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Abstract 

The use of non-classical states of light, such as squeezed states, have allowed the explo-

ration of ciuantum mechanical effects that had previously been the subject of speculation 

only. One of the more interesting aspects of quantum mechanics is when two objects 

become linked in a process known as quantum entanglement. This property has been the 

focus of much research due to the potential applications that are expected to emerge from 

entangled systems. 

This thesis focuses on the various spatial properties of continuous variable entangled 

systems, and on simplifying entanglement experiments for a given set of resources. 

We begin by reviewing the reciuired background quantum optics, and introducing the 

quantum optics tools that we will be using in the series of experiments. 

The rest of the thesis details the experiments performed and the implications of the 

results that were obtained. Firstly, the spatial entanglement experiment is presented. This 

experiment involved the observation of Einstein-Podolsky-Rosen entanglement for the po-

sition and momentum of two laser beams. The position and momentum observables for 

laser beams manifest themselves as the displacement and tilt of the beams, and entangle-

ment relies on the used of squeezed TEMio laser modes, mixed with a TEMqo reference 

mode. The result of the EPR measure for the system was found to be 0.62±0.03. 

The next section deals with a multimode entanglement experiment, where two spatial 

modes are entangled in a single beam of light. The experiment offers several simplifica-

tions upon more standard entanglement layouts, including the use of a single quadrant 

detector for the measurements, and a single squeezer that was used to produce two inde-

pendent squeezed spatial modes. The observed Inseparability of the system was found to 

be 0.79±0.02. 

Lastly, the effect of asymmetries in entangled systems was investigated. The possibility 

of changing the beamsplitter ratio in biased entanglement experiments in order to improve 

the measurements made was shown to be a useful approach in some circumstances. An 

experiment was performed, and showed that by changing the beamsplitter ratio, the value 

from the EPR criterion can be optimised, and in some cases can show entanglement when 

it would otherwise not be possible. 
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Chapter 1 

Introduction 

The concept of entanglement was originally conceived by Einstein, Podolsky, and Rosen, as 

a thought experiment to show the apparent contradictory nature of quantum mechanics. 

This thought {Gedanken) experiment was published in the 1935 paper "Can quantum-

mechanical description of physical reality be considered complete?" [1], and has since 

been termed EPR entanglement after the three authors. The criticism of quantum me-

chanics is twofold in the paper - in one case, entanglement would imply non-locality of 

quantum mechanics - in dramatic contrast to all the established physics at the time. If this 

were not true, the authors wrote, then quantum mechanics could not be complete without 

some extra unknown variables causing the system to act in the way it does. These criti-

cisms represent what are today considered to be the most interesting features of quantum 

mechanics, with the most promising potential applications. 

For some applications the noise characteristics inherent in quantum systems represent 

a fundamental limitation on measurements, but it is these same characteristics that allow 

some of the most interesting possibihties of modern physics. Potential applications have 

been suggested that range from quantum cryptography and (more distantly) quantum 

computers, to quantum teleportation. Thus entanglement is considered important from 

both the perspective of fundamental physics with the implication of non-locality, and as 

a potential tool in future quantum devices. 

For some years after its proposal, the existence or otherwise of entanglement was seen 

as a fairly academic distinction, since at that stage there were no measures that could 

be made that gave any insight into the problem. So it remained until 1964, when Bell 

published his famous inequalities, elevating entanglement from a philosophical novelty 

to a measurable effect. Violations of Bell's inequalities were measured by Clauser [2] 

and Aspect et. al. [3], showing that some of the predictions of quantum physics were 

indeed true. The ability to measure EPR entanglement was extended into the continuous 

variable regime in 1989 by Reid [4], using conditional variances to verify the entanglement 
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of the beams. There is now a vast array of hterature detaihng entanglement experiments 

that have been conducted with single mode continuous (cw) beams, with demonstrations 

of strong entanglement between the amplitude and phase quadratures of pairs of beams 

[5, 6, 7] or the polarisation of the beams [8, 9, 10]. 

This thesis extends upon this series of experiments in the continuous variable regime 

with an experiment in spatial entanglement, a multimode entanglement experiment, and 

an experiment on asymmetric entanglement. 

These three experiments each considers at least one of two central themes. These are: 

• the extension of cw quantum entanglement experiments to higher order spatial 

modes, and 

• the simplification or optimisation of entanglement experiments in order to deal with 

limited and imperfect resources. 

These themes are practical rather than fundamental in nature; while they don't re-

sult in applications directly, they are important building blocks for the future uses on 

continuous variable quantum optics and entanglement. 

Squeezed higher order spatial modes are used extensively in the experiments in this 

thesis, and both the efficient creation of these states and the subsequent entanglement of 

them have significance in wider research areas. 

Squeezed higher order spatial modes are applicable to metrology when precision mea-

surement of a transverse distance or displacement is required. Classical higher order 

spatial modes have long been used for the manipulation of micro-particles - a technique 

that is of interest for bio-sensing applications. The implementation of squeezed higher or-

der mode light in such a system is currently being investigated by quantum optics groups 

in Australia. 

Aside from the efficient creation of squeezed higher order spatial modes, this thesis 

also deals with the entanglement of these modes. The main motivation for using squeezed 

higher order spatial modes in entanglement experiments is the potential application of this 

type of entanglement to the emerging field of quantum communication. 

In many experiments on the development of quantum communication tools, there has 

been a tendency towards the expansion of entangled systems to include extra channels [11, 

12], resulting in multipartite entanglement. The reason for this expansion is the large pay-

off that accompanies the extra complexity - with more channels, the potential apphcations 



of the entangled system increase greatly, with an improvement in the information capacity 

of the beams. 

The tendency in continuous beam quantum optics has been to extend the entanglement 

to spatially separated channels, each in the fundamental spatial mode. The quantum re-

sources required for such a setup increase dramatically as the number of channels increases, 

with extra squeezers, detectors, and mixing devices. Here an alternative is presented where 

the higher order spatial modes are instead used as the extra channels, with an in principle 

experiment entangling two spatial modes, with an accompanying decrease in the required 

resources. The argument in favour of simplifying quantum resources for communication 

purposes only becomes more compelling when one considers the broader research environ-

ment, which includes active areas such as optical memories with retrieval on demand [13] 

and systems for imposing delays on EPR entangled beams [14]. 

The asymmetric entanglement experiment, also, requires only one squeezer to operate, 

reducing the resources required. The operation of a biased entanglement system tradition-

ally has a higher requirement on the squeezer - it must not have a loss greater than 33% in 

order for EPR entanglement to be achieved, whereas in a two-squeezer setup a loss of up 

to 50% can be tolerated. This hmitation was explored, and by optimising the system for 

the level of loss present, it was found that EPR entanglement could in fact be measured 

for higher losses. This experiment again improves the ability to create entangled systems 

using limited resources. 

The layout of the rest of this thesis is as follows. 

Chapter 2 introduces the existence of quantum uncertainty, and the use of linearised 

quadrature operators for measuring the uncertainty for light fields. Basic tools that are 

needed for many quantum optics experiments are introduced, such as beamsplitters, opti-

cal cavities, and light detection techniques. 

Chapter 3 discusses the use of nonlinearities in materials to induce squeezing as a 

method for manipulating the noise of a light field. Quantum entanglement is then intro-

duced, with a description of different criteria of continuous variable entanglement. 

Chapter 4 moves on to the experimental section of the thesis. It details the spatial 

entanglement experiment, where the position and momentum of laser beams are entangled. 

In the spirit of the original Gedanken experiment, the witness used for this experiment is 

EPR entanglement. 

Chapter 5 moves on to the multimode entanglement experiment. This experiment 
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sees entanglement produced and measured within a single laser beam, using two different 

spatial modes of the beam. 

Chapter 6 contains the asymmetric entanglement experiment, which explores the opti-

misation of biased entanglement for losses that occur in different parts of the entanglement 

system. Theoretical predictions are made for the ideal beamsplitter ratio that is required to 

compensate for the losses in the entanglement system, in some cases allowing the measure-

ment of EPR entanglement when it otherwise wouldn't be measurable. The experimental 

results are also compared to the theoretical predictions. The method of optimisation can 

also be applied to conventional (non-biased) entanglement systems. 

Chapter 7 contains tlie concluding comments for entanglement, and the future possible 

extension of the ideas discussed within this thesis. 



Chapter 2 

Theoretical Quantum Optics and 

Optics Tools 

2.1 Introduction 

Here we introduce the basic background for general quantum optics experiments, with 

both experimental and theoretical sections. The existence of quantum noise and various 

quantum states of light are introduced. The linearised model is used to describe the 

behaviour of experimental components that are based on beamsplitters, such as homodyne 

detection setups. Optical cavities and the locking of these cavities is also discussed. 

2.2 Quantum Uncertainty 

The Heisenberg Uncertainty Principle [15] is one of the fundamental underlying concepts 

of quantum mechanics. Many quantum optics experiments operate in the manipulation 

of this limit, to investigate the boundaries of what can be detected. 

For a pair of Hermitian operators with the commutation relation: 

[A,B] = C (2.1) 

then if ^ and B correspond to observable quantities, the corresponding uncertainty relation 

is given by: 

/ I 
- ( C ) (2.2) 

\2t 

where A'^X refers to the variance of the measurement X. The variance is defined as: 

V = A^X = {{X^)-{Xf). (2.3) 



Theoretical Quantum Optics and Optics Tools 

The noise can also be given in terms of the standard deviation, a, which is the square root 

of the variance. 

In order to explore the quantum limits of measurements, we must first have a set of 

variables for which the uncertainty principle applies; that is, we need a pair of operators 

that don't commute. The most common examples used for the inherent uncertainty in 

physical systems are the position and momentum operators, which have the uncertainty 

relation: 

A2xA2p> Q ) ' . (2.4) 

Another useful pair of operators more relevant to optics are the creation and annihilation 

operators of the electromagnetic field, a^ and a, which have the commutation relation 

[a, a)\ = 1. Note that since the creation and annihilation operators are not Hermitian, the 

Heisenberg Uncertainty Principle does not apply in this case. 

2.3 Operators and Quadratures 

For optical systems, states of light can be understood and expressed using the photon 

creation and annihilation operators, a^ and a. These are ladder operators for a harmonic 

oscillator, so starting with any quantum state of light, and in particular the ground state 

|0), we can arrive at all higher number states by the successive application of the creation 

operator. 

The Hamiltonian, and thus the energy, of a single mode optical field in a linear medium 

is identical to that of the harmonic oscillator, and is given by [16]: 

H = (2.5) 

A single mode field, with annihilation and creation operators d and a^, can also be 

described in terms of a quadrature operator: 

X ' = ae-^' + a te '^ (2.6) 

If we look at the operator obtained when 0 = 0, we arrive at what we define to be the 

amphtude quadrature: 

X+ = a + at (2.7) 
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and when 0 = 7r/2 we obtain the phase quadrature: 

X-=-i{a-a^). (2.8) 

The advantage of the quadrature operators over the ladder operators (d and a)) is that 

they are Hermitian, and thus have real eigenvalues, leading to theoretical results that are 

measurable in experiments. 

The commutation relations for these operators are given by: 

a, â  = 1 

= 2i. (2.9) 

There are many states of light that can be described, ranging from tools that are 

solely for conceptual purposes to working mathematical descriptions of laser beams. These 

states will be discussed later, but for the moment we will stay with a general field with 

annihilation and creation operators a and d ,̂ which for simphcity will from here on be 

written without the hats that indicate they are operators. 

The field is subject to uncertainty relations, so will always have some noise present in 

the system, and it is this noise on the field that we wish to be able to observe here. In 

order to understand physical processes, the existence of an analytic solution to a problem 

is a great advantage, and can give a useful insight into the system. When using the 

boson creation and annihilation operators, analytic results can be obtained for complicated 

systems by using suitable approximations on the operators. 

2.4 Linearised Operators 

For most experimental applications, the analytic results obtained from the linearised model 

[17] can be used. Here we break up the annihilation operator a, and the creation operator 

a\ into the expectation value for the operator, a, and a fluctuation term, 8a. 

a{t) = a + 5a 

a^{t) = a*+6al (2.10) 

where we have the expectation values for the two operators, a = (a) and a* = (a^), and 

6a and Sa^ are the quantum fluctuations, so (Sa) = {5a^) = 0. In quantum optics, it is the 
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fluctuations on the different states that are of particular interest, so it is these fluctuations 

that we must measure. Unless otherwise specified, the operator is a function of time for 

the rest of this thesis. 

The power of the field is proportional to the number operator n = a^a. The number 

operator gives the total number of photons in the field, which is proportional to the power 

that can be measured using a normal photodetector. 

a^a = (Q* + + (5a) 

= a*a + a*Sa + aSa'* + Sa'^Sa. (2-11) 

If we take a as real and assume {be?) a, then we can eliminate the negligible term that 

corresponds to the product of two small fluctuations, and we arrive at: 

a^a w a^ + a{da + = a^ + a(SX+). (2.12) 

The quantum noise of the amplitude quadrature can then be seen via the power fluctua-

tions that occur on a photodetector, with a variance 

V„ « ((a^ + aSX+)^} - {a^ + aSX+f 

- (2.13) 

where is the variance of the amplitude quadrature of the beam. 

The variance of the phase quadrature ( y ~ ) is not accessible by simply measuring the 

field directly with a photodetector. In order to perform many quantum optics experiments, 

we need to be able to measure both of the non-commuting operator pairs, and to be able 

to mix different fields together. Both of these tasks can be performed using the process of 

interference. 

2.5 Beamsplitters 

A standard beamsplitter consists of a thin layer of dielectric film or metal supported by 

a piece of glass, with the metal deposited to a thickness at which it reflects half of the 

incident photons and transmits the other half. 

Figure 2.1 shows two input beams, a and 6, interfering on a beamsplitter of power 

transmission t, and forming two outputs c and d. The beams are interfered with a relative 



§2.6 Detection 

Figure 2.1: A beamsplitter witli two inputs a and b mixed with a phase difference 4> to produce 
two outputs c and d. 

phase difference of (f). The outputs can then be described as: 

d = (2.14) 

where 0c and are the rotations required to make the expectation values (c) and (d) 

real for the two resulting beams; that is, we are setting the amplitude quadrature to 

correspond to the intensity of the field. Note that this is not strictly necessary, and we 

can also arbitrarily set 9c and 9d to zero, and the best approach often depends on the 

experiment being described. 

Models of beamsplitters are useful for several reasons. Firstly, beamsplitters are used 

extensively in our experiments, both as a central component of the experiment, and in 

the detection systems. In addition to this, the equations that are used to describe the 

behaviour of hght at a beamsplitter are also useful for describing other experimental 

devices used for mixing modes together, and for describing losses that are encountered by 

the field. 

2,6 Detection 

Here we are interested in detecting both quadratures of a beam of light. The basic tool 

for this is the photodetector, but the details of how it is used can vary. 
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2.6.1 Simple detect ion 

Simple detection has just one photodetector measuring a beam's power. The current 

induced is proport ional to the number operator. The current has two components: a fluc-

tuat ing term and a constant term, and on the detector these correspond to the al ternat ing 

current (AC) ou tpu t or the direct current (DC) output . 

n = a^a = + 
DC AC 

(2.15) 

While easy to perform, such a measurement is insufficient for many quan tum optics exper-

iments since it is limited to measuring just one quadrature . It is also difficult to normalise 

the measurements taken if different noise levels for different beams are to be compared. 

2.6.2 Balanced h o m o d y n e detect ion 

a) 
a 

b) 

Figure 2.2: Common detector setups: a) simple detection, and b) balanced homodyne detection. 

We have already looked at beamspht ters and simple photodetectors. One very useful 

scheme for achieving measurements on any quadra ture combines these two tools, and is 

known as balanced homodyne detection. With this method, the beam of interest is mixed 
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with another beam on a beamspUtter, and each of the two outputs are measured with a 

photodetector. This is shown in Figure 2.2. 

For a 50:50 beamsphtter, the outputs can be described as: 

d = (a - be"^y (2.16) 

A detector on the output beam c will measure: 

c tc= + + (2.17) 

If we apply the hnearisation technicjue, and eliminate the negligible terms, this becomes: 

ctc = i + /32 + 2a(3 cos (p + f3 (<56 + <56+) + a ((5a + (5at) + q (jfee'"^ + Sb^e'"^^ 

Normally, we make one beam (here b) much brighter than the beam that we actually 

want to observe. This bright beam is then called the local oscillator. The approximation 

(3 a means that we can omit the terms that are not at least of order one in (3, simplifying 

the expression somewhat. 

t 1 ctc « - + 2aP cos 0 + (Sb + + (3 {Sae-'"^ + Ja+e"^) 

= + a(3 cos c f > + ]^(35Xt- (2-19) 

DC AC 

A similar expression can be found for the second output beam: 

d)d « i /32 - a/? cos 0 + - \p5Xt. 

If we than look at the difference of these two currents: 

(2.20) 

c'^c- d}dK2al3 cos 4>+ 138Xf . (2.21) 

DC AC 

The AC term then can measure the noise on any quadrature component of the field. 
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and which quadrature is measured depends on the relative phase difference 0 between the 

two beams incident on the beamsplitter. In the meantime, if the field of interest has some 

small amplitude a , then this will result in a slight modulation of the DC component of 

the photodetector's response as the phase difference changes, so that there is verification 

of which quadrature is being measured. 

2.7 States of light 

Now that we have looked at how noise on beams of light can be measured, we will take a 

brief look at different states of light. 

2.7.1 Vacuum state 

A vacuum state describes a mode that contains no photons, yet still contains fluctuations, 

as expected with quantum mechanics. It is usually written as |0), and is a symmetric 

minimum uncertainty state, so that: 

A 2 X + = A ^ X - = 1. (2.22) 

Since this state contains no photons, applying the number operator gives a '̂a|0) = 0, and 

the energy of the system, as found by the Hamiltonian in Equation 2.5, is non-zero, and 

given by f . 

A knowledge of the vac\mm state allows us, through the creation operator, to describe 

many other states of light useful in cjuantum optics. It also provides a method for describ-

ing the way light interacts with one of the fundamental optics tools, the beamsplitter. A 

ball-on-stick diagram of a vacuum state is shown in Figure 2.3a. Ball-on-stick diagrams 

have the amplitude and phase quadratures for the axes, and show the coherent amplitude 

with the length of the 'stick' and the amount of noise is represented with the 'ball". The 

width of the ball for any given axis projection is related to the standard deviation for the 

state. 
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a) b) 

c) X d) 

+ 

A 

u 

Figure 2.3: Ball-on-stick representations of various quantum states of light. The grey area 
represents the uncertainty distribution for the different states, a) the vacuum state, b) vacuum 
squeezing, c) a coherent state, and d) ampHtude squeezing. 

2.7.2 Number state 

Given some state of light with a certain number of photons, \n), the state with one more 

photon can be found by the apphcation of the creation operator, as follows. 

a^\n) = \/n + l\n + 1). (2.23) 

Successive application of this operator then allows any number state (also termed Fock 

state) to be described in terms of some state with a lower number of photons. Since we 

already have the vacuum state |0), we can then describe any number state using: 

n) = |0 ) . (2.24) 
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2.7.3 Coherent state 

A linear combination of the number states described above with the added condition of a 

Poissonian distribution of photons results in what is known as a coherent state of light. A 

coherent state can be described as: 

|Q) = eWV2' E ^ l " ) - (2.25) 
„ Vnl 

A coherent state is a minimum uncertainty state with the same uncertainty in the 

amphtude and phase quadratures. This is best described in a 'ball-on-stick' diagram, as 

shown in Figure 2.3c. The output of a laser approximates a coherent state, making this 

mathematical description very useful in terms of modelling and predicting experiments. 

A coherent state can be obtained from a vacuum state by the application of the dis-

placement operator. 

D ( a ) = (2.26) 

Applying this to the the vacuum state then gives us: 

D(a)|0) = |Q). (2.27) 

2.7.4 Squeezed state 

The coherent state has amplitude and phase quadrature uncertainties given by A X + = 

AX" = 1. This level of noise is a fimdamental limit on laser beams and in known as the 

Quantum Noise Limit, or QNL. If certain quantum processes act upon this coherent state, 

the uncertainty in one quadrature can be decreased below this limit. This decrease in 

uncertainty on one quadrature comes at the expense of the other quadrature, as required 

by the Heisenberg Uncertainty Principle. A state with uncertainty lower than the quantum 

limit in one quadrature is known as squeezed light, due to the new shape that replaces 

the circle in the Figure 2.3. 

The squeezed state can be obtained by applying the squeezing operator to a vacuum 

or coherent state. 
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S ^ (2.28) 

where r is known as the squeezing parameter. The squeezing parameter r is related to 

several observable quantities on the beam, such as the uncertainty on the amplitude and 

phase quadratures, and the average photon number: 

AX+ = e"'' 

A X - = e'-

(n) = sinh^ r. (2.29) 

2.8 Spatial modes 

2.8 .1 Orig ins 

In general, quantum optics experiments operate using the fundamental Gaussian spatial 

transverse mode for spherical resonators, TEMqq. Though it can introduce extra com-

plications, there is no reason why the experiments cannot take advantage of the different 

spatial modes that can be produced. Higher order spatial modes provide extra degrees of 

freedom for information to be transmitted, as well as providing access to extra information 

about the fundamental mode. 

Any general image can be described in terms of a combination of a complete set of 

modes, such as the Hermite-Gauss modes. 

The Hermite Gauss modes can be described as: 

TEM„„(a: ,y,z) = 
w(z) 

V2x\ ^ (V2y 
nr, w{z) w{z) 

g e g i < P G ( z ) ( 2 . 3 0 ) 
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where we have introduced 

Cnm 

ZR 

R{z) 

w{z) 

<1>G{Z) 

1 

-Kwl 

= z + 
ZR 

= Wo\ 
\ZR 

- ( n + m + l)taii — 
\ZR) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

where A is the wavelength, WQ is the beam waist, W is the beam width, ZR is the Rayleigh 

range for the beam, R{z) is the radius of curvature, and (pciz) is the Gouy phase shift. A 

few examples of spatial modes can be seen in Figure 2.4. 

Figure 2.4: The intensity distribution for several of the lower order T E M modes. 

It is possible to create a beam that contains squeezed hght in several spatial modes 

by either creating the different squeezed modes and then combining them, or by using 

a squeezer that is able operate at several modes at the same time. The operation of a 

squeezer that transmits several modes simultaneously can be technically very challenging, 

depending on the method of squeezing being used. 

2.8.2 Gouy phase shift 

A collimated TEMqo mode travels a slightly different path length to a TEMqo mode that 

travels through a focus, and this results in a relative phase shift between the focussed and 

collimated cases. A higher order spatial mode propagating through the same system as 
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the focussed TEMqo mode will again travel a slightly different path length to the focussed 

TEMoo mode, since the average mode size is slightly larger, resulting in an additional 

phase shift. This is known as the Gouy phase shift [18], as shown in Equation 2.30, and 

can be applied to a general Gaussian mode TEMm„, as described by: 

(^G (m, n,2) = -(m + n+ 1) tan"^ f — ^ (2.36) 

where 2 is the position of interest, relative to the beam waist, and zr is the Rayleigh range 

for the beam. 

2.9 Optical cavities 

An optical cavity, in its simplest form, consists of two partially reflecting mirrors, or 

beamsplitters, positioned in such a way that light can build up in between the two mirrors. 

When there is constructive interference within the cavity, it is on resonance, and there is 

a maximum in the transmission of the cavity. If the cavity is not on resonance, most of 

the light will be reflected by the first mirror. Adding an extra mirror forms a ring cavity, 

shown in Figure 2.5, allowing the various input and output fields to be visualised more 

easily. 

Here the field inside the cavity is labeled a, and the main input and outpvit fields are 

Atn and Aout • There is some coupling rate between the interior and exterior fields at each 

of the beamsplitters, and here k^ is the coupling rate through the input mirror, ki is the 

coupling rate for the loss inside the cavity, and K-out is the coupling rate for the output 

mirror. The vacuum fields are prefaced with a 6, as seen with the vacuum field coupled 

in at the output coupler SA^, or the vacuum field coupled in by intra-cavity losses SAi. 

The field reflected from the cavity, Aj-ef, can be either a vacuum output or a coherent 

field, depending on the transmission of the cavity mirrors. A calculation of (a^a) gives the 

number of photons contained in the cavity, whereas a calculation of (A'^A), since it is a 

travelling wave, gives the number of photons per second, k, the coupling rate, has units 

s - i . 

The equation of motion for an empty cavity is given by: 

tt = KU + y/^K^AiYi 

+ V^iSAi + y/'̂ i'̂ cmt̂ Aiy (2.37) 

where k is the sum of all three coupling rates. This equation is valid for a non-detuned 
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Figure 2 .5: A ring cavity with interior lield a, with various modes couphng in and out of the 
cavity. The loss of tlie cavity is modelled by the lower mirror with coupling rate fc/. 

cavity, that is, a cavity where the frequency of the input field is equal to the cavity 

frequency. If the Fourier transform of this is taken to move us into the frequency domain, 

the boundary conditions for the input and output fields are given by [19]: 

•^ref — V^^inO. — Am 

Aout = V'^Kouta - SA^ (2.38) 

and the transmitted field of the cavity can then be calculated to be: 

2 _ <^out<^inAin + (2KO„( - K - iio) SA^, + 2y/KoutKldAi ^out — ^ ; (2.39) 
ILV + K ^ ' 

where uj is the frequency shift from the optical carrier, and O indicates that we are referring 

to a function of frequency d(io) rather than a function of time 0{t). Similarly, the reflected 

field can be found to be: 

~ _ - K- iuj)Ain + ^/KtnKoutSA^ + 
^ref ^ ; . (2.40) 

ILO + K ^ ' 

Given that we normally measure the quadrature fluctuations, it is convenient to write 
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the output in terms of these operators. 

2y/KoutKtnX^ + (2Kout - K - iuj) SX^ + 2y/KoutKl6Xf 
^fut - iuj + K 

(2.41) 

From this equation we can then obtain the variance of the field at different sideband fre-

quencies, allowing us to see the noise properties so central to quantum optics experiments. 

y L = 1 + 
- 1) 

+ K^ 
(2.42) 

Figure 2 .6 : The output variance for a frequency a; of a cavity for a laser beam that originally has 
a variance of 5. The coupling parameters used are = 0.5, = 0.5 and k; = 0. The variance 
drops to QNL for high frequencies. 

The output variance is plotted for different sideband frequencies in Figure 2.6. The 

variance is initially 5, but after transmission through the cavity the variance decreases as uj 

moves away from zero. In this case, the initial variance of 5 occurs for both quadratures, 

and the output variance is the identical for both quadratures. This filtering effect is 

characteristic of optical cavities and is a very useful effect, since our experiments usually 

aim to measure the amount of noise in the system, and excess classical noise can obscure 

the effects being investigated. For more details on cavities and their effects on beams of 

light, see [20]. 

If we look at the intensity of the reflected field shown in Equation 2.40 and ignore the 

noise terms by finding A^^ ĵA^ef and disregarding the 5 terms, we get the classical reflected 

power. 

- _ - nf + -

(2.43) 
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Often the cavity is required to transmit as much of the hglit as possible in order to be used 

in other parts of the experiment. When the reflected intensity is minimised, then more 

of the intensity is travelling through the cavity, as is required. If we look at the carrier 

frequency, this occurs when Kin = î out + a condition that results in an impedence 

matched cavity. 

There are various parameters for resonators that are very useful experimentally for the 

design and operation of a cavity. The finesse is a parameter that gives a comparison of 

the energy density within the cavity to the energy density without the cavity. It can be 

found to be [21]: 

7rri/2 
(2.44) 

1 - r 

where r is the round trip attenuation factor, given by the fraction of the amplitude of a 

wave that remains in the cavity after a round trip. 

The output power for two different finesse cavities is shown in Figure 2.7 as the cavity 

length is changed. 

The free spectral range { V F S R ) of a cavity is the inverse of the round trip time for 

that cavity. For a cavity with rovuid trip length L and refractive index n, the free spectral 

range is then given by: 

VFSR = (2.45) 
nL 

In Figure 2.7b, the cavity length, and hence the cavity frequency, was changed while 

the laser frequency was kept constant. Similarly, if the cavity length is kept constant and 

the laser frequency is changed, there will be resonance peaks, with periods of very low 

transmission in between. The parameter used to quantify the frequencies over which the 

cavity will transmit is the cavity linewidth, which can be found to be: 

(2.46) 

In order to have a stable, high finesse cavity there is usually some focussing of the field 

inside the cavity. While cavities are usually operated using a TEMqo field, they can instead 

be set to transmit a higher order spatial mode. If we consider two different spatial modes 

travelling through a cavity, it is clear that the higher order mode will undergo a relative 
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Figure 2.7: The output power of the cavity as the length is scanned for different finesses, a) 
p = 0.1, giving a finesse of 2.4, and b ) p = 0.95, giving a finesse of 59.6. 

phase shift as it is focused and defocused, as seen in the expression for the Goiiy phase 

shift in Equation 2.36. In order to achieve resonance, the extra phase shift imparted onto 

the higher order mode must be compensated for, and this is done by shghtly adjusting the 

length of the cavity. For this reason, a cavity will generally not be resonant for different 

spatial modes at the same time^. 

If a beam containing several spatial modes is aligned into the cavity, the cavity's length 

can be set to transmit one of these modes. A single spatial mode beam that is slightly 

'There are exceptions to this, such as the transmission of both T E M „ „ and TEM,n„ for a cavity that 
is rotationally symmetric about the beam axis. Another exception is the confocal cavity design, which is 
able to transmit several spatial modes. 
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tilted from its ideal alignment into the cavity is identical to having several spatial modes 

in a well-aligned beam, since any arbitrary shape can be reduced to its Hermite-Gauss 

components. These components can be seen as the cavity length is changed, as shown in 

Figure 2.8, where the transmission intensity of a misaligned TEMqo mode is used. 

Figure 2.8: A misaligned cavity being scanned shows several peaks. Here the mode corresponding 
to each peak is labeled. 

As the cavity length is scanned, several different peaks appear, corresponding to the 

resonance of the different spatial modes. If the mode is originally a perfect eigenmode of 

the cavity, and it is aligned and mode-matched to the cavity precisely, then there is only 

one transmission peak. 

2.9.1 Cavity Locking 

In order to have an operating optical cavity, there must be constructive interference for 

the field inside the cavity. Constructive interference occurs when the optical path length 

of the cavity is nA, or an integer number of wavelengths. The length of the cavity must 

then be controlled to ensure that constructive interference is maintained, allowing constant 

transmission of the light through the cavity. For cavities with highly reflective mirrors, 

and therefore a high finesse, any small deviation from one of the cavity resonance peaks 

will result in no transmission, as seen in Figure 2.7. For this reason, cavity locking systems 

are in place in many optics experiments. The locking system makes some measurement 

on the system, and produces a feedback signal based on this measurement. The feedback 

signal then goes to an actuator that is built in to the cavity^ that then modulates the 

cavity length as required. 

^The feedback can also control an actuator inside the laser, to adjust the laser frequency to match the 
cavity frequency. 
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Since the degree of control required is typically of the order of nanometres, slight 

disturbances such as vibrations or even air currents can affect the path length and stop 

the cavity operating. Cavities are thus made as mechanically stable as possible - with a 

heavy base and covered with a protective casing. 

The actuator most commonly used is a piezoelectric device, where the shape of the 

material changes with the voltage that is applied across it. The piezoelectric material used 

for the actuators here is PZT (lead zirconate titanate), and it is on this material that one 

of the cavity mirrors is mounted. 

There are several types of locking system used in this thesis. One method that is used 

in all of the experiments in this thesis is termed Pound-Drever-Hall (PDH) locking, and 

this will be outlined here. Some of the less ubiquitous locking methods will be introduced 

as they arise in the experiments. 

PDH locking is well established as a highly effective method of cavity stabihsation 

[22]. The general setup for a PDH system is shown in Figure 2.9. Before the cavity is 

encountered, the laser beam is first phase modulated using an electro-optic modulator, or 

EOM. 

A modulated signal has a large peak at the carrier frequency fi, which in this case is the 

optical frequency, and two smaller sidebands above and below this. The higher sideband 

occurs at Q + QAf, where QM is the modulation frequency, and the lower sideband occurs 

at fi - flM- These sidebands rotate in time with the frequency of the applied modulation, 

changing from being real (aligning with the carrier) to being imaginary, to being negative 

with respect to the carrier. When the sideband at 0 + f l ^ aligns with the carrier signal, 

the angle of the corresponding lower sideband indicates the form of modulation present. 

If the second sideband is also positive, then the beam is amplitude modulated at CIM, 

as shown in Figure 2.10a. If the second sideband is negative, then the beam is phase 

modulated at QM, as seen in Figure 2.10b. For a signal where the second sideband is 

partly imaginary, there is a combination of amphtude and phase modulation, shown in 

Figure 2.10c. The value of the parameter 0 shown indicates the amount of phase and 

amplitude modulation. 

For PDH locking, we first want a phase modulated beam, and the signal must be 

detected on either the transmitted or the reflected beam - typically the reflected beam since 

this will not be used for other parts of the experiment. The modulation frequency can be 

either inside or outside the cavity linewidth with the same end result. The measurement 
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AC signal mixer 

Figure 2 .9: A locking system for a keeping a triangular cavity on resonance. The beam is phase 
modulated before being sent into a cavity. The reflected beam is detected and mixed with the 
signal used for the phase modulation, producing an error signal (ES), that then changes the length 
of the cavity. 

from the reflected beam is then mixed with the same modulation that is fed into the EOM, 

and the resultant signal is then the feedback, or error signal. 

For a high finesse cavity that is on resonance, the carrier beam will largely be transmit-

ted through the cavity, and the sidebands and some portion of the carrier will be reflected. 

If the cavity starts to move off resonance, the reflected component of the carrier field will 

undergo a relative phase shift ff, as shown in Figure 2.11, and what was before perfect 

phase modulation will be mixed with amplitude modulation. The sign of the phase shift 

depends on the direction of the drift off resonance for the cavity. 

The reflected light then contains information about how far from resonance the cavity 

is, and in whether the cavity needs to be made longer or shorter. 

The AC component of the reflection is given by: 

AM ss sin riAft sin 0. (2.47) 
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Figure 2.10: The sideband picture can be used to describe a) amplitude modulation, b) frequency 
modulation, and c) a combination of both amplitude and frequency modulation. Qm and Qm2 
are modulation frequencies that are used. 

This is then mixed with the original modulating signal, creating an error signal: 

ES w sin^ [ijifi sin 0 = i s in6 ' ( l - cos2flMt). (2.48) 

The signal can then be altered using some electronics - if we include a low-pass filter, the 

error signal no longer has the cos component. Looking only at small deviations from 

the resonance - small values of 0 - we have an error signal that is directly proportional to 

the correction that is required to the cavity length. 

The actuator then moves in the direction that brings 6 to zero, eliminating the ampli-

tude modulation and moving the cavity back to a resonance position. For larger values of 

6, the hnear relationship no longer holds. This reflects the limitation of correction possible 

for the locking system - if the length of the cavity changes too far from its ideal position, 

the error signal is no longer able to correct the path length. This highlights the importance 

of mechanical stability, to minimise the deviations that occur. 
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Figure 2.11: The phase and power for a beam that is reflected from a cavity. If the cavity 
frequency doesn't match the laser frequency, the reflected beam undergoes a phase shift. 

Control electronics 

The main device used in these experiments for the electronic control of the locking systems 

is a PID controller. The PID or proportional-integral-derivative controller is an important 

tool for noise suppression in the locking loop, and allows for locking systems of high 

stability to be achieved. 

The PID controller consists of three stages: 

• The proportional stage multiplies the error signal by a fixed function, to optimise 

the correction for fast changes in the cavity length; 

• The integral stage integrates the error signal over some time window, allowing the 

cavity control system to compensate for slow drifts that occur in the system; and 

• The derivative state returns a value based on the derivative of the error signal. This 

can allow for the system to predict near-future movements, and compensate for these 

as they occur. 

The use of a PID controller can improve the stability of some locking systems to a point 

where they can remain locked for many hours. 
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2 .9 .2 M o d e Cleaners 

The direct output of a laser is generally a reasonable approximation to a Gaussian TEMqo 

mode, but the frequency spectrum surrounding the main peak is marred by technical 

noise from the laser. This noise comes from the resonant relaxation oscillation of the 

laser, and noise from the laser's locking processes. Clearly, this is undesirable for an 

experiment where we require quantum noise limited beams. The easiest way to remove 

this excess noise, is by passing the noisy beam through a cavity, called a mode cleaning 

cavity (MCC), as seen in Figure 2.12. The effect of this is twofold - firstly, all cavities 

have a finite frequency window that will be transmitted, known as the cavity linewidth. 

Technical noise on the beam will be attenuated strongly at frequencies that fall outside 

of this linewidth, shown in Equation 2.46. Secondly, the beam profile is refined, and for 

a cavity with any astigmatism (such as a ring cavity) the polarization of the beam is 

limited to one direction, which is very important for mode-matching the beam later in the 

experiment. 

In order to limit the noise that is transmitted in the frequency spectrum, the MCC 

should have a low cavity hnewidth. Since the cavity linewidth is given by I^FSR/^, this 

can be achieved by lowering the free spectral range (achieved by increasing the length of 

the cavity), or increasing the finesse of the cavity by increasing the reflectivity of the input 

and output mirrors in the cavity. 

In reality, adjusting these parameters will at some stage introduce a penalty to the 

MCC's operation. Increasing the length eventually makes the cavity less stable, and also 

makes alignment of the cavity more difficult. Increasing the reflectivity of the mirrors 

makes any losses within the cavity more significant, as seen by increasing the and Kout 

in the cavity equations earlier, and limits the overall transmission of the cavity. Increasing 

the finesse also means that the energy density on each of the mirrors is higher, which 

means high quahty, clean mirrors are needed to avoid burning the surface. 

The MCCs used in this experiment have three mirrors - two flat mirrors, and one curved 

mirror. In order to achieve the best possible transmission through a cavity, the mode that 

is incident on the first cavity mirror must match the eigenmode of the cavity. The mode 

shape of the transmitted beam is also determined by this cavity eigenmode. For this 

reason, it is preferable for the cavity to not impart any astigmatism onto the transmitted 

beam. While a curved mirror in a ring cavity will always impart some astigmatism onto 

the beam, the curved mirror is placed such that the light strikes it with a small angle of 
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incidence to minimise the astigmatism, as seen in Figure 2.12. The reflectivity of the two 

top mirrors depends on the polarisation of light being used. The reflectivity is higher for 

s-polarised light - that is, light with a polarisation perpendicular to the plane of incidence, 

leading to a higher finesse cavity in this case. 

R.O.C = 1 m 

F igure 2.12: The triangular mode cleaning cavity used in this experiment. 

2.9.3 Mode Transfer and Combination 

Using several modes into an experiment requires new methods in the manipulation of the 

beams. Firstly, there is the creation of higher modes from the TEMQO mode we originally 

obtain from the laser. For the Hermite-Gauss basis, where circular symmetry is not 

required, we can tilt the input to the MCC in order to excite a higher order mode of the 

cavity. The cavity can then be set in length to the mode that is required - different spatial 

modes encounter different Gouy phase shifts inside the cavity, and so require shghtly 

different cavity lengths. The efficiency of such a mode conversion is limited to the overlap 

of the original beam used and the beam being produced, so a direct conversion results in 

a substantial loss of laser power. In order to minimize this loss, phase plates can be used 

before the MCC to produce an input mode that more closely approximates the required 

mode. A phase plate is a device that imparts a spatially dependent phase shift on the 

beam. For the conversion of TEMQO to TEMio, which is performed in experiments in this 

thesis, this is done with a 'flip-mode plate' [23], shown in Figure 2.13, placed in front 
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of the MCC. This plate gives an extra tt phase shift to one side of the TEMqo beam, 

flip-mode 

plate 

TEMn, 
flip-mode 

Figure 2.13: A flip mode plate, and the effect of this plate on a TEMqo mode shape. 

improving tlie overlap between the modes substantially more than a beam misalignment, 

and improving the mode conversion efficiency from 30% to nearly 70%. The rest of the 

light can be represented as other modes in the Hermite-Gauss basis, and these are not 

resonant in the cavity at the same time. The overlap of TEMjo with TEMqo can be seen 

in Figure 2.14. Included are the cases of simple overlap, overlap with a tilt, and overlap 

with a flip mode plate on the TEMqo mode. 

This concept of changing the mode shape to match a cavity can be extended to any 

mode required by using a spatial light modulator, or SLM. These interference devices can 

produce an arbitrary shape, to a rough approximation. 
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b) 

c) 

TEMioitihed) 

Figure 2.14: In order to efficiently use a cavity to transfer a mode, the input mode shape should 
be as close as possible to the required output mode shape, a) The overlap between TEMqo with 
a flip plate and TEMio mode, b) The overlap between TEMqo mode and TEMio mode, which 
across the profile ends up being zero, c) The overlap between TEMqo mode and TEMiq mode 
with a tilt between the two modes. 



Chapter 3 

Squeezing and Entanglement 

3.1 Introduction 

The two quantum optics concepts central to this thesis are those of squeezing and entan-

glement. Squeezing has become ubiquitous in quantiun optics experiments, and we will 

here discuss the requirements in order to produce such a state, and the effects of losses on 

squeezed modes once they are created. 

All three experiments included in this thesis involve novel entanglement setups for 

continuous variable systems. The production of such states is discussed, and different 

methods of witnessing entanglement, namely E P R entanglement and Inseparability, are 

presented. 

3.2 Nonlinearities 

In order to create a squeezed state of light from a classical coherent state we first require 

some form of nonlinearity in the system. Such a nonlinearity can come from processes such 

as four wave mixing, second harmonic generation, or, as is used here, parametric downcon-

version. Ultimately, in this process the nonlinearity comes from the electric polarisation 

in the material that is used. 

The electric polarisation is a measure of the density of the dipole moment within the 

material, and can be described mathematically in terms of the applied field E-. 

P = + + + (3.1) 

where x^"^ is the n*'' order electric susceptibility. As a general rule, decreases rapidly 

as n increases. For most dielectric materials, known as linear materials, the first order 

susceptibility is sufficient in describing the interaction of the electric field with the material. 

When an electromagnetic field is sent through a linear dielectric, the electrons surrounding 
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the atoms experience this effect, with the dipole moment oscillating at the frequency of the 

incident radiation field. The oscillating polarisation then emits photons in the frequency 

of the polarisation field. 

If the material is nonlinear, the polarisation of the material no longer changes in the 

same direct proportion to the applied field. If x̂ '̂ ^E'̂  is no longer negligible, then for a 

sinusoidal input field, E = ^osinf2i, there will be a component of the polarisation with 

a sin^flt dependence, that will oscillate at twice the frequency of the applied field. The 

oscillating polarisation then leads to the emission of the higher frequency photons as a 

result, in a process known as second harmonic generation, or frequency doubling. This 

process also works in reverse, where the stimulation of the material at the higher frequency 

results in the creation of photons at the lower frequency, and this is known as parametric 

down conversion. 

3.3 Optical Parametric Amplification 

In order to create a system where the nonlinear coupling occurs to a significant extent, 

there are two main requirements. These are: 

1) a nonlinear material - a material with a high value for or Note that 

"high" is used in a relative sense; even in materials with a high nonlinearity the nonlinear 

polarisation response is small compared to the linear polarisation response for typical 

laboratory pump powers. 

2) an input pump field of a sufficient intensity that is high enough to compensate 

for the weak higher order susceptibility. 

The requirement for nonlinear materials can be found in the form of nonlinear crystals 

or atomic ensembles. Nonlinear crystals are the medium of interest for this thesis, and 

there are several types that can be used, such as lithium niobate, and potassium titanyl 

phosphate (KTP). 

The input pump field must then travel through this crystal in order to induce the 

nonlinearity. Since the pump intensity inside the crystal is so important, there are several 

standard methods of increasing this intensity, such as focussing the beam at the centre 

of the crystal, or passing the pump field through the crystal multiple times. To produce 

squeezing using optical parametric amplification, these techniques are incorporated into 

the design of the optical parametric amplifier, or OPA. 

Second order nonlinear materials allow a coupling between an optical field at a funda-
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mental frequency and its second harmonic, at twice the frequency. The Hamiltonian for the 

this interaction, which governs both second harmonic generation and optical parametric 

amphfication, is given by [16]: 

H = hQia^a + hn2b^b + ^ (̂ â b̂ - a^b '̂j (3.2) 

for a fundamental field frequency of and a harmonic field frequency of f22, where e is 

the coupling strength between the two different frequencies, and depends on the value 

for the material, as well as the phase-matching and the mode overlap inside the crystal. 

Looking at the sections of this equation, we can see that it is made up of the Hamil-

tonian for the fundamental field hflia'^a, the Hamiltonian for the second harmonic field 

hQ2b^b, and the interaction term, describing the movement of photons between these two 

modes. It is the interaction term that describes parametric up-conversion and parametric 

down-conversion, and results in the change in the noise properties of the beam that is 

characteristic of squeezing. 

3.3.1 OPA Cavity Equations 

Using a model as shown in Figure 3.1, with the quantum Langevin equations, we can find 

the governing equations for the cavity, as in [24]. Here a is the fundamental mode and b 

is the harmonic mode, at twice the frequency of the fundamental mode. 

a ^ - K a a + e a ' ' b + + y / ^ A i (3.3) 

+ + (3.4) 

where ; is the couphng term for the field a or b, for the three different mirrors in 

the cavity, and Ka,b — î ln + ôut + • The mirrors used can have different transmis-

sion properties for the two different frequencies used, resulting in different values for the 

couphng terms. 

For OPAs, the harmonic field, h, is always much stronger than the fundamental field, 

a. We can then assume that b is constant, since the light coupled from 5 to a is much 

smaller than the light in the field b. That is, we are assuming that the pump field remains 

undepleted throughout the process. We also introduce a nonlinear gain term, g, that is 
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/ \ 
/ x 

\SBi 

Figure 3.1: A model for an OPA, with input and output coupling, and a loss term. The funda-
mental and harmonic fields are labeled as a and b. 

given by the product of the (constant) pump field b and the nouhnear interaction term e. 

These simplifications leave us with a new description for the cavity: 

d = -KaO + ga^ + v ^ C ^ m + + y/^Ai (3.5) 

If we look at the quadratures instead of the fields directly, we obtain: 

(3.6) 

(3.7) 

which can be solved to find: 

. _ (2Koui -iuj - K + g)6X+ + + l^Koutm^^t 

iu^ + K-g 

_ - iuJ - K - g)6X~ + + 2y/KcmtKlSXf 
SX out iij K -{- g 

(3.8) 
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where all K values now refer to the a field. 

The variance of the output field for the two quadratures can then be obtained. 

where rjesc is the escape efficiency for the cavity, and is given by and 77 is the trans-

mission on the beam after the cavity. 

3.3 .2 Nonlinear crystals 

The squeezer must have an input pump beam - an intense beam at twice the frequency 

of the end squeezed beam. It can also have a seed beam, a low intensity beam at the 

same frequency as the end squeezed beam, resulting in a squeezed beam with a coherent 

amphtude. The squeezer with the seed beam is known as an OPA, or optical parametric 

amplifier, whereas the same squeezer without the seed beam is known as an OPO, or optical 

parametric oscillator. A coherent amplitude on the squeezed beam has some advantages, 

such as ease of alignment, and locking at a later point, but can also be a potential source 

of noise on the squeezed beam. 

In order for efficient down conversion in the OPA, we require the phase matching 

condition to be met. This condition is essentially conservation of momentum for the three 

photons involved in the down conversion process. We require that: 

/Ci + fc2 = fc3 (3.11) 

where /cs is the wavevector of the photon in the harmonic field and and fcs are the 

wavevectors of the two photons created in the fundamental field. 

The phase matching condition can be achieved using the birefringence of nonlinear 

crystals, using what is termed with critical or non-critical methods. Noncritical phase 

matching occurs when the polarisation of one of the fields is aligned with the crystal axis. 

Critical phase matching, on the other hand, involves the adjustment of the angle of the 

linearly polarised light with respect to the crystal axis so that the effective refractive index 

for the harmonic and fundamental fields is suitable for phase matching. 

The OPA used in these experiments has a MgO doped LiNbOs crystal, which is non-

critically phase matched. The fields are of a Type I configuration - the photon in the 
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harmonic field is linearly polarised along one crystal axis, and the two photons created in 

the fundamental field have the orthogonal polarisation^ 

Since the refractive indices of the material depend on its temperature, the phase match-

ing can then be achieved by slight adjustments to this temperature. 

The Boyd-Kleinman factor [25] is a parameter that calculates the ideal size of the 

focus of the pump beam inside the crystal in order to obtain the highest possible level of 

squeezing. The ideal focus size is described by the focusing parameter, which is defined 

as: 

where I is the length of the crystal, A is the wavelength, and Wp is the ideal pump beam 

waist size in a vacuum. The optimal focusing parameter can be obtained by calculating 

the SHG field created in the nonlinear crystal for a given pump field. One first considers 

a series of thin slices of the crystal and the contribution from each of these slices to the 

second harmonic field. By integrating these contributions, the total SHG field is obtained, 

and the SHG efficiency can then be calculated as the focusing parameter is varied. For 

TEMoo —»TEMoo conversion, the optimum SHG efficiency occurs when ^ = 0.84. 

The seed beam, if one is used, should then ideally have a waist size Wg = \/2w 'p-

3.3.3 Loss on a Squeezed Beam 

All of the squeezed states in the experiments of this thesis are amplitude squeezed states, 

indicating an increase in order with time and hence a sub-Poissonian distribution of pho-

tons in the beam. A loss then corresponds to random photons being removed from the 

squeezed beam, decreasing the order and hence the degree of squeezing. 

Any loss on the beam can be modelled by a beamsplitter, previously discussed in 

Section 2.5. Starting with a beam X i , a loss of magnitude 1 - 7 ? can be modelled with a 

beamsplitter of transmission 77, and the vacuum mode that is coupled in then results in 

the a beam with new squeezing characteristics, X2, as seen in Figure 3.2. 

Note that the implication of this, for a system where the squeezing and antisqueezing 

^Type II phase matching has a photon of the harmonic field with one linear polarisation aligned with 
the crystal axis producing two photons - one of which has the same polarisation as the harmonic, and one 
orthogonal to this. 
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V 
V(X2) = ViX,)r,+ (l-r,) 

I 

Figure 3.2: A squeezed beam with a loss applied to it can be modelled as having an original 
variance, and V^, and having a vacuum mode introduced by way of a beamsplitter. 

can be measured accurately, without being compromised by excess noise or locks that 

aren't functioning correctly, is that the squeezing and antisqueezing on a beam, and 

, can also be written in terms of an original amount of squeezing Vq, and the total loss 

that has been experienced by the beam, I — rj. The original amount of antisqueezing is 

then and from the measured squeezing and antisqueezing values, the original sqvieezing 

and the total loss can be found as: 

fV+ - 1 
V- - 1 (3.13) 

F+ + V" - v+y- -1 
r/ = V-+ + V - - 2 • 

These equations assume that there is no additional classical noise on the squeezed beam. 

3.4 EPR and Inseparability 

Once a squeezed state has been produced, it can be used to perform sub quantum noise 

measurements directly, or it can be used as a component in a larger experiment. Here, we 

look at the use of squeezed sources to create entangled continuous variable states - states 

with two modes, where a measurement of one mode affects the state of the other mode. 

Such states result in correlations between two modes that surpass the correlations that 

can be measured in purely classical systems. In order to produce an entangled system, we 

require a superposition of two states, where at least one of these states has sub-quantum 

noise statistics. 
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One method for providing the superposition state involves mixing two beams on a 

beamsphtter, as detailed in Section 2.5. Indeed, many continuous variable entanglement 

setups can be pictured this way, even if it does not accurately reflect the physical setup. 

Figure 3.3: A standard entanglement setup, with two input beams 1 and 2 mixed using a 50:50 
beamsplitter with a 7r/2 phase shift, producing two output beams x and y. 

For the standard entanglement setup shown in Figure 3.3, with two input beams, 1 

and 2 mixed using a 50:50 beamsplitter with & it/2 phase shift, the output beams x and 

y can be described as: 

= \{±Xt + x+^ X-T x^) (3.15) 

= (3.16) 

as can be seen in Appendix A. 

In essence, continuous variable entanglement involves correlations between two (or 

more) modes, when measured on two conjugate observables. Note that in this context 

when the word 'mode' is used, it refers to independently propagating channels, and can 

include spatially separated modes, different spatial modes, different frequency modes, or 

orthogonal polarisations, as shown in Figure 3.4. Each of these systems of modes has two 

distinct parts - a signal can be imparted onto one mode without affecting the other. The 

correlations between the modes that are ultimately used to characterise the entanglement 

can be represented by plotting the measurements on each mode parametrically. The shape 

of the contours from the resulting distribution can then be used to determine the strength 
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of the correlations. 

a) 

b) 

c) 

d) p-polarised 

s-polarised 

Figure 3.4: There are several types of modes, or independent channels, that can be entangled. 
These include a) spatially separated modes, b) different spatial modes copropagating on one beam, 
c) different frequency modes, or d) orthogonal polarisation modes. 
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For two quantum noise limited beams that are combined on a beamsplitter, the result-

ing output beams, while classically identical, are uncorrelated at a quantum level. The 

instantaneous fluctuations that occur in such a system are represented in the traces in 

Figure 3.5a. Since these are uncorrelated, the combination of the two traces by addition 

or subtraction gives the same variance, as does any normalised linear combination of the 

two beams. If the values of the two measurements are plotted parametrically. this results 

in a circular distribution as seen in Figure 3.5b. Each point in this diagram represents one 

pair of data points, S^ and 5y, where the data were taken in the same integration time. If 

we then draw a hue showing the standard deviation a of the distribution for all possible 

angles, the resulting circle defines our quantum noise hmit for such a system^, as shown 

in Figure 3.5c. Because the input state has the same noise statistics independent of the 

quadrature (provided the input states are quantum noise limited), the distribution of the 

mixed modes looks identical for both the phase and the amplitude quadrature. 

If the two input coherent states are replaced with squeezed states, and mixed with a 

phase difference of t t / 2 , the two modes, now entangled, are each still noisy, but the noise 

on each of the modes is now anti-correlated, as seen in Figure 3.6a. The normalised sum 

of the two sets of points then fluctuates by less than either of the individual traces, while 

the difference fluctuated more. This means that if each pair of points is again plotted 

parametrically, an elliptical shape will result, as shown in Figure 3.6b and c. Note that, 

as with squeezing, the Heisenberg Uncertainty Principle is not being violated with the 

measurement, that falls below the QNL, since making this same measurement on the 

other quadrature will be above the QNL by at least the same factor as this measurement 

is under. The system represented by the ellipses shown is assumed to be lossless, and is 

symmetric, so the two squeezers being mixed are identical. 

From the shape of the ellipse that has been obtained, several values useful for categoris-

ing the state can be found, as shown in Figure 3.7. This includes (for a given quadrature) 

the standard deviation for either of the entangled modes on their own {(Jx and (Xy), and 

the normahsed standard deviations of the sum (a^+y = a - here lower than the 

QNL) and difference (ax^y) of the modes. From the standard deviations, we can find the 

variances of the modes, as discussed in Section 2.2 from V = 

Given that we're now looking at states that aren't coherent, the shape of the distri-

^Note that instead of using the standard deviation to define the quantum noise, any arbitrarj' contour 
may be chosen - for example the 7a contour, and this would simply result in a renormalisation to the new-
quantum noise limit, due to the properties of Gaussian noise distribution. 
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a) 

/Mv̂  
/ 

b) 5Xy 
/ 

0) 

r 

\ / 

J 

/ 

Figure 3.5: In the unentangled case, the noise on the beams SX^ and SXy is uncorrelated, as 
seen in a), resulting in a circular distr ibution, seen in b and c. 

but ion changes for different quadratures measured. The phase qtiadrature will have a 

correlation between the noise traces, resulting in an ellipse at 90° to that in the amplitude 

quadrature case. The ellipses for the different quadratures is shown in Figure 3.8. From 

each cross section, similar noise statistics can be inferred. 

The noise statistics of the entangled state can be visualised using such methods, but it 

is not useful for characterising the state in a complete and concise way. For this, we will 

introduce the correlation matrix. Light with Gaussian statistics, as we generally encounter 

in the continuous variable regime, can be fully characterised by an appropriate correlation 

matrix. For a system with two modes, x and y. this correlation matrix is defined as 

CM = 

C++ ^ XX C++ xy c + -xy 
C- + '-'XX ^xy 
C++ C + - ^yy" 
C-+ Cyx- C - + yy 

(3.17) 
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a) 

SX + 

V2 
(6X+ + SX+) 

/ 

b) 

/ 

c) 

\ 

V 
/ \ / 

F i g u r e 3.6: In this case, Jf^ and Xy are correlated to below the QXL. resulting in an elliptical 
distribution. In part c). the distribution for this case is shown in red. and the quantum noise limit 
is shown in blue for comparison. 
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Each element in the matrix is defined as: 

(3.18) 

where {k,l} G { + , - } and {m, n} e {x,y}. 

Figure 3.7: From the elliptical distribution, we can find cr+, and combinations of these, such 
as a+^y. 

Some of these elements correspond directly to the variances that can be found from 

the ellipses shown above - for instance C^J' is V^. 

Note that although the matrix uses the amplitude and phase quadratures explicitly, 

the state can equivalently be characterised using the more general quadratures, 0 and 

0 + TT/2. 

While the required information about the state is contained in the correlation matrix, 

it is not immediately obvious by looking at the matrix whether the state is entangled. 

Entanglement is usually verified with one of several definitions. The two measurements 

that are of interest in this thesis are the Inseparability of a system, and the EPR paradox. 
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6X+ 

A 

Figure 3.8: The correlation ellipses for a continuously varying quadrature (local oscillator angle). 
The phase and amplitude quadrature cross-sections are shown. 
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3.4.1 Inseparability criterion 

One criterion that is both sufficient and necessary for the existence of entanglement is the 

Inseparability of a system. A system is separable if the wavefunction of a system can be 

written is such a way that it is the product of the wavefunctions of the component modes. 

That is, a system is separable if it can be written as: 

= IV'l}® IV'2>- (3.19) 

It was found by Duan et. al. [26] that there is a lower bound to the total variance for 

any separable system, and that if this lower bound is violated, the system is inseparable, 

and therefore entangled. Given two EPR type operators, as in [1], 

u = \k\X+ + -X+ 

V = \k\X- - i x ; 

(3.20) 

(3.21) 

where fc is a real number, then for all separable states. 

V+ + V 
I = " ^ > 1 

2 {k + 1/k) - • (3.22) 

In order to make sure that any entanglement that exists in a system is measured, 

the measured correlation matrix can be put into this form via local linear Bogohubov 

operations, by transforming into Standard form I and Standard form II. Duan et. al. 

first transform the correlation matrix into standard form /, a matrix independent of the 

quadratures initially measured. Standard form I then has the format: 

CM' = 

n 0 c 0 

0 n 0 c' 

c 0 m 0 

0 c' 0 m 

(3.23) 

The elements n, m, c, and c' are found using the determinants of differ-
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ent parts of the original correlation matrix, such that det 
^ r++ r+- ^ 

det 
^ C++ c+- ^ 

c—^ r'~~ yy ^yy / 
= m^, det 

^ r++ r+- ^ ^xy ^xy 

det{CM) = (mn - c^) (nm - c'^) 
\ '^xy^ C. 

= det 
xy / 

r-+ \ '^xx 

C++ C+-^yx ^yx 

CZ 
— n 

\ ^yx 

= cc', and 
yx / 

This transformation in effect rotates the quadrature of the measurements to the 

quadrature with the most pronounced ellipses, with the highest correlations. If the origi-

nal quadratures measured are 7r/4 from the ideal quadratures for seeing the entanglement, 

then the original ellipses will look like circles, as can be seen in Figure 3.8. Following the 

transformation, the elements of the correlation matrix are the same as the measurement 

would have originally yielded if the amplitude and phase quadratures had been measured. 

Changing the matrix into Standard Form II involves the application of scjueezing op-

erations rj and r2. Using the elements from Standard Form I. the following two equations 

must be solved to find the appropriate values for ri and ?'2. 

n / r i — 1 m/r2 - 1 
n?"! — 1 Tnr2 — 1 

(3.24) 

|c| V ^ - = \/{7iri - 1) (mr2 - 1) - ^ ( n / r i - 1) (m / r i - 1) (3.25) 

There are generally several solutions to these equations, and the required values for 

ri and r2 are those that yield the best (lowest) value for J . Using these values. Standard 

form II is then: 

CM" = 

nrj 0 c^Jrir2 0 

0 n/ri 0 c'/s/r,r2 

c^rir2 0 mr2 0 

0 c'/s/rir2 0 m/r2 

(3.26) 

Values from this matrix can then have the Inseparability criterion applied to them. 

The system is inseparable, and therefore entangled, if: 
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where 

C+ = k (nr i ) + ^ (mrs) - (3.28) 

= (3.29) \r-ij k \r2j y/rir2 

and 

For a symmetric case, with identical squeezers and a 50:50 beamspUtter, the end vahie 

that is found is given by: 

^ = \ /y . tyV- : , y (3.31) 

which can be found directly from two measurements, without the need to find all of the 

components of the correlation matrix. At worst, this is an unoptimised form of Insepara-

bility, and it is a sufficient but not a necessary condition for entanglement. 

These two measurements required to find the unoptimised Inseparability can be found 

from the correlation ellipses for the phase and amplitude quadrature of an entangled 

system, as seen in Figure 3.9. 

For a symmetric system, with two squeezed modes with initial amount of squeezing 

Vo, the measurement of Inseparability becomes less marked with loss. As a function of the 

initial amount of squeezing and the transmission r/, the Inseparability is given by: 

I = vV+ + {l-rj) (3.32) 

3.4.2 EPR entanglement 

The originally conceived form of entanglement, the E P R paradox with a pair of particles, 

can also be applied to continuous variable systems [4]. It involves the measurement of 

one of the entangled modes to attempt to predict the behaviour of the second mode to 
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5x; 

\ ^ ^ ' ' 

1 -

Figure 3.9: From the elliptical distribution, we can find a+^y and and from this, the 
unoptimised Inseparability can be deduced. 

a higher degree of accuracy than can be measured by classical means. This results in 

an apparent violation of the Heisenberg Uncertainty Principle, since this measurement is 

more precise than allowed for an instantaneous measurement in two conjugate variables. 

Mathematically, EPR entanglement is achieved if the following inequality is satisfied. 

(3.33) 

where the conditional variance denotes the variance of a mode x given a measured 

value of y, and is foiuid by: 

= miug {{5X:,: - gdXyf 

K 

(3.34) 

(3.35) 

The EPR value can therefore be measured using the values from the correlation matrix. 
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Alternatively, as with the simplified version of the Inseparability measure, the EPR 

measure can be obtained directly from correlation ellipses already discussed. The condi-

tional deviation can be found from the intercepting points of the ellipse with the SX^ 

axis, as shown in Figure 3.10. From these conditional deviation values for two orthogonal 

quadratures, the conditional variances and hence the value for e can be found. 

Figure 3 .10: From the elliptical distribution, we can find and and from this, the EPR 
paradox can be measured. 

Unlike Inseparability, measurement of the EPR paradox provides a sufficient but not 

necessary condition for entanglement. For a symmetric system, the degree of EPR paradox 

that can be measured can be written in terms of the initial amount of squeezing VQ , and 

the total transmission of the system rj, as follows. 

e = 4 1 + V 
2 r y - l 

\ 2 

7J + I / C - 2) + 2 
(3.36) 

This result is derived in Appendix 1. 

For asymmetric systems, this result no longer holds, and there emerge two possible val-

ues that can be obtained for the EPR value. These values arise because of the asymmetric 

nature of the EPR criterion itself: it is the prediction of one object's behaviour based on 
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a measurement made on a second object. In terms of two potentially entangled arms x 

and y, this means tha t y can be measured and x predicted based on this, as has been 

considered thus far, or x can be measured and y predicted. The measurement required to 

obtain the second EPR value, e^i^, is shown graphically in Figure 3.11. 

F i g u r e 3 .11: We can find and a^^^ from the elliptical dis t r ibut ion in order to obta in the 

second E P R value, ey^^-

Plotting the theoretical values of EPR and Inseparability for different transmission 

values Tj, as can be seen in Figure 3.12 shows tha t wliereas Inseparability still indicates 

quantum beliaviour as the loss approaches 100%, E P R entanglement requires tha t the 

total loss on the system be less than 50%^, as can be seen in Figure 3.12. This is one of 

the characteristics that makes E P R entanglement more difficult to measure than Insepa-

rability, and leads to the rule-of-thumb tha t 3dB of squeezing is required in order measure 

E P R entanglement. 

The reason for the greater squeezing requirement for measuring E P R entanglement 

can be seen in a geometric approximation from the correlation ellipses, shown in Figure 

3.13. For Inseparability entanglement to be observable, we need for < 1. For a 

symmetric system, this requirement ultimately means tha t < 1, which requires tha t 

the initial amount of noise on the input modes CTQ be less than one; tha t is, the input 

^This is not true for the case of asymmetric systems, which are discussed and investigated in Chapter 
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V = 5 0 % 

0.2 0.4 0.6 

Transmission, T] 

Figure 3 .12 : The EPR and Inseparability entanglement measured as a function of transmission, 
r], for a symmetric system with an original amount of squeezing lOdB. 

modes must be squeezed. 

Looking at a small section of the correlation ellipse that can be approximated to a 

triangle, shown in Figure 3.13, it can be seen that w '^'^xjy-

In order to measure EPR entanglement in a symmetric system, we need to have 

72, 

< 1 

< 1 

\/2ct+ < 1 

aZ < 

(3.37) 

This is equivalent to requiring 3dB of squeezing, as is generally needed for EPR en-

tanglement measurements. 
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Figure 3.13: Looking at a small section of the correlation ellipse that can be approximated to 
a triangle, it can be seen that = Given that Inseparability entanglement can be 
observed for any initial degree of squeezing, this shows why the rule of thumb for needing 3dB of 
squeezing in order to observe EPR entanglement holds. 



Chapter 4 

Spatial Entanglement 

4.1 Introduction 

The invention of the laser in 1958 [27] meant that many of the ideas behind quantum 

mechanics could move from their previously theoretical domain into the experimental 

world. 

Einstein, Podolsky and Rosen originally envisioned the position and momentum of 

particles being entangled in their Gedanken experiment. The idea in this section is to 

apply this concept of entanglement to the now ubiquitous medium of laser beams. The 

purpose, then, is to create a system where the position and momentum of two laser beams 

are entangled. 

This chapter will first cover how to measure the position and momentum for laser beams 

at a quantum noise limited level. We will then discuss how this can be translated into a 

functioning experiment with EPR entanglement between the position and momentum of 

two beams, and present the results that were found. 

This work has been published in Science 321, 541 (2008). 

4.2 Displacement and tilt of a beam 

Before we can entangle the position and momentum of laser beams, we must first discuss 

how the displacement and tilt of a beam can be measured, and find the quantum noise 

limit for the position and momentum of a laser beam. 

4.2.1 Classical displacement and tilt of a beam 

While we can create laser beams in higher order spatial modes, a laser will generally 

produce a TEMQO mode shape. It is this mode shape whose position and momentum we 

will look at for this experiment. 
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If we consider a TEMQO beam, we can define a displacement d from the beam's average 

position do, as seen in Figure 4.1. We can also define the tilt & from the average direction 

of the laser beam. If we wish to measure the position of the beam, this is then equivalent 

to measuring this displacement, and similarly a measurement of the tilt of the beam is 

equivalent to measuring the transverse momentum of the beam. 

do 

7 

A 

00 

J 

d 

(Iq 

Figure 4.1: A laser beam lias uncertainty in its position and angle in normal operation. We look 
at small displacements from the average position d and small angles from the normal direction 9. 

For an laser beam originally described by the field profile E{x), the electric field profile 

for the beam displaced by a distance d can be described by the Taylor expansion: 

(4.1) 

For a small displacement d, the higher order terms are negligible, and we're left with; 

(4.2) ox 

Similarly, if we look at the tilt, or transverse momentum, of the beam, we find: 

T-i / \ i2TTx sin 6 
Ep[x) = e A Eyxco^O) (4.3) 
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which can be simplified, for small angles, to: 

Ep ( x ) = E ( x ) + ipxE ( x ) . (4 .4 ) 

Note that 9 and p are related by p ^ ^^^^ « ^ for small angles. 

If we write these expressions in terms of the mode components themselves, we arrive 

at the expression [28]: 

Wo 
(4.5) 

where Unix) represent the mode profiles for a given transverse basis, and WQ is the beam 

waist. The implication of this expressions is that a tilt or displacement of a TEMQO beam 

in the the x direction can be measured by detecting the TEMio component of the beam^. 

The displacement of the beam can be measured on the 'in phase' part of the TEMjo 

field, relative to the TEMQO carrier mode. The information about the tilt of the beam is 

contained in the TEMjo mode when the phase is 'in quadrature' relative to the TEMQO 

mode, as signified by the 'i' in Equation 4.4^. 

These approximations are only valid for small displacements and tilts of the laser 

beam. For the position calculation, the assumption is made that d WQ. For the 

momentum calculation, it is assumed that the tilt is small {0 < X/WQ) and that the 

paraxial approximation applies, so X <^wo. 

4.2.2 Heisenberg limit 

The most familiar example of the Heisenberg limit for most physicists is the position-

momentum inequality, AxAp > which reflects the limitation on the accuracy of simul-

taneous measurements on the position and momentum of an object. Here we will identify 

the Heisenberg limit for the position and momentum of laser beams by first looking at the 

positive frequency component of the electric field operator: 

e^(^) (4.6) 
n=0 

'Similarly, a tilt or displacement in the y direction can be measured by detecting the TEMoi component 
of the beam. 

^In order to make this measurement, the detector plane must be aligned carefully. The waist of the 
TEMoo beam in question must be imaged onto the detector plane. 
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Since we are primarily interested in experimentally measurable quantities, we can 

rewrite the annihilation operator in terms of the amplitude and phase quadratures. 

e+(x) = i 
hu) E 

/ + iX- Un{x) (4.7) 
/ n = 0 \ 

If we expand this expression for a bright TEMQO mode with mean photon number N 

(4.8) 

hio 
2eocT Wo 

5X+ + ISX-
Un{x) 

n=0 \ / 

where d and p are the mean values of the position and momentum operators, d = (x) and 

p = (p). We can identify the TEMio components of Equation 4.9 to arrive at the position 

and momentum operators for the bright TEMQO mode: 

x = 

p = 

wq 
2s/N 

1 

as shown in [29]. From here, the commutation relation can be shown to be: 

(4.9) 

(4.10) 

From Equation 4.9, we can see that by replacing the vacuum mode that originally 

fills the TEMio space with an amplitude-squeezed TEMio mode, any displacement of the 

bright TEMoo mode can then be measured more accurately than the standard quantum 

limit would otherwise allow in what is referred to as a position-squeezed beam. A position-

squeezed beam was first produced by Treps et. al. [30, 31] in 2002 using this same method, 

and measurements for the displacement of the bright beam showed that the sensitivity 

improved by a factor of 1.7 in both the x and y direction. Using a similarly made tilt-

squeezed beam [32], these measurements were extended so that the tilt of a bright laser 

beam was measured at a higher sensitivity than the quantum noise hmit normally allows. 

Normally, to produce amphtude-phase entanglement, we first require either amplitude 

or phase squeezed beams. Similarly, in order to produce position-momentum entangle-

ment, we first must have position or momentum squeezed beams. As with the standard 

method of entangling laser beams (shown in Section 3.4), mixing two position squeezed 
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beams together with a 7r/2 phase shift results in laser beams that are position-momentum 

entangled. 

4.3 Squeezing in higher order spatial modes 

There are several different techniques that can be used to produce squeezed beams of 

light, and while that squeezing is generally applied to a TEMQO mode, in many cases 

slight adjustments can be made to the technique to produce squeezed higher order modes. 

Multimode squeezing has been produced very successfully using four wave mixing in 

an atomic vapour [33], and can also be produced using optical parametric amplification. 

Since optical parametric amplifiers (OPAs) are the squeezers we have chosen to use, these 

will be dealt with in some detail in this section. 

4.3.1 OPA layout 

While the theory behind optical parametric amplification has already been outlined in 

Section 3.3.1, there are considerations to be taken into account in the overall design of the 

OPA in order to have an optimally functioning squeezer. 

Mechanical stability is an important consideration in the design of an OPA, so that a 

constant output and stable locking systems can be achieved. For this reason all elements 

should be securely fastened, and there is generally a preference for having fewer elements 

in the cavity. While there are many possible designs that the OPA can be based upon, 

there have emerged some layouts that are known to be stable and are commonly seen 

in quantum optics experiments. The two designs most commonly used are the linear 

cavity and the bow-tie cavity, which are shown in Figure 4.2. The linear cavity itself has 

several diff'erent designs - it can have two mirrors external to the crystal, or it can have 

a monolithic or hemihthic configuration, where two or one of the faces of the nonlinear 

crystal act as partially reflective mirrors to form a cavity. The monolithic configuration is 

the most mechanically stable layout for an OPA. 

Another important consideration to be taken into account for the design of an OPA is 

how the cavity is to be locked. Typically, two locks are required for one OPA - the seed 

beam must be locked to the cavity, and the green pump beam must be locked to the phase 

of the seed beam, in order to control whether the squeezing is on the phase or amplitude 

quadrature. As covered in Section 2.9.1, locking a cavity requires an actuator to maintain 

the correct cavity length, compensating for any air currents or drifts in the equipment. 
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a) 

Figure 4.2: Two common cavity configurations for OPAs: a) a linear cavity, and b) a bow-tie 
cavity. 

This is usually achieved in the form of a PZT, which changes its size (and hence position) 

depending on the voltage applied to it. While it has superior mechanical stability, the 

monolithic cavity has no PZT to control the length of the cavity as we require to keep the 

cavity frequency set to the laser frequency, so instead the laser frequency must be locked 

to the cavity frequency - a setup that can only work for an experiment with no more than 

one OPA. 

One advantage of the bowtie configuration is that two beams can independently be 

sent in both the clockwise and the anticlockwise directions simultaneously. The squeezed 

light is only generated in the direction in which the pump beam is travelling, so the pump 

(and seed, if required) can be sent in one direction, and the locking beam can be sent 

in the opposite direction, to avoid noise being cotipled into the resultant squeezed beam. 

Alternatively, the seed can still be used to lock the cavity, and the other direction can be 

used as a second independent OPA, to achieve two independent squeezed beams [11]. 
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4.3.2 Ideal pump mode shape 

The pump beam is a vital coniponent in an OPA, providing the intensity needed to induce 

the nonhnear behaviour in the crystal that allows squeezing to be achieved. 

For a seeded OPA that produces a TEMQO squeezed mode, the requirement for optimum 

nonhnearity is that the pump beam has a waist as determined by the Boyd-Kleinman factor 

that was introduced in Section 3.3.2. The seed beam is aligned to overlap with this beam, 

and has a beam waist of v ^ w p-
Here we have a type I nonlinear interaction, where we transfer photons from the 

harmonic mode (532nm) to the fundamental mode (1064nm) using the property of 

the crystal. The quadratic relationship requires that the mode shape of the harmonic 

mode be the square of the mode shape of the fundamental mode, for optimal interaction. 

Thus for a TEMQO squeezed mode, we aim to have the waist of the seed beam related to the 

waist of the pump beam by a factor of \/2. For higher order squeezed modes, the optimal 

pump mode shape is more complicated since, for example, the square of a T E M i o mode is 

no longer a T E M I Q mode. The ideal mode to pump with to achieve TEMio squeezing is 

actually a combination of TEMQO niode and TEM2Q mode [34]. However, the power lost 

in conversion to different modes and the added degree of complexity that implementing 

this would entail makes the option of simply using TEMQQ mode more practical. The 

effect of the resultant imperfect overlap is that the threshold power is substantially higher 

for higher order mode squeezing. Note that even apart from the imperfect pump/seed 

overlap, the effective nonhnearity for a crystal in an OPA is lower when using higher order 

modes, since they are spatially less compact. 

The Boyd-Kleinman factor, which calculates the ideal waist size for a pump beam in 

the OPA, does change slightly for different higher order modes. For T E M i o mode, we 

still have f = = 2.84, but for TEM20 this value changes to 2.45 [35]. Thus the 

squeezing of spatial modes with n,m > 1 may require an adjustment of the cavity mirrors 

for optimal operation. 

4.3.3 Squeezing for different pump powers 

The production of a squeezed beam from an OPA relies on there being enough power in 

the pump beam to induce a nonlinear effect of sufficient magnitude within the crystal. 

Here we will discuss how the pump power effects the level of squeezing for an OPA. 

The relative phase between the seed beam and the pump beam determines whether 
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the OPA will be operating in the amplification or the de-amphfication regime. As the 

name implies, the power in the seed beam will increase when the OPA is amplifying and 

it will decrease when the OPA is de-amplifying. 

The ratio of the transmitted power in the seed beam when the OPA is amplifying 

to the transmitted power in the seed beam when there is no pump beam is called the 

regenerative gain. The gain of the OPA changes with the pump power according to: 

where Loverall takes into account both the loss inside the OPA and the external loss, and 

the parameter rthr is related to the ratio of the power in the pump beam to the threshold 

power of the OPA: rthr = \JT^- The cavity has a finite window of frequencies over which 

it transmits, and the detection frequency must be within this range, as seen in Equation 

2.46. u) is the ratio of the detection frequency (with respect to the carrier frequency) to 

the cavity linewidth. 

The squeezing and antisqueezing that is obtained from an OPA was previously found 

in Equation 3.10, and can be rewritten in terms of OPA parameters that are more easily 

measured, and as seen in [36]. 

y-ir ^ _ 4(1 - Loyerall)rthr 
+ (1 + rthr)^ 

y - ^ 4 ( 1 - L^erall)rthr , . 

where V is the variance for each quadrature. If some of the parameters of the cavity are 

unknown, they can be found by measuring the quadrature variances and the OPA gain 

for a range of pump powers, and by adjusting the parameters to fit a curve to this data. 

Loverall includes both loss inside and outside the cavity. These can be distinguished by 

comparing the measured and predicted finesse for the cavity; this ratio can be used to find 

the loss that arises inside the cavity, as seen in [36]. This model assumes that there is no 

extra noise being added to the squeezed beam. 

Because the effective nonlinearity is lower when using higher order modes, the ideal 

setup of the cavity is different. A different gain implies that a different output coupler 

reflectivity is required to obtain the highest possible amount of squeezing. This is best seen 
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using the earlier expressions for the output variance of an OPA, shown in Equation 3.10. 

If we plot the output variance as the output coupling term is varied, we obtain a graph 

as in Figure 4.3. When the gain of the system changes, the best squeezing is obtained 

for a different value of the output coupling term, which corresponds to a different output 

coupler reflectivity. 
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Figure 4 .3 : The squeezed variance for an OPA with a varying output coupling term Kout with a 
gain of either 0.5 or 0.3. The parameters used were k; = 0.05, = 0.01, and l j = 0 for a beam 
with an original variance of one. 

4.4 Experimental setup 

The setup for the most important components of the experiment is shown in Figure 4.4. 

Two squeezed TEMjo beams are combined on an entanglement beamsplitter together 

with a bright TEMqo reference beam. The two entangled beams are then measured on 

homodyne detectors, with local oscillators in the TEMio mode. 

4.4.1 The laser 

The light source for these quantum optics experiments was a Diabolo continuous wave 

laser based on a Nd:YAG crystal (Innolight GmbH). Encased in the laser's housing is 

both the Nd;YAG crystal that makes a 1064nm laser beam, and a frequency doubling unit 

that uses the process of second harmonic generation to create a second beam at 532nm. 
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Laser source f i ^ 

Figure 4.4: A schematic for our experiment: a reference TEMqo beam is first combined with 
a squeezed TEMio mode, producing a spatially squeezed beam. This spatially squeezed beam 
is then entangled with a squeezed TEMio mode, and the entangled beams are detected at the 
homodynes. MCC-mode cleaning cavity; MTC-mode transfer cavity; ISO-isolator; EOM-electro-
optic modulator; DM-dichroic mirror; BS-beamsplitter. This figure reproduced with permission 
from Jiri Janousek's thesis. 

The relaxation oscillations for the laser result in additional noise, with a resonant peak 

at IMHz. 

The process of second harmonic generation requires a locking system within the laser, 

and an internal EOM provides the phase modulation required for this lock. This 12MHz 

modulation remains on the two output beams. 

The resulting laser beams, while overall having a relatively low noise level, are not 

quantum noise limited. In experiments where we are interested in the comparing the noise 

on beams to the QNL, it is in our best interests to suppress the excess noise, partictilarly 

large modulation peaks, as much as possible. 

The laser controller electronics include a Noise Eater function that is able to suppress 

the IMHz peak by 25dB. In order to improve the noise characteristics, the laser beam is 

transmitted through a mode cleaning cavity that is locked using the remaining 12 MHz 

phase modulation from the laser. 

The output power of the two beams produced by the laser is 180mW for the infrared 

beam, at 1064nm, and I W for the green beam, at 532nm. 
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4.4.2 Optical Parametric Amplifiers 

For this experiment we use a hemilithic cavity for each of our OPAs; that is, the crystal has 

one curved surface that acts as a mirror, and one external partially reflecting mirror, that 

is known as an output coupler. The layout of the OPA can be seen in Figure 4.5 below. 

The input coupler, positioned on one surface of the crystal, has a radius of curvature of 

8mm, and a reflectivity of 99.5% for 1064nm and 100% for 532nni. The output coupler 

has a radius of curvature of 25nnn, and has a reflectivity of 94% for 1064nm and 10% for 

532nm. The optical path length of the cavity is 30mm. 

The nonlinear crystal itself is made from bulk LiNbOa, with 7% MgO doping. The 

crystal has two curved edges, and has dimensions 2 x 2.5 x 6.5 nnn^. The crystal was 

housed in a temperature stabilized oven, which was heated constantly to temperature of 

around 60°C using resistors built into the oven base. The crystal temperature was fine 

tuned using a Peltier element placed next to the nonlinear crystal. The power to the Peltier 

element was delivered by a temperature controller, which monitored the temperature of 

the crystal housing with a thermistor. The purpose of fine timing the temperature was to 

maximise the nonlinear interaction by achieving the phase matching condition. 

Input coupler 
R=99.5% (1064nm) 
R=100% (532nm) 

seed beam 
1064nm 

/ \ 
Output coupler 

R=93% (1064nm) 
R=10% (532nm) 

pump beam 
532nm 

squeezed beam 
1064nm 

pump beam 
532nm 

Figure 4 .5 : The OPAs used in this experiment are based on a liemilithic design, with a LiNbOa 
crystal. 

This OPA has been used to produce both TEMQO squeezed light and TEAIIO squeezed 
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light. The squeezing and antisqueezing for TEMqo are shown in Figure 4.6, with 5dB 

of squeezing and 8dB of antisqueezing at 4.5MHz. This graph also shows several peaks 

resulting from modulations that have been applied for locking purposes. These peaks result 

from both the modulations directly, and from beating between different modulations that 

are applied. A complete list of locking frequencies used is shown in Section 4.4.4. 
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Figure 4.6: The measured degree of squeezing and antisqueezing for the TEMno mode across a 
range of frequencies. 

For this experiment, we are more interested in the production of squeezing in the 

TEMio mode. The squeezing and antisqueezing for TEMio are shown in Figure 4.7, with 

nearly 4dB of squeezing and 5dB of antisqueezing for the range of frequencies 3-4.5MHz. 

The squeezing and antisqueezing changes with the pump power, as the results in Fig-

ure 4.8 show. The curve is based on Etiuations 4.12, using the measured parameters: de-

tection frequency / = 4MHz, free spectral range î psR = 3.74GHz and finesse F^ = 130. 

ui is then found from oj = f - ^ and the overall loss is obtained from the curve fitting, 

and is found to be iô jeraH = 0.23. 
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4 5 
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Figure 4 .7 : The measured degree of squeezing and antisqueezing for the T E M i o mode across a 
range of frequencies. 

4.4.3 Mode combination 

Once the squeezed TEMio modes are produced, they need to be incorporated into the rest 

of the experiment by combining them with the TEMQO reference beam. There are several 

methods by which different spatial modes can be combined. The simplest method uses a 

beamsplitter with different spatial modes at the two input ports, as shown in Figure 4.9a. 

The two output ports will then each have a combination of the two original spatial modes. 

What has here been termed a TEMQO reference beam could more accurately be described 

as a coherent TEMQO mode copropagating with vacuum noise for all of the other spatial 

modes in the Hermite Gauss basis. The output states then contain a coherent TEMQO 

mode, and the TEMio mode will have a mixture of the squeezed beam with the vacuum 

mode that was copropagating with the original TEMQQ mode. The mixture of the squeezed 

state with vacuum noise will rapidly diminish the quality of the squeezing in the output 

beams. The beamsplitter can be non 50:50, in order to place most of the TEMIO mode 

noise on one of the outputs. 

It is possible to combine two different modes of light in a near lossless manner, if this 

is required. There are two main lossless combination methods, and these involve the use 



66 Spatial Entanglement 

Figure 4.8: The measured degree of squeezing and antisqueezing for the TEMio mode, for different 
pump powers. The continuous hne shows the fit to the theoretical curve. 

of either a cavity or an adapted Mach Zehnder interferometer. When a mode cleaning 

cavity, or MCC, is used the cavity is locked onto one mode, say TEMqo mode, so that it 

transmits this mode, but reflects all other modes in the Hermite Gauss basis. The TEMio 

mode is then sent onto the output mirror of the cavity, such that its reflection ends up 

co-propagating with the original beam, as seen in Figure 4.9b. 

A third option that is available for some kinds of mode combination is an adapted 

Mach Zehnder (MZ) interferometer, as shown in Figure 4.9c. In contrast to a standard 

Mach Zehnder setup, there is an extra mirror on one of the arras before the two beams 

are interfered. In this case we are interested in having one even mode input and one odd 

mode input, and we can describe these modes as: 

Ein.e (x) = AeUe (x) 

(4.13) 

where Ue and Uo indicate that the even and odd mode profiles respectively, Aĝ o correspond 

to the field arnplittides, and (prei is the relative phase difference between the two input flelds. 

If the two arms of the interferometer are recombined with a phase shift <I>, then the 
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Figure 4.9: There are various methods of combining different modes in an experiment, a) A 

beamsphtter can be used to combine two modes, but couples loss into the output beams, b) A 

cavity on resonance for one mode and off resonance for a second mode can be used, c) An adapted 

Mach-Zehnder interferometer, used as a mode combiner, or mode separator. This method is only 

useful if one mode is symmetric, and the other mode is anti-symmetric. 

newly formed output fields are given by: 

Eout.l {x) = - lA^Ue {x) ( 1 + e'^) - AoUo ( x ) ( l + e"^) 

Eout,2 (x) = i [^eWe (x) (l - e'*) + A^Uo (x) ( l - e'^) (4.14) 

The difference between these output fields and those that would be obtained with 

a symmetric Mach Zehnder interferometer is due to the additional phase shift that is 

experienced by the odd mode on the arm with the additional reflection. This additional 

phase shift occurs due to the effects of reflection on the the mode profile of an odd mode as 

opposed to an even mode; the odd mode undergoes the transformation Uo (-x) -Uo (x) 

whereas the even mode undergoes no such transformation and Ue (-x) ^ Ug (x). 
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We can then take the case where the phase difference upon recombination is zero to 

obtain: 

{x) = iAeUe (x) - A^Uo {x) 

Eout,2{x) = 0 (4.15) 

as required for a lossless combination of the two different spatial modes. 

In previous versions of this experiment, the combination of the two modes was per-

formed using an adapted Mach-Zehnder interferometer. In this experiment, a squeezed 

TEMio beam is combined with a classical TEMqo beam, so losses can be avoided on the 

crucial squeezed beam, but only with the trade-off of introducing a large loss on the second 

beam. If power were a limitation, this would not be suitable, but it is not an issue in this 

experiment. 

The TEMoo beam was only combined with one of the original sciueezed TEMio beams, 

since this will be split evenly at the beamsplitter, and thus provide a reference mode for 

the two entangled beams. 

4.4.4 Locking Scheme 

There were several locking loops required to perform the experiment, for locking the OPAs, 

the mode cleaning and transfer cavities, and for locking to the phase of the two beams on 

the beamsplitter, and for locking to the correct phase of the local oscillator. 

PDH locking is used, as well as two other forms of locking that will be discussed here: 

dither locking, DC locking and spht detector locking. 

Dither locking 

Dither locking is a form of modulation locking that can be apphed to cavities. Unhke 

PDH locking, where the beam is phase modulated prior to reaching the cavity, for dither 

locking the modulation is apphed to the length of the cavity directly, thus modulating the 

resonant frequency of the cavity. 

We consider a setup where the beam reflected from the cavity is detected and used to 

produce the error signal. When the cavity has a length for which the beam is resonant, 

the reflected power is at a minimum, and at a stationary point. At this position, a small 

modulation in the cavity length will not result in a large modulation to the reflected power, 
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Figure 4.10: In order to dither lock a cavity, the cavity length is modulated. At the ideal cavity 
length, the reflected beam will have a constant power to a first order approximation, but at a 
non-ideal length, the reflected power will be modulated, providing an error signal. 

as seen in Figure 4.10^. 

As the cavity length moves away from this ideal length, the reflected power level in-

creases, and the modulation that is applied to the length of the cavity causes a modulation 

in the output power that depends on the gradient of the curve in Figure 4.10. The oscillat-

ing power on the reflected field can then be used as an error signal, since its sign depends 

on which direction the length needs to change, and its amplitude depends on how far the 

cavity is from the correct length. 

For dither locked cavities, the modulation is applied using a PZT rather than an EOM, 

making the setup somewhat simpler. The use of a PZT for the modulation means that the 

frequencies that can be used must be hundreds of kilohertz or lower, unlike PDH locking, 

where the modulation frequencies used are often of the order of megahertz. 

In this experiment, dither locking is used for locking low finesse cavities, such as 

interferometric systems where we lock the phase of two beams. 

Split detector locking 

Split detector locking is a well estabhshed method [37, 38, 39] that can be applied in order 

to lock the phases of two diff'erent spatial modes, in particular the TEMqo mode and the 

Îf Qm is the modulation frequency, there is a small modulation in the reflected beam that occurs at 
2Qm, to a second order approximation. 
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TEMio mode. 

Different spatial modes within one basis are orthogonal, so the overlap integral is zero 

when taken across all space, indicating that interference will not occur in this case. If the 

overlap integral is taken from to 0 to oo, then the overlap integral is no longer zero, and 

interference can occur. 

Experimentally, the implication of this is that a spht detector rather than a normal 

photodetector is the required device for locking the phases of these two orthogonal beams. 

The left and right DC components of the power can then be subtracted to give an error 

signal that will keep the phase shift between the TEMoo mode and the TEMio mode 

constant. 

The error signal obtained from the subtraction of the two halves of the split detector 

locks the phase between the two spatial modes to cprel = '''"/S at the split detector plane. 

Furthermore, the beam containing the two modes is focussed before reaching the split-

detector, introducing a Gouy phase shift, so the phase difference in the split detector 

plane is not the same as the phase difference for the collimated beams. 

A position squeezed beam has a relative phase difference between the two modes of 

(prel = 0 if the TEMio mode has amplitude squeezing, so we cannot accurately claim 

that we have made a position squeezed beam. However, position squeezed beams are not 

strictly necessary for the measurement of position-momentum entanglement between two 

laser beams. For instance, we could also use two momentum-squeezed beams locked in 

quadrature at the entanglement beamsplitter. 

As long as the relative phase shift between the two spatial modes is constant, and the 

two TEMio components of the beams are mixed with a 7r/2 phase shift, we can obtain 

spatial entanglement. 

Locking systems 

There are many locking loops in the spatial entanglement experiment, for the many 

cavities that must maintain a precisely set length and for setting the phase between beams 

that are being mixed. For the Pound-Drever-Hall (PDH) locking loops, there are three 

different applied modulation frequencies: a 12MHz phase modulation is applied to the 

beams inside the laser: and the external electro-optic modulator (EOM) is used to impart 

a 14.3MHz and a 21.3MHz phase modulation on the infrared beam. The locks to the 

amphtude quadrature at the homodyne detectors used lower frequency modulations, in 
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the kHz range. These were applied with a signal sent to the PZT that modulated the phase 

of the beams directly. The details of each of the locking loops are shown in the table below. 

Locking loop E r r o r signal Locking Frequency 

Entanglement {Di + D2) - (Ds + Di) DC 

Local oscillator D,-D2 359kHz 

D1-D2 DC 

Di-Di 368kHz 

D3-D4 DC 

OPAi seed D5 14.3MHz 

pump D, 21.3MHz 

OPA2 seed De 14.3MHz 

pump De 21.3MHz 

MCCi Dt 12MHz 

MCC2 Ds 14.3MHz 
MTC D9 14.3MHz 

Reference Beam s Die ft - S Bright DC 

Here SD means split detector. 

The locks for the homodyne detection system is shown in Figure 4.11. 

A DC lock is performed by taking a subtraction of the DC powers for two or more 

photodetectors. This type of locking system is particularly sensitive to asymmetries in 

the experiment. If there is an extra loss present in one of the entangled beams, then 

{D1+D2) - {D3 + D4) no longer gives an error signal that locks to the required 7r/2 phase 

shift. This can be compensated for by introducing a DC offset to the error signal in the 

control electronics. 

In this experiment we use pre-loaded PZT systems in the cavities, where the curved 

mirror that is used to adjust the length of the cavity is controlled by a ring PZT actuator 

that pushes against the front of the mirror. The back of the mirror is then pushed against 

a rubber o-ring. This pre-loaded setup effectively increases the mechanical resonance 

frequency of the PZT, which increases the locking bandwidth of the cavity, leading to a 

more stable lock. 
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Figure 4 .11: The liomodyne detectors, showing the use of the different signals. Here S signifies 
the use of an electronic splitter. 

4.4.5 Measurement method 

Like many other quantum states of light, entanglement can be observed using a spectrum 

analyser. A spectrum analyser measures the power spectrum S{uj) of the fluctuations 

of the field at frequencies around the optical carrier frequency. There are two ways a 

spectrum analyser can be used to measure EPR entanglement, based on the following 

expressions [4]: 

V^^y = rmng{{6X^ - g6Xy) 

= v ; -
\{6XJXy)\^ 

(4.16) 

(4.17) 

Using the first expression, the entanglement can be found directly, by subtracting the 

two AC signals from the homodyne detector with an appropriate gain applied to one arm. 

However, there is an alternative that can be found based on the second expression that 

doesn't require the fine adjustment of g. We know that: 
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= (4.19) 

We can then substitute this expression for both quadratures into our definition for e. 

= 1^7 (4.20) i|y x\y ' 

\ ^y J \ ^y J 

Thus we can find our vahie for e from measurements of the variances of each beam for X'^ 

and X~, combined with variances and 

This is the method used in the experiment here, since it does not recjuire fine-tuning for 

g and separate measurements for the Inseparabihty and for EPR, which would otherwise 

be required in an asymmetric experiment such as we have. 

Some experiments have two possible values that can be obtained for the EPR entan-

glement: e^jy, where the fluctuations in x are predicted from the measmed fluctuations of 

y, and e^i^, where the fluctuations in y are predicted from the measured fluctuations of x. 

The two values can be calculated using the same method. 

4.5 Experimental results 

Using the method outlined in Section 4.4.5, the EPR entanglement was observed. The 

same data allowed another entanglement criterion, the Inseparability of the system, to be 

observed. 

The local oscillator beams used at the homodyne detectors were set to 3mW in the 

TEMio mode. This value is high enough to be at least 10 times more powerful than the 

carrier beams, but is not so high as to saturate the detector photodiodes. The detectors 

were built at ANU, using ETX500 photodiodes with quantum efficiency of 95±3%. 

The spectriun analyser"^ curves that are recjuired to calculate EPR entanglement are 

shown for the position and momentum of the beams in Figures 4.12 and 4.14. The lowest 

•^The relevant spectrum analyser settings were as follows: VBW=100Hz, RBW=100kHz, Det: sample, 

Scale: 2dB/cliv. The scale is an important parameter on some spectrum analysers, since in some cases (as 

here) the measurements are inconsistent across some scales. Measurements were performed to investigate 

this, and it was found that with our spectrum analyser any scale greater than IdB/div was accurate. 
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curves on each of these figures show and V~_y, and can be used to calculate the 

Inseparability directly, or the three curves on each graph can be used to calculate the 

conditional variance for that observable. All curves are shown relative to the coherent 

state quantum noise hmited case. The conditional variances are shown in Figures 4.13 

and 4.15. Both the traces show these to be substantially lower than one over a broad 

frequency range. 

CD 
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Figure 4.12: The three curves required to calculate the conditional variance for the amplitude 
quadrature (direction) of our laser beam, normalised to the corresponding coherent state variance. 

The two traces shown for the conditional variances then allow us to find the value for 

EPR entanglement. 

For a perfectly symmetric system, one would expect for the different measured vari-

ances after the entanglement beamsplitter to be identical, ie. V^ = V^ = V~ = V~. It 

is apparent from the traces of V^ and Vy that this is not the case in this experiment, and 

the symmetry has been broken at some point. 
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3.5 4 
Frequency (MHz) 

Figure 4.13: The conditional variance for the amphtude quadrature (direction) of our laser beam. 

3.5 4 
Frequency (MHz) 

Figure 4.14: The three curves required to calculate the conditional variance for the phase quadra-

ture (tilt) of our laser beam. 
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Figure 4 .15 : The conditional variance for the phase quadrature (tilt) of our laser beam. 
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Figure 4 .16 : The results for Inseparability and E P R entanglement. 
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In asymmetric systems^ there are two possible values for EPR entanglement, since the 

conditional variance depends on the direction in which the inference is made, as discussed 

in Section 3.4.2. The reverse reconciliation case (tyî .) is shown in Figure 4.16, and has 

a value of e = 0.62 ± 0.03. The same figure also shows the results for the amount of 

Inseparability, which at its best is I = 0.51 ± 0.02. 

Since the squeezers have very similar characteristics, it is unlikely that this is the source 

of the asymmetry, and that this occurred later in the setup. 

There is an additional loss of 10% on one of the original squeezed beams due to the 90:10 

beamsplitter used for the combination of the squeezed TEMio beam with the coherent 

TEMoo beam. The quantum efficiency for the detectors is approximately 95%, and on top 

of this there is the imperfect overlap of the homodyne local oscillator beam with the mode 

profile of the detected beam. This can be observed through the visibility at the homodyne 

detectors, which appears to differ depending on the interaction of the beam of interest 

with the entanghng beamsplitter. For the beam that has been reflected from the coated 

side of the beamsplitter, the visibility is approximately 96% when observing TEMjo mode. 

If the beam has been transmitted through the beamsplitter, the visibility deteriorates to 

approximately 90%, and for a beam that travels through the glass, is reflected, and travels 

through the glass again, the visibility is 85%. This additional loss is suspected to arise 

due to phase distortion imparted onto the beam by the entangling beamsplitter. It may 

be that for a thinner beamsplitter this issue does not arise, however this could introduce 

other issues such as a decreased stabihty. 

Because of the asymmetry in the losses after the beamsplitter, a DC offset was intro-

duced in the error signal for the entanglement locking loop. The lock for the entanglement 

phase shift was optimised by adjusting the DC oflfset while observing the traces of 

or Vx-y^ which we sought to minimise. 

The two values can be seen in Figure 4.17, as fitted to the expected theoretical curves. 

Both the direct reconciliation and the reverse reconciliation result in an EPR trace that 

goes below one. The direct reconciliation gives a result of ê ŷ = 0.94 ± 0.03. 

Finally we must test the mode of the entangled beams before we can claim to have spa-

tial entanglement for our laser beams. The beam intensity must be mainly in the TEMQO 

mode, since this is the mode for which we are measuring the position and momentum. 

Our entangled beam is mainly comprised of TEMQO niode, with over 90% of the intensity 

For more details on how these two values arise, see Chapter 6 on Asymmetric Entanglement. 
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Figure 4 .17: The two results for the value of e. The lower curve shows the case for 'direct 
reconciliation', the upper curve shows the case for 'reverse reconciliation", and the middle curve is 
what a symmetric system with the same overall losses would expect to find. 

being in the TEAIQO mode. 

Over the same time frame, Boyer and others have been using four wave mixing to 

achieve spatial quantum behaviour. The group initially produced squeezing of 6.5 dB 

using four wave mixing in a hot ®®Rb vapour and used this to measure spatial quantum 

correlations between Laguerre-Gauss modes [33]. The same method was later used to 

create entanglement between T shaped images, and an inseparability of 0.37±0.02 (when 

normalised to one) and an EPR value of 0.55 was measured [40]. The group also produced 

two beams that were entangled for many different spatial mode local oscillators. 

4.6 Conclusion 

We have demonstrated spatial entanglement, or entanglement between the position and 

momentum observables, between two laser beams. OPAs were used to produce two TEMio 

squeezed beams, one of which was mixed with a bright TEMQO beam. The two beams were 

then mixed on a beamsplitter with a phase shift of 7r/2 two produce position momentum 
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entangled beams. 

The entanglement was characterised using to entanglement criteria: the EPR crite-

rion and the Inseparability criterion. Entanglement was observed over a broad range of 

frequencies, with the best Inseparability result being I = 0.51 ± 0.02. Asymmetry in 

the experiment led to two different values for the EPR entanglement, depending on the 

direction of inference that was used. The two values were found to be ty\x = 0.62 ± 0.03 

and ê iy = 0.94 ± 0.03. 
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Chapter 5 

Multimode Entanglement 

5.1 Introduction 

Although entanglement has been demonstrated for many different optical systems with 

two beams of light [36], there has been a trend towards extending entanglement into 

multimode systems that potentially allow more complex processes to be handled [41, 

42, 43]. Tripartite GHZ correlations and, more recently, cluster states combining four 

individual squeezed modes, have been demonstrated with impressive reliability [12, 44]. 

However, using separate beams to build the quantum state requires the combination of 

complex resources, in particular several squeezers, and many beam splitters, phase shifters 

and a set of separate homodyne detectors. This technology is difficult to simplify as it is 

very sensitive to losses and any mode-mismatch. 

An alternative approach is to consider multiple orthogonal modes within a single beam. 

There have been proposals to use correlated modes with different frequencies generated 

in one source [45], to correlate several frequency sidebands [46] or to use temporal modes 

that describe different pulse shapes [47]. Spatial modes, on the basis of Hermite-Gaussian 

(H-G) modes TEM„m5 can be generated efficiently, superposed with low losses [48] and 

many modes can be measured simultaneously using a single multi pixel homodyne detector 

[49, 50], It has also been shown that these spatial structures can also be noiselessly 

amphfied, even though the noise factor for amplification when working in the high gain, 

coherent state input regime is quantum noise hmited to 3dB. Choi et. al. [51] bypassed 

this using optical parametric amplification to achieve a gain of 2.5 on a two slit image with 

a noise factor of 0.2±0.6dB. Later Lopez et. al [52], extended this noiseless amplification 

to a range of images and for a range of gains using a confocal OPO. Such amphfication 

would be very useful for any potential quantum communication scheme using the spatial 

characteristics of beams. Shaping the local oscillator using a spatial light modulator and 

varying the gains on the pixels of the detector changes the measurement basis. This creates 
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a family of orthogonal measurements. As an in-principle demonstration we perform the 

entanglement of two spatial modes, TEMqi and TEMio, within one beam. 

The steps required to generate entanglement between two modes in one beam are the 

same as those required for a more traditional entanglement setup. We require two squeezed 

modes - in this case we need a squeezed TEMqi rnode and TEMio mode in one beam. We 

require a 7r/2 phase difference between the two modes before they are mixed with a 50:50 

ratio. We must then detect the correlations between the two modes for two quadratures 

separated by 7r/2. 

This work has been published in Nature Photonics 3, 399 (2009). 

5.2 Producing the squeezed beam 

Methods of creating squeezed higher order spatial modes have already been discussed 

in Section 4.3. Essentially, the OPA (optical parametric amplifier) can be seeded with 

the required spatial mode, and locked at a length that allows that mode to constructively 

interfere and pass through the cavity. The required cavity length generally changes slightly 

for different spatial modes, due to the Gouy phase shift, described in Section 2.8.2. For 

the TEMio and the TEMqi modes, this phase shift is identical, implying that when a 

linear cavity is locked for one of these modes, it is automatically locked for the other. If 

the cavity is an OPA, then the degeneracy that occurs due to the rotational symmetry 

means that two squeezed spatial modes can be obtained using one squeezer. 

Squeezed light in two orthogonal spatial modes is produced using a degenerate OPA 

operating below threshold, as seen in Figure 5.1. The OPA contains a magnesium oxide 

doped lithium niobate crystal as the nonlinear material. The technical details of the OPA, 

such as the dimensions and the reflectivity of the surfaces are discussed in Section 4.4.2. 

The OPA is seeded with a weak TEMqi held incident on the high-reflecting side of the 

OPA crystal. The alignment of the OPA is more crucial in this experiment, in order to 

achieve the degeneracy required - the cavity freciuency for the two different spatial modes 

must be very close to equal. The degeneracy between the two modes is optimized by 

changing the temperature of the laser crystal. For a squeezer to operate in the TEMiq 

mode, the ideal pump mode shape is a combination of TEMqq and TEM20 mode [34]. 

To produce both a squeezed TEMiq mode and a squeezed TEMqi mode, the ideal pump 

mode shape is more complicated again, with components in the TEMqq, TEM2Q, and 

TEMq2 modes. The OPA is here operated as a de-amplifier with a gain of 0.4 using 
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OPA Bright 
SQZ 

SQZ 

Figure 5.1: Schematic layout of the squeezing experimental setup. The squeezed beam is mea-
sured with a homodyne detector, and the TEMoi local oscillator (LO) is rotated to measure 
squeezing in different spatial modes. OPA: optical parametric amplifier; BS: 50:50 beamsplitter. 
Picture from [53]. 

180 mW of pump power in the TEMQO mode, which while not the ideal mode shape, 

nonetheless provides sufficient nonhnear gain. As a result, multimode squeezed light with 

a low intensity amplitude squeezed field in TEMQI mode and vacuum squeezed field in 

TEMio mode, is produced. We then measured the field from the OPA using a standard 

homodyne detection setup. The local oscillator (LO) mode shape determines which spatial 

mode we will measure, and we originally set this to the TEMQI mode. In order to measure 

the squeezing in TEMio mode, we then rotated the LO by 90°. The rotation is achieved 

using a Dove prism - an optical device that uses total internal reflection to rotate a beam. 

By rotating a Dove prism by an angle 7, the beam is rotated by an angle 27. For TEMQI 

operation we typically observed 4 dB of squeezing and 6.5 dB of anti-squeezing, as seen in 

Figure 5.2a. When the LO TEMQI mode is rotated with respect to the x-axis, we observed 

states of approximately the same sqtieezing and antisqueezing,as shown in Figure 5.2b. 

This demonstrates multi-mode squeezing generation using a single linear degenerate OPA. 

Note that since the measurements of the different spatial modes were not simultaneous 

with this setup, we cannot say anything about the relative phase of the two modes, or 

measure correlations between the different spatial modes. 
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Figure 5.2: a) Measurement of squeezed field in TEMqi mode and scanning the phase of LO. 
b) Measurements of squeezing/antisqueezing when the TEMqi LO beam is spatially rotated by 0 
along the 2:-axis using a Dove prism. 

5.3 Simultaneous mode detect ion 

5.3.1 Quadrant Detector 

In order to measure the correlations between the modes simultaneously, we replaced the 

standard homodyne detection system with a quadrant detector. The LO beam used with 

the quadrant detector was in the TEMqo mode. By combining the electronic signals from 

the quadrant detector with different gains, we can effectively choose which mode we will 

measure. 

The detector eigenmode is given by the product of the LO profile and the gain function 
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Figure 5.3: Principle of split-detection technique. The eigenmode of a split-detector is a flipped 

mode, resulting in 64% detection efficiency in TEMio basis. 

for the detector. This principle is shown for a spht detector operated with a TEMqo LO in 

Figure 5.3. The overlap integral with the TEMio mode then gives 64% as the upper limit 

for the detection efficiency. A quadrant detector can be operated as two split detectors by 

combining the quadrants with appropriate gains. 

Rather than using two quadrant detectors in the homodyne detector, here we use a 

more simplified system, with 90:10 beamsplitter ratio and a single quadrant detector. 

Recall from Section 2.5 that one of the outputs c for a beamsplitter with two inputs a 

and b, mixed with a phase difference </>, with a beamsplitter ratio of t can be written as: 

If we linearise this, it then becomes: 

c = + (5a) + e'^yftiP + Sb)). 

The intensity of this output is then: 

(5.1) 

(5.2) 

c^c = - t)ia*p + a*5b + P5a}) + - t){P*a + P*6a + aSb^) 
+ (1 - t){a*a + a*6a + aSa^) + t{(3*(3 + f3*Sb + (36b^). (5.3) 

If we set a and f3 to be real, we then find: 

etc = ^yt{l - t)[aP{e"t' + e-'^) + a{6be"^ + Sb^e-"^) + + 5a^e"l>)] 
+ (1 - t){a'^ + aSX+) + + I35X+). (5.4) 
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If we assume that our detector is on the beam c, then on this beam we need for the power 

coming from the local oscillator b to be much larger than the power coming from the field 

of interest a. In the usual homodyne setup detailed earlier, the requirement was simply 

that (3 a, but here we require » (1 - If this is the case, then we can find the 

end measurement to be: 

ctc = tp'^ + 2^/t{l - t)aP cos 4> + tf36X+ + y/t{l - t)/3SXf . (5.5) 

DC AC 

If we look at the AC term for the detector, there are two parts: one depending on the 

noise on the beam we're interested in (SXf) and one with noise from the local oscillator 

beam ((5X+). 

The disadvantage of this method is that there is always noise detected from the local 

oscillator beam. This noise can be decreased by lowering the beamsplitter transmission, t. 

If this value is lowered too much, then the local oscillator at the detector will not be intense 

enough for the assumptions made in the derivation. Here we use a 90:10 beamsplitter, 

giving us an extra loss of 10% on the detected beam. 

5.3.2 Digital data acquisition 

In most standard continuous variable entanglement experiments, there are two separate 

homodyne detectors, resulting in two quickly varying signals, SX^ and SXy, as shown 

in Figure 5.4a. In order to measure the Inseparability of the system, these signals are 

normally subtracted using an electronic splitter, and the signal is then sent to the spectrum 

analyser, which records the variance directly. 

If a digital data acquisition system is used, then the quickly varying signals SX^ and 

5Xy are recorded directly at a high speed - in our case they are sampled at lOMHz - and 

the pairs of data points can then later be subtracted, and the variance of the resulting 

signal can then be obtained. 

The difference between the two different methods of making measurements can be 

understood by considering the ellipse diagrams that were introduced in Section 3.4. The 

ellipses are obtained by taking the quickly changing SX^ and SXy measurements for the 

phase or amplitude quadrature, and plotting these parametrically. The first standard 

deviation for the points results in an elliptical shape, which can be compared to the 

quantum noise limit, which forms a circular shape. An example of one of these elhpses is 
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a) b) 

Figure 5.4: Different methods of taking the data for an entanglement experiment: a) the required 
signal can be obtained using electronic devices, and the variance for the signal measured on a 
spectrum analyser, or b) the noise of the system can be recorded directly using a digital data 
acquisition system. 

shown in Figure 5.5, with some of the values that can be found from the elhpse labelled. 

Essentially, the analogue subtraction of the two signals followed by measurement with 

a spectrum analyser gives us the value for whereas the digital data acquisition gives 

us the series of data points that allows us to draw the ellipse. As shown in Figure 5.5, this 

provides more versatility in the measurements that can be made. 

For a spectrum analyser, different sideband frequencies are measured by mixing the 

original signal with a local oscillator that couples the signal into a frequency at which an 

appropriate filter can be used. The filter that is used around the chosen frequency sets 

the resolution bandwidth, or RBW, for the measurement. Using digital data acquisition, 

the data is usually broken up into different sideband frequency components and analysed 

in detail after the measurement has taken place^. 

In our experiment, we don't have two separate homodyne detectors, but rather we use 

a single quadrant detector with different gain functions for the photodiodes to arrive at 

the required signals: dX^ and SXy. These two signals are fed into a National Instruments 

PXI system, and recorded simultaneously for one second with a sample rate of lOMHz. 

There are several methods of analysing the data, and here the method used for this 

'Each frequency component can then be thought of as having its own ellipse. 
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Figure 5 .5: A correlation ellipse for the ampli tude quadra ture of symmetrically entangled beams. 
Some of the characteristics of the beams tha t can be found from the ellipse are marked. 

experiment is outlined. The data was filtered for the range of frequencies between 0 and 

4MHz in increments of lOOkHz. The filter used was a sixth order Butterworth filter that 

is built into Matlab. and the width of the filter applied for each frequency increment was 

lOOkHz^. The filter can be applied by taking the Fourier transform of the data, and then 

multiplying the resulting frequency spectrum by the filter function. This is equivalent 

to obtaining the Fourier transform of the filter function, and taking the convolution of 

the transformed filter function with the original data. Since the convolution method is 

substantially faster, it was used for this experiment. 

The two resulting signals for a given sideband frequency. SX^^^ and can then be 

analysed as is required for the criterion being used. Here the simi or difference of the signals 

is taken for the amplitude and phase quadratures respectively, so that the Inseparability 

for the experiment can be found. The variance of the signals is then obtained by dividing 

the time-varying data into bins, and calculating the variance of each bin directly. Here the 

bins were set to 50.000 points, corresponding to 50ms of data for each value of variance 

found. The same process is performed for the quantum noise hmit data, so that the 

variances can be compared 

^This is equivalent to setting the RBW of the spectrum analyser to lOOkHz. 
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5.3.3 Simultaneous squeezing measurements 

The simultaneous squeezing measurements for the two modes are shown in Fig. 5.6. After 

detection on the quadrant detector, 1.7 dB of squeezing is measured in the two modes, 

which is sufficient for a clear demonstration of entanglement generation. Here it can be 

seen that a tt/T phase shift is present between the two fields, which might have an origin 

in a small misalignment of the OPA cavity. 

37r 
2 

LO phase (rad) 

Figure 5.6: The squeezing and antisqueezing produced by the degenerate OPA in the TEMqi 
and TEMio modes, as measured on a quadrant detector. 

The intensity and phase responses for the transmission of our OPA is shown in Fig-

ure 5.7. The mean power and phase can be found from: 

P = hf{A^A) 

2 • 1 ( I m ( i ) ) (f) = s m - ' ^ " (5.6) 
VP 

where A is defined in Equation 2.39. For a perfectly aligned cavity, the two modes being 

transmitted are exactly in-phase. If there is a misalignment in the cavity, then there may 

be a slightly different cavity length for the T E M Q I mode and the T E M I O mode, which 

then means that there will be a slightly different cavity frequency for the two transmitted 

modes. In our case, the cavity is locked to the T E M Q I mode, and a small misalignment 

in the cavity means that this does not correspond exactly to being locked to the T E M I Q 

mode. A shght mismatch has only a small impact on the power of the transmitted field 

(and hence the degree of squeezing) but results in a substantial change in the phase of the 



9 0 Multimode Entanglement 

transmitted beam. The vertical broken line in Figure 5.7 shows where a tt/7 phase shift 

occurs for our cavity. The vertical broken line shows the effect that the cavity frequency 

mismatch has on the power of the transmitted mode - a power loss of just 2%. This type 

of cavity mismatch is the likely origin of the 7r/7 phase difference that we observe between 

the two scjueezed modes. 
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F i g u r e 5 .7 : The intensity and phase response for the transmission of the OPA cavity. The 
misahgnment that results in a 7r/7 phase shift between the two modes also results in a drop in 
power of 2%. 

5.4 Entangling the two modes 

There is a well-established set of requirements for entanghng two optical beams, and we 

meet all of these in our urmsual setup. A 7r/2 phase shift is first required between the 

two beams, which for standard entanglement is simply a matter of phase shifting one 

of the beams with respect to the other. The beams then need to be mixed together, 

which is generally achieved with a 50:50 beamsplitter. Finally, we need to observe a pair 

of conjugate observables, which requires a phase-sensitive detector in order to measure 

quadrature entanglement. This is usually achieved with one homodyne detector on each 

of the entangled beams. 
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5.4.1 Cylindrical lenses 

In order to induce the TT/2 phase shift we used an optical method employing the Gouy 

phase shift in higher order modes [54], The output of the degenerate OPA was mode-

matched into a symmetric two cylindrical-lens system (focal lengths / = 2 5 0 mm, with lens 

separation of \ / 2 f ) , as shown in Figure 5.8. These cylindrical lenses then impart a 7r/2 

phase shift on one of the modes, as seen by comparing the squeezing traces in Figures 5.6 

and 5.9. 

OPA 

Figure 5.8: The setup for the entanglement experiment, with a pair of cylindrical lenses inducing 
a 7r/2 phase shift and a quadrant detector for simultaneous measurement of the two spatial modes. 
OPA: optical parametric amplifier; LO: local oscillator; HD; homodyne detection; QD: quadrant 
detector. Picture from [53]. 

The original modes detected, SX^ and 5Xy are obtained from the quadrant detector 

shown in Figure 5.8 according to = (5X(.4+s)-(c+D) and SXy = SX^ji+c)-(B+D)-

We then need to mix the T E M Q I and TEMio modes, equivalent to having a 50:50 

beamsplitter. Any HG mode can be expressed as a superposition of two orthogonal modes 

of the same order as the original field. This is analogous to the superposition of polarization 

modes in a 2 dimensional basis. A TEMio mode rotated by ±45° relative to the a:-axis 

can be expressed as ; ^ T E M i o ± ;^TEMoi . This means that our 'beamsplitter' can be 

realized by detecting in a basis that is 45° rotated relative to the axis of the cylindrical lens 

system. This new rotated detection basis is then written as SX^i and 6Xyi. As expected 

from quantum theory, measurements of the arbitrary quadratures of entangled fields show 

noisy states, as seen in Figure 5.10. The variation in the output that can be seen arises 

because of the slight difference in the values for antisqueezing in the two original variance 

traces shown in Figure 5.6. 
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Figure 5.9: The squeezing and antisqueezing traces as measured on the quadrant detector after 
a 7r/2 phase shift was imparted onto one mode with the cylindrical lenses. 
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Figure 5 .10: The quadrant detector rotated by 45° gives us the two entangled modes. The 
variance of this is higher than the QNL. as expected. 
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With these data we can calculate the Inseparability criterion I , which is a direct witness 

of entanglement. With the sum and difference of the signals of the two orthogonal fields 

as introduced in Section 3.4.1, we evaluate the equation X = ^Jv^'+y- {(l)o + 

where (po is chosen such that I is minimized. This results in values of I that are lower 

than one over a range of detection frequencies, as shown in Figure 5.11. We demonstrate 

significant entanglement between two orthogonal spatial modes within one optical beam. 

This entanglement can be enhanced with the use of specially designed multi pixel detectors. 

This concept can be used to produce entanglement between any two orthogonal modes of 

the form TEMjk and TEM^j. 

(t>0 
LO phase 

(po+njl 

Figure 5.11: Results for Inseparability. Measurement of the variance for the sum V^'+y' {(j)) and 
difference {(j)) for the 45° rotated fields. The data, both below the QNL. are combined to 
one value for the inseparability. 

An Inseparability of less than one can be found for a broad range of frequencies, as 

shown in Figure 5.12. The best value obtained occurred at 3.3MHz, and was found to be 

0.79±0.02, after corrections are made for electronic noise. 

During this same time frame, similar entanglement experiments were performed at the 

Technical University of Denmark by Lassen et. al. [55]. In this experiment, a single bow-tie 

squeezer was used to produce two squeezed modes (HGio and HGqi), and measurements of 

the Hermite-Gauss modes were used to infer the entanglement between the LGq ^ modes. 

The Denmark group used homodyne detection with a clever local oscillator beam layout 

that allowed them to measure different mode shapes. The group took noise measurements 

for HGio, HGoi, and the modes on the output of the OPO cavity. 
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F i g u r e 5.12: The inseparability was found for a broad range of frequencies at intervals of lOOkHz. 
The lowest value for inseparability is 0.79±0.02, and occurs at 3.3MHz. 

5.5 Spatial modes 

The simplified mode profile for the fundamental mode, HGQO, can be found from Equa-

tion 2.30: 

HGoo = Aooe-^'^oi^'+y') (5.7) 

where ^oo and Coo are constants that depend on the beam parameters. 

The higher order HG modes that are of interest here are only slightly more complicated, 

with profiles given by: 

BGoi = y 

HGw = (5. 

Let's assume that the modes are equivalent apart from the values of rn and n, so that 

^10 = ^01 find Cio = Coi. In the experiment, we rotate the beam by tt/4 about the 

z-axis using a Dove prism. If a = //Goi and b = HG\o are our original copropagating 
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squeezed modes and we apply the appropriate rotation matrix, the rotated HG modes can 

be described as: 

-

01 

• v/2 

V2 

a + b) 

a-b). (5.9) 

A rotation of the beam is then equivalent to mixing the two original modes. The beamsplit-

ter expressions in Equation 2.16 show the same result when the relative phase difference 

between the two input beams is set to zero. The beam rotation in combination with the 

quadrant detector that remains oriented to measure the HGio and HGoi modes is then 

the same as using a 50:50 beamsplitter. The rotational equivalence to mode mixing is 

shown graphically below. In the experiment, before rotating the beam we impart a phase 

+ 

shift on the mode b using cylindrical lenses and the Gouy phase shift they impose. The 

Hermite-Gauss basis that we detect then corresponds to the equations: 

DetHGo. = + = + 
^10 

V2 
A 

V2 

(5.10) 

+ I 

— I 

The expressions on the right hand side of Equation 5.10 are identical to the beam-

splitter outputs in a standard entanglement setup, so this setup then has entanglement 
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between the detected HGqi and HGio modes, as shown in the mode pictures above. 

We measure the Ught using a homodyne detector where we scan the local oscillator 

phase to gain access to the diflFerent quadratures. For the equations, this corresponds to 

multiplication by an exponential term, so for an additional 7r/4 phase in the local oscillator: 

^/2 

n / 2 ' 
i - 1 I + 1 

V2 . v 2 . . v 2 

HG^r^ HG, 

(5.11) 

This is shown graphically below. 

+ i ) + i 

For the experiment, we arranged the beam orientation with respect to the detector so 

that we detected the ideal quadratures for entanglement while simultaneously having a 

50:50 beamsplitter ratio. In the mode diagram above, we can see that as the local oscillator 

angle changes, the detected modes also change. Given the previously discussed equivalence 

between beam rotation spatial mode mixing, we must be careful when interpreting results 

for quadratures other than the entanglement quadratures, since here we are no longer 

simply mixing the two modes on a 50:50 beamsplitter. 

5.6 Future work 

Here we have demonstrated a simplified optical setup for two mode entanglement using two 

spatial modes in a single beam. Ultimately, the motivation for this experiment involves 

the expansion of multiniode entanglement into more orthogonal spatial modes, to make 

the system more scalable and therefore a possible tool in future quantum networks. 

The current setup for imparting a 7r/2 phase shift onto one of the modes with respect 

to the other involves a pair of cylindrical lenses. This system as it is set up here only 
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works for entangling TEMnm mode with TEMmn mode, and could be adapted for other 

pairs of spatial modes, though it would be more difficult. One of the motivations behind 

performing an entanglement experiment using different spatial modes on a single beam is 

the potential for scalability in the design, and use of cylindrical lenses to impart a phase 

shift would no longer be a simple task for more than two spatial modes. To this end, the 

research is currently being extended by the design of a universal mode converter. Mode 

conversion can be achieved using a series of spatial light modulators, or SLMs, with a 

Fourier transform in between each pair of SLMs. This system would allow both changes 

in the intensity and the phase of the output beam. The current incarnation of the mode 

converting device uses a single SLM, but has the light interacting with just one portion 

of the surface before being being Fourier transformed and then focussed onto a second 

portion of the SLM surface. In this way, the single SLM is used to modulate the beam 

three times. 

The mixing of the two modes was achieved in this experiment by rotating the quadrant 

detector that was used by tt/4. This technique is not, in general, apphcable to other spatial 

modes available, but the use of the mode converter described above would allow mixing 

between different spatial modes in the required ratios. 

The detection was performed with a quadrant detector, with adjustments on the gain 

of the different quadrants in order to obtain detector eigenniodes that are a reasonable 

match for the spatial modes being measured. As the number of spatial modes tha t must be 

detected increases, so too must the number of pixels in the detector, in order to distinguish 

between the spatial modes present. 

5.7 Conclusion 

We have demonstrated an elegant technique to create and measure entanglement between 

two orthogonal spatial modes in a single beam of light. We have shown and tested several 

simplifications to traditional entanglement schemes, including generating two squeezed 

modes from a single OPA, using imaging components to mix the modes with the correct 

phase and detecting the two modes simultaneously with one quadrant detector. The 

results for two modes are complementary to those that can be achieved with polarisation 

techniques. However, this technique has the potential to be expanded to several higher 

order TEMmn modes, creating a larger number of quantmn channels. 

The tools for a multimode system are being developed. We can already synthesize a 
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beam with several higher order spatial modes from several sources of squeezed light [48]. 

The mixing and entanglement could be performed for a larger number of modes using 

imaging techniques, such as employing a programmable spatial light modulator. One 

multi pixel detector with multiple gain functions applied to match the field amplitude 

of each orthogonal mode could be used to make simultaneous measurements of all the 

higher order spatial modes with one local oscillator. Accessing this expanded basis of 

quantum information channels within a single beam and the possible manipulation of 

the modes makes this technology a practical contender for optical multimode quantum 

communication systems. 



Chapter 6 

Asymmetric entanglement 

In any real entanglement experiment, there will always be losses due to the various com-

ponents that are a part of the system. Normally, the assumption is made that the losses 

in the experimental setup occur in a symmetric fashion, but in some cases the distribution 

of the losses may occur in such a way that it introduces an asymmetry in the experiment 

- for instance, there could be a loss on one entangled arm, but not the other. Other asym-

metries can emerge from having non-identical squeezers, or from deliberately limiting the 

number of squeezers used, and it is worthwhile to investigate these asymmetries in order 

to be able to effectively optimise a system. 

6.1 Direction of inference 

When measuring the EPR value in an entangled system, the direction of the inference that 

is being made can in some cases be important. The EPR value depends on the conditional 

variance of the system (see Equation 3.33), and the conditional variance essentially involves 

the measurement of one beam and the use of this value to infer the measurement that will 

be made on the other beam. There are two conditional variance measurements that can be 

made: and as defined in Equation 3.35. In the former, beam y is measured and 

used to predict beam x, and in the latter, beam x is measured and used to predict beam 

y, as explained in Section 3.4.2. These measurements are termed direct reconciliation and 

reverse reconciliation respectively. The two EPR values are found from these conditional 

variances, with = V + V - ^ and = V + V - ^ . 

In order to investigate the effects of losses in the system, we must first identify the 

possible places where losses can occur. Figure 6.1 shows a standard setup, with input 

beams 1 and 2, and output beams x and y. Here the OPAs and the homodyne detectors 

are considered to be perfect, with any losses at these elements combined into the generic 

losses at the appropriate positions. Each beam has a power transmission given by rji, t/2, 
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Figure 6.1: A standard entanglement experiment, showing where the losses can fall. 

Tlx, or riy, and the loss on each beam is then 1 - 77. Note that tills simple model assumes 

that there is no excess noise being coupled into the system. 

One method of visualising the correlations that exist between the two beams is by 

drawing correlation ellipses, as seen in Section 3.4. This corresponds to paxametrically 

plotting the measurements of x and y for a given quadrature until a statistical sample is 

obtained, and then drawing a line where the standard deviation of the distribution falls. 

This line ends up being an ellipse, and this can then be compared to the corresponding 

shot noise circles to understand the various entanglement measures. As seen in Section 3.4, 

the ellipses can be used to find many values that might be of interest in an experiment; 

Vx, Vy, Vx\y, and Vx̂ ŷ can all be found from the ellipses. 

Figure 6.2a uses these correlation ellipses to show the different measurements that 

lead to the two possible EPR values. This case has two 6dB squeezers incident on a 

50:50 beamsplitter, with no losses in the system. For the ellipses shown here, the two 

measurements that can be made, €x\y and Cŷ x, are identical, due to the symmetry of 

the system. When there are no losses present in the system, the semi-minor axis on 

the ellipse for one quadrature is the inverse of the semi-major axis on the ellipse for the 

other quadrature, when all measurements are normalised to the QNL. This shows that 

the state, if Gaussian, is minimum uncertainty, and is analogous to the case when the two 

quadratures for a sciueezed state have a product of one. As expected, losses then increase 

this product. 
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Figure 6.2: a) Correlation ellipses for a symmetric system, with rji = 1^2 = Vx = ?/y = 1. 
The initial amount of squeezing is set to 6dB. The circles show the quantum noise limit, and the 
conditional deviation is marked. The conditional variance is the square of this value, V̂ ŷ = . 
b) Correlation ellipses for a system with two 6dB squeezers incident on a beamsplitter. The y beam 
then undergoes a 50% loss, while the x beam has perfect transmission. EPR entanglement can 
now be seen with the measurement of £y|j., but not with 
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If we consider the case where an extra loss is apphed to one of the entangled arms, 

but not the other, then we arrive at the ellipses shown in Figure 6.2b. Here we have the 

same 6dB squeezers, but there is a 50% loss on the y beam after the beamsplitter. Now 

the ellipses are wider, and there is no longer symmetry about the diagonal axes, which are 

marked with broken lines. While the EPR measurement would still show entanglement 

for it can no longer be observed for ê ŷ. It is clear that the direction of the inference 

is now a determining factor in the final number measured for the EPR entanglement. An 

extra loss on the measured beam is strongly detrimental to the EPR value obtained, but 

loss on the predicted beam has less of an effect on the entanglement value measured. If 

we evaluate the two e values as a function of the transmission T]y, we find that even as 

the transmission of the y channel approaches zero, the value for eŷ ^ is less than one\ as 

shown in Figure 6.3. Thus EPR entanglement can still be witnessed in a system where 

one of the entangled arms is very lossy. 

This effect was inadvertently encountered while the position-momentum entanglement 

of laser beams was performed (Chapter 4). Here, the beamsplitter was causing an effective 

extra loss on one of the entangled beams. This resulted in two different measures of EPR 

entanglement depending on the direction in which the inference was made. The results 

can be seen in Figure 6.4, and they are quite difi'erent, though each clearly shows the 

existence of EPR entandement. 

Figure 6.3: Measure of EPR entanglement, and for a system with two 6dB squeezers 
incident on the beamsplitter. The transmissions 771, ri2 and r?̂  are one, and the transmission rjy 
varies from 0 to 1. 

^Note that this is no longer the case if there is any loss on the squeezed beams before the beamsplitter. 
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Figure 6.4: The continuous variable position-momentum entanglement experiment, showing an 

asymmetry depending on whether the inference made was ej.\y or ty^̂ .. 

E P R entanglement from directional measurement is of interest to Quantum Key Dis-

tribution (QKD) systems, where two parties, often termed Alice and Bob, attempt to 

establish a secure key while in the potential presence of an eavesdropper, Eve. A secure 

key can be established when there is a net information rate of greater than one [56]. Once 

a secure key has been established, the key can then be used to send encrypted information 

between the two parties. Reverse reconciliation is used in cryptography protocols: if Alice 

is creating the data to establish a key, then her measurement can be expected to have a 

lower loss than Bob's measurement, since his beam has travelled through a channel with 

some loss [57]. The two measurements must then be compared either by Bob predict-

ing Ahce's measurement (direct reconciliation) or by Alice predicting Bob's measurement 

(reverse reconciliation). The net information rate is then given by 

A / = - log2 

/T/+ V- \ 

1/+ V 
(6.1) 
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for direct reconciliation or 

A / = - log2 
/ ! / + V- \ 1 , 

1/+ V~ (6.2) 

for reverse reconciliation. Reverse reconciliation is the more favourable option, because of 

the loss experienced on the beam measured by Bob. This is equivalent to using Cŷ ^ instead 

of above. A review of quantum information protocols in the continuous variable regime 

can be found in Braunstein and \'an Loock [58]. 

6.2 Biased entanglement 

In all of the experiments considered so far, the entanglement has been the result of two 

similar squeezers whose outputs were mixed with a 50:50 beamsplitter. It is possible, 

however, to use just one squeezer and still achieve both EPR and Inseparability entan-

glement. This experimental setup is known as biased entanglement [59], and while the 

entanglement doesn't exhibit the same degree of correlation as the more standard setup, 

the corresponding simplification of the experiment can prove to make this a worthwhile 

concession. Apart from negating the necessity of building and locking one extra squeezer, 

having one vacuum input into the beamsplitter means that the usual need to mode match 

the beams and lock the phase of the beams is no longer relevant. 

The biased entanglement setup used in [59] consisted of a single squeezer and a 50:50 

beamsplitter. This is equivalent to the setup shown in Figure 6.1 with ri2 = 0. The two 

output beams can then be described as: 

^ ^ = + 1) (6-3) 

and the EPR measure is found to be; 

= (6-4) 

For a biased entanglement setup with a 50:50 beamsplitter, the existence of EPR 

entanglement can only be measured for a transmission > A setup with rj^ = Vy = ^ 

results in the correlation ellipses shown in Figure 6.5a. One of the axes of each ellipse is 
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coupling in vacuum noise, and so are the same as the quantum noise limit. Adding a loss 

to the squeezer (by decreasing TJI from one) changes one axis on each of the ellipses, and 

as expected leaves the other unchanged, as seen in Figure 6.5b. 

6.2.1 Beamsplitter Rat io 

The 50:50 beamsplitter that has featured in experiments until now is the optimal ratio for 

symmetric setup, but it can easily be changed should a different ratio be preferable for a 

given experiment. If we investigate the more general case of any beamsplitter ratio in a 

biased entanglement setup, we instead get two output beams with variance: 

= (1 -1 ) +1 

Vy" = Vi't + (l-t). (6.5) 

where t is the transmission of the beamsplitter used. 

In terms of the correlation ellipses, such a change in beamsplitter ratio corresponds to 

a rotation of the ellipses from their original positions. The angle of the ellipse axis is then 

given by 0 = as shown in Figure 6.6. 

Such a rotation can lead to an improvement in the EPR entanglement for one direction, 

at the expense of the EPR entanglement in the other direction, as seen graphically in 

Figure 6.6. 

The EPR measurement that can be made is then: 

_ V̂ i+l̂ r (rc^ 

In the absence of asymmetric losses after the beamsplitter, the ideal transmission, as 

given by differentiating the EPR value with respect to t, is given by: 

V = (6.7) 

This is shown in more detail in Appendix 2. 

If the beamsplitter is set to the optimum value, then the minimum transmission re-

quired on the squeezed beam to observe EPR entanglement decreases from rji > | to 
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ryi > This is shown for the case of a 6dB squeezer in Figure 6.7. Note that for a sym-

metric entanglement experiment with two identical squeezers, the transmission on each 

squeezer must be r? > | in order to measure EPR entanglement. While biased entan-

glement with a 50:50 beamsphtter requires a high quality squeezer, the use of a variable 

beamsplitter enables EPR entanglement measurement with any squeezer that would be 

sufficient for a symmetric two-squeezer experiment. 

Figure 6.8 shows the EPR value for a varying transmission for the squeezer and a 

varying beamsplitter transmission, t. The section to the right of the EPR entanglement 

boundary show where the value of ê ŷ gives a value of less than one. The position that 

corresponds to a beamsphtter ratio of 0.5 is marked with the horizontal line. The loss of 

the squeezer that was used to test the theoretical results is shown with the vertical broken 

line. 

The same technique can be applied to help counteract asymmetries in two squeezer 

setups, or when the Inseparability is the entanglement criterion that is of interest. The 

effect of the optimisation is the greatest for EPR entanglement because the direction of 

the inference made is important. The results for the optimal beamsplitter ratio for cases 

other than the EPR entanglement with a biased setup are shown in Appendix 2. 

While improving the EPR value is by no means evidence of there being "more" entan-

glement than there was previously, there are some applications where lowering the EPR 

value is necessary. For example, the information transfer rate for QKD systems is strongly 

dependent on the EPR value of the system. Similarly, teleportation of an arbitrary state 

requires the existence of EPR entanglement. 
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F igure 6.5: a) The correlation ellipses resulting from a biased entanglement experiment, with 
no loss on the original squeezed beam. The squeezer used here is 6dB. b) A biased entanglement 
experiment with a loss on the single squeezer. 
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sx: 

Figure 6.6: Here the biased entanglement experiment has a loss on the original squeezed beam. 

The beamsplitter used is 80:20 {t = 0.8 in Figure 6.1), and now EPR entanglement can be measured 

for e îy but not for e^ij.. 

-X\y 

0.8 0.9 ^ ^ 

Squeezer transmission (r/i) 

Figure 6.7: The theoretical measurement of EPR entanglement in one direction for a setup with 

a 50:50 beamsplitter (t = 0.5), and a setup wliere the beamsplitter ratio has been optimised 

according to the loss in the system {topt — 
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F igure 6.8: The theoretical EPR value for a biased entanglement experiment, with a varying value 

of loss on the squeezer (the transmission r/j) and a varying beamsplitter transmission, t. The usual 

case for a beamsplitter ratio being 0.5 is marked with the horizontal line, and the transmission of 

our squeezer at the time of the experiment is marked with the vertical broken line. 
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6.2.2 Experimental Details 

An entanglement experiment was performed in order to test the theoretical results that 

show that EPR measurements can be improved in some instances by changing the beam-

sphtter ratio. For a given value of loss before the beamsplitter, the beamsplitter ratio was 

varied, and the EPR value measured at each ratio. 

Figure 6.9: The biased entanglement experiment had a hnear OPA, with a variable beamsplitter 
consisting of a half wave plate and a PBS, and two homodyne detectors. 

Figure 6.9 shows the simplified setup for the experiment. There is a single squeezer, 

and a half wave plate in combination with a polarizing beamsphtter is used as a variable 

beamsplitter. There are then two homodyne detectors to measure the amplitude and 

phase information of the beams. 

The experimental setup with additional information about the detection system is 

shown in Figure 6.10. This diagram shows extra half wave plate/PBS combinations in 

several beams in case we wished to put extra losses on the beams before or after the main 

entanghng beamsplitter. Ultimately, the original loss in the system was high enough that 

adding extra losses does not result in EPR entanglement, so these results are not included 

in this section. 

The data was recorded using the data acquisition system previously described in Sec-

tion 5.3.2. Each detector has two outputs - the high frequency signal (termed AC, or 

alternating current) and the low frequency signal (termed DC or direct current). As in 

Section 5.3.2. the SX^ and dXy signals from the subtracted homodyne detectors are sam-

pled at lOMHz. and the data is processed later. The slow acquisition, at lOkHz, was used 
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Laser source 

F igure 6.10: The experimental setup for the experiment. The experiment had several detectors to 

record both the instantaneous changes at the homodyne detectors and the DC power measurements 

for finding the beamsplitter ratio t. 

to find the amount of power on each of the detectors, which was then used in combination 

with the a Labview progrannne to find the transmission of the entanghng beamsphtter. 

This can be found from the detector DC signals shown labeled in Figure 6.10: 

^ _ D5 + De + D2 

D5 + De + D2 + D3 + Di 
(6.8) 

and this can be used in real time to adjust the ratio by rotating the half wave plate. 

The data was post processed using Matlab to obtain the variances for the different 

values that were recjuired, using the same details used in Section 5.3.2. The values of t, 

and Vy for the phase and amplitude quadratures were used to work out the original amount 

of squeezing as accurately as possible. For each different beamsplitter transmission, these 

values can be used with Equation 6.5 to find the original squeezing and antisqueezing. 

The output of the OPA was found to be 2.9dB of squeezing and 5.3dB of antisqueezing. 
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These values were then used to find the theoretical results for the experiment tha t will 

later be shown compared to the measured results. 

Changing the beamsplitter ratio meant that the power in the two entangled beams 

changed as the experiment was performed. This led to changes in the error signals tha t 

then affected the locking systems tha t were used to lock the phase of the local oscillators 

to the entangled beams. The locking loops then had to be optimised for each measurement 

that was made. In some cases, only one of the entangled beams was locked to the required 

local oscillator phase, and the other local oscillator beam was scanned. 

An example of one set of da ta is shown in Figure 6.11. The variances from the two 

homodyne detectors over one second is shown in this case, where both of the local os-

cillator beams are locked to the phase quadrature. For each beamsplitter ratio used in 

the experiment, sets of da ta such as those used to obtain Figure 6.11 were taken three 

or more times. There were two reasons for discarding da ta that had been taken: for a 

locked beam, the lock becoming unstable, which can then be seen in the variance trace 

from the homodyne detector; or, if the local oscillator is being scanned, then the required 

quadrature might not be reached in some cases, making the data unusable. 

V. y K 
X 

time time 

Figure 6.11: The variances for the two homodyne detectors. The da ta are normalised to one. 

Using the same da ta that yields the variance for each homodyne detector, the condi-

tional variance was found for both quadratures at every beamsplitter ratio investigated. 

This is shown for the example case in Figure 6.12, for the beamsplitter ratio of t = 0.1. 
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Figure 6.12: The conditional variance using the same data that was used to find the results in 
Figure 6.11. The data are normalised to one. 

The results for the EPR entanglement with a varying beamspHtter ratio are shown 

in Figure 6.13, alongside the theoretical curve for the experiment. The theoretical curve 

is calculated using the known characteristics of the squeezer, which produces 2.9 dB of 

squeezing and 5.3 dB of antisqueezing, as discussed previously. The agreement between 

the measured and theoretical values is within experimental error, and EPR entanglement 

is achieved with a beamsplitter transmission of 0.78, but is not achieved with a more 

traditional beamsplitter transmission of 0.5. At a beamsplitter ratio of 0.78, an EPR 

value of 0.96 ± 0.02 was obtained. The error arises from the changes in the variance due 

to the locking systems. 

6.3 Conclusion 

We have shown that the direction of the inference that is made to perform an EPR 

measurement is important in cases where there is an asymmetry in the experiment. It 

was found that changing the beamsplitter ratio could optimise the measurement made 

for a lossy system, in some cases enabhng an EPR measurement to be made when it 

would otherwise not be possible. In the case of a biased entanglement setup, with just 

one squeezer, the ideal beamsphtter ratio was found to be topt = This was verified by 
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Figure 6.13: The results of the biased entanglement experiment, showing the measured E P R 
entanglement (ei|y) for a varying beamsplitter ratio, t. The line is the theoretical curve based on 
the original level of squeezing and antisqueezing. 

per forming a biased entanglement exper iment , with E P R entanglement meastired when it 

could not have been measured using a 50:50 beamspl i t ter . 



Chapter 7 

Conclusion 

This thesis has detailed three experiments that have been performed that match two gen-

eral aims: to extend optical entanglement experiments into higher order spatial modes, 

where the potential scalability of the entanglement is improved, and to simplify entangle-

ment experiments in order to optimise entanglement when dealing with finite and imperfect 

resources. 

The three experiments described here are: 

• the spatial entanglement experiment; 

• the multimode entanglement experiment; and 

• the asymmetric entanglement experiment. 

Spatial entanglement 

The spatial entanglement experiment involved the entanglement of the position and mo-

mentum of bright laser beams. Two squeezed TEMio beams were produced, and one 

was combined with a reference TEMQO beam. The two resultant beams were then mixed 

together on a beamsplitter with a 7r/2 phase shift. The aim was to observe the EPR entan-

glement witness, in the spirit of the original Gedanken experiment. The EPR value was 

found to be 0.62±0.03 for one direction of inference, and 0.94±0.03 for the other direction 

when normalised to a QNL of one. The inseparability for the system was also measured, 

returning a value of 0.51±0.02. 

The spatial entanglement experiment is an example of applying the original thought 

experiment to macroscopic objects, in this case to intense laser beams. The demonstration 

of entanglement performed here makes the concept of entanglement more accessible, due to 

the use of the highly intuitive observables - position and momentum - and the application 

of these observables to laser beams, which are ubiquitous both in optics and in society at 

large. Further, the requirement for good quality higher order spatial mode squeezing in this 
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experiment led to improved techniques for producing multimode squeezed beams, making 

entanglement for higher order modes more attainable for this, and other, experiments. 

M u l t i m o d e en t ang l emen t 

The multimode entanglement experiment aimed to build upon more traditional optical 

entanglement setups in a way tha t is novel, uses fewer components and has more scope for 

scalabihty. The experiment takes place on a single laser beam, using different higher order 

spatial modes instead of spatially separated laser beams. The importance of scalability 

in quantum systems cannot be overstated - the information capacity and, potentially, the 

computational power for quantum systems increases dramatically with an increase in the 

immber of independent modes available. 

There were several practical components in this experiment that were applied in orig-

inal ways: 

• The linear squeezer was aligned carefully so tha t it was degenerate for TEMjo and 

TEMoi modes, and thus one squeezer was used in place of the usual two squeezers. 

• The phase shift between the two spatial modes was created using a pair of cyhndrical 

lenses positioned on the beam. This induced a Gouy phase shift that was different 

for the two spatial modes, and the distance between the lenses was adjusted to tha t 

the relative phase shift was 7r/2, as required. 

• The detector used was a quadrant detector, set up with a local oscillator to allow 

amplitude or phase measurement for both modes at the same time. Here we also em-

ployed the detector as a mixer (much like a beamsplitter would in other experiments) 

by rotating it by it/4 with respect to the entangled beam. 

The multimode entanglement experiment measured the inseparability between the two 

entangled modes to be 0.79±0.02. As well as improving the scalability of the entanglement, 

the experiment also represents a simphfication in entanglement setups, with fewer resources 

required compared to other optical entanglement experiments. 

A s y m m e t r i c en t ang lemen t 

In general, a biased entanglement setup consists of one squeezer and a 50:50 beamsplitter. 

While all entanglement experiments are susceptible to losses, this setup is particularly so, 

and if the loss is over 33%, E P R entanglement can no longer be measured. By using a 



beamsplitter that is adjusted to suit the loss of the system, EPR entanglement can be 

witnessed for losses of up to 50%. The ideal beamsplitter ratio was found to be where 

rj is the transmission of the squeezer that is used. The experiment was performed using 

a polarizing beamsphtter with a half wave plate as a variable beamsplitter, and EPR 

entanglement was witnessed with a loss that would otherwise make such a measurement 

impossible. Optics equipment is rarely without loss or imperfection, and the knowledge of 

how to optimise an experiment so that this loss has as small an effect as possible on the 

end result will be useful for many quantum optics experiments. 

Outlook 

Here we have described three experiments that have been performed: the spatial entangle-

ment experiment, with position-momentum entanglement of laser beams; the multimode 

entanglement experiment, where two spatial modes were entangled on a single beam; and 

the asymmetric entanglement experiment, where the entanglement of a system is optimised 

depending on the various losses encountered. While the three experiments described all 

work towards the two general goals stated at the beginning of this conclusion, they are 

also connected more directly in their application to the next experiment planned by the 

quantum imaging group at the ANU. 

The group is working on extending the multimode entanglement experiment to more 

spatial modes, making use of the improved scalability that comes with this setup. 

There will be several new components to this planned new experiment. The quadrant 

detector will be replaced with a detector of higher pixelation, to allow several modes to be 

measured simultaneously. In order to mix the modes and apply phase shifts between the 

modes, spatial light modulators are employed in a mode converter. This new experiment 

should be able to entangle more modes and therefore carry more information, and the type 

of entanglement witnessed could be extended to measures such as GHZ entanglement. 

The optimisation of the beamsplitter ratio to improve the entanglement produced 

can be adapted to different entanglement setups and measures. Here it is applied to a 

biased EPR entanglement experiment, but the same method can be employed for the 

inseparability measure, and for setups with two squeezers and different losses on each 

input or on the two entangled beams. 

Recent years have seen research groups developing quantum resources that can impart 

tuned delays on to EPR entangled beams [14], that serve as quantum memories [13], and 
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that are able to entangle various objects across several modes [60]. Our experiments are 

part of a greater movement within the quantum optics community to make these devices 

more practical to implement in either quantum communication networks or in many other 

potential applications. 

In the less immediate future, the potential applications of optical entanglement are 

far-reaching, with schemes proposed for quantum computers, quantum communication 

systems, and various improvements to precision measurements. Our achievement in sim-

plifying and optimising the production of optical entanglement will aid in the development 

of these applications. 



Appendix A 

Entanglement equations 

The output fields of the beamsplitter, â r and Uy, can be written in terms of the input 

fields, a I and 02, as follows: 

ay = e'̂ y (T ia i - . (A.l) 

Here P is the relative phase between the two input fields, and (f)x and (py are the phases 

required to make the expectation values a^ and ay real. We can also obtain the creation 

operators for the fields: 

at = e-'^y - VT^te '^^al^ . (A.2) 

Note that setting ax,ay G 3? is effectively defining the amplitude quadrature such 

that it corresponds to the intensity of the beam, so the quadrature measured by a simple 

photodetector is always the amplitude quadrature. 

From here, any quadrature can be defined by the relationship: 

= ae"'^ + ate'^ (A.3) 

We have expressions for the two outputs of the entanglement beamsplitter for the case 

where two input beams of equal power are mixed with a 7r/2 phase difference on a 50:50 

beamsplitter. These can be found by setting 4>x = 7r/4 and (j)y = -it/A in Equations A.l 

and A.2, and then using A.3 with 0 = 0 for the amplitude quadrature and Q = - K j l for the 
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anew = 

Figure A. l : Two beams mixed with a Tr/2 phase shift result in a new coherent ampli tude. 

phase quadrature. The outputs are given by: 

(A.4) 

We can look only at the noise portion of the output beams by taking the quickly changing 

part of the expressions: 

SXf = ^ { S X + ± 6 X + t S X ' . (A.5) 

In order to find the EPR value that can be obtained, we must first calculate the 

conditional variance for both quadratures. The conditional variance is given by: 

= miug - gSXyf 

I {6X^6Xy) |2 
= K - K (A.6) 

We can find the expressions for V̂^ and Vy by calculating (^(SX^^^yfj using the substitutions 

—> V1.2, ^ - h and we then arrive 



at: 

= = ^ ( + + V f + V i ) . (A.7) 

Similarly, we can find: 

(<5X±<5X±> = - (± V ± T V^r T V,-) {A.i 

Then by calculating the conditional variance for both quadratures, we can arrive at the 

EPR value that will be observed. If we assume that the two squeezers are identical, such 

that V,f — Vj" and V.^ = V^, then we arrive at the expression for EPR: 

e = y+VT 
x\y x\y 

= 4 
v r + v + J 

(A.9) 

Alternatively, this can be written in terms of the original amount of squeezing Vq and 

the total loss in the system 77, if there is no excess classical noise being coupled into the 

system^. This is found by substituting V^ 77Vq̂  + (1 — r;) and Vj~ —> rj/Vf^ + (1 — 77), 

and then simplifying. Vq is the original amount of squeezing, inside the OPA. This yields: 

= 4 1 + V + 
2T] - 1 

\ ri ( V + 1 / V - 2) + 2 
(A.IO) 

^The loss is assumed to be symmetric, so that before the beamsplitter iji = rj2, and, after the beam-

splitter, r]x = rjy. The total loss is then the product of these two: rj = r;i,yr)i,2 
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Appendix B 

Biased entanglement theory 

We start from the expression for the EPR entanglement for biased entanglement on a 

t •. — t) beamsplitter. 

Instead of characterising the OPA using the squeezing and antiscjueezing, V^ and V^, we 

can instead use the original amount of squeezing, VQ, and the transmission of the beam, 

ryi, by making the substitutions: 

- - viVo + 1-m 

This then gives us the less elegant expression: 

{Voivi - I) - rn){i + {VQ - i)m) 
{1 + {Vo - i)tm){Vo(tm - I) - tmY ^ ' 

Differentiating e with respect to t then gives: 

(k ^ (1 - VofiVoim - 1) + + (Vq - i )m) - i ) 
dt {i + {Vo~i)tm)HVo + tm-Votmr ' ^ ' 

The EPR value is at a minimum when we have |f = 0. Looking at the '*' marked on the 

above equation, we can see that this then gives us the optimal beamsplitter ratio of: 

= (B.4) 

The technique of altering the beamsplitter ratio can be useful for other experimental 

criterion as well. For a biased entanglement setup, the optimal beamsplitter ratio does 
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not depend on the loss in the squeezer, but does change for an asymmetric loss after the 

beamsphtter. This is shown in Figure B . l . 

50 : 50 

beamsplitter 

no extra loss after beamsplitter 

; 

02 0.4 0.6 0.8 1.0 

Transmission on entangled b e a m x (rji) 

Figure B . l : Results for the Inseparability in a biased entanglement experiment. 
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