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Abstract

Non-classical light and its observable properties canesgmany of the peculiar features
that are unique to quantum mechanics. Furthermore, soofcesn-classical light have
applications in optical quantum computation, and in imprgwthe sensitivity of optically-
based measurement instruments. In this thesis, two soofcesn-classical light were
investigated theoretically, and tested experimentallyetidds were developed to observe

the non-classical properties from measurements baseéd rotitinuous-variable regime.

Harmonic entanglemerns the entanglement of a pair of light beams that are semhrate
by an octave in optical frequency. We proposed that the degéoptical parametric am-
plifier (OPA), which is a proven source of quadrature squedipdt, can also be used as a
device to generate harmonic entanglement. From a linebdgerator model of OPA, we
found that this occurs when the OPA is coherently driven byraldmental field (the seed)
and its second-harmonic field (the pump), such that the ORfpégated in a regime of
either pump depletion or enhancement. Our theoreticalyaisashowed that harmonic en-
tanglement is observable on the quadrature amplitude® oéftected seed and pump fields.
The strength of entanglement, as quantified by the critdrinseparability and Einstein-
Podolsky-Rosen, is in principle limited only by the intravity losses of the system, and

the ability to drive the system above the threshold of opfieaametric oscillation (OPO).

We built an experiment that was capable of testing the prdpibsit an OPA can be
used as a source of harmonic entanglement. The OPA desighasad on a second-order
nonlinear crystal that was placed at the focus of a doutdgfant optical cavity. The seed
and pump light, which were derived from a laser and frequetaybler, respectively, were
injected into the OPA cavity. The reflected fundamental aswbsd-harmonic fields were
optically high-pass filtered to remove the bright carrightiwhile preserving the entangle-
ment on the upper and lower sidebands. These were theneddantwo balanced homo-
dyne detectors that acquired measurements of the amphtodigoghase quadratures, from

which the elements of the correlation matrix were calcdat&pplying the inseparability
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criterion to the matrix yielded a degree @74 + 0.01 which was less than one, and there-
fore satisfied the criterion of entanglement. Entanglemead also observed over a range
of seed and pump powers. The experimental results supphedteoretical model of OPA
that had been extended to include an excess phase noisdanrthef guided acoustic wave
Brillouin scattering occurring in the nonlinear crystal.

Photon anti-bunchings the tendency for photons to be detected apart from ondanot
rather than together. It is characterised by the seconer@wherence function of a single
mode of light, which can be measured using a Hanbury-BrowssT(HBT) intensity inter-
ferometer. The interferometer is based on a pair of singtegn counters that monitor the
output ports of a symmetric beamsplitter. The phenomenamtifbunching is a clear sig-
nature of the quantum nature of light, and has no analogieiolassical and semi-classical
theories. Displaced quadrature-squeezed states of ghincprinciple exhibit arbitrarily
strong anti-bunching statistics, but in practice thesecasuare not easily measurable us-
ing discrete-variable techniques. We proposed a methoché&asuring the second-order
coherence function using continuous-variable technigulese, where a pair of balanced
homodyne detectors replace the single-photon counteleairiginal HBT interferometer.
By correlating the quadrature measurements from the hon@dgtectors, it is possible to
construct the second-coherence function and reveal themplamti-bunching statistics.

We built an experiment that was capable of testing the pbat photon anti-bunching
can be observed from a source of displaced squeezed ligiy isimodyne detection alone.
Our source was based on an OPA that was optimised to delivgmeaakly squeezed, and
nearly pure, states of light. The displacement to the saqekstate was done by way of in-
terference with an auxiliary amplitude modulated beam. fHsellting displaced squeezed
state was sent to a symmetric beamsplitter, where the light the each output port was
received by an independent homodyne detector. Measursroétiie quadrature ampli-
tudes were gathered and processed to construct the semdgrdzoherence function, which
at zero time delay, revealed a valueQof1 £ 0.18 which was less than one, and thus con-
firmed the presence of photon anti-bunching. We also stutiedecond-order coherence
function over a range of displacements of the squeezed statlealso for coherent states
and biased thermal states. The experimental results segptie theory, and validated our

continuous-variable technique of measuring the secoddraroherence function.
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Chapter 1

Introduction

1.1 Background themes

Two main themes tie my thesis together. ways of creating alassical light, and ways
of measuring that non-classicality. This kind of light isesf@l because it has measurable
properties that are counter-intuitive when viewed from t¢hessical theoretical perspec-
tive. Probabilities can become negative (Wigner functiahg Schwarz inequality can be
violated (second-order coherence), or seemingly implessirrelations can be created be-
tween different observables (EPR entanglement). Both gvewand particle characteristics
of light need to be carefully considered in order to fully er&tand these phenomena. If
one adds to this the interaction of light with matter, onevsravthelmed with choices for
creating, manipulating, and measuring these sourcestuf bg the interacting matter itself.
The study of non-classical light thus becomes an immenseflyand rewarding subject,
with far-reaching applications in many areas of modern jasys

Non-classical light is defined as having any measurablegrtpphat cannot be de-
scribed within a theoretical framework that is built from kteell’'s equations of electro-
magnetism together with atoms that are described quanturhaneally:
[Jaynes and Cummings 1963]. This framework is often refeioeas the semi-classical the-
ory. It adequately describes the stimulated emission @tasomic transitions (Einstein’s
A and B coefficients), the shot-noise that is recorded by @glumisation detector, the
‘single-photon’ interference pattern (low-intensity Yays double-slit), and rather surpris-
ingly, even the photo-electric effect [Lamb and Scully 1p@But outside of its descriptive
reach, lie non-classical states of light. These are destitily the fully quantised theory of
light, which essentially says that a quantum harmonic lagoil is assigned to every propa-

gating mode of the electromagnetic field, and that the enesgyained within each mode,

1



2 Introduction

is restricted to having integer values (plus half) promordl to the optical frequency and
scaled by Planck’s constant. One result of this theory makeslical departure from the
semi-classical theory: empty space is not empty. Every noddee electromagnetic field
has a lowest nonzero energy state, the vacuum state, arabthitbutes to measurable ef-
fects such as the Casimir force between closely-spacedictord [Casimir 1948], and the
Lamb shift of atomic energy levels [Lamb and Retherford 1947

Examples of non-classical states of light that have beeat@deand observed in the
laboratory environment are the rather exotically nameditqh anti-bunched statgssub-
Poissonian statésquadrature-squeezed stétmadrature-entangled stateBell state$,
Fock state® NOON state§ and coherent super-position st&te§ach of these states ex-
hibits at least one measurable property of the electronigfield that is a witness to the
non-classicality. To be such a withess, a measurable gyoprrst have bounds associated
with it that are set by the semi-classical theory, and thesadis are usually expressed as in-
equalities. For example, the semi-classical theory ptethat a photo-electric detector will
produce a Poissonian distribution of the number of photisition events that are counted
within a fixed time interval, provided that the detector laritinated by a monochromatic
source of light. The Poissonian distribution ensures tiehtean and variance are equal and
proportional to the intensity of the light. However, re-exaing the problem with the fully
quantised theory of light, shows that some sources of lightgroduce a sub-Poissonian
counting distribution, which has a variance that is lesa th&@ mean. As this is something
not possible in the semi-classical theory, experimentaligerving a photo-counting vari-
ance less than the mean is evidence of non-classicalitytaBeof theoretically analysing
sources of light for properties that have non-classicahbdsuand finding practical ways to
measure those properties in the laboratory, is repeatedghout my thesis.

Non-classical light is not just a curiosity, but can also bétp practical use. The most

prominent example is the injection of quadrature-squedgdd into an interferometer-

[Kimble et al. 1977]
2[Short and Mandel 1983]
3[Slusheret al. 1985]
4[Ouet al. 1992]

S[Kwiat et al. 1995]
8[Lvovsky et al. 2001]
"[Sunet al. 2006]
8[Ourjoumtsevet al. 2006]



81.1 Background themes 3

based gravitational wave detector, with the aim of lowethmg noise floor and thus allow-
ing the detection of fainter and more distant astronomioar&es of gravitational waves.
Squeezed light in an interferometer allows one to make memsitve differential phase
measurements for the same optical power and detection Tihig application was first sug-
gested by Caves [Caves 1981], but only with recent advandée ibandwidth and strength
of squeezed light sources, is this now becoming a realitytfer GEO 600 detector and
other observatories around the world [Schnabel 2008]. Alairapproach with squeezed
light has been used to demonstrate an improved sensitovityther kinds of measurements
which include frequency-modulation spectroscopy [Poétikl. 1992], and beam position
measurements [Tregs al. 2002]. These demonstrations however, have not revolsgohi
the field because those particular applications were ndtidihby the intensity of the light,
which in most cases can be scaled up arbitrarily. Where fassical light could make
a key difference is with the goal of realising quantum corapiah. Here, light would
play the role of a messenger between quantum logic gatedattae quantum information
processing, which could be in the form of quantum dotsefLal. 2003] or trapped ions
[Cirac and Zoller 1995, Guldet al. 2003]. Another proposal would be to engineer multi-
mode entangled states of light upon which a specific set osorements is made according
to the scheme of cluster state quantum computing [Niels@8]20 his would have several
advantages in robustness and scalability over the forniemse [Menicuccet al. 2006].

Non-classical states of light can be generated by a divensgerof physical systems
that can be classed as being either macroscopic, or migigcsdepending on the number of
interacting particles and the length-scale over whichrkeraction occurs. The microscopic
class of systems includes the interaction of light with Engtoms, ions, molecules, or
artificial atoms in the form of nano-optical structures siashthe colour centres that are
created by defects within a crystal lattice. The lengthescélthese systems is many times
smaller than the wavelength of light, and usually only ormrat particle is considered to
interact at a time. For example, the first observed non-iclasstate of light was created
in this way. Using resonance fluorescence from an ensemhbdedifim atoms, Kimble
demonstrated a violation of the Schwarz inequality, whickswthe first evidence for the
gquantisation of the electromagnetic field [Kimigeal. 1977, Walls 1979].

If the length scale of the interacting material is largemtliae wavelength of light, it



4 Introduction

encompasses a macroscopic number of atoms, of the orderagbédvo’s number, and an
analysis of the system reduces to considering the bulk piepef the medium in response
to light. Here, it is a medium’s nonlinear response that agpert the interaction and ex-
change of energy between light of different wavelengthdchkviinder linear circumstances
would not be possible. The interaction can also be enhangesing optical feedback in
the form of resonators/cavities. The nonlinear media caim lseveral forms: bulk media
(crystals), optical fibres, micro-spheres, micro-torpiisatomic gases (vapour cells). As
an example, the first quadrature-squeezed state of lightveasured using the four-wave
mixing effect from the third-order nonlinearity in an atangias [Slusheet al. 1985]. This
resulted in a sub-Poissonian distribution of photo-iaitisacounts in the detector, which
was a non-classical effect. Other macroscopic systemsorely different interaction with
matter, such as band-gap materials (semiconductor ld$ePs); or radiation pressure with
micro-electromechanical systems (cantilevers, memijamk®r my own research topics, |
exclusively used the second-order nonlinear responselbfrbedia in the form of artifi-
cially grown crystals of potassium titanyl phosph@&I'P) and lithium niobaté LiNbOs3).
The creation of a non-classical state of light is one thing Mdthout the verification of
the non-classicality, the experiment is incomplete. Thtgf photodetector that is used,
decides what properties of the light beam can be observeddharefore what aspect of non-
classicality can be investigated. It is generally said #maexperimentalist can only detect
the intensity of a beam of light. This is true for both typesagéilable detector: single-
photon counters, and PIN-junction photodiodes. But therinftion that can be extracted
from each type of detector is different, and is also dependerthe source of light. The
single-photon counter, say a photomultiplier tube, preduan electronic pulse for every
photo-ionisation event. The intensity of the light must leptkiow enough, such that the
electronic pulses can be resolved in time. Note that thectiBteannot distinguish between
different (narrowly-spaced) wavelengths of light. Usihgsttype of detector, it is a simple
matter to measure correlations of photons that are cofleatalifferent places within the
beam of light, or in other words, to measure the degree ofrekoader coherence of the
light. Other properties can also be determined, such asehsitgt matrix of the state of
light. In general, using a single-photon counting detelitoits the experimentalist to doing

guantum optics in the discrete-variable (DV) regime, wheiscrete’ refers to a photon
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either having been, or not having been detected.

In contrast to the DV regime, is the continuous-variable Y@gime of quantum optics.
The ‘continuous’ refers to the measurement of the electid fof the light itself, because
the field can take on any value from a continuous distributbralues. In general, the
detector used is a semiconductor PIN-junction photodiadd,the source of light is bright
rather than dim. If the source of light contains a quasi-nobnomatic component, the car-
rier, and if the carrier is brighty 10'° photons per second), then it will ‘beat’ against the
components of the light at nearby wavelengths (the sidef)afithe resulting electronic sig-
nal contains information that is wavelength dependentssence resolving the amplitude
of the electric field for each nearby optical frequency. is #ense, it is the radio-frequency
response of the detector that determines the range of bptsalengths that are detectable.
Several tricks can be used to shift the phase of the carriepooent, and thus allow one to
access the phase quadrature of the optical sidebands aasabl amplitude. Combining
the data taken at many quadrature angles, from amplitudeasep allows the mathematical
reconstruction of the Wigner function of the state of théitigt each optical sideband fre-
quency [Leonhardt 1997, Schillet al. 1996]. However, the detection times of individual
photons can in practice never be resolved. This is becaesel¢htronic noise floor of the
photodiode is already at the sensitivity level of the orderGS photons per second, at best.
For my own research topics, | exclusively used PIN photossofdbr detection, and so the
experiments were completely within the realm of CV quantyptics.

A new direction in the field of quantum optics aims to close dhe between the CV
and DV regimes. This is being accomplished by bringing togethe techniques of single-
photon detection and homodyne detection to simultaneausigsure the same source of
non-classical light. Such hybrid detection schemes hawem hesed to create so-called
Schradinger kitten states, which are a super-position ofdaherent states with different
amplitudes [Ourjoumtsegt al. 2006]. The coherent amplitudes in that experiment were
relatively small, hence the term ‘kitten’. Such exotic etadf light have no analogues in the
semi-classical theory. They are wonderful examples of ugabssible within the quantum

theory of light.
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1.2 Thesis topics

Of the many aspects of quantum optics that | brushed ovekifait section, | had actually
studied only one small part of it for my thesis. Gathered utioke umbrella of non-classical
light, my work examined two different hypotheses which | ceamatise in the following

way:

o A pair of light beams of vastly different wavelengths, that aeparated by an octave
in the electromagnetic spectrum, can be made insepajiadmonic entanglement)

e The particulate nature of light can be revealed without &&ing resolved a single
particle during the measuremgphoton anti-bunching from squeezing)
Both phenomena highlight a different aspect of non-clasigycthat the electromagnetic
field is capable of expressing. Next | will attempt to expldiase ideas in a more accurate,

but rather less dramatic way.
1.2.1 Harmonic entanglement

Entanglement is both a simple and complicated concept.elfuthquantum theory of light,
if the state of a two-mode field cannot be expressed as a pgrofitwo states with one for
each mode, then the two modes are said to be inseparableaogbrd. The inseparability
has consequences for measurements that are made on somelolese such as the ampli-
tude and phase quadratures of the electric field. When cangpguadrature measurements
that are made on each mode individually, correlations bevtiee two lists of random num-
bers in the data become apparent. Depending on the typeasfgdement, the correlation
can be stronger than that possible for any source of lightishzased in the semi-classical
theory. Bystrongercorrelation, | mean that a single measurement result on aue wan be
used tdbetterpredict a measurement made on the other mode, as charedteyithe condi-
tional variance. In the extreme case of perfect entanglgrttenconditional variance would
be zero for both observables, amplitude and phase, andglifions made from one mode
to the other would be without error. Such a result leads topgant violation of the un-
certainty principle [Reid 1989]. The amplitude and phasseoiables are non-commuting,
or incompatible, and therefore the uncertainty principighibits the measurement of both
observables simultaneously for one mode with arbitrargipien. High precision in mea-

surements of the phase can be sacrificed for a lack of pradisithe amplitude, or vice
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versa.

Einstein, Podolsky and Rosen (EPR) used this kind of entdnglate in their argu-
ment about whether quantum mechanics was actually a coengétcription of reality
[Einsteinet al. 1935]. Their argument was based on the principle that tharst mxist
a correspondingelement of physical realitfor an observable, say amplitude, because a
measurement of that observable made on one mode is pertaxtiglated with the re-
sult of a similar measurement made on the other mode. Thelaton does not dimin-
ish with a physical separation of both modes, and therefiastantaneous. This is the
famous ‘spooky action at a distance’. Without that elemdniality, the measurements
cannot be correlated. In the same way, another element bfyreaists for the non-
commuting observable, phase. The paradox is that the Hmisgmuncertainty principle
does not permit the simultaneous measurement of both aidesswith arbitrary preci-
sion, and therefore denies the simultaneous reality of bbtthose elements of reality.
EPR chose to escape the paradox by concluding that it washéweyt of quantum me-
chanics that was incomplete. A better theory would have aulsameous description of
both elements, perhaps with a set of variables that woulitldetbe outcomes of mea-
surements, but which would themselves remain inaccestibliee observer and thereby
preserve the uncertainty principle. Whether such hiddeiahi theories existed or not,
was thought for several decades to be an unmeasurable aedidaiole problem. This
changed when Bell proposed an experiment that could disshgetween a quantum the-
ory with and without local hidden variables [Bell 1964]. Tbgperiment was done by
[Freedman and Clauser 1972, Fry and Thompson 1976, Aspattl982], the result of
which confirmed that quantum mechanics is free of local mddariables, and as such,
retains its strange ‘spooky action at a distance’ chara&een today, the hidden variable
theories are being tested with the Bell inequality measargmbeing repeated over ever
greater distances [Ursit al. 2007].

Aside from their role in probing the fundamentals of physistangled states are also
the resource necessary for quantum logic gates and theédoimg of quantum computers.
This application motivates the search for sources of efgdrigght at various wavelengths
that could access atomic transitions, or even multi-wangghe (muli-colour) entanglement

to enable a connection between different atomic species.
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One physical system that has proved to be a very flexible smfrsqueezed light and
entangled light is the optical parametric amplifier (OPA)ddr the name OPA, | include the
processes of second-harmonic generation (SHG), and bpéicametric oscillation (OPO),
because they are all based on the same system but are openafeddifferent condi-
tions. The OPA relies on a medium with a second-order noatitye that supports the
interaction/conversion between light of one wavelengdtle, fundamental, and its second-
harmonic. The interaction can be enhanced by introduciedldack in the form of an
optical resonator/cavity. The OPA is then driven by the améntal (seed) and second-
harmonic (pump) fields, which are sourced from beams of estidaser light. The pump
beam is made much brighter than the seed beam, because theaDRBen operate in a
regime that de-amplifies the seed, as measured on reflentiantifie OPA. When this hap-
pens, fluctuations in the amplitude of the seed beam are alsonglified [Wuet al. 1986,
Bachor and Ralph 2004]. Measuring these reduced fluctisatimid comparing with the
fluctuations from a coherent state, show that they are loWldre seed beam has been
squeezed. Combining two such squeezed beams together oBG Eamsplitter with
the correct phase relation, then creates two beams thatRiRecBtangled. Such a source
of entanglement has been demonstrated ¢€al. 1992]. Similar sources have been used
to demonstrate quantum information protocols like telegggan [Furusawaet al. 1998],
[Bowenet al. 2003b] and secret-sharing [Lanekal. 2004]. A variation on the OPA theme,
is to replace the monochromatic seed with a bichromatic &i#gdal and idler), whose sum
frequency matches exactly the second-harmonic frequeBegause the signal and idler
are non-degenerate in frequency, they can be separatedhamndsult is that they as a
pair can be entangled. Demonstrations of such two-colotangiement have been made
[Schoriet al. 2002, Villaret al. 2005].

In many theoretical and experimental investigations ofatessical light from the de-
generate OPA, the role of the pump field was ignored in theestme it was assumed
to remain unaffected by the interaction with the seed fieldis Tvas only an approxima-
tion for the situation where the seed field carries much Iggea power than the pump
field. However, when the optical powers in both fields becommpmarable, it would be
expected that a significant exchange would be possible kettvee two fields, and possi-

bly with an associated change of amplitude/phase statisticthe pump. Following this
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idea, squeezed light on the reflected pump field from SHG wedigied, and subsequently
observed [Paschott al. 1994]. An extension of this was the prediction [Horowicz 9p8
and confirmation that correlations in the amplitudes of #féected pump and seed fields
were also produced by the SHG [&f al. 2007, Cassemiret al. 2007]. Based on these the-
oretical and experimental discoveries, one could proplosethe reflected seed and pump
fields share correlations in the phase as well as the ameliartt perhaps that the state of
light that is produced, is quadrature entangled. Sincerttenglement would be between a
fundamental field and its second-harmonic, we proposedetineiiarmonic entanglement
for this phenomenon. These ideas can be summarised witlyimthesis that:

Harmonic entanglement, which is the quadrature entangiebetween a fun-
damental field and its second-harmonic field, is generated sgcond-order
nonlinear optical system in the form of an optical pararasegrnplifier, when it
is coherently driven by those two fields.

The testing of this hypothesis, both theoretically and expentally, forms the first main

topic of my thesis.
1.2.2 Photon anti-bunching from squeezing

There is a simple experiment that goes to the heart of uradatisty the quantum na-
ture of light. Hanbury-Brown and Twiss (HBT) looked at théuation of a single beam
of light being divided into two beams by a 50:50 beamsplittdthey asked the ques-
tion: would a correlation be observed between intensitysneanents made on each beam
of light after the beamsplitter? After doing the experimémty found that the answer
was yes [Hanbury-Brown and Twiss 1956b]. This result eraged them to scale up the
experiment to astronomical proportions: they could diyedetermined the angular di-
ameter of the star Sirius, and 31 other distant stars. [HgrABrown and Twiss 1956a,
Hanbury Brown 1974]. At the time of the first experiment, aatebraged as to whether
the correlation, known as the HBT effect, should exist farthal sources of light at all.
The instrument is now called a HBT interferometer (or intgnismiterferometer), and what
it probes, is the second-order coherence of light. Glaubeeldped the theoretical frame-
work that describes the coherence of optical fields in tHegfudntum theory, and from this
he could indeed find an explanation for the HBT effect, as abung together of the pho-

tons in the beam [Glauber 1963]. Furthermore, he showedstirae optical fields could
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display a negative HBT effect that would be visible as an-aotrelation in the intensity

measurements after the 50:50 beamsplitter. Such an effadtvibe impossible to obtain

from the classical or even semi-classical theories of Jightit would violate the Schwarz
inequality. The interpretation comes from the particutature of light, in the form of pho-

ton anti-bunching, which is the tendency for photons tovarat the detector apart from one
another. As this was a prediction unique to the quantum yhéinspired the search for

sources of light with photon anti-bunching statistics [&td.974].

The light from resonance fluorescence emitted by a diluteojagoms was the first
source to demonstrate photon anti-bunching statistics\fite et al. 1977]. Single-photon
counters were used in the experiment to gather a histogréimeflelayed coincidences. At
zero time delay, the number of coincidence counts droppbithwas the anti-bunching ef-
fect, and the first demonstration of truly nonclassicaltligince then, photon anti-bunching
has been observed in other sources of light such as corgtitiomasurements of para-
metrically down-converted light [Raritgt al. 1987, Nogueirat al. 2001], pulsed paramet-
ric amplification [Koashkiet al. 1993, Lu and Ou 2001], quantum dots [Michédral. 2000,
Santoriet al. 2002], and trapped single atoms or molecules [Lounis andrivise2000],
[Darquieet al. 2005]. The detectors used in these experiments were of tiggegdhoton
counting type, because only these would have sufficienitagtysand bandwidth to detect
those dim sources. Therefore, all these experiments wearaimal with detectors in the
regime of discrete-variable quantum optics.

In the continuous-variable regime, it was predicted fropotietical models that quadra-
ture squeezed states of light could display anti-bunchtatjstics. However, in the labo-
ratory, the sources of quadrature squeezed light were lystetected using homodyne
detection. At first glance, it does not seem obvious that thplitude and phase quadra-
tures of the light will be able to yield the second-order aehee function, and therefore
the measure of anti-bunching statistics. However, Magdaf&tobhska (who is a member
of our collaboration group), took the creation-annihdatioperator form of the equation for
second-order coherence, and re-expressed it terms ofajusslioperator measurements.
The new measurement instrument looks very similar to thgirad HBT interferometer,
but has a balanced homodyne detector in place of each gihgken detector. By measur-

ing the four combinations of amplitude/phase, it is posstbl construct the second-order
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coherence function. This enables the very pure sourcesamfrgture squeezed light to re-
veal their anti-bunching statistics, without ever resadva single photon. These ideas can
be summarised with the hypothesis that:

Homodyne detection can replace the single-photon coumer$iBT interfer-
ometer to measure second-order coherence, which for tleeofaseasuring
a displaced-squeezed source of light, can be used to dem@nghoton anti-
bunching statistics.

The testing of this hypothesis, both theoretically and @rpentally, forms the second main

topic of my thesis.

1.3 Thesis structure

| have organised my thesis into chapters that are largelyceatained, but they will seem
more logical when they are read in sequence. The structumneydhesis is visualised in
Figure 1.1. It breaks up into three parts. The first part isoekground theoretical material
which explains some of the key concepts and holds many tamchdefinitions. The second
part deals with the topic of harmonic entanglement. Theltpart is devoted to the photon
anti-bunching topic. The last chapter summarises the mbgoretical and experimental

results of this thesis. A brief overview of the content iseghere:

e Chapter 2: Theoretical Background
Later chapters rely on concepts and definitions like quadeatqueezing and entan-
glement. These are defined and explained in this chaptesolmkesent models for
linear and nonlinear processes, and the detection of ligthta two-mode formalism.

e Chapter 3: Harmonic Entanglement: Theory
| extend a model of OPA, so that the fundamental and secondemac optical fields
are analysed for harmonic entanglement. Next, | investigrv the strength and
type of entanglement varies across the range of seed andfpelchparameters.

e Chapter 4: Harmonic Entanglement: Experiment
| present the experimental setup that we used to generatmeasure harmonic en-
tanglement. | place emphasis on the design, operation,estidg of the OPA, and
the homodyne detection with optical carrier rejection.

e Chapter 5: The GAWBS Hypothesis
Initial results from the harmonic entanglement experingmwed phase quadrature
spectra that were plagued with sharp resonances. | show remme model of
guided acoustic wave Brillouin scattering (GAWBS) can bedu® explain the effect.

e Chapter 6: Harmonic Entanglement: Results
The results of the harmonic entanglement experiment argepted and compared
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with the theoretical model, both with and without GAWBS. Treeults cover a study
of the ratio of pump and seed powers, as well as for a consitaitihput power.

e Chapter 7: Photon Anti-Bunching from Squeezing: Theory
| give a derivation of how homodyne detection can be usedgiace single-photon
counters in a Hanbury-Brown—Twiss interferometer. Themvestigate the second-
order coherence of displaced-squeezed states of lighfjrahghoton anti-bunching.

e Chapter 8: Photon Anti-Bunching from Squeezing: Experiment
| describe the experimental setup that we used to demaaii@tphoton anti-bunching
can be measured by using only homodyne detection. | presemesults of photon
anti-bunching statistic that were measured from a displscpieezed state.

e Chapter 9: Summary and Outlook
Finally, 1 condense the most important theoretical and expantal results of the
harmonic entanglement and photon anti-bunching topidsolraake suggestions for
improvements and further studies that may yield interggtirsults.

Some suggestions for the readd@ihe background theory chapter (2) can be skimmed
if one is already familiar with the material. The heavy expental chapter (4) can also be
skimmed if one is not keen on technical details. Itis goodénw, to get an overview of the
complicated experimental setup. Although the GAWBS chafeseems to be a diversion
from the main themes of this thesis, it was necessary to tigegs the GAWBS hypoth-
esis and supporting evidence separately, because the wiokaimonic entanglement as
produced from the OPA had to be modified accordingly. Thigripartant when making
comparisons between theory and the experimental resaltsth presented in Chapter 6.
The bulk of my research topics can be found in Chapters: 3a6d78. While the summary
and outlook chapter (9) is the place to go for the condensewvlenige that was gained

during the research, and also for some ideas about whereooltego from here.
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Chapter 2

Theoretical Background

Symbols and mathematical expressions can remain near mgdess without an explanation
of how they relate to the physical world. As most of the chegpia this thesis rely on
these representations, it makes sense to gather the maeptsrand notation into a single
chapter. My intention is not reproduce a textbook, but natberovide only the minimum
framework that is necessary to support the research tdpacddllow. 1 will lay particular
emphasis on the quantisation of the EM field; direct and adimeasurement techniques;
the linearisation technique and cavity rate equations;fimadly the use of single- and two-

mode states of light to illustrate squeezing and entangieme

2.1 Quantisation of the EM field

The classical theory of the electromagnetic (EM) field asughd together in Maxwell's
equations provides a highly accurate description of anuasliog array of physical phe-
nomena [Maxwell 1892]. At the beginning of the 20th centuowbver, explanations of
the phenomena of the photoelectric effect and blackbodwatiad using the classical the-
ory became problematic. The solutions were born in Plangstriction of the energy
in a blackbody oscillator to multiples dfw; and Einstein’s proposal that the energy of
light itself was restricted to these steps, or quanta [RdA900, Einstein 1905]. These
developments went hand in hand with new models of atoms basiactrons orbiting
the nucleus that were described by Schrédinger's equaSchrpdinger 1926]. A semi-
classical theory with a classical electromagnetic field gudntised energy levels of an
atom [Jaynes and Cummings 1963], proved adequate to degbematural linewidths of

atomic transitions and laser rate equations. This theowryalso consistent with Young’s

15
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double-slit experiment using very weak light [Aspect anduigier 1987].

A full quantisation of the EM field was made by Dirac [Dirac I94and was further de-
veloped with Glauber’s analysis of detection and coher¢@tauber 1963]. It can describe
a broader range of phenomena that have no analogue in tisicalasr semi-classical the-
ories. | want to show one of the ways of quantising the EM fi€ldlloquially, this means
giving arguments for putting a hat on the electric field opmrérom E to £) and for the
noncommutation of orthogonal quadrature operators. Thigadi®n is not obvious. The
method is to first find the plane wave solutions of the field gigtaxwell’s equations, and
then quantise the energy of each according to a quantum harroscillator. The quan-
tised theory cannot be derived from the classical: a leap imeignade. As we will see,
this will come from comparing the energy of a harmonic oatilt, to that contained in the
classical EM field. What follows is a concise version of treatment that can be found in
Loudon’s textbook [Loudon 2000]. It breaks down into thresps: classical, quantum, and

the comparison of each.

2.1.1 Step 1: The classical

The aim is to find travelling wave solutions of the EM field. TE® field is described by

Maxwell’s equations:

E = —— 2.1

V x 5 (2.1)

low = 2% 2.2)

o ot

V- E = o (2.3)
V.-B = 0 (2.4)

WhereJ is the current density and is the charge density. One method of finding the
travelling wave solutions is to re-express the electricrmagnetic fields in terms of a scalar
potential ¢ and vector potentiaA [Jackson 1999]. These are both considerably abstract

quantities. We will see later th&t plays a pivotal role in the description of the quantisation.
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For the moment consider them just as a tools to get to theicofut

B = VxA (2.5)

A
E = W_aa_t (2.6)

Afurther restriction is applied to the vector potenfialA = 0, which is called the Coulomb
gauge, which brings with it an implicit assumption that tiistem of field equations remains

completely non-relativistic. The field equations then camgk into

9 10 1 9%A
VAT GVt g = ol 2.7)
1
Vi = = (2.8)

The current density can be broken up into a transverd¢ and longitudinald;, compo-
nents, that have the propertiég:- J© = 0 andV x Jy, = 0. This breaks up Equation 2.7

into two equations

1 9%A
—VQA + —QW /L()JT (29)
10

The solutions for each equation can be found independelRtlym now on we ignore the
longitudinal component which corresponds to the non-pgapag part of the EM field (the
evanescent field). The transverse component corresporttie foropagating part of EM
field, which is also called the radiation field. Consider thsecof free space without current

sources, so thaktr = 0, one then gets

1 9%2A
2
~V2A + Tz 0 (2.11)

which is the wave equation. To simplify the analysis, we fiestrict the set of solutions
to those obtained by applying a periodic boundary conditiat is spaced ak. This is
usually referred to as@avity, but note that due to the periodicity of the boundary cooditi
travelling wave solutions are allowed. The general soluta A (r, ¢) is then the sum over

all travelling plane waves with wave vectkrand two orthogonal polarisations labelled by
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A such that
= ZzekAAkA (212)
k A

with

A (r,t) = Agy exp(—iwgt + ik.r) + Ay, exp(iwit — ik.r) (2.13)

The allowedk are given by vector components:
ky =2mv,/L |, ky=2wv,/L , k,=2mv,/L (2.14)

with v, , . limited to 0, £1, 42,43, .... The unit vectorey, determines the polarisation,
with the orthogonality conditiory; - exo = 0, and also being orthogonal to the direction
of propagationey) - k = 0. The angular frequency of the oscillatian, is proportional
to the magnitude of the wave vector so that= clk| = c,/k2 + k2 + k2 = ck. One is
free to choose any values for the complex coefficiéps with its corresponding complex
conjugated; ,. Now that we have the vector potential, it is simple to cateithe electric or
magnetic fields usin@(r,t) = —0A(r,t)/0t andB(r,t) = V x A(r,t). | will not show
their full forms here. What | want to do is to calculate thetoadiative energy contained in
the EM field. This is found by integrating the volume elemetitsover the cavity volume
V thus

1

En =3 /V av [EOE(r,t) "E(r,t) + B(r,t) - B(r,?) (2.15)

This can also be expressed as a summation of the radiativgyeinem each of the allowed

modes of the vector potential.
ER=> > & (2.16)
kA

The simplification is tedious but with a neat end result, veheach mode contributes the
energy

Eir = eoVwi (AaAiy + AfyAxa) (2.17)

The terms are for the moment not combined (despite the fatthiey commute), to leave

them in a more suggestive form that we will compare with later
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2.1.2 Step 2: The quantum

Abandoning the EM field completely for the moment, we lookhet tjuantum mechanical
harmonic oscillator for a particle of mass restricted to motion in one dimension in a

quadratic potential. The system is described by the Hanidto[Griffiths 1995]:

H= in + lmqu”z (2.18)

[p,q] =ik (2.19)

It is the property thap and ¢ do not commute, that leads to the Heisenberg uncertainty
principle. The principle limits the precision to which thesition and momentum of the
particle can be measured. | will return to this concept later To continue the analysis,

one usually makes the substitution to the dimensionlestelagperators:
a = V2mhw(mwd+ ip) (2.20)
al = V2mhw(mwj — ip) (2.21)

These are also called the creation operatpand the annihilation operatar The commu-

tation relation between them is
[a,a*] —aal —afa=1 (2.22)
which re-expresses the Hamiltonian as
v Ly (aat 4 ata ata o L
H = Sho (aa +a a) = hw(ala + 3) (2.23)

To see how the system works, we first propose an energy eigenst the systenin),
such thatH|n) = &,|n). Next we apply the creation operator to both sides of the en-
ergy eigenvalue equation so tmiv%ym = a'&,|n). After expanding the LHS and using
Equation 2.22, we get a new energy eigenvalue equatititijn) = (&, + hw)al|n). We

can interpret the application of the creation operator &gghrg system into a new state

afln) = |n + 1) that has a higher energy levél, . ; = &, + hw. Following the same
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Electric Field Phasor Diagram

AEWM)= X+cos(u)t) + X Tsin(wt) Figure 2.1: The EM wave is split
X~ up into a sum of sine and cosine
components that are scaled by X+
and X~ respectively. By conven-
tion, most of the amplitude is in the
X+ component (solid line), which
means that the smaller X ~ compo-
nent (dashed line) essentially modi-

o=wt

~Y

o 4

w=105Hz fies only the phase.

procedure shows that the annihilation operators does thesite a|n) = |n — 1) and
&1 = E, — hw. What is missing now is the re-normalisation factor for thetates

Cy|n). We can get these by definifg|n) = 1 and noting for the annihilation operator that

(n—1/C; Cuoaln—1) = (nfalaln)

Coa]? = n (2.24)
and similarly for the creation operator that

(n+1C; 1 Crialn +1) = (nfaal|n)

1Cr1? = n+1 (2.25)

The re-normalisation factors are chosen to be real, whieh ghows that the creation and

annihilation operators have the following effect on thergpesigenstates:

alln) = Vn+1n+1) (2.26)
aln) = Vnjn—1) (2.27)

There is a lowest energy level that the system can be in, thendrstate0), but the energy
has the nonzero value 6f = %hw The set of energy eigenstates of the systepare then
labelled byn = 0,1, 2, 3, ... and they have the energy eigenvaldgs= &, + niw. These
states form a complete basis in which any state of the hacamtillator can be expressed

as a suitably weighted superposition.



82.1 Quantisation of the EM field 21

2.1.3 Step 3: The quantisation

The two parts of the puzzle a brought together. One beginsdking the assumption that
every classical mode of the EM field, labelled by subscrpts has a quantum harmonic
oscillator associated with it. The creation and annitolatperators for each mode have the

following effect on thenth energy eigenstate:

axlnn) = Vil — 1) (2.28)
il o) = Vo F Lo+ 1) (2.29)

So in the modek), they create or destroy one unit of energyy, in other words, one
photon. The commutation relation between the creation anthdation operators is
i, Gy | = aiadly — aly aien = 1 2.30
Ak, Ay | = QMO ) — O1 QKX = (2.30)
The combined state of the entire field is represented by theugt notation

H{nka}) = ...|n110,1) |n110,2) [P111,1) - (2.31)

where the subscripts te list first the mode number in three dimensions, followed by th
choice of polarisation. The story of the quantisation doasemd here because we need
some way to relate the dimensionless creation and anmdmlaperators to the electric
field in units of Newtons per Coulomb. We can do this by finding Hamiltonian which

represents the total energy of the system.
. 1 o o
Hyx = ihw (ak)\a;[()\ + a;[()\ak)\> (232)

By comparing this equation with the classical form of thekenergy in Equation 2.17, we
can make the plausible leap of faith in making the followieglacements for the classical

vector potential coefficients:

Ay — (h/2e0Vwg) Py (2.33)

Apy = (h)2e0Vwr) %l (2.34)
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This step cannot be derived. It essentially becomes a defirfior quantum optics theory,
the predictions of which agree very well with experimentauits, and so give us confidence
that it is correct. The vector potential for the entire fieddhien

A(I‘,t) = ZZekAAkA(r,t) (235)

k A

where each mode contributes
A (r,t) = (h/2e0Vwy)? [akA exp(—iwgt + ik - ) + @l , exp(iwpt — ik -r)| (2.36)

From this one can calculate the electric field operator uBing —9A /dt. By convention

the field is split up into positive and negative frequency ponents

A~ A

E(r,t) = E(r,t) + EO)(x,1) (2.37)
so that
E®(r,t) = Z Z ex (hwi /260V) Y 2y exp[—iOx (r, t)] (2.38)
EC) (r,t) = Ek: i: e (hwg /260V) 24l | expliOy (r, 1)] (2.39)
k X

The phase of the wavefronts is combined into a single phase te

O(r,t) =wyt — k- — g (2.40)

The offset? is only a convention that absorbs a factoriofWe can group together the
sine and cosine components of the complex exponentialspegathise the creation and
annihilation operators intquadrature operatorsthus giving

E(r,t) = Z Z ex (2hwy [eo V)2 {X{S cos[Oy (r, t)] + Xy, sin[Oy(r, t)]} (2.41)
kA

Note that | have made a departure from the Loudon’s notationdon 2000], by removing
the scaling facto% in the definition of the quadrature operators, which for gmaainder of

this thesis become:

K= (Al ) o X =i (@ - ) (2.42)
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they correspond to the ‘in-phase’ and ‘out-of-phase’ congmts of the EM wave, respec-
tively. By convention, it is assumed that most of the amgEtwf the wave is in theX ™
component, hence it is called the amplitude quadratures i@ans thaX — contributes
essentially to a phase shift of the wave, and is therefolect#the phase quadrature. This
has been visualised in Figure 2.1 in the form of a phasor diagiThe amplitude and phase
quadrature operators correspond to the position and mammenperators, respectively, as
can be seen with the help of Equation 2.21. The quadraturetmpe are Hermitian, and
are in principle directly measurable quantities. | will b&ng them throughout this the-
sis in calculations of the transfer functions of optical gamments, and in the evaluation
of quadrature squeezing and entanglement. In additionjsoftee to choose a new basis,

which corresponds to a rotation by angl®f the original basis, for example:

le)\ = X;ACOS¢+XII>\Sin¢ (2.43)

Xﬁ;g = —X;Asin¢+X1:)\ cos ¢ (2.44)

To summarise the quantisation: what we now have is a laddeneifgy eigenstates
|nk) for each mode of the EM field; see Figure 2.2. The creation anthdation operators
add or subtract one quantum of enefgy;. from the mode, which is interpreted as a photon.
Any single-mode state of the EM field can be expressed as ahtegiguperposition over

the energy eigenstates:
) = cnln) (2.45)
n=0

with ¢, the set of complex-valued coefficients. The electric fieldrafor is expressed as a
sum of the amplitude and phase quadrature operators, wigotselves are the sum/difference
of the creation and annihilation operators. The total gneantained in the EM field is

found by applying

Hl{na}) = (Er+ &0)l{nn}) (2.46)
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Energy
A
.............. — 3>
....... Figure 2.2: Each mode of the electromagnetic
....... 3> — 2> field can carry only a discrete amount of energy
3> 2> (n + 1/2)hwy. A mode can be in a superposi-
2> — 1> tion state of many excitation levels at once (rem-
1> 11> iniscent of an atomic level scheme). Note that
o> 0> — |0> the lowest level still has fuwy, /2 of energy.
Mode Mode W Mode W3
where
1
& = 3 > huwy (2.47)
k A
Ern = D hwgpni (2.48)
k A

The subscript R’ stands for the radiative component, while the subscfipstands for the
vacuum component. Note that even when all modes of the EM dieddn their ground
states, the summation for the vacuum component of the enghggstill diverge to infinity.
But this does not present a practical problem, since lateillitbe shown that a photo-
ionisation detector is only sensitive to the radiative comgnt, and therefore only to any
excitation above the ground state. But it should be notedttiavacuum component is a
measurable effect in experiments that investigate then@iasifect of the attractive force

between two perfectly conducting plates [Casimir 1948].

2.2 Observables, uncertainty, and quantum noise

Let us consider the amplitude and phase quadrature obsesvathe quadrature operators
do not commute for a given mode of polarisation and propagatector. The commutation
relation is

X5 Kiow | = 2i0ka0d (2.49)

If the modes are chosen to be degenerate, this leads to anHeigeuncertainty relation

for the amplitude and phase quadratures. The uncertaifdtiore for a pair of arbitrary
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operators), andO, depends on the commutation relation; see for example [(Bsfi995]:
. . 1 r~ . 2
o?(01) 0*(02) > (5 <{017O2}>> (2.50)
where the expectation value of the standard deviation obfieeator has been defined by
. . . 2
o*(01) = (v](002|v) = (v[O]w) (2.51)

where the inner product has been taken over an arbitrarg gtat Substituting in the

commutation relation between the amplitude and phase gtuadroperators then returns

o2 (Xih) o3 (Xy) = SO (2.52)

This nonzero value for the minimum product of the varianedls tis that there is a limit to
the precision that one can simultaneously measure bottrajuaes for any given mode of
the EM field. Note that the precision need not be equally iBisted, as for example, the
state may have a smaller variance in the amplitude quaerbturmust then be compensated
for by having a larger variance for the phase quadraturdy gt the uncertainty relation

is satisfied.

A somewhat bolder interpretation of the uncertainty ppieis that the EM field itself
cannot have a well-defined (or certain) value for the amghditand phase quadrature. For
example, a measurement of the amplitude quadrature wile@rohe state into the{*

basis, and leave the phase quadrature completely uncertain

An alternative view is that there is a noise penalty that id pdoen one attempts to mea-
sure both quadratures simultaneously. But one should ledutdrere because our analysis
has shown no time dependence of the field (other than théadimril at the optical frequency
wg). The thing to remember is that this noise refers only to &selits of measurements that
are made on an ensemble of identically prepared statese Siaaneasurement results will
be drawn from a statistical distribution of values that flate around a mean value, the se-
quence of randomly fluctuating values can be interpretecbs&nThe more realistic case
of a system that is not closed, and couples into a continuumaafes, will be treated in

later sections.
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Boson commutation relation: [a,af] = aa' —ala=1

Photon number: n ata

Amplitude quadrature: X+ (af +a)

Phase quadrature: X~ i(a" — a)

Mean of photon number: w(n) = (nlp)

Variance of photon number: a2(n) = () — (Q|aly)?

Mean of amplitude quadrature: (X (1| Xt o)

Mean of phase quadrature: w(X™) (1| X~ [4)

Variance of amplitude quadrature: o2(X ) (| Xt X |) — (| X H]o)2

Variance of phase quadrature: o2(X7) (| X=X~ |) — (| X~ |)2

Second-order coherence function:  ¢(® (1) = (ylatataaly)/(v)atalp)?
where|t)) is an arbitrary state

Table 2.1: A summary of definitions that will be applied to single-mode states of the EM field.

= N
N(n) = (ah)"/v/n! wheren =0,1,2,3, ...
p(n) = n
o(n) = 0
p(XH) 0
(X)) 0
o2 (XT) 2(n+ 1)
o2(X7) 2(n+ 1)
g?(r) = 1—(1/n) for n>1
Table 2.2: Properties of the number states.
o) = D))
D(a) = exp(aa’ —a*a) where a = |afexp(if)
Di(@)aD(a) = a+a
Di(a)al D(a) = af+a
ala) ajo)
(alat = (a]o”
p(n) = laf
o*(n) = laf
w(XH) 2|ar| cos 6
(X)) 2| sin 6
o2(XT) 1
o2(X) 1
@) = exp(—|al*/2) Y02 (e /V/nl)n)
P(n) = exp(—|a?|)|a|*"/n!
9(2) (7-) = 1
Table 2.3: Properties of the coherent states.
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10 = S©0)
S(¢) = exp(3¢*(a)? — 3¢(a’)?) where ¢ = rexp(iv)
St(¢)aS(¢) = acoshr —alexp(iv) sinhr
St¢yat S(¢) = afcoshr — aexp(—ivd) sinhr
pw(n) = sinh?r
o%(n) 2(sinh?r + 1) sinh? r
p(XT) 0
n(X7) 0
o?(XT) exp(2r) sin?(9/2) + exp(—2r) cos?(9/2)
o2(X) exp(2r) cos?(9/2) + exp(—2r) sin?(9/2)
I€) = sechrd o2 (1/(2n)!/n!)(— tanh r exp(i?)/2)"|2n)
P(n=2m) = (sechr)((2m)!/(m!)?)((tanhr)/2)?™
P(n=2m+1) = 0 wherem =0,1,2,3,...
g (r) = 3+ (1/sinh?r)
Table 2.4: Properties of the squeezed states.
00 = D@30
D(a) = exp(aa’ —a*a) where a = |afexp(if)
5(¢) = exp(3¢*(a)® — 3¢(ah)?) where ¢ = rexp(iv)
DiSTaSD = acoshr — alexp(iv) sinhr + «
DiStat SD = afcoshr — aexp(—i9) sinhr + o
pw() = |af? +sinh?r
o%(n) a2 {e?" sin?(0— 9)+e~ 2" cos?(0—5)}+2(sinh? r+1) sinh? r
(Xt 2|ar| cos 6
(X)) 2| sin 6
o2(XT) exp(2r) sin?(¥/2) + exp(—2r) cos?(/2)
02(X7) = exp(2r)cos?(1/2) 4+ exp(—2r)sin?(1/2)
P(n) = (nlcoshr)™(3tanhr)" exp{—|c/?
— 1 tanhr((a*)%e” + (a)2e )} H, (2) 2
where z = (a + a*e'’ tanh ) /v/2el? tanh
and H,(z) are the Hermite polynomials
gP (1) = 1+ {(2a%+cosh(2r) — 202 cothr) sinh?r}/(a? + sinh? )2

Table 2.5: Properties of the displaced-squeezed states.

pm(m) = X o(m™/(m+1)")[n)(n]
where m = {exp(hw/kpT) — 1} !

p(n) = m
2(h) = mP4+m

p(XH) 0

w(X7) 0

o2 (XT) 2(m+ 1)

o2(X7) = 2(m+3)
P(n) = m"/(m+ 1)+

gP(r) = 2

Table 2.6: Properties of the thermal states.
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2.3 The zoo of single mode states

My aim is to show how arbitrary states of light can be charésze according to the prop-
erties of photon number distribution, quadrature ampétjcand second-order coherence.
But to do this, I will first need to examine some specific statfdight in order to illustrate
these concepts. Table 2.1 is a list of the necessary defigiiad short-hand notation. The
relevant properties are listed in tables for each of thefalg states: number states (Ta-
ble 2.2); coherent states (Table 2.3); squeezed stateke (ZaD); displaced squeezed states
(Table 2.5); and thermal states (Table 2.6). | regret thatetlis insufficient space for me
to give full derivations of the properties, nor for me to gs@nvincing arguments for the
correspondence of these states to those that can be prouuttedllaboratory. For better

arguments in this regard, one can turn to [Loudon 2000].

2.3.1 Number states

We have already met the number states during the quantisaticedure: they are the en-
ergy eigenstates of a single mode of the EM field. The intéapom is that each eigenstate
corresponds ta number of photons being contained in the mode. Following iteéa, the
photon number operatdris given by subtracting the contribution of the zero-poin¢igy
from the Hamiltonian of the systenf{ from eqn 2.46), such that = afa. Applying the
number operator then returngn) = n|n) as an eigenvalue. Thesember statesor Fock
statesas they are also referred to, form a complete basis in whicrkitrary state can be
expressed as a complex-weighted superposition of numdeisstProperties of the number
states are listed in Table 2.2.

All the states have a well defined photon number, in the sdradhe variance of the
photon number is zero. It is the state that has an absenceotdn#) the vacuum state
|n = 0), that takes a special place amongst the set. It is a minimurartainty state in
terms of the quadrature operator observabiésXt)o2(X~) = 1. For the other states,
the uncertainty product grows with the photon number, batriean of the quadrature
amplitude and phase remains at zero. In this sense, the matabbes do not seem to agree

with the notion of a classical EM wave.
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In the laboratory, photon number states can be prepared drdight source that is
based on the mechanism of parametric down conversion. &fgitetons are produced and
separated, one of which is used as a trigger to temporallgtesthe other photon with high

probability.

2.3.2 Coherent states

The state that most resembles the classical EM wave whicla hasll-defined amplitude
and phase, is the coherent state. The set of coherent gtatase parameterised by their
coherent amplituder. Note thato can be complex, where the real component shows up in
the amplitude quadrature, and the imaginary componengiphiase quadrature. The prop-
erties are listed in Table 2.3. The variances of the ammitutl phase quadratures are both
eqgual to one, and form a minimum uncertainty product for the coherent states. The
expansion of the coherent states in the basis of numbes staliews a Poissonian distribu-
tion in the probabilityP(n) of detecting the:th state. The mean and variance of the photon
number are equal to each other, and proportional to the squfdhe coherent amplitude.
For coherent amplitudes greater than one, B{e) distribution becomes approximately
Gaussian.

The coherent states can be ‘grown’ out of the vacuum stateplyiag the displacement
operatorD(a). This operator is also useful for unitarily transforminge tbreation and
annihilation operators (and the observables that arefooitt these) instead of evolving the
states, to enable one to work in the Heisenberg picture,ind¢ac simplify the calculation
of guantities such as the second-order coherence.

A source of coherent states can be well approximated in therddéory by a heavily
attenuated source of laser light. The attenuation servesgdiace extraneous noise sources

due to the lasing mechanism, and thereby prepare a neady gnlrerent state.

2.3.3 Squeezed states

Unlike the coherent states, the squeezed states are fraleetot unequal variances for the
amplitude and phase quadratures while still preservingrtimmum uncertainty product.

The properties of the squeezed states are listed in TableThdy can be grown out of
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the vacuum state by applying the squeeze opelﬁmy, which is parameterised by =
reV which the complex-valued squeezing parameter that detesrthe ‘strength’ of the
squeezing. Choosing a value of= 0 andd¥ = 0 gives exactly the vacuum state, while
r > 0 will cause one of the quadrature variances to drop belowwitk,larger deviations
of the variance signifying stronger squeezing. The squkgmadrature need not be aligned
with the amplitude or phase quadratures. The arbitrary gk angle is determined by
9. Note that the mean values of quadrature amplitudes are fperthis reason, the state is
also called a squeezedcuumstate, but note that the state is no longer a true vacuum state
since the mean photon number is no longer zero. An expansithie squeezed state in the
Fock basis shows that only the even photon number stategeserp, and that the photon
number variance always exceeds the mean photon number.

Squeezed states can be produced experimentally by a pa@dwin-converter that is
driven to produce degenerate pairs of photons, such thagthiben number distribution is

populated only by even photon nhumber states.

2.3.4 Displaced-Squeezed states

The squeezed state can be displaced in a similar fashiore tvdly that the vacuum state
was displaced to form the coherent state. Applying the dshent operator to the squeeze
operator then forms the displaced-squeezed stat€s when applied to the vacuum state.
Their properties are listed in Table 2.5. One is free to chdbe mean quadrature values
via «, and also the squeezing of the quadrature variances.viehe mean photon num-
ber becomes the sum of a contribution from the square of thereat amplitude and the
squeezing operation. In contrast to a non-displaced-ggdestate (or vacuum squeezed
state), the photon number variance may now become smallargar than the mean pho-
ton number depending on the amount of displacement andrévegsh of squeezing. Note
that this is sometimes called photon number squeezing,hadtiould not be confused with
quadrature squeezing.
One way of preparing a displaced-squeezed state of lightlabaratory is to inter-

fere a coherent source from a laser, with degenerate phaionfpom a parametric down-

converter.
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2.3.5 Thermal states

To write down the state of light that occurs in a single modéhefEM field under thermal
equilibrium, we need to be able to describe a statisticatumexof number states, rather than
a superposition. This is done by introducing the densityratoe p;,(m) as parameterised
by the mean photon numbet(7"), which is given by the Planck thermal excitation function
that depends on the temperatdfe Both functions are given in the list of properties in
Table 2.6. In a later section | will give the details of how tensity function works, but for
the moment let me just summarise the measurable propefties thermal states.

The means of the amplitude and phase quadratures are zétbhehiariances are pro-
portional to the mean photon number. This is analogous tedke of the photon number
states themselves, but where the parameteran take on any positive value, rather than
just integers. The value of. increases with increasing temperatireUnlike for the num-
ber states, however, the variance of the photon number &thttrmal states scales with
(m? 4+ m). A variation on the original thermal state, is thiasedthermal state, where the
variances for the amplitude and phase quadratures neee rojual. Although in this case,
the analogy of the state arising from a condition of therngglildorium needs to be treated

with caution.

2.4 Characterizing single-mode states

In the last section | had only introduced a few states of Jight listed some of their basic
properties, but | have not yet brought the individual préipsrtogether into concepts that
we can apply to arbitrary states. Each concept gives us rgptamother view into what a
quantum state of light actually is, but also a way of decidirigether a state can be classed

as being non-classical.

2.4.1 Expansion in the Fock basis: (sub-/super-Poissoniatatistics)

The concept of photon statistics is most readily seen byredipg an arbitrary state in the
Fock basis. We are interested in the probability of detgotiach Fock state, as obtained

by taking the modulus square of each expansion coeffidint) = |c,|?. In Figure 2.3,
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Figure 2.3: An expansion in the number state basis for coherent states and squeezed states. Note that

for weak coherent state, essentially only the n = 1 state contributes. For brighter coherent states, the

distribution approaches a Gaussian. The weakly squeezed vacuum state begins as only an n =2 contri-

bution, but increasing the squeezing parameter then begins to excite all even modes. The coherent state

has Poissonian statistics, while the squeezed vacuum state has super-Poissonian statistics. However, by

applying the correct displacement to the squeezed state, one can obtain sub-Poissonian statistics. The

dashed lines are placed at the mean photon number. The dotted lines give the upper and lower edges

that are set by the standard deviation of the photon number.
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| have compared the examples of a weak and a strong coheatat where the distribu-
tion function was taken from Table 2.3. For the case of a wadilerent amplitude, the
distribution is dominated by the vacuum state, and the sipgbton Fock state. For larger
coherent amplitudes, the distribution appears more Gausgsishape. Although difficult to
see directly, the mean equals the variance in each casajdeetteey are both derived from
a Poissonian distribution. This simple result from the Baisan distribution can be used as
a benchmark for deciding whether a state is nonclassica.s€mi-classical theory of light
only permits the detection of photons in a distribution ikaither Poissonian, or ‘broader’
than Poissonian, in the sense of the variance exceedingdae.nthe distribution itself can
be arbitrarily shaped, but is nevertheless terragger-Poissonian A clear signature of a
non-classical state of light is therefore the observatioa ghoton number distribution that
has a variance that is less than the mean, which is tesunkdPoissonian An example is
the displaced-squeezed state that has a large real cohenphtudea ~ 1, and a real and
positive squeezing parameter- 0. An example is shown in Figure 2.3, where the variance
is clearly less than the mean photon number.

Note that the converse of the sub-Poissonian criterion doekold true for all states,
i.e. a state that does not show sub-Poissonian statistidd stll be nonclassical as wit-
nessed by another criterion of non-classicality. The vatsqueezed state, shown for in-
stance in Figure 2.3, displays a super-Poissonian photorbaudistribution. The variance
of the quadratures however, shows that one of them is squibetaw the level of a vacuum

state, which is also a criterion of non-classicality.

2.4.2 Phasor diagram of quadrature statistics: (Qquadratue squeezing)

The quadrature statistics of an arbitrary state can be medén a phasor diagram that is
analogous to the classical representation of a wave that basiplex-valued amplitude (as
shown in Figure 2.1). | will show the steps that go behind themihg of such a phasor
diagram, which is also called a ‘ball-on-stick’ diagram.rsEi let us consider measuring
the amplitude quadrature of an ensemble of identically gnesph coherent states. We would
expect to observe a distribution of measured values that hAawean:(X*) and standard

deviationo(X ) as derived from Table 2.3. What the exact form of the distidiouis, is
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Figure 2.4: Phasor diagram of quadrature statistics. The ‘ball-on-stick’ diagram of a coherent state is
constructed from the mean and standard deviations of separate measurements that are made on the
amplitude and phase quadratures.
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Figure 2.5: Phasor diagram of quadrature statistics. The ‘ball-on-stick’ diagram of a displaced-squeezed
state is constructed from the mean and standard deviations of separate measurements that are made on
the quadrature angles of ¢ and ¢ + m/2. The angle is chosen to coincide with the major and minor axes
of the ellipse that is derived from a contour of the Wigner function.

not important at the moment. The observed mean and standaiatidn data are plotted
as vertical lines in a two-dimensional Cartesian plang, ltha been vaguely labelled with
X and X . Note that the hat notation has been dropped because the éabenly there
to remind us of the measurement basis. We repeat the expdyimg measure instead the
phase quadrature of the state, and collect the mgaf ) and standard deviation(X ™)
information, which are then plotted as horizontal lineshia phasor diagram, as shown in
Figure 2.4.

The next step in drawing the diagram involves making an apomabout the quadra-
ture probability distribution of the state that is underdstigation. For the case of the
coherent state, as we will see later, the distribution isSSiam along the amplitude and
phase quadratures, and indeed for any quadrature angldvireda® It is for this reason

that it is customary to replace the rectangular ‘constomctiines of the diagram with an
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ellipse that has major and minor axes that correspond totémelard deviation of the am-
plitude and phase quadratures (not necessarily respggtiviehe ellipse also corresponds
to a contour of the two-dimensional (quasi-) probabilitgtdbution of the amplitude and
phase quadratures, where the marginal distributions fcin gaadrature are derived from

the Wigner function representation of the state.

Note that this method of constructing the ball-on-stickgd#mn will only work when |
have chosen the quadrature angle that yields the major arat exes of the two-dimensional
quadrature distribution. | can illustrate this by consting the ball-on-stick diagram for
a displaced-squeezed state that is squeezed along ararigjtradrature anglé. The
relevant mean and standard deviations of the quadratunes ieen gathered from Ta-
ble 2.5. The correct analysis is to choose a quadrature griffiat is equal to the squeez-
ing angledy. This new quadrature basis is defined in Equation 2.44. Tioedotwates
of the ellipse in therotated quadrature basis can be drawn along a paramet&ing:
2% = (X?) + o(X?) cos(t); xfﬂr% = w(X?T2) 4+ (X% 2)sin(t). The construc-
tion diagram, and final ball-on-stick diagram are shown iguFé 2.5. The length of the

‘stick’ is equal to the absolute value of the displacement

Now that | have gone through the method of drawing a ballt@ksliagram, | can
return to the concept of squeezing and its role as a witnessrtolassical states of light. If
in the diagram, one finds that the minor axis of the ellipseaaalue of less than that of
a vacuum state (a value of one), then one can conclude thatdteeis ‘squeezed’ in that
quadrature (whatever the angle may be). We may not howewer riecessarily observed
a member of the family of squeezed state, since this wouldiredulfilling the definition
as given in Table 2.4. The significance of observing squegeirihat it cannot occur in
the semi-classical theory of light. The argument for thigeseon the result that the semi-
classical theory can only describe either coherent stdtkghd, or statistical mixtures of
them. Within these confines, it would not be possible to &t criterion that a quadrature
variances could be less than that of a coherent state (ourastate). Hence, the criterion

of squeezing can be used as a witness for identifying nosicidight.
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Figure 2.6: The density operator as expanded in the Fock basis and shown in matrix form with elements
Pnn’- The value of each element has been replaced by a plus or minus symbol, where a larger size
indicates a larger absolute value. Elements having values near to zero were replaced by a small ‘0’
symbol. The grey shading highlights the diagonal elements. The density matrices for a pure coherent
state and a mixed thermal state are compared. The thermal state is completely mixed and does not show
any off-diagonal elements.

2.4.3 The density operator: (pure/mixed states)

Pure states are states that can be expressed as a supmnmfsitimber states in the Fock
basis. But for some physical systems that can only be degtiiba probabilistic theory,
perhaps due to the large number of particles involved, thenrmay only have a limited
knowledge of the state of light that is produced, and one dvdlrefore need to find a
way to describe a statistical mixture of states. The demgigrator is a short-hand notation
that completely describes a mixed state as being made upligfdnal pure states, and the

probabilities with which they are likely to be found.

The analysis begins by letting there be a discrete set ofgtates R) that are labelled
with the variableR. We assume that we have knowledge of the probabilffigsvith which
these states will occur. The probabilities need to sum to dng Pr = 1. Each pure state
can be expressed in terms of a discrete set of basis $fitélsat are labelled by variable
S. These states form a complete basis, such ¥hat.S)(S| = 1. The task at hand is to

calculate the expectation value of some operatdor the statistical mixture of states. A
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way of doing this is apply the completeness property of treshstates, such that

(0) = ) Pr(RIOIR) (2.53)
= §2PR<R\O(DS><S\)1R> (2.54)
= ZR:ZPR<R!5\S> (SIR) (2.55)
= ijzz:PR<5\R><R!O\S> (2.56)
= ZSZ<S\(%:PR1R><R\)\O\S> (2.57)

If we define the density operator as being
p=>_ IR)NR| (2.58)
R

then the expectation value of the operatbbecomes

(©0) = > (51p015) (2.59)
S
= Trace{pO} (2.60)

This seems rather abstract at the moment, but | think | caargeind it by choosing the set
|S) to be the Fock states, and by choosing to express thidsen the Fock basis. After
doing this we gep = >, >,/ Pow|?)(n|, for which P, .. The coefficientsP, ,,; form

a matrix. Note that | could also have chosen another bakes,ttie coherent states. To
give a concrete example, let us refer to the density matrxtbermal state (see Table 2.6).
It is common to visualise the density matrix as a two-dimemai bar-graph plot, but an
alternative is to highlight the structure of the matrix, as lbeen done in Figure 2.6. Note
that the thermal state contains only diagonal elementss& berrespond to the probabilities
(or populations) of detecting the particular Fock statem@are this with a pure coherent
state, which has off-diagonal elements that can be intexghras fixed phase relationship
(or coherence) between the Fock states. The elements ofatrexwere extracted from
Table 2.3, by taking the product of the coefficientsof the Fock state expansion such
thatc,c’,|n)(n'|. Some important properties of the density operator are dnenalisation

conditionTrace{p} = 1, and the purity conditio®> = j. The latter can be proved simply
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Figure 2.7: The Wigner functions of the vacuum state and single photon states are compared. Although
being a member of the Fock state basis, the vacuum state differs from all other Fock states, in that its
Wigner function is positive definite.

from the definition of a pure stat¢? = |R)(R||R)(R| = |R)(1)(R| = p. Note that the

purity condition does not give us a criterion for withessimanclassical states of light. For
example, there exist states that are mixed, but still ekkili-Poissonian photon statistics,
or quadrature squeezed light. A weakly phase-diffuseglatied-squeezed state can fulfil
all of these conditions. The density operator containshallibformation to describe pure

and mixed states, but it is not a convenient tool for ideimifynonclassical states of light.

2.4.4 The Wigner function: (negativity)

The density matrix can be converted into the Wigner functiehich is a two-dimensional
quasi-probability distribution over the quadrature olsables. Like the density operator, the
Wigner function contains all the information about theettlight, however, it is presented
in a way that is more intuitive. The Wigner function in a sefie in the shaded ellipse
of the ball-on-stick diagram of quadrature statistics. I$bareveals another nonclassical
property of light: negativity of the Wigner function.

The definition of the Wigner function is not obvious at firshigte,

1 [t
W(zt,27) = —/ dz exp(izx_)<w+ _Z p

T J_ oo 4

z
ot o+ Z> (2.61)

nor at the second glance. More details about the origin &f ¢lgjuation and its setting
in quantum optics can be found in the textbook of [Leonha8®7]. Nevertheless, | will

attempt a brief discussion of the definition. Firstly, thesiey operator is evaluated over
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the eigenstates of the quadrature operators. These aredi®fnk ©|X ) = X+[X+).
The eigenstates are chosen as a pair that have a symmesit thit is prescribed by the
arbitrary variablez. The result is a function of andx ™. If we consider that the phase-space
variables ¢ andz ™) are held fixed, then the integration performs a Fouriersfiaim of
the function in terms of, into the space af~. Finally, the function is mapped out in terms

of the variabler™ to obtain a two-dimensional function.

The feature of the Wigner function, is that the marginalisstribution across one
variable, say:™, will return the probability distribution of measuremetitat are made in
the corresponding quadrature basts(). This also works for any rotated quadrature basis.
Like a traditional joint probability distribution, the Wigr function is normalised, as the
integral overz™ andz~ is equal to one. However, unlike a traditional joint proliapi
distribution, the Wigner function has the freedom to becamagative, even for Hermitian
density operators. There is no problem in this, because aareér is only capable of
(competently) measuring one quadrature of the light field &ne, and the marginalised

distribution is guaranteed to be positive definite.

The Fock states beyond = 0 turn out to have impressive looking Wigner functions.

For example, the = 1 Fock state has a Wigner function [Walls and Milburn 1994]:

Wt 2) = 2(—1)" LA ) + 4z ) exp(—8(a+)? — 8(z7)2)  (2.62)

s

whereL,, are the Laguerre polynomials. This function is plotted foe tasdn = 1), in
Figure 2.7. The single photon Fock has a minimum at the oofthe phase space coordi-
nates, ofi’(0,0) = —2/x. This is the smallest value possible for the Wigner functamd

it clearly demonstrates the negativity possible in the Widiunction representation. The
Wigner function of the vacuum stafie = 0) (which is also a zero amplitude coherent state),
is shown in Figure 2.7. The function is Gaussian and so tlen® inegativity. However,
here we can see that the contour of this function taken aetle@ i’ = 1, is concomitant

to the ellipse of the ball-on-stick diagram of a coherentesiia Figure 2.4. Indeed this is
the more rigourous definition of the ellipse in the ball-dicisdiagram, and this applies for

arbitrary states too.
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The semi-classical theory can only describe pure cohetatgss or mixtures of coher-
ent states. These mixed states can never show negativitg Wigner function. Negativity
in the Wigner function is therefore a witness to noncladdight. Because the Wigner
function is highly analogous to a classical phase-spadeaibity distribution, finding neg-

ativity in the ‘probability’ is quite a counterintuitive salt.

I would also like to highlight the distinction between Gaassand non-Gaussian states.
This is most easily seen in the Wigner function. If the Wigherction has the form of
two-dimensional Gaussian distribution, then the stateoissitlered to be Gaussian. Any
other form is considered non-Gaussian. Note that a Wignestion that shows negativity
(and hence is a non-classical state) cannot possibly bevalation over a set made up of
only Gaussian states, and so such a state is necessari@aussian. But a state that is
non-Gaussian does not necessarily need to have negagindyhence is not guaranteed to

be non-classical.

2.4.5 Second-order coherence: (photon anti-bunching)

| will reserve a full discussion of second-order coherengé the photon anti-bunching
concept until Chapter 7. However, for completeness, | wdililel to introduce it at an
earlier stage, and also motivate it from a slightly différparspective [Loudon 2000]. The
question is: if | consider a single-mode state of the EM fieldg extract one photon of
energy from that mode, how ‘likely’ is it that | will be able &xtract a second photon
directly after the first one? The answer could perhaps beenrdown in the following way
(1|atataal+y), where two photons are first removed, and then restored. Wesqaess this

in terms of number operators, use the Boson commutatiotiae)and normalise the result

to get
atataa
g?(0) = W (2.63)
_ 7<ﬁ(?ﬁ>—21)> (2.64)
14 o?(n) — p(n) (2.65)

p(n)?
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whereg(® (0) is called thedegree of second-order coherenégom Equation 2.64, we can
deduce that a value @f? (0) = 0 is consistent with a zero probability that two photons
will be detected. We can interpret this as the tendency fot@is to be detected one at a
time (anti-bunched), rather than being detected togethgraups (bunched). The criterion
of ¢ (0) < 1 becomes the definition of anti-bunched photon statistics.

We can look at this result from another perspective. In Eqoa2.65, we can iden-
tify the criterion for sub-/super-Poissonian statisti€ierefore when the state has exactly
a Poissonian photon number distribution, the second-artdberence function is at the
boundary between bunching and anti-bunching (the stateeis $aid to be second-order
coherent). Furthermore, all sub-Poissonian states wiil fhe anti-bunching criterion. So
in the discussion of non-classical light that follows, IMniclude photon anti-bunched states

under the same umbrella as sub-Poissonian states of light.

2.4.6 Summary of criteria for non-classical light

In the last section | have shown a few different ways thagestat light can be viewed in, and
also a handful of criteria that can identify non-classidates of light. | have summarised
these criteria in Table 2.7. Note that there exist statesgbf that can fulfil any logic
combination of these criteria. Each criterion is sufficisntvitness nonclassical light, but
they are not necessary, i.e. there may exist other criténare-classicality that can identify
non-classical light. Let me introduce abbreviations fag thiteria: sub-Poissonian (P),
quadrature squeezed (Q), and Wigner function negativity. & example of a state of
light that fulfils the criteria (P&Q) is the displaced-sgmed state shown in Figure 2.3 where
|l = 2.3,¢ = 0.5). A single photon state easily fulfils the condition (W), heeeapplying
squeezing operation to it would also satisfy (W&Q). An ajiate displacement operation
applied to this state can then satisfy (W&Q&P). The defimsi@nd properties of displaced

squeezed single-photon states can be found in [Nieto 1997].

2.5 From discrete to continuous modes

The previous analysis of states of light was restricted &dhse of a single mode of an

ideal optical cavity (a closed system). This does not cpord to the type of experimental
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Sub-Poissonian: o?(n) —pum) < 0
Quadrature squeezed : {o? (X¢)}min(¢) < 1
Wigner function negativity: (Wt 2 ) minre) < 0

Table 2.7: A summary of criteria that will identify non-classical states of light. Note that all the criteria
shown here are sufficient but not necessary criteria for non-classical light.

ALL STATES

Classical states

Non-classical
states

sub-Poissonian

Other Criteria

Figure 2.8: A Venn-type diagram of a selection of criteria for identifying nonclassical states of light. There
exist states of light that occupy each overlap region, and also the multiple overlap regions. Note that other
criteria of nonclassical light can still exist.
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situation where laser beams freely propagate from sourdettxtor. Although the closed
system can be approached in experiments of cavity quantrctratlynamics (CQED), the
experiments that | present in this thesis dealt with opeteays. The consequence of open-
ing the system, is that the modes become ever more closetgdpa frequencyv, such

that it becomes necessary to describe a continuum of modes.

2.5.1 Continuum of modes

The spacing in frequency between neighbouring modes isdiyeAw = 27r¢/L, which
depends on the length of the cavitl)(that was used in the quantisation procedure. As the
length of the cavity is increased, the mode spacing willriéhto zero, and the electric field
operator, which is a discrete sum over all modes, will becamintegraly", — < [ dw.
The transverse spatial extent of the mode still has a finite 4r But some other properties
change, like the Kronecker delta becoming a Dirac deltatfoncdy, » — Awd(w — w').
Note that the scaling of the delta function is important. Vdesider the case of waves
propagating in only one direction, say along the z-axis,f@aving only the one polarisation.
So the vectok just becomes the scalar We also restrict ourselves to the case of only
positive frequency, i.e. for waves propagating in the positive z-axis dirattio

As a consequence, the creation and annihilation operagmsned, — vAw a(w)
and dL — VAwat(w). This gives the new, but familiar looking commutation rilat
[a(w),al(w)] = d(w — ). With these new definitions, the electric field operator from

Equation 2.39 becomes

EF(z,t) = —i—i/oo dw (4 ZL;UCA)I/Q a(w) exp[—iw(t — %)] (2.66)
0 T

. o0 /

ET)(zt) = —i/o dw <47TZ§CA)1 ’ al(w) exp[+iw(t — %)] (2.67)

Note that the frequency spacing terths have cancelled, and that the cavity voluimdas

been replaced by transverse arkaby usingl’ = LA.

2.5.2 Fourier transformed operators

One then makes a narrow-band assumption, where any eswitattithe field is limited to

small spread in frequency around the centre frequengcy This is assumption valid for
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a laser sources, or atomic transitions that have narrowvidibs. As a consequence the
integration range can then be extended without any harrmdade negative frequency,

and the variabley can be taken outside the integral as a constgrio give

EF)(zt) = +i<4:3u0)214>1/2 /_OO dw a(w) exp[—iw(t — %)] (2.68)
. hw /2 fo° z
ET(zt) = —i<4m_:0(;A> /_oo dw a' (w) exp[+iw(t — E)] (2.69)

These integrals are essentially performing a Fourier toamstion to the creation annihi-
lation operators. This motivates the definition of the tiduwnain operators. Note that they

have been defined to be consistent wiitkt) = [a(¢)], hence:
. I .
a(t) = %/ dw a(w) exp(—iwt) (2.70)
af(t) = 2i/ dw &' (w) exp(+iwt) (2.71)
7T —o

where the propagation term will from now on be suppresseceting = = 7c/2w. The

inverse Fourier transform of the operators is then defined as

a(w) = / Oodta(t) exp(+iwt) (2.72)
al(w) = /Oodth(t) exp(—iwt) (2.73)

Using these definitions we get the time-domain electric figldrator for positive and neg-

ative frequencies

EM(1) = (Zf;‘;)l/ aw) . EO() = (:::ﬁ)l/ Wi @74

Which add up to give the total electric field operafor= E(+) + E(-). Although the main
result looks trivial, it appears as if | have just replaced dlw) with a(t), but note that
these definitions only apply for the case of a narrowbandatkan of the EM field, and/or

a narrowband photodetector.
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2.6 Direct detection and the sideband picture

What does a photodiode measure? What part of the electr@nadield does this corre-
spond to? It turns out that there are two answers which defpeadarge extent on the type
of detector and the source of light that is used. At this pthietdiscipline of quantum op-
tics divides into two areas: discrete-variable (DV) andtoumus-variable (CV) quantum
optics. | will concentrate on CV quantum optics, becausejilias to the experiments that

| present in this thesis.

2.6.1 The two-mode formalism

The total electric field is the integral over the continuumpositive and negative propa-
gating solutions of the EM field; see Equation 2.74. But thil mot result in an intuitive
interpretation of CV measurements. Such measurementgmséige to modulations of the
intensity (or amplitude) of the light, so it makes sense t&lyse the electric field operator in
terms of upper and lower sidebands [Caves and Schumaket. 1988 choose to perform
the integral over pairs of modes that spaced around a cemtiabl frequency, thearrier,
atwg. Then we have thapper sidebandnode at a frequency @y + €2, while thelower

sidebandnode has a frequency af) — €. Using this new formalism, the total electric field

A hwo 1/2 anax
E) = <47T6()CA> /Qmin ds

_ 1/2 .
x{i (‘”0 Q) (o — Qoo

becomes

1/2
_1 <w0 - Q) &-‘— (wO _ Q)e—l—l(wo—Q)t
> al(wo + Q)e+i<w0+9>t} (2.75)

Fundamentally nothing has changed. It is only the way thaintlbdes are now ‘counted’
that has changed. Note also, that | have not specified a rangiesf integration, other that

Qmax, 2min. There is of course a problem with double counting wkkgp,, = 0, but for
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the moment lets keep it non-specific. In a typical quantunicegxperiment, one often
encounters values likey ~ 10'® Hz and up to2 ~ 10° Hz. So we can safely assume that
2 < wy, and hence that thevy — ) /wp scaling terms that appear in the equation above,

can be assumed to equal one. This simplifies the expressowmensly:

R th 1/2 Qmax
E(t) = Q
®) <47T€00A> /Qmm d

X{ +ia(wo — Q)e_i(wo_g)t +ia(wg + Q)e_i(“’OJFQ)t

—iaf (wy — Q)et o=V _iaf(wy + Q)e+i<wo+9>t} (2.76)

The aim is now to simplify this expression further. The coexpéxponentials can be ex-
panded into cosine and sine terms. The resulting arrangeshereation and annihilation

operators then seem to naturally collect themselves ingb ef$our Hermitian operators to

N B h&)o 1/2 Qmax
Bt) = <47TEOCA> /Qmin di2

X { sin(wot) [cos(Qt)Xj(Q) + sin(Qt)Xj(Q)]

give

+ cos(wot) [cos(Qt) AC_(Q) + sin(Qt)Xs_(Q)} } 2.77)

where the newly introducetivo-mode quadrature operatotmve been defined as

FQ) = +XH(wo— Q)+ X (wo+ Q) (2.78)
XHQ) = —X " (wo— Q)+ X (wo+ Q) (2.79)
X7(Q) = —X (wo—N)—X (wo+9Q) (2.80)
X7(Q) = —Xt(wo— Q)+ XH(wo+ Q) (2.81)

and thesingle-mode quadrature operatoasgiven by their usual definitions

Xt wo—90) = al(wo— Q) +alwy—N) (2.82)
X (wo—9Q) = ial(wo— Q) —ia(wy — Q) (2.83)
Xt wo+Q) = al(wo+ Q)+ a(wo + Q) (2.84)

X (wo+9Q) = ial(wo+ Q) —ia(wo+ Q) (2.85)
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Although not obvious at the moment, the set of two-mode cptade operators describe
amplitude and phase modulations at radio frequenQied the oscillation at the optical
carrier frequencywy. The superscript and subscript labels that | gave theseatmperis
arbitrary, but in the next section we will see thﬁf and Xj appear as modulations of
the amplitude of the light as it would be measured on a phottedi They correspond to
two independent ‘channels’ of amplitude modulation on tgktlbeam: the sine and cosine

channels. The following commutation relations make théscl
[Xj,fc;] - [X+X—] - [X‘X*} - [X— fc—} =0 (2.86)

which is independent of the choiceff Within each channel, there are two non-commuting

observables

XF (), XC‘(Q’)] - [Xj(fz), Xs—(m] — 4i 5(Q — Q) (2.87)

wherej(©2 — ' = 0) = 1 andd(Q2 — ' # 0) = 0. Each pair of incompatible observables

then obeys the following uncertainty relations

[

o (Xj(fz)) o (X—(Q')) > 45(0— Q) (2.88)

o (Xj(Q’)) o (X—(Q’)) > 46(Q - Q) (2.89)

S

Where the variance of an operat@?(é) is defined in Table 2.1. The uncertainty product
for the two-mode quadrature operators has a valde which can be compared with a value

of 1 for the single-mode quadrature operators.
2.6.2 Direct detection: Poynting vector

We have seen a representation of the electric field in a twdensadeband formalism, but
| want to make the connection with what a photodiode measuies following derivation

seems unusually long. This is because | wanted to clearlw she approximations (a
strong and narrow-band excitation), that are needed to thakgroblem tractable. The rate
of photo-ionisation of an atom is proportional to the Paygtvector operator of the light
that the atom is being exposed to [Loudon 2000]. The Poyntémgor is equal to the rate

of energy per unit area that flows through a fixed plane. | béggranalysis in the single-
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mode formalism, before later changing to the two-mode fdisma In the continuum of
single-modes, the Poynting vector operator becomes a eldatdgral over the absolute
frequenciesv andw’. The negative and positive electric field operators fromdfigm 2.67

need to be written down in normal order, so that the Poynte@or operator becomes

It) = 2ecET) (1) EM (1) (2.90)
= (%) /OO /Oodw dw’ V' af (w) a(w') el ="t (2.91)
T o Jo

The double integral cannot be simplified any further until akea an assumption about
the excitation of the EM field. | would like to calculate whagpens when a source of
monochromatic laser light is incident on the detector. Toutate this situation, one can
apply the displacement operator at the frequengywhich establishes the carrier with a
coherent amplitudey. In the Heisenberg picture this then transforms the creatml an-
nihilation operators such thaBa(w)D = a(w) + ag §(w — wp); Daf(w)D = af(w) +

afy 6(w — wp). For this discussion we sef; = «y. The displacement only applies to the
frequencywy, which is the reason for introducing the delta function. Tigplacement

transformation is then applied to the Poynting vector dpersuch that

Io(t) = D'(a)I(t) D(a) (2.92)

= ( >/ dw dw’ Vww' @«
0

aT(w)a(w') + ad 6(w — wp) (W' — wo)

[e=]

apdl (W) 6w — wp) + aga(w) 6w — wo)} (2.93)

The double integral can be reduced to a single integral if wkenthe following assump-
tion. Any terms in the integral that are not scaleddywill not contribute significantly to
the integral, and can therefore be neglected. The term tht heglect isaf(w)a(w’).
Since we have the freedom to choose the strength of the ichyriearying oy, we can al-
ways enforce the validity of neglecting the cross-freqyeteems. This is exactly the same
as in classical optics where the sidebands ‘beat’ with theergo produce amplitude and
phase modulations, whereas the beats between differesiiasids are negligible. While

keeping the approximation in mind, the expression for thgnkig vector can be broken
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up, and the integral ovey’ can be evaluated such that

A h o0 .
It = ( 2@) {ag /0 dw v/w e @90t 50 — wy)

+ag / dw V& [e“(w—woﬁ it (w) + e~iw—wo)t a(w)}} (2.94)
0

The next step is to change the frequency variable suchudhatwy + €2, where{? is the

sideband frequency relative to the carrier.

I(@) = <@> {ag /Oon Vwo + Qe 5(Q - 0)

2mA —wo
+ag / dQ Vo + Q [emt il (wo + Q) + e a(wo + Q)} } (2.95)

—wo
The limits of the integration are then reduced from the hdihite plane, to covering just
a small bandwidthB that extends above and below that carrier. The exact valubeof
bandwidth would depend on the type of detector, or in abistemms, on the linewidth of
the photo-ionisation process. However, we can assume3tk&atwy. This ensures that we
can make the approximatiofiwy +  ~ ,/wg. The first integral can then be evaluated,

thus leaving,

. hw +B ) .
Ia(t) = 70{04(2)—1-;—72 Bdﬂ[eﬂﬂtaf(wom)+e—lﬂta(w0+9)}} (2.96)

This equation tells us that the detector is responsive tedhstant photon flughiwgad /A)
from the coherent excitation at the carrier frequency, phescontribution from the side-
band quadrature amplitudes that are scaled by amplitudeafarrier. But to complete the
measurement process, we need to define a time window oveh Wldaneasurements takes
place. This also determines what sideband frequenciesapjibar in the measurement.
One way to implement this is to multiply the Poynting operatith a time window func-
tion and then integrate this over all time. | will considemtdifferent window functions:
one functionTpc(t) for measuring the steady-state intensity, and anothetiotm@yc(¢)
for analysing fluctuations of the intensity at a specific frexacy 2. The measurement

bandwidth is in both case&(2, which must be kept smaller than the detector bandwigith
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Time window
T(t)=cos(Qq t)sinc(AQ t/ 2)

A n ﬂM/\(\ﬂ ﬂﬂAﬂM A A8 fn
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Y

Fequency window
W(Q)=Hat(Q-Qq) + Hat(Q+Qq)

| aQ | . | aQ |
Q
\ . , . R
1l wy—Qp Wy wg+Qg )
Lower Upper
Sideband Sideband

Figure 2.9: A method of getting into the sideband picture. In the time domain, one can choose to multiply
the photocurrent by the cosine-sinc function. The resulting frequency window in the Fourier domain is
a hat function on either side of the optical carrier wg, which corresponds to the two-mode sideband
formalism.

The window functions are defined as

Toolt) — sin(%AQ 0/ (%AQ ) (2.97)

Tao(t) = cos(Qot) sin(%AQ 0/ (%AQ ) (2.98)

The choice of these particular functions enables us to tgesharply defined frequency
filters, which have been visualised in Figure 2.9. The Fourasform of the time window

functions, gives the corresponding frequency window fiomst

2

Woe(Q) = { 1, (-3AQ) < Q< (+3AQ)

T AQ )| 0 , elsewhere

and

1, (- —3AQ) < Q< (- +1AQ)

Wac() =353 1, (2 — $A0Q) < Q < (+Q0 + $AQ)
0 , elsewhere

Note that for this to hold true we require t@&Q < Q. Let us apply thépc window to

the Poynting vector operator from Equation 2.96 and integoser all time. This allows us
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to get the energypc collected during the measurement window, therefore,

gDC = A/ dt Tpc(t (t)

2 hw, +B +o00 )
- hwoa3<i)+ an/ a0 {a*(woﬂl)/ dt Tpe(t) et

AQ —-B —00

+oo .
+a(wo+9Q) / dt Tpc(t) e—lﬂt}

—0o0

. 2w hwoao +B 1t "
= hugod (ar ) + /_B a0 Woo(@){al (wo+ Q) + (o + )}
2T hwgor +340 .
_ o[ 2m 00 N
= o} () + /_%m 40 X+ (wo + Q) (2.99)

We can identify a characteristic time that corresponds eadilration of the time window,
given by At = 27 /AQ, which comes from the integral over all time B¢ (¢). With the
time duration identified, we can then define the rate of eneofjgcted, or powePn ¢, that

was detected

. hw tar N
Poc = fwoad + 22:“0 / S0 Xt (wo +0) (2.100)
At

= Twpad , whenAt — oo (2.101)

If we then keep extending the length of the time window to ge¢ter average value, then
range of the integral shrinks. Note that there is no anonsatesult af? = 0 because we
are working in the Heisenberg picture, and the cohererg $taitthe carrier was made by
transforming the operator, not the state. So if | were toudate the expectation value of
the Ppc operator, | would use a vacuum state for fhe= 0 mode (which would return a
value of zero for theX+ operator). The main result is that in the limitAf — oo we have
Ppe = hwoa?). We can turn the argument on its head, and deducey@wmin units of the
mean number of photons per unit time. In Sl units whieeg is in Joules, the units af?
are in number per secorjsi!].

The procedure is similar for measurements that are mades atideband frequencies
that are centred &2,. The idea of multiplying the Poynting operator with a terngavin-
dow function that looks likel'y¢(t) is exactly the same as the experimental technique of
demodulating an electronic signal, by multiplication wéthreference frequency (an elec-

tronic local oscillator). | give the time window an additelrireedom, which is the ability to
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be delayed by an amoury. Starting with Equation 2.96, the operator for energy cbéd

by the detector becomes

Eac = A/ dt Tac(t —to) 1a(t)

—0o0

+B 400 ]
_ hwoo‘o/ dQ {d"(woJrQ)/ dt Tac(t — to) e
27 -B —00
+oo )
+&(w0+§2)/ dt Tac(t — to) e_lm}
+B
_ Twoao / dQ Wac(Q)
27T _B

X {e+iQt‘)&T(wo + Q) + e 04 (wy + Q)}

Fiew Qo+3A0 . .
— X?;Oﬂ / TS {e+IQtOdT(wo + Q) + e g (wy + Q)
Qo—3AQ

+e M0GT (o — Q) 4+ e TG (wy — Q)}

fiw Qo-i—lAQ R ~
_ Twoaom / i dQ{cos(Qto)Xj(Q)+sin(QtO)Xj(Q)} (2.102)
A Joy—laa

Here we can see how the two-mode quadrature operators fantipditude, as given by
Equation 2.81, have appeared in the expression for thegresgollected by the detector.
If we divide the collected energy by the duration of the timiadew, againAt = 27/AQ,

then the operator for the average power that is detectedriesco

Prc a0 {cos(Qto) XF(Q) + sin(Qto) X;(Q)} (2.103)
Qo—1AQ

) hwoo /Qo+%AQ
Note that the two-mode quadrature operators carry the ohis /2]. Let us calculate
the expectation value of the mean and standard deviatiohiobperator, over the set of

vacuum state${0}) for all Q. We then get a meam(Pxc) = 0, and standard deviation

a(PAC) = hwoag/AQ/2. The former is to be expected, since we have made no coherent

excitation at the sideband frequencies. The latter is ddayethe root of the bandwidth,
therefore the larger the bandwidth, the more noise poweetiscted, which is consistent
with a frequency independent power spectral density, otenfise. This is the derivation
for the shot noise of a photodetector, when it is illumindigd coherent state of light. The

derivation of the shot noise using the semi-classical thean be found in [Winzer 1997].
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2.6.3 Two-mode coherent states produce AM and PM

The measured power of a photo-detector is neatly descrnibdteitwo-mode formalism of
Equation 2.103. An amplitude modulation (AM) and phase nhtthn (PM) can be pro-
duced on the light beam by applying a coherent excitatiohgaipper and lower sidebands.
The two-mode displacement operator is defined by a pair gfesimode displacement op-
erators:

D = D(o—;wp — Q) D (g wo + Q) (2.104)

It essentially creates a coherent state at the upper and sisedbands at the modulation fre-
quenciesuvy + 2y, andwg — 24,,; and with the coherent amplitudes. anda_, respectively.

It transforms the two-mode quadrature operators in theviafig way:

DL X+ Dw = XF(Q)+2|+R{a}+R{as}]6(Q-Qn)  (2.105)
DL X Dw = XF(Q)+2| - S{a ) +S{as}]6(Q-n)  (2.106)
DL XZ Dy = X7(Q)+2] - S{a} — S{ay}]6(Q@-0n)  (2.107)
DL X7 D = X7(Q)+2] - R{a) + R{as}]6(Q-Qn)  (2.108)

For example, to put an amplitude modulation on the cosinamlaalone would require
the condition thatv;, = a_ = a4, Wwhere the modulation depth,, is real. We choose the
modulation frequency to be at the centre of the bandwidtf),se= 2y, and the offset of the
time window att, = 0. Using Equation 2.103, together with the continuum of makis
the vacuum state, we get the following measurement of thenraed standard deviation of
the detected (AC) optical powefi( Pac) = hiwoan(20um) ando(Pac) = hwoag/AQ/2.
The signal-to-noise ratio is then simpy/ = 2a,,/1/AQ/2. So if | would like to detect
an amplitude modulation with a signal-to-noise ratio of,dhen | would have to modulate
the carrier light beam with enough depth to supply a rate aftqis into the sidebands
(o) that is equal to one eighth of the detection bandwidth. Téisey also called shot-
noise, originates from the vacuum sidebands. In practieeshot noise level becomes the
calibration for the photodetector and subsequent speamidy/sis. If one accurately knows

the bandwidth of the spectrum analyser, then one can indemgban number of photons in
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Figure 2.10: A visualisation of the two-mode coherent states which appear in two channels of amplitude
modulation, and two channels of phase modulation. The two-mode coherent states are also presented
as spectra that are made up of a ball-on-stick diagram drawn at each frequency. The frequency mode of

the carrier is also shown. All other frequency modes are in the vacuum state.

the sidebands that make up the amplitude modulation [Véglh 2006].

The other channels of modulation are created in a similarnmaby appropriately
choosing the complex angles@f anda.. These modulations of the light beam are shown
graphically as an oscillation in Figure 2.10. Also shownrhis spectrum as being made up
of a ball-on-stick drawn at ‘every’ frequency. The phasatiehships of the sidebands,

relative to each other, determines what kind of modulatsoproduced.

2.6.4 A two-photon process produces two-mode squeezed s&it

We have seen that the vacuum sidebands are responsibleefshdh noise in the form of
a fluctuating optical power as measured by a photodetectoakihg at Equation 2.108,
we know how to produce modulations on the light, but can we edsove them such that
the light beam detected as a whole has a steady amplitudeaquia® If we lived inside
a cavity in single-mode world, then the answer would be: yest, apply the squeezed
operator to the single mode. But in the world of photo-dédectwhich is inherently a

two-mode process, we need to apply a two-mode squeeze apier#te form of:

A

S(C) = exp {%C*&(Wo + Q) a(wo — Q) — %C&*(wo — Q) al(wo + Q)} (2.109)
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Where the squeezing parameter is= r exp(i’)). One can readily see the similarity with
the single-mode form in Table 2.4. If we choose to keep theszing parameter to be real

¢* = ¢ = r, then the two-mode squeezing operator works in the follgwiay:

ST(r) XHQ)S(r) = e"XHQ) (2.110)
ST(r) XF(Q)S(r) = e "XH(Q) (2.111)
St X7(Q)S(r) = X7 (Q) (2.112)
ST X7 (Q)S(r) = eXT(Q) (2.113)

The squeezing operation acts like an amplification or delifingtion of the two-mode
quadrature operators. The transformation is sympleatichat the product of the phase
and amplitude quadrature variances remains unchangedexpnession for the mean and
standard deviation of the detected (AC) power becomes®rc) = 0 ando(Pac) =
hwoage™ \/m Compare this with the case before the squeezing opera@snmro-
duced. For positive values of the squeezing parameter, tasuned noise, as given by
the standard deviation, is lower by a factoreof’ of the shot-noise level. Note that if we
had applied only the single-mode squeezing operator, thismesult would not have been
possible. It is the correlation of the sidebands, as intteduby the two-mode squeezing
operator, that enables the reduction of the measured amplitoise of the light beam, to

below that of shot noise.

2.6.5 A compact form of the two-mode formalism

The two-mode formalism is the most intuitive model for ursfanding what part of the EM
field a photodetector detects. But it can be a bit clumsy whenmes to calculating the
output of nonlinear optical components, such as an optaarpetric amplifier. One way to
get around this is to defining a new operator which contaitils bleannels of the amplitude

quadrature:

L) = S(XFQ) —iXF Q) = {alen — 9) +al (o + Q) (2114

X=(Q) = %{X;(Q) X)) = i{a(we — Q) — dl(wo + Q)} (2.115)
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So what | have effectively done is to put the information ofteaeal-valued channel into
one complex-valued channel. The change of font for the neavatprs is to remind us that
they are not Hermitian. When doing calculations, one musteraber to take twice the
real part2R{X1,(Q)} to get the cosine channel, and twice the imaginary PafX% (Q)}
to get the sine channel. The operators obey the commutalation [X*(Q), X~ (Q')] =
—2i6(2—0) 6(2'—0). The role that they play will be made clear in a moment afteafired

the Fourier transformed operators:

A +OO . A

Xt = 2i dQ ¢HUKE () (2.116)
Q — o

- 1 +oo s n

Xo) = o dQ e X (Q) (2.117)

Note that | have returned to the original font for the timevdaon operators because they are
indeed Hermitian. The next step is to relate the time-doropgrators to the detected AC
power. | exploit the properties thafH (—Q) = X+ (Q) and X (—Q) = —X;(Q), which

follow from their definitions. | also employ the convolutidimeorem of a Fourier transform

to arrive at the following identity with Equation 2.103:
Pac = hwoog XL (t) * Tac(t) /At (2.118)

where the convolution integral of the amplitude quadrawité the time window is
+o0
XE(t) « Tac(t) = / dt’ XL () Tac(t —t') (2.119)
—0

andTac(t) is given in Equation 2.98, with the duration of the time winda¢ = 27 /AQQ.
Equation 2.118 tells us what we already knew: the fluctuatiorthe detected power are
proportional to the amplitude quadrature of the sidebamidkthey are scaled by the co-
herent amplitude of the carrier. But the time-domain formt tis presented here, is more
general than Equation 2.103. It works for any choice of tinredaw or frequency filter, as
long as the convolution integral is re-evaluated. It is cammractice in quick theoretical
derivations to ignore the convolution integral, and eveigitore the scaling factdiw,. But

one must remember that a time window must always be specdiatiaw one to make a

quantitative comparison with experimental results. Tlhisatudes the section on the con-
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nection between the EM field and its detected power. Thetresintuitive from its roots
in classical optics, but buried beneath several layers stfattions and operator definitions

still lies the quantum harmonic oscillator.

2.7 Models of linear processes

Most experiments in quantum optics can be reduced to a fewlsibuilding blocks. We

can model what happens to the optical field during its pasageigh each block, and
therefore build an input-output transfer function for tleéevant fields of the entire exper-
iment [Bachor and Ralph 2004]. By far the most important congmt is the beamsplitter.

From this we can develop models of optical loss, opticalt@s;iand homodyne detection.

2.7.1 Linearisation of operators in the time domain

The task of calculating transfer functions of optical comgats is greatly simplified by the
technique of operator linearisation [Yurke 1984]. The itketo break up an operator into
time dependent, and time independent, components. Fdothisrk, one has to make two
transformations. Firstly, one must bring the operator atotating frame that removes the
oscillation at the optical frequency, of the carrier. For example, the annihilation operator
transforms according @(t) — a(t) exp(iwot), which changes the definition of the Fourier

transformed operators of Equation 2.71 in terms of the sidélfrequency? such that

2

Gron () = —— / 749 (o + 9) exp(—i6) (2.120)

—o0
Secondly, we must apply a displacement operation to théecanode, which makes a co-
herent state at the carrier frequency. In the rotating frathie looks like D do (t) D =

arot(t) + . We therefore get the original operator plus the scalar filoencoherent am-
plitude of the carrier. As we are working in the Heisenbergfyye, we must remember
that the initial state of the carrier mode must be kept in aiuat state when calculating
the expectation values of operators. If we abide by this thken the annihilation operator
in the rotating frame (and prior to the displacement openatwvill be guaranteed to have
have a time-averaged expectation value of zé@bfj;odt rot(1)|0) = (0]a(wp)|0) = 0.

In the notation, one removes the ‘rot’ subscript and placdslea symbol in front of the
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rotating-frame operatat,.(t) — da(t), to show that its mean value is zeroa(t)) = 0.

To summarise these steps so faris the component for the steady-state classical am-
plitude of the carrier mode; anid.(t) is the component that holds the quantum fluctuations.
We have therefore made the transformatiaft) — « + da(t). One can follow a similar
procedure of transformation for the creation operator t g&t) — o* + daf(t). Note
that my argument here has been subtle. | have not invokedeagtirage of the operator in
the definition, but rather, | have relied on the displacenopetration to bring about a scalar

offset of the creation and annihilation operators.

The final step in the linearisation procedure comes when emmves any terms that
appear in expressions of operators, that are proportiortaktproducts of two or more fluc-
tuating terms. For example, applying the rotating frame disglacement transformations

to the creation and annihilation operators, the numberatpem the time domain becomes
al(t)alt) = ofa+a*da(t) + adal(t) + 6al(t) dalt) (2.121)

= |a|® + |of [e7%6al(t) + eT%5a(t)| +dal(t) da(t)  (2.122)

) + a6 X2 (t) + dal () da(t) (2.123)

Q

la)? + |a|6 X2 (1) (2.124)

where in the last step | have assumed that the second-ordasaiion term will be much
smaller than the terms scaled by Which will be valid for the case of a strong excita-
tion of |a| > 1. The quadrature operator for arbitrary angcféé,‘f“ from Equation 2.44
was introduced to accommodate the complex-valued cohamplitude. The angle is
¢o = Arg{a}. For¢, = 0 and¢, = 7/2 we have the amplitude and phase quadra-

tures respectively.

As a comment, one can immediately see the usefulness ofrbarikation approach.
The result here can be compared with the ‘DC’ and ‘AC’ measar@s of the Poynting
vector in Equation 2.101 and Equation 2.103. By using thegliisation procedure for the
time domain operators, one can avoid a lengthy digressiordiefining time and frequency

windows, while still getting essentially the same result.
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Figure 2.11: A diagram showing how two independent

Ul
modes, for the plane waves labelled by a and b, can
a d interfere on a beamsplitter of intensity reflectivity ), to

create two new modes ¢ and d. Note the 7 phase shift

e

on the path from b to d.

|t

2.7.2 The beam splitter

Consider a set of modes that are plane waves with propagagatarsk pointing in different
directions, but that have all the same magnitiide A beamsplitter is a device that allows
two of these input modes @ndb) to interfere to produce two output modesahdd). The
beamsplitter can be described as a matrix of complex traivéiyiand reflectivity factors
[Saleh and Teich 1991]. But for the moment, let us assumetkiabeamsplitter has an
intensity reflectivity ofy, and that it introduces a phase shift on reflection from the path
b to d, and no phase shift on all the other paths. A diagram is shaviigure 2.11. The

beamsplitter transforms the creation and annihilatiorraipe in the following way:

= ymat+1=nbt | e=ma+/1-nb (2.125)

dt = 1—nal—mbt , d=\1T-na—-nb (2.126)

These equations are equally valid for the time-domain dpesas the frequency-domain
operators, so an explicit dependence will be dropped framttation. The amplitude and

phase quadrature operators for the output medesld simply become

XF = WmX:F+1-nXf |, Xi=1-nXf-mX (2127
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LOCAL
OSCILLATOR

b

m

SIGNAL Figure 2.12: The technique of homodyne detection.

The signal beam is interfered with a bright local oscil-
lator. The two output ports are detected, and the pho-
a d
Cc

tocurrents are subtracted from one another. The re-
sulting current is proportional to the quadrature of the
signal beam, where the angle is selected by the phase
of the local oscillator.

@i

Because the modesandb are assumed to be independent and share no prior corrslation

the mean and variances of the quadrature operators for madehs! simplify to

WXE) = VX)) +V1-nuXy) (2.128)
WX = VI-nuXF) - viuXy) (2.129)
(X)) = no’(XF)+ (1—n)o*(X;) (2.130)
*(X7) = (1-n)o*(X3) +na’(Xy) (2.131)

| want to model the situation where one is interested in dieigenodea, but the mode
suffered optical attenuation, or loss, along the path frooree to detector. The beamsplitter
of reflectivity n will accurately describe the effect of attenuation. Notat tih the case of
scattering or absorption, one would need to model a continafibeamspilitters, but the
end result is the same. If we take the case that input nhaden the vacuum state, then
we get: u(XF) = /mu(XF) ando?(XF) = no?(XF) + (1-n). We find that not only

is the mean field attenuated, but that the vacuum state on tniodecases the quadratures
variances on the output modelt is for this reason that experiments involving quadratur
squeezed light, wher@z(f(j[) < 1, that the detected amount of squeezing is degraded by

the level of optical attenuation, and that detectors of lgjgantum efficiency are desirable.

2.7.3 Homodyne detection

So far we have been limited to measuring the amplitude quadraf a light beam. This
is the only part of the field that a single detector is sersitiv One way to make the mea-
surement phase sensitive is to interfere the beam of intéhessignal) on a beamsplitter

with an auxiliary beam (the local oscillator); see Figurg22. For this to work, one must
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choose the splitting ratio to be symmetric= 1/2, and the local oscillator in modeto

be in a bright coherent statg); that is much greater than the mean field of the signal in
modeaq that is in the arbitrary state)),. The two output ports andd of the beamsplitter
are detected, and the photocurrents are subtracted fromnmtleer. Using the technique of

linearisation, | can write down the difference of the numbeerators to give

har = éfe—did (2.132)
— |BIXE + || XD (2.133)
~ |81 X2° when a < (2.134)

where¢, = Arg{a} and¢z = Arg{3}. The contribution of the quadrature amplitudes
of the local oscillator to the difference current is nedligi in the case of a strong local
oscillator3 > «. Hence, one does not even require the local oscillator tm laecioherent
state, it could for example be a squeezed state. The maiirgamgnt however, is that the
phase of the local oscillator (relative to the signal) carcduetrolled. It is this phase which
selects which quadrature angle of the signal beam is detecldis technique is called
homodyne detection, because the optical frequency of tta éscillator was chosen to be
the same as the signal beam. Indeed, for the technique toeffariently, one must ensure
that the two modes are well matched in the transverse-$gatiations and polarisation

degrees of freedom.

From an experimental point of view, one strength of homodjetection is that it allows
measurement results to be calibrated to the vacuum statechdin of electronic devices
from photodiode to spectrum analyser can be so long thatkésan absolute measurement
very challenging. This means that at the front of Equatidi32there is a constant factcr,
that depends on trans-impedance gain, bandwidth, and sthasproblem is side-stepped
if one takes a calibration measurement by simply blockimgsignal beam. This puts mode
a into a vacuum state, thus giving a variance of the differenweent: 0% (nq;¢) = G?| 3%
Since the factol= is unchanged, it therefore cancels out. Homodyne deteftions the
cornerstone of most continuous-variable quantum optipg@xents, where squeezing and

quadrature correlations between modes can be verifiechérarbre, from homodyne mea-
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Ko Figure 2.13: Schematic of a standing-wave cav-
AOULZ ity consisting of two mirrors with coupling coef-
)

H ficients k1 and k2. The intra-cavity field is la-

T belled a, while the input fields are labelled Ain,l
A|n,2 and Ain,2-

Aout,l ‘L
il
Ain,l

surements taken overr of quadrature angles, it is for example possible to mathieaiit

a

reconstruct the Wigner function of the state ,; see for example [Leonhardt 1997].

2.7.4 Optical cavities

We can make a light beam periodically interfere with itsgitdtting it reflect back and forth
between two partially reflective mirrors. If the light edgatetraces its steps, in the sense
that the transverse profile is preserved, then the setuprieeca stable optical resonator, or
optical cavity. The applications of optical cavities arequiitous. For example, an optical
cavity is the element of feedback in a laser system.

To model the cavity, we start by defining two coupling mirrofseflectivity n; andn.,
that have decay rates = (1 —n;)/27 andke = (1 —n2)/27, wherer = ¢/d is the round-
trip time that is determined by the round-trip optical pahdthd. The total coupling rate
is k = K1 + Ko, where all the coupling rates are in Sl unitsof!]. A diagram is shown in
Figure 2.13. The intra-cavity field is described by the disienless annihilation operator
a(t), while the input fields are described bi, ;(t) and A, 2(t) which have the units
[s‘%]. Similarly, the output fields arélout,l(t) and Aout72(t). The upper-case operators
are to remind us that they have different units to the lovasedntra-cavity operators. We
can now start to describe the evolution of the fields. Theainavity field decays with a
rate that is proportional te-ka, but the intra-cavity field is also built up by the input fields
according to,/2r1 Ain 1 () andy/2k; Ain 2 (t); see for example [Collett and Gardiner 1984].

Combining both processes gives:

= —ka(t) + V21 Ain i () + V2rz A (t) (2.135)

My aim is to solve this differential equation to get the int@vity field in terms of the
input fields. The linearisation transformation can be agupto the operators. This means

that the annihilation operator is transformed into thetnogaframe and a carrier is dis-
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placed according ta(t) — [« + da(t)] exp(iwpt) and similarly for the creation operator
af(t) — [o 4 dal(t)] exp(—iwpt). A similar transformation is given to the input and out-
put fields. By substituting these into Equation 2.135 andemivering the definition of the
time domain operators in Equation 2.71, we can peel off aatemufor the carrier field and

solve it immediately to get

[maln 1+ mam 2] (2136)

Rll—‘

The rate equation for the sidebands become

% 5d(t) = —K 5d(t) + vV 2:%1 (512111171(15) + v 2:‘%2 (512111172 (t)
—ifd 0t ~ 1 —it| A
o5 dQe ™ a(wo+Q) = 5 dQYe { K a(wo+€)

—I—m Ain,l(WQ—FQ) + \/%AinQ(WO“‘Q)
Following through with an inverse Fourier transform we get
—iQfL(u)o—i-Q) = —lid(wo—l-Q) + 2:%112111171(&)04-9) + 2:‘%2121111,2 (w0+Q)

solving for the intra-cavity field, gives

Kk +1Q

[\/mAin,l(wO+Q) + \/%Aing(wom)] (2.137)

following the same steps for the creation operator, andgihgrthe sign of2 in the anni-

hilation operator gives

R Kk —iQ) . R

(I(w(] — Q) = m |:\/ 2’{1Ain,1 ((,d(] — Q) =+ v 2/&2Ain72(w0 —Q)] (2138)
N Kk —iQ)
it = S [V2RLAL, (w0 + Q) + V2R AL, (w0 +0)]  (2.139)

The sum of these two operators is exactly the definition ofcttrapactform of the two-

mode amplitude and phase quadrature operators given irtiki2all5, hence

NES

XE(Q) = H2+ QZ [\/ﬁxm( )+\/%X§’2(Q)] (2.140)

However, it is the reflected fields that are more interesti@mne can get them from the

input-output relation for the annihilation operatégum = 2K16 — Aimg; and similarly
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for the quadrature operatdks;, , = /2r, X —Xi; ,. Although this result appears simple,

in,2"

its derivation is nontrivial [Collett and Gardiner 1984]sidg the input-output relation, the

transfer function for the fields that leave the cavity from tinst and second mirrors become

5 2k1(k — i) 2/Rikz(k —1Q) ]
Xou () = [ 2 o2 L X1 () + pepwor Xi,(Q)  (2.141)
. 2/Fikz(k —i) ] o 2k (K — i) .
+ + +
Xout,Z(Q) = |: RZ n QQ Xin,l(Q) + w -1 Xin,Z(Q) (2142)
In a similar fashion, the output carrier fields simplify to
— 2,/
Qout,l = {m I{Z] Qin,1 + { Hm?] Qlin 2 (2.143)
’ K1+ k2 ’ K1+ Ko ’
2./ _
Qout,2 = [ %1%2]0%1 - [Hl H2:|O¢in2 (2.144)
' K1+ K2 ’ K1+ K2 ’

Note that the real and imaginary components of the sidebatitfansfer function corre-
spond to twice the sine and cosine channels. This meanshthatvity has the ability to
map one channel into the other channel depending on theasiddbequency. Note, that
this is not the same as a phase shift, i.e. the amplitude gtumdris not mapped onto the
phase quadrature. This only happens for the case when therd#ld is off-resonance

with the cavity (i.e. the cavity is de-tuned).

In most quantum optics experiments, one is interested inréresfer function of the
variances of these fields. However, a spectrum analysentesde measures the sum of
the individual variances for the sine and cosine channalss(gipt ‘'s’ and ‘c’ respectively),
which corresponds to the noise power. To do this mathentigtit@an define a new type
of varianceV * according to the expectation value of the compact quadratperator mul-

tiplied by its Hermitian conjugate such that

vE = u((X;FS)TX;FS) (2.145)
= %%Xjﬂi&(}%j) (2.146)

Where these operators have their definitions in Equatioh ar®l Equation 2.115. As an
example, one can choose to put all the input modes into a vastates (for alf2), which

have the property that*(X7 |) = o2(X7;

s,in,1

) = 2 which then givesV;; = 1, and

similarly V;¥, = 1. These variances for the vacuum state become the refergagest

1
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Figure 2.14:
impedance-matched cavity for an input

Transfer function of an

mode in a broadband squeezed state
having V¥, = 0.1 and V;;, = 10.
The second input mode is in a vac-
uum state V”jfz 1. The solid and
dashed lines are the variances of the
amplitude and phase quadratures, re-
spectively. The frequency axis is nor-

malised to the cavity bandwidth x. At

low frequencies, the cavity is transpar-
ent and transmits the squeezed state.
As the frequency increases, the cavity
reflects the squeezed state.

which other states, such as squeezed states, are compardavity transfer functions in

terms of the newly-defined variance become

(Iil — 52)2 + 0?2 4K1Ko

Vo1 () = [ PoNCY Vi () + ppe VI, (Q)  (2147)
4/%1,%2 (lil — Rz)z + Q2

Vo2 (@) = [—KQ +Q2]Vi§1(ﬂ)+[ o Vi, (Q)  (2.148)

To illustrate the cavity transfer functions, | will choodetcase of an impedance matched
cavity, wherex; = ko. In this case, the cavity becomes completely transparghetoarrier
field, such thatv,,t 2 = ain,1. The variances of the sidebands however, become filtered as
a function of the sideband frequency. For= 0 the cavity is completely transparent. For
Q > k the cavity is completely reflective. This is plotted in Fig#.14, which shows the
quadrature variances of transmission and reflection of #wéycwhen a broadband two-
mode squeezed state is incident on the first input. The cheai$ythe transfer function of
a frequency-dependent beamsplitter. Hence, it can be oseither low-pass or high-pass
optical frequencies, with a cut-off frequency that is seth®ycavity bandwidtlf = . The
low-pass filtering characteristics of cavities are useduanjum optics experiments to pre-
pare shot-noise-limited coherent states from laser seutw are dominated by technical

noise sources.
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2.8 Models of nonlinear processes

It is not possible to transform classical states of ligho inbnclassical states using linear
processes such as beamsplitters and optical cavitiesinganbptical media, however, sup-
port the mixing of waves of different wavelengths, and itie this effect that nonclassical

states of light can be produced.

2.8.1 Second-order nonlinearity

A transparent solid material is quite a marvellous thinge®my of looking at it is that a
single photon must fight its way past an enormous number ofigteach of which could
either absorb the photon, or scatter it in a new directione T@markable thing is that
the scattered paths add coherently in the forward propagairection, and for an ideal
material, the light is not attenuated, but only slowed insiiged of propagation. This
situation changes when the intensity of the light field hasrength that is comparable
to the inter-atomic fields. The polarisation density of thatenial then begins to respond
nonlinearly to the electric field. The response of the materan be written down as a

polynomial expansion
P =e (X<1>E DB 4 B8 ) (2.149)

wheree, is the permitivity of free space, ang? is the linear susceptibility of the mate-
rial (which for vacuum is equal to zero). The second-ordatlinear susceptibilityy(?)

supports three-wave mixing, which is used in devices sudptsal parametric oscillators
and second-harmonic generators for the purpose of fregusversion. The third-order
susceptibilityy ) is responsible for the Kerr-effect, which is where the retire index of

the material is dependent on the intensity of the light. Bligports four-wave mixing and
devices such as phase-conjugating mirrors. For my thesigye primarily used second-
order nonlinear materials. There are at least two ways tenstahd the three-wave mixing
effect that is supported by the second-order nonlineafityWith a classical analysis of the

propagating waves; (2) In the picture of interacting pheton

(1) The classical wave analysis of the second-order naalityehas a rough analogy
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X() INTERACTION: UP / DOWN CONVERSION

2w Figure 2.15: A diagram of photon interactions in a second-
order nonlinear material. Only the degenerate pairs have

M
W been considered. Both the up-conversion and down-

conversion processes occur, but it is the net conversion that

%

decides whether the overall process is second-harmonic

WA=

2w

generation or optical parametric oscillation.

i

with sound and music. If one turns up the volume knob too higlaa@heap radio, then
the music begins to sound harsh and distorted. This happgeube higher harmonics
are generated from the original sound source, as sine wagesre square waves due to
clipping in the electronic circuitry. The difference witlptics is that this effect is both
desirable and expensive to manufacture. Let us send a simagle of lightE = Ej sin(wt)

into the second-order nonlinear material and see how ttaipation density responds:

P = e [X(I)EO sin(wt) + xP E2 sin®(wt) + } (2.150)

1 1
= € [X(I)EO sin(wt) + X(z)Eg (5 ~3 cos(2wt)> + } (2.151)

The result is that the polarisation density now oscillateth@ second-harmonic frequency
of 2w, which will in turn radiate an electromagnetic wave2at The nonlinear medium
has acted as a second-harmonic generator (SHG). To maximisenversion efficiency of
an SHG, one must ensure that the second-harmonic light peddat one location in the
material, interferes constructively with the light thatpioduced further along, otherwise
the net conversion can cancel out completely. This corgiiber means that one must
choose a material that has a refractive index for the fundéehe,, that exactly matches
the refractive index of the second-harmonig,,, which is called phase matching. Much
effort goes into developing materials that have a high sg@sder nonlinear susceptibility,

and are transparent and phase-matched at both wavelengths.

Several techniques can be used to bring about the phasaingatmondition. Angle-
tuning relies on the birefringence of the material, wheeertfractive index and dispersion

is angle-dependent. This has the disadvantage that for avigkes, the fundamental and
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Figure 2.16: An energy level diagram of three

—— modes that are involved in a non-degenerate
AT R —o— T " down-conversion process. A photon in mode 2w
T is removed and a photon each is deposited in the
(12w - —— e —_— e —O— - modes w+ and w—{). Energy and momentum
final (depending on the medium) are still conserved.
2w w-Q w+Q
MODE MODE MODE

second-harmonic beams very rapidly lose their spatiatiapgalso called walk-off) and
hence reduce the conversion efficiency. The dispersion chtnmal depends weakly on
the temperature, and provided that the phase-matchingetatupe is not extreme, this
technique is quite effective, and it is often used in confiamcwith the other phase-matching
techniques. There is a way to cancel out the effect of a naisgimatched material, by
manufacturing the material so that the sign of the nonlibeaty(? alternates along its
length at a certain rate (the poling rate). This so-catiedsi-phase matchingechnique
enables a wider range of materials, temperatures, and evagtel to be used for frequency

conversion.

(2) One can look at second-order nonlinear interaction implified photon picture,
as in the Feynman type of diagram in Figure 2.15. Two photdrisequencyw; andw,
combine to make a new photon of frequengy The interaction must conserve energy and

momentum. The two conditions are

hws = hwy + hws (2.152)

hky = hk; + hko (2.153)

where the latter equation must of course hold true for eacmpoment of the momentum
vector, and the magnitude depends on the refractive indtheahateriab, so thatk;| =
niwi/c. For the case of second-harmonic generatign= 2w; = 2w, and therefore
ni1 = ng, one gets back the result of the classical wave analysi$t té& phase-matching
conditionnsg = nq,. What is missing in this picture is the scattering rate ofittieraction,

indeed even the direction of the reaction is reversible.ddéhe processes of up- and down-
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conversion can occur simultaneously in a nonlinear medeamd, it is the net conversion
that decides whether the process is up-conversion (SHG@pwn-conversion (degenerate
OPO). To go further, one needs a detailed model of a partisyidem. Here one can choose
between a travelling-wave analysis through a medium, onatyais of well-defined modes

in an optical resonator that enclosed the non-linear nedteri

The degenerate process is not the only one that is allowe@rgizrand momentum
can still be conserved for the case thatandws, are not equal. An example is depicted
in Figure 2.16, where a photon of energy can be removed fremtbdews; = 2w, and
deposited in the modes; = w — Q andws = w + 2. Where(2 is an offset frequency.

It turns out that it is exactly this process that produces-mamle squeezed states at the
sideband frequenc§{ around the carriew. | will proceed with modelling such a process in

the next section.

2.8.2 A basic model of OPO

An optical parametric oscillator (OPQO), is a device thatsube three-wave mixing effect to
convert a high optical frequency (the pump) into two loweqiiencies (signal and idler).
The OPO is usually built by enclosing a second-order noatimeedium in an optical cav-
ity. The cavity is made resonant for either one, or both ofitineer frequencies which sig-
nificantly enhances the conversion efficiency. | am inteck#t the quantum states that are
generated by the degenerate OPO when it is driven by a cdlpnep field. The signal and
idler frequencies are also restricted to be degeneratehvdeifines them as the fundamental
frequency, while the pump must be the second-harmonic. @ €an be modelled using a
pair of rate equations that are similar to the cavity equatibat were described earlier, but
are now modified to include the interaction between the foretgal and second-harmonic
fields. A schematic is shown in Figure 2.17. The derivatiorthef nonlinear interaction
terms is quite involved and non-trivial. Here | can give oalyeference where such a
derivation can be found [Collett and Gardiner 1984]. Fronmujdmondet al. 1980], the

rate equations for the annihilation operators of the funelsiad a and the second-harmonic
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Figure 2.17: Schematic of a simple OPO cav-

Ka1 Ka2 ity consisting of two mirrors with coupling coeffi-
Kpb1 e Kp2 cients k41 and k4o for the fundamental and xp1
Aref,1 < > Aref2  ang Kpo for the second-harmonic. The nonlin-
Bref,1 CLI?I_L_) Bref,2 ear optical medium is placed between mirrors,
Ainl —> ITI ~<— Ain2 where the intra-cavity fields are labelled a and
Bin,1 b Bin2 . Al the input and output fields for the funda-
mental and second-harmonic are included in the
model.
b intra-cavity fields are
dal(t . . A A
di ) = —rqa(t)+eal(t)b(t) + A (2.154)
db(t . 1. . .
% = —rpb(t) — 2 a(t) a(t) + Bin (2.155)

Where all operators and labels involvingindb correspond to the fundamental and second-
harmonic fields, respectively. The total cavity decay ra®es<, = Kkq1 + ka2 @aNdr, =
Ky + Kpo. The input operators are actually the sum for all input fieflgh thatd;, =
VFal Ain1(t) + /Faz Ain2(t) and By, = /R Bin1(t) + /o2 Bin2(t). The intra-cavity
operators are dimensionless, while the individual ian&rap)rsAin,l, etc., have the Sl
units [s~2]. The strength of the nonlinear interaction is governedebwhich can be
complex-valued (depending on the phase-matching condlitiout which | will set to be
real from now on. | will make two further assumptions: them®tharmonic input field
at the first mirror (the pump field) is displaced to be in a cehestates;, ; at the carrier
frequency2wg; while all other input fields are in the vacuum states at alfjfrencies. The
second assumption is that the pump field will neither be erdhmor depleted. This is
reasonable, only when no coherent excitation at the fundthis produced (which corre-
sponds to OPO below threshold). With these assumptionsrid,mie can easily solve the
coupled set of equations using the linearisation technigjbe fundamental field is brought
into the rotating framé(¢t) — da(t) e“0?, where(da(t)) = 0. And the second-harmonic
is rotated and displaced accordingbte) — ( + db(t) €2<0t, where(db(t)) = 0, and the

value of 3 is yet to be determined from the corresponding coherentitudpl of the input
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5 SQUEEZING AS A FUNCTION OF PUMP PARAMETER
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Figure 2.18: Squeezing from an ideal OPO cavity.
The quadrature variances are plotted as a function

=
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T

of the pump parameter £. The sideband frequency
is set to {2 = 0. The solid and dashed lines are
the amplitude and phase quadratures respectively.

[N
o
(=}

Squeezing is present in the shaded area. The
squeezing becomes arbitrarily strong as the OPO
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threshold is approached at £ = 1. The linearisa-
tion approximations in the model however, break
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1072 101 10° down at this point.
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field Gin 1. In the frequency domain, the operators become

1

a(t) = - [d9 e % G(wy + Q) (2.156)
al(t) = % / dQ e 4T (wy + Q) (2.157)
b(t) = 6+% / dQ e b(2wy + Q) (2.158)
bi(t) = B*+ % / dQ e pT 2wy + Q) (2.159)

wherewy is the carrier frequency of the fundamental field, &nid the sideband frequency.
Similar definitions apply to the input and output fields. Téefinitions are substituted
into Equation 2.155, where the steady-state componenhésécond-harmonic is peeled
off and solved to gived = (v/2kp1/kp)Bim- | can choose to sgt* = /3. By definition, the

steady-state fundamental field has zero amplitude, anchafilbe considered any further.
The analysis of the fluctuations of the fundamental field gedls by taking the inverse
Fourier transform, neglecting the fluctuation-fluctuatienms, and solving for the input

fields to give

A

Aig(wo+ Q) = (kq —iQ) a(wo+ Q) + €6 al (wo — Q) (2.160)

Al (wo = Q) = (8 —i9) at(wo — Q) + ef alwo + Q) (2.161)

From this pair, | can form the compact amplitude and phasdratizre operators (see Sec-

tion 2.6.5):

KEL(Q) = (ko £ ¢ — Q) Q) (2.162)
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1 SQUEEZING AS A FUNCTION OF SIDEBAND FREQUENCY

10 Figure 2.19: Squeezing from an ideal OPO cavity.

The quadrature variances are plotted as a func-
tion of the sideband frequency 2 normalised to the
cavity bandwidth k.. The pump parameter is set to
¢ = 0.5. The solid and dashed lines are the ampli-
tude and phase quadratures respectively. Squeez-
ing is present in the shaded area. The squeezing
becomes weaker as the sideband frequency is in-
creased beyond the cavity linewidth. Note that the
purity of the state produced by the OPO, as given

10'110.1 160 ol by the product of the amplitude and phase vari-
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ances, remains constant.

The input-output relation is applied to get the field exitthg cavity from the first mirror.

X 2K S 2\/Ka1Ka2 1
+ - |fhel + V +
XAOUtl(Q) - KoL ef—i10 1] XAml(Q) + [Haieﬂ—iQ]XAmQ(Q) (2.163)

We can compare the transfer function of the OPO to that of itteafl cavity in Equa-
tion 2.142. Here, the terms is an additional parameter that can vary the transmission
coefficient of the cavity for both input modes. The sign of toefficient however, depends

on whether the quadrature is amplitude or phase.
2.8.3 OPO as a source of squeezed light

From the transfer function of the OPO, | can calculate theawae of the compact quadra-

ture operator according to Equation 2.146. They become:

(Ko — 2Kq1 £ €8)2 + Q%7 4K g1 Ka2 n
: - (0
(ko £ €83)% + Q2 ]VAml( )+ [(ma +ef6)2 + Qz] Viina ()

Vlgi)utl(Q) =

If the terme(3 is positive, then the amplitude quadrature will show sqlm\p@/gjmtl <1).
This can be enhanced by making the cavity completely ovepled such thatk,, = 0,
which means that input mode 2 is not transmitted at all. Thengkest squeezing occurs
when the pump amplitude approaches OPO-threshold at x,/e. At exactly OPO-
threshold, the model breaks down. The problem is that theatiration procedure is no
longer valid, and one needs to use perturbation technigquestel the transition to OPO
threshold [Chaturvedst al. 2002]. Nevertheless, the simple model that is presentegl her
is quite adequate for describing the behaviour below-tiolels | make the replacement to

a dimensionless pump parameger ¢3/x, which equals one for the OPO threshold case.
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The output variance is then

2 Kq 2
Vi () = 812218%(1;2]‘/@1(9) (2.164)

where the input variance has been assumed to be in a vacuten(XéjTgll = 1). The
output variance is plotted in Figure 2.18 as a function ofgthep parameter for a sideband
frequency set to zero. The remarkable thing is that only aefipump power is needed
for the model to produce arbitrarily strong squeezing. Thidel is of course simplified
in the sense that no loss mechanisms have been includedre RAdl8 shows the output
variance as a function of sideband frequency (and for thepppanameter set o = 0.5).
The best squeezing occurs well within the cavity bandwigthThe reason is that for high
frequencies, the upper and lower sidebands acquire a l&@geshift for each round-trip

in the cavity, which essentially lowers the effective noshr interaction.

2.9 Two-mode entanglement

So far we have seen that single-mode states are capableilofiegnon-classical statistical
properties such as quadrature squeezing or sub-Poissomigring distributions. An ex-
tension to these ideas are the two-mode states that shoelassical properties only when
the measurements made individually on each mode, are cethp@he prime example is
the two-mode entangled state which can in principle showptetaly noise-free correla-
tions between quadrature measurements made on one modearhpared with the other
mode. This type of state goes back to the arguments of BiRB@ilolsky-Rosen (EPR). To
simplify the following analysis | will abandon the continussmode formalism, and return
to the discrete-mode case. | want to show that two-modesstédileght can exhibit the EPR
type of entanglement. | will present the ideas in two waystlfirwith field operators, and
secondly with expansions in the Fock state basis. My apprgaanusual because | start
with the specific cases and work my way up to the general gegurithat is provided by

the inseparability criterion.
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2.9.1 Quantum correlation

This section serves as a precursor to introducing the ideatahglement. A naive way to
create a two-mode nonclassical state would be perhapsédamtaligle-mode nonclassical
state and send it onto a symmetric beamsplitter. Lets usd®ma quadrature squeezed
state that enters on pott and a vacuum state that enters on @orfThe input state can
therefore be written aB)) = |()1 ® |0)2, where( is the complex squeezing parameter
¢ = rexp(iv)). The transfer function of a beamsplitter is given in Equadl31, this time
with a change of subscript labels. The quadrature oper&iotke output ports andb are
therefore

XE - %(XliJrXr}) , Xbi:%()i'li—)%;) (2.165)

I would now like to analyse the output ports for correlatiomthe quadrature operators. The
most straightforward way is to calculate the expectatidonevaf the correlation coefficient

between modes andb, which are shown here for the amplitude quadrature:

CHt = WIXFX ) (2.166)
= [0*(X}) — o (X5))/2 (2.167)
= lexp(2r) —1]/2 (2.168)

For the case of no squeezing, no correlation is evidert 0 — C;g* =0. Thisis
because one essentially couples in two independent vaciates sfor which the quadrature
amplitudes add together in partand subtract in poft. However, for the case of arbitrarily
strong squeezing, one sees an anti-correlatich:—oco — C’;f =—1/2. The field that
actually contributes to the anti-correlation comes nolirfrive squeezed state in motle
but from the vacuum state in mode The fact that there is a correlation is nothing special,
because | could have sent in a classical state, such as aallstate, and | also would have
seen a correlation. | want to class the correlation as bethgreclassical or nonclassical, to

do this, one needs to use a related quantity: the conditiarénce. The definition of the
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conditional variance in terms of the quadrature opera®rs i

_ oyl

++) 2.+
V =o°(X]) UQ(X;) (2.169)

a(b)

One interpretation is that it is a measure of the reducedrtainty in modea when one is
given the information in mode This is why mode is shown in parentheses in the subscript
of V;(rlf;r). For zero correlation, the variance of mogdeemains unchanged. However, if
there is a correlation, then it means that there are compeméthin X andXIj that are
identical, and therefore measurements made on mami be used to cancel out those
components on mode, thereby reducing the variance in mode This can be shown
explicitly by re-writing the conditional variance in thewdgalent form:

AN {02()2; _ gX;)}mm(g) (2.170)

whereg is a gain parameter which is adjusted until the variance & minimum. | will
now go back to the specific case of the squeezed state on aigtnsThe result for the

conditional variance is

2( v+ 2( v+
Vst = 207(X{) o (%) (2.171)
‘ o?(X{) + o2 (Xy)
= 1+ tanh(r) (2.172)

Note that the conditional variance in this expression isregtnic for modes andb, but this
was only because we had chosen a symmetric beamsplittee ékamine the case where
the input modes are not squeezed, then the conditionalneariafa is equal to its ‘simple’
variance:r =0 = V;(rb(;) — 1 ando?(X;") = 1. This means that it was not possible
to reduce the variance i@ by using measurements frobn This particular case of two
vacuum states as inputs to the beamsplitter is identicdled@mallest conditional variance
that can be achieved in the semi-classical theory of opfidse semi-classical theory of
detection implies that a measurement of the amplitude qiadr using a single detector,
will be shot-noise-limited, which produces a variance thaixactly the same level that is set

by a coherent state, and hence also for a vacuum state in adyosype measurement.

Since the semi-classical theory also implies that the sbie originates independently
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from within each detector, one cannot expect to see cowatabetween them, and hence
the conditional variance is strictly limited to unity (appriately normalised to the intensity
of the light). The consequence is that if one sees a conditi@riance that is less than unity
in the fully-quantised theory, then that two-mode statelimolassed as being non-classical.
Returning again to the special case, as the squeezing parasiturned on and made
arbitrarily strong, the conditional variance approache®zr — —co =—> V;(rb()+ ) —o.
We can also see for weaker squeezed states that prorc/i(ate(ﬂithenVaJ(rb()+ ) < 1. Hence, a
squeezed state and a vacuum state sent onto a beamspbtleces a two-mode nonclas-
sical state, where the correlation produced is usuallyrmafieto as a quantum-correlation.
The paper of [Treps and Fabre 2004] supports these arguimemn®re rigourous grounds.
The next question is, what has happened to the phase qua®ragimilar definitions of
the conditional variance apply to the phase quadrature.tiéocase of squeezed light on

the beamsplitter, the conditional varianceﬁ%ilf)_) = 1 — tanh(r). Therefore if there is a
guantum correlation in one quadrature, there is only aiclalssorrelation in the other. We
will see in the next section that by interfering two squeelzedms on a beamsplitter, that it

is possible to see quantum correlations in both quadratures

2.9.2 Dual Quantum correlation and EPR entanglement

The next simplest experiment is to combine two squeezed $eara symmetric beamsplit-
ter. We can recycle the conditional variance equations ftwrprevious section. This time

however, we start with the stal¢) = |(1)1 ® |(2)2, Where(; 2 are the complex squeez-

ing parameterg; » = r12exp(iv 2). | choose the squeezing in each beam to be equal in
strength but in orthogonal quadratures: = —r, = r . From Equation 2.169 and Equa-

tion 2.172 one can obtain the conditional variance for thpldaode and phase quadratures:

Vo = Vi) =sech(ar) (2.173)

For no squeezing = 0, this function has a value of one, and there is no correlattaall.
As r is increased, either in the positive or negative directtbe, conditional variance ap-
proaches zero. This means that for any non-zero valuetbé two-mode state that exits the

beamsplitter shows quantum correlations in both the aog@itind phase quadratures. This
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can be called a dual quantum correlation. | will spend some tdiscussing the significance

of this result.

In view of the classical theory of electromagnetism, the tight beams that exit a
beamsplitter when one light beam is incident, are alwayfepty correlated in amplitude
and phase. In contrast, for the semi-classical theory, sussed earlier, the correlations
can never be free of noise, due to the shot-noise in the d@igmtocess. However, as we
have seen, the full quantum theory allows for perfect cati@hs to be established between
the two beams of light. And these correlations can be obdefweboth the amplitude
and phase quadratures, despite the fact that they are memiating observables. But how
can we reconcile this with the Heisenberg uncertainty ple@ The principle limits the
precision with which the non-commuting observables can basured for a single mode,
and not the correlations between two independent modesEgeation 2.52. So in this
formalism, there is not a problem. From a historical perspediowever, this same result
(but in a related system) concerned Einstein, Podolsky ars®iR(EPR) in their famous
paper [Einsteiret al. 1935]. They objected to the inherent non-local characténetorre-
lations to the extent that they questioned whether quantechanics indeed even offered

a complete description of physical reality.

EPR examined the situation of parent particle undergoirsipfisinto two particles. The
reaction must conserve energy and momentum, and this leadsdrfect correlation in the
position and momentum of the two particles. The particlesséilowed to separate from one
another after travelling some distance, before the meamnts are performed at station A
and station B. The measurement events are completed withimeanterval that is shorter
than the time it takes for light to travel from A to B. Thereddhe measurement events are
space-like and causally separated. How is it then that letisas can appear when one
later compares the measurements from A and B? Without dupgnal communication,
the conclusion is that the two particles must have had etleirdefined position and mo-
menta at the time of creation, or the particles had the pateéontdevelop those position and
momenta from a common hidden variable. The former is foruidith quantum mechanics

because it violates the Heisenberg uncertainty princifie latter is not described by quan-
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Figure 2.20: EPR entanglement vi-
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) . sualised as dual quantum correla-
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Xy Xy tions. Two squeezed states are in-
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the resulting two-dimensional Gaus-

sian distribution when the quadra-

ture measurements for each mode

are plotted against each other. The
resulting quantum correlations would
allow an observer of the amplitude
Inference of mode b from measurements of mode a quadrature of mode a, to infer what

«—A mode b measures, to a precision bet-
Apparent violation of the ~ t€7 than one unit of quantum noise.
uncertainty principle This can also be done for the phase

\\ \ guadrature, which gives the appar-
%

, ¥ ent violation of the uncertainty prin-
- ciple. The violation is only apparent
because both measurements could

not be made simultaneously without
paying a noise penalty.

tum mechanics at all. Hence, if one is to preserve localitgntone must reject quantum
mechanics as a theory. This is the EPR paradox. The coordatire referred to as EPR
correlations, or EPR entanglement.

EPR entanglement in continuous-variables was observed aptcal system by
[Ou et al. 1992]. After this result, one must either accept that quanttechanics is non-
local, or that it is incomplete. But given the successes ahtum theory in describing the
electronic structure of atoms and molecules, the philosaptebate about non-locality was
put aside. Many years later, Bell proposed an experimentthdd accept or reject the en-
tire class of local hidden-variable theories [Bell 1964f&dman and Clauser, and Aspefct
al. did the experiment using entangled light, and found resgkiliswere consistent with an
absence of local hidden-variable theories [Freedman aadsét 1972, Aspeet al. 1982].
Hence, one must accept that quantum mechanics inhererstlgt han-local character to it.
Quantum mechanics may still be incomplete however, as thergments did not rule out
non-local hidden-variable theories.

The position and momentum of a particle are analogous to ri@itide and phase

quadratures of a mode of the electromagnetic field. Theyegharsame definition in terms
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of the creation-annihilation operators. A formal compamisvas made by Reid in reference
[Reid 1989], who also defined a criterion that could be apiptiee detect EPR entangled
states of light based on quadrature measurements. The EfeRooris defined as the

product of the conditional variances for the amplitude ahdse quadratures. There are

actually two criteria, because there are two directionsfefrence possible in the conditional

variances:
ey = VI Yy g (2.174)
ab a(®)  Va(d) .
g = Voo VS <1 (2.175)

If the entanglement is identical in both inference diratsichen one simply writes the cri-
terion ass < 1. When the criterion is fulfilled, the state is in an EPR entedgtate. The
form of these equations are very similar to the form of theslieberg uncertainty principle
in Equation 2.52. If we think of the conditional variankg;, as being the variance of mode
a reduced by information gathered from mdgéhen we can interpret the expression of the
EPR criterion as an apparent violation of the uncertaintyggple. The violation is only
apparent because it is not possible to simultaneously meé#se correlations in amplitude
and phase without changing the states, by for example in¢ind more vacuum modes via
beamsplitters. This apparent violation is illustrated igufe 2.20, where the correlations,
and their remaining uncertainty, are shown as the major andrmaxes of the ellipses, re-
spectively. The ellipse represents the contour of a twoedsional Gaussian probability
distribution. Note that the correlation diagram should betconfused with the ball-on-
stick diagram for a single mode. The example shown is thaRiR Entanglement made by

sending two squeezed states (and squeezed in orthogomlhtyuas) onto a beamsplitter.

| would like to compare our two sources of two-mode nonctaddight: one squeezed
state input to a beamsplitter; and two squeezed statestmpuieamsplitter. The simplified

expressions are taken from Equation 2.172 and Equatior3 24d become

Eone = sech? (r) (2.176)

Eiwo = sech? (2r) (2.177)
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So we can see fot,,e, that even if the state shows quantum correlations in only on
quadrature, it is still possible to show EPR entanglemergnwhis non-zero. But the ap-
parent violation is much stronger for the dual quantum datien case ot.,. This makes
sense. If one thinks of squeezed light as being a resourcdefopnstrating nonclassical
effects, then having two squeezed states will give a larfjectethan if one has only one
squeezed state available. An argument like this leads ooerisidering the EPR criterion
as a measure of entanglement strength. | address the idetaofjiement measures in the

next section.

2.9.3 Wavefunction inseparability and entanglement measas

EPR entanglement is just one form of entanglement. The tatamglement is synonymous
with wave-functioninseparability A wave-function that describes two or more modes is
consideredseparablewhen it can be expressed as a product of wave-functions fdr ea
individual mode: [¢)) = [11)1 ® |1)2)2 ® ... @ |t )n. If it is Not possible to express the
wave-function in this way, in at least one choice of basitestathen the wave-function is
inseparable, and the state is said to be entangled. We cdrowethis works by taking an
example from the EPR entanglement that is generated bydriteg a squeezed state with
a vacuum state on a symmetric beamsplitter. To simplify tadyais, | will choose to keep
the strength of the squeezing small, such that the squettedrsthe Fock state expansion
is approximately]() ~ |0)+£|2), where¢ < 1 and can be taken from Table 2.4 for a given
complex squeezing parametgrThe wave-function prior to the beamsplitter interactisn i

then

1212~ (01 +€201) @ [0)s (2.178)

where the subscripts refer to the two input modes. The synoisamsplitter transforms

the initial Fock states into the output modeandb in the following way [Leonhardt 1997]:

n)1 @ [0)2 — > /B(n, k) 272 k) @ [n — k) (2.179)
k=0
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wheren is the Fock state number att{n, k) is the binomial oft objects selected from a

set ofn objects. The final state can then be approximated as

Yo = (00 @ [0+ =)@ (1) + 5100 ® 20+ 120 @ [0} (2.180)

S

#  |Ya)a ® |t)p (2.181)

This state cannot be expressed as a product of states forathesmandb, and hence the
state is inseparable and therefore entangled. Although é&Pelations in the quadrature
amplitudes are not as obvious to see as in Equation 2.17@amienmediately see a simple
form of discrete-variable entanglement. The measurenfamtcophotons in mode guar-
antees that no photons will be detected in mladg&lthough Equation 2.181 serves as a crite-
rion/definition to detect entanglement, is it possible tarify the strength of the entangle-
ment in some way? The inseparability criterion of Duan amegist allows one to compute a
numberZ from the entire class of two-mode Gaussian entangled diatemet al. 2000].
Gaussian states are those typically produced by integegueezed light sources on beam-
splitters. The Gaussian label refers to the form of the {fharensional) Wigner function
that describes the two-mode state. The critefiort 1 then detects those entangled states.
To computeZ one needs to have access to the first-order correlationxwdttihe quadra-
ture amplitudes, which means writing down all combinatiohthe correlation coefficients

Cd:t

ab ’

as defined in Equation 2.166. The coefficients are usualnged into a matrix/

that is made up of other matrices such that

M:[ G GlQ]

G o (2.182)

where

(2.183)

o+t ot
Gll — [ aa aa :|

C..r C.-
and

Gop=| S, (2.184)

and

(2.185)
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and(Glg)T is the transpose @F,. Before the inseparability can be calculated, one needs to
perform local unitary operations to each mode, in order itogothe correlation matrix into
Standard Form I This removes any cross-quadrature correlations, ane $irecoperations
are local, they in no way influence the inseparability of ttetes but rather only optimise
how well the entanglement is measured. The allowed opesatice the squeezing operator
in Table 2.4, and quadrature rotation as shown in Equatié#. 2Vhen the operations are
done properly, the correlation matrix will have the form

M'= (2.186)

S o ©3
Lo 3 o
o3 oo
S oo

Those new elements can be found by using the following itdegatvith the determinants:
det(G11) = n?, det(Gag) = m?, det(G12) = ¢, anddet(M) = (nm — ¢?)(nm — ¢?) as
given in [Duanet al. 2000]. The rotation operation has removed the cross-qtuadrgerms,

and the squeezing operation has equalised the amplituderease quadrature variances.

The next step in the optimisation is to apply local squeeajpgyations-; andr; to bring
the matrix intoStandard Form Il When in this form, the elements satisfy the following two

conditions:

n/ry — 1 _ m/rg — 1 (2.187)

nry — 1 mrg — 1

and

||\/rim2 — || /\/T17re = \/(nrl —1)(mry —1) — \/(n/rl —1)(m/re —1) (2.188)

These two equations must be solved fgrandr,. In general there are eight solutions,
and one must select the one that returns the lowest valussepamability. The matrix in

standard form Il then looks like

nry 0 C\/T172 0
/
A 0 n/ri 0 d/\/r1r2 (2.189)
cy/T179 0 mry 0
0 d/\/rira 0 m/ro

The elements of the correlation matrix in standard form h tlaen be entered into the



82.9 Two-mode entanglement 83

expression for inseparability:

7- % (CF+C7) /) (k+1/k) (2.190)
where
CH = k(nr1) + (1/k)(mre) — 2|ey/rirs) (2.191)
Cr = k(n/r)+ (1/k)(m/r2) — 2| [\/ri72] (2.192)
and

-1 -1
b=y 2 = m/r2 (2.193)
nr; — 1 n/ry—1
The variable”;" are similar to the conditional variances used in the EPRrioit. The
factor k is there to correct for any imbalance between the sub-sygstetnich is related to

the direction of inference for the conditional variance$ie Tnseparability criterion using

the definition in Equation 2.190 is given by

Z < 1 (inseparable) (2.194)

Z > 1 (separable) (2.195)

The inseparability criterion is a necessary and sufficiei¢rion for Gaussian entangle-
ment. If the optimisation procedure on the correlation Ratras performed correctly
(giving the standard form 1), then the inseparability eribn will detect even the smallest
amount of entanglement. This is in contrast to the EPR @itawhich is only a sufficient
criterion for detecting entanglement, and misses out oectiay some entangled states, for

example those that have been severely optically attenuated

There is an equivalent way of representing inseparabitity product formgiven by
I =/C;Cr/(k+ 1/k). Itis shown in [Boweret al. 2004] that provided the conditions
in Equation 2.187 and Equation 2.188 are met, that the ptddum is equivalent to the
original sum formin Equation 2.190. There is another form of inseparabiligttis com-

monly used by experimentalists because the measuremenicis simpler than recording
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all the elements of the correlation matrix:

Tunopt = (WX = X020y + (0|(X; F X)) (2.196)

The quadrature amplitudes measured on each subsystemmaly sidded or subtracted
from one another before the variance is calculated. The sigihe sum is chosen to
minimise the inseparability. It should be noted that thishod is equivalent to setting

r1 = ro = k = 1 in the definition of the original form of the inseparabiligind hence:

Zumopt = - (CHP+CLT+Co +Cp —2(CHT | =2|C,7 ) =T (2.197)

B~ =

From this we can deduce tha,.,; < 1 is a sufficient but not necessary condition for
entanglement. Hencé,,,opt, OF theunoptimisednseparability, can be indeed be used to
detect entanglement, but not all kinds of entanglementheiltaught. These ideas naturally

lead to the idea of measuring the entanglement based on ReudPinseparability criteria.

2.9.4 Entanglement measures

A good measure of entanglement would increase or decreasetomically with the ‘strength’
of the entanglement, and ideally would respond linearly tdow to define the ‘strength’
however, is largely subjective. It is for this reason tharéhis no one measure, but many
measures that each respond to a different aspect of entaegfie For example: insepara-
bility of the state [Duaret al. 2000, Horodecki 1997], logarithmic negativity [Plenio 300
and the EPR criterion [Reid 1989]. The EPR criterion for agtament, as defined in Equa-
tion 2.175 and discussed in Section 2.9.2, can be extendadrmasure of entanglement.
This is in the sense that the smaller the value,athe greater the apparent violation of
the Heisenberg uncertainty principle, as seen by the shgri&rea formed by the inferred
quadrature variances, as shown in Figure 2.20. The redtipris monotonically decreas-
ing, and ak = 0 the two subsystems are perfectly correlated in amplitudgoaiase. But as
the EPR criterion is only sufficient, it can only be used as asuee ofEPRentanglement,
and not other forms of entanglement.

Although the inseparability criterion has its roots in thmgle idea of separability of

the wave-function, the calculation itself is less transpar One interpretation is th&t
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Figure 2.21: EPR and inseparability are examined in four different entanglement ‘experiments’.
entanglement is generated by interfering one or two squeezed states on a symmetric beamsplitter.
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represents the measurement of the correlation matrix. (a) and (b) are functions of the input squeezed

variance o2 (X",

) € {0,1}. (c) and (d) are functions of the beamsplitter reflectivity n € {0, 1} that is

used to model the attenuation, while the input squeezing is held constant: o (X1+2) =
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can be used as a measure of ‘how separable’ the state is. fBiverample a two-mode
Gaussian entangled state described by the Wigner funbﬁggbp(:cj,xg,x;,x;), how
good can the overlap integral with another state that israbfeWVse, (v, ., , 2, x; ) be?
The overlap integral would be taken over all the coordinafethe Wigner functions, and
the entire space of Wigner functions for separable sfafgs would be searched such that
the integrand k') is maximised. In this sense we can see thatould behave similarly to
7. If the state under test is separable then a separable atateecfound such thdf = 1
while Z > 1. If the state is inseparable then no separable state caral@edect overlap,

henceF < 1 for all Z < 1. The inseparability is therefore qualitatively consistesith a

measure of how separable a state is.

Further evidence that EPR and inseparability are good mem®i entanglement, is
how they behave as functions of the squeezed light resothlieésire used to generate the
entangled states, and also as a function of optical attemuapplied to those states. An
example of this is made in four ‘experiments’ in Figure 2.2he calculational building
blocks have already been covered in Sections: 2.7.2; 2923. | will not show the an-
alytical results here. From graphs (a) and (b), one can sgdalv values ofZ ande are
consistent with the notion that strong entanglement is ige@e by strong squeezing. In (c)
and (d), the entangled state is attenuated by one or two Ipditters which has the effect
of increasing the values &f ande. This is consistent with the notion that entanglement
strength should be reduced by attenuation because uratedelacuum states are intro-
duced during the process, and these degrade the quantuetatiorrs. Note that EPR and
inseparability are not analogous to the Fahrenheit andu@dismperature scales. There is
no one-to-one correspondence between the two. The con@spce changes depending on

the details of how the entanglement was produced and ddtecte

A further refinement to characterising entanglement ishilas property. The easiest
way to see this is to compare the entanglement sources thhaaed on either one, or two,
sources of squeezed light; see Section 2.9.2. For the casg¢awigled light based on a single
source of squeezed light, a quantum correlation will onlpbserved in one quadrature and

not the other, hence the entanglemenbissedin that observable. Whether a source of
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entanglement is biased or not affects the efficacy of somatgoainformation protocols,
such as teleportation. The concept of biased entanglempnt on a more rigourous footing
in [Bowenet al. 2003a]. Another property unique to the EPR measure, is tbietiiat
there are really two measures, one for each direction ofenfee. For the remainder of
this thesis, | will refer to this difference as thmlancebetween the subsystems. There
have also been other ways of characterising Gaussian éstiasigtes according to various
classes [DiGuglielmet al. 2007]. One of the most recent proposals for an entanglement
measure isogarithmic negativity This measure gives a value for the number of entangled
bits of information that could be extracted from the entadgitate [Plenio 2005]. For the
remainder of this thesis however, | will solely use the EPR imseparability measures to
characterise entangled states.

With this section | conclude the chapter on quantum optiestyn The material covered
is by far not representative of the true breadth and depttitiedield of quantum optics has
acquired. But | hope that it is complete enough to serve afegerece to support the thesis

topics that follow.



88

Theoretical Background




Chapter 3

Harmonic Entanglement: Theory

The main message of this chapter is that a degenerate op#icanetric amplifier (OPA)
is capable of producing harmonic entanglement. | build ds by explaining how the
classical behaviour of the OPA influences the strength agmel &f harmonic entanglement.
The story splits up into an analysis of the classical field andanalysis of the quantum
fluctuations, before combining again to give an interpretedf the harmonic entanglement
phenomenon. This work forms part of a collaboration that imdsted by W. P. Bowen
and K. McKenzie. It has been published under the followirfgrence:
e Harmonic Entanglement with Second-Order Nonlinearity,

N. B. Grosse, W. P. Bowen, K. McKenzie and P. K. Lam,
Phys. Rev. Lett96, 063601 (2006).

3.1 Background

We have already encountered the method of generating queslentanglement by using
a beamsplitter to interfere two squeezed states; see B&xf®. The entanglement that is
generated, is between two modes that are equal in opticgldreey. But what if my aim
was now to generate entanglement between two differentaldtequencies? Could | do
this in a similar way? The answer is no, because the beatesgidn only interfere two
modes that have the same magnitude of the propagation vé¢état we need is a ‘nonlin-
ear beamsplitter’ that would allow the interaction of twlietient wavelengths. Fortunately,
a medium that has a second-order nonlinear response, disesdimllow such an interac-
tion between two modes of light: tHandamentabndsecond-harmonicThe presence of

quadrature entanglement between these two modes is referasharmonic entanglement

89
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Harmonic entanglement is a special case of the more geneoatdlour entangle-
ment. One of the first sources of entangled light was actualtycolour entanglement
between 423 nm and 551 nm [Kocher and Commins 1967]. The gletaBnt was mea-
sured in the polarisation correlations of the light emitteda two-photon cascade from
the energy levels in a gas of Calcium atoms. A similar soures wsed to test Bell's
theorem for local hidden-variables [Freedman and Claugég 1Fry and Thompson 1976,
Aspectet al. 1982]. The atomic-based sources were later replaced byneanIBBO or
KTP crystals [Kwiatet al. 1995]. When these were pumped with intense light pulses and
operated under the correct phase matching conditions, dbel produce entanglement
between colours that were separated by up to 740 nm in waytbléReltonet al. 2004].
Although the physical process is similar to the non-degateenptical parametric oscillator
(OPO), the conversion is done only in a single-pass for wttietconversion rate is so weak
that single photons can be resolved, and the entanglemegfieédein the discrete-variable

(DV) regime.

In contrast, entangled light sources that were designed todasured in the continuous-
variable (CV) regime, were usually limited to the case ofategate or near-degenerate
(~ 1 GHz) optical parametric oscillation [Schaet al. 2002]. The main reason is that in
order to verify entanglement in the CV regime, one needs tabe to measure the ampli-
tudeandphase quadratures. Without some form of reference bearistbalherent with the
entanglement source, access to the phase quadrature isssdtlp. One way around this
is to reflect the entangled light from an under-coupled medlinewidth optical resonator.
When the resonator is de-tuned, the phase quadrature castdtedrinto the amplitude
quadrature. This method was used to demonstrate entangléoneolours that were sepa-

rated by up to 1 nm [Villaet al. 2005, Swet al. 2006].

The aim was to further increase the separation of the wagtierin two-colour en-
tanglement. Quantum correlations between the fundamanthsecond-harmonic fields in
second-harmonic generation (SHG) had been proposed by 1989] and were later
observed by [Liet al. 2007, Cassemiret al. 2007]. But the necessary phase information

was lacking to confirm the presence of harmonic entanglemBmat harmonic entangle-
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ment should be measurable in a travelling-wave SHG was peapby [Olsen 2004]. The
strength of the entanglement according to the insepataliliterion was however funda-
mentally limited in this system. This is a similar result ke timitation of squeezed light
generation via SHG, where 3 dB is the best squeezing levelraiile [Whiteet al. 1997].
Systems where the squeezing level is not limited in this veag, the degenerate OPO
and OPA; see [Wet al. 1986]. The current record for squeezing is 10dB from OPO
[Vahlbruchet al. 2008].

We chose to study the degenerate OPA in a cavity environngeatcandidate for pro-
ducing harmonic entanglement because it was already ampsmace of strong levels of
squeezing on the fundamental field, and because in cergimes of operation, large con-
versions between the fundamental and second-harmonis fiald occur. To summarise,
the hypotheses that | would like to test in this chapter are:

e A model of degenerate OPA can produce harmonic entanglement

e To produce entanglement, the OPA must support an exchareyeeafy between the
fundamental and second-harmonic fields.

e The strength of harmonic entanglement in the OPA region ig lomited by intra-
cavity losses.

Provided that these hypotheses can agree with our model Af tBBn one can begin to
speculate on the possible applications for such a sourcarofdnic entanglement. Central
to modern techniques in optical metrology has been thetylddi make connections be-
tween light beams that span an octave in optical frequenkigs development has realised
the optical-comb whose offset-frequency can be directligdd to the SI definition of the
second [Udenet al. 2002]. As such, spectroscopic measurements can now be mtde w
an absolute accuracy beyond one pari® [Holzwarthet al. 2000], and have enabled
unprecedented testing of fundamental quantum mechariiegtse [Fischeret al. 2004].
Harmonic entanglement has the potential to be applied tihéterodyne stabilisation of
optical-combs used in metrology [Diddaretsal. 2000]. In the heterodyne scheme, a frac-
tion of the frequency comb is tapped off, and interfered witb reference (local oscillator)
beams, the fundamental and second-harmonic field prodycad\io: YAG laser and SHG.

The SHG guarantees the harmonic relationship between thiobal oscillator beams. The
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two resulting beat notes with the frequency comb are congplayeiaking their difference,
and this error signal is used to stabilise the offset frequer the comb to an atomic clock
standard. If one were to replace the local oscillators wamionically entangled local os-
cillators, then the difference signal will be quantum ctated, and will therefore show a
noise floor that is reduced below the shot-noise-limit. Wnigild in principle ensure a bet-
ter signal-to-noise ratio for the desired error signal, awdld allow better locking of the

frequency comb to the atomic clock standard.

3.2 Advanced model of OPA (with pump-depletion)

The OPA model that | will present here is an extension to thrgp# OPO model that was
derived in Section 2.8.2. Although the equations of motiomtiie fields are identical, it is
the removal of some assumptions in the calculation thabdoices another level of com-
plexity. The classical behaviour and quantum statistidh@fields was already analysed in
[Drummondet al. 1980], but the authors did not analyse the correlations dsetvthe fields.
In the next sections, | will analyse the correlations betw® seed and pump fields and
show that they meet the EPR and inseparability criteria tdregiement, and therefore for
harmonic entanglement.

The system under analysis consists of a second-order eanimedium enclosed within
an optical resonator as shown in Figure 3.1. The resonatmupled to the environment
through two partially reflective mirrors. One mirror repats an input/output coupler,
while the other represents uncontrollable coupling (lessgll other environmental modes.
The non-linear medium induces an interaction between tbhéantxva-cavity fields. The aim
here is to investigate the level of harmonic entanglemestt this interaction can achieve
between the reflected output fields. The system is descripéldelfollowing equations of

motion [Drummondet al. 1980]:

da

7 = —kq+ ealb+ A, 3.1)
db 1,
S = —wb— e+ By, (3.2)

wherea andb are Heisenberg picture annihilation operators descritiiegntra-cavity fun-
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damental and second harmonic fields respectivelyand x, are the associated total res-
onator decay rates; is the nonlinear coupling strength between the fields; dpdand
By, represent the accumulated input fields to the system. Thialpareflective mirrors
modelling input/output coupling and loss are distingudsheth the subscripts ‘1’ and ‘2,
respectively; while the input and reflected fields are dehbtethe subscripts ‘in’ and ‘ref’.
Using this terminologys, = ka1 + ka2, kb = K1 + kb2, Ain = v/2Ra1 ALin + 2Rz Ag in,
andBm = \/%an + \/%32,111-

The solutions to Equation 3.1 and Equation 3.2 are obtainexigh the technique of
linearisation, where operators are expanded in terms afd¢bkerent amplitude and quan-
tum noise operator, so that = a + da andb = § + db with (6a) = (6b) = 0, and
second-order terms in the quantum noise operators arectedlleBy isolating just the co-

herent amplitude part, one gets the classical OPA equadiomstion:

da

T — Ko + € B + ain (3.3)
g 1,
T Ky 3 2ea + Bin (3.4)

The classical equations are readily solved using analyticaniques. The quantum fluc-
tuations of the intra-cavity fields can be obtained from Eigma3.1 and Equation 3.2 by
applying the linearisation, and neglecting the secondrdetens in the quantum noise op-

erators, thereby giving:

d Ay ~ ~

% = kadit e(a” 8h+ Boat) + 8 Am (3.5)
j A .

ddit — 1y 0b— cadi+ 6B (3.6)

These quantum operator equations can be solved by takirfgptiméer transformation, and
by supplying the classical intra-cavity field solutionsG. In this sense, it is then the clas-
sical behaviour of the system that drives the quantum Statisoehaviour. Although the
classical and quantum models can be solved analyticallystmse a case study approach
to visualise the behaviour of the system in graphs. The OPdeingarameters that | used
are given in Table 3.1. Note that the scale of the values weeen to allow the numerical

evaluation to proceed with minimal error. The nonlineaeiattion strengtl is in most
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experiments much weakex(10~* of typical x,). However, in the diagrams to follow, the
input seed and pump fields are re-scaled to their respedbtigsttold levelse;, . andoy, c,

and the final diagrams turn out to be invariant to any changesaind choosing a particular
value ofe is made redundant. A similar scale-invariance applies écctvity decay rates:

ke andky, but only if theirratio is preserved. The ratio was chosen to be strongly resonant

for the seed field, and weakly resonant for the pump field.

3.3 Classical OPA behaviour

Although based on the same equations of motion as the OPQ@iin8e2.8.2, the removal of
several simplifying assumptions creates a great deal optabehaviour in the advanced
OPA. A diagram labelling the input and output fields is showrtrigure 3.1. | will begin
with the classical equations of motion as given in Equatidh &hd Equation 3.4. For
convenience, | have collected all the definitions of thealalas into Table 3.1. Later | will
explain where the definitions of the critical seed and pungdieome from. The aim now is
to solve these equations for the intra-cavity fundamentdlsecond-harmonic fields in the
steady state%—i‘ = % = 0. By appropriately choosing the cavity parameteyss> x,, we
can make sure that the second-harmonic field inside theyad@itays much more quickly
than the fundamental field. This allows us to solveddn Equation 3.4:

2/<;b Rp

and substitute it into Equation 3.3 to get:

: 2
Eﬁma* — %]a\Qa—i—ain (3.8)

Kb

0 = —krea+

The problem then reduces to solving Equation 3.8fol will start by treating the special

cases of OPO, SHG, and OPA separately, before combiningititerone diagram.

Having the solution is not enough, because the stabilitytrals® be checked. This
is determined by calculating the four eigenvalues takemfeo perturbation analysis of

Equation 3.3 and Equation 3.4. | will simply take these frdra tlerivation as found in
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Ka1 Ka2
Kp1 B Kp2 Figure 3.1: The OPA model consists of
Oref 1 <+—— —_— aref,z a second-order nonlinear medium en-
Bref,l Bref,Z closed by an.optlcal resonator. err-or
1 acts as the input/output coupler, while
din, 1 — — ~<— (ijn,2

mirror 2 represents loss to the environ-

Bin,l a Bin,z ment
b .
OPAMODEL PARAMETERS
nonlinear coupling constant: e = 1.0 [s7/7
mirror 1 coupling rate for seed: ko1 = 1.0 [s71]
mirror 1 coupling rate for pump:  kp; = 10.0 [s7!]
mirror 2 coupling rate for seed: kg2 = 0.01 [s7!]
mirror 2 coupling rate for pump: Kp2 0.1 [S_l]
seed driving field (normalised): ~ «g = = variable [#]
pump driving field (normalised): Ba = = variable [#]
SOLVE FOR THESE VARIABLES
intra-cavity fundamental field: a = [#]
intra-cavity second-harmonc field: 8 = [#]
OTHER DEFINITIONS
total cavity decay rate for seed: Ka = Kql T+ Ka2
total cavity decay rate for pump: Kb = Kpl + Kp2
critical input seed field on mirror 1: a1 = (284 + p)[260 (Ko + #5)] Y2/ (€v/2Ka1)
critical input pump field on mirror 1: Gip. 1 ¢ Kakp/(€v/2Kp1)
critical intra-cavity fundamental:  ine = (264 + p)[20p (K + Kp)] Y2 €
critical intra-cavity second-harmonic: @H,C Ka Kb / €
input seed field on mirror 1:  cvin 1 aq X Qin1c [s~1/2]
input pump field onmirror 1: ~ Bin1 = B4 X Binjic [8_1/2]
input seed field on mirror 2:  aip 2 = 0 [s_l/z]
input pump field on mirror 2: ﬁin,2 =0 [8_1/2]
totalinput seed field: ~ in = v/2Ka1®in1 + V2Ka2in2 [$71]
total input pump field: ~ Bin = v/2kp1 Bin1 + V2R20im2 5]
reflected seed field on mirror 1. quer1 = 2Kq100 — Qin,1
reflected pump field onmirror 11 Brer1 = /2618 — Bin1
reflected seed field on mirror 2: quer o = \/%a — Qin 2
reflected pump field on mirror 21 Bref2 = /26520 — Bin2

Table 3.1: Fixed and variable parameters used for the OPA model. The appropriate Sl units are given.

The # symbol is dimensionless.
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[Drummondet al. 1980]. The eigenvalues are:

1 1
A, Ay = —5{—\65\+ﬁa+f€b}i§{(—\€m+ﬁa—f€b)2—4\€a\2}l/2 (3.9)

1 1
Aa = —o{leBl+ o+ mn} £ S{(leB] + Ko — ) = dleal}?(3.10)

If the real components of all four eigenvalues are negatlven the solutions are stable.
Having a nonzero imaginary component means that the solutice damped oscillations.
The fields that exit/reflect from the cavity mirrors,.¢ ; and ..t 1, can be obtained via the

input-output relation [Collett and Gardiner 1984]. Thedfiditions are given in Table 3.1.

3.3.1 The phase-space diagram

| am interested in seeing how the intra-cavity fields behava function of the input seed
and pump fields. If I only allowy, and 3y, to take on real values, then it makes sense to
plot a quantity of interest as a function of these two vagalh a phase-space diagram. The
result is a map that shows where (in the sense of what valueg g#%;,) one can expect to
find interesting properties, such as large amplificationis fiethod was used successfully
by [Drummondet al. 1980] to locate much of the interesting OPA behaviour in the-t
dimensional space. | continue investigating the phaseesgmgram in this way, but | also
ensure that the scaling is equal for both axes, such thabiitgon a circle correspond to
the same total optical power going into the OPA. This helpgmwbne is trying to make

comparisons with an experimental setup or with experimeatalts.

In the phase-space diagram, the seed field occupies the@htaliaxis which represents
the SHG process. The pump field occupies the vertical axisiwikithe OPO process. Fig-
ure 3.2(a) shows all of the stability regions that will becdissed in this chapter. The range
of seed and pump field amplitudes is however much larger thaarrently accessible by
experimentalists. The stability regions that | will contrate on are shown in Figure 3.2(b);
these include bi-stable and complex-valued OPA. | have @istinguished between OPA
amplification and OPA de-amplification regions. The cirdlews a total input power that

is equal to OPO threshold power. | will now examine each af¢hregions in detail.
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Figure 3.2: A stability analysis of the OPA solutions reveals a range of behaviour: mono-stability, bi-
stability, out-of-phase (complex-valued) mono-stability, and self-pulsation. The driving fields are nor-
malised to the critical amplitude for self-pulsation in SHG, and the threshold amplitude for OPO. Circles

mark the total input power to the system. Left: large scale structure. Right: regions that are accessible
by current experimental techniques.

3.3.2 OPO

The first case is where only the pump field is driving the sys&mh thaiy,, = 0. There

are three possible solutions. Which of them is stable dependthe value of the pump

amplitude:

a = 0 5 ﬂ = ﬂin/’ib P |ﬂin| < ﬂin,c (311)
1/2
a = £ |:§(|ﬁ1n| - ﬁin,c):| ) ﬁ = K/a/e ) |ﬁin| Z ﬁin,c (312)

9 1/2
a = =i [E(‘ﬂln‘ - ﬂin,c):| 5 ﬂ = ﬂa/e 5 |ﬂin| < _ﬂin,c (313)

The threshold/critical value i8;, ., which is used to define the normalised driving figld
see Table 3.1. When operated below OPO threstigld| < (in ), there is no light pro-
duced at the fundamental frequency. But the quantum fluotuanalysis in Section 2.8.2
showed that it was in this regime that strong squeezing idymed. The classical OPO
model produces light at the fundamental only when the punig iseabove the threshold
level; see Figure 3.3(a). Interestingly, the intra-cawgcond-harmonc field remains at a
constant value, even if the input pump field is increased eNwat there are two solutions

for the fundamental field: one for each sign of the pump fieltie Theaning of the sign



98 Harmonic Entanglement: Theory

is a relative phase shift between the fundamental and setamadonic fields. But below
threshold, the meaning of relative phase is denied because0. One interpretation is
that a kind of symmetry breaking has to occur along the ttimmsfrom below- to above-
threshold. These solutions are stable and have negativeigeavalues. However for the
above-threshold solutions, they have only pure real emarg when the following set of

criteria are met:

1Bm| > B+ ki /8¢ (3.14)

1Bim| > B85 + (264 — Kp)?/8€ (3.15)

When the OPO is driven with a pump field above either of thegeria, the solutions
for o, 3 become spiral-stable. A small perturbation shows a dampgedlaiion. The
oscillations should appear as sidebands in the spectrurheoflictuation analysis; see
[Drummondet al. 1981], although as of yet, they have not been experimentéiberved.
However, the non-degenerate OPO that is driven well abaesltiold is a commonly used

source of frequency-tuneable light for applications suemalecular spectroscopy.

3.3.3 SHG

For the SHG case, one drives the system only with the seed figlide the input pump
field is set to zerog;,, = 0. The system then converts fundamental light into the second
harmonic. The solution for the second-harmonic field is tbbg solving the cubic equa-
tion:

—2/%(66)3 + 4/<;a/<;b(eﬂ)2 — 2/<;a2/<;b(eﬂ) = \eain]2 (3.16)

The cubic has three analytical solutions but by reasoninf thie conservation of energy
for the fundamental field, two of them can be ruled out, thereist leaving the real so-
lution [Drummondet al. 1980]. The formula itself is too lengthy to include here. Exe
pression for the intra-cavity fundamental field is found thygging the solution foi3 into
Equation 3.7 and solving resulting the quadratic equatomf By analysing the resulting

eigenvalues for the solutions 3, one finds a threshold that is associated with SHG:

1
|Ctin,c| = 2(2/% + Kp) 285 (Kq + Hb)]l/z (3.17)
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When the SHG is driven above this threshalg > o, ¢, the eigenvalues become pure
imaginary. This means that the system has un-damped d¢iscia which are also called
self-pulsation. The threshold value for self-pulsation . is used as a reference to define
the dimensionless driving field;; see Table 3.1. In the regime of self-pulsation, the stored
energy in the intra-cavity field is periodically shuffledrindhe fundamental to the second-
harmonic and back. | am forced to keep my quantum fluctuati@tyais away from the
self-pulsation regime because the linearisation assomitieaks down. Setting this limit
is reasonable from an experimental point of view becausedolr self-pulsation in typi-
cal SHG setups would require seed powers in excess of 1 kWhoowis-wave. At these
powers, thermal (oscillation) effects would surely donbéndn contrast, the case for SHG
below the self-pulsation threshold is quite simple; seaufa@.3(b). It is characterised by
a monotonic increase in the intra-cavity second-harmoeid fis the input seed power is
increased. There is a point for which the seed field is coralgiebnverted into the second-
harmonic. The required amplitude for the total input seeld fier which this happens is:
ain = +/8k3Kp/€2, which depends only on the fixed cavity parameters. Thisésoib-
timum point at which to operate an SHG for the purpose of efficirequency doubling.
The SHG is a commonly used experimental technique for crgdaiser light at very short
wavelengths (into the ultra-violet spectrum) for which maasing media typically lose

their efficiency.

3.3.4 OPA (general)

The usual sense of the term OPA is when the input seed fieldeb maaker than the input
pump field. However, | bend the definition to include the cakarbitrary «;, and Gy,.
There are several solutions to Equation 3.8, and also thaée megions where the solutions
are stable. We cannot rule aupriori that the solutions fotx could be complex-valued. So
to make the problem tractable, we tet= r exp(ip), wherer is strictly real. The equation

then reduces to solving a cubic, and a trigonometric idgntit

- <2€in> r cos(2¢) + <2ia;b> r— (2/&:;)%) cos(¢p) = 0 (3.18)

sin(2qz5)—|—<':;li;>sin(¢) — 0 (3.19)
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Figure 3.3: Various case studies of the classical OPA system
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The method of [Drummoneét al. 1980] was to split up the problem into a so-called ‘in-

phase’ solution set#( = 0) and an ‘out-of-phase’ set)(# 0). Finding the in-phase set
reduces to solving the cubic:

2 in 2 a 2 in
r3—<6>r+<“2“b>r—<“bf >:o (3.20)
€ € €
for r, while ¢ = 0. The out-of-phase set requireso satisfy:

2 in 2 a
743+<ﬂ+ "‘2’%>T — 0 (3.21)
€ €

and therefore also faf to satisfy:

cos(p) = % (3.22)

In total there are five possible solutions. When the stghilftthe solutions are analysed,

the ‘in-phase’ set gives rise to the OPA mono-stable, and GiFable regions, while the

‘out-phase’ set leads to the OPA-complex-value region.

3.3.5 OPA (complex-value)

In the complex-value region, a phase shift is induced ordarttra-cavity fields. The phase
shift is non-trivial in the sense that it is not simply a coptlte phase of the input fields.

The complex-valued solutions are stable proved that thevfolg conditions are met:

Bin < —Biec (3.23)

(om)? < :ibiwm%wm—ﬁfn) (3.24)

An example of this is shown in Figure 3.3. In graph (c) the et of the intra-cavity
fields is plotted as a function of the input seed. In graphlid)itnaginary part is plotted.
Note that there are two stable solutions for the fundamédigtial « anda’ which differ in
sign only. The magnitude of the two solutions is the sames pheédiction has not yet been

confirmed experimentally.
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3.3.6 OPA (bi-stable)

As the name suggests, there are two stable solutions fordlus fn this region. The two
solutions do not have the same magnitude, and as such thé&gcamsidered truly distinct.

The bi-stable region is defined by a bound on the pump fielddp¢nds on the seed field:

3 [ KpQiin \ 2/3
5111 > 6in,c+§( Ean)

(3.25)

This means that the total input power to the system must exiteeOPO threshold power.
An example of the bi-stable region is made in Figure 3.3(edretbne can see an abrupt
change in slope in the fundamental fieldheavy solid line), as the seed amplitude is re-
duced. If one were to increase the amplitude again, theisolutould switch to then’
solution (thin solid line). It was suggested in [Drummagtdal. 1980] that such behaviour
could be used for building an optical switch or (classicaBmory. This is another predic-

tion of the model that has not yet been confirmed experimigntal

3.3.7 OPA (mono-stable)

The mono-stable region occupies those areas of the phase-slipgram that are not oc-
cupied by the complex-valued and bi-stable regions; sear&ig.2. Although not strictly
limited to the case of a weak seed field and a strong pump fiéddar this case that the am-
plifying property of the OPA is most apparent. An examplehi$ is made in Figure 3.3(f).
Depending on the sign (phase) of the input pump field, thaicavity field is either ampli-
fied or de-amplified in comparison to the case with the pump 8el to zero. If however
the pump field is increased beyond the OPO threshold (in tbdems;,| ~ 10), then the
system enters into either the complex-value region or tetabie region. The amplifying
property of the OPA in the below OPO-threshold regime is d-estlablished experimental
result. In the quantum fluctuation analysis, it is the phdegendent amplification that is
the mechanism responsible for the system transformingreahseed light into squeezed

light. The OPA operating in this regime is a well establissedrce of squeezed light.
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3.3.8 The input-output gain maps

A good way to visualise the classical behaviour is to map batdain of the OPA as
a function of the driving fields. | have defined the gain in tbdofving way: G, =

et 11/ |cin1]? @nd Gy = |Brer.1]?/|Bim1|>. This is the optical power of the reflected
light from mirror 1 divided by the input light incident on treame mirror. | have to be
careful with this definition of gain, because it includesehin loss of the cavity as well as
the gain due to the nonlinear interaction. But provided these an over-coupled cavity for

the modelk,1 > k42, then the dominant effect is gain due to the nonlinear ictara.

The colour-coded graphs in Plate 3 show the gain mapped astdn of the pump and
seed fields which have been normalised to their respectigstiblds given in Table 3.1. The
horizontal axis corresponds to SHG. This can be seen by thletdm of the fundamental
field, and strong amplification of the second-harmonic fieldhe area immediate to the
horizontal axis. The vertical axis corresponds to OPO. Wdleove OPO threshold, the
second-harmonic field is depleted, while the fundamentld feestrongly amplified. Bi-
stability has been presented in the diagram by plotting ohgisn on the right hand side,
and the other solution on the left hand side. The loss of syimynire the seed field am-
plitude is thus only apparent. Hence any differences inrlgfit symmetry is evidence of
bi-stability. There is another phenomenon that has not dessussed so far. There are two
parabolic-like lines where the gain for both the fundamieatal second-harmonic fields is
zero. | refer to these lines as neutral-point solutionsabse the rate of the two competing
nonlinear processes, up-conversion and down-converarerequal. Later, we will see that

the neutral point plays a key role in the interpretation aghi@nic entanglement.

3.3.9 The input-output phase maps

The phase behaviour of the OPA system also exhibits integesgsults when plotted as a
map of the driving fields. | have defined the phase as beingrtherent of the complex-

valued amplitude of the reflected field from mirrord,; = arg(aer,1) andeg, = arg(Bres,1)-

| have to be careful with the interpretation, because thimitien of the phase includes the

trivial phase-flip that occurs on the horizontal and vettéoaes of the map due to the change
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of sign of the driving fields.

The colour-coded graphs in Plate 4 show the phase of thetellfields as a function
of the normalised pump and seed fields. There are two promientrivial phase shifts to
be seen. The complex-value region in the lower section ofthphs is readily apparent.
There is an interesting phase anomaly for the second-haerfield along the vertical OPO
axis. When the system is driven by the pump only, at exactiggvthe OPO threshold
amplitude, and in a small vicinity around this point, the gdahift can take on any value.
If we look at the corresponding gain map in Plate 3, then tlwrsd-harmonic field is
completely depleted at this point, and the field has zero iamagl, which means that the
phase is not a well defined property anyway. A similar effextuns on the other lines of
depletion for both the second-harmonic and fundamentalsieHere however, the jump
in phase is restricted to exactlyy0°. Later we will see that the non-trivial phase shift in
the complex-value region also plays a key role in interpgethe phenomenon of harmonic

entanglement.

3.4 Quantum fluctuation analysis

The quantum fluctuation analysis begins with Equation 3dbBqguation 3.6 whose oper-
ators are defined in the time domain. The aim is to get the-gavaty field operators in

terms of the input field operators. The first step is to brirgdfuations into the frequency
domain with¢) the sideband frequency away frang the carrier; see Section 2.7.4. The

result for the annihilation and creation operators is:

006 = —kqda+ela®db+ Béal) + 045, (3.26)
000" = —kg0al + e(adbt + 5 6a) + S AT (3.27)
i00b = —kydb—eada+ 6By (3.28)
060t = —rydbt — ca*dal +oB] (3.29)

Where the operators have had their following functionatmf®suppressed for compactness:
da(wo — Q) andda’(wy + Q). The equations are solved for the input fields, before the

sum and differences are taken. The sum for the seed fieldtopegives the amplitude
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quadrature:d Xy, = Al + 0A;,. The difference gives the phase quadrattike;, =
i(é[ljn — 5Ain). Similar definitions apply for the pump field. Note that thegmdrature
operators, are the compact two-mode quadrature opera®idiscussed in Section 2.6.5.

The results are:

A~

0XL, = (ko —iQ)(0a" + da) — e(a bt + o 6b) — e(B* da + G dal) (3.30)
60Xy, = (ke —iQ)(idal —ida) — e(iaobT —ia* db) — e(if* da —iBda’) (3.31)
SXg = (ky —iQ)(0b" 4 6b) + e(a” dal + a da) (3.32)

0Xg, = (rp—iQ)(i6b" —i6b) + e(ia* da’ + i da) (3.33)

The arrangement of the intra-cavity creation and annibilabperators suggests that they
can be combined into quadrature operators. It helps if | niizddollowing transformations
to the classical solutionsy — |a|exp(if,) and3 — |5|exp(if3); wheret, = Arg(«)
andfg = Arg(3). | can then use the definition of the generalised quadratpezator:
X% = altexp(if) + aexp(—if) and X? = Xt cosf + X~ sinf. Now the input field
quadrature operators can be expressed in terms of thecanig- quadrature operators, and

the result can be displayed in matrix form:

0X Fin A B C DXt
iy ;o o

e R B e 3
X g D —C 0 E||éx;

where

A = Kq—iw—€|f]cosbp (3.35)

A = kg —iw+ €|f]cos b (3.36)

B = —¢|fsinbg (3.37)

C = —elalcosb, (3.38)

D = —¢|alsinb, (3.39)

E = kp—iw, (3.40)
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The matrix has to be inverted to obtain the solution for theakgavity field in terms of
the input fields. Let us call thmwvertedmatrix M that has the elements,;; organised
into rows ¢ and columns;j. Actually, we are not interested so much in the intra-cavity
fields, but rather the fields that reflect/exit from the OPAityavThe reflected fields can
be directly obtained by using the input-output formalisnol]€tt and Gardiner 1984], such
that X3, o, = vV2ra X5 — X3, andX g, = v2kn X; — X[, ;- And where one must
be careful to use the definition of the individual input figlds opposed to the accumulated
input fields. The final expression for each reflected fieldrngady a weighted linear sum of

all the input fields. It is easiest to see how this works if letak example:

5Xg_ref,l = (2m11\/liall{a1 — 1) 5XZin,1 + 2mi1v/Kal ka2 5XZin,2
+2m12\ma1/<;a1 5XXin,1 + 2m12\//<;a1ma2 5XXin,2
+2m13\ma1/<;b1 6X§in,1 + 2m13\mamb2 6X§in,2

+2mig/Kal Kbl 6X]§in,1 + 2Mmig\/Kal kb2 6X]§in,2 (3.41)
Another example is

5X]—3’_ref,1 = 2m3ivEplKal 6Xg_in,1 + 2m31v/Ep1Ka2 5X:in,2
+2m32+/Kp1 Kal 5X,§in71 + 2m32+/Kp1 Ka2 5X1§in,2
+(2m33\/ Kp1Kp1 — 1) 5X§in,1 + 2m33\//<;b1/<;b2 5X§in,2

+2ms34+/Kp1 Kbl 5)2];1171 + 2ms34+/Kp1 Kp2 5X]§in,2 (3.42)

where the details are in the subscripts, but also in theilmtaff the ‘minus one’ term. The

expressions for the other reflected fields are obtained imgasimanner.

What we are interested in, are the correlation coefficiehthe quadrature operators
between the reflected fundamental and second-harmonis.fi€lte correlation coefficient
is generally defined asty, = (0,0, + 0,0,) — (0,)(0y), whereO, andO, are two
arbitrary operators. Because | have employed the compaetrtede quadrature operators
in my analysis, | must use a variation on the definition of tbeelation coefficient. The
explanation for this is based on the ‘compact’ quadraturiamae, as given in Section 2.7.4.

The compact quadrature variance is what is measured on Weéopa detector of an elec-
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tronic spectrum analyser, which is the device typicallydisequantum optics experiments
to record the quadrature noise measurements. As we arengonkth fluctuation oper-
ators, the modified correlation coefficient then becon@s; = ((0,)'0,). The task is
greatly simplified by the fact that operator products betw®® independent input modes
will have expectation values of zero. The terms that do iddmmtribute, will be shown in

the following example:

Charefi,Brefi = (2mi1v/Ka1ka1 — 1)*(2m31v/Kp1FKa1) <(5XZin,1)T5XZin,1>
+(2m11v/Ka1Ka2)" (2m31y/Kb1 Ka2) <(5XZin,2)T5XZin,2>
+(2mi2v/Ka1Ka1)* (2ma2y/Kp1Ka1) <(5X1§in,1)T5XXin,1>
+(2miay/Ratkaz)" (2maa /R Fez) ((0X 33 2) 0K 35 0)
+(2muzy/Rarkon)* ((2masy/Rorror — 1) ((6X5,, ) 10X, )
+(2mazy/Rathn)” (2masy/Ane) (X, ) 60X, )
+(2m14\/W)*(2m34\/W) <(5X§in,1)T5X]§in,1>
+(2m14x/W)*(2m34m) <(5X§in,2)T5X]§in,2> (3.43)

The other correlation coefficients are calculated in a similay. We now need to choose
what states the input fields are in. Since the input statesitver coherent states (the seed
and pump fields into mirror 1), or vacuum states (all otheuirfgelds), | can be sure that

the compact variances will equal one; see Section 2.7.4example:

(i [(0X 4, )TOX L o) = 1 (3.44)

<0|(5X;m,2)T5X;m,2|o> = 1 (3.45)

We now have all the tools required to calculate the entirgimat correlation coefficients.
We can proceed to investigate the presence of entanglerasvedén the output fundamental
and second harmonic fields. A bi-partite Gaussian entargibgd is completely described

by its correlation matrix [Duaet al. 2000] which has the following arrangement of ele-
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ments:
Cit Ci- ot ot
M= | Cany Caa o Cap”
O, Cra Cow O
Cba Cba Cbb Cbb

Note that to keep the notation simple, | have made the folignghange of subscripts:

(3.46)

Aref,] —q @Ndper1 —4. ONce | have calculated the elements of this matrix, | can the
analyse it for either the inseparability criterion or theRE€&iterion for entanglement; see

Section 2.9.3.

3.4.1 Numerical methods

Given the rather large expression involved in calculatingionic entanglement from the
correlation matrix, it was simpler to break up the calcalatinto three steps, where each
step returned a numerical value. The model parameters gratwged are given in Table 3.1.
The first step in the calculation was to find the values of theainavity fields for a given
pump and seed field using the classical model, for exampthe Equation 3.13. This value
was then fed into the quantum fluctuation model, to get theesbf the correlation matrix
elements, such as in Equation 3.43. Finally, the correlatmmtrix was analysed using
a numerical algorithm to find the standard form Il of the matand hence to find the

optimised inseparability, which is a necessary and sufficéterion for entanglement.

3.4.2 Initial testing of the model

Every new theoretical model should be treated with cautiaralytical errors, numerical er-

rors or over-stretched approximations will cause the muamielake inaccurate predictions.
For this reason, itis wise to invest some time to gain somé&a@mce in the model by testing
it against a well-established result. One result that haa benfirmed by many experiments,
is the ability of the OPA in the weak seed limit to produce qafute squeezed light on the
fundamental field, and also the ability of the OPA in the SH@tlto produce squeezing on
the second-harmonic field. Both of these results can be seRlaie 5, where the quadra-
ture variances have been mapped as a function of the inpditeseepump fields. There is
a wealth of information here, but | want to first concentratettie squeezing of the funda-

mental field as a function of pump power. This correspondeg¢arhmediate vicinity of the



83.4 Quantum fluctuation analysis 109

vertical (OPO) axis in the diagram. Depending on the sighefiump field as it approaches
OPO threshold, the amplitude quadrature of the fundaméetedltakes on either-15dB
or +15dB, which is squeezing and anti-squeezing, respectively.afmrmp amplitude of
zero, the quadrature variance is as expected 0 dB (that diexeat state). A further inves-
tigation of the model (not shown), is that the level of sqimgbecomes arbitrarily strong
as the intra-cavity losses of the OPA are reduegd ( 0). These results are in agreement
with predictions from other OPA models [Wai al. 1986, Walls and Milburn 1994].
Another test is the production of SHG squeezing. If we follilng@ horizontal (SHG)
axis in Plate 5 for the second-harmonic amplitude quadzatinen the variance changes
from 0dB at the origin, to—3 dB at the extreme end. The squeezing strength seems to
clamp, even when intra-cavity losses are reduced. Thidtrissconsistent with the SHG
squeezing predictions in other SHG models [Mandel 1982 athar simple check is to see
whether the fields are violating the Heisenberg uncertairityciple anywhere on the map.
With quadrature variances, one simply calculates the mtaafithe variances. Although not
shown explicitly in Plate 5, if one adds (in dB scale) the atage and phase quadrature
maps for the fundamental field, then one does not find a valakishess than unity at
any point on the map. A similar test for the second-harmorild fjives the same result.
Another test is to turn off the nonlinearity in the model bitirlg ¢ = 0. In doing this,
one removes the nonlinear gain in the system, and even thibhegh may be intra-cavity
loss in the system, the input coherent and vacuum statesldstemain unchanged with a
quadrature variance of one. Although not shown in the graplkesOPA model confirms this
result. Since the OPA model has survived the key tests, itldHme safe to continue with
analysing the quantum correlations between the fundamantasecond-harmonic fields,

and therefore to look for harmonic entanglement.

3.4.3 Entanglement is all over the map of driving fields

If I map out the EPR entanglement measure as a function ofritiegl fields in Plate 6,
the first thing that strikes me qualitatively, is that theseat least some entanglement to
be seen almost everywhere. The second thing is that thegesbentanglement seems to

coincide along the boundaries, i.e. the boundaries where ils a change of the stability
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Figure 3.4: (a) Second-harmonic

generation produces harmonic en-
tanglement for all non-zero pump
powers. But the strength is limited
to e, = 1.9 dB, even for the case of
100% escape efficiency. (b) Optical

EPR and Insep. [dB]

parametric oscillation can only pro-
duce harmonic entanglement when
driven above threshold. The best
value reads ¢, = 9.1 dB, located
just beyond threshold. This value
can be arbitrarily improved by in-
creasing the escape efficiency. Solid
line is the EPR criterion, while the
dashed line is inseparability. The
shaded area is entangled.

EPR and Insep. [dB]

of the classical solutions. | have some cause for celelmatiecause | have already shown
my main hypothesis: a model of OPA can entangle the fundaahantl second-harmonic
fields. But | want to go further than this, and try to get an ustésding of how the strength

and type of entanglement depends on the underlying clagsbaviour of the system.

3.4.4 SHG produces harmonic entanglement, but it's not the ést

| first examine the case of taking a slice in the map of driviedds along the SHG axis.
Figure 3.4(a) plots the EPR and inseparability entanglémmasures as a function of the
normalised seed amplitude from zero up to the onset of sdtfagion (which is the limit
of the OPA model, but not the system itself). We can see thaSHG, there is at least
some level of entanglement to be found for all values of trezldeeld. There is an opti-
mum of —2 dB of EPR entanglement at; = 0.1. This result is reminiscent of th&dB
squeezing limit for SHG. The cause may be that the pair abearprocess for SHG only
allows a single sideband of squeezing or entanglement tebergted, the other sideband
is occupied by a vacuum state. The strength of entanglenosst wot improve if | reduce
the intra-cavity losses, and so the harmonic entanglenengrgtion in SHG appears to be

fundamentally limited.
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3.4.5 OPO above threshold makes harmonic entanglement, bunbne below

The strongest experimental sources of squeezed light hawate, used below-threshold
OPO to make 10dB squeezed light [Vahlbrwethal. 2008]. | therefore would have expected
that OPO would also produce the strongest harmonic entauegle Figure 3.4(b) takes a
slice along the OPO axis of the map. The EPR and insepayahiitasures are plotted
as a function of the normalised pump amplitude. The resulb&ow OPO threshold is

that there is no entanglement, as shown by EPR being gréateione, and inseparability
closely hugging the unity line. However, when the pump fislshcreased beyond threshold,
the entanglement strength rapidly finds an optim@rh ¢ B), before then gradually easing
off with increasing pump power. If one observes the optimuwinipas the intra-cavity

losses are reduced arbitrarily, the strength of entangiemlso increases arbitrarily and
moves ever closer to the OPO threshold point. The strengttmmhonic entanglement in

above-threshold OPO is therefore not fundamentally lich#te in the SHG case.

3.4.6 OPA near the boundaries makes the best harmonic entalegnent

Even on the classical gain plots we can see that there a@ndisgities in the reflected clas-
sical field amplitudes across the borders where one solbgoomes unstable, and makes
the transition to the next solution. One can expect that thentym effects will be es-
pecially strong here, because a small fluctuation in one, fegg the pump, can transfer
to a large fluctuation in the seed, thereby producing stramgetations. The best way to
study these boundary regions is to perhaps set the total pgwer to a constant value,
and only trace out a circle in the map of driving fields. In F@®®.5(a), | chose a total
input power 0f90% OPO threshold power. The polar plot follows the circle in dman-
glement map of Plate 6, where the path is parameterised bsntledr that is defined
by g = (Bini.c/An1.c)V2Esinbg, andfB; = /Ecosfr. Wheref is the ratio of the
total input power to the OPO threshold power. The ratio ofghenp to seed powers is
R = |Bin,11%/(3|in,1|* +|Bin,1[?). In the polar plot, points closer to the origin signify more
EPR entanglement. We can see two regions—one in the OPAfamafitin region, and the

other in the OPA de-amplification region—where the EPR agitanent finds an optimum
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OPO
90% Pihresh R=100%
Rersts | men

400% Pihresh Re100%

R=75%
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SHG
R=0% |

§ [dB]

Figure 3.5: The total input power
is held constant, but is split be-
tween aq and 4. The splitting frac-
tion R is varied. EPR entangle-
ment strength is displayed radially.
(@) The 90% case is optimally en-
tangled in the regime of moderately
pump-depleted OPA, and reaches
€, ~ 6.5 dB. (b) The 400%
case shows the region of bi-stability.
Optimal entanglement occurs on the
edges of solutions; ¢, ~ 14 dB.
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of —6.5dB. Note though, that since we are in the OPA mono-stable solget, that no

solution boundaries have been crossed yet. This changesiwsbethe total input power to
400% of OPO threshold power. Once again there are two optimurimgettor the seed and
pump fields. And these indeed correspond to the boundartebe the mono-stable OPA
region and the bi-stable regions; or the boundary betweemitbno-stable and complex-
valued regions. The optimum EPR entanglement turns out teldelB for both boundary

crossings. This result suggests that perhaps the total pgwer is akin to a resource for

the production of harmonic entanglement.

3.5 Interpretation

We have seen harmonic entanglement mapped across the g dields, and we have
looked at several case studies. But | would like to draw soererlisations of the OPA
system from this overload of information. In the next foliog sections | will attempt to

interpret the theoretical results.

3.5.1 Harmonic entanglement requires an exchange of energy phase

What | want to answer is, why is harmonic entanglement sepfigr some combinations
of seed and pump amplitudes, and not for others? How does R#epBbduce harmonic
entanglement? The answer is probably easier to find for theecse: for which seed and
pump amplitudes is there no entanglement and why? If we loatkhe map, there are only
two regions that have no entanglement. OPO below threshaldithe neutral path within
the OPA mono-stable region (upper half of Plate 3). What these in common is that the
classical gain for the fundamental and second-harmoniexaetly zero along these paths.
There is no exchange of energy. So if one field, say the pungpaltfaictuation, then it
is impossible for it to be mapped onto the seed. And witholgagt some correlation, or
anti-correlation, there cannot be any entanglement.

If we look closely at the classical gain maps, then we can sethar neutral path of
seed and pump amplitudes (this time in the lower half of thg@ims in Plate 3). But along
this path, there is indeed a generous amount of entangleindo@ seen, at least6 dB

according to the EPR measure in Plate 6. The difference betai although there is no
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exchange of power between the fundamental and second-harinelds, there is indeed
an exchange of phase shifts acquired by the reflected fields.two fields are therefore
correlated according to their phases, and not their iniessiAnd it is this correlation that

allows harmonic entanglement to be generated along anvaeemneutral’ path.

3.5.2 Biased entanglement is the rule and not the exception

When looking at the map of entanglement in Plate 6, it is hardet a feeling for the
kind of entanglement that is being produced. | have theeefitrosen a few examples,
or case-studies, at various points in the map, so that ones@arwhat is happening to
both the real and imaginary parts of the classical amplgudad also the amplitude and
phase quadrature variances. The states are representedl-by-stick diagrams, where
the stick is the classical amplitude, and the major and mames of the ball correspond to
the quadrature standard deviations. The state is repsgsenthis way for the fields both
before and after their interaction in the cavity.

Case 1in Plate 6 is a strongly driven SHG. The seed field is almostatetaly depleted,
i.e. it has been converted into the second-harmonic. Onsemweak squeezing on the am-
plitude quadrature of the fundamental field, and also weakbaic entanglement between
the fields. The entanglement is biased, because the stathscpd for the fundamental and
second-harmonic fields show squeezing; see Section 2.9.4.

Case 2:is below-threshold OPO in the de-amplification regime. €hisrno pump-
depletion, and the squeezing on the fundamental field issteoyg. But there is no entan-
glement. This is because there has been no exchange of drstvggen the pump and seed
fields, as witnessed by the coherent amplitude ‘stick’ indiagram not having changed.

Case 3:is below-threshold OPA, and in a region of moderate pummaaodment. This
means that the squeezing on the fundamental field is sligledyaded, but due to the sig-
nificant exchange of energy between pump and seed, a modwmrat®f harmonic entan-
glement is produced. As in Case 1, we see that the entangiésrtdased.

Case 4.is clearly above-threshold OPO. A fundamental field has loeeated, but so
much so, that the pump field is almost completely depletede &tthange of energy has

been perhaps too great, and this has limited the strengtbroflations between the two
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fields. Hence the entanglement is only moderate compareithéo cegions of similar total
input power (400% of OPO threshold). The fundamental fieldgseezed in the phase
quadrature. So we have another example of biased entanglémtae collection.

Case 5:is a neutral point. Here there is no net exchange of energyeast the fun-
damental and second-harmonic fields. As a result, there sjoneezing to be seen, nor
harmonic entanglement.

Case 6:is in the complex-value region of the map. As a result, thecgdd fields gather
non-trivial phase shifts. The pump depletion or enhancérnsevery weak for this point,
as can be seen by the lengths of the amplitude sticks notdnatianged much. But the
change in phase is significant. As a result, small fluctuatiorthe seed field intensity are
transferred onto the phase of the second-harmonic, and®isa. The entanglement that is
produced is quite strong when compared with other pointsggiibe 400% total input power
line. It should also be noted that the entanglement thatoidumred is biased.

These case studies have shown two things. Firstly the iripiorble that pump deple-
tion or enhancement plays in producing harmonic entangieménd secondly, that har-
monic entanglement as produced by the OPA system is inthetgased, regardless of the
choice of seed and pump fields. The ‘biasedness’ is evideart analysis of the quadrature

variances for the fundamental or second-harmonic fieldgwdhow squeezing.

3.5.3 Optimum entanglement occurs at 7 times threshold powe

If we look at the polar plots in Figure 3.5, we can see that theunt of harmonic entangle-
ment is the same in both the amplification and de-amplifioatgions. The 400% case also
has stronger entanglement than the 90% total input power ddss seems to suggest that
the total input power is a resource that decides how muchglsiaent can be generated.
If this is true, then more power should mean stronger enéamght. But there turns out to
be an optimum level for the total input power.
To study this, | stepped through several orders of magnitddetal input power. For

each step, | took a circular path in terms of the pump and segdlitades, and recorded
the strongest value of entanglement. | repeated this pupeathtil | had the optimal EPR

measure as a function of total input power. This is plotteBigure 3.6. | have repeated the
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Optimal EPR as a function of total input power
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Figure 3.6: The optimal entanglement is found as a function of total input power, and plotted for several
coupling ratios Kk, /K. The best strategy is to keep kq /Ky < 1, i.e. preferably singly-resonant on mode

a, after which the total input power of 7 threshold will generate the strongest entanglement, largely
independent of the escape efficiency nesczlia,l/liazﬁb,l/ﬁb.

study for three different ratios of input-output coupleaad also three different settings for
the intra-cavity losses. But let me start with the standaskcs given by the parameters
in Table 3.1, which is shown here in line (a) in Figure 3.6. As total input power is
increased, the entanglement strength finds an optimum at @iones the OPO threshold
power. But for higher total input powers, the entanglemesgjifis to weaken.

In the case of a doubly-resonant cavity along line (b), wheee fundamental and
second-harmonic decay rates are equal, one also sees am@péntanglement point at
7 times OPO threshold power; line (b). But the entanglemesgkens much more quickly
than for the previous case. If | then make the OPA cavity #ffely singly-resonant for the
second-harmonic field, as in line (c), the optimum at 7 tinmeeghold power is not even
reached. But note that my OPA model could break down at thig doecause the approx-
imation used in the derivation to adiabatically remove theosid-harmonic field no longer

applies.
3.5.4 In principle, OPA can make arbitrarily strong harmoni c entanglement

If the escape efficiency of the OPA cavity is increased fro®30 99.9%, which is done

by reducing the intra-cavity losses 4 — 0), the level of optimal EPR entanglement also
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increases. But the total input power at which this occursyeaonly very little away

from the 7 times threshold value; see Figure 3.6. Hence, wlesigning an experimental
setup, one would not require more than this total input powesrder to get the most
entanglement out of the system. Having the potential faitrary strength in the system is
a huge motivation to build up an experiment and start meaguni the lab. It means that

one does not need to overcome a hurdle that is already imysieg OPA system itself.

3.5.5 Squeezed driving fields enhance entanglement

So far | have considered driving the system with a seed angbpliat are in coherent states.
It is then interesting to ask the question whether the fluing on those states map to the
entangled states. The quantum fluctuation model easilywsalioe to change the input states
to squeezed states, just by changing the value of the corgpadrature variances. | tried
several combinations of squeezing on the seed and pump, festdsfound the strongest
results for the orthogonal combinations: for exampléB squeezed on the seed amplitude,
but 6 dB on the pump phase. Or vice versa. The harmonic entanglemamtisrplotted
for these two cases in Plate 7. The first impression is thae tisemore entanglement, in
the sense of being both stronger, and beginning closer tbthiarorigin, i.e. for lower total
input powers. The inset plot compares the entanglement tritye a3 dB contour for the
coherent and squeezed input states. Clearly visible ishtbakgions appear to have moved,
so that for one particular combination of pump and seed sipge3dB of entanglement

can now be accessed at only a few percent of total input power.

We can also look at individual cases. | have chosen to examipeint on the SHG
axis. Looking at the ball-on-stick picture and comparing shueezed and coherent models,
we can see that the kind of entanglement has changed frorg b&ised, to being nearly
symmetric (biased entanglement is discussed in Sectiad)2.9he general message is
clear. Squeezed driving fields can enhance harmonic eetaegit and compensate for bias

that is inherent in the OPA system.
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Input to Output Mapping of the driving fields of OPA

Figure 3.7: Intuitive interpretation
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3.5.6 Anintuitive interpretation using co-ordinate transformations

Despite having examined various aspects of the harmoramgl@ment that is generated by
OPA, there is perhaps one thing that is missing. | would likkdve an intuitive picture for
how the entanglement is created in the OPA. For squeezet] figdre is a simple picture
for how it is created in an OPA. One can imagine that the OPAmdelification process that
happens to the classical amplitude of the seed field, lileeWwappens to the quantum fluc-
tuations in the amplitude quadrature. The output lightdéfee has a quadrature variance
that is squeezed in comparison to a coherent state of lighttis the same optical power.
For harmonic entanglement, the picture is complicated byfdht that we need to consider

two fields at once, and the correlations between them.

For classical fields, one consider the role of the OPA systemapping a set of input
fields, into a set of output fields. | can represent this mapjis distortion in a grid of
equally spaced points. Figure 3.7 shows a set of equallyespiaput fields as a light-grey
two-dimensional grid. The region that has been plotted thiwithe mono-stable OPA
region. The OPA system then maps the input seed and pump ifddsew values of the
output seed and pump fields, which are represented by thegdeykgrid. The distortion

is severe, but note that for some regions, thereli®& phase shift involved, which means
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that the change in power is not as large as it looks initiallinave then plotted the EPR
measure of harmonic entanglement on top of the distortel] which enables us to see the

relationship between distortion of the mapping and thergjiéement.

We can then see that harmonic entanglement only occurs whartiaular cell of the
grid has changed its angle from the original cell. A changarigle means is that the seed
and pump fields have become coupled. Another effect is thesttietching/compression
of the cell. Stretching represents anti-squeezing, whilagression represents squeezing
of the amplitude quadrature. As an example, | could choossetahe input seed and
pump to lie at the corner of the cell marked (a). If | then breagmall fluctuation in
the seed field, so that the system now rests on the cornerr{b)can see that the small
fluctuation has been amplified and has caused a coupling eetthe fundamental and
second-harmonic fields. Thus a correlation has been prddécsimilar argument applies
to a cell that is considered at point (c). Although difficutgee, the fluctuation has been
de-amplified (squeezed), while still allowing couplingweén the fundamental and second-
harmonic fields. This particular cell therefore demonesat quantum correlation between
the fundamental and second-harmonic fields, and it is trasigum correlation that is at the

heart of the harmonically entangled state.

3.6 Summary

Harmonic entanglement is the quadrature entanglementbketa fundamental optical field
and its second-harmonic. By extending an advanced moddPAf Qwas able to analyse the
quadrature correlations between the reflected fundamamiedecond-harmonic fields. The
correlations were characterised according to the EPR a®parability criteria of entan-
glement. The OPA system supports a range of classical mesemono-stable, bi-stable,
complex-valued, SHG, and OPO. In all but two cases (the algpéth, and below-threshold
OPO) the system exhibited harmonic entanglement on thectedldields. By reducing
intra-cavity losses, the strength of the entanglementdcouprinciple be made arbitrarily
strong. The optical power levels that are required to seeemadel levels of harmonic entan-

glement, of ordeB dB in the EPR measure, are quite reasonable, where only a pial i
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power of 50 to 90% of OPO threshold is needed. This suggestdtib OPA system is an

excellent candidate for a source of harmonic entanglement.



Chapter 4

Harmonic Entanglement
Experiment: Materials and Methods

In the preceding chapter, | presented a theoretical modkltapredictions that harmonic
entanglement could be produced by an optical parametridifeanigOPA). The aim of the
experiment presented in this chapter was to test thosegiimat. What looked simple on
paper ended up covering a three metre long optical tableredhto a rack of electronics.
This chapter explains why the experiment became compticated details the design and
testing of its key components. The construction and opmratf the experiment was a
collaboration with Syed Assad, Moritz Mehmet and myselford the way, we developed
the technique of optical carrier rejection for the purposmeasuring the phase quadrature
of bright light; and we also found evidence of guided acaustave Brillouin scattering
occurring in the nonlinear crystal of the OPA (see Chapte)r attention to building an
OPA of sufficiently high escape efficiency and low threshobdver was rewarded with a

series of observations of harmonic entanglement that asepted in Chapter 6.

4.1 Overall Design Considerations

The design of the experiment is very simple in principle. Aelaprovides a source of
coherent light att064 nm (red). A fraction of the light is frequency doubled 532 nm
(green) using a second-harmonic generator. Both drivirldsfiethe red seed and green
pump—are then combined and injected into an OPA, which sensif ax(® nonlinear
crystal placed within an optical resonator. The fields réfi@drom the OPA are separated,
and each wavelength (colour) is received by a homodyne tetdat measures the phase

and amplitude quadratures. The quadrature data is recasladime-series, from which
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Figure 4.1: Overall design of the experiment. Entanglement was generated between the reflected funda-
mental and second-harmonic fields of an optical parametric amplifier. Optical carrier rejection allowed the
verification of entanglement via homodyne detection. Dashed lines are the 532 nm (green) light beams.
Solid lines are the 1064 nm (red) light beams.

the elements of the correlation matrix are calculated. IFinthe presence of harmonic

entanglement is verified by analysing the matrix accordintpé inseparability criterion.

In practice, the design of the experiment needed some maiilific see Figure 4.1. The
reason was that only bright driving fields, on the order of GR@shold power £, ), can
yield strong harmonic entanglement. Bright light bringshai two challenges. Firstly, the
driving fields must be close to shot-noise-limited at thebahd frequency of measurement,
which in our case wa€ ~ 10 MHz. Any excess noise on the driving fields would couple
directly into the fields reflected from the OPA, thereby ddarg the entanglement. This
problem is more significant at higher laser powers. The mwiuvas to filter the light
by transmitting it through an optical cavity having a lineltfi 6, where the excess noise
at the sideband frequencies is stripped from the carrier.fiequencies above the cavity
linewidth, the transfer function follows® f roll-off for the noise power, which means that

the linewidth could be chosen to suite the filtering needs.

The second challenge was that of measuring the phase quadditthe light, which
is necessary to verify entanglement. Measuring the phazérgture is most readily done
using the technique of balanced homodyne detection. Tharesgent however, is that
the local oscillator be at least 30 times brighter than the signal beam. If for example

P, = 100mW, and for the case that the OPA is driven at this level, thencondd expect



84.1 Overall Design Considerations 123

an entangled signal beam of up 160 mW. Homodyne detection would then a require a
local oscillator in excess df W, which would be difficult for a single photodiode to de-
tect (and survive). The literature reports two differemhi@ques that have been applied to
effectively rotate the phase quadrature into the ampliyakdrature (at a given sideband
frequency), thereby making it possible to measure the phasédrature using just a single
photodetector (or two detectors in a self-homodyne set@me method used the phase
shift acquired by the carrier after reflection from an uncleupled cavity that was de-tuned
[Villar et al. 2006]. The scheme of [GlOcldt al. 2004] was based on an unequal arm length
Mach-Zehnder interferometer. We used a different teclitfuat of optical carrier rejec-
tion, which reduced the optical power in the signal beam evitlsignificantly affecting the
sidebands. The signal beam was aligned onto an (ideally@diaapce-matched cavity that
would transmit the carrier light when on resonance. Thebsidds lying outside the cavity
linewidth were reflected. Using this method, we were ablethuce the carrier light by up

to 25 dB, and perform homodyne detection on the sidebands.

The problems associated with producing bright shot-nomédd light, and detecting
the phase quadrature of bright light, could in principle beided entirely by just reducing
P, of the OPA. One must be careful however, to avoid introdueidditional losses which
would degrade entanglement. The simplest method is to aeerthe total cavity decay
rates. Our solution was to make the OPA cavity doubly respnan resonant at both the
fundamental and second-harmonic fields. This ensuredhbdb$ses were roughly equally

distributed over both colours, while keepiyy, < 100mW.

A schematic of the entire experiment is shown in Figure 4.kereHwve can see the
implementation of filtering of the seed and pump light to easihat they are shot-noise
limited. These cavities also cleaned the spatial mode infdEdlyg profile. They are
labelled as mode-cleaners to contrast them from the fitteities which are installed at the
homodyne detection end, where they perform their role ircaptarrier rejection. Although
performing different roles, their design and constructieere identical. The OPA cavity
was built according to a bow-tie geometry, primarily to allonrestricted access to the

reflected entangled beams. A dispersion compensation wiateused to neutralise the
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Preparation of Seed and Pump Light
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Figure 4.2: Schematic of the laser preparation stage. Light from a Nd:YAG laser was frequency doubled.
Dashed lines are 532 nm; solid lines are 1064 nm. Both colours were filtered by optical cavities. Reference
beams (local oscillators) were tapped-off before modulation sidebands were applied to the seed, pump,
and reverse-seed beams. Electronic components used for servo-control are outlined in white.

dispersion that was acquired per-round-trip (from AR andddRtings), which is essential

for keepingP;;, low in the doubly-resonant design.

4.2 Preparation of seed and pump light

Laser source: A schematic is shown in Figure 4.2. A Nd:YAG las@&ig&bolo model from
Innolight GmbH) was the only source of light for the whole experiment. Itéea1064 nm
(red), and als@32 nm (green) coherent light from an internal frequency doubl&e max-
imum power output of continuous-wave (CW) light wa® mW for red and800 mW for
green. The laser linewidth was quoted from the manufactsekHz. The laser also had
an internal intensity noise-eater which was switched ortdking measurements because
it reduced the noise-power of the relaxation oscillatior3DyiB. A Faraday isolator was
placed in the red path (not shown), as a precaution agaisstipe feedback from the retro-
reflecting optics. In the experiment, there were no sucltspiiaced intentionally, although
there may have been stray alignment from the AR-coatingsabbfitical components like

waveplates.
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Initially, a cascade of two mode-cleaning cavities for eaclour was installed in the
beam paths. But limited optical power meant that the firscadty was not used. All three
remaining cavities were of the same mechanical design byd&kevizie: 3 mirror triangular
geometry800 mm optical path length, PZT actuated end-mirror. The impdntemameters
to note at this stage are the linewidths of the first and segoeeh mode-cleaners (MC-1G
and MC-2G),1.0 MHz and 1.9MHz, respectively; and the second red mode-cleaner (MC-
2R), of 0.4 MHz. Total transmission for each colour was moderate to geotl5% for red;
~ 95% and~ 78% for green.

Mode-cleaner performance: Here, one of the green mode-cleaners (MC-2G) was
tested for how well it could suppress the relaxation odwmltaof the laser. The method
was to use a self-homodyne technique to get the noise sptdiieated to the shot-noise-
limit. Spectra were taken with and without the locked cawityplace, such that the power
on the detectors was kept the samenW). The results are shown in Figure 4.3. The
roll-off remnant of the relaxation oscillation abo2é/1Hz was suppressed by up to 20dB,
which ensured that the green light was shot-noise-limiegbhd4 MHz. We decided to in-
stall another green mode-cleaner because higher poweltd {ater be used for driving the
OPA. The addition of another cavity provides another faofar/ f filter response, thereby
leading to additional noise suppression. The red modeirigecavity had a sufficiently
narrow linewidth to negate the need for a second red modsiete

After filtering, some of the light was diverted for the localctlators, before preparing
the seed, pump, and reverse-seed beams with AM and PM sitleb@he sidebands were

used later for servo-control purposes. The frequencies §assible beat frequencies) were
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Seed e-Seed Optical Parametric Amplifier (OPA)
e-Pump /\ Bow-Tie Cavity and Control
1% tap-off

&

[y 3
©

i

PD Input-Output
Coupling Mirror
Ra=91%

Rb=50%

quut B

D\\@

Reverse-
Monitoring of Seed

Red and Green
Transmission

PD2

Figure 4.4: Schematic of the OPA setup. Seed and pump beams are injected into the 4-mirror bow-tie
cavity. The reflected/emitted e-seed and e-pump are sent on for detection and verification of entangle-
ment. The cavity has closed control loops for the cavity length, crystal temperature, and seed-pump

relative phase. The dispersion plate angle is adjusted to minimise OPO threshold power.

chosen to lie outside the anticipated measurement range 10 MHz to avoid potential
interference with the entanglement measurements. Thernobpower diverted to each
beam was adjustable using polarisation optics. The seaap pand local oscillator beams
had their polarisation cleaned using Glan-Thomson prishiie beams were brought to a

waist size radius~ 1 mm thus ensuring near-collimation for the length of e optical

table.

4.3 OPA setup in detall

Because the OPA was the entangling agent, it played the mmpsiriant role in the ex-
periment. The most important requirements, were thoseghf Bscape efficiency and low
threshold power. Stability and control were also very int@ot, as an entanglement mea-
surement could take many minutes to complete. These reaeims influenced several as-
pects of the design and construction of the OPA which will rimraddressed. A schematic
of the OPA is shown in Figure 4.4 together with the photograpti diagram in Plate 1 and
Plate 2.

Cavity geometry: It is the reflected pump and seed fields from the OPA that wexe pr
dicted to be entangled, and so we needed efficient accesgede flelds without using a

Faraday isolator (which typically induces~a 5% loss). We therefore chose a travelling-
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wave, four-mirror, bow-tie geometry. The bow-tie cavityndze made quite compact with-
out introducing a significant amount of astigmatism (arpétial transverse mode shape).
We wanted the most compact cavity possible (offering a laggedwidth), that had a small
angle of incidence for the beam path, yet without the angiegoso small as to cause clip-
ping of the beam at the edges of the crystal (keeping a gapizeofa factor20 of the
beam width). A compromise was reached f@’angle of incidence, and radii of curvature
for the inner mirrors oB8 mm which were spaced &t mm. The flat outer mirrors were
spaced a®0 mm. This ensured a stable resonator geometry, with a waistsadithe KTP
crystal of Wy = 40 pm. Which was onlyl0 ym larger than the Boyd-Kleinman optimum
waist for the1l0 mm long KTP crystal. The total optical path length for a rounig-tvas
285 mm. Note that compared to a standing wave cavity, a travellingeicavity is sensitive
to a back-scattering loss mechanism. We measured a bait&rsuiah parts per million at
1064 nm with the cavity on resonance. This level of back-scatter avasgligible source of

intra-cavity loss overall.

Optical properties: With the cavity geometry fixed, the next step was to deterrtfire
optimum reflectivities of the input-output coupling mirrdto other component has such a
strong effect on the OPO threshold power, and more impdytaht accessible entangle-
ment for a fixed total input power. Here, intra-cavity losaéso played a role. Rather than
leaving the design to heuristic arguments, both paraméigiend R, were scanned, while
the model of OPA and harmonic entanglement was tested foy eeenbination of pump
and seed powers that were available from a maximug0oinW for red and400 mW for
green. From now on | will use a compact notation 1@ /400 mW to describe cavity
parameters in the order of red-green. The best value of ERRdmic entanglement was
found in the parameter space and recorded. This resulttieglm Fig. 4.5. Note that the
nonlinear coupling strength of the materlalNbO3 was used in the model, and this gen-
erally gives higher OPO threshold powers than for PPKTP. YWered several mirrors for
the experiment such that various combinationsRgfand R;, could be tested. The mirror
having the design specifications &f, = 90% and R, = 40% was chosen for the OPA,

with predicted finessé0//8 (red/green). Note that the actual mirrors deviated from these
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nominal values, which is discussed further in Section 4.4.

Nonlinear crystal: The ideal nonlinear crystal would have a high nonlineartyoss
ratio, and a high damage threshold. The nonlinear matdvidlwas chosen was an arti-
ficially grown crystal of potassium titanyl phosphate (KTFPhis material meets the re-
quirements of high transparency Hi64 nm and 532nm. It is birefringent and disper-
sive, having refractive indices at room temperature at 1064n, = 1.738; n, = 1.746;
n, = 1.830; and at 532 nmn, = 1.779; n, = 1.789; n, = 1.889. The material has a
second-order nonlinear coefficient in pico-metres perivolbe various axes to the princi-
ple optic axis:dz; = 6.5; d3o = 5.0; d33 = 13.7; d34 = 7.6; d3s = 6.1; see for example
[Dmitriev et al. 1995]. During the manufacturing process, the use of paripdling tech-
niques while growing the crystal, where the sign of the nadrity is periodically flipped
(but no change to the refractive index), allows the highetlinear coefficient to be used
(d3s3) while being quasi-phase-matched at room temperatureiodtaally-poled KTP is
called PPKTP. A 10 mm long crystal and 1.5 mm by 1.5 mm acrossolggained from the
manufactureiRaicol The ends were polished flat and AR coatedktd.1%. The tem-
perature of the crystal had to be actively controlledtd 0 mK, in order to maintain the
condition that the red and green fields were co-resonanticdkity. The phase-matching

condition itself was several degrees wide.

The optical properties of the KTP material, and the matsrigilisation for nonlinear
optics has been reviewed in [Bierlein and Vanherzeele 1988 manufacturing technigue
for the periodic poling of KTP, which is covered in [Chen andkk1994], enabled théss
nonlinear coefficient (which is higher than for the otherstay axes) to be used in the quasi-
phase-matched configuration and at room temperatures. ptieation of PPKTP to the
task of efficient optical parametric oscillation (OPO) wasiewed in [Myerset al. 1995],
which culminated in the observation of quadrature squedigbd from a PPKTP based
OPO [Suzukiet al. 2006], and from a PPKTP based OPA [Hiragical. 2005]. These ex-
perimental results established PPKTP as an excellent ialdtarthe production of nonclas-
sical light. In comparison td/IgO : LiNbOj it shows reduced absorption at thé64 nm

and532 nm wavelengths, and a higher effective nonlinearity (whickédos the OPO thresh-
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Figure 4.5: A search in the pa-
rameter space of the input-output
coupler for the best combination
of red and green mirror reflectiv-
ities. Using the theoretical OPA
and entanglement model, with a
maximum seed and pump power
of 200/400mW. The best point
is marked by the star. This point
meets the compromise of minimal
cavity finesses (and therefore large
cavity linewidths), an OPO thresh-
old power that is easily attainable,
and strong harmonic entanglement.
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old). However, grey-tracking, which is a photo-refractdeamage to the material, can occur
at blue-coloured wavelengths and high intensities, whioh lead to markedly increased

optical losses.

OPA construction: All of the OPA optics were mounted on a single A4 size alunmmiu
block that wass0 mm high. This kept the feet of the individual optical comporsenhder
25mm in height, thus helping with mechanical stability. Each leé four mirrors of the
bow-tie cavity could have their angles changed by a fine 8-agntrol, or be translated
in position by~ 10mm. This modular concept was also applied to the crystal and its
temperature controller, which could easily be removed ia piece. A perspex lid was
placed over the entire assembly to reduce air currents amgetature fluctuations. Holes

were left open for the in-coming and out-going seed and pueanis.

OPA control: Four parameters needed to be controlled in the OPA: cavitgnance
for red field (closed loop via reverse seed); cavity resoadacgreen field (open loop via
crystal temperature); phase matching condition (open loaplispersion plate); and the
relative phase between the in-coming seed and pump fieldss(med via a 1% tap-off on

reflection from the OPA).

Red cavity: Since the OPA was resonant for both the red and green fields;aW
ity resonance condition had to be met for both colours. liupothe green cavity for the
moment (I speak as if there were two cavities, but they weaengrically identical) one
could lock the red cavity by actuating the position of onerarithat was attached to a
piezo electric actuator (PZT) which was driven by a high agé amplifier0 — 200V.
The position of the mirror was adjusted by a closed-loop rabrstystem, which consisted
of a proportional integrator controller with a low-passdiilpole located at the high voltage
input to the PZT stage. The error signal was extracted usied?ound-Drever-Hall (PDH)
method [Dreveet al. 1983] from an auxiliary beam &t064 nm, called a ‘reverse-seed’
beam which was transmitted through one of the HR mirrors aaxklled in the reverse
direction to the seed and the pump. This meant that the egemd experienced a severely
under-coupled cavity, which reduced the size of an extbdetarror signal, and was also

sensitive to residual AM from the phase modulator (whichtedffsets that depended on
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the intensity of the reverse-seed). However, using a reveaeed that carried its own PM
sidebands had a big advantage over an error signal extrixotadhe seed or pump. This
was because the (forward) seed beam would undergo phasaeizy amplification, and
this would occur irrespective of whether the PM sidebandsewa the pump or the seed.
The resulting derived error signal would be the sum of tworesignals, one for the cavity
length and the other for the seed-pump relative phase. M@less, at the highest seed and
pump powers used, a similar kind of dependence was notedalthe error signal derived
from the reverse-seed. This can be attributed to backesedtintra-cavity light (from the
forward to the reverse direction), since the (forward-Qlseed reverse-seed relative phases
was not controlled. The proportional gain and pole of the-fmss filter were optimised to

suppress disturbances from DC up to the unity gain poih® &Hz.

Green cavity: Although the cavity resonance for the red field was now lockbis
did not guarantee co-resonance with the green field. Themgaghat all the components
in the optical path are dispersive, especially transmisfimough the PPKTP crystal. In
practice we adjusted the temperature of the crystal to lifieggreen on to co-resonance
with the red. The temperature had to be held at abOut K stability. A large temperature
range however, was planned (up to 200 degrees Celsius). welsisachieved by using a
Peltier element attached to a copper heat reservoir thaheated with a resistive element.
A thermistor temperature sensor on the small copper crgsibwas read by a NewPort
temperature controller. The crystal was enclosed by anstatjle-sized copper cell that
gave thermal contact to three sides of the crystal. The talamservoir was a 25mm copper
cube. The cell and peltier were held onto the cube via s&srdeeel clamp, as stainless steel
is a relatively poor conductor of heat. The reservoir cubs placed on a stainless steel foot
which effectively insulated it from the recess built intethluminium A4-size block. The
entire oven assembly was attached to a fine XYZ-axis mountiwivias bolted onto the
optical bench. The XYZ control allowed us to effectively naothe waist of the cavity
eigenmode around in the crystal to find the best operatingt ibat avoided scattering

centres/defects and therefore minimise losses.

Phase-matching: Tuning the temperature to bring the green and red cavitiesoen
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resonance however, brought the crystal away from its optiphase matching condition.
Therefore by turning the dispersion plate, one could adhestelative phase-shift that was
acquired by a round-trip of the red and green fields, and tbogpensate for the change in
temperature. In this way it was possible to satisfy both thesp-matching condition of the
PPKTP, and also the red-green co-resonance condition. iSperdion plate was a slightly
wedged piece of BK7 glass with high-quality AR coatings({.1% for red and green). The
glass has a refractive index af= 1.501 for red andn = 1.502 for green. Changing the
angle at which light travels through the plate, changed piea path length difference for
red and green light. In practice, only about one degree wasssary to sweep through a

full red wavelength.

Relative phase: The final control loop was the relative phase between the aadd
pump fields. The theoretical analysis assumed that theveefalhase was eithet = 0 or
¢ = w. To ensure that this condition was met, a PZT-actuated mirag placed in the pump
path. The error signal for the control loop could be deteoted photodiode that was placed
either on the reflected seed or reflected pump beams (via ag#ifja Which signal was
used depended on which of the two was larger, and this dedesrdéhe particular choice
of driving field powers. The error signal was extracted byntsdulating the photocurrent
with one of the PM sideband frequencies, either the frequemcthe pump field, or the
frequency on the seed field, which-ever provided the larger esignal. In practice, the
SNR of the error-signal depended on the how much paramediit \yas occurring, i.e.
more gain meant a larger error signal. By just changing tharib of the error signal, it

was possible to lock to either amplification or de-amplifimat

Optical alignment: Good mode-matching of the seed and pump beams into the OPA
were vital to avoid coupling significant optical power intigier-order TEM modes. The
AM and PM modulator units introduced wave-front distorsonThis limited the mode
matching of the s-polarised light for seed and pump to 98%99%, respectively. The
task of mode-matching was made easier because the largstr afdhe OPA cavity was
200 um across. Compare this to the reverse-seed, which was motbkedao the smaller

40 pm waist of the cavity. For the reverse-seed, it was only pésgib get 75% mode-
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| Units || Rev.Seed| Pump | Forw. Seed|
Wavelength| [nm] 1064+1 532+1 1064+1
Mode-Matching| [%0] 76.0£2.2 | 99.5+0.2 98.9+1.4
Ref.coeff. | [%0] 98.8+0.2 | 69.8+0.9 74.0£0.5
Ref.coeff.corr.| [%] 98.5+:0.2 | 69.6+0.9 73.7+0.7
Linewidth | [MHZz] || 18.32:0.23 | 120+3 18.32+0.23
FSR | [MHZ] 104417 1050+20 104417
Finesse| [—] 57.2t1.2 | 8.74t0.50| 57.2t1.2

Table 4.1: Measured properties of the OPA cavity. The reflection coefficient is corrected for the limited
mode-matching efficiency.

matching, because the effect of diffraction expanded tlzerbsize beyond the size of the
first alignment mirror. The mode-matching and alignmentenmade while observing the
DC photocurrent on detectors PD1, PD2, and PD3; see FigdreNbte that D3 for the

reverse-seed was introduced only temporarily by a flipperami

4.4 OPA testing

Before searching for harmonic entanglement, it was gooddbstome basic classical prop-
erties of the OPA. The quantum noise property of squeezimg the OPA in the OPO limit
was also tested.

Cavity characterisation: The cavity parameters that we measured here will be used
later in the theoretical OPA model. We studied the trangaitind reflected light of the
cavity by monitoring the output of several photodetectorsl@vscanning the cavity length.
We used the PDH error signal as a frequency ruler to direetigrchine the cavity linewidth
which is defined as a full-width half-maximum (FWHM) of theuismitted Airy function.
The accuracy of the free spectra range measurement (amdaieefinesse) was boosted by
using the technique of counting Guoy phase shifts with trerbslightly misaligned. The
results are summarised in Table 4.1. The linewidth for retBattHz was much narrower
than for green. This determined the highest frequency tlateould expect to measure
entanglement. From the finesse and the corrected refledefficgents, we could deduce
the input-output coupler reflectivit§0 /53% (red/green); as well as the combined loss of
all the other components per round-tfify /7.7%. The loss for green was surprisingly high.

Note that this was the combined loss that included transomgbrough the PPKTP crystal
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and dispersion plate, and reflections from their AR coatilgjsilar measurements that we
had made half a year earlier had yielded only half the losgifeen. This may be evidence
for the phenomenon of grey-tracking, where the KPT matesiakposed to bright light for
long periods of time and accumulates photo-refractivealsfdt is well known that the rate
of damage, and the strength of the scattering effect, is ramounced for light at shorter
wavelengths.

SHG efficiency: The simplest test for checking the nonlinear interactiors veaob-
serve second-harmonic generation (SHG). The method wadddhe cavity on resonance
using the reverse seed. The (forward) seed was then set\araigput power ofil0 mW.
The temperature of the cavity was swept (which periodidatlyught the green co-resonant
with the red). The SHG output was monitored on the green teflephotodetector. The
temperature was recorded at which the conversion was maxjras well as the optical
power which gave an estimate of the SHG conversion efficierigypically three peaks
could be recorded within 20°C temperature range. Then the angle of the dispersion plate
was adjusted by a few tenths of a degree, and the temperaanmevas repeated. The result
is that the expected sinc-squared dependence of convexfiioiency on phase-matching
is clearly seen in Fig. 4.6. For our PPKTP crystal, the widtlhe central peak is about
5°C. Which is quite broad compared to the co-resonance condittich is only~ 0.1°C
across. This meant that meeting the co-resonance condiisrmore critical than meeting
the phase-matching temperature. Through this measurgmacegss we were able to find
the optimum angle of the dispersion plate, and also the aptimperating temperature, that

gave the largest effective nonlinearity.
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OPO threshold power: The critical pump power at which optical parametric oscil-
lation (OPO) begins, is the most defining property of the Ogtean. We measured it
by monitoring the power on the reflected red detector, whillelihg the cavity locked on
resonance using the reverse-seed. The crystal tempevedgradjusted to bring the green
cavity on co-resonance. The pump power was increased wsitihal was observed in the
red reflection detector. After the optimisation procedundimed in the SHG section, the
OPO threshold power was typically observed tofg. = 85 + 5 mW. Where the uncer-
tainty in our estimate is attributed to the absolute acquodi¢he independent power meter
used. This threshold power was deemed sufficiently low sbviteacould continue with
the harmonic entanglement experiment, i.e. there was nmbtoeeghange the output coupler
for one of higher reflectivity. By knowing the threshold pawend the cavity reflectivities,
one can work backwards from the theory to obtain the effeationlinearity. In our case
we gote = 1500 v/Hz which was the value to be used later in the theoretical miodell
An independent estimate of the OPO threshold pump power eandale using the Boyd-
Kleinman theory [Kleinmaret al. 1966]. Here, the value strongly depends on the estimate
of the waist size of the cavity eigenmode. Using the valugm we arrived at a threshold
power of 70 mW assuming that the PPKTP material had the optimal poling f#tes is in
reasonable agreement with the observed value.

NDOPO above-threshold: Having found the OPO threshold power, we took the op-
portunity to study the light that was produced above thieghold. The light turned out not
to have exactly th&é064 nm wavelength, but was rather produced in two beams, above and

below in wavelength, hence the term non-degenerate OPO fND)O



136 Harmonic Entanglement Experiment: Materials and Methods

: Amplification

[e]
[e=}

Figure 4.8: A demonstration of OPA
seed gain and pump depletion. The

Power [mW]
N A O
o o

De-amplification input seed power was 36 mW; in-

o

(0]
o

w put pump power 64 mW. The rel-

| ative phase was ramped over time,

Enhancement

o

showing the exchange of energy be-

Power [mW]
N A O
o o

Depletion ‘ ‘ ‘ | tween the two fields. The total re-

o

flected power remained nearly con-
stant at 75 + 5mW. Dashed lines
show the level of the reflected field

Rel.phase Err. Sig.

Signal [a.u.]

with the absence of the other input
field.

2 o 2 4 & 8
Red-Green Relative Phase (ramped in time) [ms]

A commercial optical spectrum analyser was used to obs&avavelength of the
light emitted by the OPA cavity, when the pump power was iaseel above threshold. The
cavity was held on resonance using the reverse-seed. Theumee®ents were repeated
at different phase-matching temperatures, that also edsed-green co-resonance. The
results are plotted in Figure 4.4. One can see that belowtailcgemperature, the OPO
is operating degenerately &064nm. As the temperature is increased, the wavelengths
separate, because the phase-matching of the PPKTP is noleaddbr those two particular
wavelengths and also the pump field. Note the pump power haeé focreased to reach
the wider non-degeneracy, until the limits were reachedclvlaire shown as grey zones.
This test demonstrated that the OPA system was also capfaiddaving as a NDOPO that
could have a non-degeneracy of upl @ nm.

OPA seed gain and pump depletion:The purpose here was to test whether a signif-
icant amount energy could be exchanged between the red and §elds via their inter-
action in the OPA cavity. This is important because one ptidi from the model is that
an exchange of energy needs to occur to produce harmoniagiei@ent. The method was
to lock the cavity length on the red and green co-resonande sted power was held
constant aB6 mW and the pump power &4 mW. The seed-pump relative phase was
then ramped over time, while monitoring the reflected powebbth colours, and also the
PDH-derived error signal. The results showed a repeatittgnpeof seed amplification and

de-amplification that was concomitant with the pattern afipuepletion and enhancement,
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respectively; see Figure 4.8. The dashed line show the tefleseed power for when the
pump was blocked, and vice-versa the dashed line for thecteflgoump power plot. The
total optical power of the reflected fields remained consdhmibout75 mW, which meant

that 25 mW was being scattered or leaked out of the cavity. The errarasighowed a

zero-crossing for both amplification and de-amplificatitrereby allowing us to lock the
relative phase in both regimes. The exchange of energy wasisant, as the power could
be transferred almost completely from red to green, or gteend. Whichever occurred

depended only on the relative-phase.

OPO squeezing:The simplest test of the quantum noise properties of the @B,
was to check for squeezed light produced by driving the aystethe OPO regime. The
method was to lock the cavity length onto red-green co-r@soe. The reflected seed was
aligned on a balanced homodyne detector, the LO phase wamdaaver time, and the
noise power was measured at a sideband frequenZyBofiHz. The homodyne detector
had a total detection efficiency of abakit%. The seed was then blocked, and the pump
power fixed aB1 mW which was abou$5% of OPO threshold power. Figure 4.9 shows the
resulting squeezing and anti-squeezing as the local aswilphase was ramped. The best
squeezing shows4 dB, and the anti-squeezing6 dB. We also repeated the measurements
for a range of pump powers (from 10 mW to 94 mW). The trend ajdaisqueezing with
larger pump powers can be seen in Figure 4.10. The limitatfor4 dB squeezing is
consistent with a homodyne total detection efficiencgf and a cavity escape efficiency
of 86%. The observation of squeezed light meant that the systesegas key test for

harmonic entanglement observations.

Conclusion: The OPA system had proved itself in terms of exhibiting thdeaiange of
classical behaviour expected of it (SHG, OPO, NDOPO, OPAJ Also gave a first hint at
the nonclassical squeezed states of light produced by ORhwre prerequisites for the

generation of harmonic entanglement.
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Figure 4.9: Squeezed light from an OPO. Quadra-
ture variances are in decibel scale and normalised
to the vacuum state. The pump power was fixed at
81 mW. The local oscillator phase was scanned.
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Figure 4.10: Squeezing and anti-squeezing from
the OPO for a range of pump powers. Quadrature
variances are in decibel scale and normalised to
the vacuum state. The grey shaded area marks

the above-threshold regime.
4.5 Optical Carrier Rejection

Harmonic entanglement was predicted to occur on the sidisbainbright optical fields>*$
100 mW) reflected from the OPA. It was not practical to use homodyateation directly,
which requires the local oscillator (LO) to be much brightean the signal beam. We used
the method of optical carrier rejection (OCR), with a neapedance-matched filter cavity,
to transmit the unwanted carrier light, and efficiently refle desired sidebands ready for
homodyne detection. The schematic is shown in Figure 4.4t.the filter cavity to be
successful as an optical carrier rejector, it had to meetesm@quirements: (1) be nearly
impedance-matched to suppress as much carrier as pog8iblegve a sufficiently narrow
bandwidth such that the sidebands are not attenuated;\(8)dmeexcellent mode-matching
capability, i.e. be relatively astigmatism-free. The filoavities that we built met all of
these requirements.

Construction: The cavity had a 3-mirror ring geometry with 810 mm round-trip
path length andl® angle of incidence on th&m curved end mirror. The original design
was by K. McKenzie. We modified the end-cap that housed the &ZTator and mirror
assembly to allow one to tilt the curved mirror and therefatew centering of the spatial
eigenmode. The cavity was held on resonance by a PDH ermalgigat was derived from

a 150kHz dither of the end mirror. The error signal was extracted fimetector that
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Figure 4.11: Schematic of the application of optical carrier rejection, and homodyne detection for mea-
suring the quadrature amplitudes of bright light beams. Outlined in white are the servo-control electronics.

was placed in transmission (with suitable attenuationk dither depth was set somewhere
between0.01% and0.1% of the maximum transmitted power, with the level depending
on the amount of available light. Excellent mode-matchirgswachieved by performing
the alignment with the appropriate eigenmode that was ethlty the OPA cavity. For
example, we would use the OPA system as an SHG to align the difess cavity; and
then use the OPA system in an OPA amplification regime (with gal0), to align the red
filter-cavity. Final values for the mode-matching were oghly 99.8 + 0.1/99.9 + 0.1%

for (red/green), which satisfy the mode-matching requirements.

Performance: The filter cavities were characterised for their gross aptroperties.
The methods used here have already been described in the égBdns The results are
summarised in Table 4.2. The measured linewidths Wa&6kHz for red, and370 kHz
for green. With the filter cavities locked onto resonance,attenuation of the carrier was
up to22 dB for red and26 dB for green. This level of attenuation of the carrier would in
principle be sufficient to allow the homodyne detection aft@ mW signal beam using
only a30 mW local oscillator, thus satisfying the attenuation requieat.

From the data we could also create theoretical models of itiee ¢avities, to predict
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\ | Units | MC1G | MC2G | MC2R | FCI1G FCIR
Mode-Match. | [%] 98.1+0.1 | 98.0+0.4 | 98.8:0.4 | 99.9+-0.1 | 99.8+0.1
Ref.coeff. | [%] 5.0£0.2 | 21.9+0.4| 3.1+0.4 | 0.24£0.05| 0.73+0.05
Ref.coeff.corr.| [%0] 3.2:0.6 | 20.3:t0.5| 1.9+0.6| 0.13+0.10| 0.53+0.11
Linewidth | [kHz] | 1010+30 | 1850+50 | 418+5 980+40 373t14
FSR | [MHZz] 347+10 | 34510 | 346+7 347+10 346+7
Finesse| [—] 344+10 | 186+10 | 828+19 | 351+9 928+31

Table 4.2: Measured properties of the mode-cleaners and filter cavities. ‘Ref.coeff.corr’ is the reflectance
coefficient of the cavity when in a locked state on the TEMOO mode, and with a correction for the measured
mode-matching.

what attenuation and phase-shift the upper and lower sidisbevould experience upon
reflection from the cavity. The cavities were modelled aspntwo-mirror cavities, with
the red having mirror89.64% and99.69% (the former being the input-output coupler); and
the greerd9.08% and99.14%. Figure 4.6 shows that for sideband frequencies greatar tha
5MHz, the attenuation should be less thaf5dB and a phase shift less th&A. This

is small when compared to the specified AR coating reflegtivit< 0.5%, therefore the
filter cavity satisfied all three requirements for deploymnienthe optical carrier rejection

scheme.

Additional construction notes: Extra precautions were taken to avoid dust settling
on the mirror surfaces during construction. We assembled:#vities in one of the clean
rooms made available by Dr. Steve Madden at the Australidioia University. The Invar
cavities (actually split in two halves), were de-greaseadgiat a vapour de-greasing facility.
Before installing the mirrors, the surfaces were inspeateter a microscope for any surface
defects or dust particles. Only a clean nitrogen gas jet wadieal over the surface to
remove the dust. The two halves of the invar spacer weredtdgether and sealed with
vacuum compatible epoxy. The mirrors were glued onto tharispacer using UV-curing
adhesive, which had the advantage of allowing us to coniplséal the cavity within only
a couple of hours. We believe that this procedure was nagessause the second green
mode-cleaning cavity (MC-2G) had been assembled withoegetlprecautions. After a
period of 12 months of operation, its finesse dropped fronuaB&0 to 186 + 10, which

was an indication of continuing contamination/damage efititra-cavity mirror surfaces.
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4.6 Homodyne detection

The role of the homodyne detector was to convert into anreleict signal, the quadrature
amplitudes that resided on the upper and lower sidebandsvér@ centred around the
carrier of an optical beam. In a balanced homodyne detettterjocal oscillator (LO)
serves as a phase reference and effectively amplifies trdrajuee amplitudes, with the
noise on the LO itself suppressed (because the noise is commde). The homodyne
detector should ideally have a high total detection efficyeriThis relies on having good
mode overlap between the signal and LO beams, and on findioggibdes with high
quantum efficiency. Also desirable, are photodiodes wittrgd bandwidth and low dark-
noise, i.e. good shot-noise clearance above dark-noise.h®modyne detector must also
demonstrate a linear noise response to the LO power.

Red homodyne detector: The LO and signal beam were incident on a beam splitter
with close to 50/50 splitting ratio (adjustable using p@ation angle). Eight degrees of
freedom of the LO were matched to those of the signal beamselivere the four degrees
of freedom for the position and direction of the beam; twotfue Gaussian beam waist
size and waist position; and two for the polarisation. Measients of the fringe visibility
with the seed amplified by the OPA by a factor of ten (which egponds to the OPA cavity
eigenmode), typically yieldel9.0%. The light from each output port was directed onto an
InGaAs photodiode (ETX50@ pitaxxnow JDS-Uniphasghaving an estimated quantum
efficiency of95 4+ 2%. The photodiodes were arranged back-to-back on the cioaitd,

such that the photocurrents were directly subtracted from another before the trans-



142 Harmonic Entanglement Experiment: Materials and Methods

impedance amplifier. The photodiodes did not have theiregtmn windows removed. It
was possible to vary the photodiode response by aiféuty tweaking the angle of the light
beam incident on the detector. This may have been the rdqdtasitic interference fringes
from the AR coatings of the window and/or the semiconducgets and coatings. Care
was taken to fill the maximum amount of photodiode surfaceteethe onset of clipping
of the beam. We noticed a problem in the experiment when th&plode was aligned in
such a way as to retro-reflect light back into the OPA cavityisTended to cause the lock
of the seed-pump relative phase to become unstable. Wddreselected a nearby high

response fringe that was not precisely retro-reflecting.

The first test was to check the common mode rejection (CMRAhiéity of the homo-
dyne detector, i.e. the suppression of intensity noise @b @ For this, the laser noise-eater
was disengaged, and the relaxation oscillationMdfiz was observed on an electronic spec-
trum analyser. A typical value for the CMR wasdB. The clearance of shot-noise above
dark-noise was typically5 dB, from the2 — 20 MHz range, with a LO power a0 mW.
The linear response of the homodyne detector was tested asgumieg the response of RF
noise power (and also DC response) to an increasing LO ptaewas calibrated to a com-
mercial power meter. We chose an RF sideband &b Hz with a bandwidth of30 kHz.
The LO power was varied from zero up 1@.5 mW over 20 measurements. There was
no indication of nonlinearity (saturation) occurring agfnipowers. Nevertheless, we cau-
tiously chose to operate the homodyne detector with a LO po#ve0% of the maximum

power tested.

Green homodyne detector.The green homodyne detector was built in the same way as
the red one, except that a silicon photodiode was used th§8873-02Hamamatsythat
had an estimated quantum efficiency’6f+ 5%. We found that the photodiodes reflected
8 — 10% of the incident light over a wide range of anglés-¢ 15°). We therefore installed
small concave mirrors (ROQ3 mm), to retro-reflect the light back onto the photodiodes.
This boosted the detected power by a measurafle We saw only minor interference

effects between the forward and retro-reflected light(1%).

An array of tests were performed on the green homodyne detddie fringe visibility
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with the second-harmonic light produced by the OPA in the Sid@me (which corre-
sponds to the OPA cavity eigenmode), was typically atahd% level. The CMR of the
laser relaxation oscillation was typicalB0 dB. Clearance above dark noise wksdB
across the rang2 — 20 MHz. The linearity of the RF response as a function of LO optical
power was tested from zero up&® mW. There was no indication of nonlinearity (satura-
tion) occurring at high powers. Nevertheless, we cautioasbse to operate the homodyne
detector with a LO power d§0% of the maximum power tested.

LO phase control: The phase of the LO had to be actively controlled to meastinerei
the phase or amplitude quadratures. This is most importantefrifying the presence of
entanglement. When measuring the elements of the cooelatatrix, the quadratures must
for each sub-system (in our case colour) must be orthogonahé another. Our method
was to control the phase using an error signal derived fraanAthl and PM sidebands
that were present on the seed and pump beams. These maukilatoe recovered in the
homodyne photodetector signals, which were then demaatliktd filtered using standard
techniquies.

An example of the error signals and DC response of the honsodgtector is given
in Fig. 4.13 where the LO phase was ramped over time. The Rif signals proved to
be very stable in comparison to the DC response of the honsodgtector for frequen-
cies below the linewidth of the OCR filter cavities. This isd®mnce that the filter cavities

were performing their role, i.e. the sideband frequenciEs/a the bandwidth of the filter
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# Red Trans. (eachtotal) [%)] || # Green Trans. (eachtotal) [%]

Dichroic Ref. s-pol. 1 99.6 — —
Dichroic Trans. p-pol — — 1 99.0
1% tap-off 1 99.0 1 99.0

HR mirror 10 99.8 — 98.0 11 99.8 — 97.8

Lens 2AR 7 99.75 — 98.3 7 99.75 — 98.3

Waveplates 2AR 5 99.5 — 97.5 4 99.5 — 98.0

FC1R in Ref. at 7.8 MHz 1 99.4 — —
FC1G in Ref. at 7.8 MHz — — 1 99.0
Beamsplitter AR 1 99.5 1 99.5
Homodyne efficiency 1 97.9 1 98.8
Photodiode efficiency 1 95+ 2 1 89+5
Total Efficiency — 85 — 80

Table 4.3: An estimate of the optical losses along the path from the OPA to the photodiodes in the
homodyne detectors. The contribution to the total loss made by each optical component is shown. Note
that the homodyne efficiency is equal to the square of the fringe visibility.

cavity were insensitive to fluctuations in de-tuning. Thekiog points are where the error
signal crosses the zero point. The apparent noise on the §fomse was the remnant of
the dither oscillation of the OCR filter cavity {0 kHz). Note that we had the freedom to
choose the polarity of the error signal. This meant that itpe of the quadrature data was
arbitrary. The sign of the time-series quadrature data at&s processed to conform to a
standard given by the so-called calibration point of inpatver 81 mW for the seed, and
9mW for the pump (locked in the regime of seed de-amplificati®rjor to performing en-
tanglement measurements, the offset of the locking poistadjusted to coincide with the
appropriate maximum/minimum of the noise variance of thasuesd state. This ensured
the orthogonality of the quadrature being measured.

Homodyne protection system: If during a harmonic entanglement run, the filter-
cavities were to fall out of lock, then more thaA0 mW of light would fall on the pho-
todiodes of the homodyne detector. These would quickly teatliodes and destroy them.
To prevent this, we constructed a shutter system in the Idigrzam path, that was triggered
by small auxiliary photodiodes, where a fraction of the ligh the path toward each ho-
modyne detector was tapped-off from the transmission gif@HR mirror € 0.1%). A
control system with an adjustable threshold then triggarsiautter to close the signal beam.

Total detection efficiency: An estimate of the total detection efficiency of the entire

experiment is important for the purpose of getting an adeunaodel of the experiment.
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Here we attempt to catalogue all the loss mechanisms alotigabpath from the OPA
cavity to the photodiode in the homodyne detector. The egéthlosses from the optical
components and their surfaces are listed in Table 4.3. Tiaé detection efficiency was

then estimated to b&5 + 4% for the red path, an80 + 6% for the green path.

4.7 Signal processing

Independent electronic channels were built to filter andldyrthe photocurrents from each
homodyne detector. Each channel could then be observed electronic spectrum anal-
yser, or recorded on a separate RF mix-down circuit withtaligiampler. The spectrum
analyser was used primarily for diagnostics and checkiegdbking points of the homo-
dyne detector (amplitude and phase). The RF mix-down anglsamwere used to record
a time-series to allow the direct calculation of the cotieta coefficient, and subsequent
evaluation of the correlation matrix.

Electronic channels: The photodetector circuits were built from a trans-impegan
stage whose output was connected to a DC-coupled buffee.stBge signal was filtered
betweenl.8 MHz and10 MHz. This was done to remove the modulations present at higher
frequencies that were left over from the LO phase locks. &tpoint onwards, one could
measure the signal either on the spectrum analyser directly could be sent on for fur-
ther processing. The processing continued withl& dB amplification stage before being
mixed down with an electronic local oscillator @t= 7.8 MHz. The resulting signal was

low-passed into the audio band and amplified#30 dB using a low-noise audio ampli-
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fier. A high-pass filter with a pole &0 Hz was used to remove residual line noise (mostly
50 Hz), before being sampled by a sound card in the computer. Tihe far red and green
channels were kept physically separate until the sound éatekt of the cross-talk between
the two channels was made acquiring a shot-noise tracevdaled a cross-talk (correla-
tion) of —30 dB of the level of the shot-noise level itself, which was neiplig. During each
step of the measurement sequeric points were acquired at a sampling ratetéfl kHz
with a 16 bit resolution. Figure 4.14 shows the resulting spectrum of#mpled data for
both a dark noise and shot noise measurement. 15kid3 clearance of shot noise above
dark noise is visible. Note also, that the spectrum is egdgntlat, with the exception of
the high-pass pole &0 Hz, and the beginning of the anti-aliasing filter2tkHz. It was
important to check that the sampled data was indeed Gausisigibuted. A histogram of
a measured vacuum state is shown in Figure 4.15. A chi-s@umalgsis confirmed that the
data adhered to a Gaussian distribution with a confidene ¢¥9.9%. Also shown is an

example of the distribution of a squeezed state.

Data analysis: For an entanglement measurement, several sets of data esatipled.
While the entangler was operating, all four combinationamplitude and phase for each
colour were recorded X, X/}); (X#,X5); (X5, X2); (Xz,X5). Then the reference
for vacuum state§X},, X.) were recorded. These were necessary to normalise the psevio
data to the vacuum state, i.e. such that a quadrature varéricsignifies a vacuum state.

The signal beams alone (without local oscillators) weren trecorded( X3, X2), which
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showed the noise power of the carrier light in higher-ordemtial modes. This excess
light came from pump and seed light that was not mode-mataftedthe bow-tie cavity
and the OCR filter-cavities. Given that the homodyne detedtibilities were in excess

of 99%, and the OCR was suppressing 26 dB of carrier light, it isceable to assume
that the excess noise was acting like a local-oscillatorhfgher-order spatial modes in
the true LO beam. And since these were occupied by vacuuessiais safe to assume
that the excess noise was independent of the entanglerselit ilndeed, there was only
very little correlation (20dB of the shot-noise level) between any pairs of signal beam
measurements. With both the signal and LO beams blockedattenoise of the homodyne

detectors was also recorde¥ ¢, X ).

Each recorded measurement is therefore hypothesised tatte up of several inde-

pendent noise components that add linearly:

X4 = qi(d) , X&=g(da) (4.1)
Xp = qildi+v1) , X =go(da+ v2) 4.2
Xz = qi(di+s1) , Xg=g2(d2+ s2) 4.3)
X; = qldi+si+m) . XG5 =go(da+ 52+ p2) (4.4)

where the subscriptsand?2 refer to the red and green fields, respectivelyis a gain term
that depends on the gain of the electroni¢sijs the detector dark noise; is the vacuum
state;s; is the vacuum state contribution from the signal beam aetsglocal oscillator for
higher order modegj; is the ‘plus’ or amplitude quadrature of the signal beam atesicby
the true local oscillator. Note that prior to processing, ittrean value of the entire recording

was calculated and subtracted from each set.

The data was processed in two streams: one with, and oneutjittmrrections for the
excess nhoise from the optical carrier rejection techni@ezause of the Gaussian statistics

involved, it was possible to simply subtract those paréicaontributions from the appro-
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priate averaged quantities. The formula for the correciebusmcorrected variances are:

}—{uncorr — (X;’E_)Q - (X?Z)Z — (p1)2 + 531)2 (45)
X5P - (X3P o)
N e A s
,COrT ( }%)2 _ (X?%)Q (1)1)2

where the overbar indicates the average over all data paeintsthe vacuum state variance
is (v1)? = 1. These definitions deliver the quadrature variance of theasibeam which
is free of any electronic gain terms. The correlation coedfficbetween the red and green

fields is given by the formula:

++ . (XEX5) B (p1p2)
Che =  — 12— ——1/2 T _q1/2 (4.7)
(o2 - (x| [ - (xd ((02(02?]

Due to the non-correlation of the dark noise and signal beaisersources between the red

and green fields, this formula delivers the correlation ftweht that is free of those terms.
The correlation coefficient is also free of any electronimgarms, because it is normalised
to the vacuum state. By applying this method to the other dcoations of amplitude and
phase quadratures, itis possible to build up the elemeiteaforrelation matrix which can

then be analysed according to the inseparability criterion

4.8 Procedure

The following just serves to give an overview of the dailygalinent procedure that was

necessary even before measurements of entanglement emitd b

e The laser and frequency doubler were given at least one baiabilise after being
switched on. The light was aligned onto the mode-cleanehsg;hwwere locked and
the offset of the locking point from resonance was nulled.

e The reverse-seed was aligned onto the OPA, and the erral sigis checked for any
AM, i.e. an optical contribution to the offset of the errogrsal. This was removed by
adjusting the polarisation optics. The OPA was locked ardbffset was nulled.

e The pump and seed beams were aligned onto the OPA cavity. dde-matching
was measured.

e The green eigenmode of the OPA cavity was produced by logdkie@PA and using
itas an SHG. The green was mode-matched into the filter caMily mode-matching
was measured.
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e The FC-1G was left to drift, while the LO was aligned to thensigpbeam. The
visibility was measured.

e The LO power was set, and the CMR checked on the spectrumsanaly

e A similar procedure was performed for the red eigenmode efctwvity, using the
OPA as an amplifier of a weak seed (by a factor of 10). The moalkehing into the
red filter cavity was optimised, as well as the homodyne ilisitand CMR.

e The homodyne protection system was checked by increaseng@hpower of each
colour until the shutters triggered at the 12 volt level. Tka&powers were returned
to the standard 10 volt level.

e The system was ready for a measurement run. Starting witlealilgration: seed
power 81 mW, pump power 9 mW, locked to de-amplification.

e The quadratures of each colour were scanned, and the LO |gt&seas checked to
coincide with either the max. or min. noise power as appaberi

e The four combinations of quadratures were measured, felioy measurements of
the vacuum, dark, and OCR excess noises.

e Then the procedure was repeated for another set of pump adgpsevers.

e The data was later analysed according to the method ouilinéeé previous sections.

4.9 Summary

In this chapter, | have given an account of the design, cocisbn, and operation of an ex-
periment to measure harmonic entanglement from an OPA. &hedmponents of the ex-
periment: the laser source, the mode-cleaning cavitieQ®A, the optical-carrier-rejection
system, and the homodyne detectors, were described arattdrésed in detail. The com-
ponents worked together in a sufficiently stable manner édlerthe testing of the theoret-

ical predictions of the OPA model.
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Chapter 5

Harmonic Entanglement
Experiment: The GAWBS
Hypothesis

Our first attempts at measuring harmonic entanglement weagued by a set of narrow
peaks in the phase quadrature spectra of the reflected seé@diaup fields from the optical

parametric amplifier (OPA). We hypothesised that these peaknie from the phenomenon
of guided acoustic wave Brillouin scattering (GAWBS$)at was occurring in the nonlinear
crystal. We observed that the frequency and amplitude oh#reow peaks depended on
the crystal temperature. We extended our OPA model to acautata this effect and found
good agreement with a set of measurements that were mada wige range of input seed

and pump powers.

5.1 Initial observations

The aim was to test the apparatus by attempting to measuegiaient from the OPA, but
with the second-order nonlinearity effectively switchdid We did this by setting the crystal
temperature several tens of degrees Celsius above theabgitirase matching condition,
but still ensuring co-resonance for the fundamental (1064med) and second-harmonic
(532 nm, green) fields. The OPA system should then reduce itm@esdoubly-resonant
cavity. From the model, we expected to see a featurelessrgpeat the level of shot-noise,

for both the amplitude and phase quadratures of the red aauh dields.

!Note that the acronym GAWBS can be pronounced as a word taatahwith the word ‘gauze’
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Figure 5.1: Red only, amplitude and phase
spectra. The peaks visible in the phase
spectrum are absent in the amplitude. RBW
is set to 100kHz. Dark noise is approx.
10 dB below shot noise.

Figure 5.2: Green only, amplitude and
phase spectra. The phase noise peaks are
similar to the ones seen in the red spectrum.
RBW is set to 100 kHz. Dark noise is ap-
prox. 10 dB below shot noise.

Figure 5.3: Spectra of the sum and dif-
ference photocurrents of the red and green
homodyne detectors while measuring the
phase quadrature. Note the excellent can-
cellation of the phase noise. RBW is set to
100 kHz. Dark noise is approx. 10 dB be-

low shot noise.
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Phase spectra:We began by setting the seed and pump powedsii®V and36 mW,
respectively. The OPA cavity length was locked to co-reroaaNote that despite fact that
the crystal temperature was far away from the phase-mafatondition, there was still a
very weak OPA effect, and so we locked the pump-seed relptiase to de-amplification
of the seed. Optical carrier rejection was engaged for bolbucs. The homodyne detec-
tors were locked, and spectra of the phase and amplitudeajuaes were taken using an
electronic spectrum analyser. The red amplitude and phpesdra are shown in Figure 5.1.
The amplitude spectrum follows closely the shot-noisetliexcept for the roll-up at lower
frequencies that is expected from the remnant of the lasexatton oscillation. The most
obvious feature in the phase quadrature spectrum is thé satrow peaks that rise several
dB above the shot-noise level. The widths of the peaks are \ampw compared to their
frequencies, they would have a quality-factor of severaligand. There also appears to be
a 1/f roll-up below8 MHz. The results from the green spectra shown in Figure 5.2 aye ve
similar. Indeed, the frequencies of the peaks match up, lzid heights are similar. This
gives the hint that perhaps the red and green phase quadrangr correlated. In Figure 5.3,
we show the sum and difference spectra. There is indeed a@lation, because in the dif-
ference, the peaks disappear entirely, leaving only a ffelass noise-floor that 8.5 dB
above shot-noise. This is the excess noise that is left owar the optical-carrier-rejection

(OCR) process, and it has not been subtracted here.

Discussion: Our first thought on looking at this data was that the OPA gawias
receiving some kind of RF interference from radio broadmastn the shortwave band.
The PPKTP crystal essentially has the same form as a phasdatawdwhose refractive
index is modulated according to an electric field that is i#gphcross the crystal. We
proceeded to ground the copper cell that contained theatyystd also shielded the OPA
with a grounded aluminium box. The peaks did not change. éflatened to the mixed-
down audio signals of the peaks, and their was no discermbfdemation, like speech or
music. We concluded that the effect must be optical in natowe have a common origin
since the noise is similar for both the red and green wavéhsnd\n acoustic source within

the crystal seemed like a good candidate.



154 Harmonic Entanglement Experiment: The GAWBS Hypothesis

Temperature dependenceif the PPKTP crystal is really the source of the phase noise
peaks produced by some acoustic mechanism, then by chathgirgystal length, the fre-
quencies of the peaks might also change. We tested this byumeg the red spectrum for
5 different temperatures, from 30 degrees to 130 degreesuSeh 20 degree steps, and
using the same pump and seed parameters as in the previtios s&¢e zoomed into the
region to get a factor of ten better frequency resolution \((RB0 kHz). The results are
shown in Figure 5.4. Firstly we can see that the narrownetisegieaks are resolved. They
have a FWHM ofl6 kHz. There appears to be a trend, with the frequency shiftingdasv
the temperature is increased. The value varies from abotkHz to —1.2 kHz per degree
Celsius, depending on which peak is chosen. The height qgi¢hks also changes at a rate
of about1 dB per100°C. There is also a broad-band excess phase noise that liesdretw

the peaks. This noise-floor rises as a function of increasingerature.

Discussion:The observations that the peak frequencies and heightademehe crys-
tal temperature is strong evidence that the cause of theoptemon is within the crystal,

and that the noise is somehow triggered by the temperature.

Conclusion: Taking all of the evidence together: narrow peaks in the plspectra;
the noise is correlated on red and green; the frequency agltted the peaks is dependent
on the crystal temperature. Clearly we are dealing with aitalpeffect within the crystal.
A likely candidate is the GAWBS mechanism, where acousastel modes of the crystal
cause standing pressure waves to be setup throughout tlegiahafThe acoustic modes
are excited by the thermal energy of the crystal. The stgnpiessure waves modulate the
phase of the light being transmitted through the crystaé Mlodulation must have about the
same strength for the red and green fields, and this woulduatéor the strong correlation

between them.

5.2 GAWBS theory

A model of GAWBS will now be introduced into the OPA model ofrimonic entangle-
ment. This breaks down into first identifying the resonardustic modes of the PPKTP

crystal, and then finding their spatial overlap with the cgitimode. The OPA model is
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Red phase noise spectra: Temperature Study
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Figure 5.4: A series of phase quadrature spectra of the red field have been overlayed on the same graph.
The temperature is varied from 30 deg. C to 130 deg. C (dark grey shading to light grey shading). The
shot noise reference is shaded black. The resolution bandwidth is set to 10 kHz. The dark noise (not
shown) is approximately 10 dB below the shot noise level. The frequency shift with increasing tempera-
ture for the peaks are: (A) —0.72kHz/K; (B) —1.02kHz/K; (C) —0.67 kHz/K; (D) —1.16 kHz /K.
then extended to include a phase noise term that is commoathotie fundamental and

second-harmonic fields.
5.2.1 The concept

A bell makes a sound even before it is struck. Each of the nmechlavibrational modes of
a solid object in thermal equilibrium at temperatdrecontains the energy = kT, with

k the Boltzmann constant; as ensured by the equi-partitieorém [Reif 1985]. These
vibrations cause a strain in the material that modulated¢hsity, and therefore modulates
the refractive index as a function of time. As a result, atligham passing through the
object will acquire a phase modulation that has the sameidrecy as the mode of the
mechanical vibration. An equivalent interpretation istttiee optical phase modulation is
made when light from the carrier is scattered into upper aneltt sidebands. One quantises
the mechanical vibrations into individual phonons in thargbwave carrying energht,,
and also the photons of the optical beam carrying. The photons can be scattered by the
phonons and in the process lose or absorb this amount ofyeriug creating upper and
lower optical sidebandéw! = h(w, + w,), which give a phase modulation.

This phenomenon was first experimentally observed andorgtzd by [Shelbyet al. 1985b]
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Light Beam

Crystal Lattice Points
after deformation

Figure 5.5: Longitudinal elastic waves create
a time-varying phase shift for an optical beam.
Each standing wave solution creates another
GAWBS peak in the phase noise spectrum.

‘X/ GAWRBS via longitudinal elastic-wave

Light Beam

Crystal Lattice Points
before & after deformation

Figure 5.6: Transverse elastic standing waves
can also be a source of GAWBS peaks in the
phase noise spectrum of the transmitted light

beam.

GAWABS via transverse elastic-wave

for laser light sent through a single-mode optical fibre. yi&#ectively used an unbalanced
homodyne detector to obtain the phase noise spectra. Therautalled it guided acous-
tic wave Brillouin scattering (GAWBS). Note that the mecisam is different to that of
stimulated Brillouin scattering (SBS) which depends onttiied-order nonlinearity of the
medium. Shelby and Poustie got excellent agreement witirgtend experiment, for both

the frequencies of the excitations and their scatterirengths [Poustie 1992].

5.2.2 Analysis of GAWBS in a block

The aim is to calculate the spectrum of GAWBS peaks and thuaittexing efficiencies.
The analysis is similar to that of an acousto-optic modulggaleh and Teich 1991], and is
also similar to that of the Debye model of specific heat of asolystal [Reif 1985]. The
scattering efficiency calculation comes from [Shed#hyal. 1985a].

Consider an isotropic crystal lattice in the shape of a repitar block that has length
dimensionsL,, L,, L. and with one corner lying at the origin of the Cartesian atirzate

system; see Figure 5.5. An elastic wave propagating thrthgimedium is described by a
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local displacement of the lattice points from their origipasitions by an amount given by
the vector fieldu = u,% + v,y + u.z, whose components are functions of spacg, »
and timet. Two kinds of elastic waves can propagate in the mediumstense waves with
speedv;; and longitudinal waves with speeg@. Their solutions are found by solving the

wave equation;

uy | 82uy o O%u, . 1 O%uy 1 82uy .

B O%u,
O0z? x+

1
v Z2=——X+——5V+—5—-2 (5.1)
Oy? 022 v2 Ot2 v2 Ot2 v2 Ot2

for a given set of boundary conditions, wheres the speed of propagation. In our case we
assume that the surfaces of the crystal are held fixed in theegtion (because the crystal
was held by a clamp in this axis), but they are free to move énxhand z-directions.
Not all elastic waves will couple efficiently into a phase maladion of the optical beam that
propagates along the z-axis. The elastic waves that willelg are those that are analogous
to an acousto-optic modulator, i.e. those which creaténstiashear (in the form of plane
waves) that propagate in the direction perpendicular tdigie beam. This means that
we have to find solutions to the wave equation that are eitfeelangitudinal plane waves
{uy = uz(z,t),uy = 0,u, = 0} and{u, = 0,u, = uy(y,t),u, = 0}; see Figure 5.5.
Or the transverse plane wavgs, = 0,u, = 0,u, = u.(x,y,t)}; see Figure 5.6. | will

start with thelongitudinal waves in the x-axis. The boundary conditions for free ends

Oug(x,t)

are —5-

= 0 and %&f’t) L= 0. Applying these and using the method of

=0 =L,

separation of variables, one obtains the general solution

ug(z,t) = Ap, cos(Qnt) cos(7TL—mm) (5.2)

T

which is a standing wave. Where labels the mode, and,,, is a constant that is propor-
tional to the amplitude of the wave. The frequency of the migjgends on the longitudinal
propagation velocity; and is given byQ2,,, = mvym/L,. Similarly, applying the free end
boundary conditions in the y-axis that are setddy, ¢)|,_, = 0 and u(y, t)\y:Ly =0we

get the standing wave
™
7Y

uy(y,t) = By, cos(Qnt) sin(L
y

) (5.3)

And subscriptn labels this mode, withB,, the amplitude. The frequency is given by
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Q, = myn/L,. Thetransverse waveis like a two-dimensional drum mode. Applying

the boundary conditions we get

Uz (2, Yy, t) = Cryn co8(Qpnt) cos(mm) sin(Lny) (5.4)
Lo L,
The angular frequency is given by
Qn = 100\ () L,)* + (n/ L)’ (5.5)

Note that it depends both an andn, which means that compared with the longitudinal
modes, the transverse modes can have many more resonaeenfries. In the next step,
| would like to know that the amplitudes of the waves will bavill use the example of the
transverse modes, but the analysis of the longitudinal méalows the same procedure.

The energy that is contained in the transverse mode is

By = /0 e /0 / 02 P2 s, 9,1 = O) (5.6)

wherep is the density of the material. From the equi-partition teeo, we know that
each mode must contain the enewlgy,, = kg1, whereT is the temperature in Kelvin,
andkg is the Boltzmann constant. Applying the equi-partitiondtean is valid because the
temperatures are high enough, such that the thermal enetiggy mode is much greater than
the energy of the phonong{T > h),. This means that the amplitude of the transverse

vibrational mode is

1
kT 2
Cnn = (PQ?nanLyLZ> (5.7)

Now that we have the displacement, the next step is to findnitheced strain within the
crystal because it is the strain that determines the changgfractive index. The strain is

given by the partial derivative of the mode function in thdirection:

ou, mm\ . [7mTm . (T
S,e = e Con <L—m> sin <L—xac> sin <L—yy> (5.8)

and in the y-direction:

Ou, m™m ™m ™
Sy = oy —Cmn <L—y> cos (L—xw> cos <L—yy> (5.9
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The photo-elastic constants, otherwise called the stpiitc coefficients, are labelled by
P., andP,,. These values depend on the material, and so they must be ifotine litera-

ture [Dixon 1967]. The induced change in refractive indegiven by
An = n® (PyySsy + PaySay) (5.10)

We then have to integrate this change across the beam prufiftna beam depth, to get the

average refractive index change:

o Lx Ly Lz
An =n? / dx / dy / dz Eopt (7,9, 2) (PexSzx + PaySay) (5.11)
0 0 0

whereE, is the normalised Gaussian beam profile with minimum watiusiV,

_ s 2%+ y?
e = (i) o0 (5 o1

and wherd/V (z) is the waist as a function of propagation in the z-axis:

W(z) = Wy [1 + (z/zo)ﬂ i (5.13)

with zo the Rayleigh rangez, = mW¢/\. The change in phase of the light beam is then
e=—An (5.14)

The final scattering efficiency due to the transverse modgniiis of optical power per unit
propagation length, is given by

Nn = (€/2)? (5.15)

The analysis for the longitudinal waves proceeds in a similanner. Note that for the case
of our OPA setup, the presence of an optical cavity ensuradtite light beam sampled
the same region of the crystal many times. For a finesg#,0bne can assume that the
scattering efficiency is simply increased by a factor of 6GisTassumption should be valid
provided that the frequency of the acoustic mode is muchtlems the linewidth of the

optical cavity.

For our case, the analytical solution for the scatteringiefficy for each mode is quite

long and unenlightening. So | will proceed with a numericeghraple that is as similar
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L, 1.5mm
L, 1.5mm
L, 10 mm
p| 2900kgm—3
n 1.77 Average of all KTP directions

v 5500m s~
U 7000ms~!
ay | 11 x 107 K~!
a, | 9x1079K!
a, | 0.6 x 1079 K!

P, 0.25 Taken from KDP, not KTP
P,y 0.25 and then assumed isotropic
P, 0.25
Py 0.25
A 1064 nm
Wo 40 pm The beam centre was offset

by 100 pm in the x-axis

Table 5.1: GAWBS model parameters.

to the experimental OPA setup as possible. The calculatrmlyfisamples the acoustic
and optical mode functions and performs the integration erigally to get the scattering
efficiencies. The parameters for the model are shown in Taldle After an extensive
literature search, it was not possible to obtain valuesHerdptic-strain for KTP material,
hence data from the structurally similar KDP was used; s@®}D1967]. | also assumed an
isotropic crystal both for the mechanical (speed of sound)aptical properties (refractive
indices). This was to simplify the analysis. The problenha an anisotropic crystal allows
the conversion between longitudinal and transverse madie &dges of the crystal. To

analyse this situation requires a treatment in chaos tHétliggaardet al. 1996].

In our experiment, we did not directly measure scatterifigiehcy, but rather we used
homodyne detection to measure the phase quadrature whictaharated to the shot noise

of the local oscillator. The calibrated signal is then gitgn

PA

with P the optical power in the probe (not local oscillator) lighgam inJs~'. B the

detection bandwidth iz, which determines the minimum time integration window.
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10 GAWSBS for isotropic crystal (1.5 x 1.5 x 10) mm

[ee]
T

Figure 5.7: Theoretical GAWBS spectrum
of signal above shot noise. Red light
H : . . beam power 240 mW, detection bandwidth
' ‘ ~ H J 100 kHz. Solid lines are transverse modes up
ol L L J \x“ ' L J,

N

to (7, 7). Dashed lines are longitudinal modes
up to (7). The grey shaded area is corre-
sponds to the shot noise limit.
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Figure 5.7 shows the calculated GAWBS spectrum. Note tHtto{agh not visible
here) the appearance of the spectrum is highly dependehteqgrosition of the light beam
in the crystal. This is because the beam width is on the saale as the wavelength of
the acoustic modes. | have chosemh0f ym offset in the x-direction to avoid having the
optical beam stand in the nodes of the odd acoustic modesomparing this graph with
the experimental results in Figure 5.1, one can see a gooditagwa agreement of the
frequencies of the observed and predicted modes, i.e. Hwngpof the modes is roughly
0.2 MHz when looking beyond 0 MHz. The scattering efficiencies themselves are also

within an order of magnitude of the experimentally observaldes.

| can also build a temperature dependence into the modetevithe length of the crys-
tal increases due to thermal expansion. The expansion deetf for KTP arel0—> K1,
Figure 5.8 shows a narrower spectrum for the same crystaktliwo different tempera-
tures that aré00 K apart. One can see that the resonance frequencies dropargiasing
temperature, and that the scattering efficiency incred®gsomparing this graph with the
experimental results in Figure 5.4, one can see that thefatmattering increase per Kelvin
is about the same as that observed in the experiment. Butrédaicted change in reso-
nance frequency per Kelvin was only abdots of the value that had been observed. This
indicates that the speed of sound for the longitudinal aaxstrerse waves may also be a

function of the temperature.
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16 Temperature Dependence of GAWBS
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5.2.3 Mini-conclusion

The GAWBS model produces peaks in the phase noise spectrima.calculations show
good qualitative agreement with the experimental resuttsterms of the distribution of
resonance frequencies, and also the observed scatteficigrafies. The model is also in
agreement with the decreasing resonance frequencies arghsmg phase noise, as the
temperature of the crystal is increased. Note that the meatahot predict the observed
16 kHz linewidth of the phase noise peaks. This would depend onigspdtion of me-
chanical vibration, and the details of how the crystal iglhelplace.

However, one problem remains: this is to understand therebdebroad-band noise
between the peaks, that was also seen to increase withsimmgdamperature. | will choose
to consider it as a continuum of modes that arise due to tlentrechanical anisotropy of
the KTP crystal material. We can then treat this continuumodles as also causing a phase
shift in the light beam. Such a broadband phase noise wilhtseduced in the next section

as a cavity de-tuning noise term in the OPA equations of motio

5.3 GAWBS-extended OPA model of harmonic entanglement

I would now like to extend my original model of harmonic ergiement from OPA (see
Chapter 3) to include a term that describes the effect ofegligicoustic-wave Brillouin
scattering (GAWBS). What follows is a complete but concisavation of the OPA cavity
transfer functions that include a cavity detuning noise¢ th@ommon-mode to the funda-

mental and second-harmonic fields. Consider a mode of digind its second-harmonic
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b, (wavelengths\, =2);), which interact via a nonlinearity of in a single mode cavity
with total decay rates, ;. The intra-cavity fields are coupled to the environmentugioa
MIrror k41 51, and more weakly via other loss mechanisipg;.. The system is driven by
coherent states of light with steady-state amplitudes;Qf3;,; and can be modelled by the

coupled set of equations [Drummoatial. 1980]:

s

a = —(ﬁa—l-iéwa)d—l-ed%—l- in (5.17)

b = —(kp+idwy)b— —ea® + By, (5.18)

1
2
where input fields are denoted b, = v/2rq1cin + 3 \/ZFa,;0A i Bin = v/2861 Bin +

S° \/2kb,;0Bjm With j€{1,2}, ko= K1+ Kq2 @Nd k= Kp1 + Kp2. The GAWBS noise
terms becom@w,, = (—2mc/A.)&q,50 P Which are driven by the dimensionless noise
term § P having variance one, but are coupled via the constgntsnd &,. For a simi-
lar method of introducing de-tuning noise terms one canr ef¢Godaet al. 2005]. We
work in the Heisenberg picture where the annihilation ofmesai andb (and correspond-
ing creation operators) evolve, from which the amplitudd phase quadrature operators
are constructedX t=a'+ ¢ and X =i(a' — @), respectively (we drop the hat notation).
The technique of linearisation is used to obtain the fluatnat da, jb) centered around the
classical steady-state solutiots, 5) [Drummondet al. 1980]. Fourier transforming into
the frequency domain allows one to solve for the driving fidliterms of the intra-cavity
fields. This dependence is reversed when the equations pressed in a matrix whose

inverse is found:

(oxx ] [A. B ¢ D F ] [0Xin]

6 X, B Ay -D C G, 0X 4 in

X, |=|-C D E 0 F 0Xhin | (5.19)
6 X, -D -C 0 E G, 0X 5 in

6P o 0 0 0 1 5P’

where{0X},6X;"} and{6X7F, ,6X%, } are the intra-cavity and accumulated input field
quadratures, respectively; antl, = k, — Q2 £ €|3|cosb3, B = —e¢|f|sinfg, C =
—€lalcosby, D = —€lalsinbly, E = Ky — i), Fop = 2i|o, B]sin 0, g(—2m¢/Aap)Eabs

Gap = 2|e, ] cos 0y g(—2mc/ Mg p)Eap, With 6, = Arg(ar), 85 = Arg(3); and(2 the side-
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band frequency. The fields reflected from the resonator catirbetly obtained using the
input-output formalismy X, . =v/2ra1 6 XE—0X ) 11 6 X5 or = V2R610 X, —0X 5, 11
[Collett and Gardiner 1984]. The resulting bi-partite Gaas states that are produced, are
completely described by the correlation matrix of elemerffs =2 (6 X} 6 X} +0X}6X%),
arranged in the order:

Clat Cda Cot Coy
Coaw Caaw Cupt Co
Coo' Cha Cu' Gy
Chi Cha Cu' Cy
where{k,(} € {+, —} and the reflected field notation has been simplified With n} €

(5.20)

{Al,et — a, Bls— b}. We use the quantity of inseparabilifyas a measure of entangle-
ment, or the EPR criterion; see Chapter 2. For the remairfdéisochapter however, | will
be concentrating on the individual phase quadrature veemthemselves, and the sum and

difference of the phase quadratures.

Modelling loss after the OPA: The path from the OPA to the detection is not free of
loss. We need to modify the correlation mathik to take into account the logg on the red
path (a), and the losg, on the green path (b). This is done by consulting the beattespli
model (together with a vacuum mode) that was discussed itio8et7.2. The elements of

the correlation matrix then become:

N Ca™ M. Cly VMab O /Maie O

M = Na Ca_a+ Na C;z_ \/m C&,—’_ v/ Ma’lb C&,_
Viats Cp ™ /Mty Gy~ 1 Cyy* 1 Copy~
Ve Cpy” VI Cr mCyt m Gy
1—1, 0 0 0
0 1—1, 0 0
- 0 0 1-m, 0 (5.21)
0 0 0 1—mn

where the first matrix shows the attenuation of the initiatestand the second matrix shows
the uncorrelated noise contribution from the vacuum mdlatsatre coupled into the red and
green optical paths. The OPA model therefore has anothefré@garameters); andmn)
that need to be determined from characterisation of thergrpat (but not fitted). Setting
14,5 t0 UNity returns the condition of a lossless detection seheffnom the results collected

in Table 4.2 we found thaj, = 0.85(4) andn, = 0.80(6). The uncertainties come mainly
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from estimating the absolute efficiency (quantum efficigrafithe photodiodes used in the
homodyne detectors.

Modelling intensity noise on the pump and seed beam3/Nhen the OPA model was
introduced in Chapter 3, the input pump and seed beams wsuenasd to be in pure co-
herent states. Although we used optical filtering cavitieeasurements of the input pump
and seed beams showed that they carried residual amplitubphese noise. The amount
of excess noise in terms of the quadrature variances, wasiianal to the seed and pump
powers. The excess noise was approximately equal for battirgtures and both the seed
and pump beams. We therefore introduced an extension fomtuel, where the input
variances are given by

((6xm1)?) = 1+ slau|” (5.22)

and similarly for modeBin, 1. Note that all the other input states were assumed to be in the
uncorrelated vacuum states. The OPA model therefore hdabarfoee parameter) that
needs to be determined from characterisation of the expetiifibut not fitted). Setting

to zero returns the condition that the seed and pump are re)poherent states. From the
experiment, we found the value ef= 10~3 per mW of optical power, which means that
the residual amplitude and phase noise only becomes samtifichen the OPA is driven

near to, or above, the OPO threshold power (85 mW).

5.4 Constraining the GAWBS-OPA model

The aim was to test the GAWBS-extended OPA model againstaf se¢asurements from
the harmonic entanglement experiment. In practice, wealigtavoided the GAWBS peaks
for harmonic entanglement measurements, because theyeteimental to the strength of
the entanglement. As mentioned earlier however, there \8asbaoad-band phase noise,
that was presumed to have a similar origin to GAWBS, and mizg dirom a continuum of
unresolved GAWBS peaks.

The parameters that were used in our model were determinaddharacterisation of
the experiment. The values for the mirror coupling ratesenabtained from the finesse

and reflection coefficient measurements in Table 4.1, whasleg,1 = 51, ko2 = 4.3,
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Kkp1 = 250, kpo = 41 (in MHZz). And the nonlinear interaction strength of= 1.5 kHz
was determined by working backwards from a Boyd-Kleinmamehof the OPO threshold
power [Kleinmanret al. 1966].

A set of quadrature measurements of the reflected seed (hd64d) and pump (532nm
green) fields from the OPA cavity was made using the harmartanglement setup as de-
scribed in Chapter 4. The measurements were made at thesatlélequency of 7.8 MHz.
The amplitudes of the input seed and pump fields were charghsthe total input power
to the OPA was held constant at 76% of OPO threshold poweltewhly their ratios were
altered. The ratio is expressed as an angla the parameter space of the entanglement
maps that are presented in Chapterg3= tan='(5, /). | now refer to three figures
which are presented in Chapter 6. Shown in Figure 6.5 are tressunement results for
the amplitude and phase quadrature variances of the red fé@dire 6.5 also shows the
quadrature variances of the green field. The measuremeatli@®n corrected from the

excess noise artefacts that come from the optical-cagjection process (see Chapter 4).

The sum and difference of the phase quadratures of the redraed fields is shown
in Figure 6.4. The solid and dashed lines in these graphsharbdst fit of the GAWBS-
OPA model, where only two parameters have been fitted. Thresth@ GAWBS coupling
coefficients¢, and &,. Although the source of the noise for the red and green fiads i
identical (coming from a particular acoustic mode), theptimg strength to the optical
field may be different, which is due to the different waistesi of the two optical fields.
The GAWBS coefficients were found by fitting the curves to thed phase quadrature
measurements using the least-squares-method. The resulisé, = 2.4x 10717, &, =

3.2x10~'7. All the model parameters are summarised in Table 5.2.

5.5 Summary

We have observed a dense set of narrow-band peaks in the ggetea from the 1064nm
and 532nm light that is reflected from the OPA cavity. Thesakpeavere hypothesised to
originate from the guided acoustic wave Brillouin scatignmechanism (GAWBS). We be-

lieve that the GAWBS effect is not limited to materials in thaical fibre geometry where
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Ke1 = 51 MHz Derived from measurements of cavity finesse and reflectiefficents
KRg2 = 4.3 MHz
Kp1 = 250 MHz
Kpo = 41 MHz
e = 1.5 kHz Derived from the OPO threshold power
s = 0.001 per mW | Derived from measurements of the input pump and seed beaanegas
Nq = 0.85 Estimate of optical losses on the path from OPA to homodytectien
m = 0.80
Q = 7.8 MHz The chosen sideband frequency for measuring harmonicgletaent
& = 2.4x 10717 From a least-squares fit with a series of phase quadratureunseaents|
& = 3.2x107Y7

Table 5.2: A summary of all parameters in the GAWBS-extended OPA model of harmonic entanglement.

it has been observed before. A bulk crystal of millimetre elirsions has a GAWBS spec-
trum shifted to higher frequencies, and lower amplitudestduhe reduced phonon-photon
interaction length. However, our experimental setup hadgh kensitivity to the phase
quadrature that was provided by the combination of the aptarrier rejection technique
together with homodyne detection, and it was this that exhbk to observe GAWBS in
bulk PPKTP material in a rectangular prism geometry.

We developed a simple model of the GAWBS effect for our ctygtmmetry, and we
could find good qualitative agreement for the scatteringiefficies and also for the density
of peaks in the spectrum. Further quantitative comparisas mot possible because of the
sensitivity of the scattering efficiency due to the exaatgkeerse position of the light beam
in the crystal, and other crystal parameters (photo-elastistants, temperature dependen-
cies etc.). We also extended our model of OPA to accommodes®ity de-tuning noise
term that simulates the GAWBS effect. This model will allos/to make a valid theory-
experiment comparison for the harmonic entanglementisethdt are presented in the next

chapter.
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Chapter 6

Harmonic Entanglement
Experiment: Results

In this chapter | present the main result of harmonic eneanght as measured from an
optical parametric amplifier (OPA) with an inseparabiliteasure of = 0.74(1) < 1. The
behaviour of entanglement was also studied as a functioneoditiving fields to the OPA:
for the ratios of seed and pump power, and also the total ippwer. Good agreement with
the theoretical model was found, and the series of measutsras a whole supports the
interpretation that a significant exchange of energy batvike fundamental and second-
harmonic fields is a key requirement in the production of lmrimentanglement from OPA.
The experimental results presented here stem from theboodiion between Syed As-
sad, Moritz Mehmet and myself. This work has been publishetkuthe following refer-

ence:

e Observation of Entanglement between Two Light Beams Spguani Octave in Op-
tical Frequency,
N. B. Grosse, S. Assad, M. Mehmet, R. Schnabel, T. Symul akd [Fam,
Phys. Rev. Lett100, 243601 (2008).

6.1 Main Results

We gathered measurement of the correlation matrix over rpaimys in the two-dimensional
parameter space of driving field amplitudes: the seed (fmeatal, 1064 nm, red) and the
pump (second-harmonic, 532 nm, green). Figure 6.1 showbagmvhere the measure-
ments were made in the map of inseparability as a functiohefitiving fields. The pro-
cedure for each measurement was identical to that outlinatid Chapter 4. After an

extensive search for many combinations of driving fields,olvserved the best harmonic

169
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n
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Figure 6.1: Theoretical map of entanglement across the driving fields using experimental parameters in
the model. Darker shading means stronger entanglement. Contours are labelled with the inseparability
measure. ‘Plus’ symbols mark the observation points. The arc (a) corresponds to the angle-study, and
the radial lines (b) and (c) to the power studies. The star marks the calibration point. The symbol ¢ shows
how the angle parameter is defined.

entanglement in the parametric de-amplification regiontraing pump-enhancement with
powers atl1/9 mW (see thex in Figure 6.1). Where the notatiofi means parameters
for thered /green fields in that order. For this particular setting of drivingléis, we then
completed measurements of the correlation matrix for eleuas over many days. The en-
semble average of those matrix elements in linear scalethan®5% confidence intervals

based on the run-to-run variability, are presented here:

0.71(1) 0 —0.25(1) —0.02(6)

B 0  245(12) —0.07(10) ~+1.42(5)
May= —0.25(1) —0.07(10)  0.83(2) 0 (6.1)

—0.02(6)  +1.42(5) 0  2.56(6)

The matrix revealed that both colours were amplitude scpebedth C-+ = 0.71(1) and
C,;t = 0.83(2). The phase quadratures showed anti-squeezing,pf = 2.45(12) and
w = 2-56(6), which imply that the Heisenberg uncertainty relation watissed well
above the minimum uncertainty bound. These apparent “migtde statistics are a reg-
uisite of harmonic entanglement. To compute the insepl#isabve performed local sym-
plectic transformations, = 0.11(1), 7, = 0.15(2) numerically to each mode such that

M, was brought into the standard form. After applying the daéiniof the inseparability
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Figure 6.2: (a) Time-series quadrature data showing correlations (scaled 50%). (b) Shaded ellipses
follow a contour of the resulting probability distribution. Dashed circles mark the quantum noise limit.
The quantum correlation in amplitude is evident since the ellipse falls within the circle. (C) Dual quantum
correlations are exhibited by the same data when the correlation matrix is brought into standard form.

criterion to the correlation matrix in standard form (seeafer 2), we found a value of

7 = 0.74(1), which was less than one, and thus confirmed the presence¢anigdement.

6.2 Visual representation

A visual representation of the correlations within the agtad state is shown in Figure 6.2,
where time-series quadrature data of the second-harmetdorfas plotted against the data
of the fundamental field. Each dot corresponds to one sampleei recorded quadrature
data (note that only the fird0? points are plotted here). The ellipse in (b) marks the stan-
dard deviation contour of the resulting joint Gaussian pholity distribution. The quantum
anti-correlation in amplitude is evident as the ellipsésfalithin the circular boundary that
is set by a reference measurement that used vacuum stages-onthe phase quadrature,
only a classical correlation can be seen, but the proxinfity@ phase correlations to the
classical bound is sufficient for the preservation of erlemgnt. This feature is symp-
tomatic of biased entanglement [Bowetal. 2003a]. In (c) we performed local symplectic
transformations to bring the correlation matrix into st@mtdform. This led to the ampli-
tude quadratures becoming correlated and the phase quadranti-correlated by an equal

amount, thereby optimally redistributing the quantum elations over both quadratures.
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Figure 6.3: Inseparability as a function of angle parameter with the total input power held constant at
65 mW. Entanglement is achieved for values < 1. The solid line is from the theoeretical model with
GAWBS term, and the dashed line is from the model without. The measurements marked as crosses are
corrected for the noise artefacts from the OCR process. The circles are uncorrected.

6.3 Angle Study

Our aim was to drive the entangler across the whole rangeocafepses: OPO, OPA, and
SHG. We set the total input power &6 mW (82% of OPO threshold power), and adjusted
the balance of power between seed and pump to trace out am thie parameter space of
Figure 6.1. Limitations of the servo-loops allowed us toyoapproach true OPO, SHG,
and the neutral point. The inseparability results are @tbth Figure 6.3 as a function of
polar angle in the parameter space. The raw data is showrcbesciwhile the crosses show
the data corrected for the excess noise from the opticalecamjection (OCR) process.
Entanglement was observed over a broad range of atgled1, +0.15)m, which covered
OPA de-amplification through SHG and almost up to the nepwait. The effect of pump-
enhancement in this region was strong, i.e. most of the redomaverted into green. By
neutral point, we mean the region were net conversion of eegr¢en (and vice versa)
is zero, and no squeezing nor correlation can be producedal¥gefound entanglement
in a narrow rangé+0.40, +0.47)7 which corresponded to OPA amplification with weak
pump-depletion. The maximum entanglement observed inrtsedregion Lo, =0.76(2))

was slightly better than in the narrow regidh,(; = 0.79(2)). The error-bars plotted were
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based on standard deviations that were gathered in theat#it point measurements of
Section 6.1. Two theoretical curves are plotted. The dabheds the original OPA model,
while the solid line is the OPA model with the GAWBS phase aoibhe coupling strength
of the GAWBS have been fitted to the phase quadrature obdesvalbne, and not the
inseparability (see Section 5.4). The best agreement eettheory and experiment is when
the OCR corrections have been made, and the GAWBS-extengadr@del of harmonic
entanglement is used. This indicates that GAWBS is indeéuitiflg effect in measuring
harmonic entanglement from the OPA. Note however, thatffeciis minimised in the
vicinity of the SHG region.

The behaviour of the sum and difference variances (SDV)rardey to understanding
what is happening inside the OPA in its role as a harmonicngiiga In Figure 6.4 we
plotted these quantities which were taken from the samesgatas the angle study in Sec-
tion 6.3. The value of the correlation coefficient (multgaliby a factor of 2) can be read
directly from the graph by noting the gap between the sum diferehce measurements

(in linear scale). The nature of the correlation, whetheeiguantum or classical, depends
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on either of the variances dipping or not dipping below oespectively. Looking quali-
tatively at the amplitude SDV, starting near OPQ0(457) in the de-amplification region
and moving toward the neutral point(.207), one can see that the strength of the quantum
correlation gradually turned on but then off. A (classicad)relation then appeared when
moving beyond the neutral point and into the amplificatiogior (+0.457). This change
from a quantum to classical correlation is a consequenceeo®PA making the transition
from amplitude to phase squeezing on red (and green). Whethet a correlation is pro-
duced relies on there having been some level of pump-depleti enhancement (which
cannot occur in below-threshold OPO). For the phase-S/b#haviour was similar, but
followed in reverse order. The individual quadrature vaci&s shown in Figure 6.5 com-
plete this picture. Moving across the range of angle pararsgbne can see the transition
from amplitude squeezing to phase squeezing on the red fWdle the green field has
its best amplitude squeezing near the SHG point, and itgobeste squeezing also near the
OPA amplification region. The phase squeezing for both rebgaaen in the latter region

indicate that it may be possible to suppress GAWBS phase heise.



86.4 Power Study 175
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Figure 6.6: A series of five measurements of the quadrature correlations taken at different values of
the angle parameter. The total input power was held constant at 65mW. The contours are drawn at the
standard deviation of the probability distribution. The dashed circles mark the quantum noise limit. The
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value for the inseparability is written at the top of each box.

A series of correlation diagrams were prepared from obsiengalong the angle study.
Figure 6.6 takes four examples that are set at the paramegdgsad = —0.46w, 6§ =
—0.157, 8 = 40.157, § = +0.367, andf = +0.46m; for which the total input power was
held constant a5 mW. Here the quadratures of the red field are plotted againsj.thedra-
tures of the green field (in the same manner as Figure 6.2).s{imenetry of this plot is
striking. The phase quadrature follows exactly the behavid the amplitude quadrature,
but in the reverse order along the parameter angle. One eaa gansition from ampli-
tude squeezing to phase squeezing; and also a transitionafiguantum correlation in the

amplitude quadrature, to one in the phase quadrature.

6.4 Power Study

The theory predicts that increasing total input power sthontrease entanglement. We
tested this by ramping up the total input power frathmW to 180 mW, which is10%

to 210% of OPO threshold power, while holding the seed:pump powto @nstant at
9:1. This ratio of seed:pump powers corresponds to the megidDPA de-amplification

(0 = —0.107). The results for inseparability are plotted in Figure &ff{(a). Initially

the entanglement strength increased (appearing lowerimgriph) as a function of total
input power, but at?,;,; = 100 mW the trend reversed. This is contrary to the theoret-

ical prediction which has the entanglement strength momncédly increasing (appearing
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Figure 6.7: (Left) Power Study 1: (@) Inseparability as a function of increasing pump power. The angle
parameter was held constant at § = —0.17 which corresponds to a ratio of seed-to-pump power of 9:1
and locked to OPA de-amplification. The solid lines are inseparability from the model with the GAWBS
noise term. Symbols are measurements: crosses mark the inseparability corrected for OCR excess
noise. Circles are uncorrected. Horizontal and vertical error bar estimates are shown. (b) Sum and
difference variances for the amplitude quadrature. Measurements are corrected for OCR artefacts. (C)
Sum and difference measurements and theory for the phase quadrature. Measurements are corrected
for OCR artefacts. (Right) Power Study 2: The angle parameter was held constant at 8 = —0.27
which corresponds to a ratio of seed-to-pump power of 2:1 and locked to OPA de-amplification. Similar
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monotonically decreasing in the graph). Lets look at the sueaments of the sum and
difference variances (SDV) for answers. In Figure 6.7)(bjtthe quantum correlation in
amplitude appears to have maximised @ mW (as the separation between the sum and
difference has maximised). But after this optimum pointhdmes moved higher into the
classical regime while keeping their separation constaihis means that the correlation
coefficient for the amplitude quadrature is holding steadyje the squeezing is being de-
graded. Note that the phase sum variance climbed only Bligigher at this point. In
Figure 6.7(left)(c), the classical correlation (visible @ gap between the sum and differ-
ence) however, grew rapidly. Itis primarily the result of theakening quantum correlation
that is the cause of the weakening entanglement. We sudpaticess amplitude noise
on the seed and pump (left over from the laser source) aremstye. Other explanations
could be phase-jitter in the homodyne detector locking; amgeting non-linearities (i.e.
competing non-degenerate OPO modes near the 1064 nm wgihedenThis may be rea-
sonable, considering that we are driving the OPA with a ot power that is ove200%

of the OPO threshold power. A second power study was madee gidtameter angle of
0 = —0.2m, which corresponds to a seed-to-pump power ratio of 2:1.rébelts are plot-
ted in Figure 6.7(right). Aside from the highest measuredqys where control of the OPA
due to thermal effects became difficult, the inseparabgigph (d) and the SDV graphs (e)

& (f), support the results from the first power study.

6.5 Discussion of EPR

We know that the OPA model predicts harmonic entanglemetttarform of both the in-
separability and EPR criteria. We have seen from the exgstirthat the inseparability
criterion was satisfied, so what has happened to the EPRi@nite Figure 6.8 shows the
experimentally gathered points in the angle study, of thR Efterion in the red-to-green
and green-to-red inference directions. The circles shewdlwv data, while the crosses are
corrected for the excess noise from the optical carriectigle (OCR) process. Compared
with the inseparability results in Figure 6.3, the EPR nssate clearly much further away

from achieving entanglement (the shaded area). Only atxtrerse end of the amplifi-
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cation region, do the EPR results dip slightly into the eglament boundary. The error
bars on the measurements however, are too large to makena @ldtPR entanglement
here. The reason that the EPR criterion drops at the OPA foagilbn regime, is that the
phase quadrature is de-amplified here. The phase noisegafiem the GAWBS mecha-
nism is therefore naturally suppressed. The suppressiweves, was not sufficient to yield

a convincing demonstration of EPR entanglement.

6.6 Entanglement spectra

Harmonic entanglement as produced from an OPA is a broad-paenomenon. How-
ever, the previous results were acquired in a narfet¥ = 22 kHz bandwidth that was
centred at the sideband frequency(tf = 7.8 MHz. This particular sideband frequency
was chosen because it yielded the strongest entanglementakiVsee this by looking at
the spectrum of the sum of the individual sum and differerax@gances that are shown in
Figure 6.9. This quantity is the same as the un-optimisezpmsbility, and it is a sufficient

but not necessary measure of entanglement. Note that thpletmmatrix of correlation
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elements, and therefore the optimised inseparabilityccaol be extracted from the spec-
trum analyser data. The power used wag6 mW and locked to de-amplification of the
seed. The inseparability spectrum shows a clear minimurnarctirve from6 — 8 MHz,
but that entanglement could still be observed across thgeranr— 16 MHz with the ex-
ception of a couple of spikes at discrete frequencies (of ®®Mrigin). To understand
why there is an optimum observation frequency, we need tp kemind that the seed and
pump fields still carry some amount of residual noise froml#iser relaxation oscillation
(at lower frequencies) because the mode-cleaners can tielysio much. And at higher
measurement frequencies, one approaches the OPA cawtyidith, where the entangle-
ment that is produced is degraded because the effectivéneanlinteraction strength at
those sideband frequencies is not as strong as for frecqegeeneiar the carrier. The effects

produce a minimum of excess noise in the vicinity of 7 MHz.

Looking at the inseparability spectrum, one may ask, whawe lthe GAWBS peaks of
Chapter 5 gone? The answer is that at this combination of @e@gump power, the read-
out of the phase noise is equal in strength for both the fumddah and second-harmonic
fields. So that in the direct subtraction of the two quadesgtuthe excess phase noise van-
ishes. Note that this is not the case for the EPR measurereF&ggli0 shows the spectrum
of EPR in the inference direction from red to green. Here gkeess phase noise does not
naturally subtract away, because the conditional varigsensitive to both the correlation
strength, and the individual quadrature variances of eamttemThe end result is that at no
point in the spectrum does the degree of EPR dip below onehwheans that although the
reflected seed and pump fields were harmonically entanglEat@diog to the inseparability

criterion, they were not EPR entangled with one another.

6.7 Discussion of experimental limitations

After having observed some harmonic entanglement, theralaguestion is, how much
more can be observed? | could argue that one only needs toiputtme total driving field
power to start seeing more entanglement. The problemsiatsevith increased driving

field powers are four-fold: (1) The seed and pump fields areongdr shot-noise limited
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Figure 6.9: Spectrum of the unoptimised inseparability. The measurement has been corrected for OCR
noise artefacts. Harmonic entanglement occurs for values less than one. The vertical dashed line is a
marker for the narrow-band measurements that were taken at 7.8MHz. The driving field parameters were
59//6 mW and locked to de-amplification of the seed.
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Figure 6.10: Spectrum of the EPR criterion in the inference direction from red to green. The measure-
ment has been corrected for OCR noise artefacts. Harmonic entanglement would be heralded by values
less than one, but this does not occur at any point in the spectrum. The vertical dashed line is a marker for
the narrow-band measurements that were taken at 7.8MHz. The driving field parameters were 59 /6 mwW
and locked to de-amplification of the seed.
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because they retain some of the original laser relaxaticillatson. (2) The OPA cavity
becomes increasingly difficult to control due to thermaéef§, and the problem of staying
on a particular branch of the bi-stable regions. (3) Thectdtifields become more difficult
to filter using the optical carrier rejection technique, dese only a slight misalignment of
the optics will cause light to be coupled into higher-ordeydms, and this amount of light
will dominate over the local oscillator power in the homodyaetector. (4) The GAWBS
mechanism that produces phase noise becomes more prodatritgher powers, simply
because more light is scattered into the upper and lowebaidks. All of these problems
need to be addressed before an increase in entanglemergtistcan be observed at higher
powers. There is however, always room for improvement bycied) optical losses in the
experiment. These include: intra-cavity losses in the AB¥ses along the path from the

OPA to the homodyne detector, and of course improving theégolmde efficiency.

6.8 Summary

The experimental setup was capable of testing the predgiid harmonic entanglement
from the advanced OPA model. We prepared coherent seed amgl lpeams with powers
totalling 200mW and drove our OPA with them. The reflected fields had theircaptarri-
ers removed while leaving the sidebands relatively untdtecTwo independent homodyne
detectors recorded values of the quadrature amplitudeshendorrelation matrix for the
combined system was constructed. From this matrix we ccudevghat the fundamental
and second-harmonic fields were entangled according tongeparability criterion. The
GAWBS effect, although strong in the individual spectraswéfectively self-cancelled for
much of the available parameter angles, so that the indgfigrariterion was largely im-
mune to the GAWBS effect. The strength and bias of the entamght could be controlled
by adjusting the ratio of seed and pump powers. The agreebetween experiment and
GAWBS-extended model was good for a wide range of obsersalleadrature variances,

sum/difference variances, and inseparability.
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Chapter 7

Photon Anti-bunching from
Squeezing: Theory

There are two themes in this chapter. Firstly, is the ideadha can use homodyne detec-
tion to measure the second-order coherence of an opticdl figcondly, it has often been
over-looked that squeezed states can show anti-bunclatgtists provided they are appro-
priately displaced. The statistical property of secondeoicoherence is not only a tool for
measuring the diameters of distant stars, but also of gedaéyn understanding the dual
nature of light as a particle and wave phenomenon.

The material that is presented here was part of a collalbordtiat was initiated by
Magdalena Stoliska and Prof. Tim Ralph. Together with the experimentalilitegsee

Chapter 8), this theoretical work has been published urdefallowing reference:

e Measuring Photon Anti-bunching from Continuous VarialkldeBand Squeezing,
N. B. Grosse, T. Symul, M. Stohska, T. C. Ralph and P. K. Lam,
Phys. Rev. Lett98, 153603 (2007).

7.1 Motivation and Review

Fifty years ago, Hanbury-Brown and Twiss (HBT) first demoatstd an optical intensity
interferometer [Hanbury-Brown and Twiss 1956b]. SincenthelBT interferometry has
been applied to diverse areas such as condensed matterpfyshnyet al. 1999], atomic

physics [Yasuda and Shimizu 1996, Olivetral. 1999], and quantum optics:

[Arecchiet al. 1966]. The HBT interferometer has also become a powerftiunmsent tech-

nigque in astronomy, and high-energy particle physics [HayBrown and Twiss 1956a].

From a historical perspective, HBT reported correlationghe intensity measured at two

183



184 Photon Anti-bunching from Squeezing: Theory

locations, from light emitted by a thermal source. The éffeas interpreted as being either
a manifestation of classical wave theory, or dubdtnchingin the arrival time of photons.
Such correlations were generalisedntb-order by Glauber in a comprehensive quantum
theory of optical coherence [Glauber 1963], with the seeomi#r coherenceg'® corre-
sponding to the measurement made with a HBT interferom&ueriously, the theory pre-
dicted that certain states of light would exhibit a phogoi-bunchingeffect, which is the
tendency for photons to arrive apart from one another. Bisnon-classical phenomenon
which violates the Schwarz inequality [Walls and Milburrfay. Photon anti-bunching has
been observed in resonance fluorescence [Kirabég. 1977]; conditioned measurements
of parametrically down-converted light [Rarigf al. 1987], [Nogueiraet al. 2001]; pulsed
parametric amplification [Koaslet al. 1993], [Lu and Ou 2001]; quantum dots

[Michler et al. 2000], [Santoriet al. 2002]; and trapped single atoms/molecules

[Lounis and Moerner 2000], [Darqui al. 2005]. Recent experiments have probed the
spatial and temporal second-order coherence functionwofia species in Bose-Einstein-
Condensation and atom lasers [Schellekatred. 2005], [Ottlet al. 2005]. All of these ex-
periments have relied upon the ability to detect individeetticles in a time-resolved mea-

surement.

We apply a technique for measuring the second-order coterahoptical fields, that
complements previous studies and provides a link betwesenede-variable (DV) and conti-
nuous-variable (CV) quantum optics. Our scheme is basetl@R BT interferometer, but
uses homodyne detection in each arm, to make CV measurewofetis quadrature am-
plitudes over a range of sideband frequencies. The secated-coherencg(? is then
constructed from the set of four permutations of the timeraged correlations between the
amplitude/phase quadratures. At no point is it necessanate time-resolved detections of
single-photons [McAlister and Raymer 1997, Wadilal. 2006]. Homodyne detection of-
fers the advantage of high bandwidth, and excellent immnguaiextraneous optical modes.
We used the scheme to measure the temporal second-ordeenciéunctiory® (1) of a

displaced squeezed state.

In contrast to most CV experiments involving squeezed Jlighthe realisation that
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weaker squeezed states can exhibit a greater anti-bunefigry. Some properties of dis-
placed squeezed states in the context of second-orderetm®ehave been investigated
before [Koashet al. 1993, Stoler 1974, Mahran and Satyanarayana 1986]. Suels stan
exhibit behaviour ranging from photon anti-bunching toesdipunching, provided that the
state is sufficiently pure, and the squeezing weak. Theralsaseen much interest in the
nonclassical properties of displaced Fock states whicldlditian to showing negativity in
the Wigner function, also show oscillations in the numbatestlistribution:

[de Oliveiraet al. 1990]. An experimental observation of these properties made by
[Lvovsky and Babichev 2002]. Using our modified HBT intedereter, and exploiting the
high stability and low optical loss of our experimental getwe were able to prepare and
measure displaced squeezed states that clearly demedgfaiton anti-bunching. In ad-
dition, we investigated the immunity of second-order cehee measurements to optical

attenuation.

7.2 Ways of measuring coherence

The idea of coherence has its origins in the classical gusmmiof light. Early experiments
by Grimaldi in 1665 that aimed to prove that light was a waadetl (see Chapter 9.3.1 in
[Hecht 2002]). In such an experiment, a beam of sunlight Mlawad to pass through two
closely-spaced pinholes. It was expected that the waveehatlight would make itself ap-
parent as an alternating bright/dark pattern (fringes)tduge constructive/deconstructive
interference of the wavefronts from each pinhole. Howemerfringes were seen. This is
because the pinholes were spaced so far apart from one ativdhé¢hey effectively sam-
pled two independent (statistically uncorrelated) sosiaelight. As seen from earth, the
sun has an angular diameter(®$°. And as it is not a point source of light, a sample of the
light at one point in space, contains the vector sum from nrangom emitters across the
sun’s surface. But if one wishes to sample the light from asdgoint that is some trans-
verse distance away from the first, then the different drtiwaes from the emitters of say
the western and eastern halves of the sun, will add vedipot@mhb create a new amplitude

and phase for the wavefront. The two pinholes of the experirdil not produce fringes,
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Figure 7.1: Two instruments for measuring the angular diameters of distant stars. (Left) Michelson’s
stellar interferometer optically interferes the light collected by two mirrors that are spaced by distance d.
The interference pattern is similar to that of a double-slit experiment. The fringe visibility gives a reading
of the first-order coherence function at the spacing d. When the fringes vanish, the angular diameter of
the star is given by 1.22)/d where X is the central wavelength. Note that the measurement is sensitive
to phase fluctuations that are induced by atmospheric turbulence. (Right) The stellar interferometer of
Hanbury-Brown and Twiss. The light is collected and detected at two points that are separated by distance
d. The photocurrents are multiplied and averaged, thus giving the correlation. The signal is proportional
to the second-order coherence function that is sampled at the spacing d. When the separation is very
large the correlation vanishes because of the time delay of the intensity fluctuations from sources that are
on opposite sides of the star. The measurement is insensitive to atmospheric turbulence, thereby allowing
much smaller stellar diameters to be measured. The trade-off is that the bandwidth of the photodetectors
limits the efficiency of the measurement, which means that integration times are necessarily very long.
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because the phases of the two wavefronts were not corrdladédpatially coherent), and
therefore the bright/dark fringe pattern averaged out toitotm intensity. If the pinholes
had been separated by less than abeui0 xm, then the interference pattern would have
appeared; see for example [Hecht 2002]. Young improved erotlyinal experiment by
placing a single pinhole (or slit) before the double-slihisSTensured that the light sampled
by the subsequent slits was correlated in amplitude andeplaasl the appearance of the

fringes established the wave nature of light [Young 1804].

7.2.1 Classical definitions and bounds

The original double-slit experiment effectively measutresspatiafirst-order coherence of

a light beam. This is defined as

(£7(r1,t1) E(rg, t2))
VAE*(r1,t1) E(r1, 1))/ (E*(r2, t2) E(ra, t2))

for the spatial co-ordinatess, and at timet;. Michelson proposed a larger version of the

gV (ry, t1;10, 1) = (7.1)

original double-slit experiment that could be used as amiungent to measure the diameters
of distant stars [Michelson and Pease 1921]. The pinhole® weplaced by two planar
mirrors that were spaced several meters apart; see Figurelfie starlight was reflected
from these mirror into a parabolic telescope mirror (at theWilson Observatory), which
interfered the light at the focus. A fringe pattern from tter 8etelgeuse was observed. The
distance between the two planar mirrors was increasedthatitinge pattern disappeared.
In this way, the angular diameter of Betelgeuse could belvedpdespite it being orders
of magnitude much smaller than any telescope of the day aesllve. The difficulty in
operating the interferometer, was that atmospheric tartmd induced a randomly varying
phase shift of the light received by each planar mirror, d&mslltad the effect of ‘washing’
the interference pattern away. Hence, measurements of disteat/smaller stars was not
possible [Mandel and Wolf 1965].

Hanbury-Brown and Twiss thought of another way of measuitrggspatial coherence
of light. Their idea was to measure the intensity of the stgntldirectly, and not the elec-
tric field via an interference fringe; see Figure 7.1 and thgvalent scheme in Figure 7.2.

The advantage of doing it this way, is that the relative phasel therefore atmospheric
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turbulence) plays a lesser role in the measurement becaesdoes not need to optically
interfere two beams on a beamsplitter. With the HanburyaBreTwiss setup, one needs
only to detect the starlight on two photo-multiplier tubkattare separated by up to several
hundred metres away. The incredible result is that someddinderference effect still takes
place. Hence this setup is often called an intensity intenfieter. To create interference,
one must divide a signal and combine it again. The divisiocums during the sampling
process (photo-detection), where only a small portion efdhtire wavefront is selected.
The combination comes when the photocurrents of the deteate analysed in the corre-
lator. The interference can be considered to occur not letweo monochromatic optical
frequencies directly, but between their individual ‘beates’ which contain a spread over
many frequencies. The beat-notes that are sampled at tavedhit delay times, or two
different positions, will become less correlated as theyléime or position is increased.
The normalised form of the correlation becomes exactly #fanidion of thesecond-order

coherence:
(I(t+7)I(1))
(I(1))?

The second-order coherence is limited by classical bounds g(2)(0) < oo which

g9(r) = (72)

also have their origins in the Schwarz inequality. Some rofiteperties are: symmetry
g (r) = ¢@(—7); and long time delay® (7) = 1 for 7 > 7.; and the other limit

g (r # 0) < ¢@(0) which says that the coherence finds its maximum at zero time
delay. There is a relationship between the first- and seoothel coherence functions,
namely g? (7) = 1 4 [¢g)(7)2. This relationship was used by Hanbury-Brown and
Twiss to analyse the data from their stellar interferométeinfer the diameter of Sirius
[Hanbury-Brown and Twiss 1956a]. Their early success lednthio build a larger instru-
ment at Narrabri, Australia. Over the course of severalgjgliey measured the angular

diameters of 32 stars [Hanbury Browhal. 1974].

7.2.2 Quantum definitions and bounds (single-mode)

When the second-order coherence function is expressee imudintum theory of light, the

measured intensities become normally-ordered productheotreation and annihilation
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: Figure 7.2: The Hanbury-Brown Twiss intensity interfer-
\y ometer is a technique for measuring the intensity correla-
é ’C tion function of a light beam. The input state a is interfered

PD with a vacuum state ¥ on a 50/50 beamsplitter (BS). Each

input state arm is detected by a photo-detector (PD). A time delay is

introduced, which can be either optical or electronic. The

o>

average value for the product for the intensities is calcu-
lated.

operators, which can be interpreted as groupings in theaatimes of photons. As we
consider just a single optical modg the second-order coherence is defined as the joint

probability of detecting a single photon for timmand at time + 7 to give

g = 72 <ft (t +r)a(t) 73

)a
(af(t)a(t))”

where the coherence function has been normalised by theesqlithe expectation value

of the photon number. The equivalent form for classical feldn be made by replacing
the creation-annihiliation operators with complex nunsbeFhese can then be re-ordered
in such a way, that at zero time delay, we can wgite (0) = (I2)/(I)? with I the field
intensity. After applying the Schwarz inequality directlye can see that the coherence
function is bounded below by one. This means that classiellsficannot display anti-
bunching which is heralded for values less than one. Howavéne quantum expression,
the re-ordering of the operators is prevented, and thexefer values o§(?) (0) can take on

values less than one.

7.2.3 The two-mode version is identical to single-mode

In practice, second-order coherence is not easily measaordte form of Equation 7.3
because it is not readily possible to detect and reselghotons. Instead, the single mode
is coupled with another modeon a 50:50 beamsplitter. The intensity of the light at each

output is then measured. This is the principle of the HBTrietemeter.

4 () = (b1 (t +
f(t

b(t + 7)él (H)e(t) (7.4)
(b1 ()bt

)
Bb(t) (et (t)e(t))

)
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The amazing thing is that Equation 7.3 and Equation 7.4 becequivalent if the other
input to the beamsplitter is in a vacuum motleThe contribution from the vacuum state
does not appear in the final expression of Equation 7.4, s@tiesimply gets back Equa-
tion 7.3. Formally, the photon anti-bunching effect is wet#Bed in the coherence function
wheng® (0) < ¢® (7 # 0). On the other hand, photon bunching occurs when the opposite
inequality holds true. To make these kind of g2 (pronoungest™‘two’) measurements,
one needs to have access to the photon number correlatiomsthe limit of very weak
light beams, to correlate the arrival times of single phetoneach arm. This is the most

common method of measuring g2.

7.2.4 Re-express coherence with quadrature operators

Experiments in the continuous-variable regime do not hatedadors that can resolve single-
photon events, but they do use homodyne detection to beigertsithe quadrature ampli-
tudes of the signal beam. So a connection between the disaetble and continuous-
variable methods needs to be found. A homodyne detector egiaoed at each output
port of the 50:50 beamsplitter. The amplitudie™ = af + a and phaseX~ = i(al — )
quadratures are measured. The dependence can be reverskdt we get the creation
and annihilation operators in terms of the quadrature opesa’ = (X —iX~)/2 and
a = (X +4iX ~)/2, respectively. These forms can be plugged into Equationaid}
simplified to give
> X+ 7)2 X)) -2, (Xh (D)) +4
(i Xi(1)2) = 2) (X Xit)?) — 2)

In this compact notation, summations are made over the giadrindices;, j = +, — and

g?(r) =

(7.5)

mode label indice& = b,c. This measurement technique is possible only because there
do not appear any cross-quadrature terms for a single mateexample, it is not neces-
sary to measure something like the correlation betweenripitade and phase quadrature
for a single mode. The absence of such cross-terms meansatttatcorrelation term can

be independently measured by recording the output of theodgne detectors, and then
reconstructingg® () according to Equation 7.5. It is therefore possible to measue

second-order coherence function using homodyne deteatme. Homodyne detection
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has the advantage of being very specific in selecting the nroderms of polarisation,
spatial mode function, and wavelength. The selected modbvisys identical to the local

oscillator mode.

As an aside, | note that in principle it is possible to recardtthe complete quantum
state in terms of the Wigner function by way of collecting acfequadrature measurements
over a range of quadrature angles. The inverse Radon traration of that set can then
recover the Wigner function [Smithet al. 1993]. From the Wigner function it is possible
to calculate many quantities of interest, for example thamisd-order coherence function
to check for photon anti-bunching statistics, and hencetlesparticulate nature of light.
But we can side-step the quantum tomographic proceduredbyrjaasuring the contribu-
tions that make up Equation 7.5. These contributions aredhelations of squares of the
quadrature measurements, so although the individual merasats themselves are linear,
the set of measurements are later combined in a nonlinearimByguation 7.5. In this
way, it is possible to extract the particulate nature oftligia linear continuous-variable

measurements.

7.2.5 Quadrature-angle-averaged measurements

The previous analysis of g2 in terms of quadrature operatoes not tell us how to make
the measurements themselves, but rather just how to put tibgether. The simplest in-

terpretation is that one should measure all the combimatiddramplitude and quadratures
and their correlations between the two modes. This is cdytpossible in an experimental
setting, however this requires one to control the relativase of the local oscillator to the
signal beam, such that the quadrature measured is preciselgr X —. But perhaps one

can get the same answer by being lazy. We could give the lecélaiors a random phase
shift, and then averaged the measurements of the signal, lsgaas to give a ‘quadrature-

angle-averaged’ measurement.

| start by using the expression for an arbitrary quadratagdeafor modeb andc, that
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are determined by the anglésndg, respectively, so that

Xg = X;_COSQ-l-Xb_SiHQ (7.6)

X9 XFcos¢+ X sing (7.7)
The values fop and¢ are drawn from the flat, normalised probability distriba8® (6) =
1/27 and®(¢) = 1/2r, respectively. Note that a comparison of the phasasd ¢ are
assumed to show no correlations, hence the joint probabiktribution of those two vari-
ables is separable into a produetd, ¢) = O(6)P(¢). Next, | would like to calculate the

gquadrature-angle-averaged variance operator for mpddich is denoted by an overbar,

and becomes:

2m
(X2 = / do @(9){()2;)2 cos® 0 + (X, )?sin? 0
0

+(X, X, + X, X, ) sinfcos 6

- 1 27rd9 {(X+)200529—|—( A_)2sin29
27 Jo b b
+(2(Xb%)2 - (Xgr)2 - (Xb_)2)sin9(:os 9}
Ir .

= S|E 7

= 3>k (7.8)

where the summation is taken over only the amplitude andepfaadratures € {+, —}.
We can see that the quadrature-angle-averaged variartcis theasured for one mode is
just the same as the average of two measurements: the afepiind phase quadrature
variances. The result for modeis similar. | now want to analyse the (second-order)

gquadrature-angle-averaged correlations between theshadalc. We find that

- 27 27
(XOP(XE2 = / / 40 do ©(6) B(6) (X0)*(X2)?

P
0 0
B 1 27 0 1 2 R
= {5 [T} [Taocier]
= SR+ ERED (R PR+ ()22
= 5 S xhRxEy (7.9)

1,J

where the summation is made over the amplitude and phaseaquis, as written by the
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subscripts € {+, -} andj € {+,—}.
Finally, by way of inspection with Equation 7.5, and comhapithe two quadrature-
angle-averaged operators in Equation 7.8 and Equatiorn7l®ei appropriate way, gives

back the second-order coherence measurement:

g (0) = =1 4 (7.10)

In principle, this quadrature-averaged scheme will predine same result as the fixed-
quadrature scheme for measuring the second-order colegitemztion. The only condition
that needs to be met, is that the measurement is averagealbeggles in equal time,
i.e. over a uniform distribution of angles. This method maynhore appropriate for some
applications where the relative phase of the local osoillaith the signal beam cannot be

controlled, such as when measuring light that originateshfa truly thermal source.

7.3 Second-order coherence of displaced-squeezed states

Now that we have a method for measuring second-order coterfeom the quadrature
amplitudes, we can start investigating sources of lightalha non-classical in exactly these
observables. Squeezed light is the primary candidate,soweawill see, the displacement

of that squeezed state also has an important role to play.
7.3.1 The ‘spider diagram

Let me restrict the analysis for the moment to zero time detay 0. It is already a well
known result that a displaced state (coherent state) givakia of second-order coherence
of ¢®®(0) = 1. Another results is for squeezed vacuum stgté0) = 3 + 1/(n), with

n the expectation value of the photon numlef = sinh(r) wherer is the squeezing pa-
rameter. The interesting theoretical result, and perhapslwat has often been overlooked
(an exception is [Mahran and Satyanarayana 1986]), istleatdmbination of the two pro-
cesses. a squeezed vacuum that is then displaced, can kieeontan arbitrary value of
g®? (0). 1 want to calculate the second-order coherence of a disglaqueezed state. It
turns out to be a simpler calculation if we work in the Heisengbpicture, which means

that we start with a mode in the vacuum state, but transfoercthation and annihilation
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operators such that

DY ()i (r)aD(a)S(r) = a + acosh(r) — a' sinh(r) (7.11)

wheref)(a) is the displacement operator, aﬁ(}lr) is the squeezing operator. Note that for
no other reason than keeping the derivation simple, | ctshré displacement and squeezing
parameters to be real quantities:c  andr € R. The second-order coherence for zero
time delay then becomes

sinh?(r) (2a2 + cosh(2r) — 2a2 coth(r))

200 —
g0 =1+ (02 + sinhz(r))2

(7.12)

The true versatility of this function can only be shown wheapming it out across the
variablesa andr. The map is shown in Plate 9 where darker colours signify gohainti-

bunching statistics, and lighter colours show bunching.nt@ars are drawn to give the
exact values. The horizontal axis corresponds to cohetatdss while the vertical axis
corresponds to squeezed states. All other points in théngnaga combination of both pro-
cesses. Immediately we can see the symmetry in positivatimegvalues of the displace-
ment variable, and the asymmetry in the squeezing vari&y if the state is amplitude
squeezed, and accompanied by at least a small displacewiirthie state show photon

anti-bunching.

7.3.2 Approaches to the vacuum state ‘singularity’

The centre of the diagram in Plate 9, as giveraby » = 0 of the displaced-squeezed state,
corresponds to the vacuum state. We can see that the coimiesiof various g2 values start
to crowd together as the origin is approached. Starting witlisplaced-squeezed state,
it is possible to approach the vacuum state while holding\aiye of g2 constant. This

effect is attributable to the normalisation procedure ofagayiven by the denominator of
Equation 7.3, which approaches zero when the expectatilue \d the photon number

of the state also approaches zero. So although the degreeaidsorder coherence of a
vacuum state is defined, its definition is not unique and caretbre be considered to be a

singularity.
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DISPLACEMENT CONTROLS THE ANTI-BUNCHING

10° | Figure 7.3: The degree of second-
order coherence as a function of dis-
. placement. The vertical scale is
10° + . . logarithmic. Two curves are shown
" for a fixed squeezing parameter of

r = 0.03 dashed line, and r =

o -
= 0 e ) .
@m 10" |- e 0.003 solid line. The shaded area
i RS S | corresponds to anti-bunched statis-
- ot tics. Note the large range of values
10 5 .
r=0.003 that can be accessed by only slightly
0 01 02 03 changing the displacement.

displacement [a]

7.3.3 Displacement controls the anti-bunching

For a given level of amplitude squeezing, the displacemppears to control the anti-
bunching behaviour. In Figure 7.3, | have plotted the seamdér coherence as a function
of the displacement.. For the case of = 0.03 squeezing (solid line), one can vary the
degree of second-order coherence by 4 orders of magnitudie ther = 0.003 squeezing
case (dashed line) allows a variation of 7 orders of magaittrdm anti-bunching/® (0) =
10~2 to bunchingg® (0) = 10*7). | could of course obtain a similar kind of behaviour by
plotting g2 as a function of the squeezing parameter for afikeplacement. But squeezed
light itself is considered a non-classical effect, and in #ense it is more interesting to see
how the displacement affects the degree of second-ordereate (from anti-bunching to

bunching) as a function of a ‘classical’ parameter like tiepldcement.
7.3.4 Invariance to optical loss

No optical measurement is made without introducing at Ieaste optical loss. The loss
mechanism could be in the form of scattering from lenses anmre; poor mode-matching
in a homodyne detector; or simply from the inefficiency of gtetodiode itself. These
processes can be reduced to a simple model. The loss maohemigples in new modes
other than the original mode of interest. These new modesisually in the form of a
vacuum state, so that the original state, say a squeezed Istaiomes mixed and tends to
approach the form of a vacuum state, as the level of optisal imincreased. This is most

undesirable, because much effort went into making the ggukestate, only for it to become
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HBT INTERFEROMETER WITH OPTICAL LOSS

A A vacuum states
Vo . Vi, Vo
Y Y N1 ¥
a ' o e N, Figure 7.4: The Hanbury-Brown Twiss
E E @ PD (HBT) intensity interferometer with optical
input state ’(‘: loss. The coupling of vacuum states via
N3 loss is considered prior to, and within, the
V3 --->2 B HBT interferometer.
PD

more ‘classical’ via the loss mechanism.

It is a rather surprising fact then, that measurements o$élcend-order coherence are
immune to optical loss. Where the loss occurs in the optiath,mlso does not play a role.
This result can be calculated in three separate cases faddisat occur before, during, and
after the main beamsplitter. The new setup is shown in themsalic of Figure 7.4. Aside
from the original mode, there are four vacuum modes(wherei = {0, 1, 2, 3}) that enter
via various beamsplitters having intensity reflectivities The amplitude reflectivities:

7; = /1 —n; andR; = /7; allow a more compact description.

The transfer function of this system in the Heisenberg pectar the two modes prior

to detectionp andc, becomes

b = TyTiTha+ R17201 + Ratve (7.13)

—ToR1T3a + Ti'T301 + Rt (7.14)

(o
Il

There are similar expressions for the creation operatatditive complex conjugated reflec-
tion coefficients. Now we choose the initial state of the eysto be in the separable state
[1)a]0)40]0)41]0)42]0) 3. This greatly simplifies the calculation for the coherenaaction
because the cross-terms vanish if they contain only a semgly of a creation or annihila-
tion operator of the vacuum modes. Likewise, terms goesrm iz¢hey contain the mean
photon number of one of the vacuum modes. The only part thaclks/, is not to forget

the contribution from the anti-normally ordered ter(ﬁt@oﬁg\m = —1. Applying all these
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rules then gives

before during after (the beamsplitter)

o TR (BT e
gloss(T) = (7627-127'22) (7-0272%,15’2) g( )(T) = g( )(T) (715)
mode b mode ¢

The numerator and denominator of the fraction cancel ouive tie original coherence
function. But if one has not written it out explicitly, theth does not seem possible. |
have also identified which terms arise from the loss mechabisfore, during, and after
the main beamsplitter. Later | will show how this works in theck basis as the state is

optically attenuated.

7.4 Generalisations

The previous analyses of the second-order coherence hamegdricted to zero time delay
(7 = 0), and also tguredisplaced squeezed states. In this section, a finite timéamirand
an extension tonixeddisplaced squeezed states is introduced, in order to makantiysis

more applicable to experimental considerations.

7.4.1 Arbitrary choice of the temporal window function

The full expression for the second-order coherence is diimof the time-delay. To get
this expression, one needs to go back to Equation 7.3 andtrépgederivation with a time

delayr in modeb(t). The result is

@) — 1 o2
97(7) <sinh2(7")+a2>2{<

().l ()] sinh(2r))’

N =

+(2+[a0), ' (7)] + [a(7), 4" (0)] ) a2 sink(r)
+(1 + [a(0), af (T)]2> sinh4(r)} (7.16)
The final form of the coherence function depends on the comitiouat relation between

the original and delayed versions of the creation/annibitaoperators. The commutation

relation depends on the shape of the frequency window theseid for the measurement.
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COHERENCE FUNCTION: SQUEEZING r=0.03

Figure 7.5: The second-order co-

herence as a function of time de-

lay. Five examples are made with de-
‘ creasing displacement, but with the
0=0.18 squeezing parameter for all of them
held constant at » = 0.03. (a)
Shows a coherent state. (b) and

‘ ‘ ‘ 0=0.12 (c) show anti-bunching. (d) appears
,\/\/\/\A/\/\/\/\ to be coherent at zero time delay.

(e) shows bunching (note change of
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7.4.2 Choose top-hat frequency window

Since one can only make measurements in a finite time windogvnaust choose a corre-
sponding frequency window function. Formally, this medr#t & filter selects a frequency
mode according ta(r) = N~Y2 [* 4, f(w)el™dw wheref(w) is the filter function and

N = [ f(w)*dw is a normalisation factor. We already know the commutatigation

for the frequency creation/annihilation operators, itileeg by [&w,&l,] =0(w—w). In
many experiments, a flat band-pass filter is chosen to isthlatieequencies of interest. This
frequency filter, is described by a top-hat function such fifav| < Q) = 1 and zero else-
where. From these, we get the commutation relations foiirtee-tlependent operators to be
[@(0),a' (7)] = [a(7), a'(0)] = sinc(Q7). These results are substituted into Equation 7.16

to give

g?(r) = (Sjnh2(:) s a2)2 { (oz2 — %SiHC(QT) simh(2r)>2

+2 (1 + sinc(Q7’)> o? sinh?(r)

+ <1 + SiHCz(QT)> sinh4(r)} (7.17)

It is worth studying the behaviour of this equation. We catetthree distinct cases: A

coherent state, a bunched displaced-squeezed state, anti-banched displaced squeezed
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state. | choose the coherent statedor 0 and turn off the squeezing= 0. The equation
simplifies tog(® (r) = 1 for all 7. This is the expected result for a coherent state, and
we note that the form of the filter function does not play a twee. Next, we can choose
a bunched state, let us say that we turn off the displacement 0, and have a large
amount of squeezing > 1. The result is thay(® (0) = 3 and the function for time
delay isg® (1) = 1 + 2sinc(92r), which means that the time-window, in this case a sinc
function, is mapped out over the delay. In Figure 7.5 | havelena set of case studies
with a fixed squeezing parameter= 0.03, but with varying displacements. The second-
order coherence as function of time delay is plotted for eade. For a large displacement,
the function is essentially flat at unity, and this is what eveuld expect for a coherent
state. As the displacement is reduced however, anti-bngcppears as a dip in g2 at zero
time-delay. Reducing the displacement further brings tat$nto something that appears
coherent at zero time delay(@(o) = 1), but for other time delays, the sinc function
behaviour is still visible. As the displacement is turneticaimpletely, we see the bunched

state.

7.4.3 The extension to mixed Gaussian states

The previous expression can only handle the class of puressiau states (displaced-

squeezed states). It is possible to generalise it for ang$@u state that has the quadrature

variancesV., V.~ and displacement valug,. We do however restrict;, to be real. The

in’ Vin
subscript in’ refers to an ideal measurement of the state that could be=rpddr to the

light entering the HBT interferometer, i.e. before the man50 beamsplitter. The analysis

using the top-hat frequency window shows that

(Vid — Dad,
(2= Vi = Viy —4af))?
2+ (Vip =2V + (Vig —2)Vir
2=V = Vi, —4a8)?

g (r) = 14 16sinc(Qr)

+2sinc?(Q7) (7.18)

This expression can also handle thermal and biased thetataks These do not have

squeezing on either the amplitude or phase quadraturesatier haveVirJlr =V >1

in

for the thermal state, and,” > 1, V;, = 1 for the biased thermal state. There is some
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surprising behaviour in the second-order coherence fomdtr this state when using the
top-hat frequency filter. Depending on the input parameathosen for the biased thermal
states, it is possible to see the coherence function apgpraa@lue of zero, fonon-zero

time delays. This feels odd because one would expect only digs of the coherence
function below unity for genuinely non-classical statedigtit. However, there is no such
limitation at non-zero time delays, and one can rest asstigdhe (classical) thermal and

biased thermal states do not meet the criteria for photdarbanthing.

7.4.4 The inferred state is important

We know that the degree of second-order coherence is indepemf loss on the input
state both before and during detection in the HBT interfestam But how does this relate
to the generalised g2 expression for arbitrary GaussidasstaThe subscripfii’ for the
quadrature variances and displacement refers to an ideureament prior to entering the
HBT interferometer. What that means is that there is an emfiass of Gaussian states
that all have the same value for g2. That class can be tracddtban original state that
is pure. To find the pure state, we use the prop&y,, = 1/Vj., and solve the loss

transformation equation for the logsand for one of the variancel%jr The solution is

ure*

~ (Vi — DV, = 1)

= 7.19

T VY, - .
1-V*

vyt = - in 7.20

pure ‘/1; 1 ( )

Vp;ro = 1/ Vp—;rc (721)

Qpure = \/ﬁain (722)

The range of values faf have to lie within0 < n < 1 otherwise the resulting variances
are unphysical. The quadrature variances that will be nmmedsafter the loss are restricted
such that eitheV, " < 1 or V. < 1. With the aim of demonstrating large anti-bunching, we
know that we need a source of weak squeezed light. Howeeeregult from this analysis is
that we cannot cheat by starting with an initially strongiyisezed state, that we then apply

an optical loss to. The g2 measurement is sensitive to the Istdore all loss mechanisms.
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7.5 Intuitive interpretations in the Fock basis

We have covered much of the behaviour of second-order coter®r various cases of
displaced squeezed states. But what is missing is an irdukiplanation for that behaviour.
In the next sections | will search for explanations by refyam expansions in the Fock state

basis for various limiting cases.

7.5.1 Relationship of anti-bunching to sub-Poissonian stistics

Itis well known [Loudon 2000] that the second-order coheesfunction at zero time delay
can be simply expressed in terms of the mean and variance phtiton numbeof a state:
2

gD0) =1+ U"M_z“ n (7.23)

To show an anti-bunching effect, requires that the secamd become negative. This will
only happen when the photon number variance is less than ¢a@.nirhis is exactly the
definition of a photon number distribution that is sub-Paisan (02 < 1u,). The negative
value term grows when the mean photon number approaches Berce,the strongest
anti-bunching effect occurs for a state that is the mostRoigsonian for the least number
of photons.

The Mandel factor) gives a normalised measure for the transition from sub- peisu
Poissonian, with) = (o2 —u,,)/p1n, Where—1 < Q < 0 is sub-Poissonian, arid< Q < 1
is super-Poissonian. This means th& (0) = 1 + Q/u,. The Mandel factor is easily
related to the Fano factdr = ) + 1. Note that sub-Poissonian states are sometimes called
number-squeezed states, which should not be confusedheitiuadrature-squeezed states
that are referred to throughout this thesis.

For our displaced (quadrature) squeezed states, the mmst@ssonian statistic is not
necessarily generated by the strongest squeezing. Streqgeezing excites ever higher
even photon number states, which causes the photon numizrcato increase. However,
adding a displacement has the effect of re-distributingett@tation of the photon number
states such that the variance of the photon number app®aatminimum, which comes at

the expense of increasing the mean photon number. This isadisplacedsqueezed state
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>
Qo“& 4> @Q& Figure 7.6: A displaced squeezed

o Ssqueezing parameter r=0.003 N @/ S
0 ‘ state with variable displacement, is
102 - expanded in the Fock basis for the
first few number states. The prob-
10° ability of detecting each state is
> =2 plotted on the logarithmic vertical
:c__gs 10 axis. For zero displacement, the two-
g 10° photon state is dominant, and g2
= n=3  shows bunched statistics. Increasing
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] single-photon state until it is dom-
10 inant, and the two-photon state is
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is required to exhibit anti-bunching, and not a squeezecuua) state alone.
7.5.2 An exploration of the ‘singularity’

We want to investigate the case of displaced-squeezed statiehave quadrature variances
and displacements that bring them close to the vacuum stéekly displaced squeezed

states can be well approximated as a superposition of tluele $tates:

) = (col0) + exl1) + cal2)) (7.24)

wherecy 1 2 can generally be complex coefficients, but | will restrictrtinto be pure real
for this analysis. The second-order coherence from Equ&ti® can be expressed in terms

of the coefficients to get
2|ca]?
(ler* + 2]e2]?)?

g2 (0) = (7.25)

We note that the coefficient for the vacuum state does notaampelicitly, but it is hidden
within the normalisation restriction. It is important testect the coefficients such that the

state is normalised. This means fulfilling the condition
1= (’60‘2 + ’61’2 + ’62’2) (7.26)

This equation defines the surface of a sphere, so it makes t®nsp the g2 function over
the surface of a sphere. This is shown in Plate 10. The x-yerdowates are scaled by

the coefficient for each respective photon number state.rddien of validity with weakly
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displaced squeezed states is only in the immediate vicaribynd thel0) ‘polar region’.
Here, the singularity becomes more pronounced, since tbhagstases of bunching and
anti-bunching become more densely packed. Furthermonéous of equal g2 value have
another interpretation. Travelling along a line of consiga is the same as transforming
an initial state by interfering it with a vacuum state on arbsplitter. This is true since we
know that g2 is invariant to optical loss. We can therefosualise the evolution of a state
that is subject to increasing loss. For example, a pure teaigm state will first migrate a
fair way toward the single-photon state, before finally gltg into the singularity at the
pole.

It is tempting to re-label the axes, such tiHt corresponds to a displacemefit) to
squeezing, antl) to a loss mechanism. This will only be valid very near to theepsuch
that for a squeezing operation, no other even numbereds sha¢eexcited; and similarly
for the higher number states that would surely be excited bysplacement operation.
With these caveats in mind, the g2 globe in Plate 10 reduaesythtem to the essential
components that are responsible for the g2 behaviour. Btsshear the singularity, it is
useful to think of the single-photon state as being soledpoesible for the anti-bunching;
and the two-photon state as being responsible for the bagchf superposition of the
single- and two-photon states (with ample vacuum compgremdbles us to choose any
degree of second-order coherence while approaching tigelanty. These ideas can be
seen in Figure 7.6. Where Fock state expansion for the fisstrfomber states is made for
a state that has a fixed (and very weak) squeezing parametes b function of increasing
displacement. Where the strongest cases of bunching arblusrthing occur, supports the
idea that for weakly squeezed states, the single-phottmistaesponsible for anti-bunching,

and the two-photon state for bunching.

7.5.3 Another way to approach the ‘singularity’

Instead of making a Fock state expansion for displaced zgdestates near the singularity,
we can make a series expansion of g2 for weakly displacedeggdestates in terms of
small values ot andr. What | am looking for is the relationship betwearandr that

provides a constant value for g2. Looking at the map of g2sacthose parameters in
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Plate 10, and looking closely near the singularity, seenssigigest to me that the form of
the relationship is quadratic, i.e. something like: K o?, whereK is a constant that needs
to be determined. If I plug this form of into Equation 7.12, and make a series expansion

for smalla < 1 up to second order, then we find g2 to be

d2(0) = (K—1)"+ (—2K* + 4K 4+ 2K*)0” + f(a) (7.27)

(K —1)? (7.28)

Q

where f(«) contains the terms that are higher than third-order in tipeuesion, and in the
last step | have assumed that the second term can be negtextadsex can always be

set arbitrarily small. Solving fok then givesk = 1 + \/gfii)l(O) and we have the simple

"= o (1 L \/glg?;(m) (7.29)

which tells us how much squeezing to apply for a given disfaent, such that g2 will

relation

stay constant. For example, for the state to exhibit commeiti—bunchinggl(fn)l(o) =0,

thenr = o2, and one is free to chooseand make it as small as possible to approach the

singularity.

7.6 g2 as a probe for measuring scattering processes

Since g2 is invariant to optical loss, it should make an igeabe for measuring the optical
properties of physical systems. But which properties? #csebsorption would not show
up in the measurement, nor would a static change of phase.dddree of second-order
coherence will only change when the envelope of the wave ées bltered through some
dynamic process. This occurs for example when coherent fightters off a collection

of small particles that are suspended in a transparenti@@luEach particle contributes
a small change in amplitude and phase to the original waved d\mce the particles are
moving randomly under Brownian motion, the amplitude andgehof the light will fluctu-

ate over time. Therefore comparing the intensity at twolyasfferent times would show

less correlation than for a similar measurement that woaldnade at two closely spaced

time intervals. The coherence function over the time deéssgals information about the
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rate of the de-phasing of the wave, and hence about the plhgsistem that is causing the
scattering.

A two-photon absorption process depends on the second-cotierence of the probe
beam [Loudon 2000]. The two-photon absorption processpprassed for anti-bunched
light, and enhanced for bunched light, in comparison to a&wpstt state (and with all three
cases having the same mean number of photons in the beanmapBdhese states could
be used to investigate two-photon processes in variougrayst can also speculate that
anti-bunched light has the potential to improve the pertotoe of optical coherence to-

mography, compared with the currently used sources suckBsL

7.7 Relationship between g2 and entanglement

| want to test the idea of whether g2 and entanglement areepies of light that are related
to each other. | will approach the problem from two direcsioi) to study the sources of

light, and (2) to examine the measurement instrument.

7.7.1 The instrument: first- and second-order correlations

There is a remarkable similarity between the schematic @bqmeriment to measure anti-
bunching using homodyne detectors, and an experiment tgureediased entanglement
from a single squeezed state. For the biased entanglempetiments, a squeezed light
source is sent onto a 50:50 beamsplitter to mix it with a vatatate. The two output beams
are then received by two homodyne detectors. The setup fasumiag anti-bunching in the
second-order coherence of a state likewise begins by mikiegnput state (a displaced-
squeezed state) on a 50:50 beamsplitter with a vacuum atatehe output light is likewise
received by two homodyne detectors. The setups for the twerarents are identical.
The difference is how the quadrature information is proeeds yield either the degree of
second-order coherence, or the inseparability measure.

The difference in the data processing for each experimem,be summarised in the
first- and second-order correlation matrices. For an efgamnt measurement, we only

need access to the elements of the first-order matrix. Tiheegies of this matrix are for
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example

Cop = (0XFoXy) = (XS X)) — (XX, (7.30)
And likewise for the other combinations of the superscripts- and subscripta, b. From
these elements it is possible to extract the inseparattfitgrion for entanglement (see

Section 2.9.3). We can compare this situation with the sg@oder correlation matrix

which is made up of the elements:

DY = (X)A(X,)%) (7.31)

a

Itis these elements that are used to re-construct the sexrded coherence function accord-
ing to Equation 7.5. Unlike the first-order correlation etts, the second-order correlation
elements do not have their mean values subtracted. Thelaalsthe positive/negative in-

formation, as this is erased when the square of the quadratoplitudes is taken. However,
with the assurance of the similarity of the two experimerig€pt for the data processing),

we can now look for similarities in the states of light thehass.

7.7.2 The source: anti-bunching vs. entanglement

Entanglement is a two-mode phenomenon, whereas secoadamiderence is the property
of a single-mode. To make a comparison, | need to considemdearder coherence as
being measured using a HBT interferometer, with two detsctwhich transform the anti-
bunched state into a two-mode correlation experiment. &m fnow on, when | refer to
the analysis of anti-bunching as an entanglement, whatllyregean is an anti-bunched
single mode state that has been transformed into two modes50/50 beamsplitter. Let us
choose the extreme anti-bunched case of a super-positiarsiofjyle photon with vacuum
state|1in)q ~ (|0)q + ¢|1)4), Where¢ < 1. This could have been prepared by the method
of weak squeezing and weak displacements. The state is thipted with a vacuum state

on a 50:50 beamsplitter. The entangled state on mbdesc, will look like

[Yout) = [0)5]0)c + ¢]1)5|0)c 4 C|0)p[1)c (7.32)

detectable
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where | am ignoring any probability amplitudes or normdimas. The underbrace shows
what components can be measured using a pair of convensimgdg-photon counters. This
component is one of the Bell states, which is a maximallyregital state in the Fock basis.
However, if we look at the quadrature amplitudes of thisestdtis quite unremarkable.
The Wigner function would look mostly like the two-dimensa Gaussian distribution of a
vacuum state, but the single-photon state component walecthe distribution to be slightly
broadened. As such, the quadrature variances for phasergiiiale as measured on each
output of the beamsplitter, give values that are greater time. Correlation measurements
made between the two outputs would show only a slight EPRhglement effect with the
degree of EPR being only slightly less than unity (see Chaptenevertheless the two-
mode state still shows entanglement. The exact value of ¢geed of EPR depends on
the chosen value af. Note that the inseparability criterion cannot be appliethis state

because it has a non-Gaussian Wigner function.

Let us look at the opposite case by starting with a stronglyeeged state that has an
appropriate displacement, such that it gives the bestoamiching statistic possible for the
given squeezing factor. The solution for the displacemettiat shows the minimum g2
value, when fed with the squeezing parameter

o exp(r) sinh(2r)
\/2cosh(r) — 2sinh(r)

(7.33)

For example, givem = 3 we geta = 202. Note that this state has a degree of second-
order coherence of(® (0) = 0.999988 which is only very weakly anti-bunched. An ex-
pansion in the Fock basis, before the beamsplitter, rexaalsst a complete absence of
the single-photon component, which can be considered megige for the anti-bunching
effect. Examining the state after the beamsplitter, resvaahighly mixed state, but one
that contains only a minute component of the pure Bell stet®em the discrete-variable
point of view, this state is not very interesting because dnly weakly anti-bunched, and
practically useless for performing Bell tests of hiddeniafsles. On the other hand, the
continuous-variable experimentalist who has access tquhdrature amplitudes of the two

modes, finds very strong correlations between them. Fop#riscular numerical example,
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the measured EPR would be= 0.00991, which is very close to zero, and is considered to

be a very strong level of entanglement.

We have seen two extreme examples for which the anti-bugchim entanglement
appear to be disparate. However, | can show that one propaniyot appear without the
presence of the other, albeit in a very weak degree. | réstricanalysis to the class of
pure displaced-squeezed states, so that we can alreadyeusgpression for second-order
coherence in Equation 7.12. | will assume that the displacdia is made a function of
the squeezing parameter such that the degree of second-order coherence is mirdmise
Hence we have only one free parameterT'he expression for the optimised second-order

coherence of this state is
g@(0) =1 — 2/ [exp(4r) + 2exp(2r) — 1)] (7.34)

The state is then sent through the 50:50 beamsplitter wheoeiples with a vacuum mode,
such that two new modes are created. The two-mode entangiedthat is created, is
Gaussian, and hence we can use the inseparability critesicheck for the presence of

entanglement. The expression for inseparability as afomcf squeezing parameter is

I_{ \/Vmin 7‘/min<1

1 7Vmin 2 1

Where the minimum of either the phase or amplitude quadratamiance is chosef,i, =

min{V*,V~}. Plotting g2 and inseparability together in Figure 7.7 we see that both
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entanglement and anti-bunching is witnessed for all vatdies We can extend the analysis
to mixed states by letting the initial state first pass thtoag optical loss mechanism, which
couples in another vacuum mode. For g2 we know that the nesutichanged, however, for
entanglement, the degree of inseparability approachdg unihe limit of complete loss.
But however much loss we apply, there is still some entangigmemaining. A whole class

of mixed Gaussian states can be generated in this way, buathdimited by’ ™ < 1 and

V'~ > 1 (or the other way round). We can conclude that for an initiaesthat is Gaussian,
but mixed, having arbitrary’ + # V—, that anti-bunching and entanglement are properties

that always occur together.

What about the general case? If the initial state is Gaudsiamot quadrature squeezed,
then there can not be any entanglement produced after tmespétier. And because we
also know that such a state cannot exhibit anti-bunchinggsvesv that the absence of anti-

bunching and the absence of an equivalent entanglementnghimaand.

The conclusion is that anti-bunching and quadrature etgarent are related, but take
their place at opposite ends in the limits of small and largamphoton numbers, respec-
tively. We can say, that for every two-mode Gaussian engghgflate there is an associated
photon anti-bunched state. Or we can say the converse: 8aargsian anti-bunched state
will create entanglement when it is sent onto a 50:50 bedttesphnd coupled with a vac-

uum state.

7.8 Summary

The intensity interferometer of Hanbury-Brown and Twiss & adapted so as to work
using homodyne detection rather than detectors that amatigserto single-photon counts.
The homodyne version has the advantage of being only sensgitian input mode that is
identical to the local oscillator mode: in terms of waveldngransverse spatial function,
and polarisation. The setup is ideal for measuring the estoerof displaced squeezed states
of light. These states were characterised for their bumgchimd anti-bunching behaviour.
The behaviour was interpreted using an expansion in the Basls, where only the first

three members: vacuum, single- and two-photon numbersstatere needed to explain
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their behaviour in the second-order coherence. The theakretsults that were gained
here, lend themselves very well to an experimental testh nexperiment is presented in

the next chapter.



Chapter 8

Photon Anti-bunching from
Squeezing: Experiment

This chapter details an experiment that was conducted tthie$wo main hypotheses that
were proposed in the previous chapter: (1) Second-ordesrenbe can be measured using
homodyne detection. (2) Displaced squeezed states cditgptbdton anti-bunching statis-
tics. The construction and operation of the experiment weallaborative effort between
Dr. Thomas Symul and myself. The results showed good agrewith the theoretical
predictions, and thereby provided support for the main tygses.

Together with the theoretical work already discussed inpBdra7, the experimental

results that are presented here have been published uedetltwing reference:

e Measuring Photon Anti-bunching from Continuous VarialileBand Squeezing,
N. B. Grosse, T. Symul, M. Stolska, T. C. Ralph and P. K. Lam,
Phys. Rev. Lett98, 153603 (2007).

8.1 Overall design considerations

The layout of the experiment can be divided into two part&ppration of the displaced-
squeezed state, and detection using the homodyne verstbe 6fBT interferometer; see
Figure 8.1. The source of squeezed light in the experimestameoptical parametric am-
plifier (OPA). The displacement of the squeezed state wagmsidg the interference with
an auxiliary amplitude modulated light beam.

The main challenge in this experiment was subtle. Usuatlg, seeks to maximise the
strength of a squeezed light source, however, the besbanthing effect was predicted to

occur for the weakest squeezing. Since the source of squidighé is based on an OPA,

211



212 Photon Anti-bunching from Squeezing: Experiment

Preparation of a HBT interferometer with
displaced squeezed state homodyne detection LO
. input
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Figure 8.1: Schematic of the experimental setup. OPA optical parametric amplifier, A/2 half-wave plate,
PBS polarising beam-splitter, x:y beamsplitter with transmission x, H1/H2 homodyne detectors, AM am-
plitude modulator, w function generator, WNG white noise generator, ® mixer, LP low pass filter.

then this would not normally present a challenge to the éxprtalist. This is because one
only needs to reduce the pump power to just a fraction of agpéraf the OPO threshold

power, in order to get very weak (and pure) squeezed lighe mikin problem associated
with doing this, is that one loses the signal-to-noise rg@iR) of the error signals that are
required to control the phases of the interferometer in peement. Without the control,

the homodyne detectors would not measure precisely theitanhplor phase quadratures,
and an accurate reconstruction of the second-order cateefenction would not be pos-
sible. The conclusion was to find a compromise between hatiagOPA operate at the
lowest pump power that still enabled an acceptable levetatfility in the servo-control

loops. Other considerations were to use homodyne detdttarfiad a good clearance of
shot noise above dark noise. This allows one to acquire a §bdtRl for measurements of

the quadrature amplitudes and their second-order cdoesat

8.2 Experimental setup

The general experimental techniques were very similardseahdescribed in Chapter 4 on
the harmonic entanglement experiment. A major part of th@eement had been con-
structed by W. P. Bowen and R. Schnabel. They set up the laskitsastabilisation, and

the second harmonic generator that pumped the OPA thataedethe squeezed light.

This setup can be considered as a facility for squeezed. lighs described in detail in
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Figure 8.2: A detail of the laser source and the second-harmonic generator (SHG). The laser frequency
was held onto the mode-cleaner resonance using tilt-locking, where the error signal was derived from
the subtraction of a two-element photodiode. The mode-cleaner provided a TEMOO mode, and also low-
pass frequency filtered the light to obtain a shot-noise limited beam above 6 MHz. The SHG was held

on resonance using an RF dither-locking technique. The SHG conversion efficiency was maximised by
adjusting the phase matching temperature.

[Bowenet al. 2002]. The second-order coherence experiment can be evadids an ap-
plication of the squeezed light source. The off-line displaent to the squeezed light
source, the dual homodyne detectors, the extra servoetdatps, and together with the

data acquisition system, were built, aligned and operagddrbT. Symul and myself.

8.2.1 Preparation of laser light

The experiment was built using all free-space optics thatweounted on an actively
damped bench. The source of light for the entire experimexgt & Nd:YAG laser oper-
ating at 1064 nm and producing 1.5W of continuous-wave lighe linewidth of the laser
was specified by the manufacturer (Innolight) to be 1kHz. Aam&action of the light

was sent to a second-harmonic generator which doubled ¢geidncy to produce about
600 mW of 532 nm light; see Figure 8.2. The 532 nm light was tisgmimp an OPA. The

remaining 1064 nm light was filtered by transmitting it thgbuan optical resonator that
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had a linewidth of several hundred kHz. This produced a cld&aM00 mode and also pro-
vided some filtering of the laser relaxation oscillationgtiti from this beam was tapped off
to provide the seed beam, displacement beam, and the |lotlatmss for the homodyne

detectors.

8.2.2 The squeezed light source

The OPA was based ond? nonlinear crystal of the materidliNbO5; doped with 7%
MgO. One end of the crystal was cut and polished to a convaxeshad coated for a high
reflectivity (HR) for 532 nm and 1064 nm. The other end wasshald flat and was anti-
reflection coated for both wavelengths; see Figure 8.3. Blesteesonator geometry was
formed by the alignment of an external concave mirror (tfwufding mirror’), having an
intensity reflectivity of 94% at 1064 nm and less than 5% fo2 B&. A ‘seed’ beam of
1064 nm was mode-matched into the 35 micron waist of the egsothrough the convex
end of the crystal. From the reflected light, a Pound-Dréiat-type error signal was
extracted, which was used to control the round-trip optiedh length of the resonator, by
way of PZT actuation of the coupling mirror position.

The 532 nm pump beam was mode-matched into the resonatargthtbe coupling
mirror. The phase of the pump relative to the seed was ctedroia an external PZT ac-
tuated mirror. Monitoring the seed beam that was transchitteough the cavity, showed
alternating amplification and de-amplification when thegghaf the pump was scanned.
The relative phase of the seed and pump was locked usingex thttk from a phase mod-
ulation on the pump beam. This was measured by using thetexfleeed beam from the
OPA cavity. The gain of the OPA was maximised by tuning thesphrmatching condition
of the nonlinear crystal, which was adjusted by an servdrobof the temperature, to a
precision of several tens of milli-Kelvin.

The pump power could be set to give a de-amplification factthe seed beam (mea-
sured in transmission) ranging from 0.9 to 0.5. The resgilieam of light had an optical
power of~ 5 W. Measurement of the quadrature amplitudes using a homatisteetor
revealed that the light was amplitude squeezed over a rdngjdeband frequencies: from

3 MHz up to the OPA cavity linewidth of 15 MHz. The level of sgzéng was optimum at
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Figure 8.3: A detailed schematic of the generation of the displaced-squeezed beam. The source of
squeezed light was based on an OPA that de-amplified the seed beam. The displacement was created
‘off-line’ by interfering the squeezed beam with an auxiliary light beam that was given amplitude modula-
tion sidebands.

the sideband frequency of 6 MHz, where the level of squeezingd be adjusted via the
pump power, to lie in the range dvﬁj{ = 0.8910 V;: = 0.55, with values of the purity of

the state(V; V) ranging from 1.005 to 1.18, respectively.

8.2.3 Preparing the displacement

An auxiliary beam was prepared with an amplitude modulatisimg a conventional am-
plitude modulator. This beam, the displacement beam, wasféned with the squeezed
beam on an asymmetric 98:2 beamsplitter; see Figure 8.3s{imezed beam was trans-
mitted through the beamsplitter with 98% efficiency. Thetige phase of the displaced
and squeezed beams was actively controlled, such thatdble@rent amplitudes were in
phase, and the angle of the squeezing ellipse remained iantipitude quadrature. The
amplitude modulator could be driven with either a sinusioidédtage source at 6 MHz, or
with a broadband Gaussian noise source. The former gavelaaksnent in the amplitude

quadrature at the 6 MHz sideband frequency, and the latterigied a biased thermal state.
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The state was biased because the phase quadrature wasdooshhadisplaced. The optical
power in the displaced beam was chosen, such that it neatlgheththe optical power in
the squeezed beam, after reflection from the 98% beamspliftes reduced the optical

power in the squeezed beam to approximatelyw.

8.2.4 Intensity interferometer using homodyne detection

The displaced-squeezed state was mixed with a vacuum staté0:50 beamsplitter; see
Figure 8.4. The light from each output port of the beamsplittas received by two indepen-
dent homodyne detectors. Each homodyne detector consibe&0:50 beamsplitter, on
which the displaced-squeezed beam was mode-matched vatiakdscillator (LO) beam

to a fringe visibility of 96%. The ratio of optical power ingl.O compared with the signal
beam was 1000:1. On each output arm of the beamsplitterigtitenas focussed down to
fill the area of the photodiode (ETX500). The total quantuficieihcy of the homodyne

detector was estimated to be 86%. The photocurrents fromwim@hotodiodes were sub-
tracted from one another to give a signal that was propatitmthe quadrature amplitudes
of the signal beam. The quadrature angle was determinedebsetaitive phase of the LO
with the signal beam. This was actively controlled by adigsthe optical path length of the
LO. An error signal to lock to the phase quadrature was obthby nulling the difference

of the low-pass filtered (DC to 20 kHz) photocurrents. Theltcthe amplitude quadra-
ture was accomplished by demodulating the phase modultiiegrwas left over from the

PDH locking of the OPA cavity length. The design of the secbothodyne detector was

identical.

8.2.5 Signal processing

The electronic signals from each homodyne detector weré-passed and amplified, mixed-
down at 6 MHz, and low pass filtered with an anti-aliasing ffi&te100 kHz; see Figure 8.4.
A digital-to-analogue converter then over-sampled theaigt a rate of 240 kS/s and
recorded the data as a time series on the computer. The g sas to apply a dig-
ital top-hat filter with a cut-off at 120 kS/s. This was to emsa flat power spectrum,

because it is this filter shape that later determined the fafrthe ¢(?) (1) function. Next,
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Figure 8.4: A detailed schematic of the HBT interferometer that has been modified for homodyne de-
tection. The local-oscillators were interfered with the ‘signal’ beams which came from the main 50:50
beamsplitter (BS) that split the displaced-squeezed state. The phases of the local oscillators were con-
trolled such that the homodyne detector was sensitive to either the amplitude or phase quadrature. The
resulting signals were mixed-down at a frequency of 6 MHz, before being digitally sampled.
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the variances and correlation coefficients of the four peéatians of amplitude and phase
quadrature measurements were calculated froi0° data points that were acquired over
a total of 10 successive runs. The uncertainty in each measnt, defined at the 68%
confidence interval, was calculated using the usual statishethods of error analysis; see

for example [Skoog 1985].
8.2.6 Experimental procedure

The experiment was done according to a strict procedurdgfrakent and characterisation
of the mode-matching or visibility of the beam paths, folemhby the data acquisition. The

steps in the procedure are given here:

e Begin the alignment procedure.Mode-match the 1064 nm laser light into the SHG
and mode-cleaner. Lock laser frequency to mode-cleanenaese, and lock SHG
cavity length to laser frequency.

e Maximise the 532 nm power output of the SHG by adjusting thaspkmatching
temperature of the SHG crystal.

e Align the seed beam into the OPA cavity. Check that the logikipis centred at the
cavity resonance.

e Align the 532 nm pump to the OPA by scanning the phase of theppamd maximis-
ing the gain of the seed as observed in transmission. Chatkhi lock is stable for
de-amplification.

e Mode-match each LO with the squeezed beam. Check fringeilitisi Mode-match
the off-line displaced beam (squeezed beam blocked) with &®. Check fringe
visibility.

¢ Null the (DC derived) phase quadrature lock of the homodyateaor by making it

immune to intensity fluctuations. Null the (RF derived) aityple quadrature lock of
the homodyne detector.

e Use the homodyne detector to check that the modulation odiigacement beam
is a pure amplitude modulation.

e Choose the level of squeezing via the pump power, and thé déptodulation on the
displacement beam. Lock all loops in order: OPA cavity, pwhpse, displacement
beam phase.

e Begin the measurement sequencé&ock to amplitude-amplitude quadratures on the
two homodyne detectors, record data. Repeat for other guuadrmpermutations. Take
shot noise measurements before acquiring each member péthmitation, and take
a dark noise measurement at the conclusion of the run.

e Choose another set of squeezing and displacement setfiliegeat the measurement
sequence.
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8.2.7 \Variable experimental parameters

There was a set of experimental variables that we could ehimcs controlled manner. We
were free to adjust the amount of displacement or broadbarsk that was added to the
squeezed beam. The squeezing strength and purity werel liongether by the intra-cavity
loss and seed-coupling mechanism of the OPA. Some contreévar, was possible by
independently varying the pump and seed powers that weng gimio the OPA. Additional

optical loss could also be introduced to the displaced-ezpe state prior to entering the
HBT interferometer. Finally, the electronic signals of ledmmodyne detector could be

given a time delay with respect to one another: both befodeaéiier the digital sampling.

8.3 Experimental results

Photon anti-bunching statistics from a displaced-squkstate were confirmed by the ex-

perimental results. Studies were also made for cohereiesstand biased thermal states.

8.3.1 Coherence as a function of time delay

The definition of photon anti-bunching is not jug?) (0) < 1 alone, but one also needs to
show thatg? (1) > ¢ (0) for all 7 # 0. Note that for stationary light sources, where
the statistical properties remain constant over time, srguaranteed that?) (1) — las

T — oo. To calculate the coherence over all time is not reasonableye tested it over a

range of ten units of the inverse measurement bandwidttchwkas deemed sufficient.

We prepared a weakly squeezed state that had varigfiégs = 0.902(1); V. =
1.137(1)}. The state was then displaced by an amaupt = 0.257(1), which was the
amount predicted to minimisg?) (0) for that particular squeezed state. Figure 8.5(i) shows
the measurements over the range of time delays. The mininalue wf the coherence was
found at zero time delay(® (0) = 0.44(22). As 7 was increased, the coherence produced

some oscillations but approached unity, thereby fulfillihg requirements to demonstrate

photon anti-bunching.
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8.3.2 Coherence as a function of displacement

As already discussed in the theory (Chapter 7), the photorbeudistribution of a squeezed
state can be manipulated from predominantly even to oddophotimber states, simply
by changing the displacement. In this sense, it is the dispi@nt that controls the anti-
bunching effect for a given squeezing parameter.

For this study, the time delay was set to zero, and a squetatedrsas prepared that had
{ViF =0.901(3); V;, = 1.136(1)}. Measurements of the degree of second-order coher-
ence (‘g2’) are shown in Figure 8.6(i). Super-bunchingistias of g2 (0) = 28(10) were
found for this state, which had zero displacement (measioré@ ;, = 0.001(2)). The
displacement was then increased until the degree of coteergas minimised t@<2>(0) =
0.41(12) thus showing anti-bunching statistics. Increasing theldeement still further,
then made the g2 monotonically increase toward one. Theréfpchanging only the dis-

placement, we could observe a factor of 70 change in the wadlge: from super-bunching

to anti-bunching.

8.3.3 The best anti-bunching statistic

The theoretical predictions tell us that lower levels ofg@sgueezing should give even
stronger anti-bunching statistics. We prepared a verylyneare state, that had variances
{Vit = 0.890(2); V., = 1.129(2)}, and a purity ofV; x V.. = 1.005(3). This was
achieved by reducing the optical power of the seed beam titatexl the OPA, which
helped to de-couple extraneous noise sources. The degseeaid-order coherence was
measured for a small range of displacements. The resulshamen in Figure 8.6(ii). The
minimum value for the coherence was found for a displacemént, = 0.252(2), for

which g2 (0) = 0.11(18). This is a strong anti-bunching statistic. For comparisopure

two-photon Fock state would be limited §6 (0) = 0.5.

8.4 Testing the HBT interferometer

Although the results with the displaced squeezed states aahering to the theoretical

predictions, it was good to test our HBT interferometer witlo other classes of states, and



88.4 Testing the HBT interferometer 221

time delay T

Figure 8.5: Experimental measurement of g(2)(7) with normalized time delay 7 in units of bandwidth
(w/2=8.3 us). (i) displaced squeezed state, (i) coherent state, (jii) biased thermal state, curves are
theoretical predictions.
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also for the property of invariance to optical loss.

8.4.1 A coherent state

The theoretical prediction for a coherent statg/i®(7) = 1, regardless of the size of
the displacement, and independent of the time delayhe experimental results for zero
time delay and variable displacement are shown in Figur@ii8.5vhile the results for a
fixed displacement and variable time is shown in Figure 8.&th sets of measurements
yielded a second-order coherence that kept withth(7) = 1.00(6), thus confirming the

expected value of g2, and therefore validating our expeariaiesetup.

8.4.2 A biased thermal state

A biased-thermal state starts out as a coherent state, butduhits amplitude quadrature
modulated with broad-band noise, thus givifig > 1; V., = 1}, while the displacement
«in IS allowed to be arbitrary. The prediction for the secondeorcoherence at zero time
delay isg(® (0) = 3 whenVi, > 1 and for small displacements;,, ~ 1. We prepared a
biased-thermal state that hd#l," = 12.80(9); V.. = 1.039(1)}. The displacement was
varied from zero tay, = 0.65(1). The results are plotted in Figure 8.6(iv). These showed
that the second-order coherence adhered to the theonatéxdittion by not deviating from
9@ (0) = 2.98(1).

A biased thermal state was also studied under variable tetay.d The state had pa-
rameters{V;f = 14.60(2); V.. = 1.025(8); s, = 0.258(1)}. The results are shown in
Figure 8.5(iii). At zero time delay, the function was at a finaxm ¢(?) (0) = 2.98(1), but

then fell towards unity as was increased. The form of the curve followed the sinc-sephiar

curve that comes from the Fourier transform of the top-heddency window.

8.4.3 Testing the invariance to optical loss

One of the interesting properties of second-order cohetaat¢hat measurements of it are
immune to optical loss both before the measurement instntyna@d within the measure-
ment instrument itself. We endeavoured to test this prgg®rtintroducing a variable loss

mechanism in the form of a variable reflectivity beamspiitsee Figure 8.4.
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Figure 8.6: Main figure and inset: Experimental measurement of 9(2) (0) as a function of displacement
aiy. (i) displaced squeezed state, (ii) weak displaced squeezed state, (iii) coherent state, (iv) biased
thermal state, curves are theoretical predictions.

We prepared a displaced-squeezed sate that initially wasuned to have{Vh‘f =
0.894(2); Vi = 1.139(2); cun = 0.255(2)} using the (maximum available) total detection
efficiency ofn = 86%. Without any optical attenuation, the second-order coteravas
found to beg? (0) = 0.67(16). The attenuation was increased upjte, = 43% which
yieldedg(® (0) = 0.43(36). This showed that at least to the confidence interval of the-me
surementg(?) was invariant to optical loss prior to the HBT interferontef&he invariance,

however, came at the cost of increasing the uncertaintyeimtbasurement.

8.5 Discussion of results

8.5.1 Adherence to theoretical predictions

One question to address is: do the experimental resulte agth the theory for a HBT

interferometer that is based on homodyne detection? Althkeretical curves that have
been presented alongside the results have not been best fits tlata, but rather, have
been curves that were generated by Equation 7.17. The equaés fed with the three
measurements that define the displaced-squeezed sfaf€s¥.; ai, }. These measure-
ments were obtained from one of the homodyne detectors,anihference made for the

(main) 50:50 beamsplitter of the HBT interferometer. Ofts@uthe second-order coherence
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measurement implicitly uses the quadrature variancesiapthdement, but these were con-
tained in the second-order correlations of the quadratwrasorements. We did not have
the resources to make an independent test with a convehki@lainterferometer that uses
single-photon counting detectors. Actually this woulddesquired the installation of many
light baffles and optical frequency filtering, in order towed contributions of light from
other parts of the lab. Homodyne detection makes theseuydrena redundant, because the
mode of the local oscillator selects these for us. So thethastwe could do to test our
interferometer, was to get a type of transfer function of imstrument by measuring the
second-order coherence for a large range of input statéis:classical and nonclassical.
For example, using a squeezed state, we were able to obkertransition from bunch-
ing to anti-bunching just by increasing the displacementh@nsqueezed state. We also
demonstrated the time domain behaviour, as evidence bydhgeF transform of a flat
pass-band filter, namely, a sinc function. Two other kindstate were tested, the bi-
ased thermal and the coherent state. Like the displacezkbgzqd states, these two states
also showed good agreement with the theoretical predetdsecond-order coherence for
those states: both as a function of displacement, and astduorf time. We can conclude
then that our version of the HBT interferometer that was tdasehomodyne detection, was

performing well.

8.5.2 Limitations of the experimental setup

If the aim of the experiment was to demonstrate a very largjebanching effect, then two
limitations of our setup become apparent. The first deals thi& generation of the squeezed
state, and the second deals with the homodyne detectors.

To show a larger anti-bunching effect with smaller valuesy8tf requires squeezed
states that are ever weaker and purer. In principle thisldhmat be an issue, because the
level of squeezing is set by the pump power of the OPA. Butékellof control becomes
difficult because the signal-to-noise ratio of the erronalg for the control loops (the cavity
length, and the pump phase) both scale with the gain of the, @R#f&h depends on the
pump power. So there is a practical limit to the minimum OPAngaat still allows a

stable lock of the cavity length and the pump phase. Remethbgit is the equivalent
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pure squeezed state that determines the second-ordeenobenWhat this means is that
intra-cavity losses of the OPA do indeed play a role in méaguroherence, but only in
the sense that a high intra-cavity loss will require morengaiorder to provide an error
signal of sufficient strength. The extra gain required by ptically lossy OPA, will then
be manifested as an excess noise on the anti-squeezed tquadfar the chosen level of
squeezing. In other words, the state of light that exits aA @Rh high loss, has a higher
impurity, than for an OPA with low loss, although both OPAsllkcbbe set to produce the

same level of squeezing.

The issue of the small signal-to-noise ratio of the erronaig could be solved by in-
creasing the seed power that goes into the OPA. The probleéhatithe seed and pump
beams are usually not exactly shot-noise-limited (everMditig sideband frequencies). By
turning up the seed power, the noise on the pump and seed ligamspled ever more
strongly into the output squeezed beam. It is therefore wideeep the seed power low.
It is for these reasons that a compromise had to be found éomihimum optical powers

driving the OPA and extracting useful error signals.

The second limitation of the experiment was in the homodyetedor itself. In princi-
ple, the measurement on a homodyne detector yields theajueglamplitudes of the signal
beam. In a balanced homodyne detector, the noise on thedscidlator beam is cancelled.
However, this is only true in the limit that the power in thedboscillator beam is arbitrarily
greater than the power in the signal beam. This ratio was:1G@0our experiment. For
example, the quadrature variance that would be measurddsohamodyne detector could
be written ad/,f..; = PLoV,i, + PsigVi - Evenif the LO were shot-noise limitdd, = 1,
this would lead to a minimum variance (normalised to the sloige level) which could be

resolved would bé/.,;;, = 1+ Ps,/Po. In our case, this would have been a variance of

Vmin = 1.001. None of the coherent states that we measured fell belovirtiis

A technique to circumvent this limitation would be to mingaithe optical power in the
squeezed beam, but due to the control limitations outlirzelieg, this was not possible. An
alternative, would have been to choose an interferencethatloff-line displacement beam,

such that the displaced-squeezed beam carried zero optiaadr. In our experiment this
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was not possible, because we needed a certain amount of fmwbke DC-derived phase
quadrature lock of the homodyne detector to work. Using artdBfived error signal would
of course remove this limitation, and it would be possibleperate the homodyne detector

with a much higher power ratio.

8.6 Summary

In this chapter | have presented an experiment that meatheestcond-order coherence of
optical fields, based on homodyne detection in the configuralf the intensity interferom-

eter of Hanbury Brown and Twiss. We tested our instrument bgsuring three classes of
states: squeezed-displaced, coherent, and biased-thdimearesults clearly demonstrated
photon anti-bunching for the displaced-squeezed staté almo showed good agreement

with the theoretical predictions for all the states thateveisted.



Chapter 9

Summary and Outlook

9.1 Summary

Harmonic entanglement theory: From a theoretical analysis of an optical parametric am-
plifier (OPA), | showed that it is possible to entangle ligltome wavelength with light
that has exactly double that wavelength. This type of eléamgnt, callecharmonic en-
tanglement could be observed by measuring the amplitude and phaseajuazs of the
fundamental and second-harmonic fields that are refleabed &n OPA. Further investiga-

tion of the OPA system vyielded the following generalisasion

e The OPA needs to be operated in a regime of pump-depletiont@neement. An
exchange of energy between the fundamental and seconarhiarfrelds is essential

for the generation of harmonic entanglement.

e The strength of harmonic entanglement is only limited imgiple by the intra-cavity
losses of the OPA, and the provision that the OPA be driveh avibtal input power

that is at OPO threshold power or above.

e Biased-entanglement is naturally produced by the OPA. iBhisform of entangle-
ment where the inference of the quadrature amplitudes iditketion from the fun-
damental to the second-harmonic are stronger than the w#earound (or vice-

versa).

e Squeezed driving fields (instead of coherent fields) for #redsand pump, can in
crease the strength of the entanglement that is attainabtegiven total input power.
They can also compensate for the bias in the entanglememéatecsymmetrically

entangled states.

227
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Summary and Outlook

Harmonic entanglement experiment:We built an experiment that was capable of test-

ing the theoretical prediction of harmonic entanglemeotfilOPA. Our methods involved

preparing coherent light at the fundamental and seconakdvac wavelengths. The light

was aligned into the OPA that consisted of a second-ordelinasam crystal (PPKTP) that

was placed at the focus of a resonator/cavity in the bowetetry. The bright reflected

fields from the OPA had their carrier fields (but not sidebyratenuated by filtering the

light using narrow-linewidth resonators that were operatiear the impedance-matching

condition. The filtered light of each of the fundamental aedond-harmonic fields was re-

ceived by two independent homodyne detectors, which ceald out the quadrature ampli-

tudes of the light, from which the correlation matrix waseatatined, and the inseparability

criterion calculated. The main results from the experinagatlisted here:

e Harmonic entanglement from the OPA was confirmed by the éxgemtal results.

The best measurement yielded a degree of inseparabilify-ef0.74(1) which ful-

filled the criterion for entanglement (< 1).

The phase quadrature spectra showed a dense array of naremuidth resonances.
We proposed that the phenomenon of Guided Acoustic Wavéo@irl Scattering
(GAWBS) was occurring within the nonlinear crystal. A thetical model of ther-
mally activated GAWBS were in qualitative agreement withdbserved spectra. The
OPA model was extended to include a GAWBS phase-noise terchthee GAWBS
excess noise was shown to be moderately detrimental to skepanability of entan-

glement, and severely detrimental to the EPR measure afigletaent.

The OPA was tested over a large range of operating condifions amplification to
de-amplification (the study across the angle parametes .rds$ults for inseparability
and quadrature variances were in good agreement with the BEg\éxtended model

of OPA.

Harmonic entanglement was predicted to strengthen witleasing total input power
to the OPA. The results from the experiment showed the eggeaotnd, but only up

until a point. Beyond about twice OPO threshold power, thamglement degraded.
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The cause of this effect is unclear. It could have been froadoature noise on the
seed and pump beams, or from increased sensitivity from GBVWBother explana-

tion may be from competing nonlinearities (other non-degate OPO modes).

e Although our results did not allow us to claim a demonstrattb EPR entanglement,
we can say that the best place to look for the EPR measure arigietnent is in the
regime of OPA amplification, where the phase quadraturebdtr the fundamental

and second-harmonic fields are squeezed.

Photon anti-bunching theory: Our group came up with the idea that it was possible to
measure the second-order coherence of a light field, by wsiyghomodyne detection of
the quadrature amplitudes, instead of the conventionahodedf single-photon resolution
detectors. We also revisited the idea of using displacegezpd states to demonstrate

photon anti-bunching. The main theoretical results froeséhanalyses are:

e For the purpose of measuring second-order coherence, hlyomatktection offers
several advantages over the conventional single-phottecides. The mode that is
measured is automatically selected by the mode that thé dscdlator is in. This

selection includes frequency, transverse spatial digidb, and polarisation.

e Displaced squeezed states can be made to exhibit either-lsupehing or anti-
bunching statistics, depending only on the amount of digsteent that is given to

the squeezed state.

e The vacuum state can be considered as a singularity in thaegbat the second-
order coherence is not defined. The singularity can be appeahby making ever
weaker displaced squeezed states. Note that it is not pessiapproach the vacuum
by using optical attenuation. This is because second-amtegrence measurements

are immune to optical loss, both before and within the HB Erii@rometer.

Photon anti-bunching experiment: We set up an experiment to test the idea that
second-order coherence could be measured using homodiewtiale alone, and also to
see if displaced-squeezed states could be made to shownmrttiebunching statistics. We

modified an existing squeezed light source (based on an GRAxtit could operate stably
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in the regime of weak squeezing and low seed powers. Theadisplent was created off-
line using an amplitude modulator, and the displaced andestpd beams were interfered
on an asymmetric beamsplitter. The displaced-squeezeveia sent on to the main 50:50
beamsplitter of the HBT interferometer, after which eachrbavas received by a homo-
dyne detector that could be locked to either the phase oritamiplquadrature. The signals
from the homodyne detectors were digitised and recorded.s€bond-order coherence was
calculated from the correlations of the quadrature data mhin results are summarised

here:

e The best anti-bunching statistic was measured from a welidhfaced squeezed state

and found to bg/? (0) = 0.11(18).

e We measured a displaced squeezed state over a range otdmplats while holding
the squeezing level fixed. We found that the second-ordeereolee varied from
bunching to anti-bunching statistics as the displacemes neduced, which agreed

well with the theoretical predictions.

e Measurements of the second-order coherence of coherées stad biased thermal
states were in good agreement with the theoretical predgti These results vali-
dated our method of measuring the second-order coherencedin using homodyne

detection.

9.2 Outlook

What follows are some ideas that can build on the work thatawe ldone so far. There are
extensions to the theoretical analyses, and also posséye @ improve the experiments.
Harmonic entanglement: In my theoretical model of OPA, | had restricted the relative
phases of the seed and pump beams to be either zero or 90 si¢gseeounted in the
pump beam frame). This was done for no other reason than wisirthe analysis. The
extension would open up a new class of stable classicali@ostwhich | would expect to
have a mixture of properties, for example a bi-stable retfiah also has non-trivial phase

shifts for the reflected fields.
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Another class of classical solutions may be opened up byveltp the cavity reso-
nances to be de-tuned from the fundamental and second-harmavelengths. Finally,
the phase-matching condition could be tuned, which effelstimakes the nonlinear co-
efficient complex-valued. The classical solutions to theA@guations essentially drive
the quantum fluctuation analysis. New solution sets, copkhaip new classes of entan-
gled states, for example, where the biasedness of the éewaggt is compensated for by a
phase-matching de-tuning term. Furthermore, all of thesarpeters could easily be varied
in the laboratory setup. They would involve setting the logkpoints for the respective
control-loops with an offset from their centred points. Theasurement procedure would
then proceed in the usual manner. With four extra degreeseetfibm, the system should

yield some interesting behaviour.

If it is possible to make harmonic entanglement with OPAt ihén possible to undo
the process with another OPA, i.e. one that actsdis-entangle? The OPA process is in
principle reversible, but | did not test the dis-entangtiza with the theoretical model. A
dis-entangler would complete the analogy with the genagatilegenerate) entangled light
via two squeezed beams and a beamsplitter, where the betdengpbcess is reversible. To
test the idea experimentally, one would take the harmdgieatangled light that is reflected
from one OPA, and inject this into another OPA, before ariatyshe reflected light using
homodyne detection. The expected null result (no entarginhowever, would not be

very exciting.

We had not taken measurements in the bi-stable and complagé/ regions of the
OPA stability map. There are some technical issues aboutdm@wvould control, or even
know, on which arm of the bi-stable region the relative phafseump and seed are locked
to. However, if these problems could be tackled, then in dusth be straightforward to

measure the quadrature amplitudes in the usual way andtesttanglement.

The one thing left to be desired by the experiment was a coafiom of the state of
light satisfying the EPR criterion of entanglement. Althbunseparability is a necessary
and sufficient criterion of entanglement, reaching the ERfRron is desirable because it

is a practical measure for quantum information protocothsas quantum teleportation. |
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believe that three factors contributed to creating an exoesse in the quadratures of the

fields that prevented us from measuring EPR entanglement.

(1) The dominant degradation came from the GAWBS effectdtedted excess noise in
the phase quadratures. Although the noise was correlatgdefdundamental and second-
harmonic fields, it shows up in the EPR criterion becausegtafies the conditional vari-
ances that make up that measure. A work-around may be to nioeimionlinear crystal
with only a minimum amount of contact to the surface, thisuthincrease the quality fac-
tor of the GAWBS resonances, and make it possible to meastia@giement in the gaps
between the resonance frequencies. An idea was proposesbhyig Koy Lam for an-
other work-around to the problem. By moving the measuresiergideband frequencies in
the next free-spectral range (I GHz) of the OPA resonator, the GAWBS peaks, which lie
predominantly at tens, to hundreds of MHz, would be left bdhiThe only difficulty is that
new detectors would have to be built that have the fast 1 Gklzorese, while maintaining

sufficient clearance above dark noise, and sufficient poaedlmg capabilities.

(2) Our OPA cavity had a great deal of intra-cavity loss. Fa84nm it was measured
to be 0.2% and for 532nm it was 7%. The values are per-roupdithe value for 532nm is
quite high. The reason may be grey tracking in the crystaty@macking is a phenomenon
where high intensity light of short wavelengths createstsdag centres due to dislocations
of the crystal lattice. PPKTP is famous for grey-trackingigher powers, especially at blue
coloured wavelengths. Another source of intra-cavity leese the two AR coatings of the
dispersion plate, which could be done away with by using ageddPPKTP crystal. The
dispersion compensation would then be done by changingréinsvierse position of the
crystal. Another improvement would come from changing tigheflectivity mirrors of
the OPA cavity, to mirrors of a higher quality, i.e. mirrorisgseater reflectivity and lower
scattering. Note that this may be accompanied by difficulitiethe locking of the cavity
using the reverse seed, since from its viewpoint, the caviyld be even less impedance

matched.

(3) The theoretical model predicted that driving the OPAhwidt greater total input

power, up to 7 times OPO threshold power, should bring withate entanglement. The
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problem in our experiment, was perhaps that the driving gigldre not shot-noise-limited
at these higher optical powers. The only solution would badd more stages of opti-
cal filtering prior to the OPA, to make the seed and pump fieldd-soise-limited at the

observing frequencies (7.8 MHz).

Further room for improvement could be found by increasing dietection efficiency
after the OPA cavity. This could be done by removing the maty of redundant alignment
optics for filter cavities that we had made provision for, hewer needed to install. Another
improvement would come from reducing the percentage ofitjint that was tapped-off for
the relative phase lock. All of these suggestions shouldns¢@nly an improvement in
the measurements of the inseparability measure, but peidap a confirmation of EPR

entanglement.

Photon anti-bunching from squeezing:Within the experimental framework of homo-
dyne detection, we had considered only how to measure tlomdaxrder coherence func-
tion. But there is more information contained in the higheder coherence functions. For
example, the triple intensity correlation (fourth-ordeherence) can be measured at three
different delay times, and this can be used to extract thegimiormation of the first-order
coherence function. It would be interesting to develop aehtmlsee if one could measure

the fourth-order coherence function using homodyne deteeione.

If the aim is to obtain better photon anti-bunching statsstithen there are two aspects
of the experiment that could be improved. The first one is #reegation of the displaced-
squeezed state. As we have seen, the weakness of the sguaedithe purity of the state
is paramount. This cannot be faked by optically attenuadistyongly squeezed state. The
way to improve this, would be to increase the signal-to-moaio of the error signals that
control the OPA cavity length, and the pump-seed relativesph The method may be to
introduce an auxiliary control seed beam, this would be gueacy shifted seed, that would
act as a single side-band and could be used to derive an emad for those two locking

loops.

Secondly, an improvement can be made at the stage of the lyomalétectors. Here,

the limitation came in the form of the signal beams carrymgrinuch optical power. These
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then created an excess noise when measuring, for exampleeeot state, for which the
variances were slightly greater than one. A method was geghdy Dr. Thomas Symul
to eliminate this problem. One needs to change the lockinguitiy of the homodyne
detectors to be completely RF-derived error signals, aridei@ant on the DC difference
of the photodetectors. This could be done by introducing ahé displacement beam a
phase modulation at one frequency, and amplitude modualatia different frequency. The
optical beams could then be de-modulated to derive the sigoals. In this configuration,
one would be free to choose the optical power in the displacéiveam, such that the signal
beams contained nearly zero optical power. The power wdwdd be limited only by the
(interference) fringe visibility between the displacedieand squeezed beam.

In the theory section, | proposed that the quadrature meammnts could be made over
an average of quadrature angles, as long as all angles watedvin equal time. This
method of measuring would be useful in situations where wamabextract error signals
for the homodyne detectors, or if the source of light is tehgotic, and has no well defined
phase. An experimental test of this proposal would be a sippicedure.

An interesting demonstration of the homodyne techniqueldvbe to measure the
second-order coherence function of a physical scatteniaggss. The sample could be in
the form of a colloidal suspension of microscope partickeaitering objects). These would
induce random phase shifts of the light within a certain timaene. Hence, by measuring
the second-order coherence of the sample, or how it inteffecoheres a coherent laser
beam, some dynamics of the physical scattering system dmuluibtained. Furthermore,
by using light beams in a highly anti-bunched or super-badcdtate, instead of a coherent

state, it may be possible to make measurements at greasaivsgn
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Plate 1: Photograph of the OPA used in the harmonic entanglement experiment. The 532 nm intra-cavity
field is discernible as a faint green line due to Rayleigh scattering from air molecules. (see page 121)

Reflected Light
Harmonic Entanglement
(532nm & 1064nm)
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Plate 2: Schematic of the OPA based on the photograph above. PPKTP: periodically-poled potassium
titanyl phosphate crystal. AR: anti-reflection coating. HR: high reflectivity coating. ROC: radius of curva-
ture. PZT: piezo electric actuator. (see page 121)
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Plate 3: The classical gain is the ratio of optical powers of the light incident on, and the light reflected
from, one mirror of the optical parametric amplifier (OPA). In a lossless OPA, the gain shows how the
fundamental and second-harmonic fields have exchanged energy due to the nonlinear interaction. This
is referred to as depletion or enhancement of the fields. The gain is expressed in a colour-coded decibel
scale, and is mapped as a function of the normalised driving fields: the fundamental seed, and the
second-harmonic pump. Left: Gain of the fundamental field. Right: Gain of the second-harmonic field.
The horizontal axis follows the process of second-harmonic generation (SHG), while the vertical axis
follows the process of optical parametric oscillation (OPQ). A dashed circle marks the boundary where
the total input power to the system is equal to the power that is required to reach OPO threshold. If the
system is driven above OPO threshold, bi-stability in the OPA can be seen as asymmetry when comparing
the gain for positive and negative values of the seed amplitude. (See page 103)
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Plate 4: The fundamental and second-harmonic fields can also interact in the OPA in such a way that
produces a non-trivial phase-shift on the reflected fields. The phase-shift is expressed in a colour-coded
degree scale, and is mapped as a function of the seed and pump field amplitudes (similar to Plate 3). Left:
Phase shift of the reflected fundamental field. Right: Phase shift of the reflected second-harmonic field.
The most prominent example of a non-trivial phase-shift is found in the complex-value region in the lower
half of the diagrams, where for the second-harmonic field, a phase anomaly can be seen. A non-trivial
180° phase-shift occurs along the contours of complete depletion of the pump or seed. (See page 103)
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Plate 5: The OPA cavity transforms not only the classical amplitudes of the fields, but also alters their
guantum statistics. The variances of the amplitude and phase quadratures of the fields that reflect from
the OPA cavity have been mapped as a function of the input seed and pump fields (similar to Plate 3). The
guadrature variances are shown in a colour-coded decibel scale, where negative values (blue) signify that
the state is squeezed. Top: The quadrature variances of the reflected fundamental field. Bottom: The
guadrature variances of the reflected second-harmonic field. The operation of a typical OPA squeezer, with
a weak seed and strong pump, would follow a narrow strip along the vertical axis of the diagrams. Here
the fundamental field is either squeezed or anti-squeezed depending on the sign of the pump field. The
strength of the squeezing increases as OPO threshold is approached (dashed circle), but the quadrature
variances of the second-harmonic remain unchanged in this regime. (See page 108)



HARMONIC ENTANGLEMENT AS A FUNCTION OF SEED AND PUMP FIELDS
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Plate 6: Harmonic entanglement is the entanglement between a fundamental field and its second-
harmonic. The OPA alters not only the quantum statistics of the reflected fundamental and second-
harmonic fields individually, but also induces correlations between them. As a result, the two-mode states
that are produced, are inseparable, and they also demonstrate a violation of the EPR paradox. The EPR
measure of entanglement is mapped in a colour-coded decibel scale as a function of the seed and pump
fields that drive the OPA (similar to Plate 3). Darker blue signifies stronger entanglement, while contours
make these values more precise. Circles of various radii mark paths along which the total input power
to the OPA is constant. Red points and numbers refer to the case studies on the opposite page. The
strongest harmonic entanglement can be seen on the boundaries to the classical solutions. While the
vertical OPO axis for below-threshold pump fields is devoid of entanglement. (See page 109)
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Plate 7: The states produced by the OPA are examined for various points in the map shown in Plate 6. The
real and imaginary parts of the classical amplitude are represented as a line from the origin in a phasor
diagram, while the quadrature standard-deviations are shown as an ellipse. A dashed red circle is a
vacuum or coherent state reference. The fundamental and second-harmonic fields are shown on separate
diagrams. The state of the field before and after the OPA are labelled ‘in’ and ‘out’, respectively. Case 1:
Strongly driven SHG in the regime of complete pump-depletion. The squeezing (sgz) and harmonic
entanglement (ent) are weak. Case 2: Below-threshold OPO where there is no pump-depletion shows
strong sgz but is non-ent. Case 3: Below-threshold OPA with moderate pump-enhancement shows
moderate sqz and ent. Case 4: Above-threshold OPO shows complete pump-depletion but only weak
sgz and ent. Case 5: On the neutral-path there is no net interaction between the fields, and therefore no
sqgz nor ent. Case 6: A point in the complex-value region shows little pump-depletion, but the interaction
via a non-trivial phase-shift makes strong ent. (See page 114)
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Plate 8: By driving the OPA with squeezed seed and pump fields instead of coherent states, the strength,
type, and location of harmonic entanglement can be manipulated. Main: Two combinations of squeezing
for the seed and pump are chosen, which cause the strength and regions of entanglement to grow or
shrink. Inset: These maps are compared with those having the seed and pump fields in coherent states.
The -3dB contour shows that one region is enhanced, while the other is degraded. Cases: The case
studies examine weakly-pumped SHG. Initially, the output states are nearly coherent and non-entangled
(not shown). Using squeezed fields effectively turns on the entanglement. In case 7, the quadrature
variances become nearly symmetric, thereby compensating for entanglement bias. (see page 117)



DEGREE OF SECOND-ORDER COHERENCE OF A DISPLACED-SQUEEZED STATE
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Plate 9: By analysing the second-order coherence function g(2) (7) of a source of light, its quantum nature
can be revealed. The function is a hormalised intensity-intensity correlation at two different times, where 7
is the delay. An observation of g(2) (0) < 1is a clear signature of the quantisation of the electromagnetic
field, here in the form of a photon anti-bunched state of light. In the diagram above, a theoretical model was
used to investigate the class of displaced-squeezed states for their anti-bunching properties. The degree
of second-order coherence g(2)(0) as a function of displacement o and squeezing parameter r was
plotted as a colour-coded map. Darker colours signify the presence of anti-bunching, while lighter colours
signify bunching. Contours mark the exact values. Note the increase in the strength of the anti-bunching
and bunching effects as an approach is made to the vacuum state (r =0, «=0). (see page 193)
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Plate 10: Second-order coherence is mapped onto the surface of the sphere. The co-ordinates of the
sphere specify the coefficients of the arbitrary superposition state made up of vacuum, single- and two-
photon number states. Darker colours signify anti-bunching statistics. Extreme cases of bunching and anti-
bunching occur side-by-side in the area surrounding the vertical axis of the vacuum state. (see page 202)
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Plate 11: Three photographs that cover the entire setup of the harmonic entanglement experiment.
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