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Abstract

Non-classical light and its observable properties can express many of the peculiar features

that are unique to quantum mechanics. Furthermore, sourcesof non-classical light have

applications in optical quantum computation, and in improving the sensitivity of optically-

based measurement instruments. In this thesis, two sourcesof non-classical light were

investigated theoretically, and tested experimentally. Methods were developed to observe

the non-classical properties from measurements based in the continuous-variable regime.

Harmonic entanglementis the entanglement of a pair of light beams that are separated

by an octave in optical frequency. We proposed that the degenerate optical parametric am-

plifier (OPA), which is a proven source of quadrature squeezed light, can also be used as a

device to generate harmonic entanglement. From a linearised operator model of OPA, we

found that this occurs when the OPA is coherently driven by a fundamental field (the seed)

and its second-harmonic field (the pump), such that the OPA isoperated in a regime of

either pump depletion or enhancement. Our theoretical analysis showed that harmonic en-

tanglement is observable on the quadrature amplitudes of the reflected seed and pump fields.

The strength of entanglement, as quantified by the criteria of inseparability and Einstein-

Podolsky-Rosen, is in principle limited only by the intra-cavity losses of the system, and

the ability to drive the system above the threshold of optical parametric oscillation (OPO).

We built an experiment that was capable of testing the proposal that an OPA can be

used as a source of harmonic entanglement. The OPA design wasbased on a second-order

nonlinear crystal that was placed at the focus of a doubly-resonant optical cavity. The seed

and pump light, which were derived from a laser and frequency-doubler, respectively, were

injected into the OPA cavity. The reflected fundamental and second-harmonic fields were

optically high-pass filtered to remove the bright carrier light while preserving the entangle-

ment on the upper and lower sidebands. These were then received by two balanced homo-

dyne detectors that acquired measurements of the amplitudeand phase quadratures, from

which the elements of the correlation matrix were calculated. Applying the inseparability
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criterion to the matrix yielded a degree of0.74 ± 0.01 which was less than one, and there-

fore satisfied the criterion of entanglement. Entanglementwas also observed over a range

of seed and pump powers. The experimental results supportedthe theoretical model of OPA

that had been extended to include an excess phase noise in theform of guided acoustic wave

Brillouin scattering occurring in the nonlinear crystal.

Photon anti-bunchingis the tendency for photons to be detected apart from one another

rather than together. It is characterised by the second-order coherence function of a single

mode of light, which can be measured using a Hanbury-Brown–Twiss (HBT) intensity inter-

ferometer. The interferometer is based on a pair of single-photon counters that monitor the

output ports of a symmetric beamsplitter. The phenomenon ofanti-bunching is a clear sig-

nature of the quantum nature of light, and has no analogue in the classical and semi-classical

theories. Displaced quadrature-squeezed states of light can in principle exhibit arbitrarily

strong anti-bunching statistics, but in practice these sources are not easily measurable us-

ing discrete-variable techniques. We proposed a method formeasuring the second-order

coherence function using continuous-variable techniquesalone, where a pair of balanced

homodyne detectors replace the single-photon counters of the original HBT interferometer.

By correlating the quadrature measurements from the homodyne detectors, it is possible to

construct the second-coherence function and reveal the photon anti-bunching statistics.

We built an experiment that was capable of testing the proposal that photon anti-bunching

can be observed from a source of displaced squeezed light using homodyne detection alone.

Our source was based on an OPA that was optimised to deliver very weakly squeezed, and

nearly pure, states of light. The displacement to the squeezed state was done by way of in-

terference with an auxiliary amplitude modulated beam. Theresulting displaced squeezed

state was sent to a symmetric beamsplitter, where the light from the each output port was

received by an independent homodyne detector. Measurements of the quadrature ampli-

tudes were gathered and processed to construct the second-order coherence function, which

at zero time delay, revealed a value of0.11 ± 0.18 which was less than one, and thus con-

firmed the presence of photon anti-bunching. We also studiedthe second-order coherence

function over a range of displacements of the squeezed state, and also for coherent states

and biased thermal states. The experimental results supported the theory, and validated our

continuous-variable technique of measuring the second-order coherence function.
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Chapter 1

Introduction

1.1 Background themes

Two main themes tie my thesis together: ways of creating non-classical light, and ways

of measuring that non-classicality. This kind of light is special because it has measurable

properties that are counter-intuitive when viewed from theclassical theoretical perspec-

tive. Probabilities can become negative (Wigner function), the Schwarz inequality can be

violated (second-order coherence), or seemingly impossible correlations can be created be-

tween different observables (EPR entanglement). Both the wave and particle characteristics

of light need to be carefully considered in order to fully understand these phenomena. If

one adds to this the interaction of light with matter, one is overwhelmed with choices for

creating, manipulating, and measuring these sources of light, or the interacting matter itself.

The study of non-classical light thus becomes an immensely rich and rewarding subject,

with far-reaching applications in many areas of modern physics.

Non-classical light is defined as having any measurable property that cannot be de-

scribed within a theoretical framework that is built from Maxwell’s equations of electro-

magnetism together with atoms that are described quantum mechanically:

[Jaynes and Cummings 1963]. This framework is often referred to as the semi-classical the-

ory. It adequately describes the stimulated emission ratesof atomic transitions (Einstein’s

A and B coefficients), the shot-noise that is recorded by a photo-ionisation detector, the

‘single-photon’ interference pattern (low-intensity Young’s double-slit), and rather surpris-

ingly, even the photo-electric effect [Lamb and Scully 1968]. But outside of its descriptive

reach, lie non-classical states of light. These are described by the fully quantised theory of

light, which essentially says that a quantum harmonic oscillator is assigned to every propa-

gating mode of the electromagnetic field, and that the energycontained within each mode,

1
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is restricted to having integer values (plus half) proportional to the optical frequency and

scaled by Planck’s constant. One result of this theory makesa radical departure from the

semi-classical theory: empty space is not empty. Every modeof the electromagnetic field

has a lowest nonzero energy state, the vacuum state, and thiscontributes to measurable ef-

fects such as the Casimir force between closely-spaced conductors [Casimir 1948], and the

Lamb shift of atomic energy levels [Lamb and Retherford 1947].

Examples of non-classical states of light that have been created and observed in the

laboratory environment are the rather exotically named: photon anti-bunched states1, sub-

Poissonian states2, quadrature-squeezed states3, quadrature-entangled states4, Bell states5,

Fock states6, N00N states7, and coherent super-position states8. Each of these states ex-

hibits at least one measurable property of the electromagnetic field that is a witness to the

non-classicality. To be such a witness, a measurable property must have bounds associated

with it that are set by the semi-classical theory, and these bounds are usually expressed as in-

equalities. For example, the semi-classical theory predicts that a photo-electric detector will

produce a Poissonian distribution of the number of photo-ionisation events that are counted

within a fixed time interval, provided that the detector is illuminated by a monochromatic

source of light. The Poissonian distribution ensures that the mean and variance are equal and

proportional to the intensity of the light. However, re-examining the problem with the fully

quantised theory of light, shows that some sources of light can produce a sub-Poissonian

counting distribution, which has a variance that is less than the mean. As this is something

not possible in the semi-classical theory, experimentallyobserving a photo-counting vari-

ance less than the mean is evidence of non-classicality. Thetask of theoretically analysing

sources of light for properties that have non-classical bounds, and finding practical ways to

measure those properties in the laboratory, is repeated throughout my thesis.

Non-classical light is not just a curiosity, but can also be put to practical use. The most

prominent example is the injection of quadrature-squeezedlight into an interferometer-

1[Kimble et al. 1977]
2[Short and Mandel 1983]
3[Slusheret al. 1985]
4[Ou et al. 1992]
5[Kwiat et al. 1995]
6[Lvovsky et al. 2001]
7[Sunet al. 2006]
8[Ourjoumtsevet al. 2006]
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based gravitational wave detector, with the aim of loweringthe noise floor and thus allow-

ing the detection of fainter and more distant astronomical sources of gravitational waves.

Squeezed light in an interferometer allows one to make more sensitive differential phase

measurements for the same optical power and detection time.This application was first sug-

gested by Caves [Caves 1981], but only with recent advances in the bandwidth and strength

of squeezed light sources, is this now becoming a reality forthe GEO 600 detector and

other observatories around the world [Schnabel 2008]. A similar approach with squeezed

light has been used to demonstrate an improved sensitivity for other kinds of measurements

which include frequency-modulation spectroscopy [Polziket al. 1992], and beam position

measurements [Trepset al. 2002]. These demonstrations however, have not revolutionised

the field because those particular applications were not limited by the intensity of the light,

which in most cases can be scaled up arbitrarily. Where non-classical light could make

a key difference is with the goal of realising quantum computation. Here, light would

play the role of a messenger between quantum logic gates thatdo the quantum information

processing, which could be in the form of quantum dots [Liet al. 2003] or trapped ions

[Cirac and Zoller 1995, Guldeet al. 2003]. Another proposal would be to engineer multi-

mode entangled states of light upon which a specific set of measurements is made according

to the scheme of cluster state quantum computing [Nielsen 2003]. This would have several

advantages in robustness and scalability over the former scheme [Menicucciet al. 2006].

Non-classical states of light can be generated by a diverse range of physical systems

that can be classed as being either macroscopic, or microscopic, depending on the number of

interacting particles and the length-scale over which the interaction occurs. The microscopic

class of systems includes the interaction of light with single atoms, ions, molecules, or

artificial atoms in the form of nano-optical structures suchas the colour centres that are

created by defects within a crystal lattice. The length scale of these systems is many times

smaller than the wavelength of light, and usually only one atomic particle is considered to

interact at a time. For example, the first observed non-classical state of light was created

in this way. Using resonance fluorescence from an ensemble ofsodium atoms, Kimble

demonstrated a violation of the Schwarz inequality, which was the first evidence for the

quantisation of the electromagnetic field [Kimbleet al. 1977, Walls 1979].

If the length scale of the interacting material is larger than the wavelength of light, it
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encompasses a macroscopic number of atoms, of the order of Avagadro’s number, and an

analysis of the system reduces to considering the bulk properties of the medium in response

to light. Here, it is a medium’s nonlinear response that can support the interaction and ex-

change of energy between light of different wavelengths, which under linear circumstances

would not be possible. The interaction can also be enhanced by using optical feedback in

the form of resonators/cavities. The nonlinear media can bein several forms: bulk media

(crystals), optical fibres, micro-spheres, micro-toroids, or atomic gases (vapour cells). As

an example, the first quadrature-squeezed state of light wasmeasured using the four-wave

mixing effect from the third-order nonlinearity in an atomic gas [Slusheret al. 1985]. This

resulted in a sub-Poissonian distribution of photo-ionisation counts in the detector, which

was a non-classical effect. Other macroscopic systems relyon a different interaction with

matter, such as band-gap materials (semiconductor lasers,LEDs); or radiation pressure with

micro-electromechanical systems (cantilevers, membranes). For my own research topics, I

exclusively used the second-order nonlinear response of bulk media in the form of artifi-

cially grown crystals of potassium titanyl phosphate(KTP) and lithium niobate(LiNbO3).

The creation of a non-classical state of light is one thing, but without the verification of

the non-classicality, the experiment is incomplete. The type of photodetector that is used,

decides what properties of the light beam can be observed, and therefore what aspect of non-

classicality can be investigated. It is generally said thatan experimentalist can only detect

the intensity of a beam of light. This is true for both types ofavailable detector: single-

photon counters, and PIN-junction photodiodes. But the information that can be extracted

from each type of detector is different, and is also dependent on the source of light. The

single-photon counter, say a photomultiplier tube, produces an electronic pulse for every

photo-ionisation event. The intensity of the light must be kept low enough, such that the

electronic pulses can be resolved in time. Note that the detector cannot distinguish between

different (narrowly-spaced) wavelengths of light. Using this type of detector, it is a simple

matter to measure correlations of photons that are collected at different places within the

beam of light, or in other words, to measure the degree of second-order coherence of the

light. Other properties can also be determined, such as the density matrix of the state of

light. In general, using a single-photon counting detectorlimits the experimentalist to doing

quantum optics in the discrete-variable (DV) regime, where‘discrete’ refers to a photon
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either having been, or not having been detected.

In contrast to the DV regime, is the continuous-variable (CV) regime of quantum optics.

The ‘continuous’ refers to the measurement of the electric field of the light itself, because

the field can take on any value from a continuous distributionof values. In general, the

detector used is a semiconductor PIN-junction photodiode,and the source of light is bright

rather than dim. If the source of light contains a quasi-monochromatic component, the car-

rier, and if the carrier is bright (≈ 1010 photons per second), then it will ‘beat’ against the

components of the light at nearby wavelengths (the sidebands). The resulting electronic sig-

nal contains information that is wavelength dependent, in essence resolving the amplitude

of the electric field for each nearby optical frequency. In this sense, it is the radio-frequency

response of the detector that determines the range of optical wavelengths that are detectable.

Several tricks can be used to shift the phase of the carrier component, and thus allow one to

access the phase quadrature of the optical sidebands as wellas the amplitude. Combining

the data taken at many quadrature angles, from amplitude to phase, allows the mathematical

reconstruction of the Wigner function of the state of the light at each optical sideband fre-

quency [Leonhardt 1997, Schilleret al. 1996]. However, the detection times of individual

photons can in practice never be resolved. This is because the electronic noise floor of the

photodiode is already at the sensitivity level of the order of 108 photons per second, at best.

For my own research topics, I exclusively used PIN photodiodes for detection, and so the

experiments were completely within the realm of CV quantum optics.

A new direction in the field of quantum optics aims to close thegap between the CV

and DV regimes. This is being accomplished by bringing together the techniques of single-

photon detection and homodyne detection to simultaneouslymeasure the same source of

non-classical light. Such hybrid detection schemes have been used to create so-called

Schrödinger kitten states, which are a super-position of two coherent states with different

amplitudes [Ourjoumtsevet al. 2006]. The coherent amplitudes in that experiment were

relatively small, hence the term ‘kitten’. Such exotic states of light have no analogues in the

semi-classical theory. They are wonderful examples of whatis possible within the quantum

theory of light.
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1.2 Thesis topics

Of the many aspects of quantum optics that I brushed over in the last section, I had actually

studied only one small part of it for my thesis. Gathered under the umbrella of non-classical

light, my work examined two different hypotheses which I candramatise in the following

way:

• A pair of light beams of vastly different wavelengths, that are separated by an octave
in the electromagnetic spectrum, can be made inseparable(harmonic entanglement).

• The particulate nature of light can be revealed without everhaving resolved a single
particle during the measurement(photon anti-bunching from squeezing).

Both phenomena highlight a different aspect of non-classicality that the electromagnetic

field is capable of expressing. Next I will attempt to explainthese ideas in a more accurate,

but rather less dramatic way.

1.2.1 Harmonic entanglement

Entanglement is both a simple and complicated concept. In the full quantum theory of light,

if the state of a two-mode field cannot be expressed as a product of two states with one for

each mode, then the two modes are said to be inseparable or entangled. The inseparability

has consequences for measurements that are made on some observables, such as the ampli-

tude and phase quadratures of the electric field. When comparing quadrature measurements

that are made on each mode individually, correlations between the two lists of random num-

bers in the data become apparent. Depending on the type of entanglement, the correlation

can be stronger than that possible for any source of light that is based in the semi-classical

theory. Bystrongercorrelation, I mean that a single measurement result on one mode can be

used tobetterpredict a measurement made on the other mode, as characterised by the condi-

tional variance. In the extreme case of perfect entanglement, the conditional variance would

be zero for both observables, amplitude and phase, and the predictions made from one mode

to the other would be without error. Such a result leads to an apparent violation of the un-

certainty principle [Reid 1989]. The amplitude and phase observables are non-commuting,

or incompatible, and therefore the uncertainty principle prohibits the measurement of both

observables simultaneously for one mode with arbitrary precision. High precision in mea-

surements of the phase can be sacrificed for a lack of precision in the amplitude, or vice
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versa.

Einstein, Podolsky and Rosen (EPR) used this kind of entangled state in their argu-

ment about whether quantum mechanics was actually a complete description of reality

[Einsteinet al. 1935]. Their argument was based on the principle that there must exist

a correspondingelement of physical realityfor an observable, say amplitude, because a

measurement of that observable made on one mode is perfectlycorrelated with the re-

sult of a similar measurement made on the other mode. The correlation does not dimin-

ish with a physical separation of both modes, and therefore is instantaneous. This is the

famous ‘spooky action at a distance’. Without that element of reality, the measurements

cannot be correlated. In the same way, another element of reality exists for the non-

commuting observable, phase. The paradox is that the Heisenberg uncertainty principle

does not permit the simultaneous measurement of both observables with arbitrary preci-

sion, and therefore denies the simultaneous reality of bothof those elements of reality.

EPR chose to escape the paradox by concluding that it was the theory of quantum me-

chanics that was incomplete. A better theory would have a simultaneous description of

both elements, perhaps with a set of variables that would decide the outcomes of mea-

surements, but which would themselves remain inaccessibleto the observer and thereby

preserve the uncertainty principle. Whether such hidden variable theories existed or not,

was thought for several decades to be an unmeasurable and undecidable problem. This

changed when Bell proposed an experiment that could distinguish between a quantum the-

ory with and without local hidden variables [Bell 1964]. Theexperiment was done by

[Freedman and Clauser 1972, Fry and Thompson 1976, Aspectet al. 1982], the result of

which confirmed that quantum mechanics is free of local hidden variables, and as such,

retains its strange ‘spooky action at a distance’ character. Even today, the hidden variable

theories are being tested with the Bell inequality measurements being repeated over ever

greater distances [Ursinet al. 2007].

Aside from their role in probing the fundamentals of physics, entangled states are also

the resource necessary for quantum logic gates and the functioning of quantum computers.

This application motivates the search for sources of entangled light at various wavelengths

that could access atomic transitions, or even multi-wavelength (muli-colour) entanglement

to enable a connection between different atomic species.



8 Introduction

One physical system that has proved to be a very flexible source of squeezed light and

entangled light is the optical parametric amplifier (OPA). Under the name OPA, I include the

processes of second-harmonic generation (SHG), and optical parametric oscillation (OPO),

because they are all based on the same system but are operatedunder different condi-

tions. The OPA relies on a medium with a second-order nonlinearity, that supports the

interaction/conversion between light of one wavelength, the fundamental, and its second-

harmonic. The interaction can be enhanced by introducing feedback in the form of an

optical resonator/cavity. The OPA is then driven by the fundamental (seed) and second-

harmonic (pump) fields, which are sourced from beams of coherent laser light. The pump

beam is made much brighter than the seed beam, because the OPAcan then operate in a

regime that de-amplifies the seed, as measured on reflection from the OPA. When this hap-

pens, fluctuations in the amplitude of the seed beam are also de-amplified [Wuet al. 1986,

Bachor and Ralph 2004]. Measuring these reduced fluctuations and comparing with the

fluctuations from a coherent state, show that they are lower.The seed beam has been

squeezed. Combining two such squeezed beams together on a 50:50 beamsplitter with

the correct phase relation, then creates two beams that are EPR entangled. Such a source

of entanglement has been demonstrated [Ouet al. 1992]. Similar sources have been used

to demonstrate quantum information protocols like teleportation [Furusawaet al. 1998],

[Bowenet al. 2003b] and secret-sharing [Lanceet al. 2004]. A variation on the OPA theme,

is to replace the monochromatic seed with a bichromatic seed(signal and idler), whose sum

frequency matches exactly the second-harmonic frequency.Because the signal and idler

are non-degenerate in frequency, they can be separated, andthe result is that they as a

pair can be entangled. Demonstrations of such two-colour entanglement have been made

[Schoriet al. 2002, Villaret al. 2005].

In many theoretical and experimental investigations of nonclassical light from the de-

generate OPA, the role of the pump field was ignored in the sense that it was assumed

to remain unaffected by the interaction with the seed field. This was only an approxima-

tion for the situation where the seed field carries much less optical power than the pump

field. However, when the optical powers in both fields become comparable, it would be

expected that a significant exchange would be possible between the two fields, and possi-

bly with an associated change of amplitude/phase statistics on the pump. Following this
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idea, squeezed light on the reflected pump field from SHG was predicted, and subsequently

observed [Paschottaet al. 1994]. An extension of this was the prediction [Horowicz 1989]

and confirmation that correlations in the amplitudes of the reflected pump and seed fields

were also produced by the SHG [Liet al. 2007, Cassemiroet al. 2007]. Based on these the-

oretical and experimental discoveries, one could propose that the reflected seed and pump

fields share correlations in the phase as well as the amplitude, and perhaps that the state of

light that is produced, is quadrature entangled. Since the entanglement would be between a

fundamental field and its second-harmonic, we proposed the term harmonic entanglement

for this phenomenon. These ideas can be summarised with the hypothesis that:

Harmonic entanglement, which is the quadrature entanglement between a fun-
damental field and its second-harmonic field, is generated bya second-order
nonlinear optical system in the form of an optical parametric amplifier, when it
is coherently driven by those two fields.

The testing of this hypothesis, both theoretically and experimentally, forms the first main

topic of my thesis.

1.2.2 Photon anti-bunching from squeezing

There is a simple experiment that goes to the heart of understanding the quantum na-

ture of light. Hanbury-Brown and Twiss (HBT) looked at the situation of a single beam

of light being divided into two beams by a 50:50 beamsplitter. They asked the ques-

tion: would a correlation be observed between intensity measurements made on each beam

of light after the beamsplitter? After doing the experimentthey found that the answer

was yes [Hanbury-Brown and Twiss 1956b]. This result encouraged them to scale up the

experiment to astronomical proportions: they could directly determined the angular di-

ameter of the star Sirius, and 31 other distant stars. [Hanbury-Brown and Twiss 1956a,

Hanbury Brown 1974]. At the time of the first experiment, a debate raged as to whether

the correlation, known as the HBT effect, should exist for thermal sources of light at all.

The instrument is now called a HBT interferometer (or intensity interferometer), and what

it probes, is the second-order coherence of light. Glauber developed the theoretical frame-

work that describes the coherence of optical fields in the full quantum theory, and from this

he could indeed find an explanation for the HBT effect, as a bunching together of the pho-

tons in the beam [Glauber 1963]. Furthermore, he showed thatsome optical fields could
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display a negative HBT effect that would be visible as an anti-correlation in the intensity

measurements after the 50:50 beamsplitter. Such an effect would be impossible to obtain

from the classical or even semi-classical theories of light, as it would violate the Schwarz

inequality. The interpretation comes from the particulatenature of light, in the form of pho-

ton anti-bunching, which is the tendency for photons to arrive at the detector apart from one

another. As this was a prediction unique to the quantum theory, it inspired the search for

sources of light with photon anti-bunching statistics [Stoler 1974].

The light from resonance fluorescence emitted by a dilute gasof atoms was the first

source to demonstrate photon anti-bunching statistics [Kimbleet al. 1977]. Single-photon

counters were used in the experiment to gather a histogram oftime delayed coincidences. At

zero time delay, the number of coincidence counts dropped, which was the anti-bunching ef-

fect, and the first demonstration of truly nonclassical light. Since then, photon anti-bunching

has been observed in other sources of light such as conditioned measurements of para-

metrically down-converted light [Rarityet al. 1987, Nogueiraet al. 2001], pulsed paramet-

ric amplification [Koashiet al. 1993, Lu and Ou 2001], quantum dots [Michleret al. 2000,

Santoriet al. 2002], and trapped single atoms or molecules [Lounis and Moerner 2000],

[Darquieet al. 2005]. The detectors used in these experiments were of the single-photon

counting type, because only these would have sufficient sensitivity and bandwidth to detect

those dim sources. Therefore, all these experiments were operated with detectors in the

regime of discrete-variable quantum optics.

In the continuous-variable regime, it was predicted from theoretical models that quadra-

ture squeezed states of light could display anti-bunching statistics. However, in the labo-

ratory, the sources of quadrature squeezed light were usually detected using homodyne

detection. At first glance, it does not seem obvious that the amplitude and phase quadra-

tures of the light will be able to yield the second-order coherence function, and therefore

the measure of anti-bunching statistics. However, Magdalena Stobínska (who is a member

of our collaboration group), took the creation-annihilation operator form of the equation for

second-order coherence, and re-expressed it terms of quadrature operator measurements.

The new measurement instrument looks very similar to the original HBT interferometer,

but has a balanced homodyne detector in place of each single-photon detector. By measur-

ing the four combinations of amplitude/phase, it is possible to construct the second-order
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coherence function. This enables the very pure sources of quadrature squeezed light to re-

veal their anti-bunching statistics, without ever resolving a single photon. These ideas can

be summarised with the hypothesis that:

Homodyne detection can replace the single-photon countersin a HBT interfer-
ometer to measure second-order coherence, which for the case of measuring
a displaced-squeezed source of light, can be used to demonstrate photon anti-
bunching statistics.

The testing of this hypothesis, both theoretically and experimentally, forms the second main

topic of my thesis.

1.3 Thesis structure

I have organised my thesis into chapters that are largely self-contained, but they will seem

more logical when they are read in sequence. The structure ofmy thesis is visualised in

Figure 1.1. It breaks up into three parts. The first part is thebackground theoretical material

which explains some of the key concepts and holds many terms and definitions. The second

part deals with the topic of harmonic entanglement. The third part is devoted to the photon

anti-bunching topic. The last chapter summarises the majortheoretical and experimental

results of this thesis. A brief overview of the content is give here:

• Chapter 2: Theoretical Background
Later chapters rely on concepts and definitions like quadrature squeezing and entan-
glement. These are defined and explained in this chapter. I also present models for
linear and nonlinear processes, and the detection of light in the two-mode formalism.

• Chapter 3: Harmonic Entanglement: Theory
I extend a model of OPA, so that the fundamental and second-harmonic optical fields
are analysed for harmonic entanglement. Next, I investigate how the strength and
type of entanglement varies across the range of seed and pumpfield parameters.

• Chapter 4: Harmonic Entanglement: Experiment
I present the experimental setup that we used to generate andmeasure harmonic en-
tanglement. I place emphasis on the design, operation, and testing of the OPA, and
the homodyne detection with optical carrier rejection.

• Chapter 5: The GAWBS Hypothesis
Initial results from the harmonic entanglement experimentshowed phase quadrature
spectra that were plagued with sharp resonances. I show how asimple model of
guided acoustic wave Brillouin scattering (GAWBS) can be used to explain the effect.

• Chapter 6: Harmonic Entanglement: Results
The results of the harmonic entanglement experiment are presented and compared
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with the theoretical model, both with and without GAWBS. Theresults cover a study
of the ratio of pump and seed powers, as well as for a constant total input power.

• Chapter 7: Photon Anti-Bunching from Squeezing: Theory
I give a derivation of how homodyne detection can be used to replace single-photon
counters in a Hanbury-Brown–Twiss interferometer. Then I investigate the second-
order coherence of displaced-squeezed states of light, andfind photon anti-bunching.

• Chapter 8: Photon Anti-Bunching from Squeezing: Experiment
I describe the experimental setup that we used to demonstrate that photon anti-bunching
can be measured by using only homodyne detection. I present the results of photon
anti-bunching statistic that were measured from a displaced-squeezed state.

• Chapter 9: Summary and Outlook
Finally, I condense the most important theoretical and experimental results of the
harmonic entanglement and photon anti-bunching topics. I also make suggestions for
improvements and further studies that may yield interesting results.

Some suggestions for the reader:The background theory chapter (2) can be skimmed

if one is already familiar with the material. The heavy experimental chapter (4) can also be

skimmed if one is not keen on technical details. It is good however, to get an overview of the

complicated experimental setup. Although the GAWBS chapter (5) seems to be a diversion

from the main themes of this thesis, it was necessary to investigate the GAWBS hypoth-

esis and supporting evidence separately, because the modelof harmonic entanglement as

produced from the OPA had to be modified accordingly. This is important when making

comparisons between theory and the experimental results that are presented in Chapter 6.

The bulk of my research topics can be found in Chapters: 3, 6, 7and 8. While the summary

and outlook chapter (9) is the place to go for the condensed knowledge that was gained

during the research, and also for some ideas about where one could go from here.
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Chapter 2

Theoretical Background

Symbols and mathematical expressions can remain near meaningless without an explanation

of how they relate to the physical world. As most of the chapters in this thesis rely on

these representations, it makes sense to gather the main concepts and notation into a single

chapter. My intention is not reproduce a textbook, but rather to provide only the minimum

framework that is necessary to support the research topics that follow. I will lay particular

emphasis on the quantisation of the EM field; direct and indirect measurement techniques;

the linearisation technique and cavity rate equations; andfinally the use of single- and two-

mode states of light to illustrate squeezing and entanglement.

2.1 Quantisation of the EM field

The classical theory of the electromagnetic (EM) field as brought together in Maxwell’s

equations provides a highly accurate description of an astounding array of physical phe-

nomena [Maxwell 1892]. At the beginning of the 20th century however, explanations of

the phenomena of the photoelectric effect and blackbody radiation using the classical the-

ory became problematic. The solutions were born in Planck’srestriction of the energy

in a blackbody oscillator to multiples of~ω; and Einstein’s proposal that the energy of

light itself was restricted to these steps, or quanta [Planck 1900, Einstein 1905]. These

developments went hand in hand with new models of atoms having electrons orbiting

the nucleus that were described by Schrödinger’s equation [Schrödinger 1926]. A semi-

classical theory with a classical electromagnetic field andquantised energy levels of an

atom [Jaynes and Cummings 1963], proved adequate to describe the natural linewidths of

atomic transitions and laser rate equations. This theory was also consistent with Young’s

15
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double-slit experiment using very weak light [Aspect and Grangier 1987].

A full quantisation of the EM field was made by Dirac [Dirac 1947], and was further de-

veloped with Glauber’s analysis of detection and coherence[Glauber 1963]. It can describe

a broader range of phenomena that have no analogue in the classical or semi-classical the-

ories. I want to show one of the ways of quantising the EM field.Colloquially, this means

giving arguments for putting a hat on the electric field operator (fromE to Ê) and for the

noncommutation of orthogonal quadrature operators. The derivation is not obvious. The

method is to first find the plane wave solutions of the field using Maxwell’s equations, and

then quantise the energy of each according to a quantum harmonic oscillator. The quan-

tised theory cannot be derived from the classical: a leap must be made. As we will see,

this will come from comparing the energy of a harmonic oscillator, to that contained in the

classical EM field. What follows is a concise version of the treatment that can be found in

Loudon’s textbook [Loudon 2000]. It breaks down into three steps: classical, quantum, and

the comparison of each.

2.1.1 Step 1: The classical

The aim is to find travelling wave solutions of the EM field. TheEM field is described by

Maxwell’s equations:

∇× E = −∂B
∂t

(2.1)

1

µ0
∇× B = ε0

∂E

∂t
+ J (2.2)

ε0∇ · E = σ (2.3)

∇ ·B = 0 (2.4)

WhereJ is the current density andσ is the charge density. One method of finding the

travelling wave solutions is to re-express the electric andmagnetic fields in terms of a scalar

potentialφ and vector potentialA [Jackson 1999]. These are both considerably abstract

quantities. We will see later thatA plays a pivotal role in the description of the quantisation.
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For the moment consider them just as a tools to get to the solutions.

B = ∇× A (2.5)

E = ∇φ− ∂A

∂t
(2.6)

A further restriction is applied to the vector potential∇·A = 0, which is called the Coulomb

gauge, which brings with it an implicit assumption that the system of field equations remains

completely non-relativistic. The field equations then condense into

−∇2A +
1

c2
∂

∂t
∇φ+

1

c2
∂2A

∂t2
= µ0J (2.7)

∇2φ =
1

ε0
σ (2.8)

The current densityJ can be broken up into a transverseJT and longitudinalJL compo-

nents, that have the properties:∇ · JT = 0 and∇× JL = 0. This breaks up Equation 2.7

into two equations

−∇2A +
1

c2
∂2A

∂t2
= µ0JT (2.9)

1

c2
∂

∂t
∇φ = µ0JL (2.10)

The solutions for each equation can be found independently.From now on we ignore the

longitudinal component which corresponds to the non-propagating part of the EM field (the

evanescent field). The transverse component corresponds tothe propagating part of EM

field, which is also called the radiation field. Consider the case of free space without current

sources, so thatJT = 0, one then gets

−∇2A +
1

c2
∂2A

∂t2
= 0 (2.11)

which is the wave equation. To simplify the analysis, we firstrestrict the set of solutions

to those obtained by applying a periodic boundary conditionthat is spaced atL. This is

usually referred to as acavity, but note that due to the periodicity of the boundary condition,

travelling wave solutions are allowed. The general solution for A(r, t) is then the sum over

all travelling plane waves with wave vectork and two orthogonal polarisations labelled by
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λ such that

A(r, t) =
∑

k

∑

λ

ekλAkλ(r, t) (2.12)

with

Akλ(r, t) = Akλ exp(−iωkt+ ik.r) +A∗
kλ exp(iωkt− ik.r) (2.13)

The allowedk are given by vector components:

kx = 2πνx/L , ky = 2πνy/L , kz = 2πνz/L (2.14)

with νx,y,z limited to 0,±1,±2,±3, .... The unit vectorekλ determines the polarisation,

with the orthogonality conditionek1 · ek2 = 0, and also being orthogonal to the direction

of propagationekλ · k = 0. The angular frequency of the oscillationωk is proportional

to the magnitude of the wave vector so thatωk = c|k| = c
√

k2
x + k2

y + k2
z = ck. One is

free to choose any values for the complex coefficientAkλ with its corresponding complex

conjugateA∗
kλ. Now that we have the vector potential, it is simple to calculate the electric or

magnetic fields usingE(r, t) = −∂A(r, t)/∂t andB(r, t) = ∇× A(r, t). I will not show

their full forms here. What I want to do is to calculate the total radiative energy contained in

the EM field. This is found by integrating the volume elementsdV over the cavity volume

V thus

ER =
1

2

∫

V
dV

[

ε0E(r, t) · E(r, t) + B(r, t) · B(r, t)
]

(2.15)

This can also be expressed as a summation of the radiative energy from each of the allowed

modes of the vector potential.

ER =
∑

k

∑

λ

Ekλ (2.16)

The simplification is tedious but with a neat end result, where each mode contributes the

energy

Ekλ = ε0V ω
2
k (AkλA

∗
kλ +A∗

kλAkλ) (2.17)

The terms are for the moment not combined (despite the fact that they commute), to leave

them in a more suggestive form that we will compare with later.
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2.1.2 Step 2: The quantum

Abandoning the EM field completely for the moment, we look at the quantum mechanical

harmonic oscillator for a particle of massm restricted to motion in one dimension in a

quadratic potential. The system is described by the Hamiltonian [Griffiths 1995]:

Ĥ =
1

2m
p̂2 +

1

2
mω2q̂2 (2.18)

for position operator̂q and momentum operator̂p which obey the commutation relation

[p̂, q̂] = i~ (2.19)

It is the property thatp and q do not commute, that leads to the Heisenberg uncertainty

principle. The principle limits the precision to which the position and momentum of the

particle can be measured. I will return to this concept lateron. To continue the analysis,

one usually makes the substitution to the dimensionless ladder operators:

â =
√

2m~ω(mωq̂ + ip̂) (2.20)

â† =
√

2m~ω(mωq̂ − ip̂) (2.21)

These are also called the creation operatorâ†, and the annihilation operatorâ. The commu-

tation relation between them is

[

â, â†
]

= ââ† − â†â = 1 (2.22)

which re-expresses the Hamiltonian as

Ĥ =
1

2
~ω

(

ââ† + â†â
)

= ~ω(â†â+
1

2
) (2.23)

To see how the system works, we first propose an energy eigenstate of the system|n〉,

such thatĤ|n〉 = En|n〉. Next we apply the creation operator to both sides of the en-

ergy eigenvalue equation so thatâ†Ĥ|n〉 = â†En|n〉. After expanding the LHS and using

Equation 2.22, we get a new energy eigenvalue equation:Ĥâ†|n〉 = (En + ~ω)â†|n〉. We

can interpret the application of the creation operator as bringing system into a new state

â†|n〉 = |n + 1〉 that has a higher energy levelEn+1 = En + ~ω. Following the same
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t

E(t) = X+cos(ωt) + X –sin(ωt)

X+

X –


Phasor DiagramElectric Field

φ=ωt

ω=1015 Hz

Figure 2.1: The EM wave is split

up into a sum of sine and cosine

components that are scaled by X+

and X− respectively. By conven-

tion, most of the amplitude is in the

X+ component (solid line), which

means that the smaller X− compo-

nent (dashed line) essentially modi-

fies only the phase.

procedure shows that the annihilation operators does the opposite â|n〉 = |n − 1〉 and

En−1 = En − ~ω. What is missing now is the re-normalisation factor for these states

Cn|n〉. We can get these by defining〈n|n〉 = 1 and noting for the annihilation operator that

〈n− 1|C∗
n−1Cn−1|n− 1〉 = 〈n|â†â|n〉

|Cn−1|2 = n (2.24)

and similarly for the creation operator that

〈n+ 1|C∗
n+1Cn+1|n+ 1〉 = 〈n|ââ†|n〉

|Cn+1|2 = n+ 1 (2.25)

The re-normalisation factors are chosen to be real, which then shows that the creation and

annihilation operators have the following effect on the energy eigenstates:

â†|n〉 =
√
n+ 1|n+ 1〉 (2.26)

â|n〉 =
√
n|n− 1〉 (2.27)

There is a lowest energy level that the system can be in, the ground state|0〉, but the energy

has the nonzero value ofE0 = 1
2~ω. The set of energy eigenstates of the system|n〉 are then

labelled byn = 0, 1, 2, 3, ... and they have the energy eigenvaluesEn = E0 + n~ω. These

states form a complete basis in which any state of the harmonic oscillator can be expressed

as a suitably weighted superposition.
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2.1.3 Step 3: The quantisation

The two parts of the puzzle a brought together. One begins by making the assumption that

every classical mode of the EM field, labelled by subscriptskλ, has a quantum harmonic

oscillator associated with it. The creation and annihilation operators for each mode have the

following effect on thenth energy eigenstate:

âkλ|nkλ〉 =
√
nkλ|nkλ − 1〉 (2.28)

â†
kλ|nkλ〉 =

√
nkλ + 1|nkλ + 1〉 (2.29)

So in the modekλ, they create or destroy one unit of energy~ωk, in other words, one

photon. The commutation relation between the creation and annihilation operators is

[

âkλ, â
†
kλ

]

= âkλâ
†
kλ − â†

kλâkλ = 1 (2.30)

The combined state of the entire field is represented by the product notation

|{nkλ}〉 = ...|n110,1〉|n110,2〉|n111,1〉... (2.31)

where the subscripts ton list first the mode number in three dimensions, followed by the

choice of polarisation. The story of the quantisation does not end here because we need

some way to relate the dimensionless creation and annihilation operators to the electric

field in units of Newtons per Coulomb. We can do this by finding the Hamiltonian which

represents the total energy of the system.

Ĥkλ =
1

2
~ω

(

âkλâ
†
kλ + â†

kλâkλ

)

(2.32)

By comparing this equation with the classical form of the total energy in Equation 2.17, we

can make the plausible leap of faith in making the following replacements for the classical

vector potential coefficients:

Akλ → (~/2ε0V ωk)
1/2âkλ (2.33)

A∗
kλ → (~/2ε0V ωk)

1/2â†
kλ (2.34)
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This step cannot be derived. It essentially becomes a definition for quantum optics theory,

the predictions of which agree very well with experimental results, and so give us confidence

that it is correct. The vector potential for the entire field is then

Â(r, t) =
∑

k

∑

λ

ekλÂkλ(r, t) (2.35)

where each mode contributes

Âkλ(r, t) = (~/2ǫ0V ωk)
1/2

[

âkλ exp(−iωkt+ ik · r) + â†
kλ exp(iωkt− ik · r)

]

(2.36)

From this one can calculate the electric field operator usingÊ = −∂Â/∂t. By convention

the field is split up into positive and negative frequency components

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t) (2.37)

so that

Ê(+)(r, t) =
∑

k

∑

λ

ekλ(~ωk/2ε0V )1/2âkλ exp[−iΘk(r, t)] (2.38)

Ê(−)(r, t) =
∑

k

∑

λ

ekλ(~ωk/2ε0V )1/2â†
kλ exp[iΘk(r, t)] (2.39)

The phase of the wavefronts is combined into a single phase term

Θk(r, t) = ωkt− k · r− π

2
(2.40)

The offset π
2 is only a convention that absorbs a factor ofi. We can group together the

sine and cosine components of the complex exponentials, andorganise the creation and

annihilation operators intoquadrature operators, thus giving

Ê(r, t) =
∑

k

∑

λ

ekλ(2~ωk/ε0V )1/2
{

X̂+
kλ cos[Θk(r, t)] + X̂−

kλ sin[Θk(r, t)]
}

(2.41)

Note that I have made a departure from the Loudon’s notation [Loudon 2000], by removing

the scaling factor12 in the definition of the quadrature operators, which for the remainder of

this thesis become:

X̂+
kλ :=

(

â†
kλ + âkλ

)

, X̂−
kλ := i

(

â†
kλ − âkλ

)

(2.42)
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they correspond to the ‘in-phase’ and ‘out-of-phase’ components of the EM wave, respec-

tively. By convention, it is assumed that most of the amplitude of the wave is in theX+

component, hence it is called the amplitude quadrature. This means thatX− contributes

essentially to a phase shift of the wave, and is therefore called the phase quadrature. This

has been visualised in Figure 2.1 in the form of a phasor diagram. The amplitude and phase

quadrature operators correspond to the position and momentum operators, respectively, as

can be seen with the help of Equation 2.21. The quadrature operators are Hermitian, and

are in principle directly measurable quantities. I will be using them throughout this the-

sis in calculations of the transfer functions of optical components, and in the evaluation

of quadrature squeezing and entanglement. In addition, oneis free to choose a new basis,

which corresponds to a rotation by angleφ of the original basis, for example:

X̂φ
kλ = X̂+

kλ cosφ+ X̂−
kλ sinφ (2.43)

X̂
φ+ π

2

kλ = −X̂+
kλ sinφ+ X̂−

kλ cosφ (2.44)

To summarise the quantisation: what we now have is a ladder ofenergy eigenstates

|nkλ〉 for each mode of the EM field; see Figure 2.2. The creation and annihilation operators

add or subtract one quantum of energy~ωk from the mode, which is interpreted as a photon.

Any single-mode state of the EM field can be expressed as a weighted superposition over

the energy eigenstates:

|ψ〉 =
∞∑

n=0

cn|n〉 (2.45)

with cn the set of complex-valued coefficients. The electric field operator is expressed as a

sum of the amplitude and phase quadrature operators, which themselves are the sum/difference

of the creation and annihilation operators. The total energy contained in the EM field is

found by applying

Ĥ|{nkλ}〉 = (ER + E0)|{nkλ}〉 (2.46)



24 Theoretical Background
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Figure 2.2: Each mode of the electromagnetic

field can carry only a discrete amount of energy

(n + 1/2)~ωk. A mode can be in a superposi-

tion state of many excitation levels at once (rem-

iniscent of an atomic level scheme). Note that

the lowest level still has ~ωk/2 of energy.

where

E0 =
1

2

∑

k

∑

λ

~ωk (2.47)

ER =
∑

k

∑

λ

~ωknkλ (2.48)

The subscript ‘R’ stands for the radiative component, while the subscript ‘0’ stands for the

vacuum component. Note that even when all modes of the EM fieldare in their ground

states, the summation for the vacuum component of the energywill still diverge to infinity.

But this does not present a practical problem, since later itwill be shown that a photo-

ionisation detector is only sensitive to the radiative component, and therefore only to any

excitation above the ground state. But it should be noted that the vacuum component is a

measurable effect in experiments that investigate the Casimir effect of the attractive force

between two perfectly conducting plates [Casimir 1948].

2.2 Observables, uncertainty, and quantum noise

Let us consider the amplitude and phase quadrature observables. The quadrature operators

do not commute for a given mode of polarisation and propagation vector. The commutation

relation is
[

X̂+
kλ, X̂

−
k′λ′

]

= 2iδk,k′δλ,λ′ (2.49)

If the modes are chosen to be degenerate, this leads to a Heisenberg uncertainty relation

for the amplitude and phase quadratures. The uncertainty relation for a pair of arbitrary
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operatorsÔ1 andÔ2 depends on the commutation relation; see for example [Griffiths 1995]:

σ2(Ô1) σ
2(Ô2) ≥

(
1

2i
〈
[

Ô1, Ô2

]

〉
)2

(2.50)

where the expectation value of the standard deviation of theoperator has been defined by

σ2(Ô1) =
〈

ψ
∣
∣
∣(Ô1)

2
∣
∣
∣ψ

〉

−
〈

ψ
∣
∣
∣Ô1

∣
∣
∣ψ

〉2
(2.51)

where the inner product has been taken over an arbitrary state |ψ〉. Substituting in the

commutation relation between the amplitude and phase quadrature operators then returns

σ2(X̂+
kλ) σ2(X̂−

kλ) ≥ δk,k′δλ,λ′ (2.52)

This nonzero value for the minimum product of the variances tells us that there is a limit to

the precision that one can simultaneously measure both quadratures for any given mode of

the EM field. Note that the precision need not be equally distributed, as for example, the

state may have a smaller variance in the amplitude quadrature but must then be compensated

for by having a larger variance for the phase quadrature, such that the uncertainty relation

is satisfied.

A somewhat bolder interpretation of the uncertainty principle is that the EM field itself

cannot have a well-defined (or certain) value for the amplitude andphase quadrature. For

example, a measurement of the amplitude quadrature will project the state into thêX+

basis, and leave the phase quadrature completely uncertain.

An alternative view is that there is a noise penalty that is paid when one attempts to mea-

sure both quadratures simultaneously. But one should be careful here because our analysis

has shown no time dependence of the field (other than the oscillation at the optical frequency

ωk). The thing to remember is that this noise refers only to the results of measurements that

are made on an ensemble of identically prepared states. Since the measurement results will

be drawn from a statistical distribution of values that fluctuate around a mean value, the se-

quence of randomly fluctuating values can be interpreted as noise. The more realistic case

of a system that is not closed, and couples into a continuum ofmodes, will be treated in

later sections.
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Boson commutation relation: [â, â†] = ââ† − â†â = 1
Photon number: n̂ = â†â

Amplitude quadrature: X̂+ = (â† + â)

Phase quadrature: X̂− = i(â† − â)
Mean of photon number: µ(n̂) = 〈ψ|n̂|ψ〉
Variance of photon number: σ2(n̂) = 〈ψ|n̂n̂|ψ〉 − 〈ψ|n̂|ψ〉2
Mean of amplitude quadrature: µ(X̂+) = 〈ψ|X̂+|ψ〉
Mean of phase quadrature: µ(X̂−) = 〈ψ|X̂−|ψ〉
Variance of amplitude quadrature: σ2(X̂+) = 〈ψ|X̂+X̂+|ψ〉 − 〈ψ|X̂+|ψ〉2
Variance of phase quadrature: σ2(X̂−) = 〈ψ|X̂−X̂−|ψ〉 − 〈ψ|X̂−|ψ〉2
Second-order coherence function: g(2)(τ) = 〈ψ|â†â†ââ|ψ〉/〈ψ|â†â|ψ〉2

where|ψ〉 is an arbitrary state

Table 2.1 : A summary of definitions that will be applied to single-mode states of the EM field.

|n〉 := N̂(n)|0〉
N̂(n) := (â†)n/

√
n! where n = 0, 1, 2, 3, ...

n̂|n〉 = n|n〉
µ(n̂) = n
σ2(n̂) = 0

µ(X̂+) = 0

µ(X̂−) = 0

σ2(X̂+) = 2(n + 1
2)

σ2(X̂−) = 2(n + 1
2)

g(2)(τ) = 1 − (1/n) for n ≥ 1

Table 2.2 : Properties of the number states.

|α〉 := D̂(α)|0〉
D̂(α) := exp(αâ† − α∗â) where α = |α| exp(iθ)

D̂†(α) â D̂(α) = â+ α

D̂†(α) â† D̂(α) = â† + α∗

â|α〉 = α|α〉
〈α|â† = 〈α|α∗

µ(n̂) = |α|2
σ2(n̂) = |α|2
µ(X̂+) = 2|α| cos θ
µ(X̂−) = 2|α| sin θ
σ2(X̂+) = 1

σ2(X̂−) = 1

|α〉 = exp(−|α|2/2)
∑∞

n=0(α
n/

√
n!)|n〉

P (n) = exp(−|α2|)|α|2n/n!

g(2)(τ) = 1

Table 2.3 : Properties of the coherent states.



§2.2 Observables, uncertainty, and quantum noise 27

|ζ〉 := Ŝ(ζ)|0〉
Ŝ(ζ) := exp(1

2ζ
∗(â)2 − 1

2ζ(â
†)2) where ζ = r exp(iϑ)

Ŝ†(ζ) â Ŝ(ζ) = â cosh r − â† exp(iϑ) sinh r

Ŝ†(ζ) â† Ŝ(ζ) = â† cosh r − â exp(−iϑ) sinh r

µ(n̂) = sinh2 r
σ2(n̂) = 2(sinh2 r + 1) sinh2 r

µ(X̂+) = 0

µ(X̂−) = 0

σ2(X̂+) = exp(2r) sin2(ϑ/2) + exp(−2r) cos2(ϑ/2)

σ2(X̂−) = exp(2r) cos2(ϑ/2) + exp(−2r) sin2(ϑ/2)

|ζ〉 =
√

sech r
∑∞

n=0(
√

(2n)!/n!)(− tanh r exp(iϑ)/2)n|2n〉
P (n = 2m) = (sech r)((2m)!/(m!)2)((tanh r)/2)2m ,

P (n=2m+1) = 0 where m = 0, 1, 2, 3, ...

g(2)(τ) = 3 + (1/ sinh2 r)

Table 2.4 : Properties of the squeezed states.

|α, ζ〉 := D̂(α)Ŝ(ζ)|0〉
D̂(α) := exp(αâ† − α∗â) where α = |α| exp(iθ)

Ŝ(ζ) := exp(1
2ζ

∗(â)2 − 1
2ζ(â

†)2) where ζ = r exp(iϑ)

D̂†Ŝ† â ŜD̂ = â cosh r − â† exp(iϑ) sinh r + α

D̂†Ŝ† â† ŜD̂ = â† cosh r − â exp(−iϑ) sinh r + α∗

µ(n̂) = |α|2 + sinh2 r

σ2(n̂) = |α|2{e2r sin2(θ− ϑ
2 )+e−2r cos2(θ− ϑ

2 )}+2(sinh2 r+1) sinh2 r

µ(X̂+) = 2|α| cos θ
µ(X̂−) = 2|α| sin θ
σ2(X̂+) = exp(2r) sin2(ϑ/2) + exp(−2r) cos2(ϑ/2)

σ2(X̂−) = exp(2r) cos2(ϑ/2) + exp(−2r) sin2(ϑ/2)
P (n) = (n! cosh r)−1(1

2 tanh r)n exp{−|α|2
−1

2 tanh r((α∗)2eiϑ + (α)2e−iϑ)}|Hn(z)|2
where z = (α+ α∗eiϑ tanh r)/

√
2eiϑ tanh r

and Hn(z) are the Hermite polynomials

g(2)(τ) = 1 + {(2α2+cosh(2r) − 2α2 coth r) sinh2 r}/(α2 + sinh2 r)2

Table 2.5 : Properties of the displaced-squeezed states.

ρ̂th(m) :=
∑∞

n=0(m
n/(m+ 1)n+1)|n〉〈n|

where m = {exp(~ω/kBT ) − 1}−1

µ(n̂) = m
σ2(n̂) = m2 +m

µ(X̂+) = 0

µ(X̂−) = 0

σ2(X̂+) = 2(m+ 1
2)

σ2(X̂−) = 2(m+ 1
2)

P (n) = mn/(m+ 1)n+1

g(2)(τ) = 2

Table 2.6 : Properties of the thermal states.
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2.3 The zoo of single mode states

My aim is to show how arbitrary states of light can be characterised according to the prop-

erties of photon number distribution, quadrature amplitudes, and second-order coherence.

But to do this, I will first need to examine some specific statesof light in order to illustrate

these concepts. Table 2.1 is a list of the necessary definitions and short-hand notation. The

relevant properties are listed in tables for each of the following states: number states (Ta-

ble 2.2); coherent states (Table 2.3); squeezed states (Table 2.4); displaced squeezed states

(Table 2.5); and thermal states (Table 2.6). I regret that there is insufficient space for me

to give full derivations of the properties, nor for me to giveconvincing arguments for the

correspondence of these states to those that can be producedin the laboratory. For better

arguments in this regard, one can turn to [Loudon 2000].

2.3.1 Number states

We have already met the number states during the quantisation procedure: they are the en-

ergy eigenstates of a single mode of the EM field. The interpretation is that each eigenstate

corresponds ton number of photons being contained in the mode. Following this idea, the

photon number operator̂n is given by subtracting the contribution of the zero-point energy

from the Hamiltonian of the system (E0 from eqn 2.46), such that̂n = â†â. Applying the

number operator then returnsn̂|n〉 = n|n〉 as an eigenvalue. Thesenumber states, or Fock

statesas they are also referred to, form a complete basis in which anarbitrary state can be

expressed as a complex-weighted superposition of number states. Properties of the number

states are listed in Table 2.2.

All the states have a well defined photon number, in the sense that the variance of the

photon number is zero. It is the state that has an absence of photons, the vacuum state

|n = 0〉, that takes a special place amongst the set. It is a minimum uncertainty state in

terms of the quadrature operator observablesσ2(X̂+)σ2(X̂−) = 1. For the other states,

the uncertainty product grows with the photon number, but the mean of the quadrature

amplitude and phase remains at zero. In this sense, the number states do not seem to agree

with the notion of a classical EM wave.
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In the laboratory, photon number states can be prepared froma light source that is

based on the mechanism of parametric down conversion. Pairsof photons are produced and

separated, one of which is used as a trigger to temporally isolate the other photon with high

probability.

2.3.2 Coherent states

The state that most resembles the classical EM wave which hasa well-defined amplitude

and phase, is the coherent state. The set of coherent states|α〉 are parameterised by their

coherent amplitudeα. Note thatα can be complex, where the real component shows up in

the amplitude quadrature, and the imaginary component in the phase quadrature. The prop-

erties are listed in Table 2.3. The variances of the amplitude and phase quadratures are both

equal to one, and form a minimum uncertainty product for all of the coherent states. The

expansion of the coherent states in the basis of number states, follows a Poissonian distribu-

tion in the probabilityP (n) of detecting thenth state. The mean and variance of the photon

number are equal to each other, and proportional to the square of the coherent amplitude.

For coherent amplitudes greater than one, theP (n) distribution becomes approximately

Gaussian.

The coherent states can be ‘grown’ out of the vacuum state by applying the displacement

operatorD̂(α). This operator is also useful for unitarily transforming the creation and

annihilation operators (and the observables that are builtfrom these) instead of evolving the

states, to enable one to work in the Heisenberg picture, which can simplify the calculation

of quantities such as the second-order coherence.

A source of coherent states can be well approximated in the laboratory by a heavily

attenuated source of laser light. The attenuation serves toreduce extraneous noise sources

due to the lasing mechanism, and thereby prepare a nearly pure, coherent state.

2.3.3 Squeezed states

Unlike the coherent states, the squeezed states are free to take on unequal variances for the

amplitude and phase quadratures while still preserving theminimum uncertainty product.

The properties of the squeezed states are listed in Table 2.4. They can be grown out of
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the vacuum state by applying the squeeze operatorŜ(ζ), which is parameterised byζ =

reiϑ which the complex-valued squeezing parameter that determines the ‘strength’ of the

squeezing. Choosing a value ofr = 0 andϑ = 0 gives exactly the vacuum state, while

r > 0 will cause one of the quadrature variances to drop below one,with larger deviations

of the variance signifying stronger squeezing. The squeezed quadrature need not be aligned

with the amplitude or phase quadratures. The arbitrary quadrature angle is determined by

ϑ. Note that the mean values of quadrature amplitudes are zero, for this reason, the state is

also called a squeezedvacuumstate, but note that the state is no longer a true vacuum state,

since the mean photon number is no longer zero. An expansion of the squeezed state in the

Fock basis shows that only the even photon number states are present, and that the photon

number variance always exceeds the mean photon number.

Squeezed states can be produced experimentally by a parametric down-converter that is

driven to produce degenerate pairs of photons, such that thephoton number distribution is

populated only by even photon number states.

2.3.4 Displaced-Squeezed states

The squeezed state can be displaced in a similar fashion to the way that the vacuum state

was displaced to form the coherent state. Applying the displacement operator to the squeeze

operator then forms the displaced-squeezed states|α, ζ〉 when applied to the vacuum state.

Their properties are listed in Table 2.5. One is free to choose the mean quadrature values

via α, and also the squeezing of the quadrature variances viaζ. The mean photon num-

ber becomes the sum of a contribution from the square of the coherent amplitude and the

squeezing operation. In contrast to a non-displaced-squeezed state (or vacuum squeezed

state), the photon number variance may now become smaller orlarger than the mean pho-

ton number depending on the amount of displacement and the strength of squeezing. Note

that this is sometimes called photon number squeezing, which should not be confused with

quadrature squeezing.

One way of preparing a displaced-squeezed state of light in alaboratory is to inter-

fere a coherent source from a laser, with degenerate photon pairs from a parametric down-

converter.
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2.3.5 Thermal states

To write down the state of light that occurs in a single mode ofthe EM field under thermal

equilibrium, we need to be able to describe a statistical mixture of number states, rather than

a superposition. This is done by introducing the density operator ρ̂th(m) as parameterised

by the mean photon numberm(T ), which is given by the Planck thermal excitation function

that depends on the temperatureT . Both functions are given in the list of properties in

Table 2.6. In a later section I will give the details of how thedensity function works, but for

the moment let me just summarise the measurable properties of the thermal states.

The means of the amplitude and phase quadratures are zero, but the variances are pro-

portional to the mean photon number. This is analogous to thecase of the photon number

states themselves, but where the parameterm can take on any positive value, rather than

just integers. The value ofm increases with increasing temperatureT . Unlike for the num-

ber states, however, the variance of the photon number for the thermal states scales with

(m2 +m). A variation on the original thermal state, is thebiased-thermal state, where the

variances for the amplitude and phase quadratures need not be equal. Although in this case,

the analogy of the state arising from a condition of thermal equilibrium needs to be treated

with caution.

2.4 Characterizing single-mode states

In the last section I had only introduced a few states of light, and listed some of their basic

properties, but I have not yet brought the individual properties together into concepts that

we can apply to arbitrary states. Each concept gives us not only another view into what a

quantum state of light actually is, but also a way of decidingwhether a state can be classed

as being non-classical.

2.4.1 Expansion in the Fock basis: (sub-/super-Poissonianstatistics)

The concept of photon statistics is most readily seen by expanding an arbitrary state in the

Fock basis. We are interested in the probability of detecting each Fock state, as obtained

by taking the modulus square of each expansion coefficientP (n) = |cn|2. In Figure 2.3,
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Figure 2.3: An expansion in the number state basis for coherent states and squeezed states. Note that

for weak coherent state, essentially only the n= 1 state contributes. For brighter coherent states, the

distribution approaches a Gaussian. The weakly squeezed vacuum state begins as only an n=2 contri-

bution, but increasing the squeezing parameter then begins to excite all even modes. The coherent state

has Poissonian statistics, while the squeezed vacuum state has super-Poissonian statistics. However, by

applying the correct displacement to the squeezed state, one can obtain sub-Poissonian statistics. The

dashed lines are placed at the mean photon number. The dotted lines give the upper and lower edges

that are set by the standard deviation of the photon number.
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I have compared the examples of a weak and a strong coherent state, where the distribu-

tion function was taken from Table 2.3. For the case of a weak coherent amplitude, the

distribution is dominated by the vacuum state, and the single photon Fock state. For larger

coherent amplitudes, the distribution appears more Gaussian in shape. Although difficult to

see directly, the mean equals the variance in each case, because they are both derived from

a Poissonian distribution. This simple result from the Poissonian distribution can be used as

a benchmark for deciding whether a state is nonclassical. The semi-classical theory of light

only permits the detection of photons in a distribution thatis either Poissonian, or ‘broader’

than Poissonian, in the sense of the variance exceeding the mean. The distribution itself can

be arbitrarily shaped, but is nevertheless termedsuper-Poissonian. A clear signature of a

non-classical state of light is therefore the observation of a photon number distribution that

has a variance that is less than the mean, which is termedsub-Poissonian. An example is

the displaced-squeezed state that has a large real coherentamplitudeα ≈ 1, and a real and

positive squeezing parameterζ > 0. An example is shown in Figure 2.3, where the variance

is clearly less than the mean photon number.

Note that the converse of the sub-Poissonian criterion doesnot hold true for all states,

i.e. a state that does not show sub-Poissonian statistics could still be nonclassical as wit-

nessed by another criterion of non-classicality. The vacuum squeezed state, shown for in-

stance in Figure 2.3, displays a super-Poissonian photon number distribution. The variance

of the quadratures however, shows that one of them is squeezed below the level of a vacuum

state, which is also a criterion of non-classicality.

2.4.2 Phasor diagram of quadrature statistics: (quadrature squeezing)

The quadrature statistics of an arbitrary state can be presented in a phasor diagram that is

analogous to the classical representation of a wave that hasa complex-valued amplitude (as

shown in Figure 2.1). I will show the steps that go behind the drawing of such a phasor

diagram, which is also called a ‘ball-on-stick’ diagram. First, let us consider measuring

the amplitude quadrature of an ensemble of identically prepared coherent states. We would

expect to observe a distribution of measured values that have a meanµ(X̂+) and standard

deviationσ(X̂−) as derived from Table 2.3. What the exact form of the distribution is, is



34 Theoretical Background

X+

X –


µ(X –)2σ(X –)

µ(X +)

2σ(X +)

|α|

Figure 2.4: Phasor diagram of quadrature statistics. The ‘ball-on-stick’ diagram of a coherent state is

constructed from the mean and standard deviations of separate measurements that are made on the

amplitude and phase quadratures.

X+

X –
µ(X φ+π/2)

2σ(X φ)

µ(X φ)

2σ(X φ+π/2)

X φX φ+π/2

φ
|α|

Figure 2.5: Phasor diagram of quadrature statistics. The ‘ball-on-stick’ diagram of a displaced-squeezed

state is constructed from the mean and standard deviations of separate measurements that are made on

the quadrature angles of φ and φ+ π/2. The angle is chosen to coincide with the major and minor axes

of the ellipse that is derived from a contour of the Wigner function.

not important at the moment. The observed mean and standard deviation data are plotted

as vertical lines in a two-dimensional Cartesian plane, that has been vaguely labelled with

X+ andX−. Note that the hat notation has been dropped because the labels are only there

to remind us of the measurement basis. We repeat the experiment, but measure instead the

phase quadrature of the state, and collect the meanµ(X̂−) and standard deviationσ(X̂−)

information, which are then plotted as horizontal lines in the phasor diagram, as shown in

Figure 2.4.

The next step in drawing the diagram involves making an assumption about the quadra-

ture probability distribution of the state that is under investigation. For the case of the

coherent state, as we will see later, the distribution is Gaussian along the amplitude and

phase quadratures, and indeed for any quadrature angle in between. It is for this reason

that it is customary to replace the rectangular ‘construction’ lines of the diagram with an
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ellipse that has major and minor axes that correspond to the standard deviation of the am-

plitude and phase quadratures (not necessarily respectively). The ellipse also corresponds

to a contour of the two-dimensional (quasi-) probability distribution of the amplitude and

phase quadratures, where the marginal distributions for each quadrature are derived from

the Wigner function representation of the state.

Note that this method of constructing the ball-on-stick diagram will only work when I

have chosen the quadrature angle that yields the major and minor axes of the two-dimensional

quadrature distribution. I can illustrate this by constructing the ball-on-stick diagram for

a displaced-squeezed state that is squeezed along an arbitrary quadrature angleϑ. The

relevant mean and standard deviations of the quadratures have been gathered from Ta-

ble 2.5. The correct analysis is to choose a quadrature angleφ that is equal to the squeez-

ing angleϑ. This new quadrature basis is defined in Equation 2.44. The coordinates

of the ellipse in therotated quadrature basis can be drawn along a parametert using:

xφ
ell = µ(X̂φ) + σ(X̂φ) cos(t); x

φ+ π
2

ell = µ(X̂φ+ π
2 ) + σ(X̂φ+ π

2 ) sin(t). The construc-

tion diagram, and final ball-on-stick diagram are shown in Figure 2.5. The length of the

‘stick’ is equal to the absolute value of the displacement|α|.

Now that I have gone through the method of drawing a ball-on-stick diagram, I can

return to the concept of squeezing and its role as a witness tononclassical states of light. If

in the diagram, one finds that the minor axis of the ellipse hasa value of less than that of

a vacuum state (a value of one), then one can conclude that thestate is ‘squeezed’ in that

quadrature (whatever the angle may be). We may not however have necessarily observed

a member of the family of squeezed state, since this would require fulfilling the definition

as given in Table 2.4. The significance of observing squeezing is that it cannot occur in

the semi-classical theory of light. The argument for this relies on the result that the semi-

classical theory can only describe either coherent states of light, or statistical mixtures of

them. Within these confines, it would not be possible to satisfy the criterion that a quadrature

variances could be less than that of a coherent state (or vacuum state). Hence, the criterion

of squeezing can be used as a witness for identifying nonclassical light.
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Figure 2.6: The density operator as expanded in the Fock basis and shown in matrix form with elements

ρnn′ . The value of each element has been replaced by a plus or minus symbol, where a larger size

indicates a larger absolute value. Elements having values near to zero were replaced by a small ‘o’

symbol. The grey shading highlights the diagonal elements. The density matrices for a pure coherent

state and a mixed thermal state are compared. The thermal state is completely mixed and does not show

any off-diagonal elements.

2.4.3 The density operator: (pure/mixed states)

Pure states are states that can be expressed as a superposition of number states in the Fock

basis. But for some physical systems that can only be described in a probabilistic theory,

perhaps due to the large number of particles involved, then one may only have a limited

knowledge of the state of light that is produced, and one would therefore need to find a

way to describe a statistical mixture of states. The densityoperator is a short-hand notation

that completely describes a mixed state as being made up of individual pure states, and the

probabilities with which they are likely to be found.

The analysis begins by letting there be a discrete set of purestates|R〉 that are labelled

with the variableR. We assume that we have knowledge of the probabilitiesPR with which

these states will occur. The probabilities need to sum to one:
∑

R PR = 1. Each pure state

can be expressed in terms of a discrete set of basis states|S〉 that are labelled by variable

S. These states form a complete basis, such that
∑

S |S〉〈S| = 1. The task at hand is to

calculate the expectation value of some operatorÔ for the statistical mixture of states. A
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way of doing this is apply the completeness property of the basis states, such that

〈Ô〉 =
∑

R

PR〈R|Ô|R〉 (2.53)

=
∑

R

PR〈R|Ô
( ∑

S

|S〉〈S|
)

|R〉 (2.54)

=
∑

R

∑

S

PR〈R|Ô|S〉 〈S|R〉 (2.55)

=
∑

R

∑

S

PR〈S|R〉〈R|Ô|S〉 (2.56)

=
∑

S

〈S|
( ∑

R

PR|R〉〈R|
)

|Ô|S〉 (2.57)

If we define the density operator as being

ρ̂ =
∑

R

|R〉〈R| (2.58)

then the expectation value of the operatorÔ becomes

〈Ô〉 =
∑

S

〈S|ρ̂Ô|S〉 (2.59)

= Trace{ρ̂Ô} (2.60)

This seems rather abstract at the moment, but I think I can getaround it by choosing the set

|S〉 to be the Fock states, and by choosing to express the set|R〉 in the Fock basis. After

doing this we get̂ρ =
∑

n

∑

n′ Pn,n′ |n′〉〈n|, for whichPn,n′ . The coefficientsPn,n′ form

a matrix. Note that I could also have chosen another basis, like the coherent states. To

give a concrete example, let us refer to the density matrix ofa thermal state (see Table 2.6).

It is common to visualise the density matrix as a two-dimensional bar-graph plot, but an

alternative is to highlight the structure of the matrix, as has been done in Figure 2.6. Note

that the thermal state contains only diagonal elements. These correspond to the probabilities

(or populations) of detecting the particular Fock state. Compare this with a pure coherent

state, which has off-diagonal elements that can be interpreted as fixed phase relationship

(or coherence) between the Fock states. The elements of the matrix were extracted from

Table 2.3, by taking the product of the coefficientscn of the Fock state expansion such

thatcnc∗n′ |n〉〈n′|. Some important properties of the density operator are the normalisation

conditionTrace{ρ̂} = 1, and the purity condition̂ρ2 = ρ̂. The latter can be proved simply
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Figure 2.7: The Wigner functions of the vacuum state and single photon states are compared. Although

being a member of the Fock state basis, the vacuum state differs from all other Fock states, in that its

Wigner function is positive definite.

from the definition of a pure statêρ2 = |R〉〈R||R〉〈R| = |R〉(1)〈R| = ρ̂. Note that the

purity condition does not give us a criterion for witnessingnonclassical states of light. For

example, there exist states that are mixed, but still exhibit sub-Poissonian photon statistics,

or quadrature squeezed light. A weakly phase-diffused, displaced-squeezed state can fulfil

all of these conditions. The density operator contains all the information to describe pure

and mixed states, but it is not a convenient tool for identifying nonclassical states of light.

2.4.4 The Wigner function: (negativity)

The density matrix can be converted into the Wigner function, which is a two-dimensional

quasi-probability distribution over the quadrature observables. Like the density operator, the

Wigner function contains all the information about the state of light, however, it is presented

in a way that is more intuitive. The Wigner function in a sensefills in the shaded ellipse

of the ball-on-stick diagram of quadrature statistics. It also reveals another nonclassical

property of light: negativity of the Wigner function.

The definition of the Wigner function is not obvious at first glance,

W (x+, x−) =
1

π

∫ +∞

−∞

dz exp(izx−)
〈

x+ − z

4

∣
∣
∣ρ̂

∣
∣
∣x+ +

z

4

〉

(2.61)

nor at the second glance. More details about the origin of this equation and its setting

in quantum optics can be found in the textbook of [Leonhardt 1997]. Nevertheless, I will

attempt a brief discussion of the definition. Firstly, the density operator is evaluated over
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the eigenstates of the quadrature operators. These are defined byX̂+|X+〉 = X+|X+〉.

The eigenstates are chosen as a pair that have a symmetric offset that is prescribed by the

arbitrary variablez. The result is a function ofz andx+. If we consider that the phase-space

variables (x+ andx−) are held fixed, then the integration performs a Fourier transform of

the function in terms ofz, into the space ofx−. Finally, the function is mapped out in terms

of the variablex+ to obtain a two-dimensional function.

The feature of the Wigner function, is that the marginaliseddistribution across one

variable, sayx+, will return the probability distribution of measurementsthat are made in

the corresponding quadrature basis (X̂+). This also works for any rotated quadrature basis.

Like a traditional joint probability distribution, the Wigner function is normalised, as the

integral overx+ andx− is equal to one. However, unlike a traditional joint probability

distribution, the Wigner function has the freedom to becomenegative, even for Hermitian

density operators. There is no problem in this, because an observer is only capable of

(competently) measuring one quadrature of the light field ata time, and the marginalised

distribution is guaranteed to be positive definite.

The Fock states beyondn = 0 turn out to have impressive looking Wigner functions.

For example, then = 1 Fock state has a Wigner function [Walls and Milburn 1994]:

W (x+, x−) =
2

π
(−1)nLn(4(x+)2 + 4(x−)2) exp(−8(x+)2 − 8(x−)2) (2.62)

whereLn are the Laguerre polynomials. This function is plotted for the case|n = 1〉, in

Figure 2.7. The single photon Fock has a minimum at the originof the phase space coordi-

nates, ofW (0, 0) = −2/π. This is the smallest value possible for the Wigner function, and

it clearly demonstrates the negativity possible in the Wigner function representation. The

Wigner function of the vacuum state|n = 0〉 (which is also a zero amplitude coherent state),

is shown in Figure 2.7. The function is Gaussian and so there is no negativity. However,

here we can see that the contour of this function taken at the levelW = 1, is concomitant

to the ellipse of the ball-on-stick diagram of a coherent state in Figure 2.4. Indeed this is

the more rigourous definition of the ellipse in the ball-on-stick diagram, and this applies for

arbitrary states too.
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The semi-classical theory can only describe pure coherent states, or mixtures of coher-

ent states. These mixed states can never show negativity in the Wigner function. Negativity

in the Wigner function is therefore a witness to nonclassical light. Because the Wigner

function is highly analogous to a classical phase-space probability distribution, finding neg-

ativity in the ‘probability’ is quite a counterintuitive result.

I would also like to highlight the distinction between Gaussian and non-Gaussian states.

This is most easily seen in the Wigner function. If the Wignerfunction has the form of

two-dimensional Gaussian distribution, then the state is considered to be Gaussian. Any

other form is considered non-Gaussian. Note that a Wigner function that shows negativity

(and hence is a non-classical state) cannot possibly be a convolution over a set made up of

only Gaussian states, and so such a state is necessarily non-Gaussian. But a state that is

non-Gaussian does not necessarily need to have negativity,and hence is not guaranteed to

be non-classical.

2.4.5 Second-order coherence: (photon anti-bunching)

I will reserve a full discussion of second-order coherence and the photon anti-bunching

concept until Chapter 7. However, for completeness, I wouldlike to introduce it at an

earlier stage, and also motivate it from a slightly different perspective [Loudon 2000]. The

question is: if I consider a single-mode state of the EM field,and extract one photon of

energy from that mode, how ‘likely’ is it that I will be able toextract a second photon

directly after the first one? The answer could perhaps be written down in the following way

〈ψ|â†â†ââ|ψ〉, where two photons are first removed, and then restored. We can express this

in terms of number operators, use the Boson commutation relation, and normalise the result

to get

g(2)(0) =
〈â†â†ââ〉
〈â†â〉2 (2.63)

=
〈n̂(n̂ − 1)〉

〈n̂〉2 (2.64)

= 1 +
σ2(n̂) − µ(n̂)

µ(n̂)2
(2.65)
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whereg(2)(0) is called thedegree of second-order coherence. From Equation 2.64, we can

deduce that a value ofg(2)(0) = 0 is consistent with a zero probability that two photons

will be detected. We can interpret this as the tendency for photons to be detected one at a

time (anti-bunched), rather than being detected together in groups (bunched). The criterion

of g(2)(0) < 1 becomes the definition of anti-bunched photon statistics.

We can look at this result from another perspective. In Equation 2.65, we can iden-

tify the criterion for sub-/super-Poissonian statistics.Therefore when the state has exactly

a Poissonian photon number distribution, the second-ordercoherence function is at the

boundary between bunching and anti-bunching (the state is then said to be second-order

coherent). Furthermore, all sub-Poissonian states will fulfil the anti-bunching criterion. So

in the discussion of non-classical light that follows, I will include photon anti-bunched states

under the same umbrella as sub-Poissonian states of light.

2.4.6 Summary of criteria for non-classical light

In the last section I have shown a few different ways that states of light can be viewed in, and

also a handful of criteria that can identify non-classical states of light. I have summarised

these criteria in Table 2.7. Note that there exist states of light that can fulfil any logic

combination of these criteria. Each criterion is sufficientto witness nonclassical light, but

they are not necessary, i.e. there may exist other criteria of non-classicality that can identify

non-classical light. Let me introduce abbreviations for the criteria: sub-Poissonian (P),

quadrature squeezed (Q), and Wigner function negativity (W). An example of a state of

light that fulfils the criteria (P&Q) is the displaced-squeezed state shown in Figure 2.3 where

|α = 2.3, ζ = 0.5〉. A single photon state easily fulfils the condition (W), however applying

squeezing operation to it would also satisfy (W&Q). An appropriate displacement operation

applied to this state can then satisfy (W&Q&P). The definitions and properties of displaced

squeezed single-photon states can be found in [Nieto 1997].

2.5 From discrete to continuous modes

The previous analysis of states of light was restricted to the case of a single mode of an

ideal optical cavity (a closed system). This does not correspond to the type of experimental
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Sub-Poissonian: σ2(n̂) − µ(n̂) < 0

Quadrature squeezed : {σ2(X̂φ)}min(φ) < 1

Wigner function negativity: {W (x+, x−)}min(x+,x−) < 0

Table 2.7: A summary of criteria that will identify non-classical states of light. Note that all the criteria

shown here are sufficient but not necessary criteria for non-classical light.

Classical states

Non-classical

states

Wigner function

negativity

ALL STATES

sub-Poissonian

Quadrature

squeezing

Other Criteria

?

Figure 2.8: A Venn-type diagram of a selection of criteria for identifying nonclassical states of light. There

exist states of light that occupy each overlap region, and also the multiple overlap regions. Note that other

criteria of nonclassical light can still exist.
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situation where laser beams freely propagate from source todetector. Although the closed

system can be approached in experiments of cavity quantum electrodynamics (CQED), the

experiments that I present in this thesis dealt with open systems. The consequence of open-

ing the system, is that the modes become ever more closely spaced in frequencyωk, such

that it becomes necessary to describe a continuum of modes.

2.5.1 Continuum of modes

The spacing in frequency between neighbouring modes is given by ∆ω = 2πc/L, which

depends on the length of the cavity (L) that was used in the quantisation procedure. As the

length of the cavity is increased, the mode spacing will shrink to zero, and the electric field

operator, which is a discrete sum over all modes, will becomean integral
∑

k → 1
∆ω

∫
dω.

The transverse spatial extent of the mode still has a finite areaA. But some other properties

change, like the Kronecker delta becoming a Dirac delta function, δk,k′ → ∆ωδ(ω − ω′).

Note that the scaling of the delta function is important. We consider the case of waves

propagating in only one direction, say along the z-axis, andhaving only the one polarisation.

So the vectork just becomes the scalark. We also restrict ourselves to the case of only

positive frequencyω, i.e. for waves propagating in the positive z-axis direction.

As a consequence, the creation and annihilation operators becomeâk →
√

∆ω â(ω)

and â†k →
√

∆ω â†(ω). This gives the new, but familiar looking commutation relation

[â(ω), â†(ω)] = δ(ω − ω′). With these new definitions, the electric field operator from

Equation 2.39 becomes

Ê(+)(z, t) = +i

∫ ∞

0
dω

(
~ω

4πε0cA

)1/2
â(ω) exp[−iω(t− z

c
)] (2.66)

Ê(−)(z, t) = −i

∫ ∞

0
dω

(
~ω

4πε0cA

)1/2
â†(ω) exp[+iω(t− z

c
)] (2.67)

Note that the frequency spacing terms∆ω have cancelled, and that the cavity volumeV has

been replaced by transverse areaA, by usingV = LA.

2.5.2 Fourier transformed operators

One then makes a narrow-band assumption, where any excitation of the field is limited to

small spread in frequency around the centre frequencyω0. This is assumption valid for
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a laser sources, or atomic transitions that have narrow linewidths. As a consequence the

integration range can then be extended without any harm, to include negative frequency,

and the variableω can be taken outside the integral as a constantω0 to give

Ê(+)(z, t) = +i
(

~ω0

4πε0cA

)1/2
∫ ∞

−∞

dω â(ω) exp[−iω(t− z

c
)] (2.68)

Ê(−)(z, t) = −i
(

~ω0

4πε0cA

)1/2
∫ ∞

−∞

dω â†(ω) exp[+iω(t− z

c
)] (2.69)

These integrals are essentially performing a Fourier transformation to the creation annihi-

lation operators. This motivates the definition of the time-domain operators. Note that they

have been defined to be consistent withâ†(t) = [â(t)]†, hence:

â(t) =
1

2π

∫ ∞

−∞

dω â(ω) exp(−iωt) (2.70)

â†(t) =
1

2π

∫ ∞

−∞

dω â†(ω) exp(+iωt) (2.71)

where the propagation term will from now on be suppressed by letting z = πc/2ω. The

inverse Fourier transform of the operators is then defined as

â(ω) =

∫ ∞

−∞

dt â(t) exp(+iωt) (2.72)

â†(ω) =

∫ ∞

−∞

dt â†(t) exp(−iωt) (2.73)

Using these definitions we get the time-domain electric fieldoperator for positive and neg-

ative frequencies

Ê(+)(t) =
(π~ω0

ε0cA

)1/2
â(t) , Ê(−)(t) =

(π~ω0

ε0cA

)1/2
â†(t) (2.74)

Which add up to give the total electric field operatorÊ = Ê(+) + Ê(−). Although the main

result looks trivial, it appears as if I have just replaced the â(ω) with â(t), but note that

these definitions only apply for the case of a narrowband excitation of the EM field, and/or

a narrowband photodetector.
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2.6 Direct detection and the sideband picture

What does a photodiode measure? What part of the electromagnetic field does this corre-

spond to? It turns out that there are two answers which dependto a large extent on the type

of detector and the source of light that is used. At this pointthe discipline of quantum op-

tics divides into two areas: discrete-variable (DV) and continuous-variable (CV) quantum

optics. I will concentrate on CV quantum optics, because it applies to the experiments that

I present in this thesis.

2.6.1 The two-mode formalism

The total electric field is the integral over the continuum ofpositive and negative propa-

gating solutions of the EM field; see Equation 2.74. But this will not result in an intuitive

interpretation of CV measurements. Such measurements are sensitive to modulations of the

intensity (or amplitude) of the light, so it makes sense to analyse the electric field operator in

terms of upper and lower sidebands [Caves and Schumaker 1985]. I will choose to perform

the integral over pairs of modes that spaced around a centraloptical frequency, thecarrier,

atω0. Then we have theupper sidebandmode at a frequency ofω0 + Ω, while thelower

sidebandmode has a frequency ofω0−Ω. Using this new formalism, the total electric field

becomes

Ê(t) =

(
~ω0

4πǫ0cA

)1/2 ∫ Ωmax

Ωmin

dΩ

×
{

i

(
ω0 − Ω

ω0

)1/2

â(ω0 − Ω)e−i(ω0−Ω)t

+i

(
ω0 + Ω

ω0

)1/2

â(ω0 + Ω)e−i(ω0+Ω)t

−i

(
ω0 − Ω

ω0

)1/2

â†(ω0 − Ω)e+i(ω0−Ω)t

−i

(
ω0 + Ω

ω0

)1/2

â†(ω0 + Ω)e+i(ω0+Ω)t

}

(2.75)

Fundamentally nothing has changed. It is only the way that the modes are now ‘counted’

that has changed. Note also, that I have not specified a range for the integration, other that

Ωmax,Ωmin. There is of course a problem with double counting whenΩmin = 0, but for
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the moment lets keep it non-specific. In a typical quantum optics experiment, one often

encounters values likeω0 ≈ 1015 Hz and up toΩ ≈ 109 Hz. So we can safely assume that

Ω ≪ ω0, and hence that the(ω0 − Ω)/ω0 scaling terms that appear in the equation above,

can be assumed to equal one. This simplifies the expression enormously:

Ê(t) =

(
~ω0

4πǫ0cA

)1/2 ∫ Ωmax

Ωmin

dΩ

×
{

+ iâ(ω0 − Ω)e−i(ω0−Ω)t + iâ(ω0 + Ω)e−i(ω0+Ω)t

−iâ†(ω0 − Ω)e+i(ω0−Ω)t − iâ†(ω0 + Ω)e+i(ω0+Ω)t

}

(2.76)

The aim is now to simplify this expression further. The complex exponentials can be ex-

panded into cosine and sine terms. The resulting arrangement of creation and annihilation

operators then seem to naturally collect themselves into a set of four Hermitian operators to

give

Ê(t) =

(
~ω0

4πǫ0cA

)1/2 ∫ Ωmax

Ωmin

dΩ

×
{

sin(ω0t)
[

cos(Ωt)X̂+
c (Ω) + sin(Ωt)X̂+

s (Ω)
]

+ cos(ω0t)
[

cos(Ωt)X̂−
c (Ω) + sin(Ωt)X̂−

s (Ω)
]}

(2.77)

where the newly introducedtwo-mode quadrature operatorshave been defined as

X̂+
c (Ω) := +X̂+(ω0 − Ω) + X̂+(ω0 + Ω) (2.78)

X̂+
s (Ω) := −X̂−(ω0 − Ω) + X̂−(ω0 + Ω) (2.79)

X̂−
c (Ω) := −X̂−(ω0 − Ω) − X̂−(ω0 + Ω) (2.80)

X̂−
s (Ω) := −X̂+(ω0 − Ω) + X̂+(ω0 + Ω) (2.81)

and thesingle-mode quadrature operatorsa given by their usual definitions

X̂+(ω0 − Ω) = â†(ω0 − Ω) + â(ω0 − Ω) (2.82)

X̂−(ω0 − Ω) = iâ†(ω0 − Ω) − iâ(ω0 − Ω) (2.83)

X̂+(ω0 + Ω) = â†(ω0 + Ω) + â(ω0 + Ω) (2.84)

X̂−(ω0 + Ω) = iâ†(ω0 + Ω) − iâ(ω0 + Ω) (2.85)
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Although not obvious at the moment, the set of two-mode quadrature operators describe

amplitude and phase modulations at radio frequenciesΩ of the oscillation at the optical

carrier frequencyω0. The superscript and subscript labels that I gave these operators is

arbitrary, but in the next section we will see thatX̂+
c and X̂+

s appear as modulations of

the amplitude of the light as it would be measured on a photodiode. They correspond to

two independent ‘channels’ of amplitude modulation on the light beam: the sine and cosine

channels. The following commutation relations make this clear

[

X̂+
c , X̂

+
s

]

=
[

X̂+
c , X̂

−
s

]

=
[

X̂−
c , X̂

+
s

]

=
[

X̂−
c , X̂

−
s

]

= 0 (2.86)

which is independent of the choice ofΩ. Within each channel, there are two non-commuting

observables

[

X̂+
c (Ω), X̂−

c (Ω′)
]

=
[

X̂+
s (Ω), X̂−

s (Ω′)
]

= 4i δ(Ω − Ω′) (2.87)

whereδ(Ω − Ω′ = 0) = 1 andδ(Ω − Ω′ 6= 0) = 0. Each pair of incompatible observables

then obeys the following uncertainty relations

σ2
(

X̂+
c (Ω)

)

σ2
(

X̂−
c (Ω′)

)

≥ 4 δ(Ω − Ω′) (2.88)

σ2
(

X̂+
s (Ω′)

)

σ2
(

X̂−
s (Ω′)

)

≥ 4 δ(Ω − Ω′) (2.89)

Where the variance of an operatorσ2(Ô) is defined in Table 2.1. The uncertainty product

for the two-mode quadrature operators has a value of4, which can be compared with a value

of 1 for the single-mode quadrature operators.

2.6.2 Direct detection: Poynting vector

We have seen a representation of the electric field in a two-mode sideband formalism, but

I want to make the connection with what a photodiode measures. The following derivation

seems unusually long. This is because I wanted to clearly show the approximations (a

strong and narrow-band excitation), that are needed to makethe problem tractable. The rate

of photo-ionisation of an atom is proportional to the Poynting vector operator of the light

that the atom is being exposed to [Loudon 2000]. The Poyntingvector is equal to the rate

of energy per unit area that flows through a fixed plane. I beginthe analysis in the single-
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mode formalism, before later changing to the two-mode formalism. In the continuum of

single-modes, the Poynting vector operator becomes a double integral over the absolute

frequenciesω andω′. The negative and positive electric field operators from Equation 2.67

need to be written down in normal order, so that the Poynting vector operator becomes

Î(t) = 2ǫ0cÊ
(−)(t) Ê(+)(t) (2.90)

=

(
~

2πA

)∫ ∞

0

∫ ∞

0
dω dω′

√
ωω′ â†(ω) â(ω′) ei(ω−ω′)t (2.91)

The double integral cannot be simplified any further until I make an assumption about

the excitation of the EM field. I would like to calculate what happens when a source of

monochromatic laser light is incident on the detector. To simulate this situation, one can

apply the displacement operator at the frequencyω0 which establishes the carrier with a

coherent amplitudeα0. In the Heisenberg picture this then transforms the creation and an-

nihilation operators such that:̂D†â(ω)D̂ = â(ω) + α0 δ(ω − ω0); D̂†â†(ω)D̂ = â†(ω) +

α∗
0 δ(ω − ω0). For this discussion we setα∗

0 = α0. The displacement only applies to the

frequencyω0, which is the reason for introducing the delta function. Thedisplacement

transformation is then applied to the Poynting vector operator such that

Îα(t) = D̂†(α0) Î(t) D̂(α0) (2.92)

=

(
~

2πA

)∫ ∞

0

∫ ∞

0
dω dω′

√
ωω′ ei(ω−ω′)t

×
{

â†(ω)â(ω′) + α2
0 δ(ω − ω0) δ(ω

′ − ω0)

α0 â
†(ω) δ(ω′ − ω0) + α0 â(ω

′) δ(ω − ω0)
}

(2.93)

The double integral can be reduced to a single integral if we make the following assump-

tion. Any terms in the integral that are not scaled byα0 will not contribute significantly to

the integral, and can therefore be neglected. The term that Iwill neglect is â†(ω)â(ω′).

Since we have the freedom to choose the strength of the carrier by varyingα0, we can al-

ways enforce the validity of neglecting the cross-frequency terms. This is exactly the same

as in classical optics where the sidebands ‘beat’ with the carrier to produce amplitude and

phase modulations, whereas the beats between different sidebands are negligible. While

keeping the approximation in mind, the expression for the Poynting vector can be broken
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up, and the integral overω′ can be evaluated such that

Îα(t) =

(
~
√
ω0

2πA

){

α2
0

∫ ∞

0
dω

√
ω e+i(ω−ω0)t δ(ω − ω0)

+α0

∫ ∞

0
dω

√
ω
[

e+i(ω−ω0)t â†(ω) + e−i(ω−ω0)t â(ω)
]}

(2.94)

The next step is to change the frequency variable such thatω = ω0 + Ω, whereΩ is the

sideband frequency relative to the carrier.

Îα(t) =

(
~
√
ω0

2πA

){

α2
0

∫ ∞

−ω0

dΩ
√

ω0 + Ω e+iΩt δ(Ω − 0)

+α0

∫ ∞

−ω0

dΩ
√

ω0 + Ω
[

e+iΩt â†(ω0 + Ω) + e−iΩt â(ω0 + Ω)
]}

(2.95)

The limits of the integration are then reduced from the half infinite plane, to covering just

a small bandwidthB that extends above and below that carrier. The exact value ofthe

bandwidth would depend on the type of detector, or in abstract terms, on the linewidth of

the photo-ionisation process. However, we can assume thatB ≪ ω0. This ensures that we

can make the approximation
√
ω0 + Ω ≈ √

ω0. The first integral can then be evaluated,

thus leaving,

Îα(t) =
~ω0

A

{

α2
0 +

α0

2π

∫ +B

−B
dΩ

[

e+iΩtâ†(ω0+Ω) + e−iΩtâ(ω0+Ω)
]}

(2.96)

This equation tells us that the detector is responsive to theconstant photon flux(~ω0α
2
0/A)

from the coherent excitation at the carrier frequency, plusthe contribution from the side-

band quadrature amplitudes that are scaled by amplitude of the carrier. But to complete the

measurement process, we need to define a time window over which the measurements takes

place. This also determines what sideband frequencies willappear in the measurement.

One way to implement this is to multiply the Poynting operator with a time window func-

tion and then integrate this over all time. I will consider two different window functions:

one functionTDC(t) for measuring the steady-state intensity, and another function TAC(t)

for analysing fluctuations of the intensity at a specific frequencyΩ0. The measurement

bandwidth is in both cases∆Ω, which must be kept smaller than the detector bandwidthB.
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Time window

t

T(t)=cos(Ω0 t)sinc(∆Ω t / 2)

Fequency window

ω

W(Ω)=Hat(Ω−Ω0) + Hat(Ω+Ω0)

ω0+Ω0ω0−Ω0

∆Ω ∆Ω
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Figure 2.9: A method of getting into the sideband picture. In the time domain, one can choose to multiply

the photocurrent by the cosine-sinc function. The resulting frequency window in the Fourier domain is

a hat function on either side of the optical carrier ω0, which corresponds to the two-mode sideband

formalism.

The window functions are defined as

TDC(t) = sin(
1

2
∆Ω t)

/

(
1

2
∆Ω t) (2.97)

TAC(t) = cos(Ω0t) sin(
1

2
∆Ω t)

/

(
1

2
∆Ω t) (2.98)

The choice of these particular functions enables us to laterget sharply defined frequency

filters, which have been visualised in Figure 2.9. The Fourier transform of the time window

functions, gives the corresponding frequency window functions:

WDC(Ω) =
2π

∆Ω

{
1 , (−1

2∆Ω) < Ω < (+1
2∆Ω)

0 , elsewhere

and

WAC(Ω) =
2π2

∆Ω







1 , (−Ω0 − 1
2∆Ω) < Ω < (−Ω0 + 1

2∆Ω)

1 , (+Ω0 − 1
2∆Ω) < Ω < (+Ω0 + 1

2∆Ω)

0 , elsewhere

Note that for this to hold true we require that1
2∆Ω < Ω0. Let us apply theTDC window to

the Poynting vector operator from Equation 2.96 and integrate over all time. This allows us
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to get the energŷEDC collected during the measurement window, therefore,

ÊDC = A

∫ +∞

−∞

dt TDC(t) Îα(t)

= ~ω0α
2
0

( 2π

∆Ω

)

+
~ω0α0

2π

∫ +B

−B
dΩ

{

â†(ω0+Ω)

∫ +∞

−∞

dt TDC(t) e+iΩt

+â(ω0+Ω)

∫ +∞

−∞

dt TDC(t) e−iΩt

}

= ~ω0α
2
0

( 2π

∆Ω

)

+
~ω0α0

2π

∫ +B

−B
dΩWDC(Ω)

{

â†(ω0+Ω) + â(ω0+Ω)
}

= ~ω0α
2
0

( 2π

∆Ω

)

+
~ω0α0

∆Ω

∫ + 1
2
∆Ω

− 1
2
∆Ω

dΩ X̂+(ω0 + Ω) (2.99)

We can identify a characteristic time that corresponds to the duration of the time window,

given by∆t = 2π/∆Ω, which comes from the integral over all time ofTDC(t). With the

time duration identified, we can then define the rate of energycollected, or power̂PDC, that

was detected

P̂DC = ~ω0α
2
0 +

~ω0α0

2π

∫ + π
∆t

− π
∆t

dΩ X̂+(ω0 + Ω) (2.100)

= ~ω0α
2
0 , when∆t→ ∞ (2.101)

If we then keep extending the length of the time window to get abetter average value, then

range of the integral shrinks. Note that there is no anomalous result atΩ = 0 because we

are working in the Heisenberg picture, and the coherent state for the carrier was made by

transforming the operator, not the state. So if I were to calculate the expectation value of

the P̂DC operator, I would use a vacuum state for theΩ = 0 mode (which would return a

value of zero for thêX+ operator). The main result is that in the limit of∆t→ ∞ we have

P̂DC = ~ω0α
2
0. We can turn the argument on its head, and deduce thatα2

0 is in units of the

mean number of photons per unit time. In SI units where~ω0 is in Joules, the units ofα2
0

are in number per second[s−1].

The procedure is similar for measurements that are made at the sideband frequencies

that are centred atΩ0. The idea of multiplying the Poynting operator with a temporal win-

dow function that looks likeTAC(t) is exactly the same as the experimental technique of

demodulating an electronic signal, by multiplication witha reference frequency (an elec-

tronic local oscillator). I give the time window an additional freedom, which is the ability to
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be delayed by an amountt0. Starting with Equation 2.96, the operator for energy collected

by the detector becomes

ÊAC = A

∫ +∞

−∞

dt TAC(t− t0) Îα(t)

=
~ω0α0

2π

∫ +B

−B
dΩ

{

â†(ω0+Ω)

∫ +∞

−∞

dt TAC(t− t0) e+iΩt

+â(ω0+Ω)

∫ +∞

−∞

dt TAC(t− t0) e−iΩt

}

=
~ω0α0

2π

∫ +B

−B
dΩWAC(Ω)

×
{

e+iΩt0 â†(ω0 + Ω) + e−iΩt0 â(ω0 + Ω)
}

=
~ω0α0π

∆Ω

∫ Ω0+
1
2
∆Ω

Ω0−
1

2
∆Ω

dΩ
{

e+iΩt0 â†(ω0 + Ω) + e−iΩt0 â(ω0 + Ω)

+e−iΩt0 â†(ω0 − Ω) + e+iΩt0 â(ω0 − Ω)
}

=
~ω0α0π

∆Ω

∫ Ω0+
1
2
∆Ω

Ω0−
1
2
∆Ω

dΩ
{

cos(Ωt0) X̂
+
c (Ω) + sin(Ωt0) X̂

+
s (Ω)

}

(2.102)

Here we can see how the two-mode quadrature operators for theamplitude, as given by

Equation 2.81, have appeared in the expression for the energy, as collected by the detector.

If we divide the collected energy by the duration of the time window, again∆t = 2π/∆Ω,

then the operator for the average power that is detected becomes

P̂AC =
~ω0α0

2

∫ Ω0+ 1
2
∆Ω

Ω0−
1

2
∆Ω

dΩ
{

cos(Ωt0) X̂
+
c (Ω) + sin(Ωt0) X̂

+
s (Ω)

}

(2.103)

Note that the two-mode quadrature operators carry the unitsof [s−1/2]. Let us calculate

the expectation value of the mean and standard deviation of this operator, over the set of

vacuum states|{0}Ω〉 for all Ω. We then get a meanµ(P̂AC) = 0, and standard deviation

σ(P̂AC) = ~ω0α0

√

∆Ω/2. The former is to be expected, since we have made no coherent

excitation at the sideband frequencies. The latter is scaled by the root of the bandwidth,

therefore the larger the bandwidth, the more noise power is detected, which is consistent

with a frequency independent power spectral density, or white noise. This is the derivation

for the shot noise of a photodetector, when it is illuminatedby a coherent state of light. The

derivation of the shot noise using the semi-classical theory can be found in [Winzer 1997].
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2.6.3 Two-mode coherent states produce AM and PM

The measured power of a photo-detector is neatly described in the two-mode formalism of

Equation 2.103. An amplitude modulation (AM) and phase modulation (PM) can be pro-

duced on the light beam by applying a coherent excitation to the upper and lower sidebands.

The two-mode displacement operator is defined by a pair of single-mode displacement op-

erators:

D̂m = D̂(α−;ω0 − Ωm)D̂(α+;ω0 + Ωm) (2.104)

It essentially creates a coherent state at the upper and lower sidebands at the modulation fre-

quenciesω0 +Ωm andω0−Ωm; and with the coherent amplitudesα+ andα−, respectively.

It transforms the two-mode quadrature operators in the following way:

D̂†
m X̂

+
c D̂m = X̂+

c (Ω) + 2
[

+ ℜ{α−} + ℜ{α+}
]

δ(Ω−Ωm) (2.105)

D̂†
m X̂

+
s D̂m = X̂+

s (Ω) + 2
[

−ℑ{α−} + ℑ{α+}
]

δ(Ω−Ωm) (2.106)

D̂†
m X̂

−
c D̂m = X̂−

c (Ω) + 2
[

−ℑ{α−} − ℑ{α+}
]

δ(Ω−Ωm) (2.107)

D̂†
m X̂

−
s D̂m = X̂−

s (Ω) + 2
[

−ℜ{α−} + ℜ{α+}
]

δ(Ω−Ωm) (2.108)

For example, to put an amplitude modulation on the cosine channel alone would require

the condition thatα+ = α− = αm, where the modulation depthαm is real. We choose the

modulation frequency to be at the centre of the bandwidth, soΩm = Ω0, and the offset of the

time window att0 = 0. Using Equation 2.103, together with the continuum of modesall in

the vacuum state, we get the following measurement of the mean and standard deviation of

the detected (AC) optical power:µ(P̂AC) = ~ω0α0(2αm) andσ(P̂AC) = ~ω0α0

√

∆Ω/2.

The signal-to-noise ratio is then simplyS = 2αm/
√

∆Ω/2. So if I would like to detect

an amplitude modulation with a signal-to-noise ratio of one, then I would have to modulate

the carrier light beam with enough depth to supply a rate of photons into the sidebands

(α2
m) that is equal to one eighth of the detection bandwidth. The noise, also called shot-

noise, originates from the vacuum sidebands. In practice, the shot noise level becomes the

calibration for the photodetector and subsequent spectralanalysis. If one accurately knows

the bandwidth of the spectrum analyser, then one can infer the mean number of photons in
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Figure 2.10: A visualisation of the two-mode coherent states which appear in two channels of amplitude

modulation, and two channels of phase modulation. The two-mode coherent states are also presented

as spectra that are made up of a ball-on-stick diagram drawn at each frequency. The frequency mode of

the carrier is also shown. All other frequency modes are in the vacuum state.

the sidebands that make up the amplitude modulation [Webbet al. 2006].

The other channels of modulation are created in a similar manner by appropriately

choosing the complex angles ofα− andα+. These modulations of the light beam are shown

graphically as an oscillation in Figure 2.10. Also shown is the spectrum as being made up

of a ball-on-stick drawn at ‘every’ frequency. The phase relationships of the sidebands,

relative to each other, determines what kind of modulation is produced.

2.6.4 A two-photon process produces two-mode squeezed states

We have seen that the vacuum sidebands are responsible for the shot noise in the form of

a fluctuating optical power as measured by a photodetector. Looking at Equation 2.108,

we know how to produce modulations on the light, but can we also remove them such that

the light beam detected as a whole has a steady amplitude quadrature? If we lived inside

a cavity in single-mode world, then the answer would be: yes,just apply the squeezed

operator to the single mode. But in the world of photo-detection, which is inherently a

two-mode process, we need to apply a two-mode squeeze operator in the form of:

Ŝ(ζ) = exp
{1

2
ζ∗â(ω0 + Ω) â(ω0 − Ω) − 1

2
ζâ†(ω0 − Ω) â†(ω0 + Ω)

}

(2.109)
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Where the squeezing parameter isζ = r exp(iϑ). One can readily see the similarity with

the single-mode form in Table 2.4. If we choose to keep the squeezing parameter to be real

ζ∗ = ζ = r, then the two-mode squeezing operator works in the following way:

Ŝ†(r) X̂+
c (Ω) Ŝ(r) = e−rX̂+

c (Ω) (2.110)

Ŝ†(r) X̂+
s (Ω) Ŝ(r) = e−rX̂+

s (Ω) (2.111)

Ŝ†(r) X̂−
c (Ω) Ŝ(r) = e+rX̂−

c (Ω) (2.112)

Ŝ†(r) X̂−
s (Ω) Ŝ(r) = e+rX̂−

s (Ω) (2.113)

The squeezing operation acts like an amplification or de-amplification of the two-mode

quadrature operators. The transformation is symplectic, in that the product of the phase

and amplitude quadrature variances remains unchanged. Theexpression for the mean and

standard deviation of the detected (AC) power becomes:µ(P̂AC) = 0 and σ(P̂AC) =

~ω0α0e
−r

√

∆Ω/2. Compare this with the case before the squeezing operation was intro-

duced. For positive values of the squeezing parameter, the measured noise, as given by

the standard deviation, is lower by a factor ofe−r of the shot-noise level. Note that if we

had applied only the single-mode squeezing operator, then this result would not have been

possible. It is the correlation of the sidebands, as introduced by the two-mode squeezing

operator, that enables the reduction of the measured amplitude noise of the light beam, to

below that of shot noise.

2.6.5 A compact form of the two-mode formalism

The two-mode formalism is the most intuitive model for understanding what part of the EM

field a photodetector detects. But it can be a bit clumsy when it comes to calculating the

output of nonlinear optical components, such as an optical parametric amplifier. One way to

get around this is to defining a new operator which contains both channels of the amplitude

quadrature:

X̂
+
cs(Ω) :=

1

2
{X̂+

c (Ω) − iX̂+
s (Ω)} = {â(ω0 − Ω) + â†(ω0 + Ω)} (2.114)

X̂
−
cs(Ω) :=

1

2
{X̂−

c (Ω) − iX̂−
s (Ω)} = i{â(ω0 − Ω) − â†(ω0 + Ω)} (2.115)
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So what I have effectively done is to put the information of each real-valued channel into

one complex-valued channel. The change of font for the new operators is to remind us that

they are not Hermitian. When doing calculations, one must remember to take twice the

real part2ℜ{X̂+
cs(Ω)} to get the cosine channel, and twice the imaginary part2ℑ{X̂+

cs(Ω)}

to get the sine channel. The operators obey the commutation relation[X̂+(Ω), X̂−(Ω′)] =

−2i δ(Ω−0) δ(Ω′−0). The role that they play will be made clear in a moment after I define

the Fourier transformed operators:

X̂+
cs(t) =

1

2π

∫ +∞

−∞

dΩ e+iΩt
X̂

+
cs(Ω) (2.116)

X̂−
cs(t) =

1

2π

∫ +∞

−∞

dΩ e+iΩt
X̂
−
cs(Ω) (2.117)

Note that I have returned to the original font for the time-domain operators because they are

indeed Hermitian. The next step is to relate the time-domainoperators to the detected AC

power. I exploit the properties that̂X+
c (−Ω) = X̂+

c (Ω) andX̂+
s (−Ω) = −X̂+

s (Ω), which

follow from their definitions. I also employ the convolutiontheorem of a Fourier transform

to arrive at the following identity with Equation 2.103:

P̂AC = ~ω0α0 X̂
+
cs(t) ∗ TAC(t)/∆t (2.118)

where the convolution integral of the amplitude quadraturewith the time window is

X̂+
cs(t) ∗ TAC(t) =

∫ +∞

−∞

dt′ X̂+
cs(t

′) TAC(t− t′) (2.119)

andTAC(t) is given in Equation 2.98, with the duration of the time window ∆t = 2π/∆Ω.

Equation 2.118 tells us what we already knew: the fluctuations in the detected power are

proportional to the amplitude quadrature of the sidebands and they are scaled by the co-

herent amplitude of the carrier. But the time-domain form that is presented here, is more

general than Equation 2.103. It works for any choice of time window or frequency filter, as

long as the convolution integral is re-evaluated. It is common practice in quick theoretical

derivations to ignore the convolution integral, and even toignore the scaling factor~ω0. But

one must remember that a time window must always be specified to allow one to make a

quantitative comparison with experimental results. This concludes the section on the con-
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nection between the EM field and its detected power. The result is intuitive from its roots

in classical optics, but buried beneath several layers of abstractions and operator definitions

still lies the quantum harmonic oscillator.

2.7 Models of linear processes

Most experiments in quantum optics can be reduced to a few simple building blocks. We

can model what happens to the optical field during its passagethrough each block, and

therefore build an input-output transfer function for the relevant fields of the entire exper-

iment [Bachor and Ralph 2004]. By far the most important component is the beamsplitter.

From this we can develop models of optical loss, optical cavities, and homodyne detection.

2.7.1 Linearisation of operators in the time domain

The task of calculating transfer functions of optical components is greatly simplified by the

technique of operator linearisation [Yurke 1984]. The ideais to break up an operator into

time dependent, and time independent, components. For thisto work, one has to make two

transformations. Firstly, one must bring the operator intoa rotating frame that removes the

oscillation at the optical frequencyω0 of the carrier. For example, the annihilation operator

transforms according tôa(t) → â(t) exp(iω0t), which changes the definition of the Fourier

transformed operators of Equation 2.71 in terms of the sideband frequencyΩ such that

ârot(t) =
1

2π

∫ +∞

−∞

dΩ â(ω0 + Ω) exp(−iΩt) (2.120)

Secondly, we must apply a displacement operation to the carrier mode, which makes a co-

herent state at the carrier frequency. In the rotating frame, this looks likeD̂† ârot(t) D̂ =

ârot(t) + α. We therefore get the original operator plus the scalar fromthe coherent am-

plitude of the carrier. As we are working in the Heisenberg picture, we must remember

that the initial state of the carrier mode must be kept in a vacuum state when calculating

the expectation values of operators. If we abide by this rule, then the annihilation operator

in the rotating frame (and prior to the displacement operation) will be guaranteed to have

have a time-averaged expectation value of zero:〈0|
∫ +∞

−∞
dt ârot(t)|0〉 = 〈0|â(ω0)|0〉 = 0.

In the notation, one removes the ‘rot’ subscript and places adelta symbol in front of the
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rotating-frame operator̂arot(t) → δâ(t), to show that its mean value is zero:〈δâ(t)〉 = 0.

To summarise these steps so far:α is the component for the steady-state classical am-

plitude of the carrier mode; andδâ(t) is the component that holds the quantum fluctuations.

We have therefore made the transformation:â(t) → α + δâ(t). One can follow a similar

procedure of transformation for the creation operator to get: â†(t) → α∗ + δâ†(t). Note

that my argument here has been subtle. I have not invoked a time-average of the operator in

the definition, but rather, I have relied on the displacementoperation to bring about a scalar

offset of the creation and annihilation operators.

The final step in the linearisation procedure comes when one removes any terms that

appear in expressions of operators, that are proportional to the products of two or more fluc-

tuating terms. For example, applying the rotating frame anddisplacement transformations

to the creation and annihilation operators, the number operator in the time domain becomes

â†(t) â(t) = α∗α+ α∗δâ(t) + αδâ†(t) + δâ†(t) δâ(t) (2.121)

= |α|2 + |α|
[

e−iφδâ†(t) + e+iφδâ(t)
]

+ δâ†(t) δâ(t) (2.122)

= |α|2 + |α|δX̂φα
a (t) + δâ†(t) δâ(t) (2.123)

≈ |α|2 + |α|δX̂φα
a (t) (2.124)

where in the last step I have assumed that the second-order fluctuation term will be much

smaller than the terms scaled byα. Which will be valid for the case of a strong excita-

tion of |α| ≫ 1. The quadrature operator for arbitrary anglesδX̂φα
a from Equation 2.44

was introduced to accommodate the complex-valued coherentamplitude. The angle is

φα = Arg{α}. For φα = 0 andφα = π/2 we have the amplitude and phase quadra-

tures respectively.

As a comment, one can immediately see the usefulness of the linearisation approach.

The result here can be compared with the ‘DC’ and ‘AC’ measurements of the Poynting

vector in Equation 2.101 and Equation 2.103. By using the linearisation procedure for the

time domain operators, one can avoid a lengthy digression into defining time and frequency

windows, while still getting essentially the same result.
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a
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c

d

π
Figure 2.11: A diagram showing how two independent

modes, for the plane waves labelled by a and b, can

interfere on a beamsplitter of intensity reflectivity η, to

create two new modes c and d. Note the π phase shift

on the path from b to d.

2.7.2 The beam splitter

Consider a set of modes that are plane waves with propagationvectorsk pointing in different

directions, but that have all the same magnitude|k|. A beamsplitter is a device that allows

two of these input modes (a andb) to interfere to produce two output modes (c andd). The

beamsplitter can be described as a matrix of complex transmitivity and reflectivity factors

[Saleh and Teich 1991]. But for the moment, let us assume thatthe beamsplitter has an

intensity reflectivity ofη, and that it introduces aπ phase shift on reflection from the path

b to d, and no phase shift on all the other paths. A diagram is shown in Figure 2.11. The

beamsplitter transforms the creation and annihilation operator in the following way:

ĉ† =
√
η â† +

√

1 − η b̂† , ĉ =
√
η â+

√

1 − η b̂ (2.125)

d̂† =
√

1 − η â† −√
η b̂† , d̂ =

√

1 − η â−√
η b̂ (2.126)

These equations are equally valid for the time-domain operators as the frequency-domain

operators, so an explicit dependence will be dropped from the notation. The amplitude and

phase quadrature operators for the output modesc andd simply become

X̂±
c =

√
η X̂±

a +
√

1−η X̂±
b , X̂±

d =
√

1−η X̂±
a −√

η X̂±
b (2.127)
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a
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LOCAL

OSCILLATOR

SIGNAL Figure 2.12: The technique of homodyne detection.

The signal beam is interfered with a bright local oscil-

lator. The two output ports are detected, and the pho-

tocurrents are subtracted from one another. The re-

sulting current is proportional to the quadrature of the

signal beam, where the angle is selected by the phase

of the local oscillator.

Because the modesa andb are assumed to be independent and share no prior correlations,

the mean and variances of the quadrature operators for modesc andd simplify to

µ(X̂±
c ) =

√
η µ(X̂±

a ) +
√

1−η µ(X̂±
b ) (2.128)

µ(X̂±
d ) =

√

1−η µ(X̂±
a ) −√

η µ(X̂±
b ) (2.129)

σ2(X̂±
c ) = η σ2(X̂±

a ) + (1−η)σ2(X̂±
b ) (2.130)

σ2(X̂±
d ) = (1−η)σ2(X̂±

a ) + η σ2(X̂±
b ) (2.131)

I want to model the situation where one is interested in detecting modea, but the mode

suffered optical attenuation, or loss, along the path from source to detector. The beamsplitter

of reflectivity η will accurately describe the effect of attenuation. Note that in the case of

scattering or absorption, one would need to model a continuum of beamsplitters, but the

end result is the same. If we take the case that input modeb is in the vacuum state, then

we get:µ(X̂±
c ) =

√
η µ(X̂±

a ) andσ2(X̂±
c ) = η σ2(X̂±

a ) + (1−η). We find that not only

is the mean field attenuated, but that the vacuum state on modeb increases the quadratures

variances on the output modec. It is for this reason that experiments involving quadrature

squeezed light, whereσ2(X̂+
a ) < 1, that the detected amount of squeezing is degraded by

the level of optical attenuation, and that detectors of highquantum efficiency are desirable.

2.7.3 Homodyne detection

So far we have been limited to measuring the amplitude quadrature of a light beam. This

is the only part of the field that a single detector is sensitive to. One way to make the mea-

surement phase sensitive is to interfere the beam of interest (the signal) on a beamsplitter

with an auxiliary beam (the local oscillator); see Figure 2.12. For this to work, one must
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choose the splitting ratio to be symmetricη = 1/2, and the local oscillator in modeb to

be in a bright coherent state|β〉b that is much greater than the mean field of the signal in

modea that is in the arbitrary state|ψ〉a. The two output portsc andd of the beamsplitter

are detected, and the photocurrents are subtracted from oneanother. Using the technique of

linearisation, I can write down the difference of the numberoperators to give

n̂dif = ĉ†ĉ− d̂†d̂ (2.132)

= |β|X̂φβ
a + |α|X̂φα

b (2.133)

≈ |β|X̂φβ
a when α≪ β (2.134)

whereφα = Arg{α} andφβ = Arg{β}. The contribution of the quadrature amplitudes

of the local oscillator to the difference current is negligible in the case of a strong local

oscillatorβ ≫ α. Hence, one does not even require the local oscillator to be in a coherent

state, it could for example be a squeezed state. The main requirement however, is that the

phase of the local oscillator (relative to the signal) can becontrolled. It is this phase which

selects which quadrature angle of the signal beam is detected. This technique is called

homodyne detection, because the optical frequency of the local oscillator was chosen to be

the same as the signal beam. Indeed, for the technique to workefficiently, one must ensure

that the two modes are well matched in the transverse-spatial functions and polarisation

degrees of freedom.

From an experimental point of view, one strength of homodynedetection is that it allows

measurement results to be calibrated to the vacuum state. The chain of electronic devices

from photodiode to spectrum analyser can be so long that it makes an absolute measurement

very challenging. This means that at the front of Equation 2.134 there is a constant factor,G,

that depends on trans-impedance gain, bandwidth, and so on.This problem is side-stepped

if one takes a calibration measurement by simply blocking the signal beam. This puts mode

a into a vacuum state, thus giving a variance of the differencecurrent:σ2(n̂dif) = G2|β|2.

Since the factorG is unchanged, it therefore cancels out. Homodyne detectionforms the

cornerstone of most continuous-variable quantum optics experiments, where squeezing and

quadrature correlations between modes can be verified. Furthermore, from homodyne mea-
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κ1 κ2

Ain,1 Ain,2

Aout,2Aout,1
Figure 2.13: Schematic of a standing-wave cav-

ity consisting of two mirrors with coupling coef-

ficients κ1 and κ2. The intra-cavity field is la-

belled a, while the input fields are labelledAin,1

and Ain,2.

surements taken over2π of quadrature angles, it is for example possible to mathematically

reconstruct the Wigner function of the state|ψ〉a; see for example [Leonhardt 1997].

2.7.4 Optical cavities

We can make a light beam periodically interfere with itself by letting it reflect back and forth

between two partially reflective mirrors. If the light exactly retraces its steps, in the sense

that the transverse profile is preserved, then the setup becomes a stable optical resonator, or

optical cavity. The applications of optical cavities are ubiquitous. For example, an optical

cavity is the element of feedback in a laser system.

To model the cavity, we start by defining two coupling mirrorsof reflectivityη1 andη2,

that have decay ratesκ1 = (1−η1)/2τ andκ2 = (1−η2)/2τ , whereτ = c/d is the round-

trip time that is determined by the round-trip optical path lengthd. The total coupling rate

is κ = κ1 + κ2, where all the coupling rates are in SI units of[s−1]. A diagram is shown in

Figure 2.13. The intra-cavity field is described by the dimensionless annihilation operator

â(t), while the input fields are described bŷAin,1(t) and Âin,2(t) which have the units

[s−
1
2 ]. Similarly, the output fields arêAout,1(t) and Âout,2(t). The upper-case operators

are to remind us that they have different units to the lower-case intra-cavity operators. We

can now start to describe the evolution of the fields. The intra-cavity field decays with a

rate that is proportional to−κâ, but the intra-cavity field is also built up by the input fields

according to
√

2κ1Âin,1(t) and
√

2κ1Âin,2(t); see for example [Collett and Gardiner 1984].

Combining both processes gives:

dâ(t)

dt
= −κâ(t) +

√
2κ1Âin,1(t) +

√
2κ2Âin,2(t) (2.135)

My aim is to solve this differential equation to get the intra-cavity field in terms of the

input fields. The linearisation transformation can be applied to the operators. This means

that the annihilation operator is transformed into the rotating frame and a carrier is dis-
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placed according tôa(t) → [α + δâ(t)] exp(iω0t) and similarly for the creation operator

â†(t) → [α∗ + δâ†(t)] exp(−iω0t). A similar transformation is given to the input and out-

put fields. By substituting these into Equation 2.135 and remembering the definition of the

time domain operators in Equation 2.71, we can peel off an equation for the carrier field and

solve it immediately to get

α =
1

κ

[√
2κ1αin,1 +

√
2κ2αin,2

]
(2.136)

The rate equation for the sidebands become

d

dt
δâ(t) = −κ δâ(t) +

√
2κ1 δÂin,1(t) +

√
2κ2 δÂin,2(t)

−iΩ

2π

∫

dΩ e−iΩt â(ω0+Ω) =
1

2π

∫

dΩ e−iΩt
[

− κ â(ω0+Ω)

+
√

2κ1 Âin,1(ω0+Ω) +
√

2κ2 Âin,2(ω0+Ω)
]

Following through with an inverse Fourier transform we get

−iΩâ(ω0+Ω) = −κâ(ω0+Ω) +
√

2κ1Âin,1(ω0+Ω) +
√

2κ2Âin,2(ω0+Ω)

solving for the intra-cavity field, gives

â(ω0+Ω) =
κ+ iΩ

κ2 + Ω2

[√
2κ1Âin,1(ω0+Ω) +

√
2κ2Âin,2(ω0+Ω)

]

(2.137)

following the same steps for the creation operator, and changing the sign ofΩ in the anni-

hilation operator gives

â(ω0−Ω) =
κ− iΩ

κ2 + Ω2

[√
2κ1Âin,1(ω0−Ω) +

√
2κ2Âin,2(ω0−Ω)

]

(2.138)

â†(ω0+Ω) =
κ− iΩ

κ2 + Ω2

[√
2κ1Â

†
in,1(ω0+Ω) +

√
2κ2Â

†
in,2(ω0+Ω)

]

(2.139)

The sum of these two operators is exactly the definition of thecompactform of the two-

mode amplitude and phase quadrature operators given in Equation 2.115, hence

X̂
±
a (Ω) =

κ− iΩ

κ2 + Ω2

[√
2κ1X̂

±
in,1(Ω) +

√
2κ2X̂

±
in,2(Ω)

]

(2.140)

However, it is the reflected fields that are more interesting.One can get them from the

input-output relation for the annihilation operatorÂout,2 =
√

2κ1â − Âin,2; and similarly
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for the quadrature operatorŝX
±
out,2 =

√
2κ2X̂

±
a −X̂

±
in,2. Although this result appears simple,

its derivation is nontrivial [Collett and Gardiner 1984]. Using the input-output relation, the

transfer function for the fields that leave the cavity from the first and second mirrors become

X̂
±
out,1(Ω) =

[
2κ1(κ− iΩ)

κ2 + Ω2
− 1

]

X̂
±
in,1(Ω) +

[
2
√
κ1κ2(κ− iΩ)

κ2 + Ω2

]

X̂
±
in,2(Ω) (2.141)

X̂
±
out,2(Ω) =

[
2
√
κ1κ2(κ− iΩ)

κ2 + Ω2

]

X̂
±
in,1(Ω) +

[
2κ2(κ− iΩ)

κ2 + Ω2
− 1

]

X̂
±
in,2(Ω) (2.142)

In a similar fashion, the output carrier fields simplify to

αout,1 =

[
κ1 − κ2

κ1 + κ2

]

αin,1 +

[
2
√
κ1κ2

κ1 + κ2

]

αin,2 (2.143)

αout,2 =

[
2
√
κ1κ2

κ1 + κ2

]

αin,1 −
[
κ1 − κ2

κ1 + κ2

]

αin,2 (2.144)

Note that the real and imaginary components of the sideband field transfer function corre-

spond to twice the sine and cosine channels. This means that the cavity has the ability to

map one channel into the other channel depending on the sideband frequency. Note, that

this is not the same as a phase shift, i.e. the amplitude quadrature is not mapped onto the

phase quadrature. This only happens for the case when the carrier field is off-resonance

with the cavity (i.e. the cavity is de-tuned).

In most quantum optics experiments, one is interested in thetransfer function of the

variances of these fields. However, a spectrum analyser essentially measures the sum of

the individual variances for the sine and cosine channels (subscript ‘s’ and ‘c’ respectively),

which corresponds to the noise power. To do this mathematically, I can define a new type

of varianceV ± according to the expectation value of the compact quadrature operator mul-

tiplied by its Hermitian conjugate such that

V ± := µ
(

(X̂±
cs)

†
X̂
±
cs

)

(2.145)

=
1

4
σ2(X̂+

c ) +
1

4
σ2(X̂±

s ) (2.146)

Where these operators have their definitions in Equation 2.81 and Equation 2.115. As an

example, one can choose to put all the input modes into a vacuum states (for allΩ), which

have the property thatσ2(X̂±
c,in,1) = σ2(X̂±

s,in,1) = 2 which then givesV ±
in,1 = 1, and

similarly V ±
in,2 = 1. These variances for the vacuum state become the reference against
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Figure 2.14: Transfer function of an

impedance-matched cavity for an input

mode in a broadband squeezed state

having V +
in,1 = 0.1 and V −

in,1 = 10.

The second input mode is in a vac-

uum state V ±

in,2 = 1. The solid and

dashed lines are the variances of the

amplitude and phase quadratures, re-

spectively. The frequency axis is nor-

malised to the cavity bandwidth κ. At

low frequencies, the cavity is transpar-

ent and transmits the squeezed state.

As the frequency increases, the cavity

reflects the squeezed state.

which other states, such as squeezed states, are compared. The cavity transfer functions in

terms of the newly-defined variance become

V ±
out,1(Ω) =

[
(κ1 − κ2)

2 + Ω2

κ2 + Ω2

]

V ±
in,1(Ω) +

[
4κ1κ2

κ2 + Ω2

]

V ±
in,2(Ω) (2.147)

V ±
out,2(Ω) =

[
4κ1κ2

κ2 + Ω2

]

V ±
in,1(Ω) +

[
(κ1 − κ2)

2 + Ω2

κ2 + Ω2

]

V ±
in,2(Ω) (2.148)

To illustrate the cavity transfer functions, I will choose the case of an impedance matched

cavity, whereκ1 = κ2. In this case, the cavity becomes completely transparent tothe carrier

field, such thatαout,2 = αin,1. The variances of the sidebands however, become filtered as

a function of the sideband frequency. ForΩ = 0 the cavity is completely transparent. For

Ω ≫ κ the cavity is completely reflective. This is plotted in Figure 2.14, which shows the

quadrature variances of transmission and reflection of the cavity when a broadband two-

mode squeezed state is incident on the first input. The cavityhas the transfer function of

a frequency-dependent beamsplitter. Hence, it can be used to either low-pass or high-pass

optical frequencies, with a cut-off frequency that is set bythe cavity bandwidthΩ = κ. The

low-pass filtering characteristics of cavities are used in quantum optics experiments to pre-

pare shot-noise-limited coherent states from laser sources that are dominated by technical

noise sources.
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2.8 Models of nonlinear processes

It is not possible to transform classical states of light into nonclassical states using linear

processes such as beamsplitters and optical cavities. Nonlinear optical media, however, sup-

port the mixing of waves of different wavelengths, and it is via this effect that nonclassical

states of light can be produced.

2.8.1 Second-order nonlinearity

A transparent solid material is quite a marvellous thing. One way of looking at it is that a

single photon must fight its way past an enormous number of atoms, each of which could

either absorb the photon, or scatter it in a new direction. The remarkable thing is that

the scattered paths add coherently in the forward propagating direction, and for an ideal

material, the light is not attenuated, but only slowed in itsspeed of propagation. This

situation changes when the intensity of the light field has a strength that is comparable

to the inter-atomic fields. The polarisation density of the material then begins to respond

nonlinearly to the electric field. The response of the material can be written down as a

polynomial expansion

P = ǫ0

(

χ(1)E + χ(2)E2 + χ(3)E3 + ...
)

(2.149)

whereǫ0 is the permitivity of free space, andχ(1) is the linear susceptibility of the mate-

rial (which for vacuum is equal to zero). The second-order nonlinear susceptibilityχ(2)

supports three-wave mixing, which is used in devices such asoptical parametric oscillators

and second-harmonic generators for the purpose of frequency conversion. The third-order

susceptibilityχ(3) is responsible for the Kerr-effect, which is where the refractive index of

the material is dependent on the intensity of the light. Thissupports four-wave mixing and

devices such as phase-conjugating mirrors. For my thesis, Ihave primarily used second-

order nonlinear materials. There are at least two ways to understand the three-wave mixing

effect that is supported by the second-order nonlinearity:(1) With a classical analysis of the

propagating waves; (2) In the picture of interacting photons.

(1) The classical wave analysis of the second-order nonlinearity has a rough analogy
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Figure 2.15: A diagram of photon interactions in a second-

order nonlinear material. Only the degenerate pairs have

been considered. Both the up-conversion and down-

conversion processes occur, but it is the net conversion that

decides whether the overall process is second-harmonic

generation or optical parametric oscillation.

with sound and music. If one turns up the volume knob too high on a cheap radio, then

the music begins to sound harsh and distorted. This happens because higher harmonics

are generated from the original sound source, as sine waves become square waves due to

clipping in the electronic circuitry. The difference with optics is that this effect is both

desirable and expensive to manufacture. Let us send a singlemode of lightE = E0 sin(ωt)

into the second-order nonlinear material and see how the polarisation density responds:

P = ǫ0

[

χ(1)E0 sin(ωt) + χ(2)E2
0 sin2(ωt) + ...

]

(2.150)

= ǫ0

[

χ(1)E0 sin(ωt) + χ(2)E2
0

(1

2
− 1

2
cos(2ωt)

)

+ ...

]

(2.151)

The result is that the polarisation density now oscillates at the second-harmonic frequency

of 2ω, which will in turn radiate an electromagnetic wave at2ω. The nonlinear medium

has acted as a second-harmonic generator (SHG). To maximisethe conversion efficiency of

an SHG, one must ensure that the second-harmonic light produced at one location in the

material, interferes constructively with the light that isproduced further along, otherwise

the net conversion can cancel out completely. This consideration means that one must

choose a material that has a refractive index for the fundamental nω that exactly matches

the refractive index of the second-harmonicn2ω, which is called phase matching. Much

effort goes into developing materials that have a high second-order nonlinear susceptibility,

and are transparent and phase-matched at both wavelengths.

Several techniques can be used to bring about the phase-matching condition. Angle-

tuning relies on the birefringence of the material, where the refractive index and dispersion

is angle-dependent. This has the disadvantage that for wideangles, the fundamental and
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Figure 2.16: An energy level diagram of three

modes that are involved in a non-degenerate

down-conversion process. A photon in mode 2ω

is removed and a photon each is deposited in the

modesω+Ω andω−Ω. Energy and momentum

(depending on the medium) are still conserved.

second-harmonic beams very rapidly lose their spatial-overlap (also called walk-off) and

hence reduce the conversion efficiency. The dispersion of a material depends weakly on

the temperature, and provided that the phase-matching temperature is not extreme, this

technique is quite effective, and it is often used in conjunction with the other phase-matching

techniques. There is a way to cancel out the effect of a non-phase-matched material, by

manufacturing the material so that the sign of the nonlinearity ±χ(2) alternates along its

length at a certain rate (the poling rate). This so-calledquasi-phase matchingtechnique

enables a wider range of materials, temperatures, and wavelengths to be used for frequency

conversion.

(2) One can look at second-order nonlinear interaction in a simplified photon picture,

as in the Feynman type of diagram in Figure 2.15. Two photons of frequencyω1 andω2

combine to make a new photon of frequencyω3. The interaction must conserve energy and

momentum. The two conditions are

~ω3 = ~ω1 + ~ω2 (2.152)

~k3 = ~k1 + ~k2 (2.153)

where the latter equation must of course hold true for each component of the momentum

vector, and the magnitude depends on the refractive index ofthe materialn1, so that|k1| =

n1ω1/c. For the case of second-harmonic generationω3 = 2ω1 = 2ω2, and therefore

n1 = n2, one gets back the result of the classical wave analysis: with the phase-matching

conditionn3 = n1. What is missing in this picture is the scattering rate of theinteraction,

indeed even the direction of the reaction is reversible. Hence the processes of up- and down-
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conversion can occur simultaneously in a nonlinear medium,and it is the net conversion

that decides whether the process is up-conversion (SHG), ordown-conversion (degenerate

OPO). To go further, one needs a detailed model of a particular system. Here one can choose

between a travelling-wave analysis through a medium, or an analysis of well-defined modes

in an optical resonator that enclosed the non-linear material.

The degenerate process is not the only one that is allowed. Energy and momentum

can still be conserved for the case thatω1 andω2 are not equal. An example is depicted

in Figure 2.16, where a photon of energy can be removed from the modeω3 = 2ω, and

deposited in the modesω1 = ω − Ω andω2 = ω + Ω. WhereΩ is an offset frequency.

It turns out that it is exactly this process that produces two-mode squeezed states at the

sideband frequencyΩ around the carrierω. I will proceed with modelling such a process in

the next section.

2.8.2 A basic model of OPO

An optical parametric oscillator (OPO), is a device that uses the three-wave mixing effect to

convert a high optical frequency (the pump) into two lower frequencies (signal and idler).

The OPO is usually built by enclosing a second-order nonlinear medium in an optical cav-

ity. The cavity is made resonant for either one, or both of thelower frequencies which sig-

nificantly enhances the conversion efficiency. I am interested in the quantum states that are

generated by the degenerate OPO when it is driven by a coherent pump field. The signal and

idler frequencies are also restricted to be degenerate, which defines them as the fundamental

frequency, while the pump must be the second-harmonic. The OPO can be modelled using a

pair of rate equations that are similar to the cavity equations that were described earlier, but

are now modified to include the interaction between the fundamental and second-harmonic

fields. A schematic is shown in Figure 2.17. The derivation ofthe nonlinear interaction

terms is quite involved and non-trivial. Here I can give onlya reference where such a

derivation can be found [Collett and Gardiner 1984]. From [Drummondet al. 1980], the

rate equations for the annihilation operators of the fundamentalâ and the second-harmonic
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Figure 2.17: Schematic of a simple OPO cav-

ity consisting of two mirrors with coupling coeffi-

cients κa1 and κa2 for the fundamental and κb1

and κb2 for the second-harmonic. The nonlin-

ear optical medium is placed between mirrors,

where the intra-cavity fields are labelled a and

b. All the input and output fields for the funda-

mental and second-harmonic are included in the

model.

b̂ intra-cavity fields are

d â(t)

dt
= −κa â(t) + ǫ â†(t) b̂(t) + Âin (2.154)

d b̂(t)

dt
= −κb b̂(t) −

1

2
ǫ â(t) â(t) + B̂in (2.155)

Where all operators and labels involvinga andb correspond to the fundamental and second-

harmonic fields, respectively. The total cavity decay ratesareκa = κa1 + κa2 andκb =

κb1 + κb2. The input operators are actually the sum for all input fields, such thatÂin =

√
κa1 Âin,1(t) +

√
κa2 Âin,2(t) andB̂in =

√
κb1 B̂in,1(t) +

√
κb2 B̂in,2(t). The intra-cavity

operators are dimensionless, while the individual input operatorsÂin,1, etc., have the SI

units [s−
1
2 ]. The strength of the nonlinear interaction is governed byǫ, which can be

complex-valued (depending on the phase-matching condition), but which I will set to be

real from now on. I will make two further assumptions: the second-harmonic input field

at the first mirror (the pump field) is displaced to be in a coherent stateβin,1 at the carrier

frequency2ω0; while all other input fields are in the vacuum states at all frequencies. The

second assumption is that the pump field will neither be enhanced nor depleted. This is

reasonable, only when no coherent excitation at the fundamental is produced (which corre-

sponds to OPO below threshold). With these assumptions in mind, we can easily solve the

coupled set of equations using the linearisation technique. The fundamental field is brought

into the rotating framêa(t) → δâ(t) eiω0t, where〈δâ(t)〉 = 0. And the second-harmonic

is rotated and displaced according tob̂(t) → β + δb̂(t) ei2ω0t, where〈δb̂(t)〉 = 0, and the

value ofβ is yet to be determined from the corresponding coherent amplitude of the input
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Figure 2.18: Squeezing from an ideal OPO cavity.

The quadrature variances are plotted as a function

of the pump parameter ξ. The sideband frequency

is set to Ω = 0. The solid and dashed lines are

the amplitude and phase quadratures respectively.

Squeezing is present in the shaded area. The

squeezing becomes arbitrarily strong as the OPO

threshold is approached at ξ = 1. The linearisa-

tion approximations in the model however, break

down at this point.

field βin,1. In the frequency domain, the operators become

â(t) =
1

2π

∫

dΩ e−iΩt â(ω0 + Ω) (2.156)

â†(t) =
1

2π

∫

dΩ e+iΩt â†(ω0 + Ω) (2.157)

b̂(t) = β +
1

2π

∫

dΩ e−iΩt b̂(2ω0 + Ω) (2.158)

b̂†(t) = β∗ +
1

2π

∫

dΩ e+iΩt b̂†(2ω0 + Ω) (2.159)

whereω0 is the carrier frequency of the fundamental field, andΩ is the sideband frequency.

Similar definitions apply to the input and output fields. These definitions are substituted

into Equation 2.155, where the steady-state component for the second-harmonic is peeled

off and solved to giveβ = (
√

2κb1/κb)βin. I can choose to setβ∗ = β. By definition, the

steady-state fundamental field has zero amplitude, and willnot be considered any further.

The analysis of the fluctuations of the fundamental field proceeds by taking the inverse

Fourier transform, neglecting the fluctuation-fluctuationterms, and solving for the input

fields to give

Âin(ω0 + Ω) = (κa − iΩ) â(ω0 + Ω) + ǫβ â†(ω0 − Ω) (2.160)

Â†
in(ω0 − Ω) = (κa − iΩ) â†(ω0 − Ω) + ǫβ â(ω0 + Ω) (2.161)

From this pair, I can form the compact amplitude and phase quadrature operators (see Sec-

tion 2.6.5):

X̂
±
Ain(Ω) = (κa ± ǫβ − iΩ) X̂

±
a (Ω) (2.162)
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Figure 2.19: Squeezing from an ideal OPO cavity.

The quadrature variances are plotted as a func-

tion of the sideband frequency Ω normalised to the

cavity bandwidth κa. The pump parameter is set to

ξ = 0.5. The solid and dashed lines are the ampli-

tude and phase quadratures respectively. Squeez-

ing is present in the shaded area. The squeezing

becomes weaker as the sideband frequency is in-

creased beyond the cavity linewidth. Note that the

purity of the state produced by the OPO, as given

by the product of the amplitude and phase vari-

ances, remains constant.

The input-output relation is applied to get the field exitingthe cavity from the first mirror.

X̂
±
Aout1(Ω) =

[ 2κa1

κa±ǫβ−iΩ
− 1

]

X̂
±
Ain1(Ω) +

[ 2
√
κa1κa2

κa±ǫβ−iΩ

]

X̂
±
Ain2(Ω) (2.163)

We can compare the transfer function of the OPO to that of the linear cavity in Equa-

tion 2.142. Here, the termǫβ is an additional parameter that can vary the transmission

coefficient of the cavity for both input modes. The sign of thecoefficient however, depends

on whether the quadrature is amplitude or phase.

2.8.3 OPO as a source of squeezed light

From the transfer function of the OPO, I can calculate the variance of the compact quadra-

ture operator according to Equation 2.146. They become:

V ±
Aout1(Ω) =

[(κa − 2κa1 ± ǫβ)2 + Ω2

(κa ± ǫβ)2 + Ω2

]

V ±
Ain1(Ω) +

[ 4κa1κa2

(κa ± ǫβ)2 + Ω2

]

V ±
Ain2(Ω)

If the termǫβ is positive, then the amplitude quadrature will show squeezing (V +
Aout1 < 1).

This can be enhanced by making the cavity completely over-coupled such thatκa2 = 0,

which means that input mode 2 is not transmitted at all. The strongest squeezing occurs

when the pump amplitude approaches OPO-threshold atβ = κa/ǫ. At exactly OPO-

threshold, the model breaks down. The problem is that the linearisation procedure is no

longer valid, and one needs to use perturbation techniques to model the transition to OPO

threshold [Chaturvediet al. 2002]. Nevertheless, the simple model that is presented here,

is quite adequate for describing the behaviour below-threshold. I make the replacement to

a dimensionless pump parameterξ = ǫβ/κa which equals one for the OPO threshold case.
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The output variance is then

V ±
Aout1(Ω) =

[(1 ∓ ξ)2 + (Ω/κa)
2

(1 ± ξ)2 + (Ω/κa)2

]

V ±
Ain1(Ω) (2.164)

where the input variance has been assumed to be in a vacuum state (V ±
Ain1 = 1). The

output variance is plotted in Figure 2.18 as a function of thepump parameter for a sideband

frequency set to zero. The remarkable thing is that only a finite pump power is needed

for the model to produce arbitrarily strong squeezing. Thismodel is of course simplified

in the sense that no loss mechanisms have been included. Figure 2.18 shows the output

variance as a function of sideband frequency (and for the pump parameter set toξ = 0.5).

The best squeezing occurs well within the cavity bandwidthκa. The reason is that for high

frequencies, the upper and lower sidebands acquire a large phase shift for each round-trip

in the cavity, which essentially lowers the effective nonlinear interaction.

2.9 Two-mode entanglement

So far we have seen that single-mode states are capable of exhibiting non-classical statistical

properties such as quadrature squeezing or sub-Poissoniancounting distributions. An ex-

tension to these ideas are the two-mode states that show non-classical properties only when

the measurements made individually on each mode, are compared. The prime example is

the two-mode entangled state which can in principle show completely noise-free correla-

tions between quadrature measurements made on one mode whencompared with the other

mode. This type of state goes back to the arguments of Einstein-Podolsky-Rosen (EPR). To

simplify the following analysis I will abandon the continuous-mode formalism, and return

to the discrete-mode case. I want to show that two-mode states of light can exhibit the EPR

type of entanglement. I will present the ideas in two ways, firstly with field operators, and

secondly with expansions in the Fock state basis. My approach is unusual because I start

with the specific cases and work my way up to the general description that is provided by

the inseparability criterion.
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2.9.1 Quantum correlation

This section serves as a precursor to introducing the idea ofentanglement. A naive way to

create a two-mode nonclassical state would be perhaps to take a single-mode nonclassical

state and send it onto a symmetric beamsplitter. Lets us consider a quadrature squeezed

state that enters on port1, and a vacuum state that enters on port2. The input state can

therefore be written as|ψ〉 = |ζ〉1 ⊗ |0〉2, whereζ is the complex squeezing parameter

ζ = r exp(iϑ). The transfer function of a beamsplitter is given in Equation 2.131, this time

with a change of subscript labels. The quadrature operatorsfor the output portsa andb are

therefore

X̂±
a =

1√
2

(

X̂±
1 + X̂±

2

)

, X̂±
b =

1√
2

(

X̂±
1 − X̂±

2

)

(2.165)

I would now like to analyse the output ports for correlationsin the quadrature operators. The

most straightforward way is to calculate the expectation value of the correlation coefficient

between modesa andb, which are shown here for the amplitude quadrature:

C++
ab = 〈ψ|X̂+

a X̂
+
b |ψ〉 (2.166)

= [σ2(X̂+
1 ) − σ2(X̂+

2 )]/2 (2.167)

= [exp(2r) − 1]/2 (2.168)

For the case of no squeezing, no correlation is evident:r = 0 =⇒ C++
ab = 0. This is

because one essentially couples in two independent vacuum states, for which the quadrature

amplitudes add together in porta, and subtract in portb. However, for the case of arbitrarily

strong squeezing, one sees an anti-correlation:r→−∞ =⇒ C++
ab =−1/2. The field that

actually contributes to the anti-correlation comes not from the squeezed state in mode1,

but from the vacuum state in mode2. The fact that there is a correlation is nothing special,

because I could have sent in a classical state, such as a thermal state, and I also would have

seen a correlation. I want to class the correlation as being either classical or nonclassical, to

do this, one needs to use a related quantity: the conditionalvariance. The definition of the
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conditional variance in terms of the quadrature operators is

V
+(+)
a(b) = σ2(X̂+

a ) −
∣
∣C++

ab

∣
∣2

σ2(X̂+
b )

(2.169)

One interpretation is that it is a measure of the reduced uncertainty in modea when one is

given the information in modeb. This is why modeb is shown in parentheses in the subscript

of V +(+)
a(b) . For zero correlation, the variance of modea remains unchanged. However, if

there is a correlation, then it means that there are components withinX+
a andX+

b that are

identical, and therefore measurements made on modeb can be used to cancel out those

components on modea, thereby reducing the variance in modea. This can be shown

explicitly by re-writing the conditional variance in the equivalent form:

V
+(+)
a(b)

=
{

σ2(X̂+
a − gX̂+

b )
}

min(g)
(2.170)

whereg is a gain parameter which is adjusted until the variance is ata minimum. I will

now go back to the specific case of the squeezed state on a beamsplitter. The result for the

conditional variance is

V
+(+)
a(b) =

2 σ2(X̂+
1 ) σ2(X̂+

2 )

σ2(X̂+
1 ) + σ2(X̂+

2 )
(2.171)

= 1 + tanh(r) (2.172)

Note that the conditional variance in this expression is symmetric for modesa andb, but this

was only because we had chosen a symmetric beamsplitter. If we examine the case where

the input modes are not squeezed, then the conditional variance ofa is equal to its ‘simple’

variance:r= 0 =⇒ V
+(+)
a(b) = 1 andσ2(X̂+

a ) = 1. This means that it was not possible

to reduce the variance ina by using measurements fromb. This particular case of two

vacuum states as inputs to the beamsplitter is identical to the smallest conditional variance

that can be achieved in the semi-classical theory of optics.The semi-classical theory of

detection implies that a measurement of the amplitude quadrature using a single detector,

will be shot-noise-limited, which produces a variance thatis exactly the same level that is set

by a coherent state, and hence also for a vacuum state in a homodyne-type measurement.

Since the semi-classical theory also implies that the shot-noise originates independently
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from within each detector, one cannot expect to see correlations between them, and hence

the conditional variance is strictly limited to unity (appropriately normalised to the intensity

of the light). The consequence is that if one sees a conditional variance that is less than unity

in the fully-quantised theory, then that two-mode state canbe classed as being non-classical.

Returning again to the special case, as the squeezing parameter is turned on and made

arbitrarily strong, the conditional variance approaches zero: r→−∞ =⇒ V
+(+)
a(b) = 0.

We can also see for weaker squeezed states that providedr < 0 thenV +(+)
a(b) < 1. Hence, a

squeezed state and a vacuum state sent onto a beamsplitter produces a two-mode nonclas-

sical state, where the correlation produced is usually referred to as a quantum-correlation.

The paper of [Treps and Fabre 2004] supports these argumentson more rigourous grounds.

The next question is, what has happened to the phase quadrature? Similar definitions of

the conditional variance apply to the phase quadrature. Forthe case of squeezed light on

the beamsplitter, the conditional variance is:V
−(−)
a(b) = 1 − tanh(r). Therefore if there is a

quantum correlation in one quadrature, there is only a classical correlation in the other. We

will see in the next section that by interfering two squeezedbeams on a beamsplitter, that it

is possible to see quantum correlations in both quadratures.

2.9.2 Dual Quantum correlation and EPR entanglement

The next simplest experiment is to combine two squeezed beams on a symmetric beamsplit-

ter. We can recycle the conditional variance equations fromthe previous section. This time

however, we start with the state|ψ〉 = |ζ1〉1 ⊗ |ζ2〉2, whereζ1,2 are the complex squeez-

ing parametersζ1,2 = r1,2 exp(iϑ1,2). I choose the squeezing in each beam to be equal in

strength but in orthogonal quadratures:r1 = −r2 = r . From Equation 2.169 and Equa-

tion 2.172 one can obtain the conditional variance for the amplitude and phase quadratures:

V
+(+)
a(b) = V

−(−)
a(b) = sech(2r) (2.173)

For no squeezingr = 0, this function has a value of one, and there is no correlationat all.

As r is increased, either in the positive or negative direction,the conditional variance ap-

proaches zero. This means that for any non-zero value ofr, the two-mode state that exits the

beamsplitter shows quantum correlations in both the amplitude and phase quadratures. This
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can be called a dual quantum correlation. I will spend some time discussing the significance

of this result.

In view of the classical theory of electromagnetism, the twolight beams that exit a

beamsplitter when one light beam is incident, are always perfectly correlated in amplitude

and phase. In contrast, for the semi-classical theory, as discussed earlier, the correlations

can never be free of noise, due to the shot-noise in the detection process. However, as we

have seen, the full quantum theory allows for perfect correlations to be established between

the two beams of light. And these correlations can be observed for both the amplitude

and phase quadratures, despite the fact that they are non-commuting observables. But how

can we reconcile this with the Heisenberg uncertainty principle? The principle limits the

precision with which the non-commuting observables can be measured for a single mode,

and not the correlations between two independent modes; seeEquation 2.52. So in this

formalism, there is not a problem. From a historical perspective however, this same result

(but in a related system) concerned Einstein, Podolsky and Rosen (EPR) in their famous

paper [Einsteinet al. 1935]. They objected to the inherent non-local character ofthe corre-

lations to the extent that they questioned whether quantum mechanics indeed even offered

a complete description of physical reality.

EPR examined the situation of parent particle undergoing fission into two particles. The

reaction must conserve energy and momentum, and this leads to a perfect correlation in the

position and momentum of the two particles. The particles are allowed to separate from one

another after travelling some distance, before the measurements are performed at station A

and station B. The measurement events are completed within atime interval that is shorter

than the time it takes for light to travel from A to B. Therefore the measurement events are

space-like and causally separated. How is it then that correlations can appear when one

later compares the measurements from A and B? Without super-luminal communication,

the conclusion is that the two particles must have had eitherwell defined position and mo-

menta at the time of creation, or the particles had the potential to develop those position and

momenta from a common hidden variable. The former is forbidden in quantum mechanics

because it violates the Heisenberg uncertainty principle.The latter is not described by quan-
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Figure 2.20: EPR entanglement vi-

sualised as dual quantum correla-

tions. Two squeezed states are in-

terfered on a symmetric beamsplit-

ter. The ellipses mark a contour of

the resulting two-dimensional Gaus-

sian distribution when the quadra-

ture measurements for each mode

are plotted against each other. The

resulting quantum correlations would

allow an observer of the amplitude

quadrature of mode a, to infer what

mode bmeasures, to a precision bet-

ter than one unit of quantum noise.

This can also be done for the phase

quadrature, which gives the appar-

ent violation of the uncertainty prin-

ciple. The violation is only apparent

because both measurements could

not be made simultaneously without

paying a noise penalty.

tum mechanics at all. Hence, if one is to preserve locality, then one must reject quantum

mechanics as a theory. This is the EPR paradox. The correlations are referred to as EPR

correlations, or EPR entanglement.

EPR entanglement in continuous-variables was observed in an optical system by

[Ou et al. 1992]. After this result, one must either accept that quantum mechanics is non-

local, or that it is incomplete. But given the successes of quantum theory in describing the

electronic structure of atoms and molecules, the philosophical debate about non-locality was

put aside. Many years later, Bell proposed an experiment that could accept or reject the en-

tire class of local hidden-variable theories [Bell 1964]. Freedman and Clauser, and Aspectet

al. did the experiment using entangled light, and found resultsthat were consistent with an

absence of local hidden-variable theories [Freedman and Clauser 1972, Aspectet al. 1982].

Hence, one must accept that quantum mechanics inherently has a non-local character to it.

Quantum mechanics may still be incomplete however, as the experiments did not rule out

non-local hidden-variable theories.

The position and momentum of a particle are analogous to the amplitude and phase

quadratures of a mode of the electromagnetic field. They share the same definition in terms
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of the creation-annihilation operators. A formal comparison was made by Reid in reference

[Reid 1989], who also defined a criterion that could be applied to detect EPR entangled

states of light based on quadrature measurements. The EPR criterion is defined as the

product of the conditional variances for the amplitude and phase quadratures. There are

actually two criteria, because there are two directions of inference possible in the conditional

variances:

εab = V
+(+)
a(b) V

−(−)
a(b) < 1 (2.174)

εba = V
+(+)
b(a) V

−(−)
b(a) < 1 (2.175)

If the entanglement is identical in both inference directions then one simply writes the cri-

terion asε < 1. When the criterion is fulfilled, the state is in an EPR entangled state. The

form of these equations are very similar to the form of the Heisenberg uncertainty principle

in Equation 2.52. If we think of the conditional varianceVa(b) as being the variance of mode

a reduced by information gathered from modeb, then we can interpret the expression of the

EPR criterion as an apparent violation of the uncertainty principle. The violation is only

apparent because it is not possible to simultaneously measure the correlations in amplitude

and phase without changing the states, by for example introducing more vacuum modes via

beamsplitters. This apparent violation is illustrated in Figure 2.20, where the correlations,

and their remaining uncertainty, are shown as the major and minor axes of the ellipses, re-

spectively. The ellipse represents the contour of a two-dimensional Gaussian probability

distribution. Note that the correlation diagram should notbe confused with the ball-on-

stick diagram for a single mode. The example shown is that of EPR entanglement made by

sending two squeezed states (and squeezed in orthogonal quadratures) onto a beamsplitter.

I would like to compare our two sources of two-mode nonclassical light: one squeezed

state input to a beamsplitter; and two squeezed states inputto a beamsplitter. The simplified

expressions are taken from Equation 2.172 and Equation 2.173 and become

εone = sech2(r) (2.176)

εtwo = sech2(2r) (2.177)
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So we can see forεone, that even if the state shows quantum correlations in only one

quadrature, it is still possible to show EPR entanglement whenr is non-zero. But the ap-

parent violation is much stronger for the dual quantum correlation case ofεtwo. This makes

sense. If one thinks of squeezed light as being a resource fordemonstrating nonclassical

effects, then having two squeezed states will give a larger effect than if one has only one

squeezed state available. An argument like this leads one toconsidering the EPR criterion

as a measure of entanglement strength. I address the idea of entanglement measures in the

next section.

2.9.3 Wavefunction inseparability and entanglement measures

EPR entanglement is just one form of entanglement. The term entanglement is synonymous

with wave-functioninseparability. A wave-function that describes two or more modes is

consideredseparablewhen it can be expressed as a product of wave-functions for each

individual mode: |ψ〉 = |ψ1〉1 ⊗ |ψ2〉2 ⊗ ... ⊗ |ψn〉n. If it is not possible to express the

wave-function in this way, in at least one choice of basis states, then the wave-function is

inseparable, and the state is said to be entangled. We can seehow this works by taking an

example from the EPR entanglement that is generated by interfering a squeezed state with

a vacuum state on a symmetric beamsplitter. To simplify the analysis, I will choose to keep

the strength of the squeezing small, such that the squeezed state in the Fock state expansion

is approximately:|ζ〉 ≈ |0〉+ξ|2〉, whereξ ≪ 1 and can be taken from Table 2.4 for a given

complex squeezing parameterζ. The wave-function prior to the beamsplitter interaction is

then

|ψ12〉12 ≈
(

|0〉1 + ξ|2〉1
)

⊗ |0〉2 (2.178)

where the subscripts refer to the two input modes. The symmetric beamsplitter transforms

the initial Fock states into the output modesa andb in the following way [Leonhardt 1997]:

|n〉1 ⊗ |0〉2 →
n∑

k=0

√

B(n, k) 2−n/2 |k〉a ⊗ |n− k〉b (2.179)
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wheren is the Fock state number andB(n, k) is the binomial ofk objects selected from a

set ofn objects. The final state can then be approximated as

|ψab〉ab ≈ |0〉a ⊗ |0〉b +
ξ√
2
|1〉a ⊗ |1〉b +

ξ

2
|0〉a ⊗ |2〉b +

ξ

2
|2〉a ⊗ |0〉b (2.180)

6= |ψa〉a ⊗ |ψb〉b (2.181)

This state cannot be expressed as a product of states for the modesa andb, and hence the

state is inseparable and therefore entangled. Although EPRcorrelations in the quadrature

amplitudes are not as obvious to see as in Equation 2.176, onecan immediately see a simple

form of discrete-variable entanglement. The measurement of two photons in modea guar-

antees that no photons will be detected in modeb. Although Equation 2.181 serves as a crite-

rion/definition to detect entanglement, is it possible to quantify the strength of the entangle-

ment in some way? The inseparability criterion of Duan and others allows one to compute a

numberI from the entire class of two-mode Gaussian entangled states[Duanet al. 2000].

Gaussian states are those typically produced by interfering squeezed light sources on beam-

splitters. The Gaussian label refers to the form of the (four-dimensional) Wigner function

that describes the two-mode state. The criterionI < 1 then detects those entangled states.

To computeI one needs to have access to the first-order correlation matrix of the quadra-

ture amplitudes, which means writing down all combinationsof the correlation coefficients

C±±
ab , as defined in Equation 2.166. The coefficients are usually arranged into a matrixM

that is made up of other matrices such that

M =

[
G11 G12

(G12)
T G22

]

(2.182)

where

G11 =

[
C++

aa C+−
aa

C−+
aa C−−

aa

]

(2.183)

and

G22 =

[
C++

bb C+−
bb

C−+
bb C−−

bb

]

(2.184)

and

G12 =

[
C++

ab C+−
ab

C−+
ab C−−

ab

]

(2.185)
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and(G12)
T is the transpose ofG12. Before the inseparability can be calculated, one needs to

perform local unitary operations to each mode, in order to bring the correlation matrix into

Standard Form I. This removes any cross-quadrature correlations, and since the operations

are local, they in no way influence the inseparability of the state, but rather only optimise

how well the entanglement is measured. The allowed operations are the squeezing operator

in Table 2.4, and quadrature rotation as shown in Equation 2.44. When the operations are

done properly, the correlation matrix will have the form

M ′=







n 0 c 0

0 n 0 c′

c 0 m 0

0 c′ 0 m







(2.186)

Those new elements can be found by using the following identities with the determinants:

det(G11) = n2, det(G22) = m2, det(G12) = cc′, anddet(M) = (nm− c2)(nm− c′2) as

given in [Duanet al. 2000]. The rotation operation has removed the cross-quadrature terms,

and the squeezing operation has equalised the amplitude andphase quadrature variances.

The next step in the optimisation is to apply local squeezingoperationsr1 andr2 to bring

the matrix intoStandard Form II. When in this form, the elements satisfy the following two

conditions:

n/r1 − 1

nr1 − 1
=
m/r2 − 1

mr2 − 1
(2.187)

and

|c|√r1r2 − |c′|/√r1r2 =
√

(nr1 − 1)(mr2 − 1) −
√

(n/r1 − 1)(m/r2 − 1) (2.188)

These two equations must be solved forr1 and r2. In general there are eight solutions,

and one must select the one that returns the lowest value of inseparability. The matrix in

standard form II then looks like

M ′′=







nr1 0 c
√
r1r2 0

0 n/r1 0 c′/
√
r1r2

c
√
r1r2 0 mr2 0

0 c′/
√
r1r2 0 m/r2







(2.189)

The elements of the correlation matrix in standard form II can then be entered into the
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expression for inseparability:

I =
1

2

(
C+

I + C−
I

)
/ (k + 1/k) (2.190)

where

C+
I = k(nr1) + (1/k)(mr2) − 2|c√r1r2| (2.191)

C−
I = k(n/r1) + (1/k)(m/r2) − 2|c′/√r1r2| (2.192)

and

k =

√
mr2 − 1

nr1 − 1
=

√

m/r2 − 1

n/r1 − 1
(2.193)

The variablesC±
I are similar to the conditional variances used in the EPR criterion. The

factork is there to correct for any imbalance between the sub-systems, which is related to

the direction of inference for the conditional variances. The inseparability criterion using

the definition in Equation 2.190 is given by

I < 1 (inseparable) (2.194)

I ≥ 1 (separable) (2.195)

The inseparability criterion is a necessary and sufficient criterion for Gaussian entangle-

ment. If the optimisation procedure on the correlation matrix was performed correctly

(giving the standard form II), then the inseparability criterion will detect even the smallest

amount of entanglement. This is in contrast to the EPR criterion which is only a sufficient

criterion for detecting entanglement, and misses out on detecting some entangled states, for

example those that have been severely optically attenuated.

There is an equivalent way of representing inseparability:the product formgiven by

I =
√

C+
I C

−
I /(k + 1/k). It is shown in [Bowenet al. 2004] that provided the conditions

in Equation 2.187 and Equation 2.188 are met, that the product form is equivalent to the

original sum formin Equation 2.190. There is another form of inseparability that is com-

monly used by experimentalists because the measurement is much simpler than recording
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all the elements of the correlation matrix:

Iunopt = 〈ψ|(X̂+
a ± X̂+

b )2|ψ〉 + 〈ψ|(X̂−
a ∓ X̂−

b )2|ψ〉 (2.196)

The quadrature amplitudes measured on each subsystem are simply added or subtracted

from one another before the variance is calculated. The signof the sum is chosen to

minimise the inseparability. It should be noted that this method is equivalent to setting

r1 = r2 = k = 1 in the definition of the original form of the inseparability,and hence:

Iunopt =
1

4

(
C++

aa +C++
bb + C−−

aa +C−−
bb − 2|C++

ab | − 2|C−−
ab |

)
≥ I (2.197)

From this we can deduce thatIunopt < 1 is a sufficient but not necessary condition for

entanglement. Hence,Iunopt, or theunoptimisedinseparability, can be indeed be used to

detect entanglement, but not all kinds of entanglement willbe caught. These ideas naturally

lead to the idea of measuring the entanglement based on the EPR and inseparability criteria.

2.9.4 Entanglement measures

A good measure of entanglement would increase or decrease monotonically with the ‘strength’

of the entanglement, and ideally would respond linearly too. How to define the ‘strength’

however, is largely subjective. It is for this reason that there is no one measure, but many

measures that each respond to a different aspect of entanglement. For example: insepara-

bility of the state [Duanet al. 2000, Horodecki 1997], logarithmic negativity [Plenio 2005],

and the EPR criterion [Reid 1989]. The EPR criterion for entanglement, as defined in Equa-

tion 2.175 and discussed in Section 2.9.2, can be extended toa measure of entanglement.

This is in the sense that the smaller the value ofǫ, the greater the apparent violation of

the Heisenberg uncertainty principle, as seen by the shrinking area formed by the inferred

quadrature variances, as shown in Figure 2.20. The relationship is monotonically decreas-

ing, and atǫ = 0 the two subsystems are perfectly correlated in amplitude and phase. But as

the EPR criterion is only sufficient, it can only be used as a measure ofEPRentanglement,

and not other forms of entanglement.

Although the inseparability criterion has its roots in the simple idea of separability of

the wave-function, the calculation itself is less transparent. One interpretation is thatI
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Figure 2.21: EPR and inseparability are examined in four different entanglement ‘experiments’. The

entanglement is generated by interfering one or two squeezed states on a symmetric beamsplitter. ‘M’

represents the measurement of the correlation matrix. (a) and (b) are functions of the input squeezed

variance σ2(X̂+
1,2) ∈ {0, 1}. (c) and (d) are functions of the beamsplitter reflectivity η ∈ {0, 1} that is

used to model the attenuation, while the input squeezing is held constant: σ2(X̂+
1,2) = 0.
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can be used as a measure of ‘how separable’ the state is. Givenfor example a two-mode

Gaussian entangled state described by the Wigner functionWinsep(x
+
a , x

−
a , x

+
b , x

−
b ), how

good can the overlap integral with another state that is separableWsep(x
+
a , x

−
a , x

+
b , x

−
b ) be?

The overlap integral would be taken over all the coordinatesof the Wigner functions, and

the entire space of Wigner functions for separable statesWsep would be searched such that

the integrand (F ) is maximised. In this sense we can see thatF would behave similarly to

I. If the state under test is separable then a separable state can be found such thatF = 1

while I ≥ 1. If the state is inseparable then no separable state can havea perfect overlap,

henceF < 1 for all I < 1. The inseparability is therefore qualitatively consistent with a

measure of how separable a state is.

Further evidence that EPR and inseparability are good measures of entanglement, is

how they behave as functions of the squeezed light resourcesthat are used to generate the

entangled states, and also as a function of optical attenuation applied to those states. An

example of this is made in four ‘experiments’ in Figure 2.21.The calculational building

blocks have already been covered in Sections: 2.7.2; 2.9.2;2.9.3. I will not show the an-

alytical results here. From graphs (a) and (b), one can see that low values ofI andǫ are

consistent with the notion that strong entanglement is generated by strong squeezing. In (c)

and (d), the entangled state is attenuated by one or two beamsplitters which has the effect

of increasing the values ofI andǫ. This is consistent with the notion that entanglement

strength should be reduced by attenuation because uncorrelated vacuum states are intro-

duced during the process, and these degrade the quantum correlations. Note that EPR and

inseparability are not analogous to the Fahrenheit and Celsius temperature scales. There is

no one-to-one correspondence between the two. The correspondence changes depending on

the details of how the entanglement was produced and detected.

A further refinement to characterising entanglement is thebias property. The easiest

way to see this is to compare the entanglement sources that are based on either one, or two,

sources of squeezed light; see Section 2.9.2. For the case ofentangled light based on a single

source of squeezed light, a quantum correlation will only beobserved in one quadrature and

not the other, hence the entanglement isbiasedin that observable. Whether a source of
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entanglement is biased or not affects the efficacy of some quantum information protocols,

such as teleportation. The concept of biased entanglement is put on a more rigourous footing

in [Bowenet al. 2003a]. Another property unique to the EPR measure, is the fact that

there are really two measures, one for each direction of inference. For the remainder of

this thesis, I will refer to this difference as thebalancebetween the subsystems. There

have also been other ways of characterising Gaussian entangled states according to various

classes [DiGuglielmoet al. 2007]. One of the most recent proposals for an entanglement

measure islogarithmic negativity. This measure gives a value for the number of entangled

bits of information that could be extracted from the entangled state [Plenio 2005]. For the

remainder of this thesis however, I will solely use the EPR and inseparability measures to

characterise entangled states.

With this section I conclude the chapter on quantum optics theory. The material covered

is by far not representative of the true breadth and depth that the field of quantum optics has

acquired. But I hope that it is complete enough to serve as a reference to support the thesis

topics that follow.



88 Theoretical Background



Chapter 3

Harmonic Entanglement: Theory

The main message of this chapter is that a degenerate opticalparametric amplifier (OPA)

is capable of producing harmonic entanglement. I build on this by explaining how the

classical behaviour of the OPA influences the strength and type of harmonic entanglement.

The story splits up into an analysis of the classical field andan analysis of the quantum

fluctuations, before combining again to give an interpretation of the harmonic entanglement

phenomenon. This work forms part of a collaboration that wasinitiated by W. P. Bowen

and K. McKenzie. It has been published under the following reference:

• Harmonic Entanglement with Second-Order Nonlinearity,
N. B. Grosse, W. P. Bowen, K. McKenzie and P. K. Lam,
Phys. Rev. Lett.96, 063601 (2006).

3.1 Background

We have already encountered the method of generating quadrature entanglement by using

a beamsplitter to interfere two squeezed states; see Section 2.9.2. The entanglement that is

generated, is between two modes that are equal in optical frequency. But what if my aim

was now to generate entanglement between two different optical frequencies? Could I do

this in a similar way? The answer is no, because the beamsplitter can only interfere two

modes that have the same magnitude of the propagation vector. What we need is a ‘nonlin-

ear beamsplitter’ that would allow the interaction of two different wavelengths. Fortunately,

a medium that has a second-order nonlinear response, does indeed allow such an interac-

tion between two modes of light: thefundamentalandsecond-harmonic. The presence of

quadrature entanglement between these two modes is referred to asharmonic entanglement.

89
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Harmonic entanglement is a special case of the more general two-colour entangle-

ment. One of the first sources of entangled light was actuallytwo-colour entanglement

between 423 nm and 551 nm [Kocher and Commins 1967]. The entanglement was mea-

sured in the polarisation correlations of the light emittedin a two-photon cascade from

the energy levels in a gas of Calcium atoms. A similar source was used to test Bell’s

theorem for local hidden-variables [Freedman and Clauser 1972, Fry and Thompson 1976,

Aspectet al. 1982]. The atomic-based sources were later replaced by nonlinear BBO or

KTP crystals [Kwiatet al. 1995]. When these were pumped with intense light pulses and

operated under the correct phase matching conditions, theycould produce entanglement

between colours that were separated by up to 740 nm in wavelength [Peltonet al. 2004].

Although the physical process is similar to the non-degenerate optical parametric oscillator

(OPO), the conversion is done only in a single-pass for whichthe conversion rate is so weak

that single photons can be resolved, and the entanglement verified, in the discrete-variable

(DV) regime.

In contrast, entangled light sources that were designed to be measured in the continuous-

variable (CV) regime, were usually limited to the case of degenerate or near-degenerate

(≈ 1GHz) optical parametric oscillation [Schoriet al. 2002]. The main reason is that in

order to verify entanglement in the CV regime, one needs to beable to measure the ampli-

tudeandphase quadratures. Without some form of reference beam thatis coherent with the

entanglement source, access to the phase quadrature is not possible. One way around this

is to reflect the entangled light from an under-coupled narrow-linewidth optical resonator.

When the resonator is de-tuned, the phase quadrature can be rotated into the amplitude

quadrature. This method was used to demonstrate entanglement for colours that were sepa-

rated by up to 1 nm [Villaret al. 2005, Suet al. 2006].

The aim was to further increase the separation of the wavelengths in two-colour en-

tanglement. Quantum correlations between the fundamentaland second-harmonic fields in

second-harmonic generation (SHG) had been proposed by [Horowicz 1989] and were later

observed by [Liet al. 2007, Cassemiroet al. 2007]. But the necessary phase information

was lacking to confirm the presence of harmonic entanglement. That harmonic entangle-
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ment should be measurable in a travelling-wave SHG was proposed by [Olsen 2004]. The

strength of the entanglement according to the inseparability criterion was however funda-

mentally limited in this system. This is a similar result to the limitation of squeezed light

generation via SHG, where 3 dB is the best squeezing level obtainable [Whiteet al. 1997].

Systems where the squeezing level is not limited in this way,are the degenerate OPO

and OPA; see [Wuet al. 1986]. The current record for squeezing is 10 dB from OPO

[Vahlbruchet al. 2008].

We chose to study the degenerate OPA in a cavity environment as a candidate for pro-

ducing harmonic entanglement because it was already a proven source of strong levels of

squeezing on the fundamental field, and because in certain regimes of operation, large con-

versions between the fundamental and second-harmonic fields can occur. To summarise,

the hypotheses that I would like to test in this chapter are:

• A model of degenerate OPA can produce harmonic entanglement.

• To produce entanglement, the OPA must support an exchange ofenergy between the
fundamental and second-harmonic fields.

• The strength of harmonic entanglement in the OPA region is only limited by intra-
cavity losses.

Provided that these hypotheses can agree with our model of OPA, then one can begin to

speculate on the possible applications for such a source of harmonic entanglement. Central

to modern techniques in optical metrology has been the ability to make connections be-

tween light beams that span an octave in optical frequency. This development has realised

the optical-comb whose offset-frequency can be directly linked to the SI definition of the

second [Udemet al. 2002]. As such, spectroscopic measurements can now be made with

an absolute accuracy beyond one part in1015 [Holzwarthet al. 2000], and have enabled

unprecedented testing of fundamental quantum mechanical effects [Fischeret al. 2004].

Harmonic entanglement has the potential to be applied to theheterodyne stabilisation of

optical-combs used in metrology [Diddamset al. 2000]. In the heterodyne scheme, a frac-

tion of the frequency comb is tapped off, and interfered withtwo reference (local oscillator)

beams, the fundamental and second-harmonic field produced by a Nd:YAG laser and SHG.

The SHG guarantees the harmonic relationship between the two local oscillator beams. The
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two resulting beat notes with the frequency comb are compared by taking their difference,

and this error signal is used to stabilise the offset frequency of the comb to an atomic clock

standard. If one were to replace the local oscillators with harmonically entangled local os-

cillators, then the difference signal will be quantum correlated, and will therefore show a

noise floor that is reduced below the shot-noise-limit. Thiswould in principle ensure a bet-

ter signal-to-noise ratio for the desired error signal, andwould allow better locking of the

frequency comb to the atomic clock standard.

3.2 Advanced model of OPA (with pump-depletion)

The OPA model that I will present here is an extension to the simple OPO model that was

derived in Section 2.8.2. Although the equations of motion for the fields are identical, it is

the removal of some assumptions in the calculation that introduces another level of com-

plexity. The classical behaviour and quantum statistics ofthe fields was already analysed in

[Drummondet al. 1980], but the authors did not analyse the correlations between the fields.

In the next sections, I will analyse the correlations between the seed and pump fields and

show that they meet the EPR and inseparability criteria of entanglement, and therefore for

harmonic entanglement.

The system under analysis consists of a second-order nonlinear medium enclosed within

an optical resonator as shown in Figure 3.1. The resonator iscoupled to the environment

through two partially reflective mirrors. One mirror represents an input/output coupler,

while the other represents uncontrollable coupling (loss)to all other environmental modes.

The non-linear medium induces an interaction between the two intra-cavity fields. The aim

here is to investigate the level of harmonic entanglement that this interaction can achieve

between the reflected output fields. The system is described by the following equations of

motion [Drummondet al. 1980]:

dâ

dt
= −κaâ+ ǫâ†b̂+ Âin (3.1)

db̂

dt
= −κbb̂−

1

2
ǫâ2 + B̂in, (3.2)

whereâ andb̂ are Heisenberg picture annihilation operators describingthe intra-cavity fun-
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damental and second harmonic fields respectively;κa andκb are the associated total res-

onator decay rates;ǫ is the nonlinear coupling strength between the fields; andÂin and

B̂in represent the accumulated input fields to the system. The partially reflective mirrors

modelling input/output coupling and loss are distinguished with the subscripts ‘1’ and ‘2’,

respectively; while the input and reflected fields are denoted by the subscripts ‘in’ and ‘ref’.

Using this terminologyκa = κa1 +κa2, κb = κb1 +κb2, Âin =
√

2κa1Â1,in +
√

2κa2Â2,in,

andB̂in =
√

2κb1B̂1,in +
√

2κb2B̂2,in.

The solutions to Equation 3.1 and Equation 3.2 are obtained through the technique of

linearisation, where operators are expanded in terms of their coherent amplitude and quan-

tum noise operator, so thatâ = α + δâ and b̂ = β + δb̂ with 〈δâ〉 = 〈δb̂〉 = 0, and

second-order terms in the quantum noise operators are neglected. By isolating just the co-

herent amplitude part, one gets the classical OPA equationsof motion:

dα

dt
= −κaα+ ǫα∗β + αin (3.3)

dβ

dt
= −κbβ − 1

2
ǫα2 + βin (3.4)

The classical equations are readily solved using analytical techniques. The quantum fluc-

tuations of the intra-cavity fields can be obtained from Equation 3.1 and Equation 3.2 by

applying the linearisation, and neglecting the second order terms in the quantum noise op-

erators, thereby giving:

d δâ

dt
= −κa δâ+ ǫ(α∗ δb̂+ β δâ†) + δÂin (3.5)

d δb̂

dt
= −κb δb̂− ǫα δâ+ δB̂in (3.6)

These quantum operator equations can be solved by taking theFourier transformation, and

by supplying the classical intra-cavity field solutionsα, β. In this sense, it is then the clas-

sical behaviour of the system that drives the quantum statistical behaviour. Although the

classical and quantum models can be solved analytically, I must use a case study approach

to visualise the behaviour of the system in graphs. The OPA model parameters that I used

are given in Table 3.1. Note that the scale of the values were chosen to allow the numerical

evaluation to proceed with minimal error. The nonlinear interaction strengthǫ is in most
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experiments much weaker (≈ 10−4 of typical κa). However, in the diagrams to follow, the

input seed and pump fields are re-scaled to their respective threshold levels,αin,c andαin,c,

and the final diagrams turn out to be invariant to any changes in ǫ, and choosing a particular

value ofǫ is made redundant. A similar scale-invariance applies to the cavity decay rates:

κa andκb, but only if theirratio is preserved. The ratio was chosen to be strongly resonant

for the seed field, and weakly resonant for the pump field.

3.3 Classical OPA behaviour

Although based on the same equations of motion as the OPO in Section 2.8.2, the removal of

several simplifying assumptions creates a great deal of complex behaviour in the advanced

OPA. A diagram labelling the input and output fields is shown in Figure 3.1. I will begin

with the classical equations of motion as given in Equation 3.3 and Equation 3.4. For

convenience, I have collected all the definitions of the variables into Table 3.1. Later I will

explain where the definitions of the critical seed and pump fields come from. The aim now is

to solve these equations for the intra-cavity fundamental and second-harmonic fields in the

steady state:dα
dt = dβ

dt = 0. By appropriately choosing the cavity parametersκb ≫ κa, we

can make sure that the second-harmonic field inside the cavity decays much more quickly

than the fundamental field. This allows us to solve forβ in Equation 3.4:

β = − ǫ

2κb
α2 +

βin

κb
(3.7)

and substitute it into Equation 3.3 to get:

0 = −κaα+
ǫβin

κb
α∗ − ǫ2

2
|α|2α+ αin (3.8)

The problem then reduces to solving Equation 3.8 forα. I will start by treating the special

cases of OPO, SHG, and OPA separately, before combining theminto one diagram.

Having the solution is not enough, because the stability must also be checked. This

is determined by calculating the four eigenvalues taken from a perturbation analysis of

Equation 3.3 and Equation 3.4. I will simply take these from the derivation as found in
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a

∈


b

κb1
κa1

κb2
κa2

α in,1 α in,2
βin,2

αref,2

βref,2

αref,1

βref,1

βin,1

Figure 3.1: The OPA model consists of

a second-order nonlinear medium en-

closed by an optical resonator. Mirror

1 acts as the input/output coupler, while

mirror 2 represents loss to the environ-

ment.

OPA MODEL PARAMETERS:

nonlinear coupling constant: ǫ = 1.0 [s−1/2]
mirror 1 coupling rate for seed: κa1 = 1.0 [s−1]

mirror 1 coupling rate for pump: κb1 = 10.0 [s−1]
mirror 2 coupling rate for seed: κa2 = 0.01 [s−1]

mirror 2 coupling rate for pump: κb2 = 0.1 [s−1]
seed driving field (normalised): αd = ± variable [#]

pump driving field (normalised): βd = ± variable [#]

SOLVE FOR THESE VARIABLES:

intra-cavity fundamental field: α = [#]
intra-cavity second-harmonc field: β = [#]

OTHER DEFINITIONS:

total cavity decay rate for seed: κa = κa1 + κa2

total cavity decay rate for pump: κb = κb1 + κb2

critical input seed field on mirror 1: αin,1,c = (2κa + κb)[2κb(κa + κb)]
1/2/(ǫ

√
2κa1)

critical input pump field on mirror 1: βin,1,c = κaκb/(ǫ
√

2κb1)

critical intra-cavity fundamental: αin,c = (2κa + κb)[2κb(κa + κb)]
1/2/ǫ

critical intra-cavity second-harmonic: βin,c = κaκb/ǫ

input seed field on mirror 1: αin,1 = αd × αin,1,c [s−1/2]

input pump field on mirror 1: βin,1 = βd × βin,1,c [s−1/2]

input seed field on mirror 2: αin,2 = 0 [s−1/2]

input pump field on mirror 2: βin,2 = 0 [s−1/2]
total input seed field: αin =

√
2κa1αin,1 +

√
2κa2αin,2 [s−1]

total input pump field: βin =
√

2κb1βin,1 +
√

2κb2βin,2 [s−1]
reflected seed field on mirror 1: αref,1 =

√
2κa1α− αin,1

reflected pump field on mirror 1: βref,1 =
√

2κb1β − βin,1

reflected seed field on mirror 2: αref,2 =
√

2κa2α− αin,2

reflected pump field on mirror 2: βref,2 =
√

2κb2β − βin,2

Table 3.1: Fixed and variable parameters used for the OPA model. The appropriate SI units are given.

The # symbol is dimensionless.
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[Drummondet al. 1980]. The eigenvalues are:

λ1, λ2 = −1

2
{−|ǫβ| + κa + κb} ±

1

2
{(−|ǫβ| + κa − κb)

2 − 4|ǫα|2}1/2 (3.9)

λ3, λ4 = −1

2
{|ǫβ| + κa + κb} ±

1

2
{(|ǫβ| + κa − κb)

2 − 4|ǫα|2}1/2 (3.10)

If the real components of all four eigenvalues are negative,then the solutions are stable.

Having a nonzero imaginary component means that the solutions are damped oscillations.

The fields that exit/reflect from the cavity mirrors,αref,1 andβref,1, can be obtained via the

input-output relation [Collett and Gardiner 1984]. Their definitions are given in Table 3.1.

3.3.1 The phase-space diagram

I am interested in seeing how the intra-cavity fields behave as a function of the input seed

and pump fields. If I only allowαin andβin to take on real values, then it makes sense to

plot a quantity of interest as a function of these two variables in a phase-space diagram. The

result is a map that shows where (in the sense of what values ofαin, βin) one can expect to

find interesting properties, such as large amplification. This method was used successfully

by [Drummondet al. 1980] to locate much of the interesting OPA behaviour in the two-

dimensional space. I continue investigating the phase-space diagram in this way, but I also

ensure that the scaling is equal for both axes, such that all points on a circle correspond to

the same total optical power going into the OPA. This helps when one is trying to make

comparisons with an experimental setup or with experimental results.

In the phase-space diagram, the seed field occupies the horizontal axis which represents

the SHG process. The pump field occupies the vertical axis which is the OPO process. Fig-

ure 3.2(a) shows all of the stability regions that will be discussed in this chapter. The range

of seed and pump field amplitudes is however much larger than is currently accessible by

experimentalists. The stability regions that I will concentrate on are shown in Figure 3.2(b);

these include bi-stable and complex-valued OPA. I have alsodistinguished between OPA

amplification and OPA de-amplification regions. The circle shows a total input power that

is equal to OPO threshold power. I will now examine each of these regions in detail.
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Figure 3.2: A stability analysis of the OPA solutions reveals a range of behaviour: mono-stability, bi-

stability, out-of-phase (complex-valued) mono-stability, and self-pulsation. The driving fields are nor-

malised to the critical amplitude for self-pulsation in SHG, and the threshold amplitude for OPO. Circles

mark the total input power to the system. Left: large scale structure. Right: regions that are accessible

by current experimental techniques.

3.3.2 OPO

The first case is where only the pump field is driving the system, such thatαin = 0. There

are three possible solutions. Which of them is stable depends on the value of the pump

amplitude:

α = 0 , β = βin/κb , |βin| < βin,c (3.11)

α = ±
[
2

ǫ
(|βin| − βin,c)

]1/2

, β = κa/ǫ , |βin| ≥ βin,c (3.12)

α = ±i

[
2

ǫ
(|βin| − βin,c)

]1/2

, β = κa/ǫ , |βin| ≤ −βin,c (3.13)

The threshold/critical value isβin,c, which is used to define the normalised driving fieldβd;

see Table 3.1. When operated below OPO threshold(|βin| < βin,c), there is no light pro-

duced at the fundamental frequency. But the quantum fluctuation analysis in Section 2.8.2

showed that it was in this regime that strong squeezing is produced. The classical OPO

model produces light at the fundamental only when the pump field is above the threshold

level; see Figure 3.3(a). Interestingly, the intra-cavitysecond-harmonc field remains at a

constant value, even if the input pump field is increased. Note that there are two solutions

for the fundamental field: one for each sign of the pump field. The meaning of the sign
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is a relative phase shift between the fundamental and second-harmonic fields. But below

threshold, the meaning of relative phase is denied becauseα = 0. One interpretation is

that a kind of symmetry breaking has to occur along the transition from below- to above-

threshold. These solutions are stable and have negative real eigenvalues. However for the

above-threshold solutions, they have only pure real eigenvalues when the following set of

criteria are met:

|βin| > βc
in + κ2

b/8ǫ (3.14)

|βin| > βc
in + (2κa − κb)

2/8ǫ (3.15)

When the OPO is driven with a pump field above either of these criteria, the solutions

for α, β become spiral-stable. A small perturbation shows a damped oscillation. The

oscillations should appear as sidebands in the spectrum of the fluctuation analysis; see

[Drummondet al. 1981], although as of yet, they have not been experimentallyobserved.

However, the non-degenerate OPO that is driven well above threshold is a commonly used

source of frequency-tuneable light for applications such as molecular spectroscopy.

3.3.3 SHG

For the SHG case, one drives the system only with the seed field, while the input pump

field is set to zero:βin = 0. The system then converts fundamental light into the second-

harmonic. The solution for the second-harmonic field is found by solving the cubic equa-

tion:

−2κb(ǫβ)3 + 4κaκb(ǫβ)2 − 2κ 2
a κb(ǫβ) = |ǫαin|2 (3.16)

The cubic has three analytical solutions but by reasoning with the conservation of energy

for the fundamental field, two of them can be ruled out, thereby just leaving the real so-

lution [Drummondet al. 1980]. The formula itself is too lengthy to include here. Theex-

pression for the intra-cavity fundamental field is found by plugging the solution forβ into

Equation 3.7 and solving resulting the quadratic equation for α. By analysing the resulting

eigenvalues for the solutionsα, β, one finds a threshold that is associated with SHG:

|αin,c| =
1

ǫ
(2κa + κb) [2κb(κa + κb)]

1/2 (3.17)
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When the SHG is driven above this thresholdαin > αin,c, the eigenvalues become pure

imaginary. This means that the system has un-damped oscillations, which are also called

self-pulsation. The threshold value for self-pulsationαin,c is used as a reference to define

the dimensionless driving fieldαd; see Table 3.1. In the regime of self-pulsation, the stored

energy in the intra-cavity field is periodically shuffled from the fundamental to the second-

harmonic and back. I am forced to keep my quantum fluctuation analysis away from the

self-pulsation regime because the linearisation assumption breaks down. Setting this limit

is reasonable from an experimental point of view because to reach self-pulsation in typi-

cal SHG setups would require seed powers in excess of 1 kW continuous-wave. At these

powers, thermal (oscillation) effects would surely dominate. In contrast, the case for SHG

below the self-pulsation threshold is quite simple; see Figure 3.3(b). It is characterised by

a monotonic increase in the intra-cavity second-harmonic field as the input seed power is

increased. There is a point for which the seed field is completely converted into the second-

harmonic. The required amplitude for the total input seed field for which this happens is:

αin =
√

8κ3
aκb/ǫ2, which depends only on the fixed cavity parameters. This is the op-

timum point at which to operate an SHG for the purpose of efficient frequency doubling.

The SHG is a commonly used experimental technique for creating laser light at very short

wavelengths (into the ultra-violet spectrum) for which many lasing media typically lose

their efficiency.

3.3.4 OPA (general)

The usual sense of the term OPA is when the input seed field is much weaker than the input

pump field. However, I bend the definition to include the case of arbitrary αin andβin.

There are several solutions to Equation 3.8, and also three main regions where the solutions

are stable. We cannot rule outa priori that the solutions forα could be complex-valued. So

to make the problem tractable, we letα = r exp(iφ), wherer is strictly real. The equation

then reduces to solving a cubic, and a trigonometric identity:

r3 −
(

2βin

ǫ

)

r cos(2φ) +

(
2κaκb

ǫ2

)

r −
(

2κbαin

ǫ2

)

cos(φ) = 0 (3.18)

sin(2φ) +

(
κbαin

ǫβinr

)

sin(φ) = 0 (3.19)
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Figure 3.3: Various case studies of the classical OPA system. The parameters are from Table 3.1. Solid

and dashed lines are the steady-state solutions to the fundamental and second-harmonic intra-cavity

fields, respectively. Heavy and light lines correspond to the different stable solution sets (bi-stability).
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The method of [Drummondet al. 1980] was to split up the problem into a so-called ‘in-

phase’ solution set (φ = 0) and an ‘out-of-phase’ set (φ 6= 0). Finding the in-phase set

reduces to solving the cubic:

r3 −
(

2βin

ǫ

)

r +

(
2κaκb

ǫ2

)

r −
(

2κbαin

ǫ2

)

= 0 (3.20)

for r, whileφ = 0. The out-of-phase set requiresr to satisfy:

r3 +

(
2βin

ǫ
+

2κaκb

ǫ2

)

r = 0 (3.21)

and therefore also forφ to satisfy:

cos(φ) =
−κbαin

2ǫβinr
(3.22)

In total there are five possible solutions. When the stability of the solutions are analysed,

the ‘in-phase’ set gives rise to the OPA mono-stable, and OPAbi-stable regions, while the

‘out-phase’ set leads to the OPA-complex-value region.

3.3.5 OPA (complex-value)

In the complex-value region, a phase shift is induced onto the intra-cavity fields. The phase

shift is non-trivial in the sense that it is not simply a copy of the phase of the input fields.

The complex-valued solutions are stable proved that the following conditions are met:

βin < −βin,c (3.23)

(αin)2 ≤ 8ǫ

κ 2
b

|βin|2 (|βin| − βc
in) (3.24)

An example of this is shown in Figure 3.3. In graph (c) the realpart of the intra-cavity

fields is plotted as a function of the input seed. In graph (d) the imaginary part is plotted.

Note that there are two stable solutions for the fundamentalfield α andα′ which differ in

sign only. The magnitude of the two solutions is the same. This prediction has not yet been

confirmed experimentally.
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3.3.6 OPA (bi-stable)

As the name suggests, there are two stable solutions for the fields in this region. The two

solutions do not have the same magnitude, and as such they canbe considered truly distinct.

The bi-stable region is defined by a bound on the pump field thatdepends on the seed field:

βin > βin,c +
3

2

(κbαin

ǫ2

)2/3
(3.25)

This means that the total input power to the system must exceed the OPO threshold power.

An example of the bi-stable region is made in Figure 3.3(e). Here one can see an abrupt

change in slope in the fundamental fieldα (heavy solid line), as the seed amplitude is re-

duced. If one were to increase the amplitude again, the solution would switch to theα′

solution (thin solid line). It was suggested in [Drummondet al. 1980] that such behaviour

could be used for building an optical switch or (classical) memory. This is another predic-

tion of the model that has not yet been confirmed experimentally.

3.3.7 OPA (mono-stable)

The mono-stable region occupies those areas of the phase-space diagram that are not oc-

cupied by the complex-valued and bi-stable regions; see Figure 3.2. Although not strictly

limited to the case of a weak seed field and a strong pump field, it is for this case that the am-

plifying property of the OPA is most apparent. An example of this is made in Figure 3.3(f).

Depending on the sign (phase) of the input pump field, the intra-cavity field is either ampli-

fied or de-amplified in comparison to the case with the pump field set to zero. If however

the pump field is increased beyond the OPO threshold (in this model |βin| ≈ 10), then the

system enters into either the complex-value region or the bistable region. The amplifying

property of the OPA in the below OPO-threshold regime is a well-established experimental

result. In the quantum fluctuation analysis, it is the phase-dependent amplification that is

the mechanism responsible for the system transforming coherent seed light into squeezed

light. The OPA operating in this regime is a well establishedsource of squeezed light.
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3.3.8 The input-output gain maps

A good way to visualise the classical behaviour is to map out the gain of the OPA as

a function of the driving fields. I have defined the gain in the following way: Ga =

|αref,1|2/|αin,1|2 andGb = |βref,1|2/|βin,1|2. This is the optical power of the reflected

light from mirror 1 divided by the input light incident on thesame mirror. I have to be

careful with this definition of gain, because it includes linear loss of the cavity as well as

the gain due to the nonlinear interaction. But provided thatI use an over-coupled cavity for

the modelκa1 ≫ κa2, then the dominant effect is gain due to the nonlinear interaction.

The colour-coded graphs in Plate 3 show the gain mapped as a function of the pump and

seed fields which have been normalised to their respective thresholds given in Table 3.1. The

horizontal axis corresponds to SHG. This can be seen by the depletion of the fundamental

field, and strong amplification of the second-harmonic field in the area immediate to the

horizontal axis. The vertical axis corresponds to OPO. Whenabove OPO threshold, the

second-harmonic field is depleted, while the fundamental field is strongly amplified. Bi-

stability has been presented in the diagram by plotting one solution on the right hand side,

and the other solution on the left hand side. The loss of symmetry in the seed field am-

plitude is thus only apparent. Hence any differences in left-right symmetry is evidence of

bi-stability. There is another phenomenon that has not beendiscussed so far. There are two

parabolic-like lines where the gain for both the fundamental and second-harmonic fields is

zero. I refer to these lines as neutral-point solutions, because the rate of the two competing

nonlinear processes, up-conversion and down-conversion,are equal. Later, we will see that

the neutral point plays a key role in the interpretation of harmonic entanglement.

3.3.9 The input-output phase maps

The phase behaviour of the OPA system also exhibits interesting results when plotted as a

map of the driving fields. I have defined the phase as being the argument of the complex-

valued amplitude of the reflected field from mirror 1:φa = arg(αref,1) andφb = arg(βref,1).

I have to be careful with the interpretation, because this definition of the phase includes the

trivial phase-flip that occurs on the horizontal and vertical axes of the map due to the change
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of sign of the driving fields.

The colour-coded graphs in Plate 4 show the phase of the reflected fields as a function

of the normalised pump and seed fields. There are two prominent non-trivial phase shifts to

be seen. The complex-value region in the lower section of thegraphs is readily apparent.

There is an interesting phase anomaly for the second-harmonic field along the vertical OPO

axis. When the system is driven by the pump only, at exactly twice the OPO threshold

amplitude, and in a small vicinity around this point, the phase shift can take on any value.

If we look at the corresponding gain map in Plate 3, then the second-harmonic field is

completely depleted at this point, and the field has zero amplitude, which means that the

phase is not a well defined property anyway. A similar effect occurs on the other lines of

depletion for both the second-harmonic and fundamental fields. Here however, the jump

in phase is restricted to exactly180◦. Later we will see that the non-trivial phase shift in

the complex-value region also plays a key role in interpreting the phenomenon of harmonic

entanglement.

3.4 Quantum fluctuation analysis

The quantum fluctuation analysis begins with Equation 3.5 and Equation 3.6 whose oper-

ators are defined in the time domain. The aim is to get the intra-cavity field operators in

terms of the input field operators. The first step is to bring the equations into the frequency

domain withΩ the sideband frequency away fromω0 the carrier; see Section 2.7.4. The

result for the annihilation and creation operators is:

iΩ δâ = −κa δâ + ǫ(α∗ δb̂+ β δâ†) + δÂin (3.26)

iΩ δâ† = −κa δâ
† + ǫ(α δb̂† + β∗ δâ) + δÂ†

in (3.27)

iΩ δb̂ = −κb δb̂− ǫα δâ+ δB̂in (3.28)

iΩ δb̂† = −κb δb̂
† − ǫα∗ δâ† + δB̂†

in (3.29)

Where the operators have had their following functional forms suppressed for compactness:

δâ(ω0 − Ω) and δâ†(ω0 + Ω). The equations are solved for the input fields, before the

sum and differences are taken. The sum for the seed field operators gives the amplitude
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quadrature:δX̂+
Ain = δÂ†

in + δÂin. The difference gives the phase quadratureδX̂−
Ain =

i(δÂ†
in − δÂin). Similar definitions apply for the pump field. Note that thesequadrature

operators, are the compact two-mode quadrature operators,as discussed in Section 2.6.5.

The results are:

δX̂+
Ain = (κa − iΩ)(δâ† + δâ) − ǫ(α δb̂† + α∗ δb̂) − ǫ(β∗ δâ + β δâ†) (3.30)

δX̂−
Ain = (κa − iΩ) (iδâ† − iδâ) − ǫ(iα δb̂† − iα∗ δb̂) − ǫ(iβ∗ δâ− iβ δâ†) (3.31)

δX̂+
Bin = (κb − iΩ)(δb̂† + δb̂) + ǫ(α∗ δâ† + α δâ) (3.32)

δX̂−
Bin = (κb − iΩ)(iδb̂† − iδb̂) + ǫ(iα∗ δâ† + iα δâ) (3.33)

The arrangement of the intra-cavity creation and annihilation operators suggests that they

can be combined into quadrature operators. It helps if I makethe following transformations

to the classical solutions:α → |α| exp(iθα) andβ → |β| exp(iθβ); whereθα = Arg(α)

and θβ = Arg(β). I can then use the definition of the generalised quadrature operator:

X̂θ = â† exp(iθ) + â exp(−iθ) and X̂θ = X̂+ cos θ + X̂− sin θ. Now the input field

quadrature operators can be expressed in terms of the intra-cavity quadrature operators, and

the result can be displayed in matrix form:








δX+
A,in

δX−
A,in

δX+
B,in

δX−
B,in








=







A B C D

B A′ −D C

−C D E 0

−D −C 0 E













δX+
a

δX−
a

δX+
b

δX−
b







(3.34)

where

A = κa − iω − ǫ|β| cos θβ (3.35)

A′ = κa − iω + ǫ|β| cos θβ (3.36)

B = −ǫ|β| sin θβ (3.37)

C = −ǫ|α| cos θα (3.38)

D = −ǫ|α| sin θα (3.39)

E = κb − iω, (3.40)
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The matrix has to be inverted to obtain the solution for the intra-cavity field in terms of

the input fields. Let us call theinvertedmatrix M that has the elementsmij organised

into rows i and columnsj. Actually, we are not interested so much in the intra-cavity

fields, but rather the fields that reflect/exit from the OPA cavity. The reflected fields can

be directly obtained by using the input-output formalism [Collett and Gardiner 1984], such

thatX̂±
Aref,1 =

√
2κa1X̂

±
a −X̂±

Ain,1 andX̂±
Bref,1 =

√
2κb1X̂

±
b −X̂±

Bin,1. And where one must

be careful to use the definition of the individual input fields, as opposed to the accumulated

input fields. The final expression for each reflected field is simply a weighted linear sum of

all the input fields. It is easiest to see how this works if I take an example:

δX̂+
Aref,1 = (2m11

√
κa1κa1 − 1) δX̂+

Ain,1 + 2m11
√
κa1κa2 δX̂

+
Ain,2

+2m12
√
κa1κa1 δX̂

−
Ain,1 + 2m12

√
κa1κa2 δX̂

−
Ain,2

+2m13
√
κa1κb1 δX̂

+
Bin,1 + 2m13

√
κa1κb2 δX̂

+
Bin,2

+2m14
√
κa1κb1 δX̂

−
Bin,1 + 2m14

√
κa1κb2 δX̂

−
Bin,2 (3.41)

Another example is

δX̂+
Bref,1 = 2m31

√
κb1κa1 δX̂

+
Ain,1 + 2m31

√
κb1κa2 δX̂

+
Ain,2

+2m32
√
κb1κa1 δX̂

−
Ain,1 + 2m32

√
κb1κa2 δX̂

−
Ain,2

+(2m33
√
κb1κb1 − 1) δX̂+

Bin,1 + 2m33
√
κb1κb2 δX̂

+
Bin,2

+2m34
√
κb1κb1 δX̂

−
Bin,1 + 2m34

√
κb1κb2 δX̂

−
Bin,2 (3.42)

where the details are in the subscripts, but also in the location of the ‘minus one’ term. The

expressions for the other reflected fields are obtained in a similar manner.

What we are interested in, are the correlation coefficients of the quadrature operators

between the reflected fundamental and second-harmonic fields. The correlation coefficient

is generally defined as:Cab = 1
2〈ÔaÔb + ÔbÔa〉 − 〈Ôa〉〈Ôb〉, whereÔa andÔb are two

arbitrary operators. Because I have employed the compact two-mode quadrature operators

in my analysis, I must use a variation on the definition of the correlation coefficient. The

explanation for this is based on the ‘compact’ quadrature variance, as given in Section 2.7.4.

The compact quadrature variance is what is measured on the envelope detector of an elec-
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tronic spectrum analyser, which is the device typically used in quantum optics experiments

to record the quadrature noise measurements. As we are working with fluctuation oper-

ators, the modified correlation coefficient then becomes:Cab = 〈(Ôa)
†Ôa〉. The task is

greatly simplified by the fact that operator products between two independent input modes

will have expectation values of zero. The terms that do indeed contribute, will be shown in

the following example:

CAref1,Bref1 = (2m11
√
κa1κa1 − 1)∗(2m31

√
κb1κa1) 〈(δX̂+

Ain,1)
†δX̂+

Ain,1〉

+(2m11
√
κa1κa2)

∗(2m31
√
κb1κa2) 〈(δX̂+

Ain,2)
†δX̂+

Ain,2〉

+(2m12
√
κa1κa1)

∗(2m32
√
κb1κa1) 〈(δX̂−

Ain,1)
†δX̂−

Ain,1〉

+(2m12
√
κa1κa2)

∗(2m32
√
κb1κa2) 〈(δX̂−

Ain,2)
†δX̂−

Ain,2〉

+(2m13
√
κa1κb1)

∗((2m33
√
κb1κb1 − 1)) 〈(δX̂+

Bin,1)
†δX̂+

Bin,1〉

+(2m13
√
κa1κb2)

∗(2m33
√
κb1κb2) 〈(δX̂+

Bin,2)
†δX̂+

Bin,2〉

+(2m14
√
κa1κb1)

∗(2m34
√
κb1κb1) 〈(δX̂−

Bin,1)
†δX̂−

Bin,1〉

+(2m14
√
κa1κb2)

∗(2m34
√
κb1κb2) 〈(δX̂−

Bin,2)
†δX̂−

Bin,2〉 (3.43)

The other correlation coefficients are calculated in a similar way. We now need to choose

what states the input fields are in. Since the input states areeither coherent states (the seed

and pump fields into mirror 1), or vacuum states (all other input fields), I can be sure that

the compact variances will equal one; see Section 2.7.4. Forexample:

〈αin,1|(δX̂+
Ain,1)

†δX̂+
Ain,1|αin,1〉 = 1 (3.44)

〈0|(δX̂+
Ain,2)

†δX̂+
Ain,2|0〉 = 1 (3.45)

We now have all the tools required to calculate the entire matrix of correlation coefficients.

We can proceed to investigate the presence of entanglement between the output fundamental

and second harmonic fields. A bi-partite Gaussian entangledstate is completely described

by its correlation matrix [Duanet al. 2000] which has the following arrangement of ele-
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ments:

Mab=







C++
aa C+−

aa C++
ab C+−

ab

C−+
aa C−−

aa C−+
ab C−−

ab

C++
ba C+−

ba C++
bb C+−

bb

C−+
ba C−−

ba C−+
bb C−−

bb







(3.46)

Note that to keep the notation simple, I have made the following change of subscripts:

Aref,1 →a andBref,1 →b. Once I have calculated the elements of this matrix, I can then

analyse it for either the inseparability criterion or the EPR criterion for entanglement; see

Section 2.9.3.

3.4.1 Numerical methods

Given the rather large expression involved in calculating harmonic entanglement from the

correlation matrix, it was simpler to break up the calculation into three steps, where each

step returned a numerical value. The model parameters that were used are given in Table 3.1.

The first step in the calculation was to find the values of the intra-cavity fields for a given

pump and seed field using the classical model, for example from Equation 3.13. This value

was then fed into the quantum fluctuation model, to get the values of the correlation matrix

elements, such as in Equation 3.43. Finally, the correlation matrix was analysed using

a numerical algorithm to find the standard form II of the matrix, and hence to find the

optimised inseparability, which is a necessary and sufficient criterion for entanglement.

3.4.2 Initial testing of the model

Every new theoretical model should be treated with caution.Analytical errors, numerical er-

rors or over-stretched approximations will cause the modelto make inaccurate predictions.

For this reason, it is wise to invest some time to gain some confidence in the model by testing

it against a well-established result. One result that has been confirmed by many experiments,

is the ability of the OPA in the weak seed limit to produce quadrature squeezed light on the

fundamental field, and also the ability of the OPA in the SHG limit to produce squeezing on

the second-harmonic field. Both of these results can be seen in Plate 5, where the quadra-

ture variances have been mapped as a function of the input seed and pump fields. There is

a wealth of information here, but I want to first concentrate on the squeezing of the funda-

mental field as a function of pump power. This corresponds to the immediate vicinity of the
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vertical (OPO) axis in the diagram. Depending on the sign of the pump field as it approaches

OPO threshold, the amplitude quadrature of the fundamentalfield takes on either−15 dB

or +15dB, which is squeezing and anti-squeezing, respectively. Fora pump amplitude of

zero, the quadrature variance is as expected 0 dB (that of a coherent state). A further inves-

tigation of the model (not shown), is that the level of squeezing becomes arbitrarily strong

as the intra-cavity losses of the OPA are reduced (κa2 → 0). These results are in agreement

with predictions from other OPA models [Wuet al. 1986, Walls and Milburn 1994].

Another test is the production of SHG squeezing. If we followthe horizontal (SHG)

axis in Plate 5 for the second-harmonic amplitude quadrature, then the variance changes

from 0 dB at the origin, to−3 dB at the extreme end. The squeezing strength seems to

clamp, even when intra-cavity losses are reduced. This result is consistent with the SHG

squeezing predictions in other SHG models [Mandel 1982]. A rather simple check is to see

whether the fields are violating the Heisenberg uncertaintyprinciple anywhere on the map.

With quadrature variances, one simply calculates the product of the variances. Although not

shown explicitly in Plate 5, if one adds (in dB scale) the amplitude and phase quadrature

maps for the fundamental field, then one does not find a value that is less than unity at

any point on the map. A similar test for the second-harmonic field gives the same result.

Another test is to turn off the nonlinearity in the model by letting ǫ = 0. In doing this,

one removes the nonlinear gain in the system, and even thoughthere may be intra-cavity

loss in the system, the input coherent and vacuum states, should remain unchanged with a

quadrature variance of one. Although not shown in the graphs, the OPA model confirms this

result. Since the OPA model has survived the key tests, it should be safe to continue with

analysing the quantum correlations between the fundamental and second-harmonic fields,

and therefore to look for harmonic entanglement.

3.4.3 Entanglement is all over the map of driving fields

If I map out the EPR entanglement measure as a function of the driving fields in Plate 6,

the first thing that strikes me qualitatively, is that there is at least some entanglement to

be seen almost everywhere. The second thing is that the strongest entanglement seems to

coincide along the boundaries, i.e. the boundaries where there is a change of the stability



110 Harmonic Entanglement: Theory

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

1

E
P

R
  a

nd
  I

ns
ep

. 
[d

B
]

αd

SHG

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-10

0

10

20

E
P

R
  a

nd
  I

ns
ep

. 
[d

B
]

βd

OPO

Figure 3.4: (a) Second-harmonic

generation produces harmonic en-

tanglement for all non-zero pump

powers. But the strength is limited

to εo = 1.9 dB, even for the case of

100% escape efficiency. (b) Optical

parametric oscillation can only pro-

duce harmonic entanglement when

driven above threshold. The best

value reads εo = 9.1 dB, located

just beyond threshold. This value

can be arbitrarily improved by in-

creasing the escape efficiency. Solid

line is the EPR criterion, while the

dashed line is inseparability. The

shaded area is entangled.

of the classical solutions. I have some cause for celebration, because I have already shown

my main hypothesis: a model of OPA can entangle the fundamental and second-harmonic

fields. But I want to go further than this, and try to get an understanding of how the strength

and type of entanglement depends on the underlying classical behaviour of the system.

3.4.4 SHG produces harmonic entanglement, but it’s not the best

I first examine the case of taking a slice in the map of driving fields along the SHG axis.

Figure 3.4(a) plots the EPR and inseparability entanglement measures as a function of the

normalised seed amplitude from zero up to the onset of self-pulsation (which is the limit

of the OPA model, but not the system itself). We can see that for SHG, there is at least

some level of entanglement to be found for all values of the seed field. There is an opti-

mum of−2 dB of EPR entanglement atαd = 0.1. This result is reminiscent of the3 dB

squeezing limit for SHG. The cause may be that the pair absorption process for SHG only

allows a single sideband of squeezing or entanglement to be generated, the other sideband

is occupied by a vacuum state. The strength of entanglement does not improve if I reduce

the intra-cavity losses, and so the harmonic entanglement generation in SHG appears to be

fundamentally limited.
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3.4.5 OPO above threshold makes harmonic entanglement, butnone below

The strongest experimental sources of squeezed light have,to date, used below-threshold

OPO to make 10dB squeezed light [Vahlbruchet al. 2008]. I therefore would have expected

that OPO would also produce the strongest harmonic entanglement. Figure 3.4(b) takes a

slice along the OPO axis of the map. The EPR and inseparability measures are plotted

as a function of the normalised pump amplitude. The result for below OPO threshold is

that there is no entanglement, as shown by EPR being greater than one, and inseparability

closely hugging the unity line. However, when the pump field is increased beyond threshold,

the entanglement strength rapidly finds an optimum (9.1 dB), before then gradually easing

off with increasing pump power. If one observes the optimum point as the intra-cavity

losses are reduced arbitrarily, the strength of entanglement also increases arbitrarily and

moves ever closer to the OPO threshold point. The strength ofharmonic entanglement in

above-threshold OPO is therefore not fundamentally limited as in the SHG case.

3.4.6 OPA near the boundaries makes the best harmonic entanglement

Even on the classical gain plots we can see that there are discontinuities in the reflected clas-

sical field amplitudes across the borders where one solutionbecomes unstable, and makes

the transition to the next solution. One can expect that the quantum effects will be es-

pecially strong here, because a small fluctuation in one field, say the pump, can transfer

to a large fluctuation in the seed, thereby producing strong correlations. The best way to

study these boundary regions is to perhaps set the total input power to a constant value,

and only trace out a circle in the map of driving fields. In Figure 3.5(a), I chose a total

input power of90% OPO threshold power. The polar plot follows the circle in theentan-

glement map of Plate 6, where the path is parameterised by theangleθR that is defined

by αd = (βin,1,c/αin,1,c)
√

2ξ sin θR, andβd =
√
ξ cos θR. Whereξ is the ratio of the

total input power to the OPO threshold power. The ratio of thepump to seed powers is

R = |βin,1|2/(1
2 |αin,1|2 + |βin,1|2). In the polar plot, points closer to the origin signify more

EPR entanglement. We can see two regions—one in the OPA amplification region, and the

other in the OPA de-amplification region—where the EPR entanglement finds an optimum
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Figure 3.5: The total input power

is held constant, but is split be-

tween αd and βd. The splitting frac-

tion R is varied. EPR entangle-

ment strength is displayed radially.

(a) The 90% case is optimally en-

tangled in the regime of moderately

pump-depleted OPA, and reaches

εo ≈ 6.5 dB. (b) The 400%

case shows the region of bi-stability.

Optimal entanglement occurs on the

edges of solutions; εo ≈ 14 dB.
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of −6.5 dB. Note though, that since we are in the OPA mono-stable solution set, that no

solution boundaries have been crossed yet. This changes when I set the total input power to

400% of OPO threshold power. Once again there are two optimum settings for the seed and

pump fields. And these indeed correspond to the boundaries between the mono-stable OPA

region and the bi-stable regions; or the boundary between the mono-stable and complex-

valued regions. The optimum EPR entanglement turns out to be−14 dB for both boundary

crossings. This result suggests that perhaps the total input power is akin to a resource for

the production of harmonic entanglement.

3.5 Interpretation

We have seen harmonic entanglement mapped across the input driving fields, and we have

looked at several case studies. But I would like to draw some generalisations of the OPA

system from this overload of information. In the next following sections I will attempt to

interpret the theoretical results.

3.5.1 Harmonic entanglement requires an exchange of energyor phase

What I want to answer is, why is harmonic entanglement stronger for some combinations

of seed and pump amplitudes, and not for others? How does the OPA produce harmonic

entanglement? The answer is probably easier to find for the converse: for which seed and

pump amplitudes is there no entanglement and why? If we look on the map, there are only

two regions that have no entanglement: OPO below threshold,and the neutral path within

the OPA mono-stable region (upper half of Plate 3). What theyhave in common is that the

classical gain for the fundamental and second-harmonic areexactly zero along these paths.

There is no exchange of energy. So if one field, say the pump, has a fluctuation, then it

is impossible for it to be mapped onto the seed. And without atleast some correlation, or

anti-correlation, there cannot be any entanglement.

If we look closely at the classical gain maps, then we can see another neutral path of

seed and pump amplitudes (this time in the lower half of the diagrams in Plate 3). But along

this path, there is indeed a generous amount of entanglementto be seen, at least−6 dB

according to the EPR measure in Plate 6. The difference here is that although there is no
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exchange of power between the fundamental and second-harmonic fields, there is indeed

an exchange of phase shifts acquired by the reflected fields. The two fields are therefore

correlated according to their phases, and not their intensities. And it is this correlation that

allows harmonic entanglement to be generated along an otherwise ‘neutral’ path.

3.5.2 Biased entanglement is the rule and not the exception

When looking at the map of entanglement in Plate 6, it is hard to get a feeling for the

kind of entanglement that is being produced. I have therefore chosen a few examples,

or case-studies, at various points in the map, so that one cansee what is happening to

both the real and imaginary parts of the classical amplitudes, and also the amplitude and

phase quadrature variances. The states are represented by ball-on-stick diagrams, where

the stick is the classical amplitude, and the major and minoraxes of the ball correspond to

the quadrature standard deviations. The state is represented in this way for the fields both

before and after their interaction in the cavity.

Case 1in Plate 6 is a strongly driven SHG. The seed field is almost completely depleted,

i.e. it has been converted into the second-harmonic. One cansee weak squeezing on the am-

plitude quadrature of the fundamental field, and also weak harmonic entanglement between

the fields. The entanglement is biased, because the states produced for the fundamental and

second-harmonic fields show squeezing; see Section 2.9.4.

Case 2: is below-threshold OPO in the de-amplification regime. There is no pump-

depletion, and the squeezing on the fundamental field is verystrong. But there is no entan-

glement. This is because there has been no exchange of energybetween the pump and seed

fields, as witnessed by the coherent amplitude ‘stick’ in thediagram not having changed.

Case 3:is below-threshold OPA, and in a region of moderate pump-enhancement. This

means that the squeezing on the fundamental field is slightlydegraded, but due to the sig-

nificant exchange of energy between pump and seed, a moderatelevel of harmonic entan-

glement is produced. As in Case 1, we see that the entanglement is biased.

Case 4: is clearly above-threshold OPO. A fundamental field has beencreated, but so

much so, that the pump field is almost completely depleted. The exchange of energy has

been perhaps too great, and this has limited the strength of correlations between the two
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fields. Hence the entanglement is only moderate compared to other regions of similar total

input power (400% of OPO threshold). The fundamental field issqueezed in the phase

quadrature. So we have another example of biased entanglement in the collection.

Case 5: is a neutral point. Here there is no net exchange of energy between the fun-

damental and second-harmonic fields. As a result, there is nosqueezing to be seen, nor

harmonic entanglement.

Case 6:is in the complex-value region of the map. As a result, the reflected fields gather

non-trivial phase shifts. The pump depletion or enhancement is very weak for this point,

as can be seen by the lengths of the amplitude sticks not having changed much. But the

change in phase is significant. As a result, small fluctuations in the seed field intensity are

transferred onto the phase of the second-harmonic, and viceversa. The entanglement that is

produced is quite strong when compared with other points along the 400% total input power

line. It should also be noted that the entanglement that is produced is biased.

These case studies have shown two things. Firstly the important role that pump deple-

tion or enhancement plays in producing harmonic entanglement. And secondly, that har-

monic entanglement as produced by the OPA system is inherently biased, regardless of the

choice of seed and pump fields. The ‘biasedness’ is evident inan analysis of the quadrature

variances for the fundamental or second-harmonic fields, which show squeezing.

3.5.3 Optimum entanglement occurs at 7 times threshold power

If we look at the polar plots in Figure 3.5, we can see that the amount of harmonic entangle-

ment is the same in both the amplification and de-amplification regions. The 400% case also

has stronger entanglement than the 90% total input power case. This seems to suggest that

the total input power is a resource that decides how much entanglement can be generated.

If this is true, then more power should mean stronger entanglement. But there turns out to

be an optimum level for the total input power.

To study this, I stepped through several orders of magnitudeof total input power. For

each step, I took a circular path in terms of the pump and seed amplitudes, and recorded

the strongest value of entanglement. I repeated this procedure until I had the optimal EPR

measure as a function of total input power. This is plotted inFigure 3.6. I have repeated the
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Figure 3.6: The optimal entanglement is found as a function of total input power, and plotted for several

coupling ratios κa/κb. The best strategy is to keep κa/κb ≤ 1, i.e. preferably singly-resonant on mode

a, after which the total input power of 7× threshold will generate the strongest entanglement, largely

independent of the escape efficiency ηesc=κa,1/κa=κb,1/κb.

study for three different ratios of input-output couplers,and also three different settings for

the intra-cavity losses. But let me start with the standard case as given by the parameters

in Table 3.1, which is shown here in line (a) in Figure 3.6. As the total input power is

increased, the entanglement strength finds an optimum at about 7 times the OPO threshold

power. But for higher total input powers, the entanglement begins to weaken.

In the case of a doubly-resonant cavity along line (b), wherethe fundamental and

second-harmonic decay rates are equal, one also sees an optimum entanglement point at

7 times OPO threshold power; line (b). But the entanglement weakens much more quickly

than for the previous case. If I then make the OPA cavity effectively singly-resonant for the

second-harmonic field, as in line (c), the optimum at 7 times threshold power is not even

reached. But note that my OPA model could break down at this point, because the approx-

imation used in the derivation to adiabatically remove the second-harmonic field no longer

applies.

3.5.4 In principle, OPA can make arbitrarily strong harmoni c entanglement

If the escape efficiency of the OPA cavity is increased from 90% to 99.9%, which is done

by reducing the intra-cavity losses (κa2 → 0), the level of optimal EPR entanglement also
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increases. But the total input power at which this occurs, moves only very little away

from the 7 times threshold value; see Figure 3.6. Hence, whendesigning an experimental

setup, one would not require more than this total input powerin order to get the most

entanglement out of the system. Having the potential for arbitrary strength in the system is

a huge motivation to build up an experiment and start measuring in the lab. It means that

one does not need to overcome a hurdle that is already imposedby the OPA system itself.

3.5.5 Squeezed driving fields enhance entanglement

So far I have considered driving the system with a seed and pump that are in coherent states.

It is then interesting to ask the question whether the fluctuations on those states map to the

entangled states. The quantum fluctuation model easily allows me to change the input states

to squeezed states, just by changing the value of the compactquadrature variances. I tried

several combinations of squeezing on the seed and pump fields, and found the strongest

results for the orthogonal combinations: for example,6 dB squeezed on the seed amplitude,

but 6 dB on the pump phase. Or vice versa. The harmonic entanglement map is plotted

for these two cases in Plate 7. The first impression is that there is more entanglement, in

the sense of being both stronger, and beginning closer toward the origin, i.e. for lower total

input powers. The inset plot compares the entanglement map at the−3 dB contour for the

coherent and squeezed input states. Clearly visible is thatthe regions appear to have moved,

so that for one particular combination of pump and seed squeezing, 3dB of entanglement

can now be accessed at only a few percent of total input power.

We can also look at individual cases. I have chosen to examinea point on the SHG

axis. Looking at the ball-on-stick picture and comparing the squeezed and coherent models,

we can see that the kind of entanglement has changed from being biased, to being nearly

symmetric (biased entanglement is discussed in Section 2.9.4). The general message is

clear. Squeezed driving fields can enhance harmonic entanglement and compensate for bias

that is inherent in the OPA system.
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Figure 3.7: Intuitive interpretation

of harmonic entanglement genera-

tion in OPA. The input seed and

pump fields are represented by a

dashed-grey grid. The nonlinear

process then exchanges energy be-

tween the fields, thereby distorting

the grid (dark solid grid), upon which

the EPR measure of harmonic en-

tanglement is plotted, where darker

ink signifies stronger entanglement.

The cells that are most distorted and

at angles give rise to strong correla-

tions between the fundamental and

second-harmonic fields, which are

the basis for forming harmonic en-

tanglement.

3.5.6 An intuitive interpretation using co-ordinate transformations

Despite having examined various aspects of the harmonic entanglement that is generated by

OPA, there is perhaps one thing that is missing. I would like to have an intuitive picture for

how the entanglement is created in the OPA. For squeezed light, there is a simple picture

for how it is created in an OPA. One can imagine that the OPA de-amplification process that

happens to the classical amplitude of the seed field, likewise happens to the quantum fluc-

tuations in the amplitude quadrature. The output light therefore has a quadrature variance

that is squeezed in comparison to a coherent state of light that has the same optical power.

For harmonic entanglement, the picture is complicated by the fact that we need to consider

two fields at once, and the correlations between them.

For classical fields, one consider the role of the OPA system as mapping a set of input

fields, into a set of output fields. I can represent this mapping as distortion in a grid of

equally spaced points. Figure 3.7 shows a set of equally spaced input fields as a light-grey

two-dimensional grid. The region that has been plotted is within the mono-stable OPA

region. The OPA system then maps the input seed and pump fieldsinto new values of the

output seed and pump fields, which are represented by the dark-grey grid. The distortion

is severe, but note that for some regions, there is a180◦ phase shift involved, which means
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that the change in power is not as large as it looks initially.I have then plotted the EPR

measure of harmonic entanglement on top of the distorted grid, which enables us to see the

relationship between distortion of the mapping and the entanglement.

We can then see that harmonic entanglement only occurs when aparticular cell of the

grid has changed its angle from the original cell. A change inangle means is that the seed

and pump fields have become coupled. Another effect is then the stretching/compression

of the cell. Stretching represents anti-squeezing, while compression represents squeezing

of the amplitude quadrature. As an example, I could choose toset the input seed and

pump to lie at the corner of the cell marked (a). If I then bringa small fluctuation in

the seed field, so that the system now rests on the corner (b), one can see that the small

fluctuation has been amplified and has caused a coupling between the fundamental and

second-harmonic fields. Thus a correlation has been produced. A similar argument applies

to a cell that is considered at point (c). Although difficult to see, the fluctuation has been

de-amplified (squeezed), while still allowing coupling between the fundamental and second-

harmonic fields. This particular cell therefore demonstrates a quantum correlation between

the fundamental and second-harmonic fields, and it is this quantum correlation that is at the

heart of the harmonically entangled state.

3.6 Summary

Harmonic entanglement is the quadrature entanglement between a fundamental optical field

and its second-harmonic. By extending an advanced model of OPA, I was able to analyse the

quadrature correlations between the reflected fundamentaland second-harmonic fields. The

correlations were characterised according to the EPR and inseparability criteria of entan-

glement. The OPA system supports a range of classical processes: mono-stable, bi-stable,

complex-valued, SHG, and OPO. In all but two cases (the neutral path, and below-threshold

OPO) the system exhibited harmonic entanglement on the reflected fields. By reducing

intra-cavity losses, the strength of the entanglement could in principle be made arbitrarily

strong. The optical power levels that are required to see moderate levels of harmonic entan-

glement, of order3 dB in the EPR measure, are quite reasonable, where only a total input
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power of 50 to 90% of OPO threshold is needed. This suggests that the OPA system is an

excellent candidate for a source of harmonic entanglement.



Chapter 4

Harmonic Entanglement
Experiment: Materials and Methods

In the preceding chapter, I presented a theoretical model and its predictions that harmonic

entanglement could be produced by an optical parametric amplifier (OPA). The aim of the

experiment presented in this chapter was to test those predictions. What looked simple on

paper ended up covering a three metre long optical table tethered to a rack of electronics.

This chapter explains why the experiment became complicated, and details the design and

testing of its key components. The construction and operation of the experiment was a

collaboration with Syed Assad, Moritz Mehmet and myself. Along the way, we developed

the technique of optical carrier rejection for the purpose of measuring the phase quadrature

of bright light; and we also found evidence of guided acoustic wave Brillouin scattering

occurring in the nonlinear crystal of the OPA (see Chapter 5). Our attention to building an

OPA of sufficiently high escape efficiency and low threshold power was rewarded with a

series of observations of harmonic entanglement that are presented in Chapter 6.

4.1 Overall Design Considerations

The design of the experiment is very simple in principle. A laser provides a source of

coherent light at1064 nm (red). A fraction of the light is frequency doubled to532 nm

(green) using a second-harmonic generator. Both driving fields—the red seed and green

pump—are then combined and injected into an OPA, which consists of aχ(2) nonlinear

crystal placed within an optical resonator. The fields reflected from the OPA are separated,

and each wavelength (colour) is received by a homodyne detector that measures the phase

and amplitude quadratures. The quadrature data is recordedas a time-series, from which

121
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Figure 4.1: Overall design of the experiment. Entanglement was generated between the reflected funda-

mental and second-harmonic fields of an optical parametric amplifier. Optical carrier rejection allowed the

verification of entanglement via homodyne detection. Dashed lines are the 532 nm (green) light beams.

Solid lines are the 1064 nm (red) light beams.

the elements of the correlation matrix are calculated. Finally, the presence of harmonic

entanglement is verified by analysing the matrix according to the inseparability criterion.

In practice, the design of the experiment needed some modification; see Figure 4.1. The

reason was that only bright driving fields, on the order of OPOthreshold power (Pth), can

yield strong harmonic entanglement. Bright light brings with it two challenges. Firstly, the

driving fields must be close to shot-noise-limited at the sideband frequency of measurement,

which in our case wasΩ ∼ 10MHz. Any excess noise on the driving fields would couple

directly into the fields reflected from the OPA, thereby degrading the entanglement. This

problem is more significant at higher laser powers. The solution was to filter the light

by transmitting it through an optical cavity having a linewidth δν, where the excess noise

at the sideband frequencies is stripped from the carrier. For frequencies above the cavity

linewidth, the transfer function follows a1/f roll-off for the noise power, which means that

the linewidth could be chosen to suite the filtering needs.

The second challenge was that of measuring the phase quadrature of the light, which

is necessary to verify entanglement. Measuring the phase quadrature is most readily done

using the technique of balanced homodyne detection. The requirement however, is that

the local oscillator be at least∼ 30 times brighter than the signal beam. If for example

Pth = 100mW, and for the case that the OPA is driven at this level, then onecould expect
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an entangled signal beam of up to100mW. Homodyne detection would then a require a

local oscillator in excess of3W, which would be difficult for a single photodiode to de-

tect (and survive). The literature reports two different techniques that have been applied to

effectively rotate the phase quadrature into the amplitudequadrature (at a given sideband

frequency), thereby making it possible to measure the phasequadrature using just a single

photodetector (or two detectors in a self-homodyne setup).One method used the phase

shift acquired by the carrier after reflection from an under-coupled cavity that was de-tuned

[Villar et al. 2006]. The scheme of [Glöcklet al. 2004] was based on an unequal arm length

Mach-Zehnder interferometer. We used a different technique, that of optical carrier rejec-

tion, which reduced the optical power in the signal beam without significantly affecting the

sidebands. The signal beam was aligned onto an (ideally) impedance-matched cavity that

would transmit the carrier light when on resonance. The sidebands lying outside the cavity

linewidth were reflected. Using this method, we were able to reduce the carrier light by up

to 25 dB, and perform homodyne detection on the sidebands.

The problems associated with producing bright shot-noise limited light, and detecting

the phase quadrature of bright light, could in principle be avoided entirely by just reducing

Pth of the OPA. One must be careful however, to avoid introducingadditional losses which

would degrade entanglement. The simplest method is to decrease the total cavity decay

rates. Our solution was to make the OPA cavity doubly resonant, i.e. resonant at both the

fundamental and second-harmonic fields. This ensured that the losses were roughly equally

distributed over both colours, while keepingPth < 100mW.

A schematic of the entire experiment is shown in Figure 4.1. Here we can see the

implementation of filtering of the seed and pump light to ensure that they are shot-noise

limited. These cavities also cleaned the spatial mode into aTEM00 profile. They are

labelled as mode-cleaners to contrast them from the filter-cavities which are installed at the

homodyne detection end, where they perform their role in optical carrier rejection. Although

performing different roles, their design and constructionwere identical. The OPA cavity

was built according to a bow-tie geometry, primarily to allow unrestricted access to the

reflected entangled beams. A dispersion compensation platewas used to neutralise the
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dispersion that was acquired per-round-trip (from AR and HRcoatings), which is essential

for keepingPth low in the doubly-resonant design.

4.2 Preparation of seed and pump light

Laser source: A schematic is shown in Figure 4.2. A Nd:YAG laser (Diabolo model from

Innolight GmbH.) was the only source of light for the whole experiment. It emitted1064 nm

(red), and also532 nm (green) coherent light from an internal frequency doubler.The max-

imum power output of continuous-wave (CW) light was400mW for red and800mW for

green. The laser linewidth was quoted from the manufactureras1 kHz. The laser also had

an internal intensity noise-eater which was switched on fortaking measurements because

it reduced the noise-power of the relaxation oscillation by30 dB. A Faraday isolator was

placed in the red path (not shown), as a precaution against possible feedback from the retro-

reflecting optics. In the experiment, there were no such optics placed intentionally, although

there may have been stray alignment from the AR-coatings of flat optical components like

waveplates.
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Initially, a cascade of two mode-cleaning cavities for eachcolour was installed in the

beam paths. But limited optical power meant that the first redcavity was not used. All three

remaining cavities were of the same mechanical design by K. McKenzie: 3 mirror triangular

geometry,800mm optical path length, PZT actuated end-mirror. The important parameters

to note at this stage are the linewidths of the first and secondgreen mode-cleaners (MC-1G

and MC-2G),1.0MHz and 1.9MHz, respectively; and the second red mode-cleaner (MC-

2R), of0.4MHz. Total transmission for each colour was moderate to good:∼ 95% for red;

∼ 95% and∼ 78% for green.

Mode-cleaner performance: Here, one of the green mode-cleaners (MC-2G) was

tested for how well it could suppress the relaxation oscillation of the laser. The method

was to use a self-homodyne technique to get the noise spectracalibrated to the shot-noise-

limit. Spectra were taken with and without the locked cavityin place, such that the power

on the detectors was kept the same (1mW). The results are shown in Figure 4.3. The

roll-off remnant of the relaxation oscillation above2MHz was suppressed by up to 20dB,

which ensured that the green light was shot-noise-limited beyond4MHz. We decided to in-

stall another green mode-cleaner because higher powers would later be used for driving the

OPA. The addition of another cavity provides another factorof 1/f filter response, thereby

leading to additional noise suppression. The red mode-cleaning cavity had a sufficiently

narrow linewidth to negate the need for a second red mode-cleaner.

After filtering, some of the light was diverted for the local oscillators, before preparing

the seed, pump, and reverse-seed beams with AM and PM sidebands. The sidebands were

used later for servo-control purposes. The frequencies (and possible beat frequencies) were
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ment. The cavity has closed control loops for the cavity length, crystal temperature, and seed-pump

relative phase. The dispersion plate angle is adjusted to minimise OPO threshold power.

chosen to lie outside the anticipated measurement range5 → 10 MHz to avoid potential

interference with the entanglement measurements. The amount of power diverted to each

beam was adjustable using polarisation optics. The seed, pump, and local oscillator beams

had their polarisation cleaned using Glan-Thomson prisms.The beams were brought to a

waist size radius∼ 1mm thus ensuring near-collimation for the length of the3m optical

table.

4.3 OPA setup in detail

Because the OPA was the entangling agent, it played the most important role in the ex-

periment. The most important requirements, were those of high escape efficiency and low

threshold power. Stability and control were also very important, as an entanglement mea-

surement could take many minutes to complete. These requirements influenced several as-

pects of the design and construction of the OPA which will nowbe addressed. A schematic

of the OPA is shown in Figure 4.4 together with the photographand diagram in Plate 1 and

Plate 2.

Cavity geometry: It is the reflected pump and seed fields from the OPA that were pre-

dicted to be entangled, and so we needed efficient access to these fields without using a

Faraday isolator (which typically induces a∼ 5% loss). We therefore chose a travelling-
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wave, four-mirror, bow-tie geometry. The bow-tie cavity can be made quite compact with-

out introducing a significant amount of astigmatism (an elliptical transverse mode shape).

We wanted the most compact cavity possible (offering a largebandwidth), that had a small

angle of incidence for the beam path, yet without the angle being so small as to cause clip-

ping of the beam at the edges of the crystal (keeping a gap the size of a factor20 of the

beam width). A compromise was reached for a6◦ angle of incidence, and radii of curvature

for the inner mirrors of38mm which were spaced at44mm. The flat outer mirrors were

spaced at90mm. This ensured a stable resonator geometry, with a waist radius in the KTP

crystal ofW0 = 40µm. Which was only10µm larger than the Boyd-Kleinman optimum

waist for the10mm long KTP crystal. The total optical path length for a round-trip was

285mm. Note that compared to a standing wave cavity, a travelling wave cavity is sensitive

to a back-scattering loss mechanism. We measured a back-scatter of 5 parts per million at

1064 nm with the cavity on resonance. This level of back-scatter wasa negligible source of

intra-cavity loss overall.

Optical properties: With the cavity geometry fixed, the next step was to determinethe

optimum reflectivities of the input-output coupling mirror. No other component has such a

strong effect on the OPO threshold power, and more importantly, the accessible entangle-

ment for a fixed total input power. Here, intra-cavity lossesalso played a role. Rather than

leaving the design to heuristic arguments, both parametersRa andRb were scanned, while

the model of OPA and harmonic entanglement was tested for every combination of pump

and seed powers that were available from a maximum of200mW for red and400mW for

green. From now on I will use a compact notation like200//400mW to describe cavity

parameters in the order of red-green. The best value of EPR harmonic entanglement was

found in the parameter space and recorded. This result is plotted in Fig. 4.5. Note that the

nonlinear coupling strength of the materialLiNbO3 was used in the model, and this gen-

erally gives higher OPO threshold powers than for PPKTP. We ordered several mirrors for

the experiment such that various combinations ofRa andRb could be tested. The mirror

having the design specifications ofRa = 90% andRb = 40% was chosen for the OPA,

with predicted finesse60//8 (red//green). Note that the actual mirrors deviated from these
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nominal values, which is discussed further in Section 4.4.

Nonlinear crystal: The ideal nonlinear crystal would have a high nonlinearity to loss

ratio, and a high damage threshold. The nonlinear material that was chosen was an arti-

ficially grown crystal of potassium titanyl phosphate (KTP). This material meets the re-

quirements of high transparency at1064 nm and 532 nm. It is birefringent and disper-

sive, having refractive indices at room temperature at 1064nm: nx = 1.738; ny = 1.746;

nz = 1.830; and at 532 nm:nx = 1.779; ny = 1.789; nz = 1.889. The material has a

second-order nonlinear coefficient in pico-metres per voltin the various axes to the princi-

ple optic axis:d31 = 6.5; d32 = 5.0; d33 = 13.7; d34 = 7.6; d35 = 6.1; see for example

[Dmitriev et al. 1995]. During the manufacturing process, the use of periodic-poling tech-

niques while growing the crystal, where the sign of the nonlinearity is periodically flipped

(but no change to the refractive index), allows the higher nonlinear coefficient to be used

(d33) while being quasi-phase-matched at room temperature. Periodically-poled KTP is

called PPKTP. A 10 mm long crystal and 1.5 mm by 1.5 mm across was obtained from the

manufacturerRaicol. The ends were polished flat and AR coated to< 0.1%. The tem-

perature of the crystal had to be actively controlled to∼ 10mK, in order to maintain the

condition that the red and green fields were co-resonant in the cavity. The phase-matching

condition itself was several degrees wide.

The optical properties of the KTP material, and the material’s utilisation for nonlinear

optics has been reviewed in [Bierlein and Vanherzeele 1989]. The manufacturing technique

for the periodic poling of KTP, which is covered in [Chen and Risk 1994], enabled thed33

nonlinear coefficient (which is higher than for the other crystal axes) to be used in the quasi-

phase-matched configuration and at room temperatures. The application of PPKTP to the

task of efficient optical parametric oscillation (OPO) was reviewed in [Myerset al. 1995],

which culminated in the observation of quadrature squeezedlight from a PPKTP based

OPO [Suzukiet al. 2006], and from a PPKTP based OPA [Hiranoet al. 2005]. These ex-

perimental results established PPKTP as an excellent material for the production of nonclas-

sical light. In comparison toMgO : LiNbO3 it shows reduced absorption at the1064 nm

and532 nm wavelengths, and a higher effective nonlinearity (which lowers the OPO thresh-
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Best Harmonic Entanglement: EPR measure [dB]


Figure 4.5: A search in the pa-

rameter space of the input-output

coupler for the best combination

of red and green mirror reflectiv-

ities. Using the theoretical OPA

and entanglement model, with a

maximum seed and pump power

of 200//400 mW. The best point

is marked by the star. This point

meets the compromise of minimal

cavity finesses (and therefore large

cavity linewidths), an OPO thresh-

old power that is easily attainable,

and strong harmonic entanglement.
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old). However, grey-tracking, which is a photo-refractivedamage to the material, can occur

at blue-coloured wavelengths and high intensities, which can lead to markedly increased

optical losses.

OPA construction: All of the OPA optics were mounted on a single A4 size aluminium

block that was50mm high. This kept the feet of the individual optical components under

25mm in height, thus helping with mechanical stability. Each of the four mirrors of the

bow-tie cavity could have their angles changed by a fine 3-axis control, or be translated

in position by∼ 10mm. This modular concept was also applied to the crystal and its

temperature controller, which could easily be removed in one piece. A perspex lid was

placed over the entire assembly to reduce air currents and temperature fluctuations. Holes

were left open for the in-coming and out-going seed and pump beams.

OPA control: Four parameters needed to be controlled in the OPA: cavity resonance

for red field (closed loop via reverse seed); cavity resonance for green field (open loop via

crystal temperature); phase matching condition (open loopvia dispersion plate); and the

relative phase between the in-coming seed and pump fields (measured via a 1% tap-off on

reflection from the OPA).

Red cavity: Since the OPA was resonant for both the red and green fields, the cav-

ity resonance condition had to be met for both colours. Ignoring the green cavity for the

moment (I speak as if there were two cavities, but they were geometrically identical) one

could lock the red cavity by actuating the position of one mirror that was attached to a

piezo electric actuator (PZT) which was driven by a high voltage amplifier0 → 200V.

The position of the mirror was adjusted by a closed-loop control system, which consisted

of a proportional integrator controller with a low-pass filter pole located at the high voltage

input to the PZT stage. The error signal was extracted using the Pound-Drever-Hall (PDH)

method [Dreveret al. 1983] from an auxiliary beam at1064 nm, called a ‘reverse-seed’

beam which was transmitted through one of the HR mirrors and travelled in the reverse

direction to the seed and the pump. This meant that the reverse-seed experienced a severely

under-coupled cavity, which reduced the size of an extractable error signal, and was also

sensitive to residual AM from the phase modulator (which ledto offsets that depended on
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the intensity of the reverse-seed). However, using a reverse-seed that carried its own PM

sidebands had a big advantage over an error signal extractedfrom the seed or pump. This

was because the (forward) seed beam would undergo phase-dependent amplification, and

this would occur irrespective of whether the PM sidebands were on the pump or the seed.

The resulting derived error signal would be the sum of two error signals, one for the cavity

length and the other for the seed-pump relative phase. Nevertheless, at the highest seed and

pump powers used, a similar kind of dependence was noticeable in the error signal derived

from the reverse-seed. This can be attributed to back-scattered intra-cavity light (from the

forward to the reverse direction), since the (forward-)seed and reverse-seed relative phases

was not controlled. The proportional gain and pole of the low-pass filter were optimised to

suppress disturbances from DC up to the unity gain point at10 kHz.

Green cavity: Although the cavity resonance for the red field was now locked, this

did not guarantee co-resonance with the green field. The reason is that all the components

in the optical path are dispersive, especially transmission through the PPKTP crystal. In

practice we adjusted the temperature of the crystal to bringthe green on to co-resonance

with the red. The temperature had to be held at about10mK stability. A large temperature

range however, was planned (up to 200 degrees Celsius). Thiswas achieved by using a

Peltier element attached to a copper heat reservoir that washeated with a resistive element.

A thermistor temperature sensor on the small copper crystalcell was read by a NewPort

temperature controller. The crystal was enclosed by an adjustable-sized copper cell that

gave thermal contact to three sides of the crystal. The thermal reservoir was a 25mm copper

cube. The cell and peltier were held onto the cube via stainless steel clamp, as stainless steel

is a relatively poor conductor of heat. The reservoir cube was placed on a stainless steel foot

which effectively insulated it from the recess built into the aluminium A4-size block. The

entire oven assembly was attached to a fine XYZ-axis mount which was bolted onto the

optical bench. The XYZ control allowed us to effectively move the waist of the cavity

eigenmode around in the crystal to find the best operating point that avoided scattering

centres/defects and therefore minimise losses.

Phase-matching: Tuning the temperature to bring the green and red cavities onco-



132 Harmonic Entanglement Experiment: Materials and Methods

resonance however, brought the crystal away from its optimum phase matching condition.

Therefore by turning the dispersion plate, one could adjustthe relative phase-shift that was

acquired by a round-trip of the red and green fields, and thus compensate for the change in

temperature. In this way it was possible to satisfy both the phase-matching condition of the

PPKTP, and also the red-green co-resonance condition. The dispersion plate was a slightly

wedged piece of BK7 glass with high-quality AR coatings (< 0.1% for red and green). The

glass has a refractive index ofn = 1.501 for red andn = 1.502 for green. Changing the

angle at which light travels through the plate, changed the optical path length difference for

red and green light. In practice, only about one degree was necessary to sweep through a

full red wavelength.

Relative phase: The final control loop was the relative phase between the seedand

pump fields. The theoretical analysis assumed that the relative phase was eitherφ = 0 or

φ = π. To ensure that this condition was met, a PZT-actuated mirror was placed in the pump

path. The error signal for the control loop could be detectedon a photodiode that was placed

either on the reflected seed or reflected pump beams (via a 1% tap-off). Which signal was

used depended on which of the two was larger, and this depended on the particular choice

of driving field powers. The error signal was extracted by de-modulating the photocurrent

with one of the PM sideband frequencies, either the frequency on the pump field, or the

frequency on the seed field, which-ever provided the larger error signal. In practice, the

SNR of the error-signal depended on the how much parametric gain was occurring, i.e.

more gain meant a larger error signal. By just changing the polarity of the error signal, it

was possible to lock to either amplification or de-amplification.

Optical alignment: Good mode-matching of the seed and pump beams into the OPA

were vital to avoid coupling significant optical power into higher-order TEM modes. The

AM and PM modulator units introduced wave-front distortions. This limited the mode

matching of the s-polarised light for seed and pump to 98% and99%, respectively. The

task of mode-matching was made easier because the larger waist of the OPA cavity was

200µm across. Compare this to the reverse-seed, which was mode-matched to the smaller

40µm waist of the cavity. For the reverse-seed, it was only possible to get 75% mode-
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Units Rev. Seed Pump Forw. Seed

Wavelength [nm] 1064±1 532±1 1064±1
Mode-Matching [%] 76.0±2.2 99.5±0.2 98.9±1.4

Ref.coeff. [%] 98.8±0.2 69.8±0.9 74.0±0.5
Ref.coeff.corr. [%] 98.5±0.2 69.6±0.9 73.7±0.7

Linewidth [MHz] 18.32±0.23 120±3 18.32±0.23
FSR [MHz] 1047±17 1050±20 1047±17

Finesse [—] 57.2±1.2 8.74±0.50 57.2±1.2

Table 4.1: Measured properties of the OPA cavity. The reflection coefficient is corrected for the limited

mode-matching efficiency.

matching, because the effect of diffraction expanded the beam size beyond the size of the

first alignment mirror. The mode-matching and alignment were made while observing the

DC photocurrent on detectors PD1, PD2, and PD3; see Figure 4.4. Note that D3 for the

reverse-seed was introduced only temporarily by a flipper mirror.

4.4 OPA testing

Before searching for harmonic entanglement, it was good to test some basic classical prop-

erties of the OPA. The quantum noise property of squeezing from the OPA in the OPO limit

was also tested.

Cavity characterisation: The cavity parameters that we measured here will be used

later in the theoretical OPA model. We studied the transmitted and reflected light of the

cavity by monitoring the output of several photodetectors while scanning the cavity length.

We used the PDH error signal as a frequency ruler to directly determine the cavity linewidth

which is defined as a full-width half-maximum (FWHM) of the transmitted Airy function.

The accuracy of the free spectra range measurement (and therefore finesse) was boosted by

using the technique of counting Guoy phase shifts with the beam slightly misaligned. The

results are summarised in Table 4.1. The linewidth for red at18MHz was much narrower

than for green. This determined the highest frequency that we could expect to measure

entanglement. From the finesse and the corrected reflection coefficients, we could deduce

the input-output coupler reflectivity90//53% (red//green); as well as the combined loss of

all the other components per round-trip0.7//7.7%. The loss for green was surprisingly high.

Note that this was the combined loss that included transmission through the PPKTP crystal
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Figure 4.6: SHG conversion efficiency as a

function of temperature and different angles of

the dispersion plate. The points correspond to

maximum conversion efficiency which was found

at the red-green co-resonance condition. Verti-

cal lines of the same pattern belong to measure-

ments taken at the same angle of the dispersion

plate.

and dispersion plate, and reflections from their AR coatings. Similar measurements that we

had made half a year earlier had yielded only half the loss forgreen. This may be evidence

for the phenomenon of grey-tracking, where the KPT materialis exposed to bright light for

long periods of time and accumulates photo-refractive defects. It is well known that the rate

of damage, and the strength of the scattering effect, is morepronounced for light at shorter

wavelengths.

SHG efficiency: The simplest test for checking the nonlinear interaction was to ob-

serve second-harmonic generation (SHG). The method was to hold the cavity on resonance

using the reverse seed. The (forward) seed was then set at a given input power of10mW.

The temperature of the cavity was swept (which periodicallybrought the green co-resonant

with the red). The SHG output was monitored on the green reflection photodetector. The

temperature was recorded at which the conversion was maximum, as well as the optical

power which gave an estimate of the SHG conversion efficiency. Typically three peaks

could be recorded within a20◦C temperature range. Then the angle of the dispersion plate

was adjusted by a few tenths of a degree, and the temperature scan was repeated. The result

is that the expected sinc-squared dependence of conversionefficiency on phase-matching

is clearly seen in Fig. 4.6. For our PPKTP crystal, the width of the central peak is about

5◦C. Which is quite broad compared to the co-resonance condition which is only∼ 0.1◦C

across. This meant that meeting the co-resonance conditionwas more critical than meeting

the phase-matching temperature. Through this measurementprocess we were able to find

the optimum angle of the dispersion plate, and also the optimum operating temperature, that

gave the largest effective nonlinearity.
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Figure 4.7: The wavelengths of light emitted

from the system that was driven above OPO

threshold. The non-degeneracy increased with

increasing crystal temperature. The grey-zones

mark the limitation set by the maximum pump

power (320 mW).

OPO threshold power: The critical pump power at which optical parametric oscil-

lation (OPO) begins, is the most defining property of the OPA system. We measured it

by monitoring the power on the reflected red detector, while holding the cavity locked on

resonance using the reverse-seed. The crystal temperaturewas adjusted to bring the green

cavity on co-resonance. The pump power was increased until asignal was observed in the

red reflection detector. After the optimisation procedure outlined in the SHG section, the

OPO threshold power was typically observed to bePthr = 85 ± 5 mW. Where the uncer-

tainty in our estimate is attributed to the absolute accuracy of the independent power meter

used. This threshold power was deemed sufficiently low so that we could continue with

the harmonic entanglement experiment, i.e. there was no need to change the output coupler

for one of higher reflectivity. By knowing the threshold power, and the cavity reflectivities,

one can work backwards from the theory to obtain the effective nonlinearity. In our case

we gotǫ = 1500
√

Hz which was the value to be used later in the theoretical modelling.

An independent estimate of the OPO threshold pump power can be made using the Boyd-

Kleinman theory [Kleinmanet al. 1966]. Here, the value strongly depends on the estimate

of the waist size of the cavity eigenmode. Using the value40µm we arrived at a threshold

power of70mW assuming that the PPKTP material had the optimal poling rate. This is in

reasonable agreement with the observed value.

NDOPO above-threshold: Having found the OPO threshold power, we took the op-

portunity to study the light that was produced above this threshold. The light turned out not

to have exactly the1064 nm wavelength, but was rather produced in two beams, above and

below in wavelength, hence the term non-degenerate OPO (NDOPO).
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seed gain and pump depletion. The

input seed power was 36 mW; in-

put pump power 64 mW. The rel-

ative phase was ramped over time,

showing the exchange of energy be-

tween the two fields. The total re-
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stant at 75 ± 5 mW. Dashed lines

show the level of the reflected field

with the absence of the other input

field.

A commercial optical spectrum analyser was used to observe the wavelength of the

light emitted by the OPA cavity, when the pump power was increased above threshold. The

cavity was held on resonance using the reverse-seed. The measurements were repeated

at different phase-matching temperatures, that also ensured red-green co-resonance. The

results are plotted in Figure 4.4. One can see that below a certain temperature, the OPO

is operating degenerately at1064 nm. As the temperature is increased, the wavelengths

separate, because the phase-matching of the PPKTP is now matched for those two particular

wavelengths and also the pump field. Note the pump power had tobe increased to reach

the wider non-degeneracy, until the limits were reached which are shown as grey zones.

This test demonstrated that the OPA system was also capable of behaving as a NDOPO that

could have a non-degeneracy of up to100 nm.

OPA seed gain and pump depletion:The purpose here was to test whether a signif-

icant amount energy could be exchanged between the red and green fields via their inter-

action in the OPA cavity. This is important because one prediction from the model is that

an exchange of energy needs to occur to produce harmonic entanglement. The method was

to lock the cavity length on the red and green co-resonance. The seed power was held

constant at36mW and the pump power at64mW. The seed-pump relative phase was

then ramped over time, while monitoring the reflected power for both colours, and also the

PDH-derived error signal. The results showed a repeating pattern of seed amplification and

de-amplification that was concomitant with the pattern of pump depletion and enhancement,
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respectively; see Figure 4.8. The dashed line show the reflected seed power for when the

pump was blocked, and vice-versa the dashed line for the reflected pump power plot. The

total optical power of the reflected fields remained constantat about75mW, which meant

that 25mW was being scattered or leaked out of the cavity. The error signal showed a

zero-crossing for both amplification and de-amplification,thereby allowing us to lock the

relative phase in both regimes. The exchange of energy was significant, as the power could

be transferred almost completely from red to green, or greento red. Whichever occurred

depended only on the relative-phase.

OPO squeezing:The simplest test of the quantum noise properties of the OPA system,

was to check for squeezed light produced by driving the system in the OPO regime. The

method was to lock the cavity length onto red-green co-resonance. The reflected seed was

aligned on a balanced homodyne detector, the LO phase was ramped over time, and the

noise power was measured at a sideband frequency of7.8MHz. The homodyne detector

had a total detection efficiency of about85%. The seed was then blocked, and the pump

power fixed at81mW which was about95% of OPO threshold power. Figure 4.9 shows the

resulting squeezing and anti-squeezing as the local oscillator phase was ramped. The best

squeezing shows−4 dB, and the anti-squeezing+6dB. We also repeated the measurements

for a range of pump powers (from 10 mW to 94 mW). The trend of larger squeezing with

larger pump powers can be seen in Figure 4.10. The limitationof −4 dB squeezing is

consistent with a homodyne total detection efficiency of85% and a cavity escape efficiency

of 86%. The observation of squeezed light meant that the system passed a key test for

harmonic entanglement observations.

Conclusion: The OPA system had proved itself in terms of exhibiting the wide range of

classical behaviour expected of it (SHG, OPO, NDOPO, OPA). And also gave a first hint at

the nonclassical squeezed states of light produced by OPO, which are prerequisites for the

generation of harmonic entanglement.
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4.5 Optical Carrier Rejection

Harmonic entanglement was predicted to occur on the sidebands of bright optical fields (>

100mW) reflected from the OPA. It was not practical to use homodyne detection directly,

which requires the local oscillator (LO) to be much brighterthan the signal beam. We used

the method of optical carrier rejection (OCR), with a near-impedance-matched filter cavity,

to transmit the unwanted carrier light, and efficiently reflect the desired sidebands ready for

homodyne detection. The schematic is shown in Figure 4.11. For the filter cavity to be

successful as an optical carrier rejector, it had to meet some requirements: (1) be nearly

impedance-matched to suppress as much carrier as possible;(2) have a sufficiently narrow

bandwidth such that the sidebands are not attenuated; (3) have an excellent mode-matching

capability, i.e. be relatively astigmatism-free. The filter cavities that we built met all of

these requirements.

Construction: The cavity had a 3-mirror ring geometry with an800mm round-trip

path length and4◦ angle of incidence on the2m curved end mirror. The original design

was by K. McKenzie. We modified the end-cap that housed the PZTactuator and mirror

assembly to allow one to tilt the curved mirror and thereforeallow centering of the spatial

eigenmode. The cavity was held on resonance by a PDH error signal that was derived from

a 150 kHz dither of the end mirror. The error signal was extracted froma detector that
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Figure 4.11: Schematic of the application of optical carrier rejection, and homodyne detection for mea-

suring the quadrature amplitudes of bright light beams. Outlined in white are the servo-control electronics.

was placed in transmission (with suitable attenuation). The dither depth was set somewhere

between0.01% and 0.1% of the maximum transmitted power, with the level depending

on the amount of available light. Excellent mode-matching was achieved by performing

the alignment with the appropriate eigenmode that was emitted by the OPA cavity. For

example, we would use the OPA system as an SHG to align the green filter cavity; and

then use the OPA system in an OPA amplification regime (with gain ∼ 10), to align the red

filter-cavity. Final values for the mode-matching were typically 99.8 ± 0.1//99.9 ± 0.1%

for (red//green), which satisfy the mode-matching requirements.

Performance: The filter cavities were characterised for their gross optical properties.

The methods used here have already been described in the OPA section. The results are

summarised in Table 4.2. The measured linewidths were980 kHz for red, and370 kHz

for green. With the filter cavities locked onto resonance, the attenuation of the carrier was

up to22 dB for red and26 dB for green. This level of attenuation of the carrier would in

principle be sufficient to allow the homodyne detection of a100mW signal beam using

only a30mW local oscillator, thus satisfying the attenuation requirement.

From the data we could also create theoretical models of the filter cavities, to predict
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Units MC1G MC2G MC2R FC1G FC1R

Mode-Match. [%] 98.1±0.1 98.0±0.4 98.8±0.4 99.9±0.1 99.8±0.1
Ref.coeff. [%] 5.0±0.2 21.9±0.4 3.1±0.4 0.24±0.05 0.73±0.05

Ref.coeff.corr. [%] 3.2±0.6 20.3±0.5 1.9±0.6 0.13±0.10 0.53±0.11
Linewidth [kHz] 1010±30 1850±50 418±5 980±40 373±14

FSR [MHz] 347±10 345±10 346±7 347±10 346±7
Finesse [—] 344±10 186±10 828±19 351±9 928±31

Table 4.2: Measured properties of the mode-cleaners and filter cavities. ‘Ref.coeff.corr’ is the reflectance

coefficient of the cavity when in a locked state on the TEM00 mode, and with a correction for the measured

mode-matching.

what attenuation and phase-shift the upper and lower sidebands would experience upon

reflection from the cavity. The cavities were modelled as simple two-mirror cavities, with

the red having mirrors99.64% and99.69% (the former being the input-output coupler); and

the green99.08% and99.14%. Figure 4.6 shows that for sideband frequencies greater than

5MHz, the attenuation should be less than0.05 dB and a phase shift less than6◦. This

is small when compared to the specified AR coating reflectivity of < 0.5%, therefore the

filter cavity satisfied all three requirements for deployment in the optical carrier rejection

scheme.

Additional construction notes: Extra precautions were taken to avoid dust settling

on the mirror surfaces during construction. We assembled the cavities in one of the clean

rooms made available by Dr. Steve Madden at the Australian National University. The Invar

cavities (actually split in two halves), were de-greased using at a vapour de-greasing facility.

Before installing the mirrors, the surfaces were inspectedunder a microscope for any surface

defects or dust particles. Only a clean nitrogen gas jet was applied over the surface to

remove the dust. The two halves of the invar spacer were bolted together and sealed with

vacuum compatible epoxy. The mirrors were glued onto the invar spacer using UV-curing

adhesive, which had the advantage of allowing us to completely seal the cavity within only

a couple of hours. We believe that this procedure was necessary, because the second green

mode-cleaning cavity (MC-2G) had been assembled without these precautions. After a

period of 12 months of operation, its finesse dropped from about 350 to 186 ± 10, which

was an indication of continuing contamination/damage of the intra-cavity mirror surfaces.
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Figure 4.12: A model of the transfer functions

of light reflected from the filter cavities. The min-

imal attenuation and phase-shift experienced by

the reflected sideband fields indicate that the

cavities will perform well as an optical carrier re-

jector.

4.6 Homodyne detection

The role of the homodyne detector was to convert into an electronic signal, the quadrature

amplitudes that resided on the upper and lower sidebands that were centred around the

carrier of an optical beam. In a balanced homodyne detector,the local oscillator (LO)

serves as a phase reference and effectively amplifies the quadrature amplitudes, with the

noise on the LO itself suppressed (because the noise is common mode). The homodyne

detector should ideally have a high total detection efficiency. This relies on having good

mode overlap between the signal and LO beams, and on finding photodiodes with high

quantum efficiency. Also desirable, are photodiodes with a large bandwidth and low dark-

noise, i.e. good shot-noise clearance above dark-noise. The homodyne detector must also

demonstrate a linear noise response to the LO power.

Red homodyne detector:The LO and signal beam were incident on a beam splitter

with close to 50/50 splitting ratio (adjustable using polarisation angle). Eight degrees of

freedom of the LO were matched to those of the signal beam. These were the four degrees

of freedom for the position and direction of the beam; two forthe Gaussian beam waist

size and waist position; and two for the polarisation. Measurements of the fringe visibility

with the seed amplified by the OPA by a factor of ten (which corresponds to the OPA cavity

eigenmode), typically yielded99.0%. The light from each output port was directed onto an

InGaAs photodiode (ETX500,Epitaxxnow JDS-Uniphase) having an estimated quantum

efficiency of95 ± 2%. The photodiodes were arranged back-to-back on the circuitboard,

such that the photocurrents were directly subtracted from one another before the trans-
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impedance amplifier. The photodiodes did not have their protection windows removed. It

was possible to vary the photodiode response by about2% by tweaking the angle of the light

beam incident on the detector. This may have been the result of parasitic interference fringes

from the AR coatings of the window and/or the semiconductor layers and coatings. Care

was taken to fill the maximum amount of photodiode surface before the onset of clipping

of the beam. We noticed a problem in the experiment when the photodiode was aligned in

such a way as to retro-reflect light back into the OPA cavity. This tended to cause the lock

of the seed-pump relative phase to become unstable. We therefore selected a nearby high

response fringe that was not precisely retro-reflecting.

The first test was to check the common mode rejection (CMR) capability of the homo-

dyne detector, i.e. the suppression of intensity noise on the LO. For this, the laser noise-eater

was disengaged, and the relaxation oscillation at1MHz was observed on an electronic spec-

trum analyser. A typical value for the CMR was35 dB. The clearance of shot-noise above

dark-noise was typically15 dB, from the2 → 20MHz range, with a LO power of20mW.

The linear response of the homodyne detector was tested by measuring the response of RF

noise power (and also DC response) to an increasing LO power that was calibrated to a com-

mercial power meter. We chose an RF sideband at7.8MHz with a bandwidth of30 kHz.

The LO power was varied from zero up to12.5mW over 20 measurements. There was

no indication of nonlinearity (saturation) occurring at high powers. Nevertheless, we cau-

tiously chose to operate the homodyne detector with a LO power of 70% of the maximum

power tested.

Green homodyne detector:The green homodyne detector was built in the same way as

the red one, except that a silicon photodiode was used instead (s5973-02,Hamamatsu) that

had an estimated quantum efficiency of89 ± 5%. We found that the photodiodes reflected

8 → 10% of the incident light over a wide range of angles (0 → 15◦). We therefore installed

small concave mirrors (ROC=15mm), to retro-reflect the light back onto the photodiodes.

This boosted the detected power by a measurable7%. We saw only minor interference

effects between the forward and retro-reflected light (< 0.1%).

An array of tests were performed on the green homodyne detector. The fringe visibility
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Figure 4.13: DC response of

the green homodyne detector

with optical carrier rejection en-

gaged. An original signal beam of

30 mW was rejected by a factor

of −20 dB. The LO phase was

ramped, and the error signals for

amplitude and phase observed.

with the second-harmonic light produced by the OPA in the SHGregime (which corre-

sponds to the OPA cavity eigenmode), was typically at the99.4% level. The CMR of the

laser relaxation oscillation was typically30 dB. Clearance above dark noise was15 dB

across the range2 → 20MHz. The linearity of the RF response as a function of LO optical

power was tested from zero up to8.8mW. There was no indication of nonlinearity (satura-

tion) occurring at high powers. Nevertheless, we cautiously chose to operate the homodyne

detector with a LO power of80% of the maximum power tested.

LO phase control: The phase of the LO had to be actively controlled to measure either

the phase or amplitude quadratures. This is most important for verifying the presence of

entanglement. When measuring the elements of the correlation matrix, the quadratures must

for each sub-system (in our case colour) must be orthogonal to one another. Our method

was to control the phase using an error signal derived from the AM and PM sidebands

that were present on the seed and pump beams. These modulations were recovered in the

homodyne photodetector signals, which were then demodulated and filtered using standard

techniquies.

An example of the error signals and DC response of the homodyne detector is given

in Fig. 4.13 where the LO phase was ramped over time. The RF error signals proved to

be very stable in comparison to the DC response of the homodyne detector for frequen-

cies below the linewidth of the OCR filter cavities. This is evidence that the filter cavities

were performing their role, i.e. the sideband frequencies above the bandwidth of the filter
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# Red Trans. (each→total) [%] # Green Trans. (each→total) [%]

Dichroic Ref. s-pol. 1 99.6 — —
Dichroic Trans. p-pol — — 1 99.0

1% tap-off 1 99.0 1 99.0
HR mirror 10 99.8 → 98.0 11 99.8 → 97.8
Lens 2AR 7 99.75 → 98.3 7 99.75 → 98.3

Waveplates 2AR 5 99.5 → 97.5 4 99.5 → 98.0
FC1R in Ref. at 7.8 MHz 1 99.4 — —
FC1G in Ref. at 7.8 MHz — — 1 99.0

Beamsplitter AR 1 99.5 1 99.5
Homodyne efficiency 1 97.9 1 98.8
Photodiode efficiency 1 95 ± 2 1 89 ± 5

Total Efficiency — 85 — 80

Table 4.3: An estimate of the optical losses along the path from the OPA to the photodiodes in the

homodyne detectors. The contribution to the total loss made by each optical component is shown. Note

that the homodyne efficiency is equal to the square of the fringe visibility.

cavity were insensitive to fluctuations in de-tuning. The locking points are where the error

signal crosses the zero point. The apparent noise on the DC response was the remnant of

the dither oscillation of the OCR filter cavity (150 kHz). Note that we had the freedom to

choose the polarity of the error signal. This meant that the sign of the quadrature data was

arbitrary. The sign of the time-series quadrature data was later processed to conform to a

standard given by the so-called calibration point of input power81mW for the seed, and

9mW for the pump (locked in the regime of seed de-amplification).Prior to performing en-

tanglement measurements, the offset of the locking point was adjusted to coincide with the

appropriate maximum/minimum of the noise variance of the measured state. This ensured

the orthogonality of the quadrature being measured.

Homodyne protection system: If during a harmonic entanglement run, the filter-

cavities were to fall out of lock, then more than100mW of light would fall on the pho-

todiodes of the homodyne detector. These would quickly heatthe diodes and destroy them.

To prevent this, we constructed a shutter system in the signal beam path, that was triggered

by small auxiliary photodiodes, where a fraction of the light on the path toward each ho-

modyne detector was tapped-off from the transmission through a HR mirror (< 0.1%). A

control system with an adjustable threshold then triggereda shutter to close the signal beam.

Total detection efficiency: An estimate of the total detection efficiency of the entire

experiment is important for the purpose of getting an accurate model of the experiment.
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Figure 4.14: Spectra of the sam-

pled data for a vacuum state and

for detector dark noise. Clearance

of dark-noise above shot-noise is

15 dB.

Here we attempt to catalogue all the loss mechanisms along optical path from the OPA

cavity to the photodiode in the homodyne detector. The estimated losses from the optical

components and their surfaces are listed in Table 4.3. The total detection efficiency was

then estimated to be85 ± 4% for the red path, and80 ± 6% for the green path.

4.7 Signal processing

Independent electronic channels were built to filter and amplify the photocurrents from each

homodyne detector. Each channel could then be observed on anelectronic spectrum anal-

yser, or recorded on a separate RF mix-down circuit with digital sampler. The spectrum

analyser was used primarily for diagnostics and checking the locking points of the homo-

dyne detector (amplitude and phase). The RF mix-down and sampler were used to record

a time-series to allow the direct calculation of the correlation coefficient, and subsequent

evaluation of the correlation matrix.

Electronic channels: The photodetector circuits were built from a trans-impedance

stage whose output was connected to a DC-coupled buffer stage. The signal was filtered

between1.8MHz and10MHz. This was done to remove the modulations present at higher

frequencies that were left over from the LO phase locks. At this point onwards, one could

measure the signal either on the spectrum analyser directly, or it could be sent on for fur-

ther processing. The processing continued with a+17dB amplification stage before being

mixed down with an electronic local oscillator atΩ = 7.8MHz. The resulting signal was

low-passed into the audio band and amplified by+60dB using a low-noise audio ampli-
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sampled channel data. A vac-
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test and 99.9% confidence inter-

val. The black-outlined histogram

is from an amplitude squeezed

state, that was produced with seed

and pump power of 5 mW and

60 mW, respectively.

fier. A high-pass filter with a pole at80Hz was used to remove residual line noise (mostly

50Hz), before being sampled by a sound card in the computer. The paths for red and green

channels were kept physically separate until the sound card. A test of the cross-talk between

the two channels was made acquiring a shot-noise trace. It revealed a cross-talk (correla-

tion) of−30 dB of the level of the shot-noise level itself, which was negligible. During each

step of the measurement sequence,218 points were acquired at a sampling rate of44.1 kHz

with a 16 bit resolution. Figure 4.14 shows the resulting spectrum of thesampled data for

both a dark noise and shot noise measurement. The15 dB clearance of shot noise above

dark noise is visible. Note also, that the spectrum is essentially flat, with the exception of

the high-pass pole at80Hz, and the beginning of the anti-aliasing filter at20 kHz. It was

important to check that the sampled data was indeed Gaussiandistributed. A histogram of

a measured vacuum state is shown in Figure 4.15. A chi-squareanalysis confirmed that the

data adhered to a Gaussian distribution with a confidence level of 99.9%. Also shown is an

example of the distribution of a squeezed state.

Data analysis:For an entanglement measurement, several sets of data must be sampled.

While the entangler was operating, all four combinations ofamplitude and phase for each

colour were recorded(X+
R ,X

+
G ); (X+

R ,X
−
G ); (X−

R ,X
+
G ); (X−

R ,X
−
G ). Then the reference

for vacuum states(Xv
R,X

v
G) were recorded. These were necessary to normalise the previous

data to the vacuum state, i.e. such that a quadrature variance of 1 signifies a vacuum state.

The signal beams alone (without local oscillators) were then recorded(Xs
R,X

s
G), which
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showed the noise power of the carrier light in higher-order spatial modes. This excess

light came from pump and seed light that was not mode-matchedinto the bow-tie cavity

and the OCR filter-cavities. Given that the homodyne detector visibilities were in excess

of 99%, and the OCR was suppressing 26 dB of carrier light, it is reasonable to assume

that the excess noise was acting like a local-oscillator forhigher-order spatial modes in

the true LO beam. And since these were occupied by vacuum states, it is safe to assume

that the excess noise was independent of the entanglement itself. Indeed, there was only

very little correlation (−20 dB of the shot-noise level) between any pairs of signal beam

measurements. With both the signal and LO beams blocked, thedark noise of the homodyne

detectors was also recorded(Xd
R,X

d
G).

Each recorded measurement is therefore hypothesised to be made up of several inde-

pendent noise components that add linearly:

Xd
R = g1(d1) , Xd

G = g2(d2) (4.1)

Xv
R = g1(d1 + v1) , Xv

G = g2(d2 + v2) (4.2)

Xs
R = g1(d1 + s1) , Xs

G = g2(d2 + s2) (4.3)

X+
R = g1(d1 + s1 + p1) , X+

G = g2(d2 + s2 + p2) (4.4)

where the subscripts1 and2 refer to the red and green fields, respectively;g1 is a gain term

that depends on the gain of the electronics;d1 is the detector dark noise;v1 is the vacuum

state;s1 is the vacuum state contribution from the signal beam actingas a local oscillator for

higher order modes;p1 is the ‘plus’ or amplitude quadrature of the signal beam as scaled by

the true local oscillator. Note that prior to processing, the mean value of the entire recording

was calculated and subtracted from each set.

The data was processed in two streams: one with, and one without, corrections for the

excess noise from the optical carrier rejection technique.Because of the Gaussian statistics

involved, it was possible to simply subtract those particular contributions from the appro-
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priate averaged quantities. The formula for the corrected and uncorrected variances are:

V +
R,uncorr :=

(X+
R )2 − (Xd

R)2

(Xv
R)2 − (Xd

R)2
=

(p1)2 + (s1)2

(v1)2
(4.5)

V +
R,corr :=

(X+
R )2 − (Xs

R)2

(Xv
R)2 − (Xd

R)2
=

(p1)2

(v1)2
(4.6)

where the overbar indicates the average over all data points, and the vacuum state variance

is (v1)2 = 1. These definitions deliver the quadrature variance of the signal beam which

is free of any electronic gain terms. The correlation coefficient between the red and green

fields is given by the formula:

C++
RG :=

(X+
RX

+
G )

[

(Xv
R)2 − (Xd

R)2
]1/2[

(Xv
G)2 − (Xd

G)2
]1/2

=
(p1p2)

[

(v1)2(v2)2
]1/2

(4.7)

Due to the non-correlation of the dark noise and signal beam noise sources between the red

and green fields, this formula delivers the correlation coefficient that is free of those terms.

The correlation coefficient is also free of any electronic gain terms, because it is normalised

to the vacuum state. By applying this method to the other combinations of amplitude and

phase quadratures, it is possible to build up the elements ofthe correlation matrix which can

then be analysed according to the inseparability criterion.

4.8 Procedure

The following just serves to give an overview of the daily alignment procedure that was

necessary even before measurements of entanglement could begin.

• The laser and frequency doubler were given at least one hour to stabilise after being
switched on. The light was aligned onto the mode-cleaners, which were locked and
the offset of the locking point from resonance was nulled.

• The reverse-seed was aligned onto the OPA, and the error signal was checked for any
AM, i.e. an optical contribution to the offset of the error signal. This was removed by
adjusting the polarisation optics. The OPA was locked and the offset was nulled.

• The pump and seed beams were aligned onto the OPA cavity. The mode-matching
was measured.

• The green eigenmode of the OPA cavity was produced by lockingthe OPA and using
it as an SHG. The green was mode-matched into the filter cavity. The mode-matching
was measured.
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• The FC-1G was left to drift, while the LO was aligned to the signal beam. The
visibility was measured.

• The LO power was set, and the CMR checked on the spectrum analyser.

• A similar procedure was performed for the red eigenmode of the cavity, using the
OPA as an amplifier of a weak seed (by a factor of 10). The mode-matching into the
red filter cavity was optimised, as well as the homodyne visibility and CMR.

• The homodyne protection system was checked by increasing the LO power of each
colour until the shutters triggered at the 12 volt level. TheLO powers were returned
to the standard 10 volt level.

• The system was ready for a measurement run. Starting with thecalibration: seed
power 81 mW, pump power 9 mW, locked to de-amplification.

• The quadratures of each colour were scanned, and the LO phaselock was checked to
coincide with either the max. or min. noise power as appropriate.

• The four combinations of quadratures were measured, followed by measurements of
the vacuum, dark, and OCR excess noises.

• Then the procedure was repeated for another set of pump and seed powers.

• The data was later analysed according to the method outlinedin the previous sections.

4.9 Summary

In this chapter, I have given an account of the design, construction, and operation of an ex-

periment to measure harmonic entanglement from an OPA. The key components of the ex-

periment: the laser source, the mode-cleaning cavities, the OPA, the optical-carrier-rejection

system, and the homodyne detectors, were described and characterised in detail. The com-

ponents worked together in a sufficiently stable manner to enable the testing of the theoret-

ical predictions of the OPA model.
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Chapter 5

Harmonic Entanglement
Experiment: The GAWBS
Hypothesis

Our first attempts at measuring harmonic entanglement were plagued by a set of narrow

peaks in the phase quadrature spectra of the reflected seed and pump fields from the optical

parametric amplifier (OPA). We hypothesised that these peaks came from the phenomenon

of guided acoustic wave Brillouin scattering (GAWBS)1 that was occurring in the nonlinear

crystal. We observed that the frequency and amplitude of thenarrow peaks depended on

the crystal temperature. We extended our OPA model to accommodate this effect and found

good agreement with a set of measurements that were made overa wide range of input seed

and pump powers.

5.1 Initial observations

The aim was to test the apparatus by attempting to measure entanglement from the OPA, but

with the second-order nonlinearity effectively switched off. We did this by setting the crystal

temperature several tens of degrees Celsius above the optimal phase matching condition,

but still ensuring co-resonance for the fundamental (1064 nm, red) and second-harmonic

(532 nm, green) fields. The OPA system should then reduce to a simple doubly-resonant

cavity. From the model, we expected to see a featureless spectrum at the level of shot-noise,

for both the amplitude and phase quadratures of the red and green fields.

1Note that the acronym GAWBS can be pronounced as a word that rhymes with the word ‘gauze’

151
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Figure 5.1: Red only, amplitude and phase

spectra. The peaks visible in the phase

spectrum are absent in the amplitude. RBW

is set to 100 kHz. Dark noise is approx.

10 dB below shot noise.

2 4 6 8 10 12 14 16

-90

-88

-86

-84

-82

-80

Frequency   [MHz]

N
oi

se
 P

ow
er

   
[d

B
m

]

Green amplitude & phase noise spectra

AMPLITUDE

PHASE

VACUUM STATE REFERENCE

Figure 5.2: Green only, amplitude and

phase spectra. The phase noise peaks are

similar to the ones seen in the red spectrum.

RBW is set to 100 kHz. Dark noise is ap-

prox. 10 dB below shot noise.
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homodyne detectors while measuring the

phase quadrature. Note the excellent can-
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100 kHz. Dark noise is approx. 10 dB be-

low shot noise.



§5.1 Initial observations 153

Phase spectra:We began by setting the seed and pump powers to4mW and36mW,

respectively. The OPA cavity length was locked to co-resonance. Note that despite fact that

the crystal temperature was far away from the phase-matching condition, there was still a

very weak OPA effect, and so we locked the pump-seed relativephase to de-amplification

of the seed. Optical carrier rejection was engaged for both colours. The homodyne detec-

tors were locked, and spectra of the phase and amplitude quadratures were taken using an

electronic spectrum analyser. The red amplitude and phase spectra are shown in Figure 5.1.

The amplitude spectrum follows closely the shot-noise limit, except for the roll-up at lower

frequencies that is expected from the remnant of the laser relaxation oscillation. The most

obvious feature in the phase quadrature spectrum is the set of narrow peaks that rise several

dB above the shot-noise level. The widths of the peaks are very narrow compared to their

frequencies, they would have a quality-factor of several thousand. There also appears to be

a 1/f roll-up below8MHz. The results from the green spectra shown in Figure 5.2 are very

similar. Indeed, the frequencies of the peaks match up, and their heights are similar. This

gives the hint that perhaps the red and green phase quadratures are correlated. In Figure 5.3,

we show the sum and difference spectra. There is indeed a correlation, because in the dif-

ference, the peaks disappear entirely, leaving only a featureless noise-floor that is0.5 dB

above shot-noise. This is the excess noise that is left over from the optical-carrier-rejection

(OCR) process, and it has not been subtracted here.

Discussion: Our first thought on looking at this data was that the OPA cavity was

receiving some kind of RF interference from radio broadcasters in the shortwave band.

The PPKTP crystal essentially has the same form as a phase modulator, whose refractive

index is modulated according to an electric field that is applied across the crystal. We

proceeded to ground the copper cell that contained the crystal, and also shielded the OPA

with a grounded aluminium box. The peaks did not change. We also listened to the mixed-

down audio signals of the peaks, and their was no discernibleinformation, like speech or

music. We concluded that the effect must be optical in nature, but have a common origin

since the noise is similar for both the red and green wavelengths. An acoustic source within

the crystal seemed like a good candidate.
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Temperature dependence:If the PPKTP crystal is really the source of the phase noise

peaks produced by some acoustic mechanism, then by changingthe crystal length, the fre-

quencies of the peaks might also change. We tested this by measuring the red spectrum for

5 different temperatures, from 30 degrees to 130 degrees Celsius in 20 degree steps, and

using the same pump and seed parameters as in the previous section. We zoomed into the

region to get a factor of ten better frequency resolution (RBW=10 kHz). The results are

shown in Figure 5.4. Firstly we can see that the narrowness ofthe peaks are resolved. They

have a FWHM of16 kHz. There appears to be a trend, with the frequency shifting down as

the temperature is increased. The value varies from about−0.7 kHz to−1.2 kHz per degree

Celsius, depending on which peak is chosen. The height of thepeaks also changes at a rate

of about1 dB per100 ◦C. There is also a broad-band excess phase noise that lies between

the peaks. This noise-floor rises as a function of increasingtemperature.

Discussion:The observations that the peak frequencies and heights depend on the crys-

tal temperature is strong evidence that the cause of the phenomenon is within the crystal,

and that the noise is somehow triggered by the temperature.

Conclusion: Taking all of the evidence together: narrow peaks in the phase spectra;

the noise is correlated on red and green; the frequency and height of the peaks is dependent

on the crystal temperature. Clearly we are dealing with an optical effect within the crystal.

A likely candidate is the GAWBS mechanism, where acoustic elastic modes of the crystal

cause standing pressure waves to be setup throughout the material. The acoustic modes

are excited by the thermal energy of the crystal. The standing pressure waves modulate the

phase of the light being transmitted through the crystal. The modulation must have about the

same strength for the red and green fields, and this would account for the strong correlation

between them.

5.2 GAWBS theory

A model of GAWBS will now be introduced into the OPA model of harmonic entangle-

ment. This breaks down into first identifying the resonant acoustic modes of the PPKTP

crystal, and then finding their spatial overlap with the optical mode. The OPA model is
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Figure 5.4: A series of phase quadrature spectra of the red field have been overlayed on the same graph.

The temperature is varied from 30 deg. C to 130 deg. C (dark grey shading to light grey shading). The

shot noise reference is shaded black. The resolution bandwidth is set to 10 kHz. The dark noise (not

shown) is approximately 10 dB below the shot noise level. The frequency shift with increasing tempera-

ture for the peaks are: (A) −0.72 kHz/K; (B) −1.02 kHz/K; (C) −0.67 kHz/K; (D) −1.16 kHz/K.

then extended to include a phase noise term that is common to both the fundamental and

second-harmonic fields.

5.2.1 The concept

A bell makes a sound even before it is struck. Each of the mechanical vibrational modes of

a solid object in thermal equilibrium at temperatureT contains the energyE = kT , with

k the Boltzmann constant; as ensured by the equi-partition theorem [Reif 1985]. These

vibrations cause a strain in the material that modulates thedensity, and therefore modulates

the refractive index as a function of time. As a result, a light beam passing through the

object will acquire a phase modulation that has the same frequency as the mode of the

mechanical vibration. An equivalent interpretation is that the optical phase modulation is

made when light from the carrier is scattered into upper and lower sidebands. One quantises

the mechanical vibrations into individual phonons in the sound wave carrying energy~ωa,

and also the photons of the optical beam carrying~ωo. The photons can be scattered by the

phonons and in the process lose or absorb this amount of energy, thus creating upper and

lower optical sidebands~ω′
o = ~(ωo ± ωa), which give a phase modulation.

This phenomenon was first experimentally observed and interpreted by [Shelbyet al. 1985b]
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beam.

for laser light sent through a single-mode optical fibre. They effectively used an unbalanced

homodyne detector to obtain the phase noise spectra. The authors called it guided acous-

tic wave Brillouin scattering (GAWBS). Note that the mechanism is different to that of

stimulated Brillouin scattering (SBS) which depends on thethird-order nonlinearity of the

medium. Shelby and Poustie got excellent agreement with theory and experiment, for both

the frequencies of the excitations and their scattering strengths [Poustie 1992].

5.2.2 Analysis of GAWBS in a block

The aim is to calculate the spectrum of GAWBS peaks and their scattering efficiencies.

The analysis is similar to that of an acousto-optic modulator [Saleh and Teich 1991], and is

also similar to that of the Debye model of specific heat of a solid crystal [Reif 1985]. The

scattering efficiency calculation comes from [Shelbyet al. 1985a].

Consider an isotropic crystal lattice in the shape of a rectangular block that has length

dimensionsLx, Ly, Lz and with one corner lying at the origin of the Cartesian co-ordinate

system; see Figure 5.5. An elastic wave propagating throughthe medium is described by a
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local displacement of the lattice points from their original positions by an amount given by

the vector fieldu = uxx̂ + uyŷ + uzẑ, whose components are functions of spacex, y, z

and timet. Two kinds of elastic waves can propagate in the medium: transverse waves with

speedvt; and longitudinal waves with speedvl. Their solutions are found by solving the

wave equation:

∂2ux

∂x2
x̂ +

∂2uy

∂y2
ŷ +

∂2uz

∂z2
ẑ =

1

v2

∂2ux

∂t2
x̂ +

1

v2

∂2uy

∂t2
ŷ +

1

v2

∂2uz

∂t2
ẑ (5.1)

for a given set of boundary conditions, wherev is the speed of propagation. In our case we

assume that the surfaces of the crystal are held fixed in the y-direction (because the crystal

was held by a clamp in this axis), but they are free to move in the x- and z-directions.

Not all elastic waves will couple efficiently into a phase modulation of the optical beam that

propagates along the z-axis. The elastic waves that will do well, are those that are analogous

to an acousto-optic modulator, i.e. those which create strain or shear (in the form of plane

waves) that propagate in the direction perpendicular to thelight beam. This means that

we have to find solutions to the wave equation that are either the longitudinal plane waves

{ux = ux(x, t), uy = 0, uz = 0} and{ux = 0, uy = uy(y, t), uz = 0}; see Figure 5.5.

Or the transverse plane waves{ux = 0, uy = 0, uz = uz(x, y, t)}; see Figure 5.6. I will

start with thelongitudinal waves in the x-axis. The boundary conditions for free ends

are ∂ux(x,t)
∂x

∣
∣
∣
x=0

= 0 and ∂ux(x,t)
∂x

∣
∣
∣
x=Lx

= 0. Applying these and using the method of

separation of variables, one obtains the general solution

ux(x, t) = Am cos(Ωmt) cos(
πm

Lx
x) (5.2)

which is a standing wave. Wherem labels the mode, andAm is a constant that is propor-

tional to the amplitude of the wave. The frequency of the modedepends on the longitudinal

propagation velocityvl and is given byΩm = πvlm/Lx. Similarly, applying the free end

boundary conditions in the y-axis that are set byu(y, t)|y=0 = 0 andu(y, t)|y=Ly
= 0 we

get the standing wave

uy(y, t) = Bn cos(Ωnt) sin(
πn

Ly
y) (5.3)

And subscriptn labels this mode, withBn the amplitude. The frequency is given by
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Ωn = πvln/Ly. The transverse waveis like a two-dimensional drum mode. Applying

the boundary conditions we get

uz(x, y, t) = Cmn cos(Ωmnt) cos(
πm

Lx
x) sin(

πn

Ly
y) (5.4)

The angular frequency is given by

Ωmn = πvt

√

(m/Lx)2 + (n/Ly)
2 (5.5)

Note that it depends both onm andn, which means that compared with the longitudinal

modes, the transverse modes can have many more resonance frequencies. In the next step,

I would like to know that the amplitudes of the waves will be. Iwill use the example of the

transverse modes, but the analysis of the longitudinal modes follows the same procedure.

The energy that is contained in the transverse mode is

Emn =

∫ Lx

0
dx

∫ Ly

0
dy

∫ Lz

0
dz

1

2
ρΩ2

mn [uz(x, y, t = 0)]2 (5.6)

whereρ is the density of the material. From the equi-partition theorem, we know that

each mode must contain the energyEmn = kBT , whereT is the temperature in Kelvin,

andkB is the Boltzmann constant. Applying the equi-partition theorem is valid because the

temperatures are high enough, such that the thermal energy in the mode is much greater than

the energy of the phonons (kBT ≫ ~Ωa. This means that the amplitude of the transverse

vibrational mode is

Cmn =

(
kT

ρΩ2
mnLxLyLz

) 1

2

(5.7)

Now that we have the displacement, the next step is to find the induced strain within the

crystal because it is the strain that determines the change in refractive index. The strain is

given by the partial derivative of the mode function in the x-direction:

Szx =
∂uz

∂x
= Cmn

(
πm

Lx

)

sin

(
πm

Lx
x

)

sin

(
πn

Ly
y

)

(5.8)

and in the y-direction:

Szy =
∂uz

∂y
= −Cmn

(
πn

Ly

)

cos

(
πm

Lx
x

)

cos

(
πn

Ly
y

)

(5.9)
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The photo-elastic constants, otherwise called the strain-optic coefficients, are labelled by

Pzx andPzy. These values depend on the material, and so they must be found in the litera-

ture [Dixon 1967]. The induced change in refractive index isgiven by

∆n = n3 (PzxSzx + PzySzy) (5.10)

We then have to integrate this change across the beam profile and the beam depth, to get the

average refractive index change:

∆n = n3

∫ Lx

0
dx

∫ Ly

0
dy

∫ Lz

0
dz Eopt(x, y, z) (PzxSzx + PzySzy) (5.11)

whereEopt is the normalised Gaussian beam profile with minimum waist radiusW0

Eopt =

(
π

W (z)2

)

exp

(
x2 + y2

W 2(z)

)

(5.12)

and whereW (z) is the waist as a function of propagation in the z-axis:

W (z) = W0

[

1 + (z/z0)
2
]1/2

(5.13)

with z0 the Rayleigh range:z0 = πW 2
0 /λ. The change in phase of the light beam is then

ǫ =
2π

λ
∆n (5.14)

The final scattering efficiency due to the transverse mode, inunits of optical power per unit

propagation length, is given by

ηmn = (ǫ/2)2 (5.15)

The analysis for the longitudinal waves proceeds in a similar manner. Note that for the case

of our OPA setup, the presence of an optical cavity ensured that the light beam sampled

the same region of the crystal many times. For a finesse of60, one can assume that the

scattering efficiency is simply increased by a factor of 60. This assumption should be valid

provided that the frequency of the acoustic mode is much lessthan the linewidth of the

optical cavity.

For our case, the analytical solution for the scattering efficiency for each mode is quite

long and unenlightening. So I will proceed with a numerical example that is as similar
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Lx 1.5mm
Ly 1.5mm
Lz 10mm
ρ 2900 kg m−3

n 1.77 Average of all KTP directions

vt 5500m s−1

vl 7000m s−1

αx 11 × 10−6 K−1

αy 9 × 10−6 K−1

αz 0.6 × 10−6 K−1

Pzx 0.25 Taken from KDP, not KTP

Pzy 0.25 and then assumed isotropic

Pxx 0.25
Pyy 0.25
λ 1064 nm

W0 40µm The beam centre was offset

by 100 µm in the x-axis

Table 5.1 : GAWBS model parameters.

to the experimental OPA setup as possible. The calculation finely samples the acoustic

and optical mode functions and performs the integration numerically to get the scattering

efficiencies. The parameters for the model are shown in Table5.1. After an extensive

literature search, it was not possible to obtain values for the optic-strain for KTP material,

hence data from the structurally similar KDP was used; see [Dixon 1967]. I also assumed an

isotropic crystal both for the mechanical (speed of sound) and optical properties (refractive

indices). This was to simplify the analysis. The problem is that an anisotropic crystal allows

the conversion between longitudinal and transverse modes at the edges of the crystal. To

analyse this situation requires a treatment in chaos theory[Ellegaardet al. 1996].

In our experiment, we did not directly measure scattering efficiency, but rather we used

homodyne detection to measure the phase quadrature which was calibrated to the shot noise

of the local oscillator. The calibrated signal is then givenby

S = 1 + ηmn

√

Pλ

B~c
(5.16)

with P the optical power in the probe (not local oscillator) light beam inJ s−1. B the

detection bandwidth inHz, which determines the minimum time integration window.
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Figure 5.7: Theoretical GAWBS spectrum

of signal above shot noise. Red light

beam power 240 mW, detection bandwidth

100 kHz. Solid lines are transverse modes up

to (7, 7). Dashed lines are longitudinal modes

up to (7). The grey shaded area is corre-

sponds to the shot noise limit.

Figure 5.7 shows the calculated GAWBS spectrum. Note that (although not visible

here) the appearance of the spectrum is highly dependent on the position of the light beam

in the crystal. This is because the beam width is on the same scale as the wavelength of

the acoustic modes. I have chosen a100µm offset in the x-direction to avoid having the

optical beam stand in the nodes of the odd acoustic modes. By comparing this graph with

the experimental results in Figure 5.1, one can see a good qualitative agreement of the

frequencies of the observed and predicted modes, i.e. the spacing of the modes is roughly

0.2MHz when looking beyond10MHz. The scattering efficiencies themselves are also

within an order of magnitude of the experimentally observedvalues.

I can also build a temperature dependence into the model, where the length of the crys-

tal increases due to thermal expansion. The expansion coefficients for KTP are10−5 K−1.

Figure 5.8 shows a narrower spectrum for the same crystal, but at two different tempera-

tures that are100K apart. One can see that the resonance frequencies drop with increasing

temperature, and that the scattering efficiency increases.By comparing this graph with the

experimental results in Figure 5.4, one can see that the rateof scattering increase per Kelvin

is about the same as that observed in the experiment. But the predicted change in reso-

nance frequency per Kelvin was only about10% of the value that had been observed. This

indicates that the speed of sound for the longitudinal and transverse waves may also be a

function of the temperature.
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Figure 5.8: Theoretical GAWBS spectrum

of signal above shot noise. Red light

beam power 240 mW, detection bandwidth

100 kHz. Solid lines are transverse modes

that are labelled. The spectrum is re-

calculated at a higher temperature. The

GAWBS signal increases, and the resonance

frequencies decrease.

5.2.3 Mini-conclusion

The GAWBS model produces peaks in the phase noise spectrum. The calculations show

good qualitative agreement with the experimental results:in terms of the distribution of

resonance frequencies, and also the observed scattering efficiencies. The model is also in

agreement with the decreasing resonance frequencies and increasing phase noise, as the

temperature of the crystal is increased. Note that the modelcannot predict the observed

16 kHz linewidth of the phase noise peaks. This would depend on the dissipation of me-

chanical vibration, and the details of how the crystal is held in place.

However, one problem remains: this is to understand the observed broad-band noise

between the peaks, that was also seen to increase with increasing temperature. I will choose

to consider it as a continuum of modes that arise due to the true mechanical anisotropy of

the KTP crystal material. We can then treat this continuum ofmodes as also causing a phase

shift in the light beam. Such a broadband phase noise will be introduced in the next section

as a cavity de-tuning noise term in the OPA equations of motion.

5.3 GAWBS-extended OPA model of harmonic entanglement

I would now like to extend my original model of harmonic entanglement from OPA (see

Chapter 3) to include a term that describes the effect of guided acoustic-wave Brillouin

scattering (GAWBS). What follows is a complete but concise derivation of the OPA cavity

transfer functions that include a cavity detuning noise that is common-mode to the funda-

mental and second-harmonic fields. Consider a mode of lighta and its second-harmonic
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b, (wavelengthsλa =2λb), which interact via a nonlinearity ofǫ in a single mode cavity

with total decay ratesκa,b. The intra-cavity fields are coupled to the environment through a

mirror κa1,b1, and more weakly via other loss mechanismsκa2,b2. The system is driven by

coherent states of light with steady-state amplitudes ofαin, βin; and can be modelled by the

coupled set of equations [Drummondet al. 1980]:

˙̂a = −(κa+iδwa)â+ ǫâ†b̂+ Âin (5.17)

˙̂
b = −(κb+iδwb)b̂−

1

2
ǫâ2 + B̂in (5.18)

where input fields are denoted bŷAin =
√

2κa1αin+
∑√

2κa,jδÂj,in; B̂in =
√

2κb1βin+

∑√
2κb,jδB̂j,in with j∈{1, 2}, κa= κa1 + κa2 andκb= κb1 + κb2. The GAWBS noise

terms becomeδwa,b = (−2πc/λa,b)ξa,bδP which are driven by the dimensionless noise

term δP having variance one, but are coupled via the constantsξa and ξb. For a simi-

lar method of introducing de-tuning noise terms one can refer to [Godaet al. 2005]. We

work in the Heisenberg picture where the annihilation operators â and b̂ (and correspond-

ing creation operators) evolve, from which the amplitude and phase quadrature operators

are constructed:X+=a†+ a andX−=i(a†− a), respectively (we drop the hat notation).

The technique of linearisation is used to obtain the fluctuations(δa, δb) centered around the

classical steady-state solutions(α, β) [Drummondet al. 1980]. Fourier transforming into

the frequency domain allows one to solve for the driving fields in terms of the intra-cavity

fields. This dependence is reversed when the equations are expressed in a matrix whose

inverse is found:









δX+
a

δX−
a

δX+
b

δX−
b

δP










=










A− B C D Fa

B A+ −D C Ga

−C D E 0 Fb

−D −C 0 E Gb

0 0 0 0 1










−1 








δX+
A,in

δX−
A,in

δX+
B,in

δX−
B,in

δP ′










, (5.19)

where{δX±
a , δX

±
b } and{δX±

A,in, δX
±
B,in} are the intra-cavity and accumulated input field

quadratures, respectively; andA± = κa − iΩ ± ǫ|β| cos θβ, B = −ǫ|β| sin θβ, C =

−ǫ|α| cos θα, D = −ǫ|α| sin θα, E = κb − iΩ, Fa,b = 2i|α, β| sin θα,β(−2πc/λa,b)ξa,b,

Ga,b = 2|α, β| cos θα,β(−2πc/λa,b)ξa,b, with θα = Arg(α), θβ = Arg(β); andΩ the side-
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band frequency. The fields reflected from the resonator can bedirectly obtained using the

input-output formalism,δX±
A1,ref =

√
2κa1δX

±
a −δX±

A1,in; δX±
B1,ref =

√
2κb1δX

±
b −δX±

B1,in

[Collett and Gardiner 1984]. The resulting bi-partite Gaussian states that are produced, are

completely described by the correlation matrix of elementsCkl
mn=

1
2〈δXk

mδX
l
n+δX l

nδX
k
m〉,

arranged in the order:

M=







C++
aa C+−

aa C++
ab C+−

ab

C−+
aa C−−

aa C−+
ab C−−

ab

C++
ba C+−

ba C++
bb C+−

bb

C−+
ba C−−

ba C−+
bb C−−

bb







(5.20)

where{k, l} ∈ {+,−} and the reflected field notation has been simplified with{m,n} ∈

{A1ref 7→a,B1ref 7→ b}. We use the quantity of inseparabilityI as a measure of entangle-

ment, or the EPR criterion; see Chapter 2. For the remainder of this chapter however, I will

be concentrating on the individual phase quadrature variances themselves, and the sum and

difference of the phase quadratures.

Modelling loss after the OPA: The path from the OPA to the detection is not free of

loss. We need to modify the correlation matrixM to take into account the lossηa on the red

path (a), and the lossηb on the green path (b). This is done by consulting the beamsplitter

model (together with a vacuum mode) that was discussed in Section 2.7.2. The elements of

the correlation matrix then become:

M =







ηa C
++
aa ηa C

+−
aa

√
ηaηb C

++
ab

√
ηaηb C

+−
ab

ηa C
−+
aa ηa C

−−
aa

√
ηaηb C

−+
ab

√
ηaηb C

−−
ab√

ηaηb C
++
ba

√
ηaηbC

+−
ba ηb C

++
bb ηb C

+−
bb√

ηaηb C
−+
ba

√
ηaηbC

−−
ba ηb C

−+
bb ηb C

−−
bb







+







1 − ηa 0 0 0

0 1 − ηa 0 0

0 0 1 − ηb 0

0 0 0 1 − ηb







(5.21)

where the first matrix shows the attenuation of the initial state, and the second matrix shows

the uncorrelated noise contribution from the vacuum modes that are coupled into the red and

green optical paths. The OPA model therefore has another twofree parameters (ηa andηb)

that need to be determined from characterisation of the experiment (but not fitted). Setting

ηa,b to unity returns the condition of a lossless detection scheme. From the results collected

in Table 4.2 we found thatηa = 0.85(4) andηb = 0.80(6). The uncertainties come mainly
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from estimating the absolute efficiency (quantum efficiency) of the photodiodes used in the

homodyne detectors.

Modelling intensity noise on the pump and seed beams:When the OPA model was

introduced in Chapter 3, the input pump and seed beams were assumed to be in pure co-

herent states. Although we used optical filtering cavities,measurements of the input pump

and seed beams showed that they carried residual amplitude and phase noise. The amount

of excess noise in terms of the quadrature variances, was proportional to the seed and pump

powers. The excess noise was approximately equal for both quadratures and both the seed

and pump beams. We therefore introduced an extension for themodel, where the input

variances are given by

〈(δ±Ain,1)
2〉 = 1 + s|αin|2 (5.22)

and similarly for modeBin, 1. Note that all the other input states were assumed to be in the

uncorrelated vacuum states. The OPA model therefore has another free parameter (s) that

needs to be determined from characterisation of the experiment (but not fitted). Settings

to zero returns the condition that the seed and pump are in (pure) coherent states. From the

experiment, we found the value ofs = 10−3 per mW of optical power, which means that

the residual amplitude and phase noise only becomes significant when the OPA is driven

near to, or above, the OPO threshold power (85 mW).

5.4 Constraining the GAWBS-OPA model

The aim was to test the GAWBS-extended OPA model against a setof measurements from

the harmonic entanglement experiment. In practice, we actually avoided the GAWBS peaks

for harmonic entanglement measurements, because they weredetrimental to the strength of

the entanglement. As mentioned earlier however, there was also broad-band phase noise,

that was presumed to have a similar origin to GAWBS, and may arise from a continuum of

unresolved GAWBS peaks.

The parameters that were used in our model were determined from characterisation of

the experiment. The values for the mirror coupling rates were obtained from the finesse

and reflection coefficient measurements in Table 4.1, which gaveκa1 = 51, κa2 = 4.3,
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κb1 = 250, κb2 = 41 (in MHz). And the nonlinear interaction strength ofǫ = 1.5 kHz

was determined by working backwards from a Boyd-Kleinman model of the OPO threshold

power [Kleinmanet al. 1966].

A set of quadrature measurements of the reflected seed (1064 nm, red) and pump (532nm

green) fields from the OPA cavity was made using the harmonic entanglement setup as de-

scribed in Chapter 4. The measurements were made at the sideband frequency of 7.8 MHz.

The amplitudes of the input seed and pump fields were changed so that the total input power

to the OPA was held constant at 76% of OPO threshold power, while only their ratios were

altered. The ratio is expressed as an angleφ in the parameter space of the entanglement

maps that are presented in Chapter 3:φ = tan−1(βin/αin). I now refer to three figures

which are presented in Chapter 6. Shown in Figure 6.5 are the measurement results for

the amplitude and phase quadrature variances of the red field. Figure 6.5 also shows the

quadrature variances of the green field. The measurement have been corrected from the

excess noise artefacts that come from the optical-carrier-rejection process (see Chapter 4).

The sum and difference of the phase quadratures of the red andgreen fields is shown

in Figure 6.4. The solid and dashed lines in these graphs are the best fit of the GAWBS-

OPA model, where only two parameters have been fitted. These are the GAWBS coupling

coefficientsξa and ξb. Although the source of the noise for the red and green fields is

identical (coming from a particular acoustic mode), the coupling strength to the optical

field may be different, which is due to the different waist-sizes of the two optical fields.

The GAWBS coefficients were found by fitting the curves to the set of phase quadrature

measurements using the least-squares-method. The resultswere: ξa = 2.4×10−17, ξb =

3.2×10−17. All the model parameters are summarised in Table 5.2.

5.5 Summary

We have observed a dense set of narrow-band peaks in the phasespectra from the 1064nm

and 532nm light that is reflected from the OPA cavity. These peaks were hypothesised to

originate from the guided acoustic wave Brillouin scattering mechanism (GAWBS). We be-

lieve that the GAWBS effect is not limited to materials in theoptical fibre geometry where
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κa1 = 51 MHz Derived from measurements of cavity finesse and reflection coefficients

κa2 = 4.3 MHz ""

κb1 = 250 MHz ""

κb2 = 41 MHz ""

ǫ = 1.5 kHz Derived from the OPO threshold power

s = 0.001 per mW Derived from measurements of the input pump and seed beam variances

ηa = 0.85 Estimate of optical losses on the path from OPA to homodyne detection

ηb = 0.80 ""

Ω = 7.8 MHz The chosen sideband frequency for measuring harmonic entanglement

ξa = 2.4×10−17 From a least-squares fit with a series of phase quadrature measurements

ξb = 3.2×10−17 ""

Table 5.2: A summary of all parameters in the GAWBS-extended OPA model of harmonic entanglement.

it has been observed before. A bulk crystal of millimetre dimensions has a GAWBS spec-

trum shifted to higher frequencies, and lower amplitudes due to the reduced phonon-photon

interaction length. However, our experimental setup had a high sensitivity to the phase

quadrature that was provided by the combination of the optical carrier rejection technique

together with homodyne detection, and it was this that enabled us to observe GAWBS in

bulk PPKTP material in a rectangular prism geometry.

We developed a simple model of the GAWBS effect for our crystal geometry, and we

could find good qualitative agreement for the scattering efficiencies and also for the density

of peaks in the spectrum. Further quantitative comparison was not possible because of the

sensitivity of the scattering efficiency due to the exact transverse position of the light beam

in the crystal, and other crystal parameters (photo-elastic constants, temperature dependen-

cies etc.). We also extended our model of OPA to accommodate acavity de-tuning noise

term that simulates the GAWBS effect. This model will allow us to make a valid theory-

experiment comparison for the harmonic entanglement results that are presented in the next

chapter.
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Chapter 6

Harmonic Entanglement
Experiment: Results

In this chapter I present the main result of harmonic entanglement as measured from an

optical parametric amplifier (OPA) with an inseparability measure ofI = 0.74(1) < 1. The

behaviour of entanglement was also studied as a function of the driving fields to the OPA:

for the ratios of seed and pump power, and also the total inputpower. Good agreement with

the theoretical model was found, and the series of measurements as a whole supports the

interpretation that a significant exchange of energy between the fundamental and second-

harmonic fields is a key requirement in the production of harmonic entanglement from OPA.

The experimental results presented here stem from the collaboration between Syed As-

sad, Moritz Mehmet and myself. This work has been published under the following refer-

ence:

• Observation of Entanglement between Two Light Beams Spanning an Octave in Op-
tical Frequency,
N. B. Grosse, S. Assad, M. Mehmet, R. Schnabel, T. Symul and P.K. Lam,
Phys. Rev. Lett.100, 243601 (2008).

6.1 Main Results

We gathered measurement of the correlation matrix over manypoints in the two-dimensional

parameter space of driving field amplitudes: the seed (fundamental, 1064 nm, red) and the

pump (second-harmonic, 532 nm, green). Figure 6.1 shows symbols where the measure-

ments were made in the map of inseparability as a function of the driving fields. The pro-

cedure for each measurement was identical to that outlined in the Chapter 4. After an

extensive search for many combinations of driving fields, weobserved the best harmonic

169
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Figure 6.1: Theoretical map of entanglement across the driving fields using experimental parameters in

the model. Darker shading means stronger entanglement. Contours are labelled with the inseparability

measure. ‘Plus’ symbols mark the observation points. The arc (a) corresponds to the angle-study, and

the radial lines (b) and (c) to the power studies. The star marks the calibration point. The symbol φ shows

how the angle parameter is defined.

entanglement in the parametric de-amplification region of strong pump-enhancement with

powers at81//9 mW (see the⋆ in Figure 6.1). Where the notation// means parameters

for the red//green fields in that order. For this particular setting of driving fields, we then

completed measurements of the correlation matrix for eleven runs over many days. The en-

semble average of those matrix elements in linear scale, andtheir95% confidence intervals

based on the run-to-run variability, are presented here:

Mab=







0.71(1) 0 −0.25(1) −0.02(6)

0 2.45(12) −0.07(10) +1.42(5)

−0.25(1) −0.07(10) 0.83(2) 0

−0.02(6) +1.42(5) 0 2.56(6)






. (6.1)

The matrix revealed that both colours were amplitude squeezed withC++
aa = 0.71(1) and

C++
bb = 0.83(2). The phase quadratures showed anti-squeezing ofC−−

aa = 2.45(12) and

C−−
bb = 2.56(6), which imply that the Heisenberg uncertainty relation was satisfied well

above the minimum uncertainty bound. These apparent “mixed” state statistics are a req-

uisite of harmonic entanglement. To compute the inseparability, we performed local sym-

plectic transformationsra = 0.11(1), rb = 0.15(2) numerically to each mode such that

Mab was brought into the standard form. After applying the definition of the inseparability



§6.2 Visual representation 171

X
+

a

X
+

b

(c)

X
+

a

X
+

b

X
a

X
b

X
a

X
b

(b)

X
+

a

X
+

b

X
a

X
b

(a)

Figure 6.2: (a) Time-series quadrature data showing correlations (scaled 50%). (b) Shaded ellipses

follow a contour of the resulting probability distribution. Dashed circles mark the quantum noise limit.

The quantum correlation in amplitude is evident since the ellipse falls within the circle. (c) Dual quantum

correlations are exhibited by the same data when the correlation matrix is brought into standard form.

criterion to the correlation matrix in standard form (see Chapter 2), we found a value of

I = 0.74(1), which was less than one, and thus confirmed the presence of entanglement.

6.2 Visual representation

A visual representation of the correlations within the entangled state is shown in Figure 6.2,

where time-series quadrature data of the second-harmonic field was plotted against the data

of the fundamental field. Each dot corresponds to one sample in the recorded quadrature

data (note that only the first103 points are plotted here). The ellipse in (b) marks the stan-

dard deviation contour of the resulting joint Gaussian probability distribution. The quantum

anti-correlation in amplitude is evident as the ellipse falls within the circular boundary that

is set by a reference measurement that used vacuum states only. For the phase quadrature,

only a classical correlation can be seen, but the proximity of the phase correlations to the

classical bound is sufficient for the preservation of entanglement. This feature is symp-

tomatic of biased entanglement [Bowenet al. 2003a]. In (c) we performed local symplectic

transformations to bring the correlation matrix into standard form. This led to the ampli-

tude quadratures becoming correlated and the phase quadratures anti-correlated by an equal

amount, thereby optimally redistributing the quantum correlations over both quadratures.
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Figure 6.3: Inseparability as a function of angle parameter with the total input power held constant at

65 mW. Entanglement is achieved for values < 1. The solid line is from the theoeretical model with

GAWBS term, and the dashed line is from the model without. The measurements marked as crosses are

corrected for the noise artefacts from the OCR process. The circles are uncorrected.

6.3 Angle Study

Our aim was to drive the entangler across the whole range of processes: OPO, OPA, and

SHG. We set the total input power to65 mW (82% of OPO threshold power), and adjusted

the balance of power between seed and pump to trace out an arc in the parameter space of

Figure 6.1. Limitations of the servo-loops allowed us to only approach true OPO, SHG,

and the neutral point. The inseparability results are plotted in Figure 6.3 as a function of

polar angle in the parameter space. The raw data is shown as circles, while the crosses show

the data corrected for the excess noise from the optical carrier rejection (OCR) process.

Entanglement was observed over a broad range of angles(−0.41,+0.15)π, which covered

OPA de-amplification through SHG and almost up to the neutralpoint. The effect of pump-

enhancement in this region was strong, i.e. most of the red was converted into green. By

neutral point, we mean the region were net conversion of red to green (and vice versa)

is zero, and no squeezing nor correlation can be produced. Wealso found entanglement

in a narrow range(+0.40,+0.47)π which corresponded to OPA amplification with weak

pump-depletion. The maximum entanglement observed in the broad region (Iopt =0.76(2))

was slightly better than in the narrow region (Iopt = 0.79(2)). The error-bars plotted were
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Figure 6.4: Sum and differ-

ence variances for the ampli-

tude and phase quadratures

as a function of parameter an-

gle. The total input power is

held constant at 65mW. The

curves are from the theoreti-

cal model with GAWBS. The

circles and crosses are exper-

imental points that have been

corrected for OCR artefacts. A

correlation is seen when the

gap between sum and differ-

ence becomes large. The cor-

relation is quantum when ei-

ther the sum or difference dips

below one.

based on standard deviations that were gathered in the calibration point measurements of

Section 6.1. Two theoretical curves are plotted. The dashedline is the original OPA model,

while the solid line is the OPA model with the GAWBS phase noise. The coupling strength

of the GAWBS have been fitted to the phase quadrature observables alone, and not the

inseparability (see Section 5.4). The best agreement between theory and experiment is when

the OCR corrections have been made, and the GAWBS-extended OPA model of harmonic

entanglement is used. This indicates that GAWBS is indeed a limiting effect in measuring

harmonic entanglement from the OPA. Note however, that its effect is minimised in the

vicinity of the SHG region.

The behaviour of the sum and difference variances (SDV) are the key to understanding

what is happening inside the OPA in its role as a harmonic entangler. In Figure 6.4 we

plotted these quantities which were taken from the same dataset as the angle study in Sec-

tion 6.3. The value of the correlation coefficient (multiplied by a factor of 2) can be read

directly from the graph by noting the gap between the sum and difference measurements

(in linear scale). The nature of the correlation, whether itbe quantum or classical, depends
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Figure 6.5: Quadrature vari-

ances for each colour as a

function of parameter angle

with the total power held con-

stant at 65mW. The lines

are from the model with the

GAWBS noise term. The sym-

bols mark the observations.

The circles and crosses are

experimental points that have

been corrected for OCR arte-

facts. Squeezing is witnessed

in the grey shaded region.

on either of the variances dipping or not dipping below one, respectively. Looking quali-

tatively at the amplitude SDV, starting near OPO (−0.45π) in the de-amplification region

and moving toward the neutral point (+0.20π), one can see that the strength of the quantum

correlation gradually turned on but then off. A (classical)correlation then appeared when

moving beyond the neutral point and into the amplification region (+0.45π). This change

from a quantum to classical correlation is a consequence of the OPA making the transition

from amplitude to phase squeezing on red (and green). Whether or not a correlation is pro-

duced relies on there having been some level of pump-depletion or enhancement (which

cannot occur in below-threshold OPO). For the phase-SDV, the behaviour was similar, but

followed in reverse order. The individual quadrature variances shown in Figure 6.5 com-

plete this picture. Moving across the range of angle parameters, one can see the transition

from amplitude squeezing to phase squeezing on the red field.While the green field has

its best amplitude squeezing near the SHG point, and its bestphase squeezing also near the

OPA amplification region. The phase squeezing for both red and green in the latter region

indicate that it may be possible to suppress GAWBS phase noise here.
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Figure 6.6: A series of five measurements of the quadrature correlations taken at different values of

the angle parameter. The total input power was held constant at 65mW. The contours are drawn at the

standard deviation of the probability distribution. The dashed circles mark the quantum noise limit. The

value for the inseparability is written at the top of each box.

A series of correlation diagrams were prepared from observations along the angle study.

Figure 6.6 takes four examples that are set at the parameter angles: θ = −0.46π, θ =

−0.15π, θ = +0.15π, θ = +0.36π, andθ = +0.46π; for which the total input power was

held constant at65mW. Here the quadratures of the red field are plotted against thequadra-

tures of the green field (in the same manner as Figure 6.2). Thesymmetry of this plot is

striking. The phase quadrature follows exactly the behaviour of the amplitude quadrature,

but in the reverse order along the parameter angle. One can see a transition from ampli-

tude squeezing to phase squeezing; and also a transition from a quantum correlation in the

amplitude quadrature, to one in the phase quadrature.

6.4 Power Study

The theory predicts that increasing total input power should increase entanglement. We

tested this by ramping up the total input power from10 mW to 180 mW, which is10%

to 210% of OPO threshold power, while holding the seed:pump power ratio constant at

9:1. This ratio of seed:pump powers corresponds to the region of OPA de-amplification

(θ = −0.10π). The results for inseparability are plotted in Figure 6.7(left)(a). Initially

the entanglement strength increased (appearing lower in the graph) as a function of total

input power, but atPtotal = 100 mW the trend reversed. This is contrary to the theoret-

ical prediction which has the entanglement strength monotonically increasing (appearing



176 Harmonic Entanglement Experiment: Results

0 5 10 15
0

1

2

3

4

5

6

7

8

Root total input power   [√mW]

[L
in

ea
r]

Phase SDV: Power Study 1

Amplitude SDV: Power Study 1

Inseparability: Power Study 1 Inseparability: Power Study 2

SUM

SUM SUM

DIFFERENCE

DIFFERENCEDIFFERENCE

(c)

(b)

(a) (d)

0 5 10 15
0

1

2

3

4

5

6

7

8

Root total input power   [√mW]

[L
in

ea
r]

Phase SDV: Power Study 2

Amplitude SDV: Power Study 2

SUM

DIFFERENCE

(f)

(e)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

[li
ne

ar
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

[li
ne

ar
]

Root total input power   [√mW] Root total input power   [√mW]
0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

[L
in

ea
r]

0 5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

[L
in

ea
r]

Figure 6.7: (Left) Power Study 1: (a) Inseparability as a function of increasing pump power. The angle

parameter was held constant at θ = −0.1π which corresponds to a ratio of seed-to-pump power of 9:1

and locked to OPA de-amplification. The solid lines are inseparability from the model with the GAWBS

noise term. Symbols are measurements: crosses mark the inseparability corrected for OCR excess

noise. Circles are uncorrected. Horizontal and vertical error bar estimates are shown. (b) Sum and

difference variances for the amplitude quadrature. Measurements are corrected for OCR artefacts. (c)
Sum and difference measurements and theory for the phase quadrature. Measurements are corrected

for OCR artefacts. (Right) Power Study 2: The angle parameter was held constant at θ = −0.2π

which corresponds to a ratio of seed-to-pump power of 2:1 and locked to OPA de-amplification. Similar

explanations apply to graphs: (d), (e) and (f).
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monotonically decreasing in the graph). Lets look at the measurements of the sum and

difference variances (SDV) for answers. In Figure 6.7(left)(b) the quantum correlation in

amplitude appears to have maximised at100 mW (as the separation between the sum and

difference has maximised). But after this optimum point, both lines moved higher into the

classical regime while keeping their separation constant.This means that the correlation

coefficient for the amplitude quadrature is holding steady,while the squeezing is being de-

graded. Note that the phase sum variance climbed only slightly higher at this point. In

Figure 6.7(left)(c), the classical correlation (visible as a gap between the sum and differ-

ence) however, grew rapidly. It is primarily the result of the weakening quantum correlation

that is the cause of the weakening entanglement. We suspect that excess amplitude noise

on the seed and pump (left over from the laser source) are responsible. Other explanations

could be phase-jitter in the homodyne detector locking; or competing non-linearities (i.e.

competing non-degenerate OPO modes near the 1064 nm wavelengths). This may be rea-

sonable, considering that we are driving the OPA with a totalinput power that is over200%

of the OPO threshold power. A second power study was made at the parameter angle of

θ = −0.2π, which corresponds to a seed-to-pump power ratio of 2:1. Theresults are plot-

ted in Figure 6.7(right). Aside from the highest measured powers where control of the OPA

due to thermal effects became difficult, the inseparabilitygraph (d) and the SDV graphs (e)

& (f), support the results from the first power study.

6.5 Discussion of EPR

We know that the OPA model predicts harmonic entanglement inthe form of both the in-

separability and EPR criteria. We have seen from the experiment that the inseparability

criterion was satisfied, so what has happened to the EPR criterion? Figure 6.8 shows the

experimentally gathered points in the angle study, of the EPR criterion in the red-to-green

and green-to-red inference directions. The circles show the raw data, while the crosses are

corrected for the excess noise from the optical carrier rejection (OCR) process. Compared

with the inseparability results in Figure 6.3, the EPR results are clearly much further away

from achieving entanglement (the shaded area). Only at the extreme end of the amplifi-
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Figure 6.8: EPR entangle-

ment measure for both direc-

tions of inference is plotted as

a function of angle parame-

ter with the total input power

held constant at 65 mW. The

shaded area is the entangle-

ment region. The solid line is

from the model with GAWBS

term, and the dashed line from

the model without. The mea-

surements marked as crosses

are corrected for the noise

artefacts of the OCR process.

The circles are uncorrected.

Although close to the bound-

ary, measurements of EPR

entanglement that were clear

of the error bars were not ob-

served.

cation region, do the EPR results dip slightly into the entanglement boundary. The error

bars on the measurements however, are too large to make a claim of EPR entanglement

here. The reason that the EPR criterion drops at the OPA amplification regime, is that the

phase quadrature is de-amplified here. The phase noise arising from the GAWBS mecha-

nism is therefore naturally suppressed. The suppression however, was not sufficient to yield

a convincing demonstration of EPR entanglement.

6.6 Entanglement spectra

Harmonic entanglement as produced from an OPA is a broad-band phenomenon. How-

ever, the previous results were acquired in a narrow∆Ω = 22 kHz bandwidth that was

centred at the sideband frequency ofΩ0 = 7.8 MHz. This particular sideband frequency

was chosen because it yielded the strongest entanglement. We can see this by looking at

the spectrum of the sum of the individual sum and difference variances that are shown in

Figure 6.9. This quantity is the same as the un-optimised inseparability, and it is a sufficient

but not necessary measure of entanglement. Note that the complete matrix of correlation
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elements, and therefore the optimised inseparability could not be extracted from the spec-

trum analyser data. The power used was59//6 mW and locked to de-amplification of the

seed. The inseparability spectrum shows a clear minimum in the curve from6 → 8 MHz,

but that entanglement could still be observed across the range 4 → 16 MHz with the ex-

ception of a couple of spikes at discrete frequencies (of GAWBS origin). To understand

why there is an optimum observation frequency, we need to keep in mind that the seed and

pump fields still carry some amount of residual noise from thelaser relaxation oscillation

(at lower frequencies) because the mode-cleaners can only filter so much. And at higher

measurement frequencies, one approaches the OPA cavity linewidth, where the entangle-

ment that is produced is degraded because the effective nonlinear interaction strength at

those sideband frequencies is not as strong as for frequencies near the carrier. The effects

produce a minimum of excess noise in the vicinity of 7 MHz.

Looking at the inseparability spectrum, one may ask, where have the GAWBS peaks of

Chapter 5 gone? The answer is that at this combination of seedand pump power, the read-

out of the phase noise is equal in strength for both the fundamental and second-harmonic

fields. So that in the direct subtraction of the two quadratures, the excess phase noise van-

ishes. Note that this is not the case for the EPR measure. Figure 6.10 shows the spectrum

of EPR in the inference direction from red to green. Here, theexcess phase noise does not

naturally subtract away, because the conditional varianceis sensitive to both the correlation

strength, and the individual quadrature variances of each mode. The end result is that at no

point in the spectrum does the degree of EPR dip below one, which means that although the

reflected seed and pump fields were harmonically entangled according to the inseparability

criterion, they were not EPR entangled with one another.

6.7 Discussion of experimental limitations

After having observed some harmonic entanglement, the natural question is, how much

more can be observed? I could argue that one only needs to turnup the total driving field

power to start seeing more entanglement. The problems associated with increased driving

field powers are four-fold: (1) The seed and pump fields are no longer shot-noise limited
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because they retain some of the original laser relaxation oscillation. (2) The OPA cavity

becomes increasingly difficult to control due to thermal effects, and the problem of staying

on a particular branch of the bi-stable regions. (3) The reflected fields become more difficult

to filter using the optical carrier rejection technique, because only a slight misalignment of

the optics will cause light to be coupled into higher-order modes, and this amount of light

will dominate over the local oscillator power in the homodyne detector. (4) The GAWBS

mechanism that produces phase noise becomes more pronounced at higher powers, simply

because more light is scattered into the upper and lower sidebands. All of these problems

need to be addressed before an increase in entanglement strength can be observed at higher

powers. There is however, always room for improvement by reducing optical losses in the

experiment. These include: intra-cavity losses in the OPA,losses along the path from the

OPA to the homodyne detector, and of course improving the photodiode efficiency.

6.8 Summary

The experimental setup was capable of testing the predictions of harmonic entanglement

from the advanced OPA model. We prepared coherent seed and pump beams with powers

totalling200mW and drove our OPA with them. The reflected fields had their optical carri-

ers removed while leaving the sidebands relatively unaffected. Two independent homodyne

detectors recorded values of the quadrature amplitudes andthe correlation matrix for the

combined system was constructed. From this matrix we could show that the fundamental

and second-harmonic fields were entangled according to the inseparability criterion. The

GAWBS effect, although strong in the individual spectra, was effectively self-cancelled for

much of the available parameter angles, so that the inseparability criterion was largely im-

mune to the GAWBS effect. The strength and bias of the entanglement could be controlled

by adjusting the ratio of seed and pump powers. The agreementbetween experiment and

GAWBS-extended model was good for a wide range of observables: quadrature variances,

sum/difference variances, and inseparability.
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Chapter 7

Photon Anti-bunching from
Squeezing: Theory

There are two themes in this chapter. Firstly, is the idea that one can use homodyne detec-

tion to measure the second-order coherence of an optical field. Secondly, it has often been

over-looked that squeezed states can show anti-bunching statistics provided they are appro-

priately displaced. The statistical property of second-order coherence is not only a tool for

measuring the diameters of distant stars, but also of great value in understanding the dual

nature of light as a particle and wave phenomenon.

The material that is presented here was part of a collaboration that was initiated by

Magdalena Stobińska and Prof. Tim Ralph. Together with the experimental results (see

Chapter 8), this theoretical work has been published under the following reference:

• Measuring Photon Anti-bunching from Continuous Variable Sideband Squeezing,
N. B. Grosse, T. Symul, M. Stobińska, T. C. Ralph and P. K. Lam,
Phys. Rev. Lett.98, 153603 (2007).

7.1 Motivation and Review

Fifty years ago, Hanbury-Brown and Twiss (HBT) first demonstrated an optical intensity

interferometer [Hanbury-Brown and Twiss 1956b]. Since then, HBT interferometry has

been applied to diverse areas such as condensed matter physics [Hennyet al. 1999], atomic

physics [Yasuda and Shimizu 1996, Oliveret al. 1999], and quantum optics:

[Arecchi et al. 1966]. The HBT interferometer has also become a powerful instrument tech-

nique in astronomy, and high-energy particle physics [Hanbury-Brown and Twiss 1956a].

From a historical perspective, HBT reported correlations in the intensity measured at two

183
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locations, from light emitted by a thermal source. The effect was interpreted as being either

a manifestation of classical wave theory, or due tobunchingin the arrival time of photons.

Such correlations were generalised tonth-order by Glauber in a comprehensive quantum

theory of optical coherence [Glauber 1963], with the second-order coherenceg(2) corre-

sponding to the measurement made with a HBT interferometer.Curiously, the theory pre-

dicted that certain states of light would exhibit a photonanti-bunchingeffect, which is the

tendency for photons to arrive apart from one another. This is a non-classical phenomenon

which violates the Schwarz inequality [Walls and Milburn 1994]. Photon anti-bunching has

been observed in resonance fluorescence [Kimbleet al. 1977]; conditioned measurements

of parametrically down-converted light [Rarityet al. 1987], [Nogueiraet al. 2001]; pulsed

parametric amplification [Koashiet al. 1993], [Lu and Ou 2001]; quantum dots

[Michler et al. 2000], [Santoriet al. 2002]; and trapped single atoms/molecules

[Lounis and Moerner 2000], [Darquieet al. 2005]. Recent experiments have probed the

spatial and temporal second-order coherence functions of atomic species in Bose-Einstein-

Condensation and atom lasers [Schellekenset al. 2005], [Öttlet al. 2005]. All of these ex-

periments have relied upon the ability to detect individualparticles in a time-resolved mea-

surement.

We apply a technique for measuring the second-order coherence of optical fields, that

complements previous studies and provides a link between discrete-variable (DV) and conti-

nuous-variable (CV) quantum optics. Our scheme is based on the HBT interferometer, but

uses homodyne detection in each arm, to make CV measurementsof the quadrature am-

plitudes over a range of sideband frequencies. The second-order coherenceg(2) is then

constructed from the set of four permutations of the time-averaged correlations between the

amplitude/phase quadratures. At no point is it necessary tomake time-resolved detections of

single-photons [McAlister and Raymer 1997, Webbet al. 2006]. Homodyne detection of-

fers the advantage of high bandwidth, and excellent immunity to extraneous optical modes.

We used the scheme to measure the temporal second-order coherence functiong(2)(τ) of a

displaced squeezed state.

In contrast to most CV experiments involving squeezed light, is the realisation that
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weaker squeezed states can exhibit a greater anti-bunchingeffect. Some properties of dis-

placed squeezed states in the context of second-order coherence have been investigated

before [Koashiet al. 1993, Stoler 1974, Mahran and Satyanarayana 1986]. Such states can

exhibit behaviour ranging from photon anti-bunching to super-bunching, provided that the

state is sufficiently pure, and the squeezing weak. There hasalso been much interest in the

nonclassical properties of displaced Fock states which in addition to showing negativity in

the Wigner function, also show oscillations in the number state distribution:

[de Oliveiraet al. 1990]. An experimental observation of these properties wasmade by

[Lvovsky and Babichev 2002]. Using our modified HBT interferometer, and exploiting the

high stability and low optical loss of our experimental setup, we were able to prepare and

measure displaced squeezed states that clearly demonstrated photon anti-bunching. In ad-

dition, we investigated the immunity of second-order coherence measurements to optical

attenuation.

7.2 Ways of measuring coherence

The idea of coherence has its origins in the classical description of light. Early experiments

by Grimaldi in 1665 that aimed to prove that light was a wave, failed (see Chapter 9.3.1 in

[Hecht 2002]). In such an experiment, a beam of sunlight was allowed to pass through two

closely-spaced pinholes. It was expected that the wave nature of light would make itself ap-

parent as an alternating bright/dark pattern (fringes) dueto the constructive/deconstructive

interference of the wavefronts from each pinhole. However,no fringes were seen. This is

because the pinholes were spaced so far apart from one another that they effectively sam-

pled two independent (statistically uncorrelated) sources of light. As seen from earth, the

sun has an angular diameter of0.5◦. And as it is not a point source of light, a sample of the

light at one point in space, contains the vector sum from manyrandom emitters across the

sun’s surface. But if one wishes to sample the light from a second point that is some trans-

verse distance away from the first, then the different arrival times from the emitters of say

the western and eastern halves of the sun, will add vectorially to a create a new amplitude

and phase for the wavefront. The two pinholes of the experiment did not produce fringes,
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Figure 7.1: Two instruments for measuring the angular diameters of distant stars. (Left) Michelson’s

stellar interferometer optically interferes the light collected by two mirrors that are spaced by distance d.

The interference pattern is similar to that of a double-slit experiment. The fringe visibility gives a reading

of the first-order coherence function at the spacing d. When the fringes vanish, the angular diameter of

the star is given by 1.22λ/d where λ is the central wavelength. Note that the measurement is sensitive

to phase fluctuations that are induced by atmospheric turbulence. (Right) The stellar interferometer of

Hanbury-Brown and Twiss. The light is collected and detected at two points that are separated by distance

d. The photocurrents are multiplied and averaged, thus giving the correlation. The signal is proportional

to the second-order coherence function that is sampled at the spacing d. When the separation is very

large the correlation vanishes because of the time delay of the intensity fluctuations from sources that are

on opposite sides of the star. The measurement is insensitive to atmospheric turbulence, thereby allowing

much smaller stellar diameters to be measured. The trade-off is that the bandwidth of the photodetectors

limits the efficiency of the measurement, which means that integration times are necessarily very long.
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because the phases of the two wavefronts were not correlated(not spatially coherent), and

therefore the bright/dark fringe pattern averaged out to a uniform intensity. If the pinholes

had been separated by less than about≈ 50µm, then the interference pattern would have

appeared; see for example [Hecht 2002]. Young improved on the original experiment by

placing a single pinhole (or slit) before the double-slit. This ensured that the light sampled

by the subsequent slits was correlated in amplitude and phase, and the appearance of the

fringes established the wave nature of light [Young 1804].

7.2.1 Classical definitions and bounds

The original double-slit experiment effectively measuresthe spatialfirst-ordercoherence of

a light beam. This is defined as

g(1)(r1, t1; r2, t2) =
〈E∗(r1, t1)E(r2, t2)〉

√

〈E∗(r1, t1)E(r1, t1)〉
√

〈E∗(r2, t2)E(r2, t2)〉
(7.1)

for the spatial co-ordinatesr1 and at timet1. Michelson proposed a larger version of the

original double-slit experiment that could be used as an instrument to measure the diameters

of distant stars [Michelson and Pease 1921]. The pinholes were replaced by two planar

mirrors that were spaced several meters apart; see Figure 7.1. The starlight was reflected

from these mirror into a parabolic telescope mirror (at the Mt Wilson Observatory), which

interfered the light at the focus. A fringe pattern from the star Betelgeuse was observed. The

distance between the two planar mirrors was increased untilthe fringe pattern disappeared.

In this way, the angular diameter of Betelgeuse could be resolved, despite it being orders

of magnitude much smaller than any telescope of the day couldresolve. The difficulty in

operating the interferometer, was that atmospheric turbulence induced a randomly varying

phase shift of the light received by each planar mirror, and this had the effect of ‘washing’

the interference pattern away. Hence, measurements of moredistant/smaller stars was not

possible [Mandel and Wolf 1965].

Hanbury-Brown and Twiss thought of another way of measuringthe spatial coherence

of light. Their idea was to measure the intensity of the star light directly, and not the elec-

tric field via an interference fringe; see Figure 7.1 and the equivalent scheme in Figure 7.2.

The advantage of doing it this way, is that the relative phase(and therefore atmospheric
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turbulence) plays a lesser role in the measurement because one does not need to optically

interfere two beams on a beamsplitter. With the Hanbury-Brown–Twiss setup, one needs

only to detect the starlight on two photo-multiplier tubes that are separated by up to several

hundred metres away. The incredible result is that some kindof interference effect still takes

place. Hence this setup is often called an intensity interferometer. To create interference,

one must divide a signal and combine it again. The division occurs during the sampling

process (photo-detection), where only a small portion of the entire wavefront is selected.

The combination comes when the photocurrents of the detectors are analysed in the corre-

lator. The interference can be considered to occur not between two monochromatic optical

frequencies directly, but between their individual ‘beat-notes’ which contain a spread over

many frequencies. The beat-notes that are sampled at two different delay times, or two

different positions, will become less correlated as the delay time or position is increased.

The normalised form of the correlation becomes exactly the definition of thesecond-order

coherence:

g(2)(τ) =
〈I(t+ τ)I(t)〉

〈I(t)〉2 (7.2)

The second-order coherence is limited by classical bounds1 ≤ g(2)(0) ≤ ∞ which

also have their origins in the Schwarz inequality. Some other properties are: symmetry

g(2)(τ) = g(2)(−τ); and long time delayg(2)(τ) = 1 for τ ≫ τc; and the other limit

g(2)(τ 6= 0) ≤ g(2)(0) which says that the coherence finds its maximum at zero time

delay. There is a relationship between the first- and second-order coherence functions,

namely g(2)(τ) = 1 + |g(1)(τ)|2. This relationship was used by Hanbury-Brown and

Twiss to analyse the data from their stellar interferometerto infer the diameter of Sirius

[Hanbury-Brown and Twiss 1956a]. Their early success led them to build a larger instru-

ment at Narrabri, Australia. Over the course of several years, they measured the angular

diameters of 32 stars [Hanbury Brownet al. 1974].

7.2.2 Quantum definitions and bounds (single-mode)

When the second-order coherence function is expressed in the quantum theory of light, the

measured intensities become normally-ordered products ofthe creation and annihilation
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operators, which can be interpreted as groupings in the arrival times of photons. As we

consider just a single optical modêa, the second-order coherence is defined as the joint

probability of detecting a single photon for timet and at timet+ τ to give

g(2)(τ) =
〈â†(t+ τ)â†(t)â(t+ τ)â(t)〉

〈â†(t)â(t)〉2 (7.3)

where the coherence function has been normalised by the square of the expectation value

of the photon number. The equivalent form for classical fields can be made by replacing

the creation-annihiliation operators with complex numbers. These can then be re-ordered

in such a way, that at zero time delay, we can writeg(2)(0) = 〈I2〉/〈I〉2 with I the field

intensity. After applying the Schwarz inequality directly, we can see that the coherence

function is bounded below by one. This means that classical fields cannot display anti-

bunching which is heralded for values less than one. However, in the quantum expression,

the re-ordering of the operators is prevented, and therefore the values ofg(2)(0) can take on

values less than one.

7.2.3 The two-mode version is identical to single-mode

In practice, second-order coherence is not easily measuredin the form of Equation 7.3

because it is not readily possible to detect and resolven photons. Instead, the single mode

is coupled with another modêb on a 50:50 beamsplitter. The intensity of the light at each

output is then measured. This is the principle of the HBT interferometer.

g(2)(τ) =
〈b̂†(t+ τ)b̂(t+ τ)ĉ†(t)ĉ(t)〉

〈b̂†(t)b̂(t)〉〈ĉ†(t)ĉ(t)〉
(7.4)
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The amazing thing is that Equation 7.3 and Equation 7.4 become equivalent if the other

input to the beamsplitter is in a vacuum modev̂. The contribution from the vacuum state

does not appear in the final expression of Equation 7.4, so that one simply gets back Equa-

tion 7.3. Formally, the photon anti-bunching effect is witnessed in the coherence function

wheng(2)(0) < g(2)(τ 6= 0). On the other hand, photon bunching occurs when the opposite

inequality holds true. To make these kind of g2 (pronounced ‘gee’-‘two’) measurements,

one needs to have access to the photon number correlations, or in the limit of very weak

light beams, to correlate the arrival times of single photons in each arm. This is the most

common method of measuring g2.

7.2.4 Re-express coherence with quadrature operators

Experiments in the continuous-variable regime do not have detectors that can resolve single-

photon events, but they do use homodyne detection to be sensitive to the quadrature ampli-

tudes of the signal beam. So a connection between the discrete-variable and continuous-

variable methods needs to be found. A homodyne detector can be placed at each output

port of the 50:50 beamsplitter. The amplitudêX+ = â† + â and phaseX̂− = i(â† − â)

quadratures are measured. The dependence can be reversed, so that we get the creation

and annihilation operators in terms of the quadrature operators, â† = (X̂+ − iX̂−)/2 and

â = (X̂+ + iX̂−)/2, respectively. These forms can be plugged into Equation 7.4and

simplified to give

g(2)(τ) =

∑

i,j〈X̂i
b(t+ τ)2X̂j

c (t)2〉−2
∑

i,k〈X̂i
k(t)

2〉+4

(
∑

i〈X̂i
b(t)

2〉 − 2)(
∑

i〈X̂i
c(t)

2〉 − 2)
(7.5)

In this compact notation, summations are made over the quadrature indices,i, j = +,− and

mode label indicesk = b, c. This measurement technique is possible only because there

do not appear any cross-quadrature terms for a single mode. For example, it is not neces-

sary to measure something like the correlation between the amplitude and phase quadrature

for a single mode. The absence of such cross-terms means thateach correlation term can

be independently measured by recording the output of the homodyne detectors, and then

reconstructingg(2)(τ) according to Equation 7.5. It is therefore possible to measure the

second-order coherence function using homodyne detectionalone. Homodyne detection



§7.2 Ways of measuring coherence 191

has the advantage of being very specific in selecting the modein terms of polarisation,

spatial mode function, and wavelength. The selected mode isalways identical to the local

oscillator mode.

As an aside, I note that in principle it is possible to reconstruct the complete quantum

state in terms of the Wigner function by way of collecting a set of quadrature measurements

over a range of quadrature angles. The inverse Radon transformation of that set can then

recover the Wigner function [Smitheyet al. 1993]. From the Wigner function it is possible

to calculate many quantities of interest, for example the second-order coherence function

to check for photon anti-bunching statistics, and hence test the particulate nature of light.

But we can side-step the quantum tomographic procedure by just measuring the contribu-

tions that make up Equation 7.5. These contributions are thecorrelations of squares of the

quadrature measurements, so although the individual measurements themselves are linear,

the set of measurements are later combined in a nonlinear wayin Equation 7.5. In this

way, it is possible to extract the particulate nature of light via linear continuous-variable

measurements.

7.2.5 Quadrature-angle-averaged measurements

The previous analysis of g2 in terms of quadrature operatorsdoes not tell us how to make

the measurements themselves, but rather just how to put themtogether. The simplest in-

terpretation is that one should measure all the combinations of amplitude and quadratures

and their correlations between the two modes. This is certainly possible in an experimental

setting, however this requires one to control the relative phase of the local oscillator to the

signal beam, such that the quadrature measured is preciselyX+ or X−. But perhaps one

can get the same answer by being lazy. We could give the local oscillators a random phase

shift, and then averaged the measurements of the signal beam, so as to give a ‘quadrature-

angle-averaged’ measurement.

I start by using the expression for an arbitrary quadrature angle for modeb andc, that
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are determined by the anglesθ andφ, respectively, so that

X̂θ
b = X̂+

b cos θ + X̂−
b sin θ (7.6)

X̂φ
c = X̂+

c cosφ+ X̂−
c sinφ (7.7)

The values forθ andφ are drawn from the flat, normalised probability distributionsΘ(θ) =

1/2π andΦ(φ) = 1/2π, respectively. Note that a comparison of the phasesθ andφ are

assumed to show no correlations, hence the joint probability distribution of those two vari-

ables is separable into a productP (θ, φ) = Θ(θ)Φ(φ). Next, I would like to calculate the

quadrature-angle-averaged variance operator for modeb, which is denoted by an overbar,

and becomes:

(X̂θ
b )2 =

∫ 2π

0
dθ Θ(θ)

{

(X̂+
b )2 cos2 θ + (X̂−

b )2 sin2 θ

+(X̂+
b X̂

−
b + X̂−

b X̂
+
b ) sin θ cos θ

}

=
1

2π

∫ 2π

0
dθ

{

(X̂+
b )2 cos2 θ + (X̂−

b )2 sin2 θ

+(2(X̂
π
4

b )2 − (X̂+
b )2 − (X̂−

b )2) sin θ cos θ
}

=
1

2

[

(X̂+
b )2 + (X̂−

b )2
]

=
1

2

∑

i

(X̂i
b)

2 (7.8)

where the summation is taken over only the amplitude and phase quadraturesi ∈ {+,−}.

We can see that the quadrature-angle-averaged variance that is measured for one mode is

just the same as the average of two measurements: the amplitude and phase quadrature

variances. The result for modec is similar. I now want to analyse the (second-order)

quadrature-angle-averaged correlations between the modes b andc. We find that

(X̂θ
b )2(X̂φ

c )2 =

∫ 2π

0

∫ 2π

0
dθ dφ Θ(θ) Φ(φ) (X̂θ

b )2(X̂φ
c )2

=

{
1

2π

∫ 2π

0
dθ (X̂θ

b )2
}{

1

2π

∫ 2π

0
dφ (X̂φ

c )2
}

=
1

2

[

(X̂+
b )2(X̂+

c )2 + (X̂+
b )2(X̂−

c )2 + (X̂−
b )2(X̂+

c )2 + (X̂−
b )2(X̂−

c )2
]

=
1

2

∑

i,j

(Xi
b)

2(Xj
c )2 (7.9)

where the summation is made over the amplitude and phase quadratures, as written by the
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subscriptsi ∈ {+,−} andj ∈ {+,−}.

Finally, by way of inspection with Equation 7.5, and combining the two quadrature-

angle-averaged operators in Equation 7.8 and Equation 7.9 in the appropriate way, gives

back the second-order coherence measurement:

g(2)(0) =
〈(X̂θ

b )2(X̂φ
c )2〉 − 2〈(X̂θ

b )2〉 − 2〈(X̂φ
c )2〉 + 2

(

〈(X̂θ
b )2〉 − 1

)(

〈(X̂φ
c )2〉 − 1

) (7.10)

In principle, this quadrature-averaged scheme will produce the same result as the fixed-

quadrature scheme for measuring the second-order coherence function. The only condition

that needs to be met, is that the measurement is averaged overall angles in equal time,

i.e. over a uniform distribution of angles. This method may be more appropriate for some

applications where the relative phase of the local oscillator with the signal beam cannot be

controlled, such as when measuring light that originates from a truly thermal source.

7.3 Second-order coherence of displaced-squeezed states

Now that we have a method for measuring second-order coherence from the quadrature

amplitudes, we can start investigating sources of light that are non-classical in exactly these

observables. Squeezed light is the primary candidate, but as we will see, the displacement

of that squeezed state also has an important role to play.

7.3.1 The ‘spider’ diagram

Let me restrict the analysis for the moment to zero time delays τ = 0. It is already a well

known result that a displaced state (coherent state) gives avalue of second-order coherence

of g(2)(0) = 1. Another results is for squeezed vacuum statesg(2)(0) = 3 + 1/〈n〉, with

n the expectation value of the photon number〈n〉 = sinh(r) wherer is the squeezing pa-

rameter. The interesting theoretical result, and perhaps one that has often been overlooked

(an exception is [Mahran and Satyanarayana 1986]), is that the combination of the two pro-

cesses: a squeezed vacuum that is then displaced, can then take on an arbitrary value of

g(2)(0). I want to calculate the second-order coherence of a displaced squeezed state. It

turns out to be a simpler calculation if we work in the Heisenberg picture, which means

that we start with a mode in the vacuum state, but transform the creation and annihilation
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operators such that

D̂†(α)r̂†(r)âD̂(α)Ŝ(r) = α+ â cosh(r) − â† sinh(r) (7.11)

whereD̂(α) is the displacement operator, andŜ(r) is the squeezing operator. Note that for

no other reason than keeping the derivation simple, I restrict the displacement and squeezing

parameters to be real quantities:α ∈ ℜ andr ∈ ℜ. The second-order coherence for zero

time delay then becomes

g2(0) = 1 +
sinh2(r)

(
2α2 + cosh(2r) − 2α2 coth(r)

)

(
α2 + sinh2(r)

)2 (7.12)

The true versatility of this function can only be shown when mapping it out across the

variablesα andr. The map is shown in Plate 9 where darker colours signify photon anti-

bunching statistics, and lighter colours show bunching. Contours are drawn to give the

exact values. The horizontal axis corresponds to coherent states, while the vertical axis

corresponds to squeezed states. All other points in the graph are a combination of both pro-

cesses. Immediately we can see the symmetry in positive/negative values of the displace-

ment variable, and the asymmetry in the squeezing variable.Only if the state is amplitude

squeezed, and accompanied by at least a small displacement,will the state show photon

anti-bunching.

7.3.2 Approaches to the vacuum state ‘singularity’

The centre of the diagram in Plate 9, as given byα = r = 0 of the displaced-squeezed state,

corresponds to the vacuum state. We can see that the contour lines of various g2 values start

to crowd together as the origin is approached. Starting witha displaced-squeezed state,

it is possible to approach the vacuum state while holding anyvalue of g2 constant. This

effect is attributable to the normalisation procedure of g2as given by the denominator of

Equation 7.3, which approaches zero when the expectation value of the photon number

of the state also approaches zero. So although the degree of second-order coherence of a

vacuum state is defined, its definition is not unique and can therefore be considered to be a

singularity.
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7.3.3 Displacement controls the anti-bunching

For a given level of amplitude squeezing, the displacement appears to control the anti-

bunching behaviour. In Figure 7.3, I have plotted the second-order coherence as a function

of the displacementα. For the case ofr = 0.03 squeezing (solid line), one can vary the

degree of second-order coherence by 4 orders of magnitude; while ther = 0.003 squeezing

case (dashed line) allows a variation of 7 orders of magnitude (from anti-bunchingg(2)(0) =

10−2 to bunchingg(2)(0) = 10+5). I could of course obtain a similar kind of behaviour by

plotting g2 as a function of the squeezing parameter for a fixed displacement. But squeezed

light itself is considered a non-classical effect, and in this sense it is more interesting to see

how the displacement affects the degree of second-order coherence (from anti-bunching to

bunching) as a function of a ‘classical’ parameter like the displacement.

7.3.4 Invariance to optical loss

No optical measurement is made without introducing at leastsome optical loss. The loss

mechanism could be in the form of scattering from lenses and mirrors; poor mode-matching

in a homodyne detector; or simply from the inefficiency of thephotodiode itself. These

processes can be reduced to a simple model. The loss mechanism couples in new modes

other than the original mode of interest. These new modes areusually in the form of a

vacuum state, so that the original state, say a squeezed state, becomes mixed and tends to

approach the form of a vacuum state, as the level of optical loss is increased. This is most

undesirable, because much effort went into making the squeezed state, only for it to become
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more ‘classical’ via the loss mechanism.

It is a rather surprising fact then, that measurements of thesecond-order coherence are

immune to optical loss. Where the loss occurs in the optical path, also does not play a role.

This result can be calculated in three separate cases for losses that occur before, during, and

after the main beamsplitter. The new setup is shown in the schematic of Figure 7.4. Aside

from the original modea, there are four vacuum modesvi (wherei = {0, 1, 2, 3}) that enter

via various beamsplitters having intensity reflectivities, ηi. The amplitude reflectivities:

Ti =
√

1 − ηi andRi =
√
ηi allow a more compact description.

The transfer function of this system in the Heisenberg picture for the two modes prior

to detection,b andc, becomes

b̂ = T0T1T2â+ R1T2v̂1 + R2v̂2 (7.13)

ĉ = −T0R1T3â+ T1T3v̂1 + R3v̂3 (7.14)

There are similar expressions for the creation operators that have complex conjugated reflec-

tion coefficients. Now we choose the initial state of the system to be in the separable state

|ψ〉a|0〉v0|0〉v1|0〉v2|0〉v3. This greatly simplifies the calculation for the coherence function

because the cross-terms vanish if they contain only a singleentry of a creation or annihila-

tion operator of the vacuum modes. Likewise, terms goes to zero if they contain the mean

photon number of one of the vacuum modes. The only part that istricky, is not to forget

the contribution from the anti-normally ordered term:〈0|v̂0v̂†0|0〉 = −1. Applying all these
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rules then gives

g
(2)
loss(τ) =

before
︷︸︸︷

T 4
0

during
︷ ︸︸ ︷

(T 2
1 R2

1)

after (the beamsplitter)
︷ ︸︸ ︷

(T 2
2 T 2

3 )

(T 2
0 T 2

1 T 2
2 )

︸ ︷︷ ︸

mode b

(T 2
0 R2

1T 2
3 )

︸ ︷︷ ︸

mode c

g(2)(τ) = g(2)(τ) (7.15)

The numerator and denominator of the fraction cancel out to give the original coherence

function. But if one has not written it out explicitly, then it does not seem possible. I

have also identified which terms arise from the loss mechanism before, during, and after

the main beamsplitter. Later I will show how this works in theFock basis as the state is

optically attenuated.

7.4 Generalisations

The previous analyses of the second-order coherence have been restricted to zero time delay

(τ = 0), and also topuredisplaced squeezed states. In this section, a finite time window and

an extension tomixeddisplaced squeezed states is introduced, in order to make the analysis

more applicable to experimental considerations.

7.4.1 Arbitrary choice of the temporal window function

The full expression for the second-order coherence is a function of the time-delay. To get

this expression, one needs to go back to Equation 7.3 and repeat the derivation with a time

delayτ in modeb̂(t). The result is

g(2)(τ) =
1

(

sinh2(r) + α2
)2

{(

α2 − 1

2
[â(τ), â†(0)] sinh(2r)

)2

+
(

2 + [â(0), â†(τ)] + [â(τ), â†(0)]
)

α2 sinh2(r)

+
(

1 + [â(0), â†(τ)]2
)

sinh4(r)

}

(7.16)

The final form of the coherence function depends on the commutation relation between

the original and delayed versions of the creation/annihilation operators. The commutation

relation depends on the shape of the frequency window that isused for the measurement.
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7.4.2 Choose top-hat frequency window

Since one can only make measurements in a finite time window, one must choose a corre-

sponding frequency window function. Formally, this means that a filter selects a frequency

mode according tôa(τ) = N−1/2
∫ ∞

−∞
âωf(ω)eiτωdω wheref(ω) is the filter function and

N =
∫ ∞

−∞
f(ω)2dω is a normalisation factor. We already know the commutation relation

for the frequency creation/annihilation operators, it is given by [âω, â
†
ω′ ] = δ(ω − ω′). In

many experiments, a flat band-pass filter is chosen to isolatethe frequencies of interest. This

frequency filter, is described by a top-hat function such that f(|ω| ≤ Ω) = 1 and zero else-

where. From these, we get the commutation relations for the time-dependent operators to be

[â(0), â†(τ)] = [â(τ), â†(0)] = sinc(Ωτ). These results are substituted into Equation 7.16

to give

g(2)(τ) =
1

(

sinh2(r) + α2
)2

{(

α2 − 1

2
sinc(Ωτ) sinh(2r)

)2

+2
(

1 + sinc(Ωτ)
)

α2 sinh2(r)

+
(

1 + sinc2(Ωτ)
)

sinh4(r)

}

(7.17)

It is worth studying the behaviour of this equation. We can take three distinct cases: A

coherent state, a bunched displaced-squeezed state, and ananti-bunched displaced squeezed
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state. I choose the coherent state forα > 0 and turn off the squeezingr = 0. The equation

simplifies tog(2)(τ) = 1 for all τ . This is the expected result for a coherent state, and

we note that the form of the filter function does not play a rolehere. Next, we can choose

a bunched state, let us say that we turn off the displacementα = 0, and have a large

amount of squeezingr ≫ 1. The result is thatg(2)(0) = 3 and the function for time

delay isg(2)(τ) = 1 + 2sinc(Ωτ), which means that the time-window, in this case a sinc

function, is mapped out over the delay. In Figure 7.5 I have made a set of case studies

with a fixed squeezing parameterr = 0.03, but with varying displacements. The second-

order coherence as function of time delay is plotted for eachcase. For a large displacement,

the function is essentially flat at unity, and this is what onewould expect for a coherent

state. As the displacement is reduced however, anti-bunching appears as a dip in g2 at zero

time-delay. Reducing the displacement further brings the state into something that appears

coherent at zero time delay (g(2)(0) = 1), but for other time delays, the sinc function

behaviour is still visible. As the displacement is turned off completely, we see the bunched

state.

7.4.3 The extension to mixed Gaussian states

The previous expression can only handle the class of pure Gaussian states (displaced-

squeezed states). It is possible to generalise it for any Gaussian state that has the quadrature

variancesV +
in , V

−
in and displacement valueαin. We do however restrictαin to be real. The

subscript ‘in’ refers to an ideal measurement of the state that could be made prior to the

light entering the HBT interferometer, i.e. before the main50:50 beamsplitter. The analysis

using the top-hat frequency window shows that

g(2)(τ) = 1 + 16sinc(Ωτ)
(V +

in − 1)α2
in

(2 − V +
in − V −

in − 4α2
in)

2

+2sinc2(Ωτ)
2 + (V −

in − 2)V −
in + (V +

in − 2)V +
in

(2 − V +
in − V −

in − 4α2
in)2

. (7.18)

This expression can also handle thermal and biased thermal states. These do not have

squeezing on either the amplitude or phase quadratures, butrather haveV +
in = V −

in > 1

for the thermal state, andV +
in > 1, V −

in = 1 for the biased thermal state. There is some
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surprising behaviour in the second-order coherence function for this state when using the

top-hat frequency filter. Depending on the input parameterschosen for the biased thermal

states, it is possible to see the coherence function approach a value of zero, fornon-zero

time delays. This feels odd because one would expect only such dips of the coherence

function below unity for genuinely non-classical states oflight. However, there is no such

limitation at non-zero time delays, and one can rest assuredthat the (classical) thermal and

biased thermal states do not meet the criteria for photon anti-bunching.

7.4.4 The inferred state is important

We know that the degree of second-order coherence is independent of loss on the input

state both before and during detection in the HBT interferometer. But how does this relate

to the generalised g2 expression for arbitrary Gaussian states? The subscript ‘in’ for the

quadrature variances and displacement refers to an ideal measurement prior to entering the

HBT interferometer. What that means is that there is an entire class of Gaussian states

that all have the same value for g2. That class can be traced back to an original state that

is pure. To find the pure state, we use the propertyV +
pure = 1/V −

pure, and solve the loss

transformation equation for the lossη and for one of the variancesV +
pure. The solution is

η =
−(V +

in − 1)(V −
in − 1)

V +
in + V −

in − 2
(7.19)

V +
pure =

1 − V +
in

V −
in − 1

(7.20)

V −
pure = 1/V +

pure (7.21)

αpure =
√
ηαin (7.22)

The range of values forη have to lie within0 ≤ η ≤ 1 otherwise the resulting variances

are unphysical. The quadrature variances that will be measured after the loss are restricted

such that eitherV +
in ≤ 1 orV −

in ≤ 1. With the aim of demonstrating large anti-bunching, we

know that we need a source of weak squeezed light. However, the result from this analysis is

that we cannot cheat by starting with an initially strongly squeezed state, that we then apply

an optical loss to. The g2 measurement is sensitive to the state before all loss mechanisms.
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7.5 Intuitive interpretations in the Fock basis

We have covered much of the behaviour of second-order coherence for various cases of

displaced squeezed states. But what is missing is an intuitive explanation for that behaviour.

In the next sections I will search for explanations by relying on expansions in the Fock state

basis for various limiting cases.

7.5.1 Relationship of anti-bunching to sub-Poissonian statistics

It is well known [Loudon 2000] that the second-order coherence function at zero time delay

can be simply expressed in terms of the mean and variance of thephoton numberof a state:

g(2)(0) = 1 +
σ2

n − µn

µ2
n

(7.23)

To show an anti-bunching effect, requires that the second term become negative. This will

only happen when the photon number variance is less than the mean. This is exactly the

definition of a photon number distribution that is sub-Poissonian(σ2
n < µn). The negative

value term grows when the mean photon number approaches zero. Hence,the strongest

anti-bunching effect occurs for a state that is the most sub-Poissonian for the least number

of photons.

The Mandel factorQ gives a normalised measure for the transition from sub- to super-

Poissonian, withQ = (σ2
n−µn)/µn, where−1 ≤ Q < 0 is sub-Poissonian, and0 < Q ≤ 1

is super-Poissonian. This means thatg(2)(0) = 1 + Q/µn. The Mandel factor is easily

related to the Fano factorF = Q+ 1. Note that sub-Poissonian states are sometimes called

number-squeezed states, which should not be confused with the quadrature-squeezed states

that are referred to throughout this thesis.

For our displaced (quadrature) squeezed states, the most sub-Poissonian statistic is not

necessarily generated by the strongest squeezing. Stronger squeezing excites ever higher

even photon number states, which causes the photon number variance to increase. However,

adding a displacement has the effect of re-distributing theexcitation of the photon number

states such that the variance of the photon number approaches a minimum, which comes at

the expense of increasing the mean photon number. This is whya displacedsqueezed state
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is required to exhibit anti-bunching, and not a squeezed (vacuum) state alone.

7.5.2 An exploration of the ‘singularity’

We want to investigate the case of displaced-squeezed states that have quadrature variances

and displacements that bring them close to the vacuum state.Weakly displaced squeezed

states can be well approximated as a superposition of three Fock states:

|ψ〉 =
(

c0|0〉 + c1|1〉 + c2|2〉
)

(7.24)

wherec0,1,2 can generally be complex coefficients, but I will restrict them to be pure real

for this analysis. The second-order coherence from Equation 7.3 can be expressed in terms

of the coefficients to get

g(2)(0) =
2|c2|2

(|c1|2 + 2|c2|2)2
(7.25)

We note that the coefficient for the vacuum state does not appear explicitly, but it is hidden

within the normalisation restriction. It is important to restrict the coefficients such that the

state is normalised. This means fulfilling the condition

1 = (|c0|2 + |c1|2 + |c2|2) (7.26)

This equation defines the surface of a sphere, so it makes sense to map the g2 function over

the surface of a sphere. This is shown in Plate 10. The x-y-z coordinates are scaled by

the coefficient for each respective photon number state. Theregion of validity with weakly
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displaced squeezed states is only in the immediate vicinityaround the|0〉 ‘polar region’.

Here, the singularity becomes more pronounced, since the strong cases of bunching and

anti-bunching become more densely packed. Furthermore, contours of equal g2 value have

another interpretation. Travelling along a line of constant g2 is the same as transforming

an initial state by interfering it with a vacuum state on a beamsplitter. This is true since we

know that g2 is invariant to optical loss. We can therefore visualise the evolution of a state

that is subject to increasing loss. For example, a pure two-photon state will first migrate a

fair way toward the single-photon state, before finally plunging into the singularity at the

pole.

It is tempting to re-label the axes, such that|1〉 corresponds to a displacement,|2〉 to

squeezing, and|0〉 to a loss mechanism. This will only be valid very near to the pole, such

that for a squeezing operation, no other even numbered states are excited; and similarly

for the higher number states that would surely be excited by adisplacement operation.

With these caveats in mind, the g2 globe in Plate 10 reduces the system to the essential

components that are responsible for the g2 behaviour. For states near the singularity, it is

useful to think of the single-photon state as being solely responsible for the anti-bunching;

and the two-photon state as being responsible for the bunching. A superposition of the

single- and two-photon states (with ample vacuum component) enables us to choose any

degree of second-order coherence while approaching the singularity. These ideas can be

seen in Figure 7.6. Where Fock state expansion for the first four number states is made for

a state that has a fixed (and very weak) squeezing parameter, but as a function of increasing

displacement. Where the strongest cases of bunching and anti-bunching occur, supports the

idea that for weakly squeezed states, the single-photon state is responsible for anti-bunching,

and the two-photon state for bunching.

7.5.3 Another way to approach the ‘singularity’

Instead of making a Fock state expansion for displaced squeezed states near the singularity,

we can make a series expansion of g2 for weakly displaced squeezed states in terms of

small values ofα andr. What I am looking for is the relationship betweenα andr that

provides a constant value for g2. Looking at the map of g2 across those parameters in
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Plate 10, and looking closely near the singularity, seems tosuggest to me that the form of

the relationship is quadratic, i.e. something liker = Kα2, whereK is a constant that needs

to be determined. If I plug this form ofr into Equation 7.12, and make a series expansion

for smallα≪ 1 up to second order, then we find g2 to be

g
(2)
lim(0) = (K − 1)2 + (−2K4 + 4K3 + 2K2)α2 + f(α) (7.27)

≈ (K − 1)2 (7.28)

wheref(α) contains the terms that are higher than third-order in the expansion, and in the

last step I have assumed that the second term can be neglectedbecauseα can always be

set arbitrarily small. Solving forK then givesK = 1 ±
√

g
(2)
lim(0) and we have the simple

relation

r = α2

(

1 ±
√

g
(2)
lim(0)

)

(7.29)

which tells us how much squeezing to apply for a given displacement, such that g2 will

stay constant. For example, for the state to exhibit complete anti-bunchingg(2)
lim(0) = 0,

thenr = α2, and one is free to chooseα and make it as small as possible to approach the

singularity.

7.6 g2 as a probe for measuring scattering processes

Since g2 is invariant to optical loss, it should make an idealprobe for measuring the optical

properties of physical systems. But which properties? A static absorption would not show

up in the measurement, nor would a static change of phase. Thedegree of second-order

coherence will only change when the envelope of the wave has been altered through some

dynamic process. This occurs for example when coherent light scatters off a collection

of small particles that are suspended in a transparent solution. Each particle contributes

a small change in amplitude and phase to the original wave. And since the particles are

moving randomly under Brownian motion, the amplitude and phase of the light will fluctu-

ate over time. Therefore comparing the intensity at two vastly different times would show

less correlation than for a similar measurement that would be made at two closely spaced

time intervals. The coherence function over the time delay reveals information about the
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rate of the de-phasing of the wave, and hence about the physical system that is causing the

scattering.

A two-photon absorption process depends on the second-order coherence of the probe

beam [Loudon 2000]. The two-photon absorption process is suppressed for anti-bunched

light, and enhanced for bunched light, in comparison to a coherent state (and with all three

cases having the same mean number of photons in the beam). Perhaps these states could

be used to investigate two-photon processes in various system. I can also speculate that

anti-bunched light has the potential to improve the performance of optical coherence to-

mography, compared with the currently used sources such as LEDs.

7.7 Relationship between g2 and entanglement

I want to test the idea of whether g2 and entanglement are properties of light that are related

to each other. I will approach the problem from two directions: (1) to study the sources of

light, and (2) to examine the measurement instrument.

7.7.1 The instrument: first- and second-order correlations

There is a remarkable similarity between the schematic of anexperiment to measure anti-

bunching using homodyne detectors, and an experiment to measure biased entanglement

from a single squeezed state. For the biased entanglement experiments, a squeezed light

source is sent onto a 50:50 beamsplitter to mix it with a vacuum state. The two output beams

are then received by two homodyne detectors. The setup for measuring anti-bunching in the

second-order coherence of a state likewise begins by mixingthe input state (a displaced-

squeezed state) on a 50:50 beamsplitter with a vacuum state,and the output light is likewise

received by two homodyne detectors. The setups for the two experiments are identical.

The difference is how the quadrature information is processed to yield either the degree of

second-order coherence, or the inseparability measure.

The difference in the data processing for each experiment, can be summarised in the

first- and second-order correlation matrices. For an entanglement measurement, we only

need access to the elements of the first-order matrix. The elements of this matrix are for
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example

C+−
ab = 〈δX̂+

a δX̂
−
b 〉 = 〈X̂+

a X̂
−
b 〉 − 〈X̂+

a 〉〈X̂−
b 〉 (7.30)

And likewise for the other combinations of the superscripts+,− and subscriptsa, b. From

these elements it is possible to extract the inseparabilitycriterion for entanglement (see

Section 2.9.3). We can compare this situation with the second-order correlation matrix

which is made up of the elements:

D+−
ab = 〈(X̂+

a )2(X̂−
b )2〉 (7.31)

It is these elements that are used to re-construct the second-order coherence function accord-

ing to Equation 7.5. Unlike the first-order correlation elements, the second-order correlation

elements do not have their mean values subtracted. They alsolack the positive/negative in-

formation, as this is erased when the square of the quadrature amplitudes is taken. However,

with the assurance of the similarity of the two experiments (except for the data processing),

we can now look for similarities in the states of light themselves.

7.7.2 The source: anti-bunching vs. entanglement

Entanglement is a two-mode phenomenon, whereas second-order coherence is the property

of a single-mode. To make a comparison, I need to consider second-order coherence as

being measured using a HBT interferometer, with two detectors, which transform the anti-

bunched state into a two-mode correlation experiment. So from now on, when I refer to

the analysis of anti-bunching as an entanglement, what I really mean is an anti-bunched

single mode state that has been transformed into two modes via a 50/50 beamsplitter. Let us

choose the extreme anti-bunched case of a super-position ofa single photon with vacuum

state|ψin〉a ≈ (|0〉a + ζ|1〉a), whereζ ≪ 1. This could have been prepared by the method

of weak squeezing and weak displacements. The state is then coupled with a vacuum state

on a 50:50 beamsplitter. The entangled state on modesb andc, will look like

|ψout〉 ≈ |0〉b|0〉c + ζ|1〉b|0〉c + ζ|0〉b|1〉c
︸ ︷︷ ︸

detectable

(7.32)
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where I am ignoring any probability amplitudes or normalisations. The underbrace shows

what components can be measured using a pair of conventionalsingle-photon counters. This

component is one of the Bell states, which is a maximally entangled state in the Fock basis.

However, if we look at the quadrature amplitudes of this state, it is quite unremarkable.

The Wigner function would look mostly like the two-dimensional Gaussian distribution of a

vacuum state, but the single-photon state component will cause the distribution to be slightly

broadened. As such, the quadrature variances for phase and amplitude as measured on each

output of the beamsplitter, give values that are greater than one. Correlation measurements

made between the two outputs would show only a slight EPR entanglement effect with the

degree of EPR being only slightly less than unity (see Chapter 2), nevertheless the two-

mode state still shows entanglement. The exact value of the degree of EPR depends on

the chosen value ofζ. Note that the inseparability criterion cannot be applied to this state

because it has a non-Gaussian Wigner function.

Let us look at the opposite case by starting with a strongly squeezed state that has an

appropriate displacement, such that it gives the best anti-bunching statistic possible for the

given squeezing factor. The solution for the displacementα that shows the minimum g2

value, when fed with the squeezing parameterr is

α =

√

exp(r) sinh(2r)
√

2 cosh(r) − 2 sinh(r)
(7.33)

For example, givenr = 3 we getα = 202. Note that this state has a degree of second-

order coherence ofg(2)(0) = 0.999988 which is only very weakly anti-bunched. An ex-

pansion in the Fock basis, before the beamsplitter, revealsalmost a complete absence of

the single-photon component, which can be considered responsible for the anti-bunching

effect. Examining the state after the beamsplitter, reveals a highly mixed state, but one

that contains only a minute component of the pure Bell state.From the discrete-variable

point of view, this state is not very interesting because it is only weakly anti-bunched, and

practically useless for performing Bell tests of hidden variables. On the other hand, the

continuous-variable experimentalist who has access to thequadrature amplitudes of the two

modes, finds very strong correlations between them. For thisparticular numerical example,
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Figure 7.7: A squeezed state

is given a displacement that opti-

mises the anti-bunching effect. The

second-order coherence is plotted

as a function of the squeezing

parameter. The same state is

sent through a 50/50 beamsplit-

ter. The resulting biased entan-

glement is confirmed by the insep-

arability criterion. Notice how the
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for weak squeezing, compared with
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the measured EPR would beε = 0.00991, which is very close to zero, and is considered to

be a very strong level of entanglement.

We have seen two extreme examples for which the anti-bunching and entanglement

appear to be disparate. However, I can show that one propertycannot appear without the

presence of the other, albeit in a very weak degree. I restrict the analysis to the class of

pure displaced-squeezed states, so that we can already use the expression for second-order

coherence in Equation 7.12. I will assume that the displacementα is made a function of

the squeezing parameterr, such that the degree of second-order coherence is minimised.

Hence we have only one free parameter,r. The expression for the optimised second-order

coherence of this state is

g(2)(0) = 1 − 2/ [exp(4r) + 2 exp(2r) − 1)] (7.34)

The state is then sent through the 50:50 beamsplitter where it couples with a vacuum mode,

such that two new modes are created. The two-mode entangled state that is created, is

Gaussian, and hence we can use the inseparability criterionto check for the presence of

entanglement. The expression for inseparability as a function of squeezing parameter is

I =

{ √
Vmin , Vmin < 1

1 , Vmin ≥ 1

Where the minimum of either the phase or amplitude quadrature variance is chosen:Vmin =

min{V +, V −}. Plotting g2 and inseparability together in Figure 7.7 we can see that both
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entanglement and anti-bunching is witnessed for all valuesof r. We can extend the analysis

to mixed states by letting the initial state first pass through an optical loss mechanism, which

couples in another vacuum mode. For g2 we know that the resultis unchanged, however, for

entanglement, the degree of inseparability approaches unity in the limit of complete loss.

But however much loss we apply, there is still some entanglement remaining. A whole class

of mixed Gaussian states can be generated in this way, but they are limited byV + ≤ 1 and

V − ≥ 1 (or the other way round). We can conclude that for an initial state that is Gaussian,

but mixed, having arbitraryV + 6= V −, that anti-bunching and entanglement are properties

that always occur together.

What about the general case? If the initial state is Gaussian, but not quadrature squeezed,

then there can not be any entanglement produced after the beamsplitter. And because we

also know that such a state cannot exhibit anti-bunching, weknow that the absence of anti-

bunching and the absence of an equivalent entanglement go hand in hand.

The conclusion is that anti-bunching and quadrature entanglement are related, but take

their place at opposite ends in the limits of small and large mean photon numbers, respec-

tively. We can say, that for every two-mode Gaussian entangled state there is an associated

photon anti-bunched state. Or we can say the converse: everyGaussian anti-bunched state

will create entanglement when it is sent onto a 50:50 beamsplitter and coupled with a vac-

uum state.

7.8 Summary

The intensity interferometer of Hanbury-Brown and Twiss can be adapted so as to work

using homodyne detection rather than detectors that are sensitive to single-photon counts.

The homodyne version has the advantage of being only sensitive to an input mode that is

identical to the local oscillator mode: in terms of wavelength, transverse spatial function,

and polarisation. The setup is ideal for measuring the coherence of displaced squeezed states

of light. These states were characterised for their bunching and anti-bunching behaviour.

The behaviour was interpreted using an expansion in the Fockbasis, where only the first

three members: vacuum, single- and two-photon number states, were needed to explain
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their behaviour in the second-order coherence. The theoretical results that were gained

here, lend themselves very well to an experimental test. Such an experiment is presented in

the next chapter.



Chapter 8

Photon Anti-bunching from
Squeezing: Experiment

This chapter details an experiment that was conducted to test the two main hypotheses that

were proposed in the previous chapter: (1) Second-order coherence can be measured using

homodyne detection. (2) Displaced squeezed states can exhibit photon anti-bunching statis-

tics. The construction and operation of the experiment was acollaborative effort between

Dr. Thomas Symul and myself. The results showed good agreement with the theoretical

predictions, and thereby provided support for the main hypotheses.

Together with the theoretical work already discussed in Chapter 7, the experimental

results that are presented here have been published under the following reference:

• Measuring Photon Anti-bunching from Continuous Variable Sideband Squeezing,
N. B. Grosse, T. Symul, M. Stobińska, T. C. Ralph and P. K. Lam,
Phys. Rev. Lett.98, 153603 (2007).

8.1 Overall design considerations

The layout of the experiment can be divided into two parts: preparation of the displaced-

squeezed state, and detection using the homodyne version ofthe HBT interferometer; see

Figure 8.1. The source of squeezed light in the experiment was an optical parametric am-

plifier (OPA). The displacement of the squeezed state was made using the interference with

an auxiliary amplitude modulated light beam.

The main challenge in this experiment was subtle. Usually, one seeks to maximise the

strength of a squeezed light source, however, the best anti-bunching effect was predicted to

occur for the weakest squeezing. Since the source of squeezed light is based on an OPA,

211
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Figure 8.1: Schematic of the experimental setup. OPA optical parametric amplifier, λ/2 half-wave plate,

PBS polarising beam-splitter, x:y beamsplitter with transmission x, H1/H2 homodyne detectors, AM am-

plitude modulator, ω function generator, WNG white noise generator, ⊗ mixer, LP low pass filter.

then this would not normally present a challenge to the experimentalist. This is because one

only needs to reduce the pump power to just a fraction of a percent of the OPO threshold

power, in order to get very weak (and pure) squeezed light. The main problem associated

with doing this, is that one loses the signal-to-noise ratio(SNR) of the error signals that are

required to control the phases of the interferometer in the experiment. Without the control,

the homodyne detectors would not measure precisely the amplitude or phase quadratures,

and an accurate reconstruction of the second-order coherence function would not be pos-

sible. The conclusion was to find a compromise between havingthe OPA operate at the

lowest pump power that still enabled an acceptable level of stability in the servo-control

loops. Other considerations were to use homodyne detectorsthat had a good clearance of

shot noise above dark noise. This allows one to acquire a goodSNR for measurements of

the quadrature amplitudes and their second-order correlations.

8.2 Experimental setup

The general experimental techniques were very similar to those described in Chapter 4 on

the harmonic entanglement experiment. A major part of the experiment had been con-

structed by W. P. Bowen and R. Schnabel. They set up the laser and its stabilisation, and

the second harmonic generator that pumped the OPA that generated the squeezed light.

This setup can be considered as a facility for squeezed light. It is described in detail in
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Figure 8.2: A detail of the laser source and the second-harmonic generator (SHG). The laser frequency

was held onto the mode-cleaner resonance using tilt-locking, where the error signal was derived from

the subtraction of a two-element photodiode. The mode-cleaner provided a TEM00 mode, and also low-

pass frequency filtered the light to obtain a shot-noise limited beam above 6 MHz. The SHG was held

on resonance using an RF dither-locking technique. The SHG conversion efficiency was maximised by

adjusting the phase matching temperature.

[Bowenet al. 2002]. The second-order coherence experiment can be considered as an ap-

plication of the squeezed light source. The off-line displacement to the squeezed light

source, the dual homodyne detectors, the extra servo-control loops, and together with the

data acquisition system, were built, aligned and operated by Dr. T. Symul and myself.

8.2.1 Preparation of laser light

The experiment was built using all free-space optics that were mounted on an actively

damped bench. The source of light for the entire experiment was a Nd:YAG laser oper-

ating at 1064 nm and producing 1.5 W of continuous-wave light. The linewidth of the laser

was specified by the manufacturer (Innolight) to be 1 kHz. A major fraction of the light

was sent to a second-harmonic generator which doubled the frequency to produce about

600 mW of 532 nm light; see Figure 8.2. The 532 nm light was usedto pump an OPA. The

remaining 1064 nm light was filtered by transmitting it through an optical resonator that
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had a linewidth of several hundred kHz. This produced a cleanTEM00 mode and also pro-

vided some filtering of the laser relaxation oscillation. Light from this beam was tapped off

to provide the seed beam, displacement beam, and the local oscillators for the homodyne

detectors.

8.2.2 The squeezed light source

The OPA was based on aχ(2) nonlinear crystal of the materialLiNbO3 doped with 7%

MgO. One end of the crystal was cut and polished to a convex shape and coated for a high

reflectivity (HR) for 532 nm and 1064 nm. The other end was polished flat and was anti-

reflection coated for both wavelengths; see Figure 8.3. A stable resonator geometry was

formed by the alignment of an external concave mirror (the ‘coupling mirror’), having an

intensity reflectivity of 94% at 1064 nm and less than 5% for 532 nm. A ‘seed’ beam of

1064 nm was mode-matched into the 35 micron waist of the resonator through the convex

end of the crystal. From the reflected light, a Pound-Drever-Hall type error signal was

extracted, which was used to control the round-trip opticalpath length of the resonator, by

way of PZT actuation of the coupling mirror position.

The 532 nm pump beam was mode-matched into the resonator through the coupling

mirror. The phase of the pump relative to the seed was controlled via an external PZT ac-

tuated mirror. Monitoring the seed beam that was transmitted through the cavity, showed

alternating amplification and de-amplification when the phase of the pump was scanned.

The relative phase of the seed and pump was locked using a dither lock from a phase mod-

ulation on the pump beam. This was measured by using the reflected seed beam from the

OPA cavity. The gain of the OPA was maximised by tuning the phase-matching condition

of the nonlinear crystal, which was adjusted by an servo-control of the temperature, to a

precision of several tens of milli-Kelvin.

The pump power could be set to give a de-amplification factor of the seed beam (mea-

sured in transmission) ranging from 0.9 to 0.5. The resulting beam of light had an optical

power of∼ 5µW. Measurement of the quadrature amplitudes using a homodynedetector

revealed that the light was amplitude squeezed over a range of sideband frequencies: from

3 MHz up to the OPA cavity linewidth of 15 MHz. The level of squeezing was optimum at
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Figure 8.3: A detailed schematic of the generation of the displaced-squeezed beam. The source of

squeezed light was based on an OPA that de-amplified the seed beam. The displacement was created

‘off-line’ by interfering the squeezed beam with an auxiliary light beam that was given amplitude modula-

tion sidebands.

the sideband frequency of 6 MHz, where the level of squeezingcould be adjusted via the

pump power, to lie in the range ofV +
in = 0.89 to V +

in = 0.55, with values of the purity of

the state(V +
in V

−
in ) ranging from 1.005 to 1.18, respectively.

8.2.3 Preparing the displacement

An auxiliary beam was prepared with an amplitude modulationusing a conventional am-

plitude modulator. This beam, the displacement beam, was interfered with the squeezed

beam on an asymmetric 98:2 beamsplitter; see Figure 8.3. Thesqueezed beam was trans-

mitted through the beamsplitter with 98% efficiency. The relative phase of the displaced

and squeezed beams was actively controlled, such that theircoherent amplitudes were in

phase, and the angle of the squeezing ellipse remained in theamplitude quadrature. The

amplitude modulator could be driven with either a sinusoidal voltage source at 6 MHz, or

with a broadband Gaussian noise source. The former gave a displacement in the amplitude

quadrature at the 6 MHz sideband frequency, and the latter simulated a biased thermal state.
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The state was biased because the phase quadrature was not randomly displaced. The optical

power in the displaced beam was chosen, such that it nearly matched the optical power in

the squeezed beam, after reflection from the 98% beamsplitter. This reduced the optical

power in the squeezed beam to approximately1µW.

8.2.4 Intensity interferometer using homodyne detection

The displaced-squeezed state was mixed with a vacuum state on a 50:50 beamsplitter; see

Figure 8.4. The light from each output port of the beamsplitter was received by two indepen-

dent homodyne detectors. Each homodyne detector consistedof a 50:50 beamsplitter, on

which the displaced-squeezed beam was mode-matched with a local-oscillator (LO) beam

to a fringe visibility of 96%. The ratio of optical power in the LO compared with the signal

beam was 1000:1. On each output arm of the beamsplitter, the light was focussed down to

fill the area of the photodiode (ETX500). The total quantum efficiency of the homodyne

detector was estimated to be 86%. The photocurrents from thetwo photodiodes were sub-

tracted from one another to give a signal that was proportional to the quadrature amplitudes

of the signal beam. The quadrature angle was determined by the relative phase of the LO

with the signal beam. This was actively controlled by adjusting the optical path length of the

LO. An error signal to lock to the phase quadrature was obtained by nulling the difference

of the low-pass filtered (DC to 20 kHz) photocurrents. The lock to the amplitude quadra-

ture was accomplished by demodulating the phase modulationthat was left over from the

PDH locking of the OPA cavity length. The design of the secondhomodyne detector was

identical.

8.2.5 Signal processing

The electronic signals from each homodyne detector were band-passed and amplified, mixed-

down at 6 MHz, and low pass filtered with an anti-aliasing filter at 100 kHz; see Figure 8.4.

A digital-to-analogue converter then over-sampled the signal at a rate of 240 kS/s and

recorded the data as a time series on the computer. The next stage was to apply a dig-

ital top-hat filter with a cut-off at 120 kS/s. This was to ensure a flat power spectrum,

because it is this filter shape that later determined the formof the g(2)(τ) function. Next,
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Figure 8.4: A detailed schematic of the HBT interferometer that has been modified for homodyne de-

tection. The local-oscillators were interfered with the ‘signal’ beams which came from the main 50:50

beamsplitter (BS) that split the displaced-squeezed state. The phases of the local oscillators were con-

trolled such that the homodyne detector was sensitive to either the amplitude or phase quadrature. The

resulting signals were mixed-down at a frequency of 6 MHz, before being digitally sampled.
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the variances and correlation coefficients of the four permutations of amplitude and phase

quadrature measurements were calculated from≈ 106 data points that were acquired over

a total of 10 successive runs. The uncertainty in each measurement, defined at the 68%

confidence interval, was calculated using the usual statistical methods of error analysis; see

for example [Skoog 1985].

8.2.6 Experimental procedure

The experiment was done according to a strict procedure of alignment and characterisation

of the mode-matching or visibility of the beam paths, followed by the data acquisition. The

steps in the procedure are given here:

• Begin the alignment procedure.Mode-match the 1064 nm laser light into the SHG
and mode-cleaner. Lock laser frequency to mode-cleaner resonance, and lock SHG
cavity length to laser frequency.

• Maximise the 532 nm power output of the SHG by adjusting the phase-matching
temperature of the SHG crystal.

• Align the seed beam into the OPA cavity. Check that the lock-point is centred at the
cavity resonance.

• Align the 532 nm pump to the OPA by scanning the phase of the pump and maximis-
ing the gain of the seed as observed in transmission. Check that the lock is stable for
de-amplification.

• Mode-match each LO with the squeezed beam. Check fringe visibility. Mode-match
the off-line displaced beam (squeezed beam blocked) with each LO. Check fringe
visibility.

• Null the (DC derived) phase quadrature lock of the homodyne detector by making it
immune to intensity fluctuations. Null the (RF derived) amplitude quadrature lock of
the homodyne detector.

• Use the homodyne detector to check that the modulation on thedisplacement beam
is a pure amplitude modulation.

• Choose the level of squeezing via the pump power, and the depth of modulation on the
displacement beam. Lock all loops in order: OPA cavity, pumpphase, displacement
beam phase.

• Begin the measurement sequence.Lock to amplitude-amplitude quadratures on the
two homodyne detectors, record data. Repeat for other quadrature permutations. Take
shot noise measurements before acquiring each member of thepermutation, and take
a dark noise measurement at the conclusion of the run.

• Choose another set of squeezing and displacement settings.Repeat the measurement
sequence.
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8.2.7 Variable experimental parameters

There was a set of experimental variables that we could choose in a controlled manner. We

were free to adjust the amount of displacement or broadband noise that was added to the

squeezed beam. The squeezing strength and purity were linked together by the intra-cavity

loss and seed-coupling mechanism of the OPA. Some control however, was possible by

independently varying the pump and seed powers that were going into the OPA. Additional

optical loss could also be introduced to the displaced-squeezed state prior to entering the

HBT interferometer. Finally, the electronic signals of each homodyne detector could be

given a time delay with respect to one another: both before and after the digital sampling.

8.3 Experimental results

Photon anti-bunching statistics from a displaced-squeezed state were confirmed by the ex-

perimental results. Studies were also made for coherent states, and biased thermal states.

8.3.1 Coherence as a function of time delay

The definition of photon anti-bunching is not justg(2)(0) < 1 alone, but one also needs to

show thatg(2)(τ) > g(2)(0) for all τ 6= 0. Note that for stationary light sources, where

the statistical properties remain constant over time, one is guaranteed thatg(2)(τ) → 1 as

τ → ∞. To calculate the coherence over all time is not reasonable,so we tested it over a

range of ten units of the inverse measurement bandwidth, which was deemed sufficient.

We prepared a weakly squeezed state that had variances{V +
in = 0.902(1);V −

in =

1.137(1)}. The state was then displaced by an amountαin = 0.257(1), which was the

amount predicted to minimiseg(2)(0) for that particular squeezed state. Figure 8.5(i) shows

the measurements over the range of time delays. The minimum value of the coherence was

found at zero time delayg(2)(0) = 0.44(22). As τ was increased, the coherence produced

some oscillations but approached unity, thereby fulfillingthe requirements to demonstrate

photon anti-bunching.
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8.3.2 Coherence as a function of displacement

As already discussed in the theory (Chapter 7), the photon number distribution of a squeezed

state can be manipulated from predominantly even to odd photon number states, simply

by changing the displacement. In this sense, it is the displacement that controls the anti-

bunching effect for a given squeezing parameter.

For this study, the time delay was set to zero, and a squeezed state was prepared that had

{V +
in = 0.901(3);V −

in = 1.136(1)}. Measurements of the degree of second-order coher-

ence (‘g2’) are shown in Figure 8.6(i). Super-bunching statistics ofg(2)(0) = 28(10) were

found for this state, which had zero displacement (measuredto beαin = 0.001(2)). The

displacement was then increased until the degree of coherence was minimised tog(2)(0) =

0.41(12) thus showing anti-bunching statistics. Increasing the displacement still further,

then made the g2 monotonically increase toward one. Therefore by changing only the dis-

placement, we could observe a factor of 70 change in the valueof g2: from super-bunching

to anti-bunching.

8.3.3 The best anti-bunching statistic

The theoretical predictions tell us that lower levels of pure squeezing should give even

stronger anti-bunching statistics. We prepared a very nearly pure state, that had variances

{V +
in = 0.890(2);V −

in = 1.129(2)}, and a purity ofV +
in × V −

in = 1.005(3). This was

achieved by reducing the optical power of the seed beam that entered the OPA, which

helped to de-couple extraneous noise sources. The degree ofsecond-order coherence was

measured for a small range of displacements. The results areshown in Figure 8.6(ii). The

minimum value for the coherence was found for a displacementof αin = 0.252(2), for

which g(2)(0) = 0.11(18). This is a strong anti-bunching statistic. For comparison,a pure

two-photon Fock state would be limited tog(2)(0) = 0.5.

8.4 Testing the HBT interferometer

Although the results with the displaced squeezed states were adhering to the theoretical

predictions, it was good to test our HBT interferometer withtwo other classes of states, and
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also for the property of invariance to optical loss.

8.4.1 A coherent state

The theoretical prediction for a coherent state isg(2)(τ) = 1, regardless of the size of

the displacement, and independent of the time delayτ . The experimental results for zero

time delay and variable displacement are shown in Figure 8.5(iii), while the results for a

fixed displacement and variable time is shown in Figure 8.6(ii). Both sets of measurements

yielded a second-order coherence that kept withing(2)(τ) = 1.00(6), thus confirming the

expected value of g2, and therefore validating our experimental setup.

8.4.2 A biased thermal state

A biased-thermal state starts out as a coherent state, but has had its amplitude quadrature

modulated with broad-band noise, thus giving{V +
in > 1;V −

in = 1}, while the displacement

αin is allowed to be arbitrary. The prediction for the second-order coherence at zero time

delay isg(2)(0) = 3 whenVin ≫ 1 and for small displacementsαin ≈ 1. We prepared a

biased-thermal state that had{V +
in = 12.80(9);V −

in = 1.039(1)}. The displacement was

varied from zero toαin = 0.65(1). The results are plotted in Figure 8.6(iv). These showed

that the second-order coherence adhered to the theoreticalprediction by not deviating from

g(2)(0) = 2.98(1).

A biased thermal state was also studied under variable time delay. The state had pa-

rameters{V +
in = 14.60(2);V −

in = 1.025(8);αin = 0.258(1)}. The results are shown in

Figure 8.5(iii). At zero time delay, the function was at a maximum g(2)(0) = 2.98(1), but

then fell towards unity asτ was increased. The form of the curve followed the sinc-squared

curve that comes from the Fourier transform of the top-hat frequency window.

8.4.3 Testing the invariance to optical loss

One of the interesting properties of second-order coherence, is that measurements of it are

immune to optical loss both before the measurement instrument, and within the measure-

ment instrument itself. We endeavoured to test this property by introducing a variable loss

mechanism in the form of a variable reflectivity beamsplitter; see Figure 8.4.
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Figure 8.6: Main figure and inset: Experimental measurement of g(2)(0) as a function of displacement

αin. (i) displaced squeezed state, (ii) weak displaced squeezed state, (iii) coherent state, (iv) biased

thermal state, curves are theoretical predictions.

We prepared a displaced-squeezed sate that initially was measured to have{V +
in =

0.894(2);V −
in = 1.139(2);αin = 0.255(2)} using the (maximum available) total detection

efficiency ofη = 86%. Without any optical attenuation, the second-order coherence was

found to beg(2)(0) = 0.67(16). The attenuation was increased up toηdet = 43% which

yieldedg(2)(0) = 0.43(36). This showed that at least to the confidence interval of the mea-

surement,g(2) was invariant to optical loss prior to the HBT interferometer. The invariance,

however, came at the cost of increasing the uncertainty in the measurement.

8.5 Discussion of results

8.5.1 Adherence to theoretical predictions

One question to address is: do the experimental results agree with the theory for a HBT

interferometer that is based on homodyne detection? All thetheoretical curves that have

been presented alongside the results have not been best fits to the data, but rather, have

been curves that were generated by Equation 7.17. The equation was fed with the three

measurements that define the displaced-squeezed states:{V +
in ;V −

in ;αin}. These measure-

ments were obtained from one of the homodyne detectors, withan inference made for the

(main) 50:50 beamsplitter of the HBT interferometer. Of course the second-order coherence
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measurement implicitly uses the quadrature variances and displacement, but these were con-

tained in the second-order correlations of the quadrature measurements. We did not have

the resources to make an independent test with a conventional HBT interferometer that uses

single-photon counting detectors. Actually this would have required the installation of many

light baffles and optical frequency filtering, in order to reduce contributions of light from

other parts of the lab. Homodyne detection makes these precautions redundant, because the

mode of the local oscillator selects these for us. So the bestthat we could do to test our

interferometer, was to get a type of transfer function of ourinstrument by measuring the

second-order coherence for a large range of input states: both classical and nonclassical.

For example, using a squeezed state, we were able to observe the transition from bunch-

ing to anti-bunching just by increasing the displacement onthe squeezed state. We also

demonstrated the time domain behaviour, as evidence by the Fourier transform of a flat

pass-band filter, namely, a sinc function. Two other kinds ofstate were tested, the bi-

ased thermal and the coherent state. Like the displaced-squeezed states, these two states

also showed good agreement with the theoretical predictions of second-order coherence for

those states: both as a function of displacement, and as a function of time. We can conclude

then that our version of the HBT interferometer that was based on homodyne detection, was

performing well.

8.5.2 Limitations of the experimental setup

If the aim of the experiment was to demonstrate a very large anti-bunching effect, then two

limitations of our setup become apparent. The first deals with the generation of the squeezed

state, and the second deals with the homodyne detectors.

To show a larger anti-bunching effect with smaller values ofg(2) requires squeezed

states that are ever weaker and purer. In principle this should not be an issue, because the

level of squeezing is set by the pump power of the OPA. But the level of control becomes

difficult because the signal-to-noise ratio of the error signals for the control loops (the cavity

length, and the pump phase) both scale with the gain of the OPA, which depends on the

pump power. So there is a practical limit to the minimum OPA gain that still allows a

stable lock of the cavity length and the pump phase. Rememberthat it is the equivalent
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pure squeezed state that determines the second-order coherence. What this means is that

intra-cavity losses of the OPA do indeed play a role in measuring coherence, but only in

the sense that a high intra-cavity loss will require more gain in order to provide an error

signal of sufficient strength. The extra gain required by an optically lossy OPA, will then

be manifested as an excess noise on the anti-squeezed quadrature, for the chosen level of

squeezing. In other words, the state of light that exits an OPA with high loss, has a higher

impurity, than for an OPA with low loss, although both OPAs could be set to produce the

same level of squeezing.

The issue of the small signal-to-noise ratio of the error signals could be solved by in-

creasing the seed power that goes into the OPA. The problem isthat the seed and pump

beams are usually not exactly shot-noise-limited (even at 6MHz sideband frequencies). By

turning up the seed power, the noise on the pump and seed beamsis coupled ever more

strongly into the output squeezed beam. It is therefore wiseto keep the seed power low.

It is for these reasons that a compromise had to be found for the minimum optical powers

driving the OPA and extracting useful error signals.

The second limitation of the experiment was in the homodyne detector itself. In princi-

ple, the measurement on a homodyne detector yields the quadrature amplitudes of the signal

beam. In a balanced homodyne detector, the noise on the localoscillator beam is cancelled.

However, this is only true in the limit that the power in the local oscillator beam is arbitrarily

greater than the power in the signal beam. This ratio was 1000:1 in our experiment. For

example, the quadrature variance that would be measured on this homodyne detector could

be written asV +
meas = PLOV

+
sig+PsigV

+
LO. Even if the LO were shot-noise limitedV +

LO = 1,

this would lead to a minimum variance (normalised to the shotnoise level) which could be

resolved would beVmin = 1 + Psig/PLO. In our case, this would have been a variance of

Vmin = 1.001. None of the coherent states that we measured fell below thislimit.

A technique to circumvent this limitation would be to minimise the optical power in the

squeezed beam, but due to the control limitations outlined earlier, this was not possible. An

alternative, would have been to choose an interference withthe off-line displacement beam,

such that the displaced-squeezed beam carried zero opticalpower. In our experiment this
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was not possible, because we needed a certain amount of powerfor the DC-derived phase

quadrature lock of the homodyne detector to work. Using an RF-derived error signal would

of course remove this limitation, and it would be possible tooperate the homodyne detector

with a much higher power ratio.

8.6 Summary

In this chapter I have presented an experiment that measuredthe second-order coherence of

optical fields, based on homodyne detection in the configuration of the intensity interferom-

eter of Hanbury Brown and Twiss. We tested our instrument by measuring three classes of

states: squeezed-displaced, coherent, and biased-thermal. The results clearly demonstrated

photon anti-bunching for the displaced-squeezed state, and also showed good agreement

with the theoretical predictions for all the states that were tested.



Chapter 9

Summary and Outlook

9.1 Summary

Harmonic entanglement theory: From a theoretical analysis of an optical parametric am-

plifier (OPA), I showed that it is possible to entangle light of one wavelength with light

that has exactly double that wavelength. This type of entanglement, calledharmonic en-

tanglement, could be observed by measuring the amplitude and phase quadratures of the

fundamental and second-harmonic fields that are reflected from an OPA. Further investiga-

tion of the OPA system yielded the following generalisations:

• The OPA needs to be operated in a regime of pump-depletion or enhancement. An

exchange of energy between the fundamental and second-harmonic fields is essential

for the generation of harmonic entanglement.

• The strength of harmonic entanglement is only limited in principle by the intra-cavity

losses of the OPA, and the provision that the OPA be driven with a total input power

that is at OPO threshold power or above.

• Biased-entanglement is naturally produced by the OPA. Thisis a form of entangle-

ment where the inference of the quadrature amplitudes in thedirection from the fun-

damental to the second-harmonic are stronger than the otherway around (or vice-

versa).

• Squeezed driving fields (instead of coherent fields) for the seed and pump, can in-

crease the strength of the entanglement that is attainable for a given total input power.

They can also compensate for the bias in the entanglement to create symmetrically

entangled states.

227
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Harmonic entanglement experiment:We built an experiment that was capable of test-

ing the theoretical prediction of harmonic entanglement from OPA. Our methods involved

preparing coherent light at the fundamental and second-harmonic wavelengths. The light

was aligned into the OPA that consisted of a second-order nonlinear crystal (PPKTP) that

was placed at the focus of a resonator/cavity in the bow-tie geometry. The bright reflected

fields from the OPA had their carrier fields (but not sidebands) attenuated by filtering the

light using narrow-linewidth resonators that were operating near the impedance-matching

condition. The filtered light of each of the fundamental and second-harmonic fields was re-

ceived by two independent homodyne detectors, which could read out the quadrature ampli-

tudes of the light, from which the correlation matrix was determined, and the inseparability

criterion calculated. The main results from the experimentare listed here:

• Harmonic entanglement from the OPA was confirmed by the experimental results.

The best measurement yielded a degree of inseparability ofI = 0.74(1) which ful-

filled the criterion for entanglement (I < 1).

• The phase quadrature spectra showed a dense array of narrow linewidth resonances.

We proposed that the phenomenon of Guided Acoustic Wave Brillouin Scattering

(GAWBS) was occurring within the nonlinear crystal. A theoretical model of ther-

mally activated GAWBS were in qualitative agreement with the observed spectra. The

OPA model was extended to include a GAWBS phase-noise term, and the GAWBS

excess noise was shown to be moderately detrimental to the inseparability of entan-

glement, and severely detrimental to the EPR measure of entanglement.

• The OPA was tested over a large range of operating conditionsfrom amplification to

de-amplification (the study across the angle parameter). The results for inseparability

and quadrature variances were in good agreement with the GAWBS extended model

of OPA.

• Harmonic entanglement was predicted to strengthen with increasing total input power

to the OPA. The results from the experiment showed the expected trend, but only up

until a point. Beyond about twice OPO threshold power, the entanglement degraded.
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The cause of this effect is unclear. It could have been from quadrature noise on the

seed and pump beams, or from increased sensitivity from GAWBS. Another explana-

tion may be from competing nonlinearities (other non-degenerate OPO modes).

• Although our results did not allow us to claim a demonstration of EPR entanglement,

we can say that the best place to look for the EPR measure of entanglement is in the

regime of OPA amplification, where the phase quadratures forboth the fundamental

and second-harmonic fields are squeezed.

Photon anti-bunching theory: Our group came up with the idea that it was possible to

measure the second-order coherence of a light field, by usingonly homodyne detection of

the quadrature amplitudes, instead of the conventional method of single-photon resolution

detectors. We also revisited the idea of using displaced-squeezed states to demonstrate

photon anti-bunching. The main theoretical results from these analyses are:

• For the purpose of measuring second-order coherence, homodyne detection offers

several advantages over the conventional single-photon detectors. The mode that is

measured is automatically selected by the mode that the local oscillator is in. This

selection includes frequency, transverse spatial distribution, and polarisation.

• Displaced squeezed states can be made to exhibit either super-bunching or anti-

bunching statistics, depending only on the amount of displacement that is given to

the squeezed state.

• The vacuum state can be considered as a singularity in that sense that the second-

order coherence is not defined. The singularity can be approached by making ever

weaker displaced squeezed states. Note that it is not possible to approach the vacuum

by using optical attenuation. This is because second-ordercoherence measurements

are immune to optical loss, both before and within the HBT interferometer.

Photon anti-bunching experiment: We set up an experiment to test the idea that

second-order coherence could be measured using homodyne detection alone, and also to

see if displaced-squeezed states could be made to show photon anti-bunching statistics. We

modified an existing squeezed light source (based on an OPA) so that it could operate stably
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in the regime of weak squeezing and low seed powers. The displacement was created off-

line using an amplitude modulator, and the displaced and squeezed beams were interfered

on an asymmetric beamsplitter. The displaced-squeezed state was sent on to the main 50:50

beamsplitter of the HBT interferometer, after which each beam was received by a homo-

dyne detector that could be locked to either the phase or amplitude quadrature. The signals

from the homodyne detectors were digitised and recorded. The second-order coherence was

calculated from the correlations of the quadrature data. The main results are summarised

here:

• The best anti-bunching statistic was measured from a weaklydisplaced squeezed state

and found to beg(2)(0) = 0.11(18).

• We measured a displaced squeezed state over a range of displacements while holding

the squeezing level fixed. We found that the second-order coherence varied from

bunching to anti-bunching statistics as the displacement was reduced, which agreed

well with the theoretical predictions.

• Measurements of the second-order coherence of coherent states and biased thermal

states were in good agreement with the theoretical predictions. These results vali-

dated our method of measuring the second-order coherence function using homodyne

detection.

9.2 Outlook

What follows are some ideas that can build on the work that we have done so far. There are

extensions to the theoretical analyses, and also possible ways to improve the experiments.

Harmonic entanglement: In my theoretical model of OPA, I had restricted the relative

phases of the seed and pump beams to be either zero or 90 degrees (as counted in the

pump beam frame). This was done for no other reason than to simplify the analysis. The

extension would open up a new class of stable classical solutions, which I would expect to

have a mixture of properties, for example a bi-stable regionthat also has non-trivial phase

shifts for the reflected fields.
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Another class of classical solutions may be opened up by allowing the cavity reso-

nances to be de-tuned from the fundamental and second-harmonic wavelengths. Finally,

the phase-matching condition could be tuned, which effectively makes the nonlinear co-

efficient complex-valued. The classical solutions to the OPA equations essentially drive

the quantum fluctuation analysis. New solution sets, could open up new classes of entan-

gled states, for example, where the biasedness of the entanglement is compensated for by a

phase-matching de-tuning term. Furthermore, all of these parameters could easily be varied

in the laboratory setup. They would involve setting the locking-points for the respective

control-loops with an offset from their centred points. Themeasurement procedure would

then proceed in the usual manner. With four extra degrees of freedom, the system should

yield some interesting behaviour.

If it is possible to make harmonic entanglement with OPA, is it then possible to undo

the process with another OPA, i.e. one that acts as adis-entangler? The OPA process is in

principle reversible, but I did not test the dis-entangler idea with the theoretical model. A

dis-entangler would complete the analogy with the generating (degenerate) entangled light

via two squeezed beams and a beamsplitter, where the beamsplitter process is reversible. To

test the idea experimentally, one would take the harmonically entangled light that is reflected

from one OPA, and inject this into another OPA, before analysing the reflected light using

homodyne detection. The expected null result (no entanglement) however, would not be

very exciting.

We had not taken measurements in the bi-stable and complex-valued regions of the

OPA stability map. There are some technical issues about howone would control, or even

know, on which arm of the bi-stable region the relative phaseof pump and seed are locked

to. However, if these problems could be tackled, then in it should be straightforward to

measure the quadrature amplitudes in the usual way and test for entanglement.

The one thing left to be desired by the experiment was a confirmation of the state of

light satisfying the EPR criterion of entanglement. Although inseparability is a necessary

and sufficient criterion of entanglement, reaching the EPR criterion is desirable because it

is a practical measure for quantum information protocols such as quantum teleportation. I
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believe that three factors contributed to creating an excess noise in the quadratures of the

fields that prevented us from measuring EPR entanglement.

(1) The dominant degradation came from the GAWBS effect thatcreated excess noise in

the phase quadratures. Although the noise was correlated for the fundamental and second-

harmonic fields, it shows up in the EPR criterion because it degrades the conditional vari-

ances that make up that measure. A work-around may be to mountthe nonlinear crystal

with only a minimum amount of contact to the surface, this should increase the quality fac-

tor of the GAWBS resonances, and make it possible to measure entanglement in the gaps

between the resonance frequencies. An idea was proposed by Prof. Ping Koy Lam for an-

other work-around to the problem. By moving the measurements to sideband frequencies in

the next free-spectral range (≈ 1GHz) of the OPA resonator, the GAWBS peaks, which lie

predominantly at tens, to hundreds of MHz, would be left behind. The only difficulty is that

new detectors would have to be built that have the fast 1 GHz response, while maintaining

sufficient clearance above dark noise, and sufficient power handling capabilities.

(2) Our OPA cavity had a great deal of intra-cavity loss. For 1064nm it was measured

to be 0.2% and for 532nm it was 7%. The values are per-round-trip. The value for 532nm is

quite high. The reason may be grey tracking in the crystal. Grey-tracking is a phenomenon

where high intensity light of short wavelengths creates scattering centres due to dislocations

of the crystal lattice. PPKTP is famous for grey-tracking athigher powers, especially at blue

coloured wavelengths. Another source of intra-cavity losswere the two AR coatings of the

dispersion plate, which could be done away with by using a wedged PPKTP crystal. The

dispersion compensation would then be done by changing the transverse position of the

crystal. Another improvement would come from changing the high-reflectivity mirrors of

the OPA cavity, to mirrors of a higher quality, i.e. mirrors of greater reflectivity and lower

scattering. Note that this may be accompanied by difficulties in the locking of the cavity

using the reverse seed, since from its viewpoint, the cavitywould be even less impedance

matched.

(3) The theoretical model predicted that driving the OPA with a greater total input

power, up to 7 times OPO threshold power, should bring with itmore entanglement. The
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problem in our experiment, was perhaps that the driving fields were not shot-noise-limited

at these higher optical powers. The only solution would be toadd more stages of opti-

cal filtering prior to the OPA, to make the seed and pump fields shot-noise-limited at the

observing frequencies (7.8 MHz).

Further room for improvement could be found by increasing the detection efficiency

after the OPA cavity. This could be done by removing the many sets of redundant alignment

optics for filter cavities that we had made provision for, butnever needed to install. Another

improvement would come from reducing the percentage of the light that was tapped-off for

the relative phase lock. All of these suggestions should seenot only an improvement in

the measurements of the inseparability measure, but perhaps also a confirmation of EPR

entanglement.

Photon anti-bunching from squeezing:Within the experimental framework of homo-

dyne detection, we had considered only how to measure the second-order coherence func-

tion. But there is more information contained in the higher-order coherence functions. For

example, the triple intensity correlation (fourth-order coherence) can be measured at three

different delay times, and this can be used to extract the phase information of the first-order

coherence function. It would be interesting to develop a model to see if one could measure

the fourth-order coherence function using homodyne detection alone.

If the aim is to obtain better photon anti-bunching statistics, then there are two aspects

of the experiment that could be improved. The first one is the generation of the displaced-

squeezed state. As we have seen, the weakness of the squeezing and the purity of the state

is paramount. This cannot be faked by optically attenuatinga strongly squeezed state. The

way to improve this, would be to increase the signal-to-noise ratio of the error signals that

control the OPA cavity length, and the pump-seed relative phase. The method may be to

introduce an auxiliary control seed beam, this would be a frequency shifted seed, that would

act as a single side-band and could be used to derive an error signal for those two locking

loops.

Secondly, an improvement can be made at the stage of the homodyne detectors. Here,

the limitation came in the form of the signal beams carrying too much optical power. These
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then created an excess noise when measuring, for example a coherent state, for which the

variances were slightly greater than one. A method was proposed by Dr. Thomas Symul

to eliminate this problem. One needs to change the locking circuitry of the homodyne

detectors to be completely RF-derived error signals, and not reliant on the DC difference

of the photodetectors. This could be done by introducing onto the displacement beam a

phase modulation at one frequency, and amplitude modulation at a different frequency. The

optical beams could then be de-modulated to derive the errorsignals. In this configuration,

one would be free to choose the optical power in the displacement beam, such that the signal

beams contained nearly zero optical power. The power would then be limited only by the

(interference) fringe visibility between the displaced beam and squeezed beam.

In the theory section, I proposed that the quadrature measurements could be made over

an average of quadrature angles, as long as all angles were visited in equal time. This

method of measuring would be useful in situations where we cannot extract error signals

for the homodyne detectors, or if the source of light is trulychaotic, and has no well defined

phase. An experimental test of this proposal would be a simple procedure.

An interesting demonstration of the homodyne technique would be to measure the

second-order coherence function of a physical scattering process. The sample could be in

the form of a colloidal suspension of microscope particles (scattering objects). These would

induce random phase shifts of the light within a certain timeframe. Hence, by measuring

the second-order coherence of the sample, or how it in-effect de-coheres a coherent laser

beam, some dynamics of the physical scattering system couldbe obtained. Furthermore,

by using light beams in a highly anti-bunched or super-bunched state, instead of a coherent

state, it may be possible to make measurements at greater sensitivity.
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Plate 1: Photograph of the OPA used in the harmonic entanglement experiment. The 532 nm intra-cavity

field is discernible as a faint green line due to Rayleigh scattering from air molecules. (see page 121)

Dispersion Compensation Plate

BK7 glass 

AR@532&1064nm

PZT-actuated 

planar mirror

HR@532&1064nm

concave mirror

(ROC=38mm)

HR@532&1064nm

concave mirror

(ROC=38mm)

HR@532&1064nm

PPKTP nonlinear crystal

10mm long (flat-flat)

AR@532@1064nm

"Input-Output Coupler"

planar mirror

R=53%@532

R=90%@1064nm

Reflected Light

Harmonic Entanglement

(532nm & 1064nm)

Input Light

Pump (532nm)

Seed (1064nm)

Plate 2: Schematic of the OPA based on the photograph above. PPKTP: periodically-poled potassium

titanyl phosphate crystal. AR: anti-reflection coating. HR: high reflectivity coating. ROC: radius of curva-

ture. PZT: piezo electric actuator. (see page 121)
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Plate 3: The classical gain is the ratio of optical powers of the light incident on, and the light reflected

from, one mirror of the optical parametric amplifier (OPA). In a lossless OPA, the gain shows how the

fundamental and second-harmonic fields have exchanged energy due to the nonlinear interaction. This

is referred to as depletion or enhancement of the fields. The gain is expressed in a colour-coded decibel

scale, and is mapped as a function of the normalised driving fields: the fundamental seed , and the

second-harmonic pump. Left: Gain of the fundamental field. Right: Gain of the second-harmonic field.

The horizontal axis follows the process of second-harmonic generation (SHG), while the vertical axis

follows the process of optical parametric oscillation (OPO). A dashed circle marks the boundary where

the total input power to the system is equal to the power that is required to reach OPO threshold. If the

system is driven above OPO threshold, bi-stability in the OPA can be seen as asymmetry when comparing

the gain for positive and negative values of the seed amplitude. (See page 103)
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Plate 4: The fundamental and second-harmonic fields can also interact in the OPA in such a way that

produces a non-trivial phase-shift on the reflected fields. The phase-shift is expressed in a colour-coded

degree scale, and is mapped as a function of the seed and pump field amplitudes (similar to Plate 3). Left:

Phase shift of the reflected fundamental field. Right: Phase shift of the reflected second-harmonic field.

The most prominent example of a non-trivial phase-shift is found in the complex-value region in the lower

half of the diagrams, where for the second-harmonic field, a phase anomaly can be seen. A non-trivial

180◦ phase-shift occurs along the contours of complete depletion of the pump or seed. (See page 103)
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Plate 5: The OPA cavity transforms not only the classical amplitudes of the fields, but also alters their

quantum statistics. The variances of the amplitude and phase quadratures of the fields that reflect from

the OPA cavity have been mapped as a function of the input seed and pump fields (similar to Plate 3). The

quadrature variances are shown in a colour-coded decibel scale, where negative values (blue) signify that

the state is squeezed. Top: The quadrature variances of the reflected fundamental field. Bottom: The

quadrature variances of the reflected second-harmonic field. The operation of a typical OPA squeezer, with

a weak seed and strong pump, would follow a narrow strip along the vertical axis of the diagrams. Here

the fundamental field is either squeezed or anti-squeezed depending on the sign of the pump field. The

strength of the squeezing increases as OPO threshold is approached (dashed circle), but the quadrature

variances of the second-harmonic remain unchanged in this regime. (See page 108)
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Plate 6: Harmonic entanglement is the entanglement between a fundamental field and its second-

harmonic. The OPA alters not only the quantum statistics of the reflected fundamental and second-

harmonic fields individually, but also induces correlations between them. As a result, the two-mode states

that are produced, are inseparable, and they also demonstrate a violation of the EPR paradox. The EPR

measure of entanglement is mapped in a colour-coded decibel scale as a function of the seed and pump

fields that drive the OPA (similar to Plate 3). Darker blue signifies stronger entanglement, while contours

make these values more precise. Circles of various radii mark paths along which the total input power

to the OPA is constant. Red points and numbers refer to the case studies on the opposite page. The

strongest harmonic entanglement can be seen on the boundaries to the classical solutions. While the

vertical OPO axis for below-threshold pump fields is devoid of entanglement. (See page 109)
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Plate 7: The states produced by the OPA are examined for various points in the map shown in Plate 6. The

real and imaginary parts of the classical amplitude are represented as a line from the origin in a phasor

diagram, while the quadrature standard-deviations are shown as an ellipse. A dashed red circle is a

vacuum or coherent state reference. The fundamental and second-harmonic fields are shown on separate

diagrams. The state of the field before and after the OPA are labelled ‘in’ and ‘out’, respectively. Case 1:

Strongly driven SHG in the regime of complete pump-depletion. The squeezing (sqz) and harmonic

entanglement (ent) are weak. Case 2: Below-threshold OPO where there is no pump-depletion shows

strong sqz but is non-ent . Case 3: Below-threshold OPA with moderate pump-enhancement shows

moderate sqz and ent . Case 4: Above-threshold OPO shows complete pump-depletion but only weak

sqz and ent . Case 5: On the neutral-path there is no net interaction between the fields, and therefore no

sqz nor ent . Case 6: A point in the complex-value region shows little pump-depletion, but the interaction

via a non-trivial phase-shift makes strong ent . (See page 114)
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HARMONIC ENTANGLEMENT  AS A FUNCTION OF SQUEEZED SEED AND PUMP FIELDS




Plate 8: By driving the OPA with squeezed seed and pump fields instead of coherent states, the strength,

type, and location of harmonic entanglement can be manipulated. Main: Two combinations of squeezing

for the seed and pump are chosen, which cause the strength and regions of entanglement to grow or

shrink. Inset: These maps are compared with those having the seed and pump fields in coherent states.

The -3 dB contour shows that one region is enhanced, while the other is degraded. Cases: The case

studies examine weakly-pumped SHG. Initially, the output states are nearly coherent and non-entangled

(not shown). Using squeezed fields effectively turns on the entanglement. In case 7, the quadrature

variances become nearly symmetric, thereby compensating for entanglement bias. (see page 117)



Displacement    [α]

S
qu

ee
zi

ng
 p

ar
am

et
er

   
[r

]

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.4

-0.2

0

0.2

0.4

0.6

1

1

0.5

0.25

2

2

4

4

8

8

DEGREE OF SECOND-ORDER COHERENCE OF A DISPLACED-SQUEEZED STATE

Plate 9: By analysing the second-order coherence function g(2)(τ) of a source of light, its quantum nature

can be revealed. The function is a normalised intensity-intensity correlation at two different times, where τ

is the delay. An observation of g(2)(0) < 1 is a clear signature of the quantisation of the electromagnetic

field, here in the form of a photon anti-bunched state of light. In the diagram above, a theoretical model was

used to investigate the class of displaced-squeezed states for their anti-bunching properties. The degree

of second-order coherence g(2)(0) as a function of displacement α and squeezing parameter r was

plotted as a colour-coded map. Darker colours signify the presence of anti-bunching, while lighter colours

signify bunching. Contours mark the exact values. Note the increase in the strength of the anti-bunching

and bunching effects as an approach is made to the vacuum state (r=0, α=0). (see page 193)
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Plate 10: Second-order coherence is mapped onto the surface of the sphere. The co-ordinates of the

sphere specify the coefficients of the arbitrary superposition state made up of vacuum, single- and two-

photon number states. Darker colours signify anti-bunching statistics. Extreme cases of bunching and anti-

bunching occur side-by-side in the area surrounding the vertical axis of the vacuum state. (see page 202)



Preparation of Laser Light



(A) Nd:YAG Laser & Freq. Doubler

(B) "MC1R" (not in use)

(C) "MC2R" (optical filtering via cavity)

(D) "MC1G" (optical filtering via cavity)

(E) "MC2G" (optical filtering via cavity)






Measurement and Verification 

of Harmonic Entanglement



(I) "FC1R" (optical carrier rejection)

(J) Homodyne detection (1064nm)

(K) "FC1G" (optical carrier rejection)

(L) Homodyne detection (532nm)

Generation of Entanglement

via Optical Parametric Amplifer



(F) Dichroic Beamsplitter to combine

      seed and pump beams

(G) Optical Parametric Amplifier

(F) Dichroic Beamsplitter to separate

      reflected seed and pump beams
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Plate 11: Three photographs that cover the entire setup of the harmonic entanglement experiment.
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