frequency. The error signal is then used to lock

the actuator.

Another situation which requires locking is the stabilization of the relative phase of

two interfering beams (to perform an homodyne detection for example). Depending on

the relative phase that is needed, the phase locking method is different. When we need

the two fields to have a different, fixed, phase, then the direct DC measurement is enough

to produce an error signal: a small relative phase increase immediately translate into an

increase (or a decrease, depending on the relative phase we want to lock to) of the inter-

ference intensity. On the other hand, when we need to lock the two fields in phase, then

changing the relative phase in both directions from the optimal position changes the inter-

ference intensity in the same way. To solve this issue, a phase modulation is introduced on

one of the two beams, and using demodulation, a similar approach to a Pound-Drever-Hall

locking allows to stabilize the relative phases.
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Digital locking

The feedback voltage is conventionally the result of an analog processing of the detected

signal on the photodiode. It is based on a succession of a demodulator, a low pass filter,

and a proportional-integrator system (PI). It is a well tested method, which does not

introduce digitization noise (all the signals remain continuous) and that does not limit

the speed of the system (the system is limited by the piezo-electric actuator bandwidth,

typically 10kHz). The two main issues of this scheme are the difficulty of its tuning (be-

cause everything is analog, the settings of the PI system need to be readjusted for every

change in the optical conditions) and its scalability (every locking loop requires an addi-

tional demodulator, low pass filter and PI system, which can fail due to electrical stresses).

Moreover, such a scheme cannot really be improved using more complicated processing

(power fluctuation subtractions, nested locking loops).

An alternative system consists in using a digital locking process. In such a system,

the signal is digitized and the desired output is computed using a digital signal processor

(DSP) implemented on a field-programmable gate array (FPGA) chip. The FPGA solu-

tion is chosen because it gives us the ability to easily try different DSP designs. Because

a typical FPGA chip involves 4 million gates, many PI systems can be implemented on

the same chip. Moreover, it is possible to design logic circuits more complex than simple,

single input - single output PIs, with automatic locking and optimization procedures.

Digital locking has limitations. First of all, except with very specialized high-end digi-

tizers, recording the full output of the photodiode significantly faster than the modulation

frequency is a challenge. A common method to avoid difficulties is simply to perform the

demodulation using a demodulator and a low pass filter before the digitizer. This limits

the flexibility of the logic circuit that can be implemented, but makes the digitizing and

the data processing achievable.

Moreover, the digitization is limited to a certain number of bits. For example, for a 8

bit digitizer, this limitation is equivalent to introducing a digitization noise 24dB smaller

than the signal maximums. It becomes really important to get rid of all the additional

modulations that are irrelevant to the signal considered. Indeed, they do not help in the

computation of the feedback voltage but their presence increase the digitization noise.

This limitation of the digitization, while relevant for locking, is especially critical for de-

tection, and we explain it further in 5.1.2.

Finally, it is necessary to use a dedicated DSP rather than a standard computer be-

cause of the delay induced by the processing. The time between the input arrives in the

DSP and the feedback is sent out limits the frequency range of the locking. The delay

can be really high in the case of a standard computer. In the case of our FPGA board

(NI-7833R), we found it was typically on the order of 0.2ms.
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4.2.3 Single mode squeezing performances

Once the cavity and the relative phase between the pump beam and the seed are locked,

the output of the OPA produces a squeezed beam on eigenmode resonant in the cavity.

We now present our two different practical implementations (different geometries, different

non-linear crystals).

Linear Cavity with a lithium niobate (LiNbO3) crystal

Our first OPA is based on a lithium niobate crystal (a type I second order crystal) placed

in a linear cavity. It is pumped with 532nm light from a frequency-doubled diode-pumped

Nd:YAG laser operating at 1064nm. The non linear crystal is a 2 × 2.5 × 6.5mm3 par-

allelepiped made from bulk LiNbO3 doped with 7% of MgO. We stabilize the crystal

temperature to 61◦C to achieve the optimal phase matching conditions. We utilize the

d31 non-linearity of the lithium niobate, with a non-linear coefficient of d31 = 5.95pm/V .

The OPA cavity is formed by the rear surface of the crystal and an external mirror.

The rear surface of the crystal has a 8mm radius of curvature and is 99.9% reflective for

the 1064nm light and fully reflective for the 532nm light. The external mirror has a 25mm

radius of curvature and is 96% reflective at 1064nm while begin 10% reflective at 532nm.

The front surface of the crystal is antireflection-coated for both the wavelengths. The

cavity is set so that its optical path length is 38mm. It is this OPA which is presented in

Fig. 4.1.

We locked this cavity to deamplification and measured a noise reduction on the ampli-

tude quadrature −4dB below the quantum noise limit in the frequency bandwidth 3MHz

to 4MHz. This OPA was used in a few different entanglement experiments. One them to

entangle the transverse position and momentum of two beams (Wagner 08) and another

one, using this OPA in a degenerate configuration (see 4.3.2), to generate two entangled

modes within the same beam (Janousek 08a).

Bow-Tie Cavity with a periodically poled potassium titanyl phosphate (PPKTP )

crystal

Our second OPA is based on a PPKTP crystal in a Bow-Tie cavity. Likewise, this

OPA is pumped with 532nm light from a frequency-doubled diode-pumped Nd:YAG laser

operating at 1064nm. The non-linear crystal is now a 1×2×10mm3 parallelepiped. When

the crystal is grown, a periodic reversal of the optical domain orientation (using patterning

electrodes) changes periodically the sign of the non linear coefficient. This process ensures

quasi phase matching is retained even for long propagations within the crystal, enabling

higher coupling between the 532nm pump and the 1064nm light. Thanks to the periodic

poling, we can use the highest non-linearity, the d33, for which all the fields polarizations

are identical. We have d33 = 16.9pm/V .

Both the front and back surfaces of this crystal are flat, coated so as to be antireflective
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both for the 532nm and the 1064nm light. The cavity’s optical path length is 275mm,

and is formed by two mirrors of radius of curvature 25mm and two plane mirrors. The

cavity forms a beam waist of radius 19µm between the curved mirrors, where the crystal

is located. It is presented in Fig. 4.3.

When we lock the relative phase of the pump to deamplification, we can detect the

amount of squeezing and anti-squeezing produced at a given frequency using a homodyne

detection and scanning the local oscillator phase. We will explain further the homodyne

detection in the next chapter. In order to reach the results presented in Fig. 4.4, we need

to optimize the OPA.
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Figure 4.4: Experimental measures of the variance of the noise detected by an homodyne
detection when we scan the local oscillator phase. We consider a frequency band of width
200kHz centered at 3.5MHz. The spatial profile of the local oscillator is in the eigenmode
of the Bow-Tie OPA. The OPA is pumped with a beam of 200mW of 532nm light, with
a crystal temperature set at 32.75◦C.

We can optimize our PPKTP OPA by working on several parameters. First of all, in

order to maximize the overlap between the 532nm pump and the eigenmode of the cavity,

we optimize the amplification and deamplification. Fig. 4.5 presents an experimental mea-

surements of amplification and deamplification as a function of the pump power. When we

improve the overlap between the pump and the eigenmode of the cavity the amplification

ratio increases for the same pump power.

A second parameter is the temperature of the non-linear crystal: for a range of tem-

peratures from 25◦C to 44◦C, we measure the amplification and deamplification of the

1064nm seed, for a fixed pump power of 200mW . Fig. 4.6 presents these results. This

figure confirms that the periodic poling allows for a wider range of efficient coupling than
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Figure 4.5: Amplification and deamplification as a function of the pump power, with a
crystal temperature set at 32.75◦C.

the very narrow 2◦C of the LiNbO3.
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Figure 4.6: Amplification and deamplification as a function of the temperature, with a
pump power set at 50mW .

A third parameter is the pump power. While it would seem that a maximum pump
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power would allow for the best squeezing results, we find that locking difficulties can de-

teriorate the squeezing above a certain pump power level. Typical traces such as Fig. 4.7

allow to adjust the pump power so as to maximize squeezing.
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Figure 4.7: Squeezing and Anti-Squeezing measurements in a band of width 200kHz
around 3.5MHz, as a function of the pump power, with a fixed crystal temperature
32.75◦C.

The best squeezing results can always be improved, but using this PPKTP Bow-Tie

OPA, we found we could reliably achieve 5.0dB of squeezing and 6.3dB of anti-squeezing

every day for two months without much realignment. The results presented in Fig. 4.4

are typical.

4.3 Copropagating squeezed modes

The OPAs produce squeezed modes. We now focus on the different methods available to

create a multimode squeezed beam using OPAs.

4.3.1 Superposing orthogonal modes on the OPA’s cavities

A first, straight-forward method to produce a beam carrying multiple orthogonal squeezed

modes is to produce them separately and then superpose them (Treps 03; Delaubert 06).

We introduced an efficient and scalable way to do so: we use the OPA cavity as the method

of superposition.
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Geometrical set-up

Consider a squeezed beam, produced by a first OPA (OPA1). Since the OPAs are more

efficient when locked to the fundamental mode TEM00, let us consider that the output of

OPA1 is a squeezed beam in a TEM00 mode. Consider now another OPA cavity (OPA2).

For the same reason as with OPA1, we want OPA2 to be locked to the fundamental mode

TEM00. It is not possible to superpose two TEM00 modes on the same beam: they are

not orthogonal. We use a phase plate after OPA1 to transform losslessly the output of

OPA1 into a mode orthogonal to the TEM00. When this mode is sent on the output

mirror OPA2, it is fully reflected as it is orthogonal to the mode the cavity is locked to.

After this reflection, both the outputs of OPA1 and OPA2 are superposed.

Such a scheme is detailed in Fig. 4.8. It is necessary to use increasingly complex

phase plates to superpose many orthogonal modes. An interesting feature of this method

is that the copropagating nature of the orthogonal modes is guaranteed by the coupling

into the cavity. Indeed, when there is not phase plate after OPA1, its output should be

fully coupled into OPA2, and scanning the length of OPA2 should exhibit a single peak.

When it is so, the positions, directions and sizes of the output of OPA1 are fully identical

to those of the output of OPA2. The addition of a phase plate changes the profile of the

mode to make it orthogonal but does not change its direction and position: the modes

remain copropagating.

In order to control the relative phase between the two modes, a piezoelectric actua-

tor is set between OPA1 and OPA2. We will detail further along (when we discuss the

detection process) how this piezoelectric actuator is controlled to achieve a relative phase

stabilization.

Experimental example: superposition of a TEM00 and a flip mode

We used two OPAs to test this superposition technique. Between the OPAs, the phase

plate inserted was a simple flip plate, on a translation stage. This way, we can first make

sure the output of OPA1 is well coupled into OPA2, and then slide in the phase plate

until the peak corresponding to the TEM00 mode disappears.

After the reflection on OPA2, we have a beam carrying two squeezed modes: a TEM00

squeezed mode, produced by OPA2 and a flip mode, produced by OPA1 and the phase

plate. We use a multipixel homodyne detection (detailed in the next chapter) to detect the

squeezing levels achieved. Fig. 4.9 presents the measurement results. We scan the local

oscillator phase, so as to record the noise variances along different quadratures for the

TEM00 mode and the flip mode. We record −3.1dB of squeezing for the TEM00 mode,

and −2.6dB of squeezing for the flip mode. Since these OPAs produce the same squeezing
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Figure 4.8: Representation of a general scheme to build a beam carrying several orthogonal
squeezed modes. Each OPA is locked to produce a TEM00 squeezed mode, but phase
plates placed along the beam make sure that each addition is orthogonal to the modes
already carried in the beam. In the schematic are shown a few phase-plates, but many
more are possible, as long as they produce orthogonal beams.

levels, and the detection apparatus is equivalent for the TEM00 and the flip-mode, this

difference in squeezing values is due to losses on the order of 12% induced by the phase

plate and the bouncing back of the flip-mode on OPA2.

4.3.2 Partially degenerate cavities

Partially degenerate cavities present another option to generate multimode squeezed beams.

Indeed, if several spatial modes are resonant at the same time in the OPA, all these modes

are simultaneously squeezed.

Characteristics

We use the linear design detailed in Fig. 4.1. This design has a cylindrical symmetry: the

TEM10 and TEM01 modes, images of each other by a 90◦ rotation should have the same

coupling with the pump beam, and be resonant for the same cavity length. We begin by

seeding the cavity with a TEM10 mode, locking the cavity to this mode, and recording

the amplification as a function of the pump power. We then perform the same operation

for the TEM01 mode. After a careful alignment of the pump, we record the same ampli-

fications as a function of the pump power for the TEM10 and the TEM01 modes. This

means that the pump beam is symmetrically aligned.
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Figure 4.9: Experimental measures of the variance of the noise detected in two different
spatial modes by an homodyne detection when we scan the local oscillator phase. We con-
sider a frequency band of width 300kHz centered at 3MHz, and the red curve represents
the results for the TEM00, while the blue curve represents the results for the flip mode.
The black curves represent the quantum noise limit measurements.

We now seed this OPA with a TEM01 mode, and lock the cavity so that this mode is

resonant. Because of the cylindrical symmetry, the TEM10 is also almost resonant. We

optimize the crystal temperature to achieve a full degeneracy.

Simultaneous generation of squeezing in the TEM10 and TEM01 copropagating

modes

This cavity generates squeezing on both the TEM10 and the TEM01 modes. We use a ho-

modyne detection with a rotated local oscillator to measure the squeezing achieved in the

two modes. The local oscillator has the shape of a TEM01 mode, and we use a dove prism

to rotate the TEM01 around the propagation axis. When it is rotated 90◦, the local oscil-

lator is then a TEM10. We measure squeezing for different angles of rotation, and we find

we have achieved 4dB of squeezing and 6.5dB of anti-squeezing at 4.8MHz for all the de-

tection angles. Fig. 4.10 presents these results, which can also be found in (Janousek 08a).

4.3.3 Fully degenerate cavity

Partially degenerate cavities achieve the simultaneous squeezing of several spatial modes.

A fully degenerate cavity goes a step further. Its geometry makes it possible to achieve
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Figure 4.10: The cavity formed by the non-linear crystal NC and the output coupler OC
produces a multimode squeezed beam. We use a homodyne detection to characterize the
squeezing level of the different modes. We first send in a TEM01, similar to the seed, and
we measure −4dB of squeezing. Rotating the local oscillator allows to measure the amount
of squeezing in the TEM10 mode, again −4dB. This linear degenerate OPA, stabilized at
61◦C, created a beam carrying both a squeezed TEM10 and TEM01.

resonance for all the transverse spatial modes (Chalopin 09). Depending on the spatial

coupling between these transverse modes and the pump beam, each profile exhibits a dif-

ferent level of squeezing.

Building a spatially degenerate OPA is a complex process, mainly because such a de-

generacy can only be achieved close to the instability region of the OPA cavity. In that

region, any small change in the geometry of the cavity makes it unstable. For example, an

increase of the pump power heats locally the non-linear crystal, which creates a local lens

and can push the cavity out of stability. During the course of this thesis, some work was

done to improve the reliability of spatially degenerate OPAs, in collaboration with Benoit

Chalopin. The outcomes of this work can be found in (Chalopin 09) and in (Chalopin 11).

We found that the best method to create a reliable and efficient spatially degenerate

OPA remains undecided. As such, while a fully degenerate OPA would be the resource of

choice to produce a beam with several spatial modes simultaneously squeezed, it is not,
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at the moment, a reliable candidate. The simplest and most reliable method remains the

superposition of orthogonal modes on the OPA cavities.
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Chapter 5

Multimode homodyne detection

In the previous chapter, we described how we can make a beam carrying multiple squeezed

modes. We now focus on the detection of multiple co-propagating modes. Our goal is to

achieve a complete analogy with the multiple beam set-up: we want to be able to perform

the same kind of detection on orthogonal modes within a beam as can be performed on

multiple beams.

When dealing with multiple beams, simple homodyne detections are sufficient to fully

characterize the multimode Gaussian state of the system (Simon 88). Additionally, a sig-

nificant portion of the quantum protocols involves these detections (Ukai 10). That is

why our work focuses on this kind of detection. We do not consider photon counting

techniques. This chapter presents the expansion of homodyne measurements to mutimode

beams. We first start with a description of the conventional homodyne detections, in-

cluding technical noise considerations and data acquisition. We then proceed to discuss

multipixel homodyne detections, both from a fundamental and from a technical point of

view.

5.1 Simple Homodyne Detection

Let us begin with conventional homodyne detections (Bachor 03). We start this descrip-

tion with a brief theoretical reminder. We explain the quantum measurement performed

and its link to the output signal of the homodyne detection. We then have a look at some

technical considerations important in the building of homodyne detections. Finally, we

use a simple example to illustrate how useful these quantum detections can be.

5.1.1 Theoretical framework

Detecting a single mode

A simple homodyne detection consists in interfering a strong beam called a local oscillator

(LO) with a beam which field we want to detect on a 50 : 50 beamsplitter. We then mea-
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sure the intensity of both outputs, and compute their difference. This process is detailed

in Fig 5.1.

!"

Local Oscillator (LO)

Detected beam

âLO,k

âdet,k

âA,k

âB,k

A

B
50 : 50 Beamsplitter

îA

îB

ŝ = îA − îB

Figure 5.1: Simple schematic of a homodyne detection. The local oscillator and the
detected beam are overlapped on a 50 : 50 beamsplitter, and their intensities are detected
on photodiodes A and B. We then make the difference of the output signals of the
photodiodes.

Let us name the field operators âLO,k and âdet,k respectively for the local oscillator

beam and the beam we want to detect. The index k specifies which transverse mode of

the considered beam the field operator applies to. For example, if the basis is the TEMmn

basis, the field operator âLO,20 is the annihilation operator on the TEM20 transverse mode

on the local oscillator beam.

Without loss of generality, we can consider a basis defined so that the spatial mode of

the local oscillator beam is the first transverse mode of this basis (see section 2.1.3). In this

case, the operator âLO,0 applies to this intense mode. Since all the energy is concentrated

in this mode, we have
�
â†LO,kâLO,k

�
= 0 for all k > 0.

After the beamsplitter, we have two output beams:

âA,k =
1√
2
(âLO,k + âdet,k) (5.1)

âB,k =
1√
2
(âLO,k − âdet,k) (5.2)
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Using the detectors, we measure the intensity of these two beams:

îA =
�

k∈N
â†A,kâA,k (5.3)

îB =
�

k∈N
â†B,kâB,k (5.4)

There are no terms in â†A,kâA,l, where l �= k because âA,k and âA,l are operators on or-

thogonal modes.

Finally we subtract the two intensities, so that the output signal ŝ is

ŝ = îA − îB (5.5)

We can decompose ŝ in powers of âLO,0, and use the fact that the local oscillator is an

intense beam:

ŝ = 1
2

�
â†LO,0âLO,0 − â†LO,0âLO,0

�

+
�
â†LO,0âdet,0 + â†det,0âLO,0

�

+1
2

�
â†det,0âdet,0 − â†det,0âdet,0

�

+
�

k>0 â
†
A,kâA,k − â†B,kâB,k (5.6)

(5.7)

gives us

ŝ = â†LO,0âdet,0 + â†det,0âLO,0 (5.8)

In the equation 5.8, we neglected the terms which do not contain âLO,0 or â†LO,0. Indeed,

we choose a very strong local oscillator to make sure that the values
�
â†LO,0âdet,0

�
and

�
â†det,0âLO,0

�
are far bigger than the other terms.

It is very important to notice the common noise cancellation. Indeed, in the complete

equation of the difference, we have a term in
�
â†LO,0âLO,0 − â†LO,0âLO,0

�
, that cancels out.

In this term, each of the components â†LO,0âLO,0 are the intensity of the local oscillator

measured in A or B. In order to be able to write 5.8, we need to make sure that these

terms cancel out: they are dominant compared to 5.8. A significant part of the success-

ful building of an homodyne detection is the achievement of this balancing between the

channels A and B, to cancel out the local oscillator noise.

Once we have 5.8, we can simplify it further. Indeed, we use a local oscillator in the

coherent state |α0�. We decompose the local oscillator field operator in âLO,0 = α0+δâLO,0.

Acting on the coherent state |α0�, we find that the operator δâLO,0 can also be neglected
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compared to α0. Thus, if we introduce α0 = |α0|eiθ, we have:

ŝ = |α0|
�
e−iθâdet,0 + eiθâ†det,0

�
(5.9)

Basically, ŝ is measuring the quadrature of the quantum state in the mode of âdet,0

along the direction defined by the local oscillator phase: when we have α0 ∈ R, ŝ = α0√
2
x̂det,0

and when α0 ∈ iR then ŝ = i α0√
2
p̂det,0. When we measure the variance of the observable ŝ,

we are measuring the variance of x̂det,0 or p̂det,0, depending on the local oscillator phase.

By changing the local oscillator phase, we can of course measure a combination of these

observables: x̂θdet,0 is detected when we measure the local oscillator phase is θ.

The local oscillator phase needs to be stable relative to the beam we want to detect.

Indeed, the quadrature of the detected beam (x̂det,0 or p̂det,0) that is measured by the

observable ŝ is simply set by this phase. To that extent, it is important to use the same

coherent source of light (in our case a laser) for both beams. Then, by locking the local

oscillator phase to the detected beam, we can ensure that we compensate for phase fluc-

tuations arising from path differences between the local oscillator, and the beam carrying

the quantum state that we want to detect.

A key idea to remember is that the transverse mode in the detected beam that is mea-

sured by the homodyne is the mode 0 defined as the mode carrying all the energy of the

local oscillator. Thus, a simple homodyne detection can measure sequentially different spa-

tial modes, simply by using different different local oscillator shapes (Lassen 07; Hsu 10).

If the mode of interest is not exactly the local oscillator mode u0 but a different mode

vd, this mismatch is equivalent to losses. Indeed, the homodyne detection only measured

a proportion α2 of the mode (in power) where α2 is the intensity overlap:

α2 =

����
��

�ρ∈R2vd(�ρ)
∗u0(�ρ) d

2�ρ

����
2

(5.10)

Measuring the covariance matrix of a multimode state

When we consider a single mode, an homodyne detection measures the observable x̂θu,

where u is the spatial mode of the Local Oscillator. In the simple case of a squeezed

beam, measuring the average and the variance of x̂θu for a few values of θ provides a

complete description of the state. Indeed, when we know or assume that the state is

a squeezed coherent state, it is fully defined by its covariance matrix (Simon 88). The

covariance matrix of a single mode state is given by:

C =

�
cov (x̂u, x̂u) cov (x̂u, p̂u)

cov (p̂u, x̂u) cov (p̂u, p̂u)

�
(5.11)

We find that cov (x̂u, x̂u) =
�
∆2x̂u

�
and cov (p̂u, p̂u) =

�
∆2x̂u

�
. These two coefficients

can be measured by setting the relative phase θ at 0 and π
2 respectively and detecting the
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variance of the output signal. As far as the coefficients cov (x̂u, p̂u) and cov (p̂u, x̂u) are

concerned, we simply need to measure the variance
�
∆2x̂

π
4
u

�
. Indeed we find

cov (x̂u, p̂u) =
1

2

��
∆2x̂

π
4
u

�
− 1

2

��
∆2x̂u

�
+

�
∆2p̂u

���
(5.12)

For a single mode, a few measurements with an homodyne detection are able to fully

characterize a Gaussian state.

When we consider a multimode Gaussian state carried by multiple beams, a similar

procedure can be applied to reconstruct the covariance matrix using homodyne detection

measurements. In the case of two modes u and v carried by two different beams, the

covariance matrix is

C =





cov (x̂u, x̂u) cov (x̂u, x̂v) cov (x̂u, p̂u) cov (x̂u, p̂v)

cov (x̂v, x̂u) cov (x̂v, x̂v) cov (x̂v, p̂u) cov (x̂v, p̂v)

cov (p̂u, x̂u) cov (p̂u, x̂v) cov (p̂u, p̂u) cov (p̂u, p̂v)

cov (p̂v, x̂u) cov (p̂v, x̂v) cov (p̂v, p̂u) cov (p̂v, p̂v)




(5.13)

The procedure to calculate the coefficients cov (x̂u, x̂u) or cov (p̂v, x̂v), are similar to the sin-

gle mode case. For the coefficients involving the two different beams, such as cov (x̂v, p̂u),

we simply set the corresponding local oscillator phase (here 0 for mode v and pi
2 for u), and

measure simultaneously the two signals. We then compute the covariance. This procedure

is made possible by our ability to control independently the local oscillator phase for the

mode u and the modev. This method can of course be generalized to systems of more

than two beams.

Thus, when a multimode Gaussian state is carried by multiple beams, we can use a

sequence of homodyne measurements to build the covariance matrix of the state, which

fully characterizes it.

5.1.2 Technical considerations

After this fundamental discussion about homodyne detections and their theoretical capa-

bilities, let us describe common technical difficulties arising when building such a device.

This description is of particular importance since the real challenge to build a multipixel

homodyne detection is not theoretical, but merely technical.

Photodiodes Electronics

After the interference on the beamsplitter, the intensity of the two superpositions of the

local oscillator and the detected beam are measured by photodiodes. These devices con-

vert the light intensity fluctuations into usable electronic signals.
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Figure 5.2: Overall schematic of the three stages of a photodiode electronics.

As described in Fig. 5.2, a photodiode is built in three stages. The first stage is the

photodiode itself. We use ETX500 photodiodes. These are simple InGaAs photodiodes,

selected for their high quantum efficiency (qe). The quantum efficiency is the average

number of electrons the photodiode releases for each photon hitting it. It depends on the

quality of the photodiode substrate, but can be found above 95%. It is sometimes necessary

to test a few photodiodes in order to select the best. To maximize the quantum efficiency,

the protective window is removed. We apply a very stable reverse bias voltage to the pho-

todiode (Vd = 5V for the ETX500). This way, when photons hit the diode, a current flows.

After the photodiode, the information on the light intensity is carried by an electronic

intensity. We convert this intensity signal into a voltage signal using a transimpedance

stage. Indeed, a voltage signal can be more easily amplified, carried and manipulated

than an intensity signal. To do so, we could use a simple resistor Rs, straight at the

output of the photodiode. In this case, the combination of the parasitic capacitance of

the photodiode and the resistor form a low pass filter, and the bandwidth of the detection

is limited. Instead we use a more complicated, active, circuit based on an operational

amplifier (op-amp) to perform this conversion. Our transimpedance design is based on

(C D Hobbs 99), adapted to match the performance of our photodiode. Fig. 5.3 presents

such a circuit.

The transimpedance stage outputs a voltage signal. This signal could be used straight

away, but we use an amplification stage to prepare it so as to simplify the data acquisition.

We split the signal between a low-frequency part, which is amplified by another op-amp,

and a high frequency part. This last part can be amplified again, or used as it is. We

amplify again the low frequencies so as to limit the intensity draw on the transimpedance

op-amp, which can limit its performances.

The combined transfer function of these three stages is complex, and there might not

be a simple relation between the input light intensity and the output voltages. We use nor-

malization techniques to avoid the need to reverse these transfer functions. Nonetheless,
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Figure 5.3: Electronic diagram of a transimpedance stage, with all the significant sources
of noise: Op-Amp voltage and intensity noise (uOA and iOA), Johnson Nyquist noise of
the transimpedance resistor (iJN ), Photodiode noise (iPN ). The transimpedance stage
aims at converting the signal ilight into the voltage uS

this system needs to remains linear: the selection of the electronics components takes into

account the railing voltages of the different op-amps as well as the expected light spectrum.

Noise sources in the transimpedance stage

We want to measure the fluctuations of the light intensity hitting the detector. The con-

version process is imperfect, and the electronic components introduce additional noise.

The most critical processes take place before the transimpedance. Indeed, after the tran-

simpedance, the voltage signal is high enough not to be too sensitive to additional noise

sources.

Let us focus on the transimpedance stage. Fig. 5.3 presents a complete schematic

of this stage, with the noise sources and some relevant properties of the photodiode

(C D Hobbs 99). The different sources of noise can be divided in two categories: in-

tensity noises and voltage noises. In the first category, we find the intensity noise of the

op-amp , the Johnson-Nyquist noise and the intensity noise of the photodiode. In the

second category, we have the op-amp voltage noise. The intensity noises superpose them-
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selves on top of the intensity signal coming from the photodiode, while the voltage noise

occurs because of the use of a op-amp.

The intensity noises of the op-amp and the photodiode are linked to small intensity

leaks. They are specified by the manufacturers in A/
√
Hz. The Johnson-Nyquist noise is

a thermodynamical noise arising from the use of a resistor: depending on the temperature,

the flow of current fluctuates: iJN =
√
4kBT , with kB the Boltzmann constant, and T the

temperature in Kelvin.

The voltage noise of the op-amp is also specified by the manufacturer, and corresponds to

a fluctuation of the difference between the positive and negative inputs of the op-amp. It

is given in V/
√
Hz.

Ffeedback

Fop−amp
uS

ilight

VM

V+

Fintensity

uOA

+iOA + iPN + iJN

Figure 5.4: Block diagram of the full model of the transimpedance stage, with the sig-
nificant sources of noise. The transimpedance stage transforms the intensity fluctuations
ilight into the voltage signal uS .

These values give us the predicted noise sources and their relative importance. But

we need to consider a full model of the transimpedance stage to predict the different

contributions to the output signal. Fig. 5.4 presents the block diagram of this system,

with different transfer functions calculated using different theorems. In this diagram, the

feedback function is computed using Millman’s theorem at point M, and corresponds to

the feedback from the output of the op-amp to M:

Ffeedback(iω) =
iωRdRfCf +Rd

iωRdRf (Cf + Cd + Cin)Rd +Rf
(5.14)

where ω is the angular frequency of the signal.

We model the op-amp by a high gain with a double low pass filter (with cutting

frequencies fdom and f2, fdom being the lower one). The gain is the open-loop gain

of the op-amp (specified by the manufacturer, Gol) and fdom is derived from the gain-

bandwidth-product (GBP ): Golfdom = GBP . The second frequency f2 is less important
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and we derive it from the data-sheets of the op-amps. This gives:

Fop−amp(iω) =
Gol

(iωfdom + 1)(iωf2 + 1)
(5.15)

Finally, we derive the additional transfer function Fintensity needed to take into account

the intensity noises in Millman’s theorem:

Fintensity(iω) =
Rf

iωRfCf + 1
(5.16)

With this model, we can predict the output noise levels for different light input powers,

for different components and op-amps. For example, Fig. 5.5 presents a noise variance

measurement for the AD829 op-amp with 400mW of 1064nm light. The light produces

an intensity noise of
√
2qI with q = 1.6∗10−19C the charge of the electron, and I the cur-

rent intensity due to the 400mW of light hitting the detector. The values of the different

parameters are presented in Table 5.1.

Table 5.1: Table of parameter values used to model the transimpedance stage of the
photodiode
Components Parameter Value

Photodiode

Photodiode Capacitance (Cd) 10−10F
Photodiode Resistor (Rd) 108Ω

Photodiode intensity noise (iPN ) 1.36 ∗ 10−14A/
√
Hz

Conversion efficiency 0.68A/W

Op-amp

Open-loop Gain (Gol) 6.5 ∗ 104
First op-amp cut-off frequency (fdom) 9.2 ∗ 103Hz
Second op-amp cut-off frequency (f2) 5 ∗ 107Hz

Op-amp voltage noise (uOA) 1.7 ∗ 10−9V/
√
Hz

Op-amp intensity noise (iOA) 1.5 ∗ 10−12A/
√
Hz

Op-amp input capacitance (Cin) 5 ∗ 10−12F

Feedback
Feedback Capacitance (Cf ) 5.3 ∗ 10−12F
Feedback Resistor (Rf ) 5.1 ∗ 103Ω

Other Temperature (T) 300K

Using this kind of models, we can predict and optimize the noise clearance for a pho-

todetector: the quantum noise clearance for a given power at a given frequency is the

difference in dB between the noise variance of the signal when there is light and when

there is no light. This noise clearance represents the signal to noise ratio induced by the

detector. For example, from Fig. 5.5, we see that at 3MHz and for 400mW light power,

the noise clearance is 8dB.

All the op-amp and photodiode characteristics are provided by their manufacturer,

and correspond to specific conditions of use. When away from these conditions, modelling

the behavior of the system is not reliable. For example, when using non-unity gain stable

op-amps (such as OPA657), low feedback resistors would lead to a ringing of the tran-
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Figure 5.5: Comparison between the noise variances measured at different frequencies, with
and without light, and the noise variances modelled (the model parameters are reported
in 5.1). The light noise ilight is the noise that we want to be able to detect. The modelled
and measured variances match very well. Low frequency mismatch appear because of
low-frequency amplitude modulation of the light and 1/f electronic noise.

simpedance stage (strong oscillation generated by the op-amp that saturates it). In such

a situation, the detector does not operate and noise models do not apply.

Local oscillator noise cancellation and data acquisition

After the detectors have converted the two output light intensities into two fluctuating

voltage signals, the next step in the homodyne detection is the subtraction of these two

signals. Indeed, it is this subtraction that removes the terms in â†LO,0âLO,0 from the final

output (Abas 83). These terms are bigger than the term (â†LO,0âdet,0 + â†det,0âLO,0) we

want to detect, so this subtraction is a necessary step to detect 5.8.

To do so, we use analog splitters, such as the ZSCJ-2-2 from Minicircuits. These split-

ters can be used in one direction, splitting a single signal into two outputs of opposite

phases, or as we do, subtracting two input signals. For this difference, we found that

the limiting factor is not the splitter itself, but balancing the two outputs. This is the

reason why we try to match as closely as possible the electronics of the detectors, and we

use a variable attenuators (LAV-50-B-L from RLC electronics) to attenuate the strongest
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output. We can make sure the two detector outputs are matched by checking that an

amplitude modulation is fully cancelled.

Using a variable attenuator does not suppress the need for matching electronics. The

attenuation achieved by a LAV is flat: if the two gain functions have different shape they

cannot be matched for all frequencies, and cancelling a specific amplitude modulation only

ensures that the two detectors are matched for that modulation frequency.

After the subtraction, we need to record the signal. We use two main methods: a

first way is to use a completely analog system. If needed, we amplify the signal with

an analog amplifier (ZFL-500LN+ from Minicircuits). Then, we measure the variance of

this signal on a Spectrum Analyser. We can either sweep the detection frequency, as we

can find in 5.5 or keep the detection frequency fixed, as presented in 4.4. In both cases,

the Spectrum Analyser presents the variance of the noise in a frequency band around the

detection frequency, defined by the resolution bandwidth (typically 100kHz or 200kHz).

The Spectrum Analyser provides us with the variance of the signal on a single output.

When we only want to characterize a single mode state, using a single homodyne detec-

tion, it is a very efficient method. If we want to characterize multimode states, we use

multiple adders and subtracters to build a linear combination of the outputs and we mea-

sure the variance of linear combination. From a sufficient number of variance detection,

it is possible to build the covariance matrix.

An alternative method consists in recording digitally the outputs of the homodyne

detections. We can then compute the sums and differences of the multiple outputs more

easily, and derive their variances, or compute the covariance matrix directly. This more

convenient method presents a challenge: the limited number of bits we can use to record

the output of the homodyne detection adds noise to the signal. For example, if we are

recording a signal between −1V and 1V on 8bits the smallest voltage step is 0.78mV .

Recording our signal on 8 − bits means that any feature smaller than −24dB below our

maximum signal cannot be recorded.

For example, if we are recording the squeezing (−5dB) and anti-squeezing levels

(9.5dB) of a beam, using a single homodyne detection, we find that 8− bits are sufficient.

But if some additional modulation is also recorded (relative phase modulation between the

Local Oscillator and the detected beam for example), we may find ourselves either saturat-

ing the analog-to-digital converter or hiding the squeezing level because of the digitization.

To avoid such a difficulty, we prepare the signal before the computer data-acquisition.

We use a frequency mixer (ZP-3, Minicircuits) and a low-pass filter (BLP-1.9+, Minicir-

cuits) to select a frequency band devoid of any modulation. We then use amplifiers and

attenuators to match the signals to the range of the analog-to-digital converters. Using
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a mixer and low-pass filter also has the advantage of reducing the frequency we want to

record. At lower frequencies, data acquisition cards perform better, with higher number

of bits. We use a National Instrument PXI-5105 controlled with Matlab to perform the

data acquisition.

For both these methods, we normalize to the quantum noise (vacuum noise) by block-

ing the detected beams on all the homodyne detections. The signals then reflect the noise

variances of the vacuum. We use them as normalization to compute the covariance matrix.

5.1.3 Example: Bias entanglement

A simple experiment we set-up is a good example of how homodyne detections are used

to characterize the quantum state of a set of beams. We use a single optical parametric

amplifier to generate an amplitude squeezed beam (−2.9dB of squeezing, 5.3dB of anti-

squeezing). This beam is then split into two beams on a polarizing beamsplitter, and we

add losses on one of the two outputs, using a wave-plate and a polarizing beamsplitter.

We finally detect both the outputs using homodyne detections. See Fig. 5.6 for details.

This very simple experiment allowed us to test counter-intuitive results about asymmetric

entanglement.

The detectors have two outputs. A low frequency one (sampled at 1MHz), that we use

to measure the intensity of the light hitting the detectors, and a high frequency output. A

ZSCJ-2-2 splitter performs the difference of the two high frequency outputs, and we use

a PXI-5122 data acquisition card from National Instrument to records the two differences

with a 14-bits depth, sampled at 100MHz. This high depth, coupled with the absence of

strong modulation on the output beams, allows us to record the outputs of the homodyne

detections straight away, without demodulation.

We then apply numerically a 6th order butterworth pass band filter centered at 4.5MHz

with a frequency window of 1MHz. We focus on this frequency band because the effect

of the optical parametric amplifier is at its strongest there.

The low frequency outputs are used for two independent purposes. First of all, we

use them to derive the amount of losses induced by the polarizing beamsplitters: when

the local oscillators are all blocked, summing the two detectors in a homodyne detection

gives the power of the light in the detected beam. We derive the losses by comparing this

measure with the total light power. A second purpose of the low frequency outputs is

the locking of the local oscillator phases. Indeed, because of air fluctuations, the relative

phases between the local oscillators and the detected beams do not remain stable. We

use the difference of the two low frequency outputs to drive a piezo-electric actuator to

stabilize this relative phase.

For different angles of the wave-plates, i.e. different levels of losses, the quantum state
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where an apparatus with a 50:50 beamsplitter yields only
classical correlations.

These calculations can easily be extended to N-mode
entanglement, rather than the 2-mode calculations
used here. This then allows such experiments for the
generation of multimode entangled states to be planned
so that the resources are distributed in a way that is
optimised for the measurement being made.
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Figure 5.6: Schematic of the bias entanglement experiment. A squeezed beam is produced
by the optical parametric amplifier OPA1. We can then add losses using a first set of a λ

2

wave-plate and a polarizing beamsplitter (PBS). We then use a second set of λ
2 and PBS

to split the beam into two beams, x and y, and we add a third set to introduce additional
losses on beam y. The two homodyne detections HDx and HDy record the fluctuations
of the phase or the amplitude of beams x and y respectively. We lock the local oscillator
phase to measure a specific quadrature. We use a first mode cleaning cavity MCC1 to
shape the infrared beam before it is used as a seed in the OPA. We then use a second
mode cleaning cavity to MCC2 to optimize the shape of the local oscillator.

of the output beams is different. We use the two homodyne detections to characterize

the state, recording fluctuations along the amplitude or phase quadratures for each beam

simultaneously. In this case, we are interested in the conditional variances
�
∆2x̂x|x̂y

�
,

�
∆2p̂x|p̂y

�
,
�
∆2x̂y|x̂x

�
and

�
∆2p̂x|p̂y

�
between the beams x and y. We record a set of

traces for different local oscillator phases. By doing so, we assume that the quantum state

does not change between the recordings.

In the specific case when we transmit 80% of the light through the variable beamsplit-

ter, these measurements exhibit an interesting phenomenon, called bias entanglement: if

we compute the conditional variances of beam x having measured the beam y, and the
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conditional variances of the beam y having measured beam x, we find that:

�
�∆2x̂x|x̂y� �∆2p̂x|p̂y� = 0.48± 0.01 (5.17)

�
�∆2x̂2|x̂1� �∆2p̂2|p̂1� >

1

2
(5.18)

We find that this quantum state can violate the EPR paradox by measuring the beam

y and predicting the measurement on beam x but cannot do the opposite. This result

is especially important in quantum communication schemes, where asymmetric losses are

common (one part of the state is carried to the receiver, while the other part remains with

the sender).

This simple example shows that homodyne detections are sufficient to characterize the

quantum state of a complex, multipartite system. We found that the characterization

relies on our ability to record simultaneously the fluctuations of several homodyne detec-

tions outputs and that the phase of each local oscillator needs to be stabilized.

5.2 Multipixel Homodyne Detection

Instead of using separate beams to carry the interesting quantum state we want to char-

acterize or use, we built this state within a single beam using the orthogonal transverse

spatial modes just like as many separate beams. We have seen previously that preparing

a beam carrying multiple squeezed modes can be done either by using spatially degener-

ate optical parametric amplifiers, or by superposing the outputs of conventional amplifiers.

On the detection side, our aim is to be able to detect the multiple transverse spatial

modes with the same efficiency and flexibility as we can measure separate beams using

several homodyne detections. In this section we detail the use of multipixel photodiode

to build a multimode homodyne detection.

5.2.1 Theoretical presentation

Let us begin with a brief presentation of the principles of a multimode homodyne detection.

Multipixel homodyne detection

A multimode homodyne detection is based on the same components as the single mode

homodyne detection presented earlier. The difference is that we replace the two photodi-

odes by two arrays of adjacent photodiodes, as detailed in Fig. 5.7.

Consider there are Npix pixels in each of the photodiode arrays. The two photodiode

arrays both have Npix intensity outputs, proportional to the light intensity hitting the

relevant pixels. For each of these channels, we build an independent transimpedance and
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then detected using the two arrays of photodiodes (A and B). We make the difference of
each pair of corresponding pixels: ŝm,n = îA,m,n− îB,m,n, and we recombine these outputs
to measure a specific spatial mode.

amplification stage, to convert the intensity outputs into voltage outputs.

Then, as indicated in Fig. 5.7, we subtract pixel per pixel the outputs from photodiode

array B from the outputs of photodiode array A. After theses Npix subtractions, we have

Npix new outputs, corresponding to as many small homodyne detections signals.

Mathematically, we find that we now have Npix signals each corresponding to a specific

spatial location on the beam. To be more precise, we need to consider the local field op-

erators âA(�ρ) and âB(�ρ) respectively. Because one beam has been reflected and the other

one has not, it is convenient to consider that the positions (�ρ) of the operators are relative

to the detector surface, so that the positions (�ρ) on detectors A and B correspond to the

same part of the beam before the beamsplitter.

Each of the detectors measures the intensity of the light hitting a specific area. For

pixel (m,n) on detector A, which area is defined by Sm,n, we find:

îA,m,n =

��

(�ρ)∈Sm,n

âA(�ρ)
†âA(�ρ) d

2�ρ (5.19)

We find the same expression on detector B, and the signal resulting from the difference is

ŝm,n = îA,m,n − îB,m,n (5.20)

Using the same decomposition as presented for the single mode homodyne detection, we
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decompose the detected beam and the local oscillator beam into a sum of orthogonal

transverse modes, with the first mode of the basis being the mode that contains all the

energy of the local oscillator. As opposed to the single mode homodyne detection, the

shape of these modes is now relevant. Let us name their spatial profiles uk(�ρ). We know

that we have

âA(�ρ) =
�

k∈N
âA,kuk(�ρ) (5.21)

or that, conversely,

âA,k =

��

�ρ∈R2
âA(�ρ)uk(�ρ)

∗ (5.22)

We use this decomposition to express the signal ŝm,n in terms of the incident field operators

âdet,k and âLO,k. We have:

âA,k =

√
2

2
(âLO,k + âdet,k) (5.23)

âB,k =

√
2

2
(âLO,k − âdet,k) (5.24)

We find that ŝm,n becomes

ŝm,n = 1
2

�
(k,l)∈N2

�
â†LO,kâLO,l − â†LO,kâLO,l

� ��
(�ρ)∈Sm,n

uk(�ρ)∗ul(�ρ) d2�ρ

+1
2

�
(k,l)∈N2

�
â†LO,kâdet,l + â†det,kâLO,l

� ��
(�ρ)∈Sm,n

uk(�ρ)∗ul(�ρ) d2�ρ

+1
2

�
(k,l)∈N2

�
â†det,0âdet,0 − â†det,0âdet,0

� ��
(�ρ)∈Sm,n

uk(�ρ)∗ul(�ρ) d2�ρ

(5.25)

This rather complex expression can be simplified using the same approximations as in the

case of the single mode homodyne detection. We begin by selecting only the terms in the

expression of ŝm,n which involve âLO,0. This approximation comes from the assumption

that the local oscillator is far more intense than all the other modes. We will detail this

approximation after the derivation of a simple expression for ŝm,n. The expression of ŝm,n

is now

ŝm,n =
�

k∈N â†LO,0âdet,k
��

(�ρ)∈Sm,n
u0(�ρ)∗uk(�ρ) d2�ρ

+
�

k∈N â†det,kâLO,0
��

(�ρ)∈Sm,n
uk(�ρ)∗u0(�ρ) d2�ρ (5.26)

(5.27)

We can go a step further, as in the single homodyne case, and consider the average value

of the local oscillator coherent field α0. We find the expression:

ŝm,n =
�

k∈N α∗
0âdet,k

��
(�ρ)∈Sm,n

u0(�ρ)∗uk(�ρ) d2�ρ

+â†det,kα0
��

(�ρ)∈Sm,n
uk(�ρ)∗u0(�ρ) d2�ρ (5.28)
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The sum over all the values of k makes this expression complex. It can be better

understood by introducing a new set of transverse spatial modes, the pixel modes. These

modes, named vm,n with the same labelling as the pixels, have the same shape as the local

oscillator in the pixel (m,n), and are 0 otherwise. We do not use them as a basis, but

rather as an efficient description of our detection apparatus. We have:

vm,n(�ρ) = u0(�ρ) ∀(�ρ) ∈ Sm,n (5.29)

vm,n(�ρ) = 0 ∀(�ρ) /∈ Sm,n (5.30)

We name the annihilation operators on these new modes âdet,vm,n . With these new modes,

the expression for ŝm,n becomes:

ŝm,n =
�
α∗
0âdet,vm,n + â†det,vm,n

α0

���

(�ρ)∈Sm,n

|u0(�ρ)|2 d2�ρ (5.31)

This means that each pixel performs a homodyne detection on a specific transverse mode.

In the single mode homodyne detection case, this mode was the local oscillator mode

u0. When we use pixels, each does not capture all the local oscillator light. Each pair

of pixels (A,m, n) and (B,m, n) performs a homodyne detection on the spatial mode vm,n.

As we have seen, we neglected all the terms which do not involve âLO,0 in the general

expression of ŝm,n. This assumption is only valid when for each pixel the power of the

local oscillator light is significantly larger that the average power of the detected beam.

For example, this means that if we use a local oscillator with a Gaussian shape, we have

to be careful for the pixels on the edge, where the approximation will not be as valid as

for the pixels in the center, which receive more light.

Signal recombination

We have described the outputs ŝm,n of the Npix parallel channels of the multimode ho-

modyne detections. We can use these outputs directly. In this case, the modes of the

multimode homodyne detection are the vm,n. But it is also possible to recombine these

Npix parallel outputs.

Consider a set of gains gm,n ∈ RNpix and consider now the output ŝg =
�

gm,nŝm,n.

This new combination can be expressed with:

ŝg = α∗
0âdet,vg + â†det,vgα0 (5.32)

With the mode vg defined by

vg(�ρ) =
�

gm,nvm,n(�ρ) (5.33)
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If we take the gains gm,n in RNpix without constraint, vg as defined above is not necessarily

normalized. But without loss of generality, we can scale up or down the gains gm,n to bring

back vg’s norm to 1, and satisfy our definition of a mode.

The observable ŝg is the result of the homodyne detection on a new specific transverse

mode, defined by the gains gm,n. Since the pixels do not overlap, we can define a function

g(�ρ) which associate the value of the gain gm,n associated to each position (�ρ) (If (�ρ) ∈ Sm,n

then g(�ρ) = gm,n). The shape of vg is simply:

vg(�ρ) = g(�ρ)u0(�ρ) (5.34)

Thus, with recombinations, it is possible to detect complex spatial modes instead of the

original local oscillator mode u0.

Finding the values of g(�ρ) to detect a specific mode is straight-forward: we simply

divide the mode we want to detect by the local oscillator mode u0. But this continuous

solution for g(�ρ) does not apply when the number of pixels is limited. In this case, we

choose the gm,n to maximize the overlap between the desired mode vd and the normalized

mode g(�ρ)u0(�ρ). This maximization corresponds to maximizing a scalar product:

��

(�ρ)∈R2
vd(�ρ)

∗g(�ρ)u0(�ρ) d
2�ρ =

�

m,n

�
gm,n

��

�ρ∈Sm,n

vd(�ρ)
∗u0(�ρ) d

2�ρ

�
(5.35)

taking into account the constraint that the norm of vg must remained 1.

We find that the best values for gm,n are

gm,n =
1

N

��
�ρ∈Sm,n

vd(�ρ)∗u0(�ρ) d2�ρ��
�ρ∈Sm,n

u0(�ρ)∗u0(�ρ) d2�ρ
(5.36)

where N is a normalization constant. For example, Fig. 5.8 presents the optimal modes

vg we can use to detect a TEM00, a TEM10 and a TEM20 when we the local oscillator is

a wide TEM00 mode and we have 16 pixels to apply gains on.

The gains gm,n are all in R. Indeed, introducing a complex gain is equivalent to chang-

ing the local oscillator phase for this pixel (and measuring a different quadrature): it

cannot be done after the measurement, i.e. when we recombine electronically the different

signals. This introduces a limit to the transverse modes we can detect with the multipixel

homodyne detection. Indeed, while the amplitude of vg(�ρ) = g(�ρ)u0(�ρ) can be changed by

g(�ρ), the phase is fixed by the phase of u0.

As a result, we can use the different gains to increase the intensity overlap α2 between

the mode vd and vg, but we can be limited by their phase difference. Shaping the phase

of the local oscillator, i.e. matching the transverse phase profile of u0 to the one of vd can

solve this issue.
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Figure 5.8: Optimal modes vg (in red) to detect a TEM00, a TEM10 and a TEM20 (in
blue) with a wide TEM00 local oscillator and an array of 16 pixels.

Basis change

We have seen we can recombine the different outputs of the multimode homodyne de-

tection into the result of a virtual, single mode homodyne detection on a new transverse

mode, different from the local oscillator. We can expand this idea to multiple modes: the

signals are voltages, they can be read digitally and we can perform easily multiple simul-

taneous recombinations on a computer. Instead of limiting ourselves to a single mode,

we decide to detect multiple modes at the same time, by performing multiple different

recombinations of the output signals.

In order to be equivalent to as many separate beams, the recombined modes we want

to measure need to be orthogonal. Let us define a matrix formulation of these recombi-

nations: if we rename the pixels with a single index (so that ŝm,n → ŝi), we can define

the matrix O ∈ ONpix(R) as the matrix of the recombination. Detecting the recombined

mode i corresponds to performing the combination ŝi =
�

Oi,j ŝj . We want the Npix

recombined modes to be orthogonal. Because the pixel modes are all orthogonal, it entails

that O belongs to ONpix , the group of the orthogonal matrices.
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Using a multimode homodyne detection, we are able to measure simultaneously a set

of observables ŝi. While these observables measure orthogonal transverse spatial modes,

they share the same local oscillator. Because of the sharing of the local oscillator, there is

a limitation to the nature of the observables ŝi.

Let us begin with an example: measuring a TEM00 and a TEM10 mode, using a

TEM00 local oscillator. Obviously, the gains are unity to detect the TEM00, and linear

to detect the TEM10. We can measure x̂TEM00 and x̂TEM10 simultaneously, by setting

the right local oscillator phase. We can also measure p̂TEM00 and p̂TEM10 at the same

time. But can we measure x̂TEM00 and p̂TEM10 simultaneously? Since these two modes

are orthogonal, they are equivalent to two independent beams, for which such a combina-

tion of observables is not an issue. But measuring these two transverse modes with the

same multimode homodyne detection introduces a limitation. Indeed, measuring x̂TEM00

means measuring on all the pixels the quadratures x̂i, while measuring p̂TEM10 conversely

imply measuring the quadratures p̂i. And measuring x̂i and p̂i simultaneously cannot be

done because of the non-commutative nature of these observables.

This example shows the limits of the multimode homodyne detection: it is not fully

equivalent to an array of separate homodyne detection, measuring different beams. For

separate homodyne detections, measuring the x̂ quadrature of a beam and the p̂ quadra-

ture of another is possible, while performing the same task on copropagating modes within

a beam is not always achievable.

A complete description of a multimode homodyne detection takes into account this

limitation. Depending on the spatial profile of the phase of the local oscillator, each pixel

measures an observable x̂θii . The complete set of achievable basis of observables is then

defined by ŝj =
�

Oi,j x̂
θi
i with O an orthogonal matrix.

5.2.2 Electronics

Arrays of detectors have been used to measure quantum noise for some time, either in

the form of quadrant detectors (Janousek 08a; Treps 03), or of bigger arrays (Beck 01;

Dawes 01; Dawes 03). Our multimode homodyne detection was specifically designed to be

able to record quantum fluctuations in multiple transverse modes.

We built our multimode homodyne detection using a pair of multipixel photodiodes. After

a brief description of the properties of the photodiodes, we focus on the specific electronic

requirements they entail, and the practical solutions we implemented.

Multipixel Photodiode

Multipixel photodiodes are specialty equipments. They can be built with custom require-

ments (i.e. pixel sizes, shapes, connections...), but without guarantee on their physical

properties (noise levels, photodiode capacitance). Off-the-shelf multipixel photodiodes,
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with reliable data-sheets, are mainly designed for spectroscopy applications: their pixels

are arranged in a single line. As a proof of concept, a line of pixels is enough, and our

multimode homodyne detection was built using two such arrays.

We selected our photodiode array on a set of criteria: we need a photodiode array

without any electronic processing on the chip, so as to be able to design a specific tran-

simpedance stage, optimized for our light power and detection frequencies. We need the

lowest photodiode noise, and the lowest photodiode capacitance achievable. Finally, we

need the quantum efficiency as high as possible.

We chose the G7150-16 produced by Hamamatsu. It is composed of 16 adjacent In-

GaAs photodiode. These photodiodes share the same cathode, and we have a pin for

each anode. Hence, all the photodiode share the same bias voltage (5V ), but the inten-

sity released when light hits them can be detected separately. The quantum efficiency of

each of these diodes is 80%, which includes the losses induced by the protective window.

Measurements of its quantum efficiency as a function of the wavelength can be found in

Fig. 5.9. After taking away the protective window, we measured the quantum efficiency

at 92%. This means that the protective window introduced a significant loss of 13%. This

is due to the absence of coating of this glass. The 92% quantum efficiency measured at

1064nm is not as high as what we found for simple photodiodes, but the extra challenge

of building a line of pixels close together explains the difference.

The 16 pixels of the G7150-16 are all 0.45× 1mm2. They are separated by a 0.05mm

gap. In total, the length of the array is 8mm, with a width of 1mm. A picture of this

array can be found in Fig. 5.10. The gaps between the pixels is equivalent to losses: here

10% of the light power does not hit an active surface.

Specific electronic requirements

The G1750-16 photodiode array does not have any electronic processing. Apart from the

shared cathodes, which require a stabilized 5V voltage, the 16 parallel outputs behave ex-

actly like as many independent photodiodes. They all require independent transimpedance

and amplification stages, and we select the components for each transimpedance stage de-

pending on the expected local oscillator power hitting each pixel. Indeed, since we use a

Gaussian local oscillator, the pixels on the edge receive less light than the center pixels.

To begin with, we choose to use only eight pixels to simplify the data acquisition. All the

pixels have the same transimpedance Op-Amp, the AD 829. For a Gaussian local oscillator

of 10mW in the TEM00 mode, table 5.2 presents a list of optimum optical components:

A first design for the electronic stage of the photodiodes was based on a single elec-

tronic board. This design, chosen for the simplicity of its connections, turned out to be

disastrous for the prototyping stage: changing any electronic component resulted in dam-

ages to the electronic connections of neighboring components. As a result we developed
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Quantum efficiency of the G7150-16

Figure 5.9: Quantum efficiency at 25◦C of the InGaAs photodiodes which compose the
G7150-16 array. At 1064nm the efficiency is 80%. This data was provided by Hamamatsu
Corp.

Figure 5.10: Picture of the G7150-16 InGaAs photodiode array.

a different design, based on modular transimpedance stages. A picture of the photodiode

can be found in Fig 5.11. This design is based on multiple small boards, each carrying

a single transimpedance and amplification stage, all connected to a transverse board on

which the photodiode and the supply voltages are centralized. We use low noise micro-

miniature connectors between the boards so as to minimize noise addition while still being

able to detach the boards to change components without damaging other pixels’ electron-

ics. Moreover, being able to remove boards allows us to prepare multiple transimpedance

stages and switch from one to another depending on the local oscillator power.
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Table 5.2: Values of the different circuit components

Pixel Name Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8

Power in µW 250 750 1600 2400 2400 1600 750 250
Rf in Ω 8000 6800 3200 2150 2150 3200 6800 8000
Cf in pF 6.36 6.36 9 11 11 9 6.36 6.36

Clearance at 2 MHz 8.3 12.4 13.5 13.6 13.6 13.5 12.4 8.3
at 5 MHz (in dB) 4.1 7.7 9.8 10.6 10.6 9.8 7.7 4.1

Figure 5.11: Photographs of the multiboard design for the electronics of the photodiode
array. The main board carries the detectors and the supply circuit. The smaller boards,
attached perpendicularly, perform the transimpedance and amplification stages.

We use these two photodiode arrays to build a multimode homodyne detection. For

each pair of pixels, we use variable attenuators (LAV-50-B-L) and power splitters (ZSCJ-2-

2) to cancel out the local oscillator intensity noise. We then amplify the resulting 8 signals

using ZP-3 amplifiers, and we use additional attenuators to match the output powers so

as to maximize the use of the range of the data acquisition card. The data acquisition

card is a NI PXI 5105, 8-channels, 12-bits digitizer, with a sampling frequency of 60MHz.
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5.2.3 Entanglement within a beam

Let us now present experimental results achieved using the multimode homodyne detec-

tion. The goal of this experiment is to build and characterize entanglement within a single

beam in a universal and potentially scalable way. We begin by producing a beam carrying

two transverse squeezed modes with the method presented in Fig. 4.9.

The beam carries an amplitude squeezed TEM00 and a phase squeezed flip mode. This

beam is then detected on the multimode homodyne detection. We recombine the signals

into a set of specific spatial modes, we show that these modes are entangled, and that the

multimode homodyne detection can achieve this characterization.

Since the way we produce the beam carrying the two squeezed transverse modes has

already been discussed extensively in section 4.3.1, and our experimental multimode ho-

modyne detection in section 5.2.2, we focus here on the data processing stage, specific to

this experiment. We then present the experimental outcomes and a theoretical general-

ization of this system.

Data processing: a general overview

Our multimode homodyne detection has 8 outputs, corresponding to the 8 differences

between the output voltages of pairs of corresponding pixels. We amplify the resulting

signals to match them to the ranges of the data acquisition card. In this experimental set-

up, the locking of the squeezing cavities with the Pound-Drever-Hall technique resulted in

two phase modulations: a first modulation at 7MHz only in the flip-mode, and a second

modulation at 16MHz both in the TEM00 and the flip-mode.

Each one of the 8 outputs of the multimode homodyne detection has a different overall

transfer function. This transfer function depends on the transimpedance stages, amplifica-

tion stages, and on the final attenuation before the data acquisition. In order to measure

the amplitude or phase of a specific spatial mode, we need to recombine the 8 outputs

si(t), taking into account these different transfer functions.

A straight forward method to do so would be to measure the transfer functions and

correct the signals based on this measurement. This method requires a calibrating pro-

cedure, involving a specific, well controlled modulated beam hitting one pixel at a time.

Since we tweak the amplification stages and attenuations between each measurement to

maximize the signal to noise ratio, we would need to perform this calibration before every

data acquisition.

Our method consists in focusing on the data processing, and deriving the needed cor-

rections from the 8 signal traces. This method is based on the a-priori knowledge we have

about the noise content of each spatial mode.

79



Exploiting the covariance matrix on modulations

In our experiment, the two OPAs are locked using the Pound-Drever-Hall technique. This

results in the addition of a 7MHz phase modulation in the flip mode, and a 16MHz

modulation in the flip-mode and the TEM00 mode. We use these phase modulations to

derive the optimal gains to detect these modes.

We begin the data analysis process with the strong modulation at 7MHz. We filter

the data in a frequency band of width 300kHz around 7MHz. The output signals can

then be expressed as si(t) = ai cos(2πfmodt + φi) + δsi(t), with ai cos(2πfmodt + φi) the

modulation at fmod = 7MHz, and δsi(t) the additional signal. Experimental data is pre-

sented in Fig. 5.12.
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Figure 5.12: Short sample of the output signals si(t) filtered around the 7MHz modulation
frequency

We consider the covariance matrix Cij between these signals. Since they all have a

0 average, Cij =
� tend

tbegin
si(t)sj(t) dt. Our sample is far longer than 1/fmod, and since

we selected a narrow band around the modulation frequency, the term δsi(t) is small

compared to the modulation. This means that we have Cij = aiaj cos(φi −φj)/2. For the
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experimental data presented in Fig. 5.12, the covariance matrix is:

C = 10−4





0.0164 0.2219 0.2984 0.2907 −0.3584 −0.1040 −0.0083 0.0018

0.2219 3.5041 4.9100 4.6145 −4.0482 −0.7179 −0.0032 0.0130

0.2984 4.9100 7.0169 6.5131 −5.0348 −0.6216 0.0558 0.0126

0.2907 4.6145 6.5131 6.1232 −5.2457 −0.8863 0.0061 0.0165

−0.3584 −4.0482 −5.0348 −5.2457 9.8955 3.8493 0.4493 −0.0607

−0.1040 −0.7179 −0.6216 −0.8863 3.8493 1.9210 0.2642 −0.0289

−0.0083 −0.0032 0.0558 0.0061 0.4493 0.2642 0.0538 −0.0036

0.0018 0.0130 0.0126 0.0165 −0.0607 −0.0289 −0.0036 0.0008





(5.37)

Let us now assume that the signals are all perfectly synchronized. In that case, φi = 0

and Cij =
aiaj
2 . We diagonalize this symmetric matrix: we find an orthogonal matrix O,

which is a basis change, and a diagonal matrix D, so that C = O−1DO. By recombining

the signals si(t) according to the coefficients of O, we find that the variance of the last

recombination is maximal, while all the other variances are close to 0. In the experimental

case presented above, with φi = 0, we find:

D = 10−4





0.0003 0 0 0 0 0 0 0

0 0.0003 0 0 0 0 0 0

0 0 0.0094 0 0 0 0 0

0 0 0 0.0121 0 0 0 0

0 0 0 0 0.0135 0 0 0

0 0 0 0 0 0.0148 0 0

0 0 0 0 0 0 0.1002 0

0 0 0 0 0 0 0 25.2288





(5.38)

The last recombination, with a high variance, corresponds necessarily to the spatial

mode of the 7MHz modulation. This recombination is our flip mode. The coefficients are:

Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7 Pixel 8

0.0115 0.3197 0.4538 0.4508 -0.5934 -0.3273 -0.1711 -0.0045

consistent with the [+ + + + − − −−] pattern we were expecting. Their different

absolute values compensate for the different transfer functions.

As can be seen in Fig. 5.12, the modulations on the different signals are not syn-

chronised: the different transfer functions of the pixels introduce different phases on the

signals. We want to correct the effect of these different phases by synchronizing the traces.

Since the highest value of D reaches a maximum when the traces are synchronized, we can

use D to find this synchronization point. We delay the traces relative to each other, and

for each set of delay we compute D. We use an interpolation method to be able to delay

traces less than the sampling time.
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Fig. 5.13 presents signals after their synchronization and their recombination using

O. All the modulation is now carried by a single signal, which corresponds to the flip-mode.
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Figure 5.13: Recombined signals. All the modulation is now concentrated in one signal,
which correspond to the detection of the flip-mode.

By using the 7MHz modulation we find the recombination corresponding to the flip-

mode. We then use the 16MHz modulation to find, among the recombinations orthogonal

to the flip-mode’s, the one corresponding to the TEM00. We now filter the signals si(t)

in the frequency range of interest, between 2.85MHz and 3.15MHz, and we use the two

orthogonal sets of gains to derive the signals sflip−mode(t) and sTEM00(t). After an averag-

ing which corresponds to a video bandwidth of 2.4kHz, the result is presented in Fig. 5.14.

Such a high video bandwidth is necessary because of the speed at which we scan the

local oscillator phase: since we want at least a complete turn of the local oscillator phase

within our recording time (16ms), we need to scan at typically fLO = 100Hz. A 2.4kHz

video bandwidth is a compromise: the higher the bandwidth, the higher the imprecision

on our evaluation of the squeezing, while when we lower the bandwidth, we average out

the time window when the local oscillator phase is optimal, thus reducing the squeezing

value.

We detect −2.6dB(±0.3dB) of squeezing in the flip-mode, and −3dB(±0.4dB) in the

TEM00 mode.

Direct optimization in specific time intervals

The results presented in Fig. 5.14 are based upon the assumption that the gains computed

at 7MHz and 16MHz are still valid at 3MHz. Using the trace in Fig. 5.14, we can refine
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Figure 5.14: Noise variances in dB of sflip−mode(t) (blue) and sTEM00(t) (red) as we scan
the local oscillator phase. We consider the variance of the noise in a 300kHz frequency
band around 3MHz, and the variances are measured with a video bandwidth of 2.4kHz.
We normalize this variance to the quantum noise limit, the noise detected in the absence
of detected beam. We also present the dark noise (DN), the noise originating from the
electronics.

our gain combinations to avoid making this assumption. To do so, we select two time

windows when there is a clear hierarchy of variances, as presented in Fig. 5.14. In these

time windows, we can perform the same covariance computations, and selecting the modes

with the highest variance, find simply the optimal recombinations.

On the other hand, correcting for the different phases resulting from the different

transfer functions is a more challenging task in this context. Indeed, around 3MHz we do

not have any strong modulation which would provide a clear synchronization. Instead, we

choose to base our optimization on the amount of squeezing we detect. The optimization

takes place in several steps: we first choose a delay di for each pixel. Then we apply these

delays on the traces. Using the delayed traces, we compute the covariance matrices in the

two interesting time windows. The highest variance corresponds in one time window to the

flip mode, in the other to the TEM00. We record the corresponding recombinations, and

apply them to the delayed traces. We then measure the amount of squeezing in the two

spatial modes. Our goal is to maximize the amount of squeezing detected: we optimize

the delays di so as to get the best squeezing values. We find that the best optimization

method is sequential: move d1, find its best position, then move d2 ... And then start

over again at d1. In the end, when we move the delays away from their optimum values,

the squeezing levels should always be reduced. Fig. 5.15 shows the reduction in squeezing
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when the delays are taken away from their optimal values.
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Figure 5.15: Influence of the delays on the squeezing levels. For each pixel, we delay the
signal around its optimal position, and measure the squeezing values in sflip−mode(t) and
sTEM00(t). This diagram presents the sum of the measured squeezing as a function of the
delay. The red dots correspond to the original signals, without the delay optimization.
It is clear that uncorrected delays can be very detrimental, but in our case the optimal
values are very close to the situation where we do not apply any delay.

In the end, we find−2.6dB(±0.3dB) of squeezing in the flip-mode and−3.1dB(±0.4dB)

of squeezing in the TEM00 mode (see Fig. 5.16). These results are close to the squeezing

levels obtained when using the gains derived with the modulations, but show nonetheless

a slight improvement. The dark noise traces, presented both in 5.14 and 5.16, are 13dB

below the quantum noise. This means that our measured squeezing is not significantly

influenced by the detector noise.

Entanglement within an image

The experimental results presented in Fig. 5.16 can also be interpreted as the entangle-

ment between two other spatial modes. Indeed, if we consider the two orthogonal spatial

modes ”up” and ”down” which are the result of the sum and the difference of the TEM00

and the flip-mode (respectively), as pictured in Fig. 5.17, the same experimental data
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Figure 5.16: Noise variances in dB of sflip−mode(t) (blue) and sTEM00(t) (red) as we scan
the local oscillator phase. In this case, the recombinations where optimized by computing
the covariances in the time frames A and B, where there is a clear variance hierarchy.
This method allows for a direct derivation of the necessary gains, instead of using the
modulations frequencies. We also represent the dark noise traces.

proves their entanglement.

TEM00 flip−mode Up

Down

Figure 5.17: Entangled modes ”Up” and ”Down”, linear combinations of the squeezed
TEM00 and flip-mode.

We have

x̂up =

√
2

2
(x̂TEM00 + x̂FM ) (5.39)

p̂up =

√
2

2
(p̂TEM00 + p̂FM ) (5.40)
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and

x̂down =

√
2

2
(x̂TEM00 − x̂FM ) (5.41)

p̂down =

√
2

2
(p̂TEM00 − p̂FM ) (5.42)

We can calculate Duan’s inseparability criterion between the two sets of observables

x̂up, p̂up and x̂down, p̂down. We define two operators û and v̂ so that :

û =
1√
2
(x̂up + x̂down) (5.43)

v̂ =
1√
2
(p̂up − p̂down) (5.44)

We find that
�
∆2û

�
=

�
∆2x̂TEM00

�
and

�
∆2v̂

�
=

�
∆2p̂FM

�
. From the experimental

measurements presented in Fig. 5.16, we know that
�
∆2x̂TEM00

�
is −3.1dB below the

quantum noise limit, while
�
∆2p̂FM

�
is −2.6dB below the quantum noise limit. Since the

quantum noise limit it 1, in the convention [x̂, p̂] = 2i which we used to write this criterion,

we have
�
∆2û

�
+

�
∆2v̂

�
= 0.55 + 0.49 < 2 (5.45)

The two modes ”up” and ”down” are inseparable.

Theoretical limitations

This simple experiment shows that is it possible to produce and detect entanglement be-

tween transverse spatial modes within a beam. Squeezing more of the beam’s transverse

modes does not involve any fundamental difficulty. The number of modes simultaneously

detected by the multimode homodyne detection is also not fundamentally limited: in-

creasing this number simply requires additional pixels. This set of techniques could be

expanded to higher number of modes to perform quantum algorithms. On a technical

point of view, it allows a more compact system, and makes the system resistant to air

fluctuations.

On the other hand, on a fundamental point of view, the system composed of a suc-

cession of optical parametric amplifiers and a multimode homodyne detection is limited.

If we want to use this system as a tool for quantum computation, we need to be able to

build and detect any state. This system does not allow this universality.

As we have previously discussed in 3.2.1, it is possible to build any Gaussian state

using a set of squeezers and general unitary mixing Ugeneral ∈ U(Nmodes) of the modes.

With this general description, the phase of the local oscillator is included in the general

unitary mixing, and without loss of generality all the modes share the same local oscillator

phase.

In our system, the multiple optical parametric amplifiers produce squeezing in orthog-
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onal modes. The relative phase of these modes can be set at will. The beam is then

detected on the multimode homodyne detection. If we limit ourselves to cases where we

cannot change the phase profile of the local oscillator, we can apply the mixing OUTDr,

where O ∈ O(Npix) is the orthogonal matrix of the pixel recombination, chosen at will in

O(Npix), the group of the orthogonal matrices. UT ∈ U(Npix) is the basis change matrix

between the transverse profiles of the squeezed modes and the pixel modes vm,n(�ρ) as

presented in 2.1.3. Without loss of generality, we have set Nmodes = Npix. And finally,

Dr is the diagonal matrix of the phase differences we lock the superposition of squeezed

modes to. The phases can be chosen at will. The addition of a variable local oscillator

phase profile in the multimode homodyne detector expands the mixing to O DLO UT Dr:

the phase profile of the local oscillator is equivalent to a spatial phase shift on the beam

we want to detect.

If we aim at being able to create any multimode Gaussian state, we need to be able to

apply any unitary transform Ugeneral ∈ U(Nmodes) to the original squeezed modes. This

cannot be achieved using only the transform O DLO UT Dr. Indeed, a simple consider-

ation of the degrees of freedom available shows that Ugeneral cannot be fully covered by

O DLO UT Dr. Depending on the spatial profiles of the squeezed modes, which define

Utransfer, specific examples of Ugeneral unachievable can be found.
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Part III

Manipulation of copropagating

modes
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We have presented efficients methods to generate and detect copropagating squeezed

modes. The detection process is particularly flexible: a simple coefficient change in the

data processing allows for the detection of different sets of observables. This allows to

measure simply different kinds of entanglements with the same resources. Still, as pointed

out previously, gain changes in the data processing does not give access to all the unitary

manipulations on the input squeezed modes, manipulations which are a requirement to be

able to build any desired entanglement relationship within a set of observables. Therefore,

manipulating the spatial modes before detection seems necessary. This next part deals

with the challenges of such a manipulation, first from a theoretical point of view, then by

focusing more precisely on the experimental device we built, the Unitary Programmable

Mode Converter (Morizur 10c).
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Chapter 6

Theoretical point of view

Building a specific entanglement within a set of observables carried by spatially separated

beams can be achieved using beam-splitters. We have presented this result in 3.2.1. On

the other hand, there is no such conventional method in the case of copropagating modes.

In this theoretical chapter, we present a new procedure able to provide as much freedom

for copropagating modes manipulations as separate beams manipulations. We begin this

presentation by framing the problem of modes manipulation: we compare the manipulation

of spatially separate beams and copropagating modes. We then use group theory to

show that using a succession of specific optical transforms, one has the same freedom of

manipulation with copropagating modes as with separate beams (Morizur 10c). Finally,

we introduce simulations of an experimental implementation of these optical transforms.

6.1 Comparison between the manipulation of separate beams

and copropagating modes

In this first section, we study two similar experiments we built, a first one which involves

manipulating separate beams (Wagner 08), and another that uses copropagating beams

(Janousek 08a). We underline the similarities and the difficulties arising from trying to

manipulate copropagating higher order spatial modes with conventional optical elements.

6.1.1 Unitary manipulations of separate beams

When using separate beams to produce multipartite entanglement, each beam is first in-

dependently squeezed using an optical parametric oscillator, see 3.2.1. Straight after the

oscillators, the quantum properties of the different beams are all independent: there is

no cross-correlation between separate beams. In order to create entanglement, the beams

need to be mixed together, with unitary manipulation. We begin by studying the proper-

ties of this mixing on an example, and then generalize these properties.
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Example: entangling the position and momentum of two laser beams

In order to study the use of higher order modes to carry entanglement, we built an exper-

iment to entangle the TEM10 mode of two separate beams (Wagner 08; Hsu 05). In this

experiment, the quantum information is carried by a single transverse mode per beam.

Often, the transverse mode used to do so would be the TEM00, the fundamental Gaussian

mode. In this particular case, a higher order mode was used (TEM10). Nonetheless, the

configuration chosen here was one of a single squeezed mode per beam.

Two optical parametric oscillators produce two beams in which the first higher order

mode TEM10 is amplitude squeezed (3.8dB below the quantum noise limit, in a frequency

band from 3MHz to 4MHz). These two beams are then mixed on a 50:50 beamsplitter.

This beamsplitter lets 50% of the light power go through, while 50% is reflected. It does

not change the spatial distribution of the light: the light in the TEM10 mode remains in

the TEM10 mode after the beamsplitter.

If we name the two beams operators â11 and â21 just before the beamsplitter, and the

two beams operators âA and âB after the beamsplitter, the 50:50 ratio entails that:

�
âA

âB

�
=

� √
2
2

√
2
2

−
√
2
2

√
2
2

��
â11

â21

�
(6.1)

This means that the amplitude quadratures are x̂A =
√
2
2 x̂11 +

√
2
2 x̂21 and x̂B =

√
2
2 x̂11 −√

2
2 x̂21. If both the input amplitude quadratures x̂11 and x̂21 were squeezed 3.8dB below

the quantum noise limit before the beamsplitter, then so are the amplitudes x̂A and x̂B:

the two beams can still be considered independent, and so are not entangled.

In order to produce two entangled beams, a key parameter is the relative phase between

the two modes when they reach the beamsplitter. Indeed, if we consider now that we apply

a π
2 phase delay on the second mode compared to the first one, then we can write:

�
âA

âB

�
=

� √
2
2

√
2
2

−
√
2
2

√
2
2

��
1 0

0 i

��
â10

â20

�
(6.2)

Where the operators â10 and â20 are the beams operators straight after the optical para-

metric oscillators, as presented in Fig. 6.1. In this situation, the output amplitude

quadratures become x̂A =
√
2
2 x̂10 +

√
2
2 p̂20 and x̂B =

√
2
2 x̂10 −

√
2
2 p̂20 so that separately

their variance is higher than the quantum noise limit, but their sum
√
2
2 (x̂A + x̂B) = x̂10

has a variance 3.8dB below the quantum noise limit. Likewise, the difference of the phase

quadratures is 3.8dB below the quantum noise limit. This is a signature of entanglement,

as we previously developed in 3.2.1.

We can conclude that a proper manipulation of two beams implies both a beamsplitter

and a phase control.
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2

In (Wagner 08) a bright, classical TEM00 was superposed to one of the two input

beams, as is described in Figure 6.2. Since any lateral displacement or tilt of this bright

TEM00 corresponds, in the first order, to coupling light into the TEM10 amplitude of

phase (respectively), measuring the amplitude or phase quadrature of the TEM10 mode

is equivalent to measuring small displacement and tilts of this bright beam. This idea

was previously developed in the quantum enhanced detection section 3.1.1, and is also

developed in (Delaubert 06).

This means that entangling the pairs of observables (x̂A, p̂A) and (x̂B, p̂B) corresponds

to entangling the lateral displacement (X) and tilt (θ) of the two output beams A and B.

We measured the variance relations between the observables (x̂A, p̂A) and (x̂B, p̂B) so as

to characterize the entanglement, and the results are presented in Figure 6.3.

Duan’s inseparability criterion can be reduced for a symmetric system to (Duan 00)

I =
�
∆2(XA +XB)

� �
∆2(θA − θB)

�
(6.3)

We find I = 0.51± 0.02 for a frequency band of 300kHz centered around 3.3MHz. This

result (I < 1) indicates that the system is indeed inseparable.

As a conclusion, mixing independent, separate squeezed beams on a beamsplitter pro-

duces two entangled beams, provided that the relative phase between the two inputs to

the beamsplitter is well controlled.
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Figure 6.2: Schematic of the experiment. A bright reference TEM00 beam is first su-
perposed with a squeezed TEM10 mode (SQ1) using beamsplitter BS1 (high reflectivity
98%). It is then entangled with a second squeezed TEM10 mode on a 50:50 beamsplitter
BS2. A phase control loop ensures that the relative phase between the two TEM10 modes
is fixed at ΦE = π

2 . The two entangled beams are detected separately with two homodyne
detectors (HDA and HDB) using local oscillator (LO) beams in the TEM10 mode. The
local oscillator phase is changed to detect the amplitude of the phase quadrature of the
TEM10 mode.

Generalization: any unitary manipulation

Using the previous example, let us now derive a more general statement about mixing

separate beams. Indeed, when manipulating multiple beams, it is possible to apply a

succession of beamsplitters of varying ratios θk between the beams. The angle θ is related

to the power reflectivity of the beamsplitter mirror by R = cos(θ)2. For each beamsplit-

ter, a piezo-electric actuator can control the relative phase φk between the two interfering

beams. This relative phase can be set to any value.

Such a general scheme is represented in 6.4. Let us now introduce a matrix representa-

tion of these manipulations to understand what is the set of all such transforms: consider

a general description of a N -beam system. We can define a vector of beam operators
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Figure 6.3: Spatial entanglement manifests itself as a strong quantum correlation between
the position and direction of two beams, A (blue) and B (red). On the left, this illustration
shows the fluctuating directions θA and θB of the two beams, which are correlated, and
on the right, it shows the positions XA and XB, which are anti-correlated. For perfectly
entangled beams, the differences (θA–θB) and sum (XA+XB) would both be zero. Real en-
tangled beams have a small residual differential movement. The variances

�
∆2(XA +XB)

�

and
�
∆2(θA–θB)

�
are calibrated against their respective quantum noise limits (QNL),

which corresponds to the minimum differential movement of two laser beams with inde-
pendent quantum noise. A good measure of entanglement is Duan’s inseparability, which
(for a symmetric system) comes down to the product I =

�
∆2(XA +XB)

� �
∆2(θA–θB)

�
.

This is shown as the area of the filled rectangles in the center of this figure. Each slice
of the tower represents one measurement, and the comparison of the area with the QNL
(green box) directly shows the degree of inseparability.

between each beamsplitter:

�̂ak =





â1k

. . .

âik

. . .

âjk

. . .

âNk





(6.4)

Where �̂ak is the vector of all the fields operators after beamsplitter k. We study here all

the transformations of �̂a0 achievable using only beamsplitters. A beamsplitter between

the beams i and j performs the linear operation Ti,j(θ):

�̂ak+1 = Ti,j(θ)�̂ak (6.5)
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â10
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â43 â44

â34
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Figure 6.4: Representation of an entanglement production scheme. N separate beams
are generated by N independent optical parametric oscillators. Originally there is no
cross-correlation between the beams, and the system is fully separable. The set of beams
undergoes a mixing process: pairs of beams are superposed on a succession of beamsplitters
of varying ratios. The relative phase between the beams is set to a given value for each
beamsplitter.

with

Tij(θ) =





1 0 ... 0 ... 0 ... 0

0 1 ... 0 ... 0 ... 0

... ... ... ... ... ... ... ...

0 0 ... cos(θ) ... sin(θ) ... 0

... ... ... ... 1 ... ... ...

0 0 ... − sin(θ) ... cos(θ) ... 0

... ... ... ... ... ... ... ...

0 0 ... 0 ... 0 ... 0

0 0 ... 0 ... 0 ... 1





(6.6)

where the sin(θ) are in the i-th line and j-th column. Additionally, a piezo-electric actuator

controls the relative phase between the inputs of the beamsplitter. This relative phase

control is equivalent to applying the matrix Pj(φ):

Pj(φ) =





1 0 ... 0 ... ...

0 1 ... 0 ... ...

... ... ... 0 ... ...

0 0 0 eiφ 0 0

... ... ... 0 1 0

... ... ... 0 0 1





(6.7)

A well known linear algebra result states that the group of all the Ti,j(θ) and all the Pj(φ)

is the unitary group U(N). The demonstration of this result can be found in (Serre 02).

A succession of beam mixing on beamsplitters with carefully controlled relative phases
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performs any unitary combination U of the beams. Such a general recombination or basis

change is one of the two necessary elements to be able to build any multimode Gaussian

pure state, as we discussed in 3.2.1, the other element being the production of the desired

level of squeezing in the input modes.

Moreover, if we restrict ourselves to passive linear elements (no addition of energy), this

result can be expanded to encompass all the possible transforms which can be performed

on the beams, including losses. Indeed, according to the singular value decomposition

theorem, any linear manipulation M ∈ MN (C) can be decomposed in M = UDV , where

U and V are unitary matrices (U, V ∈ U(N)), and D is a non-negative diagonal matrix.

By definition, U and V belong to the unitary group, and thus can be decomposed as

we previously described. Since there is no addition of energy, the coefficients of D are

bounded by 0 and 1. A coefficient less than 1 describes losses on the beam considered.

We model these losses by the conventional beamsplitters and additional vacuum beams.

Formally, we can write:

M � =

�
U 0

0 U

��
D

√
1−D2

−
√
1−D2 D

��
V 0

0 V

�
(6.8)

we find that the matrix M � is unitary, and its restriction to the subspace defined by the

first N modes is M . Adding the vacuum modes allowed us to describe a general linear

optical transformation using unitary transforms. Since these unitary transforms can be

decomposed into a sequence of mixing on beamsplitters, we can conclude that such a se-

quence can perform any passive linear manipulation of the beams.

6.1.2 Copropagating modes

Let us now focus on copropagating modes. Like in the case of separate beams, we begin

with an experiment. This experiment exemplifies how copropagating mode manipulation

is limited when we restrict ourselves to conventional optical elements.

Example: generating entanglement within a single beam

In order to study copropagating modes manipulation, we built a device capable of generat-

ing and detecting entanglement between the two higher order modes TEM10 and TEM01

of the same beam (Janousek 08a). The symmetries between these two modes play a piv-

otal role in this device. We will first discuss the experiment itself, and then focus on the

difficulties arising from the use of copropagating modes.

An optical parametric oscillator is set in a degenerate setting: using the temperature

in the crystal, we make sure that both the TEM10 and the TEM01, eigenmodes of the

cavity, are resonant for the same cavity length. The oscillator is seeded with a beam in the

TEM01 mode and locked so that this mode is resonant. When pumped with an intense
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green beam, this cavity produces both an amplitude squeezed, relatively bright TEM01

and a vacuum squeezed TEM10 mode. This cavity and its outputs have already been

discussed and presented in 4.3.2.

We then perform the same operations on the two squeezed modes as discussed in the

previous pages for the separate beams. First of all, a π
2 phase shift needs is applied between

the two modes. Then, a mixing operation produces two entangled modes. In order to apply

a π
2 phase delay between the copropagating TEM10 and TEM01, we use a geometrical

property of these two modes. Indeed, when going through a succession of two vertical

cylindrical lenses of focal f = 250mm separated by a distance of
√
2f , the Gouy phase of

the TEM01 remains constant while the lenses impart a π
2 to the Gouy phase of the TEM10

mode (Alekseev 98). For clarity sake, let us call âx0 and ây0 the annihilation operators on

the modes TEM10 and TEM01 respectively, straight after the optical parametric oscillator.

We name the mode operators after the two cylindrical lenses âx1 and ây1 (for the TEM10

and TEM01 respectively). The two cylindrical lenses transform the input mode operators

âx0 and ây0 so that: �
âx1

ây1

�
=

�
i 0

0 1

��
âx0

ây0

�
(6.9)

Then, in a fashion similar to the separate beams case, we mix these two modes to

produce two sets of entangled observables. To perform this mix, we use again the symmetry

properties of the spatial profiles TEM10 and TEM01. Indeed, a TEM10 mode rotated with

an angle θ around the propagation axis can be easily expressed in terms of the original

TEM10 and TEM01: TEM θ
10 = cos(θ)TEM10+sin(θ)TEM01. This means that a rotation

transforms the mode operators the mode operators âx1 and ây1 into the operators âx2 and

ây2 with: �
âx2

ây2

�
=

�
cos(θ) sin(θ)

− sin(θ) cos(θ)

��
âx1

ây1

�
(6.10)

This very specific relationship occurs only because the two modes considered are the

TEM10 and the TEM01 modes: they have the same order, and they are the only two

modes of this order in the basis. Other pairs of higher order modes would behave differ-

ently.

The rotation of angle θ = 45◦ is performed by rotating the detection basis, as presented

in c of Fig:6.5. It is equivalent to a rotation of the beam, and easier to implement. We

then use a quadrant detector and a bright TEM00 local oscillator to build an homodyne

detection. The eigenmodes of this homodyne detection are not exactly the entangled

TEM10 and TEM01 because of the discreet nature of the quadrants: with four quadrants,

the closest achievable eigenmodes of detection are the horizontal and vertical flip-modes

(respectively), which have a 64% detection efficiency, as presented in b of Fig:6.5. The

quadratures of these flip-modes are detected by performing a different linear combination
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of the outputs of the quadrant detector. The phase of the local oscillator is scanned so as

to be able to detect in succession both x̂x2 and x̂y2 and then p̂x2 and p̂y2. This scheme is

summarized in Fig 6.5.
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Figure 6.5: Schematic of the experimental setup. a, The time trace δXx(t,Φ) is calculated
from the difference δXx(t,Φ) = (XA + XC − XB − XD)(t,Φ) and δXy(t,Φ) is given by
δXy(t,Φ) = (XA+XB−XC−XD)(t,Φ). OPA, optical parametric amplifier; NC, nonlinear
crystal; OC, output coupling mirror; BS, beamsplitter; LO, local oscillator; QD, quadrant
detector. b, Principle of the split-detection technique. The eigenmode of a split-detector
is a flipped mode, resulting in 64% detection efficiency in the TEM10 basis. c, A spatial
50:50 beamsplitter is introduced by carrying out a measurement in a 45◦ rotated basis.

Let us consider now the time traces given by δXx(t,Φ) = (XA+XC −XB −XD)(t,Φ)

and δXy(t,Φ) = (XA + XB − XC − XD)(t,Φ): for a varying local oscillator phase, the

variance of these traces changes. We focus on the bandwidth where the squeezing is most

intense, a band of width 300kHz centered at 3.3MHz. This allows us to consider the

variance of the two time traces (one for each detected mode) as a function of the local

oscillator phase. The results are presented in Figure ??. They present the variances of

the time traces for different stages of the experiment.

First, in a, we find the variance of the time traces
�
∆2δXx0(t,Φ)

�
and

�
∆2δXy0(t,Φ)

�
,

when there are no cylindrical lenses. These correspond to the outputs of the optical

parametric oscillator. An important result that can be derived from these variance traces

is that the variance is not minimum for the same local oscillator phase Φ depending on the

detection considered: there is a π
7 difference between the minimum of

�
∆2δXx0(t,Φ)

�
and
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the minimum of
�
∆2δXy0(t,Φ)

�
. This means that the two squeezed modes TEM10 and

TEM01 are not squeezed along the same quadrature. Such an effect is probably related

to our crystal’s properties, but we did not find any way to correct it.

In b, the beams have gone through the two cylindrical lenses, and the traces represent
�
∆2δXx1(t,Φ)

�
and

�
∆2δXy1(t,Φ)

�
. There is now a π

2 + π
7 phase difference between the

minimum of
�
∆2δXx1(t,Φ)

�
and

�
∆2δXy1(t,Φ)

�
. This tells us that the two cylindrical

lenses introduced the expected π
2 phase shift.

Finally, the traces c present the variances of the two modes after the 45◦ rotation of

the detection basis. These variances
�
∆2δXx2(t,Φ)

�
and

�
∆2δXy2(t,Φ)

�
, are now both

above the quantum noise limit for all the values of the local oscillator phase Φ. This is an

expected behaviour, and to check that the two pairs of observables (x̂x2, p̂x2) and (x̂y2, p̂y2)

are truly entangled, we can compute Duan’s inseparability criterion:

I =
�
∆2δXx2(t, 0) + δXy2(t, 0)

� �
∆2δXx2(t,

π

2
)− δXy2(t,

π

2
)
�

(6.11)

It is the same reduced criterion as previously introduced in the separate beams cases. In

this case, I = 0.62 ± 0.04, and since I < 1, the system that consists in the two modes

TEM10 and TEM01 rotated can be deemed inseparable.

As a conclusion, it is possible to generate entanglement between modes within the

same beam. To do so, we must be able to manipulate the relative phase between these

modes, and mix them. For the pair of modes TEM10 and TEM01, such manipulations can

be engineered using ad-hoc solutions, a rotation along the propagation axis to perform the

mixing, and cylindrical lenses to introduce a relative phase. Still, even in this particularly

simple case, we were not able to correct a phase difference which appeared because of the

optical parametric oscillator. To that extend, ad-hoc solutions are limited. Furthermore,

for more complicated mode combinations, there is no general way to use Gaussian optical

elements to perform the desired mixing and phase shifting of the modes.

General copropagating modes manipulations

In the case of separate beams, we found that a succession of beam mixing on beamsplitters

with carefully controlled relative phases can perform any unitary manipulation U on the

input beams. In the case of co-propagating modes, the example just developed illustrates

that we can build and detect entanglement within a beam, simple optical elements are

not always enough to perform the necessary manipulations. Let us generalize now this

statement.

Consider the TEM basis. While the diameter and the radius of curvature of the

TEMnk modes can be changed at will using Gaussian optical elements (lenses, curved

mirrors, propagation), their orders n and k along the �x and �y axis remain the same. This

entails, for example, that there cannot be coupling between any odd order mode and even

number mode (for parity reason). As a result, Gaussian optical elements cannot allow for

the same range of manipulations as a succession of beamsplitters on separate beams.
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the QD with electronic splitters and using a fast data acquisition
system, we are able to measure properties of states in the TEM01
mode and TEM10 mode simultaneously, using just a single detector
and one local oscillator. The temporal fluctuations are directly
recorded, and the data is then post-processed. It is filtered for
various frequency bands (with a width of 100 kHz), and the corre-
lations and variances are then directly determined from the time-
varying data. Such measurements are shown in Fig. 3a at 4.8 MHz
detection frequency. Using the quadrant detector we measure
21.7 dB of squeezing in the two modes, which is sufficient for
use in a demonstration of entanglement. An interesting feature
and limiting factor is the small phase shift, about p/7, between
the two fields, which might have an origin in a small misalignment
of the OPA cavity.

There is a well-established set of requirements for entangling two
optical beams, and we meet all of these in our unusual setup. A p/2
(or i) phase shift is first required between the two beams, which
for standard entanglement is simply a matter of delaying one of
the beams with respect to the other. The beams then need to be
mixed together, which is generally achieved with a 50/50 beam-
splitter. Finally, we need to observe a pair of conjugate observables,
which requires a phase-sensitive detector to measure quadrature
entanglement. This is usually achieved with one HD on each of
the entangled beams.

To induce the p/2 phase shift we used an elegant optical method
using the Gouy phase shift in higher-order modes25. The output of
the degenerate OPA was mode-matched into a symmetric two
cylindrical-lens system (focal lengths f¼ 250 mm, with lens separ-
ation of

ffiffiffi
2

p
f ), which imparts a p/2 phase shift on one of the

modes, as shown in the comparison of the squeezing results in
Fig. 3a and Fig. 3b.

We then need to mix the TEM01 and TEM10 modes, equivalent
to a 50/50 beamsplitter. Any H-G mode can be expressed as a
superposition of two orthogonal modes of the same order as the
original field. This is analogous to the superposition of polariza-
tion modes in a two-dimensional basis. A TEM10 mode rotated
by +458 relative to the x-axis can be expressed as
1=

ffiffiffi
2

p
ðTEM10 + TEM01Þ. This means that our ‘beamsplitter’ can

be realized by detecting in a basis that is 458 rotated relative to
the axis of the cylindrical-lens system (Fig. 2c), and this is the
basis where entanglement then exists. As expected from quantum
theory, measurements of the arbitrary quadratures of entangled
fields show noisy states (Fig. 3c). These measurements were again
carried out with the QD, giving the advantage of being able to
measure both modes simultaneously.

With these data we can calculate the inseparability criterion I
(ref. 26), which is a direct measure of entanglement. A value less
than one implies that entanglement exists between the two modes,
with a perfectly entangled system having a value of zero. With the
sum and difference of the signals of the two orthogonal fields, we
evaluate the equation I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx0þy0ðf0ÞVx0%y0ðf0 þ p=2Þ

p
, where

f0 is chosen such that I is minimized, as shown in Fig. 4. This
results in a value of I ¼ 0:79+ 0:02 at 3.3 MHz detection fre-
quency, after corrections are made for electronic noise. We demon-
strate significant entanglement between two orthogonal spatial
modes within one optical beam. This entanglement can be
enhanced with the use of specially designed multipixel detectors.

In conclusion, we have demonstrated an elegant technique to
create and measure entanglement between two orthogonal spatial
modes in a single beam of light. We have shown and tested
several simplifications on traditional entanglement schemes, includ-
ing generating two squeezed modes from a single OPA, using
imaging components to mix the modes with the correct phase,
and detecting the two modes simultaneously with one QD. The
results for two modes are similar to those that can be achieved
with polarization techniques. However, this technique can be

expanded to produce entanglement between any two orthogonal
modes of the form TEMjk and TEMkj , creating a larger number of
quantum channels.

(i)

(ii)

(iii)

(iv)

π/2 + π/7
(i)

(ii)

6

4

2

0

O
ut

pu
t v

ar
ia

nc
e 

(d
B)

−2

0.0 0.5 1.0
LO phase (a.u.)

1.5 2.0

6

4

2

0

O
ut

pu
t v

ar
ia

nc
e 

(d
B)

−2

0.0 0.5 1.0
LO phase (a.u.)

1.5 2.0

6

4

2

0

O
ut

pu
t v

ar
ia

nc
e 

(d
B)

−2

0.0 0.5 1.0
LO phase (a.u.)

1.5 2.0

π/7
a

b

c

Figure 3 | Noise measurements. a, Output variance of the degenerate optical
parametric amplifier for the TEM10 field, with variance Vx(f ) (i), and the
TEM01 field, with variance Vy(f ) (ii), using a quadrant detector and scanning
the local oscillator phase. b, The same setup as a, but with the cylindrical-lens
system included. c, Output variances Vx0(f ) (iii) and Vy0(f ) (iv) for the 458
rotated fields using a quadrant detector and scanning the local oscillator phase.
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the QD with electronic splitters and using a fast data acquisition
system, we are able to measure properties of states in the TEM01
mode and TEM10 mode simultaneously, using just a single detector
and one local oscillator. The temporal fluctuations are directly
recorded, and the data is then post-processed. It is filtered for
various frequency bands (with a width of 100 kHz), and the corre-
lations and variances are then directly determined from the time-
varying data. Such measurements are shown in Fig. 3a at 4.8 MHz
detection frequency. Using the quadrant detector we measure
21.7 dB of squeezing in the two modes, which is sufficient for
use in a demonstration of entanglement. An interesting feature
and limiting factor is the small phase shift, about p/7, between
the two fields, which might have an origin in a small misalignment
of the OPA cavity.

There is a well-established set of requirements for entangling two
optical beams, and we meet all of these in our unusual setup. A p/2
(or i) phase shift is first required between the two beams, which
for standard entanglement is simply a matter of delaying one of
the beams with respect to the other. The beams then need to be
mixed together, which is generally achieved with a 50/50 beam-
splitter. Finally, we need to observe a pair of conjugate observables,
which requires a phase-sensitive detector to measure quadrature
entanglement. This is usually achieved with one HD on each of
the entangled beams.

To induce the p/2 phase shift we used an elegant optical method
using the Gouy phase shift in higher-order modes25. The output of
the degenerate OPA was mode-matched into a symmetric two
cylindrical-lens system (focal lengths f¼ 250 mm, with lens separ-
ation of

ffiffiffi
2

p
f ), which imparts a p/2 phase shift on one of the

modes, as shown in the comparison of the squeezing results in
Fig. 3a and Fig. 3b.

We then need to mix the TEM01 and TEM10 modes, equivalent
to a 50/50 beamsplitter. Any H-G mode can be expressed as a
superposition of two orthogonal modes of the same order as the
original field. This is analogous to the superposition of polariza-
tion modes in a two-dimensional basis. A TEM10 mode rotated
by +458 relative to the x-axis can be expressed as
1=

ffiffiffi
2

p
ðTEM10 + TEM01Þ. This means that our ‘beamsplitter’ can

be realized by detecting in a basis that is 458 rotated relative to
the axis of the cylindrical-lens system (Fig. 2c), and this is the
basis where entanglement then exists. As expected from quantum
theory, measurements of the arbitrary quadratures of entangled
fields show noisy states (Fig. 3c). These measurements were again
carried out with the QD, giving the advantage of being able to
measure both modes simultaneously.

With these data we can calculate the inseparability criterion I
(ref. 26), which is a direct measure of entanglement. A value less
than one implies that entanglement exists between the two modes,
with a perfectly entangled system having a value of zero. With the
sum and difference of the signals of the two orthogonal fields, we
evaluate the equation I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx0þy0ðf0ÞVx0%y0ðf0 þ p=2Þ

p
, where

f0 is chosen such that I is minimized, as shown in Fig. 4. This
results in a value of I ¼ 0:79+ 0:02 at 3.3 MHz detection fre-
quency, after corrections are made for electronic noise. We demon-
strate significant entanglement between two orthogonal spatial
modes within one optical beam. This entanglement can be
enhanced with the use of specially designed multipixel detectors.

In conclusion, we have demonstrated an elegant technique to
create and measure entanglement between two orthogonal spatial
modes in a single beam of light. We have shown and tested
several simplifications on traditional entanglement schemes, includ-
ing generating two squeezed modes from a single OPA, using
imaging components to mix the modes with the correct phase,
and detecting the two modes simultaneously with one QD. The
results for two modes are similar to those that can be achieved
with polarization techniques. However, this technique can be

expanded to produce entanglement between any two orthogonal
modes of the form TEMjk and TEMkj , creating a larger number of
quantum channels.
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Figure 3 | Noise measurements. a, Output variance of the degenerate optical
parametric amplifier for the TEM10 field, with variance Vx(f ) (i), and the
TEM01 field, with variance Vy(f ) (ii), using a quadrant detector and scanning
the local oscillator phase. b, The same setup as a, but with the cylindrical-lens
system included. c, Output variances Vx0(f ) (iii) and Vy0(f ) (iv) for the 458
rotated fields using a quadrant detector and scanning the local oscillator phase.
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the QD with electronic splitters and using a fast data acquisition
system, we are able to measure properties of states in the TEM01
mode and TEM10 mode simultaneously, using just a single detector
and one local oscillator. The temporal fluctuations are directly
recorded, and the data is then post-processed. It is filtered for
various frequency bands (with a width of 100 kHz), and the corre-
lations and variances are then directly determined from the time-
varying data. Such measurements are shown in Fig. 3a at 4.8 MHz
detection frequency. Using the quadrant detector we measure
21.7 dB of squeezing in the two modes, which is sufficient for
use in a demonstration of entanglement. An interesting feature
and limiting factor is the small phase shift, about p/7, between
the two fields, which might have an origin in a small misalignment
of the OPA cavity.

There is a well-established set of requirements for entangling two
optical beams, and we meet all of these in our unusual setup. A p/2
(or i) phase shift is first required between the two beams, which
for standard entanglement is simply a matter of delaying one of
the beams with respect to the other. The beams then need to be
mixed together, which is generally achieved with a 50/50 beam-
splitter. Finally, we need to observe a pair of conjugate observables,
which requires a phase-sensitive detector to measure quadrature
entanglement. This is usually achieved with one HD on each of
the entangled beams.

To induce the p/2 phase shift we used an elegant optical method
using the Gouy phase shift in higher-order modes25. The output of
the degenerate OPA was mode-matched into a symmetric two
cylindrical-lens system (focal lengths f¼ 250 mm, with lens separ-
ation of

ffiffiffi
2

p
f ), which imparts a p/2 phase shift on one of the

modes, as shown in the comparison of the squeezing results in
Fig. 3a and Fig. 3b.

We then need to mix the TEM01 and TEM10 modes, equivalent
to a 50/50 beamsplitter. Any H-G mode can be expressed as a
superposition of two orthogonal modes of the same order as the
original field. This is analogous to the superposition of polariza-
tion modes in a two-dimensional basis. A TEM10 mode rotated
by +458 relative to the x-axis can be expressed as
1=

ffiffiffi
2

p
ðTEM10 + TEM01Þ. This means that our ‘beamsplitter’ can

be realized by detecting in a basis that is 458 rotated relative to
the axis of the cylindrical-lens system (Fig. 2c), and this is the
basis where entanglement then exists. As expected from quantum
theory, measurements of the arbitrary quadratures of entangled
fields show noisy states (Fig. 3c). These measurements were again
carried out with the QD, giving the advantage of being able to
measure both modes simultaneously.

With these data we can calculate the inseparability criterion I
(ref. 26), which is a direct measure of entanglement. A value less
than one implies that entanglement exists between the two modes,
with a perfectly entangled system having a value of zero. With the
sum and difference of the signals of the two orthogonal fields, we
evaluate the equation I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vx0þy0ðf0ÞVx0%y0ðf0 þ p=2Þ

p
, where

f0 is chosen such that I is minimized, as shown in Fig. 4. This
results in a value of I ¼ 0:79+ 0:02 at 3.3 MHz detection fre-
quency, after corrections are made for electronic noise. We demon-
strate significant entanglement between two orthogonal spatial
modes within one optical beam. This entanglement can be
enhanced with the use of specially designed multipixel detectors.

In conclusion, we have demonstrated an elegant technique to
create and measure entanglement between two orthogonal spatial
modes in a single beam of light. We have shown and tested
several simplifications on traditional entanglement schemes, includ-
ing generating two squeezed modes from a single OPA, using
imaging components to mix the modes with the correct phase,
and detecting the two modes simultaneously with one QD. The
results for two modes are similar to those that can be achieved
with polarization techniques. However, this technique can be

expanded to produce entanglement between any two orthogonal
modes of the form TEMjk and TEMkj , creating a larger number of
quantum channels.
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Figure 3 | Noise measurements. a, Output variance of the degenerate optical
parametric amplifier for the TEM10 field, with variance Vx(f ) (i), and the
TEM01 field, with variance Vy(f ) (ii), using a quadrant detector and scanning
the local oscillator phase. b, The same setup as a, but with the cylindrical-lens
system included. c, Output variances Vx0(f ) (iii) and Vy0(f ) (iv) for the 458
rotated fields using a quadrant detector and scanning the local oscillator phase.
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Figure 6.6: Variances of the detected time traces, signature of entanglement within a
single beam: a, Variance of the outputs of the degenerate optical parametric oscillator,
without the cylindrical lenses, measured using the quadrant detector and scanning the local
oscillator phase Φ. Trace (i) represents

�
∆2δXx0(t,Φ)

�
, and trace (ii)

�
∆2δXy0(t,Φ)

�
.

b, The same setup as a, but with the cylindrical-lens system included: traces (i) and
(ii) now represent

�
∆2δXx1(t,Φ)

�
and

�
∆2δXy1(t,Φ)

�
respectively. c, Output variances�

∆2δXx2(t,Φ)
�
(iii) and

�
∆2δXy2(t,Φ)

�
(iv) for the 45◦ rotated fields using a quadrant

detector and scanning the local oscillator phase.

If we want to be able to perform any unitary manipulation U on the copropagating

modes within a beam, non-Gaussian optical elements are needed. But any attenuation at

any stage in the transform destroys the unitary nature of the transform. This discards all

the optical elements which would introduce losses in the beam.

A very general non-Gaussian optical element which does not introduce loss is the de-

formable mirror, or phase only spatial light modulator. In the next section, we describe

how using a succession of these elements separated by spatial Fourier transforms can per-

form any unitary transform on the copropagating transverse modes of a beam.
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6.2 Theoretical solution

Conventional optical elements are not sufficient to perform any unitary transform on

copropagating transverse modes within a single beam. In this section, we present an

optical tool, the unitary programmable mode converter (UPMC), theoretically capable of

such a feat. After setting up a theoretical framework, we demonstrate using group theory

results that any unitary manipulation can be built using this device.

6.2.1 Theoretical framework: basis and transforms

Before focusing on the mathematical demonstration that the UPMC can perform any

manipulation, let us first define the mathematical framework for the optical processes

that needs to be considered to well understand this device.

Transverse basis decomposition

As we previously developed in 2.1.1, we limit ourselves to a beam of monochromatic, lin-

early polarized light of wavelength λ propagating along the �z axis. The spatial distribution

of the beam in the plane (�x, �y, z = 0) is the transverse profile, or transverse mode, of the

beam: E (�ρ, z = 0) = A (�ρ) eiφ(�ρ), where A (�ρ) is the magnitude of the transverse profile,

while φ (�ρ) is its phase. As we already discussed in 2.1.3, different transverse mode basis

can be used to decompose this profile. For example, in the TEM basis:

E(�ρ) =
�

m∈N,n∈N
amnTEMmn(�ρ) (6.12)

The amn are the complex coefficients of the decomposition of E(�ρ) in the TEM basis, and

they are given by

amn =

��

x∈R,y∈R
TEMmn(�ρ)

∗A(�ρ)eiφ(�ρ) d2�ρ (6.13)

Any basis of transverse modes provides a decomposition of the field profile.

Any optical system transforms an input field I(�ρ) into an output field O(�ρ). Any linear

optical system is fully characterized by its action in a transverse basis: the output of each

mode of the basis through the optical system can be decomposed in the same basis, thus

providing a matrix description of the transform. For example, the transform defined by

U1 =





√
2
2

√
2
2 0 0 ...

−
√
2
2

√
2
2 0 0 ...

0 0 1 0 ...

0 0 0 1 ...

... ... ... ... ...




(6.14)

in the TEM basis acts as a two mode beamsplitter wherein the spatial modes TEM00 and

TEM10 are mixed together, while all the other modes in TEMmn remain unaffected.
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In another basis, this transform would have a different matrix representation. Let us

define the transfer matrix P that converts a field decomposition from the basis {uk(�ρ), k ∈
N} to the basis {vl(�ρ), l ∈ N} (we use a single index for the transverse mode basis for

simplicity). P is defined as:

Pkl =

��

x∈R,y∈R
uk(�ρ)

∗vl(�ρ) d
2�ρ (6.15)

If a transform is defined by the matrix UT in the basis {uk(�ρ), k ∈ N}, then it is defined

by P−1UTP in the basis {vl(�ρ), l ∈ N}. The matrix representation of the same optical

transform changes dramatically depending on the decomposition basis considered.

These results apply to all linear transforms. In the specific case of unitary transforms,

they can themselves also be construed as a basis change. They transform an input basis

into another basis. Such a description is particularly intuitive when dealing with optical

systems: these are often described by the outputs they offer to different inputs, rather

than decomposing them on a basis.

A particular set of modes is of heightened interest to us: the pixels, that we pre-

sented in 2.1.3. With the assumption that no feature in the fields considered is smaller

than the pixel size ∆pix, we can approximate this set of modes to a basis. Let us define

Eij = E(xi, yj) where xi and yj are the (�ρ) coordinates of pixel (i, j) with i ∈ Z and j ∈ Z.
When the size of the pixel ∆pix is small compared to the variations of the transverse field

E(�ρ) along the �x and �y axis, the transverse profile E(�ρ) is adequately described by its

discretization Eij . Moreover, since the transverse extension of a physical beam is finite,

E(�ρ) is adequately described by Eij with |i| ≤ Npix/2 and |j| ≤ Npix/2 for a large enough

Npix. The table of Eij can be reorganized row by row into a single vector Ek = Eij with

k ∈ A (A = {1, 2, ..., n = N2
pix}).

Optical transform of a deformable surface

With this description of the field profile in the pixel basis Ek, let us now describe the

action of a deformable surface on this field profile. A programmable deformable mirror

is a surface whose topography z(�ρ) can be defined by the user. When the beam hits the

mirror, the continuous field profile E(�ρ) is transformed into

E(�ρ) → eiφDM (�ρ)E(�ρ) (6.16)
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with φDM (�ρ) = 2π z(�ρ)
λ . In the pixel basis, the deformable mirror transform becomes

E → UDM (φ)E with

UDM (φ) =





eiφ1 0 0 ... 0

0 eiφ2 0 ... 0

0 0 eiφ3 ... 0

... ... ... ... ...

0 0 0 ... eiφn




(6.17)

For all the phases φ chosen, the transforms UDM (φ) are all unitary. All the pixels change

the phase of the incoming field, but its amplitude remain constant. We name such a

transform UDM but here is no restriction on the method to apply this phase profile. A

phase only spatial light modulator would apply the same transform to the field.

Fourier Transform

Since the amplitude profiles of any incoming field remain constant when hitting a de-

formable mirror, reflections on deformable mirrors cannot obviously perform all optical

transforms. Thus it is necessary to introduce another kind of transform, one that changes

the field’s amplitudes.

Let us consider more specifically the unitary transform performed by the combination of

a lens of focal length f0 and free-space propagation before and after the lens of a distance

f0. These elements perform a Fourier transform on the spatial profile of the beam, and a

rescaling of the profile: for an input beam with transverse size parameter ωin, the typical

transverse size of the output is ωout = 2πλf0/ωin.

Let us name the unitary matrix of this Fourier transform in the pixel basis UFT ;

E → UFTE. We choose ∆pix small enough and Npix large enough such that a profile of

transverse size ωin = ∆pix is transformed by the Fourier transform into an output of size

ωout = Npix∆pix. Typically, this condition is satisfied for ∆2
pixNpix = 2πλf0. This choice

of discretization ensures that UFT is as close as possible to the discrete Fourier transform

matrix.

While the matrix representation of the Fourier transform is close to a discreet Fourier

transform in the pixel basis, in the TEM basis, in the specific case when the funda-

mental mode TEM00 has the waist w0 =
√
2πλf0, the Fourier transform is diagonal:

UFT,TEMbasisTEMmn = im+nTEMmn.

With this decomposition, it is easy to see that when a Fourier transform is applied twice,

the result is a 180◦ rotation of the beam profile around the propagation axis. This is easily

derived from the parity of the different TEMmn modes. Hence, when a Fourier transform

is applied four times, it does not change the beam profile at all.
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6.2.2 Demonstration: group theory

We have described in the previous paragraphs a few specific unitary transforms that are

performed by some optical elements. Using group theory, we demonstrate now that a

succession of these specific transforms can build any desired unitary transform.

A specific transform: Tij(θ)

In the pixel basis, the transform defined by the matrix Tij(θ) performs a beamsplitter

operation between the pixels i and j:

Tij(θ) =





1 0 ... 0 ... 0 ... 0

0 1 ... 0 ... 0 ... 0

... ... ... ... ... ... ... ...

0 0 ... cos(θ) ... sin(θ) ... 0

... ... ... ... 1 ... ... ...

0 0 ... − sin(θ) ... cos(θ) ... 0

... ... ... ... ... ... ... ...

0 0 ... 0 ... 0 ... 0

0 0 ... 0 ... 0 ... 1





(6.18)

For example, the matrix T23(π/3) mixes the amplitudes and phase of the field in pixel 2

with the amplitude and phase of the field in pixel 3:

T23(π/3) =





1 0 0 0 ...

0 1
2

√
3
2 0 ...

0 −
√
3
2

1
2 0 ...

0 0 0 1 ...

... ... ... ... ...




(6.19)

This set of transforms is a mathematical building block. We use the group generated by

this set as a tool in our demonstration.

Theoretical result

In a pixel basis of size N , the set of all possible UDM forms the subgroup DU of the uni-

tary group U(N). Let us name H the subgroup of U(N) generated by DU and UFT , the

matrix representing the Fourier transform in the pixel basis. We know that H is included

in U(N), we want to show that H = U(N). Since the pixel basis has been chosen so

that UFT resembles a discrete Fourier transform, all the coefficients of UFT are non zero:

∀i, j UFT (ij) �= 0. This is of high importance as we want to use UFT as a building block.

Indeed, if we can create a matrix M by performing a product of many UFT and diagonal

matrices in UDM , then M belongs to the group H.
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Let us consider another group, the group formed by DU and all the matrices Tij(θ)

for all i, j, and θ. It is a well known result from linear algebra (Serre 02) that such a

group is actually U(N). We will show that all the Tij(θ) can be found in H, which implies

that H = U(N). Let us choose a specific matrix Ti0j0(θ0). We know that UFT (i0j0) �= 0.

Lemma 2 in (Borevich 81) ensures that Ti0j0(θ0) can be built using UFT and DU. This

entails that Ti0j0(θ0) is in H. No restriction was put on i0 and j0, since UFT (i0j0) �= 0 for

any pair of indices i0 and j0. This means that all the Ti0j0(θ0) belong to H.

We find that H is a subgroup of U(N) that contains DU (by definition) and all the

Tij(θ) (by construction). We know that such a subgroup is U(N) (Serre 02) so H = U(N).

This result means that any unitary transform M can be built using a succession of

UDM and UFT . Any desired unitary transform has a systematic decomposition in terms

of reflections on specific topographies and Fourier transforms. It means that any spatial

optical transform that does not introduce loss or amplification of the light can be built.

We name such a succession of reflections and optical Fourier transforms a Unitary Pro-

grammable Mode Converter (UPMC).

A finite sequence of UDM and UFT sufficient to build any Tij(θ) is presented in

(Borevich 81). When UFT is exactly a discreet Fourier transform, it is possible to show

that such a systematic construction requires 17 reflections on deformable mirrors, sep-

arated by FTs. Being able to potentially perform any unitary manipulation on spatial

transverse modes within a beam makes the co-propagating modes equivalent on that level

to sets of separate beams. And while there are technical difficulties to build any unitary

manipulation in both cases, both cases have the potential to achieve a general manipula-

tion of the modes.

This result can be generalized to include polarization manipulation by adding a λ/2

phase plate between each reflection, and using a spatial light modulator that addresses

polarization.

6.3 Simulations

Our theoretical study showed that any kind of unitary transform can be performed using

a finite succession of reflections on deformable mirrors and Fourier transforms. However,

experimentally the number of reflections on deformable mirrors is limited. We need to

evaluate the expected performances of a UPMC in such a situation. In this section, after

presenting a numerical model of the UPMC, we show its expected performances, both for

single mode and multiple modes manipulations.
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6.3.1 Modelling a UPMC

The limits of the theoretical construction

The systematic approach to build a unitary transform M using the theoretical results pre-

sented above is: decompose M in a finite number of Tij(θ), then decompose each Tij(θ) in

a finite succession of UFT and UDM . Consequently, for any unitary transform M , we can

find a finite sequence of reflections on deformable mirrors separated by Fourier transforms

which produces M .

This systematic method can be particularly resource hungry: when the number of pix-

els N increases (the number of matrices Tij(θ) required to build a general unitary matrix

increases as O(N4
pix) (Ikramov 84)). Moreover, this method is also clearly not optimal for

whole ranges of transforms. For example, consider the simple Fourier transform. Decom-

posing it in Tij(θ) to then find a succession of UFT and UDM to perform a single UFT

does not make sense. And when the transform could be performed with Gaussian optical

elements (telescope, microscope), it is better to use Gaussian profiles on the deformable

mirrors rather than decompose it in Tij(θ).

A high number of reflections can be difficult to achieve because of limited resources

or complex engineering. Moreover, each reflection or transmission on an optical device

is imperfect: they all introduce loss. For these reasons, we need to limit the number of

reflections, which means that we need to find an alternative, approximate solution instead

of the theoretical construction. In this section, we first introduce a measure of how well

the UPMC performs a desired transform. We then use a stochastic algorithm to find the

best topography to perform a desired manipulation, with a set number of reflections.

Alternative solutions

Let us consider that the desired unitary transform D is defined by its N orthonormal

input modes Ii(�ρ) and their N orthonormal corresponding output field modes Oi(�ρ) (with

i ∈ K, K = {1, 2, ..., N}). For example, when N = 1, D is defined on a single mode. In

this case we want a specific output O1(�ρ) for a specific input I1(�ρ), but the action of D for

any other input mode is not important. Or D could be defined on some or all the modes

of a transverse basis. In the latter case, the desired transform matrix is then completely

specified. Fig. 6.7 provides a diagram of these specifications.

Consider now the actual optical system (the UPMC) that we wish to sue to realize

D. Like any other lossless optical system, it is defined by its unitary transform A. For

the input modes Ii(�ρ), A has the outputs O�
i(�ρ). When D is defined on a single mode, a

conventional measure of how closely A approximates D is the intensity overlap between

106



D
I1

I2

O1

O2

Figure 6.7: Diagram of the definition a a specific transform: a desired transform D is
specified by giving a set of orthonormal input modes I1 and I2 and their respective output
modes O1 and O2. The unitary nature of D imposes that O1 and O2 are orthonormal.

the mode O1(�ρ) and the mode O�
1(�ρ):

α =

�����

��

(x,y)
O1(�ρ)

∗O�
1(�ρ)

����� (6.20)

It is the modulus of the scalar product of these two modes. We generalize this coefficient

α to all unitary transforms. It combines all the output overlaps, and is sensitive to the

phase between the overlaps:

α =

�����
�

i∈K

��

(x,y)
Oi(�ρ)

∗O�
i(�ρ)

����� (6.21)

If we decompose

Oi(�ρ) =
�

m∈N,n∈N
oi,m,nTEMmn(�ρ) (6.22)

and

O�
i(�ρ) =

�

m∈N,n∈N
o�i,m,nTEMmn(�ρ) (6.23)

α can be written as

α =

������

�

i∈K

�

m∈N,n∈N
o∗i,m,no

�
i,m,n

������
(6.24)

In this last notation, α is the scalar product between the unitary matrices representing D

and A in the TEM basis.

When N = 1, α2 is the mode conversion efficiency: it is the fraction of power effectively

transferred from the input mode into the desired output. For multimode transformations,

i.e. higher values of N , we introduce the transform quality α2
N = α2

N2 , a generalization of

the mode conversion efficiency. α2
N is normalized to compare transforms with different in-
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put mode numbers on the same 0 to 1 scale. When α2
N = 1, there is no difference between

A andD in the subspace defined by the N input modes Ii(�ρ), i ∈ K. The two optical trans-

forms can still be different; they just differ outside of the considered input modes. α2
n was

chosen as the measure of the difference between the transforms because it gives the same

importance to all the considered modes and coefficients. For a specific purpose, another

measure of distance could be more appropriate. For example, when the relative phases

between the output modes are irrelevant, the quantity β =
�

i∈K

���
��

(x,y) Ōi(�ρ)O�
i(�ρ)

��� is
more appropriate.

For a given desired transform D, finding the optimal achievable transform A within the

experimental constraints is an optimization problem. When a large number of reflections

on deformable mirrors is possible, we can use the systematic decomposition sequence of D

in UFT and UDM (φ) presented above to perform the transform perfectly. However when

the number of reflections is a constraint, there is no algebraic solution (Wyrowski 91).

The problem then comes down to the optimization of a finite set of parameters (here the

topographies of the deformable mirrors).

We did not find any analytical method to derive an optimal topography for the de-

formable surfaces. On the other hand stochastic optimization, using α2
N as the optimiza-

tion criterion, performs well at the task of optimizing the topographies for a set number

of reflections on deformable surfaces with a defined resolution.

Propagation model

First of all, we choose a model for the UPMC. This model simulates the effect of a suc-

cession of Fourier transforms and reflections on deformable surfaces of a light profile. The

light profile is represented by a M values vector if we consider only one dimension, of by

a M × M matrix if the full transverse plane is manipulated. The Fourier transform is

performed as a normalized and centered Fast Fourier Transform algorithm, either a 1D or

a 2D FFT (depending on the light profile representation).

We model the reflection on a deformable surface by a phase change of the light profile,

based on the topography of the surface. We rotate the phase of each element of the vector

or matrix representing the light. The values for the phase rotations are stored in a M

value vector (or a M ×M matrix) and rotating the phases simply corresponds to a prod-

uct, element by element, of this phase vector (or matrix) with the light profile vector (or

matrix). The phase rotations take into account the limited resolution of the deformable

surface: we consider a smaller number of actuators, and derive from their positions and

the smoothness of the surface the phase rotation values. A schematic of this process is

shown in Fig. 6.8.

With this model for the propagation of the field in the system, we compute the outputs
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Figure 6.8: Model of the deformable surface. From a small number of actuator positions,
taking into account the smoothness of the surface, we can derive the phase rotation values
induced by the reflection on the surface for all the light profile elements. The discreet
positions in orange represent the computational mesh. We work with a number M of
phase elements significantly larger than the number of actuators in order to describe the
surface accurately.

O�
i(�ρ) corresponding to the inputs Ii(�ρ). We then compare these outputs to the outputs

Oi(�ρ) of the transform we actually want to perform. And we compute the transform qual-

ity α2
N .

The combination of the model and the input Ii(�ρ) and desired outputs Oi(�ρ) allows to

build a function that converts a list of L actuator positions (all the actuators positions, for

all the different reflections) into a transform quality α2
N . Let us introduce a few notations.

We name the positions of the L actuators pi i ∈ {1, 2, ..., L}, thus forming a vector �p. We

name fmodel,I,O the function that converts these positions into a transform quality:

fmodel,I,O : �p → fmodel,I,O (�p) = α2
N (6.25)

fmodel,I,O has values between 0 and 1, and takes in arguments a vector of L values of

actuator positions. Without loss of generality, we can re-normalize the positions so that

they are bounded by 0 and 1 too. Thus, we need to optimize this L parameter function.

Simulated Annealing

We use stochastic optimization, and more specifically simulated annealing. Simulated

annealing is an optimization method that performs well for optimizing high number of

variables. Indeed, a systematic mapping of the space of parameters requires too many

evaluations of the function, and we found that direct optimizations based on Newton’s

method did not reach the global maxima we found with simulated annealing. Simulated

annealing is a random walk: from a position �p, we test neighboring positions for higher
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valuer of fmodel,I,O(�p). If any of these neighboring position is better then the original

position, we jump there, and continue the process of testing new positions.

In the specific case of simulated annealing, the random walk is controlled by two pa-

rameters. A temperature T , and a boundary b. These two parameters evolve during the

optimization process, in order to match efficiently the annealing process in metallurgy:

the system starts with a very high temperature T , which is then brought down gradually.

As such, it is an improved Metropolis-Hastings algorithm: a standard Markov chain is

computed for a fixed temperature.

The process of simulated annealing is performed as follows. To begin with, the temper-

ature is chosen high (T = 1 is often a good starting point, this value is to be compared to

the boundaries of the function fmodel,I,O), and b is chosen big (b =
√
L is a good starting

point, since b is to be compared to the norm of �p). A starting position �p0 is also chosen,

either randomly or at the origin, and we compute the value s0 = fmodel,I,O(�p0) . Then,

a first sequence of trials is performed with these values of T and b. Each trial consists in

choosing a new �p� so that
����p� − �p0

��� ≤ b. Then we compute s� = fmodel,I,O(�p�). If s� > s0,

a jump occurs, and �p� replaces �p0 and we start a new trial. If s� < s0 then we compute the

value e(s
�−s0)/T which is the jump probability, and we choose a random number between

0 and 1. If this number is smaller than e(s
�−s0)/T , then a jump occurs, and we replace �p0

by the new �p�. This optimization process is synthesized in Figure 6.9.

Such a probabilistic approach to jumps allows for the optimization procedure to get out

of a local maximum. Indeed, if the jumps would only occur when s� > s0, once �p0 is a local

maximum, and provided that b is small enough, there is no possibility for the optimiza-

tion to jump anymore. Introducing probabilistic jumping allows to overcome this difficulty.

This kind of trials (and jumps) is repeated a high number of times, say Ntrials. Ntrials

is chosen depending on the number of variables, the nature of the problem and the com-

puting resources available. In any case, the higher the better. At the end of the Ntrials,

we count the number of jumps that occurred during these trials, and we reduce T if there

was more than Ntrials/2 jumps, or reduce b if there was less than Ntrials/2 jumps. There

are many different approaches to reduce T and b. We achieved our best results when

using a geometric sequences for T : T � = T/constant and an arithmetic decrease for b:

b� = b − constant. In any case, it is the fact that b and T remain matched to a number

of jumps of Ntrials/2 which ensures a nice simulated annealing procedure. After changing

T , b or both, we restart a sequence of Ntrials, and continue this process until both T and

b are below preset limit values.

Adjusting b and T so as to maintain the 1/2 ratio is important: indeed, if b is reduced,

the variations of fmodel,I,O(�p) for all the �p with ��p− �p0� ≤ b become smaller. This means

that for a smaller value of b, if T does not change, the likelihood to jump for any �p gets
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Figure 6.9: Process diagram of the simulated annealing optimization method.

higher, and the probabilistic behaviour of the optimization, introduced so as to get away

from local maxima, gets in the way of optimizing at small scales. Maintaining a fixed
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ratio in the number of jumps ensures that the behaviour of the optimization at small

scales remain balanced. Other ratios can be used, but the 1/2 ratio is put forward in the

literature, and we found that it indeed gave us our best results.

This optimization process gave us the best actuator position it could find to perform

a desired optical transform with a system defined by a specific number of reflections and

number of actuators.

6.3.2 Simulation results

We now focus on a specific implementation of the UPMC: a succession of reflections on

deformable surfaces which topography are controlled by a line of twelve actuators each.

Indeed, as we will develop further in this thesis, our experimental system has twelve

actuators per line. The light profile manipulations performed by this UPMC are limited

to a single transverse direction. A schematic of this UPMC model can be found in Fig.

6.10.

FFT FFT FFT FFT

I1 O�
1

Figure 6.10: Schematic of our UPMC model. The light profile undergoes a succession
of reflections on deformable surfaces controlled by 12 actuators. These reflections are
separated by Fast Fourier Transforms, which represent an optical Fourier transform. From
a given input I1, we computed the output O�

1 of the system. We optimize the actuator
positions to bring O�

1 as close as possible to O1, the desired output.

Single mode transforms

We first perform a sequence of optimizations to study how well such a UPMC would

convert a single mode into another. We are not considering here a complete unitary ma-

trix applied on many modes, but rather the simple problem of turning one mode into

another. While this simple problem does not allow for the building or the manipulation

of multimode entanglement, it is a first step to check that the concept of substituting a

limited number of reflections instead of the theoretical construction sequence is meaning-

ful. Moreover, it has important applications in quantum enhanced detection, as we have

shown previously. These computational tests involve typically 106 to 107 trials each.

Fig. 6.11 presents simulated mode conversion efficiencies for single mode transforms.

For these transforms, we only considered the output profile O�
1 of a single input profile I1.
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This profile was compared to a desired profile O1. The mode conversion efficiency α2 is the

proportion of the output power of the output profile O�
1 actually in the desired profile O1.

For all these transforms we considered from one to four reflections on the deformable sur-

faces, separated by Fourier transforms. We mainly considered transforms between TEMmn

modes, with the exception being a flip mode (a TEM00 with a π phase shift in the middle).

We find that the efficiency consistently increases with the number of reflections allowed,

for all the transforms considered. The results for single reflections match the theoretical

maximums (modulus overlap). Comparing the results of d. and e. to c. and a. respec-

tively show that the difference between the shape of the input and the shape of the desired

output has a stronger impact on the overlap than the complexity of the profiles themselves.

 

 

0

0.5

1

1 2 3 4
NrefTransform

a b c d e

α2

Figure 6.11: Presentation of the mode conversion efficiency α2 as a function of the trans-
form considered and the number of reflections Nref allowed. The transforms are: a.
TEM00 → TEM10; b. TEM00 → TEM20; c. TEM00 → TEM30; d. TEM10 → TEM30

and e. TEM10 to flip mode

Fig. 6.12 presents the magnitude and phase evolution in the conversion process:

TEM00 → TEM20. This simulation details the spatial process that the light under-

goes. On each surface, the intensity profile is not changed, but a phase is printed onto the

light field. The propagation of the phase profile is then responsible for the change in the

intensity profile of the beam.

These results are encouraging. Not only do they validate the idea of replacing the

theoretical construction sequence based on Tij(θ) with limited number of reflections op-

timized stochastically, but the results show that the conversion efficiency remains high

even for complex modes, and that, as expected, the number of reflections is a determining

factor to how close the optimized transforms perform the desired mode conversion.

It should be noted that our design overcomes the boundaries set in (Lüpken 92;

Krackhardt 92; Wyrowski 91; Zhou 00) for the conversion efficiency with deformable sur-
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Figure 6.12: Transverse profiles of the magnitude of the field when undergoing a succession
of Fourier transforms (FT) and reflections on deformable mirrors (DM). The transverse
profile of the magnitude remains constant at the reflection surfaces while the phase has a
sharp discontinuity. The transverse axis is re-normalized for all planes to keep the profile
of TEM00 constant throughout propagation.

faces or phase masks. Indeed, these earlier designs limited themselves to two reflections

(one controlling the amplitude, the over one the phase of the output mode), while, as we

show in 6.11, it is a higher number of reflections which can allow for a perfect conversion

efficiency.

Multiple mode transforms

After simulating single mode transforms, we can now introduce multiple modes. Similarly

to the single mode case, we set our optimization procedure so that each optimization

requires 106 to 107 trials. Multimode manipulations can take many forms. We focus

here on two families of transforms: phase operators; and beamsplitters. Two mode trans-

forms between the first two TEM modes will be considered - TEM00 and TEM10. The

beamsplitter transform is the matrix

UBS(r) =

�
r t

t −r

�
(6.26)
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with the relationship t =
√
1− r2. This means that we want to transform the TEM00

mode into rTEM00 + tTEM10 and the TEM10 mode into tTEM00 − rTEM10. UBS(r) is

the beamsplitter matrix for a mirror of reflectivity r2. We chose to consider UBS instead

of T12(θ) because of the sign relation. Both these matrices describe a beamsplitting op-

eration between the modes, but with different sign conventions: when θ = 0, i.e. r = 1,

Tij(0) is the identity matrix, while UBS(1) carries a minus sign on the second line. This is

equivalent to swapping the names of the two outputs of the beamsplitter. We choose to

study UBS(r) instead of Tij(θ) so that all the transforms considered are ”difficult”: for all

the transforms considered, increasing the number of reflections improves the conversion

efficiency.

The phase operator is defined by the matrix

UP (φ) =

�
1 0

0 eiφ

�
(6.27)

and corresponds to introducing a phase shift between the two copropagating modes: the

TEM00 is left untouched, while the TEM10 becomes eiφTEM10

Fig. 6.13 presents the best transform quality achieved, α2
n (here with n = 2), when

the system is optimized to perform the transforms UBS(r) and UP (φ). We present α2
n

as a function of r and φ and the number of reflections allowed. In the single reflection

case, we can derive easily the analytical maximum for the transform quality, assuming

the topography is fully controllable (i.e. not limited to a twelve actuators control). Com-

paring the performances of the realistic implementation to the theoretical maxima shows

that the limited number of actuators has an impact on the transform quality. On the

other hand, when higher number of reflections are allowed, our system outperforms the

single reflection theoretical maxima. With increased number of reflections, the efficiency

improves for all values of r and φ: this validates the multiple reflection scheme as a way

to perform unitary transforms.

In a) of Fig. 6.13, the value r = 0 corresponds to a swapping of the modes TEM00 and

TEM10. All the light in the first mode is transferred into the second one, and vice versa.

Comparing these results to transform a of Fig. 6.11, which simply considers the transfer of

light from the mode TEM00 to the TEM10 mode shows that while it is obviously simpler

to perform a single mode transform, the quality of the two mode transform is similar to

the single mode transform quality when we increase the number of reflections.

The high α2
n values obtained both for the beamsplitters and the phase operators for 3

and 4 reflections, especially compared to the single mode transforms in Fig. 6.11 tends to

show that the limiting factor is the complexity of the modes manipulated, rather than the

number of manipulated modes. This means that this realistic UPMC can efficiently ma-

nipulate multiple copropagating modes, mixing them or introducing phase shifts between
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Figure 6.13: Transform quality α2
n when the realistic implementation is optimized to

perform a beamsplitter UBS (a) and a phase operator UP (b). They are plotted as a
function of their respective parameters r and φ and the number of reflections. The black
curve represents the single reflection theoretical maximum. The overlap is perfect for
α2
n = 1. Additional simulations with the same number of trials for a constant transform

presented similar small fluctuations in the case of three and four reflections. These are
artifacts of the optimization process.

them.

As the constraints include more modes, the transform quality gets lower, but the ten-

dency remains: with more reflections allowed, the unitary transform performed by the

system approaches the desired one. This statement is in agreement with the theoretical

result, and shows empirically that even for a limited number of resources (i.e. reflections

and actuators), efficient transforms are possible.

As a conclusion, theoretical results indicate that it is possible to perform any desired

unitary optical transform of the spatial modes within a beam, using a sequence of re-

flections on deformable surfaces, separated by optical Fourier transforms. We found that

any unitary optical transform can be constructed in a systematic way, but this systematic

decomposition can be highly inefficient. We introduced a model for the propagation of the

field through the sequence of reflections and Fourier transforms, and designed an algorithm

to optimize the shape of the surfaces so as to make the propagation perform a desired uni-

tary optical transform. These optimizations provide us with simulated efficiencies for a

realistic implementation of the sequence of reflections.
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Chapter 7

Implementation: building and

characterizing a Unitary

Programmable Mode Converter

We built a UPMC to validate experimentally its ability to manipulate spatial modes. This

device consists in an implementation of a sequence of up to three reflections on deformable

surfaces separated by Fourier transforms.

We begin by describing the UPMC itself, its optical components (the deformable mirror,

cylindrical and spherical lenses, polarization beamsplitters) and the complete optical set-

up procedure. We then focus on classical results: we send in a given input profile, and we

optimize the UPMC to output another profile. We compare the efficiency of this process

to the efficiencies computed through simulation. Finally, we transform a squeezed input

mode into another, and characterize the noise properties of this transform.

7.1 The Unitary Programmable Mode Converter

Our UPMC is based on a succession of three reflections on deformable surfaces separated by

an optical Fourier transform. Let us first describe the physical properties of the deformable

surface. We will then proceed to explain the optical set-up that performs the Fourier

transform and ensures that the beam hits three independent surfaces.

7.1.1 The deformable surface

The deformable surface we use is a Thorlabs Multi-DM. We begin with a precise descrip-

tion of its physical properties, before discussing alternative technologies for spatial phase

modulation and the reasons behind our choice. We then describe the way our Multi-DM

is driven and the influence of the membrane’s elasticity on its shape. Finally, because we

limit ourselves to a single Multi-DM, we explain how we can use different parts of the

same membrane for different reflections.
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Thorlabs Multi-DM

We chose to use a deformable mirror to introduce a spatial phase modulation on the beam.

These devices are mainly adaptive optics tools, used in combination with a wavefront sen-

sor for wavefront control and optical aberrations correction. The shape of a deformable

mirror is controlled by mechanical actuators. We chose a Thorlabs multi-DM (DM140-

35-UM01). This device is a square continuous membrane of 20mm2 with a gold coating,

controlled by 140 electrostatic actuators (laid out in a 12 by 12 square without the 4 cor-

ners). The center-to-center actuator spacing is 400µm, and their maximum displacement

is 3.5µm. They are controlled by a 14-bit drive electronics: the smallest step of the actu-

ators is 0.21nm. The actuators are computer controlled, with a settling time of 10ms.

A picture of the deformable mirror mounted can be found in Figure 7.1.

Figure 7.1: Picture and 3-dimensional representation of the deformable mirror used. The
light hits the multi-DM and its spatial phase profile is changed, while its amplitude remains
constant

Around the 20mm2 of continuous membrane lying on top of the actuators, there is

a flat gold surface for another 10mm. This extra surface ensures that even if the beam

is slightly misaligned, the beam is still reflected. A protective window lies on top of the

deformable mirror. This window is tilted at an angle of 6◦ so as to forbid multiple reflec-

tions: a Fabry-Perot cavity is not possible. This window has a broadband anti-reflection

coating to transmit efficiently in the wavelength range 400nm to 1100nm, see Fig. 7.2.

We found that this window can be particularly lossy, especially when the beam hits it at

an angle.

Alternative technologies for spatial phase modulation

The Multi-DM performs a spatial phase modulation. Other kind of devices can also apply

such a modulation on a beam of light (Shirai 02; Bagnoud 04; Potsaid 08; Roorda 02).

There are two main methods to introduce a spatial phase shift in a beam. The first method

is the one chosen by the Multi-DM, and involves a deformable surface. While in our case

we chose a smooth, continuous surface, it is possible to find segmented surfaces, see Figure
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Figure 7.2: Reflectivity of the gold surface and of the protective window as a function of
the wavelength. Source: Thorlabs corporation

7.3. Segmented surfaces suppress the inter-actuator coupling, making possible very sharp

phase differences between adjoining pixels. The issue with such a surface is that between

the actuators, a small gap exists. This gap does not reflect the light, and this reduces the

proportion of the surface that reflects the light. This proportion is called fill factor, and

while the fill factor for our Multi-DM is above 0.99, the fill factor for the equivalent device

with a segmented surface is 0.95 (Boston Micromachine DM140 segmented).
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Figure 7.3: Schematic of different kind of deformable mirror surfaces. On the top, a
continuous surface, such as our chosen Multi-DM. On the bottom, a segmented surface.
Source: Boston Micromachine corporation

Another method to perform light modulation is to use a liquid crystal on silicon spa-

tial light modulators (LCOS SLM). In this technology, a layer of parallel-aligned nematic

liquid crystals performs the spatial phase modulation. Applying a voltage between a front

and a back electrode change the alignment of the crystals, which in turn change the phase
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of the reflected field. A schematic can be found in Figure 7.4.

Using liquid crystals allows these device to have resolutions comparable to computer

screens. We tested a Hamamatsu model (X10468) with a resolution of 800 by 600 pixels.

In spite of these high resolutions, we found we could not use these devices. Indeed, the

alignment of the crystals is set by pulses, and after each pulses the liquid crystals relax and

loose their alignment. We found that our model exhibited a strong spatial phase modula-

tion at 300Hz, which corresponds to the refreshing rate of the device. Such a modulation

changes continuously the phase of the output field. Even if the average phase is correct,

such a modulation would require extensive data post processing to select the right time

window during which the phase profile is exactly the one expected. Such a modulation

was also documented in (Tay 09).

Chapter 4

Manipulation of a multimode beam

Any linear manipulation of modes can be described by a unitary operator; however, it may be difficult
to find an experimental setup that matches a given unitary operator, for example the operator that
entangles a given set of modes. This chapter will first describe how to implement any discrete unitary
operator on a spatial multimode beam using spatial light modulators and lenses, then it will present an
algorithm for the design of an efficient implementation of any mode converter.

4.1 The Spatial Light Modulator

A spatial light modulator (SLM) is a device that imposes some form of spatially-varying modulation on
a beam of light. It can either modulate the intensity of the beam, its phase, or both. The image on
the surface of the SLM can be addressed electrically, or optically (the image in this case is changed by
shining light encoded with an image). As we are only interested in lossless manipulations, we will only
use phase-only SLM. The two major technologies in electrically addressed phase-only SLM are based on
liquid crystal on silicon (LCOS) and on deformable mirrors.

4.1.1 LCOS spatial light modulator

In this technology, a layer of parallel-aligned nematic liquid crystals is used to modulate light. Phase
modulation is changed to the alignment of the liquid crystals; this alignment can be controlled pixel by
pixel (see figure 4.1).
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Figure 4.1: LCOS chip in a LCOS SLM (image from Hamamatsu).

The resolution of this kind of device is generally very high; the Hamamatsu model (X10468 series)
we tested has 800× 600 pixels of size 2 µm. This technology allows very high precision; LCOS SLMs are
mainly used in optical pulse shaping [Frumker 07], computer generated holography [Bergeron 95], optical
tweezers [Schonbrun 05], etc. However, as the liquid crystals relax after the electric pulse that gives them
their alignment, the liquid crystal layer has to be refreshed even when the phase image on the SLM is
constant. In the model of LCOS SLM we tested, this refreshment process induces a supplementary phase
noise at ≈ 300 Hz, which is detrimental for our experiments (for further details on the method used to
characterize the noise response of the SLM, see [Tay 09]).
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Figure 7.4: Schematic of a liquid crystal on silicon spatial light modulator. Source: Hama-
matsu corporation

Lately, LCOS SLM manufacturers (Holoeye, Hamamatsu, Boulder Nonlinear) have

come to recognize this relaxation modulation as an issue, and have increased their refresh-

ing rate so as to reduce it. Figure 7.5 presents the improvement, in the case of a LCOS

SLM from Boulder Nonlinear. We were not able to use these devices for this work and

they show promising performances for future improvements of the UPMC.

Controlling the shape of the membrane

The Multi-Dm deformable mirror is controlled by a driver box. This box translates the

digital requests originating from the laboratory computer into 140 analog voltages. These

voltages are then carried to the actual deformable mirror using a bundle of independent

wires. This design allows for a very stable setting of the actuators: when there is no

change in the actuator position, the DC voltages on the wires are kept constant. More-

over, the 140 parallel wires make possible very fast switching between actuators positions:

the switching speed is only limited by the inertia of the deformable surface.

When switching from a position of the actuators �p1 (where �p represents the vector of
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Why Choose BNS? 
 
BNS has been continuously developing liquid crystal spatial light modulators for over 15 years.  Through 
this development process, there has been an advancement of SLM performance not matched by other 
SLM manufacturers.  Such performance enhancement includes: 
 

1) Sub-millisecond frame loading to prevent phase droop and addressing latency;  
2) 100% fill factor to reduce higher-order diffraction; 
3) Intra-pixel-pair modulo-2  transitions to maximize space bandwidth product; 
4) Unique LC modulators. 

 

High-speed Addressing 
 
BNS loads every pixel with an 8-bit control signal several times per millisecond.  This high speed 
addressing scheme eliminates phase droop as demonstrated in Figure 1.  In Figure 1, oscilloscope traces 
from a high speed detector show the temporal response of an Electrically-Controlled Birefringent (ECB) 
modulator being addressed at different rates.  The ECB modulator is placed between crossed polarizers 
with its optic axis at 45  with respect to the polarizers.  As shown in Figure 1, there is significant data-
dependent ripple caused by slowly addressing the modulator (left trace).  That is, the rate used to toggle 
the field driving the ECB modulator is slower than its free relaxation response.  The ripple represents a 
phase error when the ECB modulator is used in its phase-only mode (input polarization aligned with ECB 
modulator’s optic axis).  To eliminate the ripple, the toggle rate needs to be several times faster than the 
modulator’s response (right trace).  This requires active matrix backplanes and drive electronics capable 
of sub-millisecond load rates. 
 
 

 
Figure 1 ~ ECB modulators addressed at different rates.  The left trace shows a strong data-dependent 
ripple that is synchronous with the video rate addressing period.  The right trace shows the ripple being 
suppressed by sub-millisecond refresh rates. 

 

Toggle rate = 30 Hz 
Refresh rate = 60 Hz! Toggle rate = 1017 Hz 

Refresh rate = 6103 Hz!

Phase Ripple < -30 dB 

Figure 7.5: Liquid crystal on silicon spatial light modulators addressed at different rates.
The left trace shows a strong ripple that is synchronous with the video rate addressing
period. The right trace shows the ripple being suppressed by sub-millisecond refresh rates.
Source: Boulder Nonlinear Systems corporation

the positions of all the actuators) to a new position �p2, we found that there was a suc-

cession of steps. First of all, the new position is sent to the driver box. Then, we see the

first changes in the phase profile. Less than 0.2ms later, the phase profile is settled. Fi-

nally, the driver box sends back a signal to the computer validating the change. We found

that the first stage of this process can take up to 0.2ms, depending on the state of the

computer (we are not using a real time operating system), and that the last stage was gen-

erally quite shorter, around 0.1ms. As a result, we limit ourselves to 1ms switching speeds.

We use the Matlab driver of the deformable mirror. This allows us to integrate both

the action on the actuator positions and the read-out of the transform quality (which will

be detailed further in the thesis) in the same computing environment.

The relationship between the positions of the actuators �p and the actual membrane

shape is difficult to derive. Indeed, each pixel has a different gain, and there is a signif-

icant cross-coupling between the actuators. We found that a linear relation between the

membrane shape and �p could not account for the changes in the membrane shape when

we changed �p. We detected these changes as modifications of the interference visibility

between a reference beam and a beam hitting the deformable mirror. As a result, we

developed a second order model to explain these variations. It is presented in Figure 7.6.

While we found that this model made possible visibility prediction with an accuracy of

10%, it is still not good enough to derive the right �p so as to print out a desired spatial

phase modulation.

As a result, we found that the control of the deformable mirror required adaptive optics

techniques: in such a scheme, �p is optimized to maximize a given output measurement,

and the deformable mirror is considered as a black box.
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Figure 7.6: Position signals (on the left) and the corresponding simulated displacement
of the membrane (on the right). This model for the behavior of the deformable mirror is
consistent with interference measurements.

Using the same deformable mirror several times

For this UPMC, we utilize a single deformable mirror. In order to satisfy the requirement

of having multiple reflections on deformable surfaces, we choose to designate three sepa-

rate areas of the deformable mirror, allowing for three successive independent reflections.

We choose to use a highly elliptic beam; the topography of the deformable mirror along

the vertical axis is controlled by 12 actuators, while the horizontal axis for each reflection

remains flat (see Figure 7.7).

We choose this highly elliptic configuration so as to use the full resolution of the de-

formable mirror at least in one direction. The generalization of the UPMC’s performances

to the full transverse plane would then require the use of three deformable mirrors.

We choose to perform only three reflections at maximum. This way, the three distinct

reflection areas are truly independent, with a minimal cross-coupling. It is likely that the

same set-up would be capable of performing four reflections equally well. But when the

number of reflections increases, the cross-coupling on the membrane makes finding the

optimal actuator position difficult: each change of a position has an influence on several

reflections.

7.1.2 Optical set-up

The UPMC is based on a succession of optical Fourier transforms and reflections on a

deformable mirror. Let us now discuss the optical requirements of the set-up, and then

the alignment procedure we designed to build such a set-up.
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Figure 7.7: Pixel layout and measured positions and sizes of the beam for the three
reflections, when the beam is a fundamental Gaussian mode. Manipulations of the beam
makes the spatial profile bigger than the simple Gaussian, hence the small footprint of the
mode compared to the size of the deformable mirror.

A vertical Fourier transform and a small lateral displacement

Between each reflection on the deformable mirror, the transverse profile of the beam needs

to undergo a Fourier transform. Moreover, the choice of using a single deformable surface

requires a small and controllable lateral displacement of the beam between each reflection,

so as to hit independent surfaces.

Since we limit ourselves to transforms along a single axis, the vertical axis, we choose

to only perform a vertical Fourier transform. On the other direction, the horizontal one,

there is no need to do any specific transform, except for the small lateral displacement.

The deformable mirror sets the typical transverse sizes of the beam at the reflection. We

find that, in order to optimize the use of the deformable mirror resolution while limiting

the losses on the edges, the transverse vertical size of a TEM00 mode should be on the

order of wv = 0.78mm. Secondly, we want the transverse horizontal size to be small so as

to allow three independent reflections. We choose wh = 0.35mm.

We want to perform a vertical Fourier transform of the profile that hits the deformable

surface. Moreover, if an incoming TEM00 mode has the typical vertical size wv = 0.78mm,

the output of the Fourier transform should be the same TEM00 mode, with the same trans-

verse size. In a single lens system, such a constraint would set the focal length of the lens.

We found that in this specific case, the focal length would be 3.6m which precludes it for

practical reasons. A solution consists in using a first lens to perform a Fourier transform,

so that the transverse size is reduced. In our case, we chose a lens of focal fSL = 300mm.

Then, another Fourier transform performed by a lens of focal fCL = 50mm keeps the

diameter constant, and finally a third Fourier transform, identical to the first one, restores
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the diameter size. In total, the transverse profile undergoes a succession of three Fourier

transforms.

We choose to use a cylindrical lens to perform the second Fourier transform. This

way, on the horizontal axis, the beam only undergoes a pair of Fourier transforms, which

leave it unchanged. Moreover, a small tilt in a reflective mirror in the Fourier plane of the

deformable mirror allows for an easy lateral displacement.

A schematic of this design can be found in Figure 7.8.

SL

DM

PBS1

PBS2
HWP1

HWP2

CL

θ = 0.16◦

Figure 7.8: The Beam is coupled into the UPMC by a reflection on the polarizing beam-
splitter PBS1. It is then focused on to the deformable mirror DM. The beam first under-
goes a 2D Fourier transform through the 2” spherical lens SL (focal length fSL = 300mm),
followed by a vertical FT going through the cylindrical lens CL (fCL = 50mm), and finally
another 2D FT going back through SL. The optical path length between DM and SL is
300mm and between SL and CL 350mm. The sliding half wave plates HWP1 and HWP2
are used to choose the number of reflections on the DM before being coupled out on PBS1.
The angle θ is 0.16◦ to allow for three reflections on the deformable mirror.

As it can be seen in Figure 7.8, we use polarization beamsplitters and half wave plates

to steer the beam. The half wave plates need to be able to distinguish between two ad-

jacent beams. We use micro-metric translations and specially cut mounts so that we can

change the polarization of a beam without touching its neighbour.

Alignment procedure

The alignment procedure is made easy by the use of polarization beamsplitters and the

fact that the UPMC is designed as a misaligned cavity. To begin with, we build a beam

of waist wv = 0.78 using two lenses so that the waist is located on the deformable mirror.

Then, we put in place the other components of the UPMC, without the half wave plates,

and with a spherical lens of focal fCL instead of the cylindrical lens. We set θ = 0. At
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that point, the beam only goes through the UPMC once, and goes out the polarization

beamsplitter PBS1. We change the incoming polarization. At the output, we have two

beams: one is coming straight through the polarization beamsplitter PBS1, and the other

beam is reflected by PBS1. We oscillate the piezo electric actuator attached to one of

the mirrors of the UPMC so as to get an interference signal between those beams (using

another half wave plate and a polarizer). We can then optimize the interference signal by

optimizing the UPMC. When the overlap is 1, i.e. when the two output beams are exactly

identical, the UPMC is perfectly aligned.

Then, we put the cylindrical lens in place of its spherical replacement, and we put in

cylindrical lenses in the incoming beam so that when the beam hits the deformable mirror,

its waist is wh = 0.35mm.

Finally, we need to perform the three reflections. We put in the half wave plate HWP2.

This makes sure that the beam hits the deformable mirror twice. We tilt the mirror so

that the second reflection is located in the center of the deformable mirror. Then, we

introduce HWP1 and we slide HWP2 slightly so that after the third reflection the beam

is allowed out of the UPMC.

This alignment procedure, designed to be performed step after step, makes the construc-

tion of the UPMC quite straightforward.

7.2 Classical characterization

A first test to characterize the UPMC is to consider classical transforms. In this case,

we do not consider fluctuations, and we test whether the UPMC is able to convert the

average transverse spatial mode of a beam of light. Basically, we measure how much of

the energy of the light beam is transferred by the UPMC from a given mode to another.

7.2.1 Characterization method

We begin by discussing the assessment method chosen to evaluate the performances of

the UPMC. We use mode cleaning cavities to produce modes in very well defined shapes,

and we evaluate how close the UPMC’s output is to the desired mode by measuring the

visibility of their interference.

Mode cleaning cavities as references

Assessing how well the UPMC performs a desired single mode unitary transform requires

the stable production of both the input mode (to send into the UPMC) and of the de-

sired output mode (in order to measure the strength of its overlap with the output of

the UPMC). The mode conversion efficiency, α2
1, is derived from the intensity overlap

measurements. The same measurement could be achieved through an intensity and phase

profile detection coupled with a computed scalar product, but without the stability and
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the precision provided by direct experimental measurement of the overlap.

We produce stable input and output profiles using mode cleaning cavities operating as

Gaussian mode selectors, locked to the desired resonating modes: I(�ρ) = TEMm0(�ρ) and

O(�ρ) = TEMn0(�ρ). Phase plates are placed before the cavities to couple light from their

input modes into the desired mode. The cavity is then locked to this mode.

A detailed schematic of the experiment can be found in Figure 7.9. To begin with, the

light coming out of the laser is sent to a first mode cleaning cavity (Mc Leod), locked to

the desired input mode I(�ρ) = TEMm0(�ρ). Then, the output of this cavity is split in two

using a half wave plate and a polarization beamsplitter. The vertical polarization is mode

matched into a classical mode converter, another mode cleaning cavity (Mc Gonnagal),

this time locked to the desired output mode O(�ρ) = TEMn0(�ρ). This process is highly

inefficient. After passing through Mc Gonnagal, this beam, still vertically polarized, is

superposed with the horizontally polarized on another polarization beamsplitter. We use

a half wave plate to swap the polarizations, so that at that point, the beam carries a mode

I(�ρ) vertically polarized and a mode O(�ρ) horizontally polarized. We then use a succession

of cylindrical and spherical lenses to mode match this beam into the UPMC.

In the UPMC, thanks to the polarization beamsplitters, only the vertically polar-

ized light undergoes the mode conversion. The horizontally polarized light goes straight

through. This means that the mode I(�ρ) is converted into O�(�ρ) while O(�ρ) remains un-

touched.

Because of the small tilt θ in the UPMC, at the output of the UPMC the vertical

polarization is not perfectly aligned with the horizontal polarization, which went straight

through the polarization beamsplitter. We use two polarizing Beamsplitters to align and

superpose them. We then rotate the polarization by 45◦ and use a polarizer to interfere

the two polarizations: the vertical polarization in the mode O�(�ρ) and the horizontal po-

larization in the mode O(�ρ).

We use the two polarizations of the beam of light for convenience: this way, the two

modes share the same complex mode matching lenses used to prepare the beam for the

UPMC, and there is no need to build it twice. Moreover, they make the alignment a step

by step process.

Performance evaluation

The powers of the two output polarizations are balanced and a mirror mounted on a piezo

electric transducer modulates the overall phase of the classically converted part of the

beam, thus providing an interference signal on photodiode 3. We use a data acquisition
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Figure 7.9: Detailed schematic of the experiment. The yellow zone represents the laser
light production, the green zone the classical mode converter, the blue zone the UPMC
and the red zone the detection stage.

card to record the interference signal and we derive the visibility v of this interference:

v =
Imax − Imin

Imax + Imin
(7.1)

Where Imax and Imin are the maximum and minimum (respectively) of the light intensity

on the detector. We have then simply α2
1 = v2. Figure 7.10 presents such an interference

signal.

Performance optimization

Since we cannot reliably send directly the right position �p of the actuators to perform a

given transform, we perform an optimization of �p to maximize the visibility v: we move

one actuator at a time, finding its optimal position before moving the next one. The

order we move the actuators is random. This process is repeated as fast as is allowed by

the settling time of the deformable mirror and the data acquisition process (100Hz). It

is trivial to show that for a single reflection, such a sequential optimization will find the

maximum v possible.

We stop this optimization process when the measured v stops increasing. For a typical

three reflections optimization, this occurs after 105 overlap measurements. Power fluctu-
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Figure 7.10: Functional schematic of the characterization process. Here I = TEM00 and
O = TEM20. The desired output is phase modulated using the electroactuator PZT and
overlapped with the output of the UPMC. The interference signal is then measured on a
photodiode, and the intensity overlap is derived. Using the measured overlap, the stochas-
tic optimization algorithm changes the control signal to all the pixels of the deformable
mirror.

ations arising from the laser limit our ability to optimize very precisely the position �p,

and make it redundant to introduce additional randomness in the optimization process.

Repeating the optimization procedure consistently results in the same maximum overlap

value, but with different membrane topographies.

The outcome of the optimization is the best v measured. When the best position �pfinal

is found, we take another 40 interference traces, in a time frame of 4s. The value recorded

as the optimized conversion efficiency is then the square of the average of the visibilities

computed on these 40 traces. Figure 7.11 presents a few traces of high visibility taken

when I(�ρ) = O(�ρ) = TEM00, for three reflections in the UPMC. The value measured,

0.994, shows the quality of the set-up alignment.

For repeated optimization procedures of the same transform, with the same number of

reflections, the membrane topography was found to differ greatly, while the mode conver-

sion efficiency was consistent. That is the fraction of power in the desired mode remains

constant while the remaining power follows a random distribution. This can be explained

by the high number of remaining degrees of freedom. When the maximum mode conver-

sion efficiency was low, i.e. for small number of reflections, the shape of the optimized

output mode differed from one optimization to another.
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Figure 7.11: Interference signals obtained at the end of the optimization. These were
taken for I(�ρ) = O(�ρ) = TEM00. The three traces are recorded at different times, to test
the stability of the measured visibility. For each trace, the electroactuator position move
in a sinusoidal way, thus scanning the relative phase between the output of the UPMC and
the reference mode. Since we have to modulate for all the optimization time, we choose a
sine modulation for the electroactuator to avoid the high accelerations induced by linear
scans.

7.2.2 The UPMC’s mode conversion performances

We optimize the UPMC for different desired inputs and outputs, and different number of

reflections. We find that its performances match the simulated results, and that the size

of the deformable surface is the parameter limiting the number of modes it can efficiently

manipulate.

Experimental results

For each desired transform, the mode cleaning cavities are locked to the desired input

and output modes. Then, we choose the number of reflections the beam is given on the

deformable mirror by sliding the half wave plates within the UPMC. Now, with the de-

formable mirror flat, we balance the powers between the output of the UPMC and the

reference beam. We then proceed to optimize the membrane topography.

Fig. 7.12 presents the mode conversion efficiencies obtained after optimization for dif-

ferent transforms and for different numbers of reflections. As can be clearly seen in the

figure, for all the transforms considered, the quality of the conversion consistently improves

with the number of reflections allowed. This is in agreement with the fundamental idea

underlying the UPMC that successive reflections on a deformable surface eventually lead

to a perfect unitary transform.
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Figure 7.12: Measured mode conversion efficiency, α2, for three different transformations
(light green), compared to simulated results (dark blue). The number of reflections on the
UPMC is varied.

In the case of the single mode transform, the value α2 is the fraction of the power of the

output mode effectively in the desired mode. For example, the value α2 of 0.91 measured

for the conversion TEM00 → TEM10 with three reflections on the deformable mirror

means that 91% of the power of the UPMC’s output is in the desired TEM10. This value

only reflects the power loss due to mode mismatch, and does not include the other sources

of loss. Reverse transforms were also tested and for the transform TEM10 → TEM00 with

3 reflections the mode conversion efficiency is also 0.91.

Figure 7.13 presents snapshots of the output modes for the conversion TEM00 →
TEM30. With an increased number of reflections, the spatial profile of the output visually

comes closer to the desired profile.
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Figure 7.13: Stills from the CCD camera. These capture the shape of the output of the
UPMC of a TEM00 → TEM30 conversion, with different numbers of reflections

Fig. 7.12 provides a comparison between the simulated and experimental UPMC. The

good agreement between the two methods validates the model as a tool to explore further

the capabilities of this experimental set-up. The limitations on the optimization speed

of the experimental set-up compared to the computational simulations explain the small

systematic difference between the results: a typical experimental optimization time allows

for 105 trials. Computational tests involve typically 106 to 107 trials. By simulating the

experimental optimization, we found that the 102 ratio explains the systematic difference.
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Size matters

After the optimization is finished we run a set of local derivatives measurements: we

modulate each actuator around its optimal position �pfinal, and record the amplitude of

the resulting variation of the visibility. The actuators with the biggest influence on the

visibility are the ones where the light is most intense. Figure 7.14 presents the results of

these measurements. They are accurate measures of where the light hits the deformable

mirror. Moreover, the distribution of the light for the last reflection corresponds to the

output spatial mode. In Figure 7.14, for three reflections, one can clearly see the three

lobes of the TEM20 output mode.

The mode conversion efficiency for the transform TEM00 → TEM50, for three reflec-

tions in the UPMC, is α2
1 = 0.60±0.01; the quality of this transform is limited by the size

of the beam on the deformable mirror. The optical set-up was chosen so that the energy

of a TEM00 is spread over five actuators (see Figure 7.7), therefore a significant portion

of the third reflection in the TEM00 → TEM50 transform (that tends to be the size of a

TEM50) hits the deformable mirror outside of the controllable membrane, as can be seen

in Figure 7.15. This underlines the geometrical limit of this specific UPMC; it can only

efficiently handle modes from TEM00 to TEM40. Since the spot size of a TEMn0 mode

scales as
√
n+ 1, an increased number of actuators would allow for the manipulation of

more modes with the same precision.

As a conclusion, these results showed that the UPMC can perform single mode trans-

form efficiently. Realistically, the capabilities of this UPMC are only limited by the number

of reflections allowed and the number of pixels for each reflection. We found that three

reflections on an array of 12 pixels are enough to perform single mode transforms with an

efficiency better than 80% for the first 4 modes of the TEM basis.

7.3 Quantum performances of the UPMC

After the classical tests of the UPMC, we now proceed to use non-classical states of light,

in this case squeezed states, to characterize the UPMC. Being able to manipulate the

spatial profiles of co-propagating modes without changing their quantum properties is the

key to being able to manipulate co-propagating multimode entanglement.

7.3.1 Spatial manipulations of quantum correlation

Transferring squeezing from one mode to another

Even if a full characterization of the UPMC performances as a multimode entanglement

manipulator would require a complete set-up of copropagating squeezed modes and multi-

pixel homodyne detection, it is possible to predict its performances considering only single

mode manipulations. Indeed, there is nothing fundamentally different between manipulat-
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Figure 7.14: Light intensity distribution on the deformable surface on the right, snapshot
of the output mode on the left. One reflection at the top, three reflections at the bottom.
In the energy distribution graphs, the successive reflections take place from right to left,
consistent with the UPMC’s design presented in Figure 7.8

ing a single mode and manipulating several: the device remains the same, the alignment

and components identical. We have simulated multimode manipulations with a UPMC,

and checked that the model underlying these simulations was accurate by confronting it

to classical results.
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Figure 7.15: Light intensity distribution for a three reflection, TEM00 → TEM50 trans-
form. The output profiles are presented above. The intensity distribution on the last
reflection shows that a significant portion of the light does not hit the deformable mirror
on the third reflection. No optimization can change that, since the desired output is bigger
than the deformable mirror.

On the other hand, this model focused on the average field, without any considera-

tion of noise characteristics. Using squeezed states, we can validate the abilities of the

UPMC to manipulate continuous variable non-classical resources, based on noise proper-

ties. Moreover, transferring efficiently squeezed states from one spatial mode to another

paves the way to more general quantum enhanced detections.

Characterization tools

We use squeezed states to characterize the UPMC. We produce squeezed states in an op-

tical parametric amplifier (OPA) aligned in a bow-tie configuration. This OPA has been

described earlier in 4.2.3. The squeezed light at the output of the OPA has the spatial

profile of a TEM00, and we want to characterize the ability of the UPMC to transform

this TEM00 into another spatial mode without altering its quantum state. We use two

separate homodyne detections (HD1 and HD2, as described in Fig. 7.16) to characterize

the quantum state of the light before and after the UPMC. The local oscillator (LO1)
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for HD1 is in the TEM00 mode that matches the output of the OPA. HD2 uses a local

oscillator (LO2) in a different spatial mode that defines the desired output mode of the

UPMC and is used to measure its quantum state.

UPMC

HD1 HD2
!" !"

Spectrum AnalyserSpectrum Analyser

LO1 LO2

OPA

Figure 7.16: Functional schematic of the experiment. The output of the optical para-
metric amplifier (OPA), a squeezed state in the TEM00 mode, is either sent directly to
be measured on the first homodyne detection HD1 using a local oscillator in the TEM00

mode or sent through the UPMC. The UPMC changes the spatial profile of the light, in
this specific example to a TEM20. The squeezing levels in the TEM20 output mode are
then measured using HD2.

We use a high finesse mode cleaning cavity to produce a spatially stable LO2. This

cavity is seeded with a misaligned beam in order to lock it on resonance with a higher

order TEM mode (TEMn0). Using a such a cavity restricts the set of spatial transforms

upon which to test the UPMC: the input is necessarily a TEM00 mode, and the output

mode a TEMn0 produced by the mode cleaning cavity. Nonetheless, the results from this

subset may then be generalized to predict the performance of the UPMC for all possible

transforms.

A complete picture of this experiment can be found in Figure 7.17.

7.3.2 Experimental performances

Using the OPA, we send a squeezed mode into the UPMC, and evaluate how well the device

transfers the squeezing to a different spatial mode. We find that the transfer efficiency is

fully characterized by the squeezing variances of the input and output modes (the UPMC

does not add noise), and that imperfect transfers are directly related to passive losses on
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Figure 7.17: Composite picture of the experiment.

the optical components of the UPMC.
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Measurements of the transferred squeezing

We test the UPMC for a range of transforms, using TEM00, TEM10, TEM20 and TEM30

modes as LO2. First of all, we sent a coherent state, and checked that no addition of noise

can be detected on HD2 compared to HD1 in the 1− 6MHz bandwidth. We then send

a squeezed state in the UPMC. We first characterize this state by measuring its squeezing

and anti-squeezing variances on HD1. Then, we measure these same variances on HD2, to

characterize the state after the UPMC. We measure the noise variance in a band of width

300kHz around the center frequency 2.7MHz. Table 7.1 presents the variances measured

on HD1 and HD2.

Table 7.1: Measured Variances before (HD1) and after (HD2) the UPMC for a range of
transforms.

Output Mode: TEM00 TEM10 TEM20 TEM30

Homodyne HD1 HD2 HD1 HD2 HD1 HD2 HD1 HD2

Squeezed quadrature, in dB -5.1 -1.7 -5.0 -1.6 -4.9 -1.3 -5.0 -1.4
Anti-squeezed quadrature, in dB 6.3 4.4 6.4 4.4 6.3 3.3 6.6 4.0

As can be seen in Table 7.1, the UPMC is able to preserve squeezing when transforming

the TEM00 input into any of the TEMn0 tested, from n = 0 to n = 3. This shows that the

UPMC is able to transfer squeezing from a mode to another. When the UPMC is set to

convert the output of the OPA to a TEM30, the variance along the squeezed quadrature

of the TEM30 is 1.4dB below the quantum noise limit. This is the first measurement of

squeezing in such a high order mode. It shows that even this proof of principle UPMC

gives access to high squeezing levels in complex spatial profiles. It is also noteworthy that

the shape of the desired output mode seems to have a limited influence on the quality of

the transform.

The influence of losses

In order to explain the difference of squeezing levels between HD1 and HD2, we measure

the beam power at different points in the beam path. Overall, from the input to the output

of the UPMC, we find 51% loss. Each reflection on the deformable mirror is responsible

for a 4.2% loss; this value is consistent with the reflectivity of the gold membrane of the

DM and the coatings used on the protective window. Thus, the three reflections on the

deformable mirror introduce 12.1% losses. The polarizing beamsplitters each introduce

5% loss when used in transmission; accounting for a total 31% loss in the case of three

reflections. Finally, the remaining 18% loss is consistent with the number of optical ele-

ments in the beam path and the specifications of their coatings. Additionally, because this

proof of principle UPMC is limited to three reflections, the spatial profile of the output

of the UPMC is not perfectly matched to LO2. This mode mismatch is equivalent to an
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additional loss, the value of which is derived from the visibility of the interference between

the UPMC’s output and LO2.

We find that the differences between the quantum states measured before and after

the UPMC can be accounted for by these power losses alone. Under this assumption, we

use the measured noise variances to compute values of passive loss for each of the different

transforms. In Fig. 7.18, we compare the losses calculated from these quantum measure-

ments, to the losses in power we measured directly on the beam. As can be seen in Fig.

7.18, the two values are in good agreement, well within the error bars derived from the

quantum measurements. This validates the assumption that the UPMC only introduces

passive losses on the quantum state.
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TEM00 → TEM00 TEM10 TEM20 TEM30

Losses

DML
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Figure 7.18: Comparison between the losses calculated from the quantum variance mea-
surements and the losses in power, for different transformations of the spatial profile.
PBS shows the losses from the polarizing beamsplitters and OC the losses from the other
optical components. DML shows the losses from the reflections on the DM and DMMM

represents the loss due to the spatial profile mismatch. Finally, the squares represent the
losses calculated from the quantum variance measurements.

As a conclusion, these results confirm that the UPMC can transform the spatial profile

of the light while retaining its quantum properties, excluding passive losses introduced by

its optical components. Convincingly, the UPMC does not add noise, and allows for high

quality mode matching. It must be noted here that our device is a proof of principle

UPMC. A lossless transform is indeed possible given access to higher quality optical com-

ponents; there is nothing fundamental in the UPMC’s design that destroys the quantum

state of the light.
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Part IV

Concluding remarks
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Chapter 8

Case studies

We began this thesis with the presentation of two quantum related challenges: quantum

enhanced detection and continuous variable quantum computing. For these challenges,

complex spatial modes are either necessary or useful. Indeed, to improve a detection sys-

tem using squeezed light, the light needs to be in the detection mode. To use the simplified

set-up allowed by copropagating modes for quantum computation, we need to generate

and manipulate multiple orthogonal squeezed modes within a single beam.

We presented a set of tools to address these challenges, in particular techniques to generate

multiple squeezed modes within a beam in II, techniques to manipulate them in III and

techniques to detect them simultaneously in 5. During the course of this work, we built

each tool and characterized it experimentally (Fig. 4.9, Fig. 7.18 and Fig. 5.16). This

gave us the ability to realistically assess the achievable performances of each of them.

In these concluding remarks, we present two case studies, one for quantum enhanced de-

tection, the other for quantum computation. For each case, we combine the measured

performances of each of our tools to estimate the performance of the overall system.

8.1 Quantum enhanced detection

8.1.1 Transferring squeezing into the detection mode

Our first case is quantum enhanced detection. As we introduced previously in 3.1.1,

quantum enhanced detection involves shining a strong coherent beam (the probe beam)

onto a physical system. Fluctuations of a real parameter p in this system entail changes

in the output field envelope E (�ρ, p). From a detection of this output field, we can retrieve

p. If we consider small variations of p around p0, in the first order, the information on the

value of p is carried in a single spatial mode u defined as

u(�ρ) =

∂E (�ρ,p)
∂p

���
p=p0����

∂E (�ρ,p)
∂p

���
p=p0

����
(8.1)
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The shape of u thus depends on the interaction between the physical system we want to

measure and the probe beam. An interesting property is that if the interaction is unitary,

then u is orthogonal to E (�ρ, p0). Otherwise, fluctuations of p would change the output

power of the beam.

We measure p by detecting the amplitude quadrature of the field in mode u. An ef-

ficient method to do so is to perform an homodyne detection with the local oscillator in

mode u. As presented in Fig. 5.5, if the detectors are good enough, and if we measure

fluctuations of p above a certain frequency, the signal to noise ratio on the evaluation of p

is limited by the quantum noise, and improving this ratio requires quantum noise manip-

ulation. By using an amplitude squeezed light in mode u, the relevant quantum noise of

the homodyne detection is reduced and we can detect p with an improved accuracy.

To achieve quantum enhanced detection, two steps are challenging. First of all, we

need to be able to perform an homodyne detection on the mode u. To do so we have two

options. The first option is simply to generate this mode u, and use it in a conventional

homodyne detection set-up. This generation can use a UPMC (Fig. 7.10). Alternatively,

we can use a multipixel homodyne detection (Fig. 5.7). In this case, we use the gains

on the pixel recombinations to match the amplitude of mode u (Fig. 5.8). Additionally,

a deformable surface might be required to match the local oscillator transverse phase to u’s.

A second difficulty lies in the generation of amplitude squeezing in mode u at the

homodyne detection. Since u does not necessarily correspond to a resonant mode in an

OPA, the best option is to use a UPMC to convert the shape of a TEM00 squeezed beam

into the desired mode. Then this mode can be used to enhance detection.

An interesting subtlety is that the squeezed mode needs to be superposed to the probe

beam before the physical system. Indeed, if we were to superpose it afterwards, we would

be replacing the light carrying our signal by the squeezed light, which does not improve

the signal to noise ratio. When the interaction we want to measure is unitary, the or-

thogonality of E (�ρ, p0) and u can be used to achieve such a lossless superposition. While

the probe mode is transformed into E (�ρ, p0) by the interaction, there is another mode u�

which is transformed by the interaction into u. An example of these modes is presented

in Fig. 8.2.

Since E (�ρ, p0) and u are orthogonal and the interaction is unitary, u� and the probe

mode are orthogonal too. We can use this property to superpose them, using for example

the reflection on a locked cavity, as we presented in 4.3.1.

The complete scheme is synthesized in Fig. 8.1, in the simple case when choose to

use a probe beam in the TEM00 mode. In this case, we make the probe go through a

mode-matched cavity and bounce u� (orthogonal to the TEM00) on the output coupler of
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this cavity to achieve the superposition. In this reasoning, we did not take into account

the fact that fluctuations of p around p0 tend to couple light from u� into another mode

than u. But in the case of small fluctuations of p this effect can be neglected.

Gains!

OPA UPMC

Cavity

MMHD

Phys. Syst.

Locked to TEM00

Locked to TEM00

Produces squeezing

Superposes modes

p =

p

Mode TEM00

Intense

SQZ

SQZ SQZ

DM

Shapes the phase of LO

LO
TEM00 Mode

Converts shape of squeezed mode

SQZ
Mode u�

Mode u

u� → u

Figure 8.1: Schematic of a Quantum Enhanced Detection system. Squeezed light is pro-
duced efficiently by an OPA locked to the TEM00 mode. A UPMC converts the shape
of this squeezed mode to u�. u� is then superposed losslessly to the bright probe beam in
the TEM00 mode using a cavity. The multimode beam is shone onto the physical sys-
tem, and fluctuations of the parameter p that we need to detect introduce fluctuations
of the amplitude of u, while the physical system transforms u� in u, thus transferring the
squeezing to the detection mode. We finally detect this beam with a multipixel homodyne
detection. We use a deformable mirror in the local oscillator path to control the transverse
phase profile of the detected mode, and the gains of the pixel recombination to control its
transverse amplitude.

8.1.2 Example: detecting the movement of a small structure

Let us now present a practical situation, described in Fig. 8.2. We want to detect small

lateral movements of a transparent glass filament (a hair) of diameter dh = 50µm, with

refractive index n = 1.55. We shine a laser beam on the hair, which diffracts the light.

The position of the hair is thus encoded in the outgoing light. We image the hair onto our

detection apparatus.

We choose to consider a hair so as to keep the problem one-dimensional. We want
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to measure the displacement p of the hair along the transverse axis �x, around a position

p = 0. We put the filament at the waist of a laser beam in the TEM00 mode. We assume

the beam has a waist along �x of dh (its diameter is thus 2w0 = 2dh). Fig. 8.2 presents

the transverse profiles of the probe beam, of the average output mode E (x, p = 0), and of

mode u� and u. u is the mode which contains all the information about the displacement

of the hair p, while u� is the mode we need to squeezed before the hair so that u is squeezed

at the output.
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Figure 8.2: Transverse profiles of the different spatial modes involved in the problem: we
shine a probe beam onto a transparent glass filament, and when the filament is at p = 0,
the output mode is E (x, 0). When p fluctuates around p = 0, these fluctuations introduce
amplitude fluctuations in mode u. Mode u� is the input mode in which we need to reduce
the quantum noise (in the amplitude quadrature) in order to generate amplitude squeezing
in the output mode u after the filament. The blue curve is the real part of the amplitude
of the mode, and the red curve its imaginary part. All the modes are normalized.

We first study the detection efficiency. We use a multipixel homodyne detection, pre-

sented in Fig. 5.7, to detect the outgoing light. The local oscillator is in the TEM00 mode,

the same as the probe beam. Different factors influence the detection efficiency: the quan-

tum efficiency of the detectors, the losses on the protective window, the fill factor and the

number of pixels we use. As far as the quantum efficiency, protective window losses and

fill factor are concerned, they can be represented straight away as a loss coefficient for

each process.
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The intensity overlap α2 between the optimal detection mode vg and u depends on

the number of pixels we use. Additionally, since the transverse phase of mode u is not

constant, a phase shaping of the local oscillator (using a deformable mirror for instance)

improves dramatically α2. Fig. 8.3 shows the intensity overlap as a function of the number

of pixels, in both cases: with or without the transverse phase shaping of the local oscil-

lator. As we can see, because of the transverse phase of u, the transverse phase shaping

is clearly needed. With this phase shaping, if we use 10 or more detection pixels, the

intensity overlap is above 99%.
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Figure 8.3: Intensity overlap α2 between the optimal detection mode and u, as a function
of the number of pixels used in the homodyne detection. We present two cases: in red we
do not match the local oscillator transverse phase to u’s, and in blue we use a deformable
surface to match them.

We now want to improve the signal to noise ratio of the homodyne detection by using

amplitude squeezed light in mode u. To do so, we produce amplitude squeezing in the

TEM00 mode and then use a UPMC, as we presented in Fig. 7.8, to reshape the TEM00

into mode u�, presented in Fig. 8.2.

Fig. 8.4 presents the intensity overlap between the output of the UPMC and mode u�,

as a function of the number of reflections on the deformable mirror. We compute these

overlaps in two cases: the first case considers 12 actuators per reflections, as we have

with our current mirror (Boston Micro-Machine Multi-DM). The second case considers

32 actuators per reflections, as can be found in the Kilo-DM, also from Boston Micro-

Machine. Apart from the difference in number of pixels, the Kilo-DM and Multi-DM are

identical devices. Adding more actuators per reflection improves the conversion efficiency.

While the UPMC improves the intensity overlap between its output mode and mode
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Figure 8.4: Intensity overlap α2 between the output of the UPMC and the mode u�, as a
function of the number of reflections. In red with a Kilo-DM (12 actuators per reflections),
in blue with the Kilo-DM (32 actuators per reflections)

u� for each additional reflection, they also subtract light: the reflection on the gold surface

of the deformable mirror, the protective window and the conventional optical elements all

introduce losses.

In Fig. 8.5 we combine these results to derive the quantum noise reduction we can

realistically expect from the quantum enhancement for two set-ups. The first set-up

”Today”, considers a first version of the UPMC and multipixel homodyne detection. The

second set-up ”Tomorrow” presents the situation with realistically improved elements.

The parameters for these two set-ups are presented in table 8.1

Table 8.1: Two realistic set-ups

Device Parameter Today Tomorrow

OPA Amplitude noise reduction −5dB −6.5dB

UPMC

Losses on DM surface 1% per loop 1% per loop
Losses on protective window 4.2% per loop 0.5% per loop

Losses on conventional optical elements 6.4% per loop 1% per loop
Number of actuators 12 per ref. 32 per ref.

Multipixel Homodyne

Quantum efficiency 92% 95%
Protective window losses 13% 0%

Fill-factor 90% 90%
Number of pixels 8 16

This case study allows us to conclude that enhancing detection using squeezed light
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Figure 8.5: Overall predicted quantum noise reduction, in dB, for two realistic experi-
mental set-ups. ”Today” is in red, ”Tomorrow” is in blue. We plot the quantum noise
reduction, i.e. minus the improvement in signal to noise ratio, as a function of the number
of reflections in the UPMC conversion. While today there is no gain in using multiple
reflections, a in a more advanced set-up they become crucial, allowing for an improve-
ment of −0.6dB compared to the one reflection case, which is a phase only shaping of the
squeezed mode.

is achievable. It involves all the components we presented in this thesis: the creation

of a multimode beam, carrying the probe and the squeezed mode, the reshaping of the

squeezed mode, to match the optimal detection mode, and finally the multipixel homo-

dyne detection. Two important results should be taken out of this study: first of all that

quantum enhancement can be used to improve the detection any small parameter. The

methods we put forward here are applicable to any parameter p which introduce a varia-

tion in an output field E . This is a significant difference compared to previous quantum

enhancement systems.

A second result, shown clearly in Fig. 8.5, is that quantum enhancement is very

sensitive to the quality of the optical set-up used. Not only do better optical components

reduce losses, but they also allow for improved mode-matching thanks to the UPMC.

8.2 Cluster state computation

8.2.1 The cluster state model of quantum computation

Our second case study involves cluster state computation. We do not aim here at explain-

ing the workings of a quantum computer based on cluster states. We merely present what

is required to perform an algorithm with this method, and show how we can implement

it with our copropagating modes. Cluster state computation is based on the principles
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of one-way quantum computing: we first build a fixed, complex, multimode entangled

state (here named cluster state). Then, the computation is performed using a sequence of

classical detections on this state. In terms of quantum optics, this means that the main

difficulty of cluster state computation is the creation of the multimode entangled state.

A multimode cluster state is defined by a graph. This graph, presented in Fig. 8.6,

represents the entanglement relations between the different modes. Each circle is a mode,

and the entanglement relation is defined by the connecting lines. For each mode i, we

have: �
∆2p̂i −

�

j∈Ni

x̂j

�
→ 0 (8.2)

Where the set Ni is the set of modes j connected to mode i. For a cluster state to work

perfectly, the variances need to be 0. But computations can still be performed with less

than perfect variances ( (Menicucci 06)). It entails a decrease in computation accuracy

(which can be compensated by using more resources and specific error correcting algo-

rithms).

We then perform classical detections on the different modes of the state to perform the

computation. These detections can be homodyne, and in this case the computation spec-

ifies the local oscillator phases. Alternatively, detections can be more complex, involving

for example avalanche photodiodes. We leave these last detections out of the scope of this

work, and focus on protocols which can be implemented solely with homodyne detections.

1 2 3 4

∆2(p̂1 − x̂2) → 0

∆2(p̂4 − x̂3) → 0∆2(p̂2 − x̂1 − x̂3) → 0

∆2(p̂3 − x̂2 − x̂4) → 0

Figure 8.6: Representation of a 4-mode linear Cluster State, with the corresponding vari-
ance relations.

As presented in Fig. 3.3, our aim is to build the multimode cluster state between

copropagating modes, instead of separate beams. To do so, we first generate a beam

carrying multiple squeezed modes. This can be achieved using multiple bow-tie squeezers

and phase plates, as presented in 4.3.1. Using locking loops, we control the relative phases

of the superposed modes. We then use a UPMC to manipulate these modes in order to

build the desired entanglement relation. Finally we detect these modes using a multipixel

homodyne detection.

The physical operation we perform is controlled by the relative phases of the superposed

modes, by the unitary transform performed by the UPMC and finally by the orthogonal
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recombinations of the homodyne detection signals. Additionally, we can also shape the

phase of the local oscillator. We can decompose this process into a succession of matrix

product on the annihilation operators vector �̂a. We find:

�̂adet = O DLO UT UUPMC Dr
�̂aSQZ (8.3)

where �̂aSQZ are the annihilation operators in the modes of the OPAs. Dr is the diagonal

matrix which contains the relative phases of these modes and UUPMC is the unitary

matrix describing the action of the UPMC. Then, UT is a unitary transfer matrix. It is

the basis change matrix which converts the modes of the OPAs into pixel modes, which

are more adapted to the multipixel homodyne detection. In the pixel basis, the local

oscillator transverse phase profile is represented by a diagonal matrix DLO. Finally, O

is the orthogonal matrix describing the recombinations we perform on the output signals

from the multipixel homodyne detection. This decomposition is synthesized in Fig. 8.7.

Relative phases
of the squeezed
modes

UPMC Transform

Basis change
from the squeezed modes basis
to the pixel basis

Local oscillator
transverse phase

Data recombinations

−→̂
a det = O DLO UT UUPMC Dr

−→̂
a SQZ

Figure 8.7: Decomposition of the degrees of freedom of our spatial modes manipulation
and detection apparatus

The results of our multimode homodyne detection are the fluctuations of the amplitude

quadratures �̂xdet = �̂adet + �̂a†det.

From a theoretical point of view, as presented in 3.2.1, building a cluster states can

be achieved using as many independent squeezed modes as there are circles in the graph.

We then need to apply a unitary mixing UCS to these modes, which depends on the graph

we are building (the precise procedure to determine UCS for a given graph is given in

(Loock 07b)). Then, performing a computation requires the detection of the modes along

specified quadratures. These quadratures correspond to the local oscillator phase of the

147



corresponding homodyne detection. These phases can be represented by a diagonal matrix

DC that we apply on the mixed modes. As a result, in order to perform a computation,

we need to have:
�̂acomp = DCUCS

�̂aSQZ (8.4)

and measure the fluctuations of the amplitude quadratures �̂xcomp. Depending on the com-

putation we want to run on the cluster state, the matrix DC of the local oscillator phase

is different.

Comparing equations 8.3 and 8.4, we see that for any UCS and any DC , there is a set

of matrices UUPMC , Dr, DLO, O we can choose so that �̂xcomp = �̂xdet. For example, O = I,
DLO = DC , Dr = I and UUPMC = U−1

T UCS is always a solution. But since the use of the

UPMC adds losses, and DLO, Dr and O do not add any, it is preferable to limit the use

of UUPMC by using the degrees of freedom in DLO, Dr and O instead.

The last step of a cluster state computation is a correction on the last mode we need

to detect. This correction depends on all the previous detections’ results, and can be

implemented by the addition of a coherent amplitude and phase modulated state on

this last mode (Ukai 10). It is similar to the correction step in quantum teleportation

(Furusawa 98). Like in the teleportation case, we need our electronics to perform the cor-

rection significantly faster than our frequencies of interests. In our case, with our squeezing

frequencies between 2 and 5MHz, such a correction is clearly achievable using broadband

phase and amplitude modulators (such as the 4004-M and 4104-M, from New Focus).

In a multiple beam set-up, the correction is applied on the last beam by using a weakly

reflective mirror. This mirror lets most of the last beam through, but with a strong enough

correction beam, its weak reflection adds the desired correction. A similar scheme can be

implemented in our co-propagating set-up. Instead of separate beams, we have orthogonal

spatial modes. There is a specific spatial mode ul which corresponds to the mode on which

we need a correction. We use a weakly reflective mirror before the multipixel homodyne

detection, and a strong enough correction beam in the mode ul. The mirror introduces

a small amount of losses onto all the modes, but adds the desired correction in mode ul,

as presented in Fig. 8.8. Such a scheme is exactly equivalent to a multiple beam set-up

in which a small loss would be added before each homodyne detection. These losses can

be reduced by using extremely weakly reflective mirrors, with the corresponding intense

correction beam.

8.2.2 A four mode cluster state

Let us now present a practical application of this process. The goal is to build a 4 mode

linear cluster state, similar to the one presented in (Yukawa 08a) (which was built with

separate beams). For this cluster, which graph is presented in 8.6, the matrix UCS defined
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Figure 8.8: The cluster state computation is based on a succession of detections, and
a final correction onto the last mode. This final mode can then be used in other parts
of the system, or can be detected. In our case, it is detected using the same Multipixel
Homodyne Detection. The correction process is a translation of the last mode in the phase
space. This corresponds to the addition of a coherent field with the appropriate amplitude
and phase. The amplitude (X) and phase (P ) modulators are controlled by the results of
the Multipixel Homodyne Detection.

by:

UCS =





i√
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


(8.5)

transforms four independent amplitude squeezed modes into a set of entangled modes with

the variance relations specified by the graph 8.6.

We consider the case when we achieve the superposition of four squeezed beams using

a succession of bow-tie optical parametric amplifiers, as presented in 4.3.1. We found ex-

perimentally that each time a beam undergoes such a superposition, we need to take into

account additional losses introduced by the phase plate and the reflection on the cavity.

Considering that all the squeezed modes are generated using identical OPAs locked to

the same TEM00 we can use a set of binary phase plates similar to the ones presented in
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4.3.1 to achieve the superposition of the squeezed modes. The transfer matrix UT between

the squeezed modes and the pixel modes of the detection UT can take the simple form:

UT =
1√
4





1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




(8.6)

This simple form for UT neglects the fact that the homodyne detection may involve more

pixels, but could be expanded to include more modes and complete the basis. They are

not needed here. Thanks to the binary phase plates, UT is an orthogonal matrix: it does

not involve any phase change.

As presented in (Ukai 10), such a linear cluster state can be used to perform any

gaussian operation on an input quantum state. The desired operation is performed by

choosing the matrix DC ’s coefficients and the dependence of the classical correction on

the homodyne detection results. We do not focus here on the classical correction. We

evaluate the quality of our system on its ability to generate a cluster state with as low

variances
�
∆2p̂i −

�
j∈Ni

x̂j
�
as possible, and for which the detection of �̂xdet performs the

desired computation.

We find two very different cases. Consider first the case where we have:

DC1 =





1 0 0 0

0 i 0 0

0 0 1 0

0 0 0 i




(8.7)

This corresponds to measuring x̂1, p̂2, x̂3, and p̂4 simultaneously on the cluster state pre-

sented in 8.6. In this special case, we can find a matrix Dr which controls the relative

phases in the original mode superposition so that there is an orthogonal matrix O which

satisfy DC1UCS = OUTD. There is no need for a UPMC.

A second, more general case is when there is no combination of matrices Dr, DLO and

O which would avoid the use of a UPMC. It is for example the case when DC2 is the

identity matrix. In this case, finding the optimal combination of O and UUPMC remains

an open issue. As a rule of thumb, we found that apart from very specific transforms,

the nature of UUPMC does not matter much, and the overall efficiency α2
n of the UPMC

depends on the number of modes we manipulate and the number of reflections we use.

As a result, we can predict the performances of our system in these two kinds of com-

putations, for the two realistic set-ups ”Today” and ”Tomorrow”. We complete these two

models to account for the imperfect superposition: that each phase plate and reflection

introduces an additional 12% loss in the case of ”Today” and 1% loss in the case of ”Tomor-

150



row”. For the simple quantum computations, when there is no need for a UPMC, we find

that the ”Today” set-up yields a cluster state with all the variances
�
∆2p̂i −

�
j∈Ni

x̂j
�
at

least −1.8dB below the quantum noise level. The ”Tomorrow” set-up, on the other hand,

has them all at least −4.5dB below the quantum noise level. When there is a need for the

UPMC, Fig. 8.9 presents the maximum of the variances
�
∆2p̂i −

�
j∈Ni

x̂j
�
(compared

to the quantum noise level) as a function of the number of reflections on the deformable

mirror.
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Figure 8.9: Maximum variance of all four combinations
�
∆2p̂i −

�
j∈Ni

x̂j
�
compared to

their quantum noise limit, in dB, when the UPMC is needed to perform the computa-
tion. This worst variance is plotted as a function of the number of reflections allowed on
the deformable mirror, for two different set-ups: ”Today” in red, ”Tomorrow” in blue.
Comparing these values to the −1.8dB and −4.5dB (for ”Today” and ”Tomorrow”, re-
spectively) that we obtained for computations which do not involve the UPMC, we find
that using the UPMC should clearly be avoided whenever possible, but that when it is
necessary, a set-up of good quality ensures satisfying results.

As a conclusion, this second case study shows that the combination of a multimode

beams, a UPMC and a multipixel homodyne detection can clearly be a building block for

one-way quantum protocols, especially cluster states computations. It is a flexible option:

a simple reprogramming of the UPMC changes the protocol performed by the device. On

the other hand, efficient quantum computing with copropagating modes requires multiple

reflections in a UPMC. The quality of its constituents becomes crucial.
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Chapter 9

Conclusion

In this thesis, we presented the experimental implementation of a set of tools aimed at

manipulating and detecting the quantum state of complex spatial modes. These tools

corroborate our understanding of the spatial properties of quantum fields and give us the

ability to engineer and detect any Gaussian state carried by any mode or set of modes.

We first presented different methods to generate a beam carrying multiple squeezed

modes. We found that while degenerate OPAs were an attractive solution and could pro-

vide us with a beam carrying a few squeezed modes, building a fully degenerate OPA able

to generate a high number of copropagating squeezed modes remains a challenge. On the

other hand, a succession of single mode bow-tie OPAs and binary phase plates can be used

to superpose a multiple squeezed modes on a beam. While such a scheme requires more

resources than a degenerate OPA, which generates a multimode squeezed beam straight

away, we found that single mode bow-tie OPAs are simpler to build than the degenerate

OPA, and there is no theoretical limit on the number of modes we can superpose.

We can then use a UPMC, as we presented in 6.2.2, to turn this multimode squeezed

beam into the desired multimode Gaussian state. While a UPMC can in theory per-

form this transformation perfectly, practical considerations such as losses and resource

limitations obliged us to implement optimization algorithms to maximize the UPMC per-

formance under these practical constraints. We showed experimentally that the compu-

tational model satisfyingly predicts the behaviour of the UPMC, and that it can indeed

reshape at will the transverse shape of squeezed modes. The combination of a multimode

squeezed beam generation and a UPMC is a flexible method to generate any multimode

Gaussian state carried by copropagating modes.

In order to measure the outgoing multimode state, we designed and built a multipixel

homodyne detection. By simply replacing the bucket photodiodes of a conventional ho-

modyne detection by two photodiode arrays, and overcoming a few electronic challenges,

we created an homodyne detection which can measure the amplitude of multiple coprop-

agating modes simultaneously. The different linear recombinations of the multiple output

signals from the multipixel homodyne detection correspond to as many different modes,
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and we can set these linear recombinations to measure specific desired modes.

We presented in the concluding remarks two applications of these tools. The improve-

ment of the detection of small spatial fluctuations of a light field is a well-known application

of squeezing in higher order modes. Using the UPMC, we show that this improvement

can be brought in for the detection of any small fluctuations, whatever its shape.

A second application of these tools is quantum computation. Our ability to generate any

Gaussian state means we can build a cluster state, a fundamental resource for continuous

variable quantum computing.

Future work on the quantum properties of transverse modes could include the ex-

perimental implementation of these two applications. A demonstration of detection im-

provement in a real system, for example the movements of a biological specimen, thanks to

squeezing would bridge the gap between the quantum mechanical result and its application

outside of its field. Such a demonstration would be facilitated by our ability to reconfigure

the UPMC to adapt the squeezed mode to the complex, biological system. Another field

of study is quantum computation. At the moment, the simplicity of the cluster states ex-

perimental set-ups which use multiple beams makes them the preferred option. However,

the ability of multiple transverse modes to carry a very complex multimode state which

can reconfigured with a press of a button is a strongly appealing alternative.
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