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Abstract

This thesis covers the work of two research topics - quantum multi-mode optical imaging

and light-atom ensemble quantum interactions. In quantum multi-mode optical imaging, we

study optimal beam displacement and tilt measurements, spatial entanglement and spatial

encoding. In light-atom ensemble quantum interactions, the generation of squeezed light

via the polarisation self-rotation effect in atoms is examined. We then discuss quantum

efficacy measurements of delayed light via electromagnetically induced transparency. Fi-

nally, we examine atomic spin state squeezing for applications in enhancing the sensitivity

of magnetometers and atomic clocks.

For displacement and tilt measurements, we discover that the conventional split de-

tection scheme is non-optimal with ∼ 80 % efficiency. Consequently we propose a new

detection scheme, based on a homodyne detection setup that has a specifically-tailored

local oscillator mode-shape, optimal for small beam displacement and tilt. We show that

although the quantum noise limit to displacement and tilt measurements can be surpassed

using squeezed light in appropriate spatial modes for both schemes, the spatial homodyn-

ing scheme out-performs split detection for all values of squeezing. Thereafter, we show

that a position squeezed beam (i.e. the beam position can be determined to an accuracy

beyond the standard quantum limit) can be generated. We show that position and momen-

tum entanglement can be generated by interfering two position, or momentum, squeezed

beams on a beam-splitter. The position and momentum measurements of these beams can

be performed using the optimal spatial homodyne detection scheme. We then compare

this form of spatial entanglement with split detection-based spatial entanglement. The

possibility of expressing beam position, momentum and orbital angular momentum in one

common basis is also examined. The relevant modes responsible for beam position, mo-

mentum and orbital angular momentum span the Poincaré sphere. Consequently, spatial

entanglement between these modes is proposed as well as the relevant detection schemes.

A possible application of multi-mode quantum imaging for increasing the capacities of op-

tical storage devices is then considered. A scheme which encodes information in both the

longitudinal and spatial transverse phases of a continuous-wave optical beam is devised.

Correspondingly, a split detector-based interferometric scheme is introduced to optimally

detect both encoded phase signals. In contrast to present-day optical storage devices, our

phase coding scheme has an information storage capacity which scales with the power of

the read-out optical beam. We analyse the maximum number of encoding possibilities at

the shot noise limit. In addition, we show that using squeezed light, the shot noise limit

can be overcome and the number of encoding possibilities increased.

The traversal of an elliptically polarised optical field through a thermal vapour cell can

give rise to a rotation of its polarisation axis. This process, known as polarisation self-

rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic

transition wavelengths. We show results of the characterisation of PSR in isotopically

enhanced Rubidium-87 cells. We observe that, contrary to earlier work, the presence of

atomic noise in the thermal vapour overwhelms the observation of squeezing. We present

a theory that contains atomic noise terms and show that a null result in squeezing is

vii
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consistent with this theory. Using electromagnetically induced transparency (EIT), it is

possible to delay and store light in atomic ensembles. Published theoretical modelling

and recent experiments have suggested that the EIT storage mechanism can be used

as a memory for quantum information. We present experiments that quantify the noise

performance of an EIT system for conjugate amplitude and phase quadratures. It is shown

that our EIT system adds excess noise to the delayed light that has not been predicted by

published conventional theoretical modelling. In analogy with other continuous-variable

quantum information systems, the performance of our EIT system is characterised in terms

of conditional variance and signal transfer. The sensitivity of atomic magnetometers and

atomic clocks are ultimately limited by the atomic spin projection noise (i.e. due to the

atom number variance), but could be overcome by the use of spin squeezed atoms. We

explore the interaction of optical polarisation and atomic spin states via the Faraday

effect. Quantum-non demolition measurements of the atomic spin state can therefore

be performed to generate atoms in a spin squeezed state. We present theoretical and

experimental results towards this goal.
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Chapter 1

Introduction

As far as we can discern, the sole purpose of human existence is to kindle a light

in the darkness of mere being.

- Carl Jung, “Memories, Dreams, Reflections” (1962)

1.1 Overview

The field of quantum optics deals with the manipulation and measurement of the prop-

erties of light at the quantum level. The discovery of the laser [9] has allowed the field

of quantum optics to blossom. Traditionally, quantum optics has considered properties

of the light field, generated via resonant and non-resonant atom-light interactions. The

properties of the atomic system are often not considered as the atomic system primarily

serves as a tool for the manipulation of the light state. Initial interests in quantum optics

experiments concerned with examining the Einstein-Podolsky-Rosen paradox [10], via the

experiment performed by Wu and Shaknov [11] and measurements of optical coherence,

via the Hanbury Brown and Twiss experiment [12]. Following this, other important ex-

periments in quantum optics have also been performed, for example, measuring photon

anti-bunching [13], demonstrating the violation of Bell’s inequalities [14, 15, 16] and con-

tinuous variable quantum entanglement [14, 17, 18], as well as Wheeler’s delayed choice

measurement [19]. There have also been several work strengthening the validity of quan-

tum mechanics such as the measurement of the Wigner function of a single photon Fock

state [20], the production of Schödinger kittens [21, 22] and the generation of larger kitten

states [23]. Aside from tests on quantum mechanics, the application of quantum opti-

cal techniques to practical applications have been explored, and these include improving

the sensitivity of gravitational wave detection, quantum information science and quantum

imaging. In interferometric gravitational wave detection, squeezed light could be used to

enhance the detector sensitivity better than the shot noise limit [24, 25]. For quantum

information, quantum computing [26] was proposed to be the next generation computing

scheme. Quantum computing has made significant progress, in particular, in photonic

systems [27, 28, 29, 30, 31, 32], single ion systems [33, 34, 35, 36], single atom systems [37]

and nuclear-magnetic resonance systems [38, 39, 40]. Complementing quantum computing

is a plethora of quantum information protocols, such as quantum teleportation [41, 42],

quantum dense-coding [43, 44, 45], quantum non-demolition measurements [46, 47, 48, 49]

and quantum cryptography [50, 51]. In multi-mode quantum imaging, physicists have been

exploring the generation of spatial entanglement [52, 53, 54, 55, 56], the possibility of re-

solving images with enhanced sensitivities [57, 58] and increasing data storage capacities
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[59, 60]. Part I of this thesis examines the spatial multi-mode aspects of quantum optics,

for the generation of spatial entanglement and applications to quantum imaging.

Whilst quantum optics has progressed, parallel accomplishments have been demon-

strated in atom optics. Atom optics concerns with examining the state of the atomic

system, via resonant and non-resonant atom-light interaction processes. Often, the opti-

cal state of the light field is not considered, whereby the optical field primarily serves as

a means to manipulate the properties of the atomic system. Traditionally, atom optics

experiments used thermal atomic sources, with many successful experiments for applica-

tions in atomic clocks [61], atomic magnetometry [62, 63, 64, 65] and atomic interferometry

[66]. The discovery of laser cooling and trapping techniques then led to the production

of cold, trapped atoms [67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]. Cold,

trapped atoms have been used in gradiometry [82], atomic clocks [83, 84, 85], magnetome-

try [86], atomic interferometry [87, 88, 89] and as a non-linear medium for the generation

of squeezed light [90, 91]. The development of evaporative cooling subsequently led to the

production of Bose-Einstein condensates (BECs) [92, 93]. This was a highly significant

achievement as the production of a BEC was a demonstration of macroscopic quantum

coherence. BECs were out-coupled to produce atom lasers with properties very similar to

that of optical lasers [94, 95, 96, 97]. In terms of Fermionic atoms, the production of a

degenerate Fermi gas [98] and Cooper pairing [99] have also been demonstrated. This has

led to important studies of BEC-BCS (Bardeen-Cooper-Schrieffer) crossovers, which will

aid in understanding the physics of high temperature superconductivity [100, 101, 102].

More recently, proposals for creating analogues of gravitational effects in BECs [103, 104]

have also been considered.

The next generation of experiments attempted to combine the ideas and successes of

both quantum and atom optics to yield quantum-atom optics [105]. In quantum-atom

optics, the properties of both atomic and light fields are considered. From a fundamental

perspective, it is interesting to explore quantum field effects via atom-light quantum in-

teractions and examine exotic forms of entanglement such as inter-species entanglement

between light and atoms [106, 107, 108, 109]. Also, the combination of squeezed light

with atoms can lead to the generation of squeezed and entangled atoms lasers [110]. Such

proposals are highly interesting as macroscopic entanglement between atomic ensembles

with well defined modes can be produced. From an application perspective, the sensi-

tivity of precision measurements could be enhanced. This could lead to more sensitive

magnetometers [111, 112, 113, 114] and more precise atomic clocks [115, 116, 117]. An

understanding of atom-light interaction will pave the way towards the development of a

quantum network for quantum information exchange between quantum computing nodes

[118]. A quantum network will consist of quantum memories and quantum computers

linked via quantum channels. Such quantum networks could be tomorrow’s “quantum

world-wide web”. Quantum information transfer can be performed effectively using pho-

tons since photons travel at the speed of light and do not interact much with its environ-

ment. Atoms, however, can be cooled and trapped. Therefore, one could envisage using

atoms as a quantum memory for photons, the information carrier. Part II of this thesis

examines this subject matter.

An overview of the author’s view on the amalgamation of quantum and atom optics is

shown in Fig. 1.1.
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Figure 1.1: A flowchart summarising some of the fundamental physics and practical applications

arising from the fields of quantum and atom optics. The combination of both quantum and atom

optics yields new physics with the possibility of more practical applications. The text highlighted

in red indicates the field of research that the author was involved in, that is described in this thesis.

1.2 Part I: Multi-mode quantum imaging

Early experiments on continuous-variable quantum optics focussed on the generation of

non-classical states of light in the quadrature basis [17, 119, 120, 121, 122, 123]. Following

successful experiments, manifestations of the light quadratures in terms of the polarisation

Stokes variables were explored [124, 125, 91, 126]. The basis change was interesting as

polarisation variables couple directly to the spin variables of atomic systems [127, 128].

Experiments demonstrating the interaction of polarisation states of light with the atomic

spin states were shown [129, 130, 131, 132, 133, 134, 135, 136, 107, 137]. The spatial

basis of light was also being concurrently explored. For example, in the review paper

by Kolobov [56] which studied extensively the quantum aspects of imaging [138, 139,

140, 141, 142, 58, 143] and the properties of spatial multi-mode squeezed light. Spatial

squeezed and entangled light have applications in sub-shot noise microscopy [57], quantum

holographic teleportation [144], ghost imaging [145, 146] and the generation of entangled

images [53, 55, 54, 147]. Recent experiments by Langford et al. [148] demonstrated

the entanglement of spatially encoded quantum states, offering the prospect of quantum

information processing in the spatial basis.

We are motivated by the prospect of producing continuous-variable quantum entan-
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glement in the position and momentum variables, as envisaged by Einstein, Podolsky and

Rosen [10]. In order to examine this idea, we first had to define beam position and mo-

mentum, together with discovering the corresponding optimal detection schemes. During

this process, we discovered that split detectors were non-optimal for the detection of op-

tical beam position and momentum [149]. We therefore proposed an optimal detection

scheme for beam position and momentum, based on homodyne detection with specially-

tailored local oscillator beams (see Chapter 3). Based on these discoveries, we were

able to generate position-momentum entanglement for continuous-wave optical beams [52]

(see Chapter 4). Thereafter, the possibility of expressing beam position, momentum

and orbital angular momentum in one common basis was examined. The relevant modes

responsible for beam position, momentum and orbital angular momentum were discov-

ered to span the Poincaré sphere [150]. Consequently, spatial entanglement between these

modes was proposed as well as the relevant detection schemes (see Chapter 4).

Spanning the spatial basis for light states has several applications such as in optical

tweezers [151, 152, 153, 154], beam positioning measurement [155, 156], tilt locking [157]

and optical data storage [59, 60, 158]. Using the techniques of spatial and phase encod-

ing, we proposed a scheme [59] for increasing the capacities of optical data storage disks

using interferometric techniques. Our scheme utilises two classes of phase coding - the

longitudinal and spatial transverse phases of an optical beam and are described in detail

in Chapter 5.

1.3 Part II: Light-atom ensemble interactions

Our primary motivation is to study the interaction between light states and atomic coher-

ences, at the quantum level. We utilise systems consisting of optical beams and atomic

ensembles as opposed to single atom (or ion) systems (e.g. cavity quantum electrodynam-

ics systems, that have strong fields interacting with single atoms [159, 160]). Ensemble

systems yield information on mean and variance values, whereas single particle systems

yield information on a single quantum trajectory. The advantage of an ensemble system is

measurement speed, whereby statistical information is obtained within a single measure-

ment. However, in single particle systems, multiple measurements are required in order to

procure the statistics corresponding to many identical single particle systems. The disad-

vantage of ensemble systems over single particle systems is the loss of individual trajectory

information. We therefore have to decide which measurement path to take and due to the

history of our group (i.e. in continuous-variable quantum optics), we decided to work with

ensemble systems.

We first approach this study by exploring the non-linearity of atomic systems. We

developed an understanding of the non-linear interaction between light and atoms and its

effect on the noise properties of light propagated through atoms, in the context of optical

squeezing generation using atoms. Thereafter we studied the possibility of information

mapping between light and atoms, both in terms of mean and noise variances. Such a

study has practical applications, in particular for the development of a quantum memory

[118, 161] (i.e. a memory device which stores quantum information from an optical field)

and for enhancing precision measurements (e.g. magnetometry and atomic clocks). We

approached the quantum memory problem by studying the electromagnetically induced

transparency (EIT) [162] effect which has been used for light slowing [163] and storage

[164]. To study the enhancement of precision measurements, quantum non-demolition

(QND) measurements of the spin state of atomic ensembles, via the Faraday interaction



§1.3 Part II: Light-atom ensemble interactions 7

with the polarisation state of an optical field, is examined.

Early experiments on the generation of squeezed light were performed in atomic sys-

tems, by Slusher et al. [165, 166]. Other groups [167, 168, 169] have also explored squeezing

via atomic systems, but these experiments did not yield squeezing comparable to those

of current-day optical parametric oscillation/amplification (OPO/A) systems, since the

experiments tended to be technically challenging and parameter spaces were large. Today,

the most reliable and widely used method for squeezed light generation is that due to

OPO/A [170, 171, 172, 173, 120, 121, 174, 25, 175, 8, 176]. Squeezing via cold atoms in

a cavity [90, 91] have been relatively successful but more recent experiments by Ries et

al. [177] and McCormick et al. [178] demonstrated that squeezing could be generated in

atomic vapour cells, relatively easily. The experiment of Ries et al. [177] was based on

the polarisation self-rotation effect whilst the experiment of McCormick et al. [178] was

based on a four-wave mixing process. Their experimental setups were scalable and offered

promise for large squeezing. We are therefore interested in studying the Kerr non-linearity

in atomic systems, manifested in the polarisation self-rotation effect [179, 180]. We study

the quantum properties of polarisation self-rotation both theoretically and experimentally

[181], the details of which are discussed in Chapter 7.

The EIT effect is created by the interaction of probe and pump fields, in a 3-level

atomic system [162]. A narrow transparency window is created for the probe beam which,

in the absence of the pump, would be fully absorbed. Corresponding to the sharp trans-

mission window is a steep dispersion which allows for the reduction in the group velocity

of the probe field [163]. A theoretical proposal by Fleischhauer and Lukin [161] showed

that by dynamic control of the pump field, the transparency window and group velocity

of the probe field can be altered. Turning off the pump field allows the state of the probe

field to be transferred to the atomic coherences of the EIT medium. Experimental demon-

stration of light storage has been performed, for classical signals [164]. There has been

much interest in extending the dynamic-EIT scheme to storing quantum information. We

approach this problem by studying the quantum state preservation of the probe field after

propagation through an EIT medium [182, 183]. Our theoretical and experimental works

are discussed in detail in Chapter 8.

Improvements in the sensitivity of precision measurements is an important and in-

teresting subject of research. The ‘second’ is defined by a number of oscillations of the

radiation corresponding to the transition between the two ground state hyperfine levels of

Cesium-133 [83, 84, 85]. Atomic clocks are constructed based on this frequency standard,

by locking a microwave oscillator to the Cesium-133 ground state hyperfine transitions

[83, 84, 85]. In atomic magnetometry [62, 63, 64, 65], the Larmor precession signals in-

duced in the presence of a magnetic field is measured, since the frequency of the Larmor

precession signal is a function of the magnetic field strength. The ultimate sensitivity of

these measurements is restricted by the quantum noise limit of the atoms (i.e. the atomic

variance as a function of atom number), commonly termed the atomic projection-noise

limit [184]. The projection noise limit has been observed in atomic clocks [185], atomic

magnetometers [112] and atomic spectroscopy [186]. Therefore, there have been proposals

to enhance the measurement of the Cs clock transition pseudo-spin [115, 116, 117] and

perform sub-shot noise atomic magnetometry [111, 112, 113, 114]. In such applications,

squeezing of the collective atomic spin state is required. We are motivated by such goals

and discuss our work in this area in Chapters 9 and 10.
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Chapter 2

Quantum optics theory

Experience without theory is blind, but theory

without experience is mere intellectual play.

- Immanuel Kant

2.1 Formalism

In this chapter, we introduce the basic mathematical formalism used widely in continuous-

variable quantum optics. We discuss the differences between single-mode and multi-mode

quantum optics. Our formalism covers the multi-modal transverse description of optical

fields in detail, as this formalism forms the ‘cornerstone’ of much work in the proceeding

chapters.

2.1.1 Maxwell’s equations

In 1865, James Clerk Maxwell wrote down the four important equations which describe

the electomagnetic fields completely [187]. The equations laid the foundation for all of

electrical and electronics engineering and have been a very powerful tool in understanding

electromagnetic phenomena. Maxwell’s equations are given by

∇× E(r, t) = −∂B(r, t)

∂t

∇× B(r, t) = ǫ0µ0
∂E(r, t)

∂t
+ µ0J(r, t)

ǫ0∇ · E(r, t) = ρ

∇ · B(r, t) = 0 (2.1)

where E(r, t) and B(r, t) are the electric field vectors, respectively. ǫ0 and µ0 are the

respective free-space permittivity and permeability constants; the electric charge density

is given by ρ and the current density is given by J(r, t).

2.1.2 Quantisation of the electric field

The equations that Maxwell wrote down were however only sufficient to describe the classi-

cal mean field properties of electromagnetic fields. In order to describe phenomena such as

the blackbody radiation using Plank’s law, and the noise fluctuations of electromagnetic

fields, Maxwell’s classical equations had to be extended to fully describe the quantum

mechanical properties of electromagnetic fields [188]. The fundamental particles of the

13
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electromagnetic field are photons. In quantisation, the field vectors E(r, t) and B(r, t)

had to be defined as operators. In this section we describe briefly how the quantisation of

electromagnetic fields is achieved, which is the basis for all the work of this thesis.

We quantise the fields by re-expressing Maxwell’s equations in terms of scalar and

vector potentials, φ and A(r, t).

E(r, t) = −(∇φ)(r, t) − ∂A(r, t)

∂t
(2.2)

By choosing the Coulomb gauge where the vector potential is ∇ · A = 0, the vector

potential satisfies the expression given by

−∇2A(r, t) +
1

c2
∂2A(r, t)

∂t2
= 0 (2.3)

We now consider an infinite region of space for the propagation of the electromagnetic

field. The solution to the equation above is the sum of all the wave-vector k, given by1

A(r, t) =
∑

k

(Ak(t) exp(−iωkt+ ik · r) + A∗
k
(t) exp(iωkt− ik · r)) (2.4)

In order to quantise the electromagnetic field, one has to consider a quantum mechan-

ical harmonic oscillator. Every mode k of the electromagnetic field is associated with

a quantum mechanical harmonic oscillator. We now quantise the vector potentials by

making the following substitutions [188]

Ak(t) →
√

h̄

2ǫ0V ωk

âk(t) A∗
k(t) →

√

h̄

2ǫ0V ωk

â†
k
(t) (2.5)

where we have introduced the dimensionless photon annihilation and creation operators,

for the quantum mechanical harmonic oscillator, denoted by âk(t) and â†
k
(t), respectively.

The commutation relations for these operators are given by

[âk(t), â†
k

′ (t)] = δkk′ (2.6)

Note that these operators are not observables2. However by acting â†
k
(t) with âk(t), the

observable photon number operator is obtained

n̂k(t) = â†
k
(t)âk(t) (2.7)

where the mean amplitude of this quantity gives the mean number of photons in the mode

k, within the quantisation volume V .

We can now write the electric field operator in terms of its positive and negative

frequency field components, given by

Êk(r, t) = i

√

h̄ωk

2ǫ0V

(

âk(t) exp(−iωkt+ ik · r) − â†
k
(t) exp(iωkt− ik · r)

)

(2.8)

1We take the infinite sum over k to maintain simplicity in our equations. In actuality, the integral over
all modes k should be considered for the free-space electromagnetic field.

2An observable has real eigenvalues and is a Hermitian operator.
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2.1.3 Amplitude and phase quadratures

We now introduce more convenient observable operators, which are readily measurable

in the laboratory. For continuous-variable systems, we are interested in the quadrature

operator, given by

X̂θ
k(t) = e−iθâk(t) + eiθâ†

k
(t) (2.9)

where θ is the quadrature angle. For angles of 0 and π/2, the amplitude and phase

quadratures are obtained, respectively. The amplitude and phase quadratures, written

explicitly, are respectively given by

X̂+
k (t) = âk(t) + â†

k
(t) (2.10)

X̂−
k (t) = i(â†

k
(t) − âk(t)) (2.11)

Commutation relation

One who knows does not speak; one who speaks does not know.

- Lao Tzu

Using the commutation relation of Eq. (2.6), the commutation relation for X̂+
k (t) and

X̂−
k (t) is given by

[X̂+
k (t), X̂−

k′(t)] = 2iδkk′ (2.12)

where the quadrature variances (i.e. ∆2X̂θ
k(t) = 〈(X̂θ

k(t) − 〈X̂θ
k(t)〉)2〉 ) are related by the

Heisenberg uncertainty relation

∆2X̂+
k (t)∆2X̂−

k (t) ≥ 1 (2.13)

This is a very important equation with deep physical insight. It describes the relation

between the variances of the amplitude and phase quadratures, within the condition of

the Heisenberg uncertainty relation. One could reduce the fluctuations of the amplitude at

the expense of having greater fluctuations in the phase and vice versa. For a coherent state

light source, ∆2X̂+
k (t) = ∆2X̂−

k (t) = 1, and this defines the shot noise limit or quantum

noise limit (QNL).

2.1.4 Multi-mode and single-mode analyses

Multi-mode analysis

For an electric field operator which takes into account multi-modal behaviour, a sum over

all the possible longitudinal and spatial modes have to be considered, given by

Ê(r, t) =

∞∑

k=0

i

√

h̄ωk

2ǫ0V

(

âk(t)e−i(ωk t−k·r) − â†
k
(t)ei(ωk t−k·r)

)

(2.14)

For the purpose of this thesis, we will only consider the situation where the electro-

magnetic field consists of a single frequency, or a single longitudinal mode component,

ω0. We are however interested in the spatial multi-mode behaviour of the electromagnetic

field. Therefore the electric field operator is written as the sum over an infinite number of
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modes un(r), given by

Ê(r, t) =

∞∑

n=0

i

√

h̄ω0

2ǫ0V

(

ân(t)e
−iω0tun(r) − â†n(t)e

iω0tu∗n(r)
)

(2.15)

For brevity we only take the positive frequency part of the electric field operator, given

by

Ê
+
(r, t) =

∞∑

n=0

i

√

h̄ω0

2ǫ0V
ân(t)e

−iω0tun(r) (2.16)

where ω0 is the carrier frequency of the field and un(r) are the spatial mode functions,

which form an orthonormal basis given by

∫

un(r)u∗n′(r)d3r = δnn′ (2.17)

We can further simplify our representation of the electric field operator by only con-

sidering the slowly varying field envelope operator given by

Ê+(r, t) =

∞∑

n=0

i

√

h̄ω0

2ǫ0V
ân(t)un(r) (2.18)

Single-mode analysis

For most quantum information experiments, a single spatial and longitudinal mode anal-

ysis of the electromagnetic field is sufficient to describe the physics. The spatial mode

function is simply expressed using plane waves, where uk(r) = eik0z. The slowly varying

positive frequency part of the electric field operator is then given by

Ê+(z, t) = i

√

h̄ω0

2ǫ0V
â(t)eik0z (2.19)

where ω0 is the carrier frequency of the single-mode field.

2.2 States of light

2.2.1 Fock state

One of the most natural states to arise from the quantisation of the electromagnetic field

is the photon number or Fock state. The Fock state is the eigenstate of the quantum

harmonic oscillator for the electromagnetic field. By acting the photon annihilation and

creation operators on the photon state |n〉, a state with an additional or one less photon

can be obtained, respectively, given by

â(t)|n〉 =
√
n|n− 1〉 â†(t)|n〉 =

√
n+ 1|n+ 1〉 (2.20)

where the ground state of the system is defined by

â(t)|0〉 = |0〉 (2.21)

and this is termed the vacuum state. Any arbitrary photon state |n〉 (containing n number

of photons) can be obtained from the vacuum state by successive applications of the
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creation operator, given by

|n〉 =
(â†(t))n√

n!
|0〉 (2.22)

The Fock state basis has the completeness relation given by

∞∑

n=0

|n〉〈n| = 1 (2.23)

The Fock state basis is a convenient basis to work with, for experiments where the

photon number is small. This is termed the discrete-variable (DV) regime where photon

counts detected via avalanche photo-detectors is the main detection technique. The other

regime to work in is the regime where the number of photons is large, the continuous-

variable (CV) regime. In this a regime, an amplified photo-detector is the main means of

detection. We are interested in the CV regime and we now adopt the coherent state basis.

2.2.2 Coherent state

The coherent state was first introduced by Glauber. A field in the coherent state has equal

fluctuations in both amplitude and phase quadratures; and is in the minimal uncertainty

state. In the photon number states basis, the coherent state is given by

|α〉 = e−
|α|2

2

∞∑

n=0

αn√
n!
|n〉 (2.24)

where |n〉 is the state containing exactly n photons, but have undefined phase. In the

Schrödinger picture the coherent states can be written as the eigenstates of the photon

annihilation operator, given by

â(t)|α〉 = α|α〉 (2.25)

where α is the eigenvalue of the coherent state. The coherent state can also be obtained

by acting a displacement operator on the vacuum state, given by

D̂[α]|0〉 = e
−|α|2

2 eαâ
†−α∗â|0〉

= |α〉 (2.26)

Using these equations, a few quantities of the coherent state can be obtained, given by

P (n) =
|α|2ne−|α|2

n!
(2.27)

〈n̂〉 = |α|2 (2.28)

∆n̂ = |α| (2.29)

where P (n) is the probability to obtain n photons, 〈n̂〉 is the mean number of photons

and ∆n̂ is the standard deviation of the photon number for the coherent state. Based on

these, we can write the annihilation operator as

â = 〈â(t)〉 + δâ(t) (2.30)

= α(t) + δâ(t) (2.31)
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where 〈â(t)〉 is a c-number and δâ(t) is the fluctuation part with zero expectation value.

Coherent states are readily generated in the laboratory. A laser beam without any classical

noise is inherently in a coherent state [189].

2.2.3 Squeezed state

From the uncertainty relation of Eq. (2.13), it is possible to reduce the variance in one

quadrature at the expense of increased variance in the orthogonal quadrature. This process

is called squeezing. The squeeze operator is given by

Ŝ[r, θ, t] = exp

(
r(e−2iθâ(t)2 − e2iθ(â†(t))2)

2

)

(2.32)

where r is the squeezing parameter and θ is the squeezing quadrature angle. The squeezing

operation is performed by acting the squeeze operator on a vacuum state. The squeezed

vacuum and displaced squeezed states are given respectively by

|0, r, θ〉 = Ŝ[r, θ, t]|0〉 (2.33)

|α, r, θ〉 = D̂[α]Ŝ[r, θ, t]|0〉 (2.34)

Squeezed states can be generated via a variety of non-linear processes. Amongst the most

popular and reliable sources of squeezed light generation is via the optical parametric

oscillation (OPO) process through the χ(2) non-linearity. The χ(3) Kerr squeezing process

is also used extensively and will be described in Chapter 7.

The OPO process involves the parametric down-conversion of photons. A photon of

frequency 2ω0 is down-converted into two photons, one at frequency ω0 +ω and the other

at frequency ω0 − ω. In this pair-wise photon creation process, the total energy and

momentum are conserved. Therefore, the paired photons are quantum correlated, which

gives squeezed and entangled light.

The photon number distributions for the coherent and squeezed states are shown in

Fig. 2.1. The coherent state has a Gaussian distribution3 of photon numbers. The am-

plitude and phase squeezed states have different photon number distribution for the same

squeezing parameter. The vacuum squeezed state only contains even number of photons,

indicating pair-wise ‘clumping’ of photons, as described in the parametric down-conversion

process.

2.2.4 Density matrix and Wigner function

Density matrix

The density matrix completely describes the states of a system. In order to calculate the

probability, Pψ, of being in a particular state |ψ〉, the average over an infinite number of

ensembles has to be obtained. The average is given by [105]

〈Ô〉 =
∑

i

Pψi
〈ψi|Ô|ψi〉 (2.35)

3Strictly speaking, a coherent state has a Poissonian distribution of photon numbers. In the limit of
large photon numbers, the photon distribution is Gaussian.
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Figure 2.1: (A) Coherent state with α = 4. (B) Amplitude squeezing with r = 0.7. (C) Vacuum

squeezing with r = 1.2. (D) Phase squeezing with r = 0.7.

where Pψi
is the probability to be in state |ψi〉 and Ô is the observable operator. The equa-

tion above can be rewritten using the completeness relation in the Fock basis,
∑

n |n〉〈n|,
giving

〈Ô〉 =
∑

n

∑

ψi

Pψ〈ψi|Ô|n〉〈n|ψi〉

=
∑

n

∑

ψi

Pψi
〈n|ψi〉〈ψi|Ô|n〉

=
∑

n

〈n|ρ̂Ô|n〉 (2.36)

where the density operator is defined as

ρ̂ =
∑

ψi

Pψ|ψi〉〈ψi| (2.37)

Since the density matrix is normally expressed in the Fock state basis, the density operator

is thus given by4

ρ̂ =
∑

n

∑

m

|n〉〈n|ρ̂|m〉〈m|

=
∑

n

∑

m

ρnm|n〉〈m| (2.38)

4The density matrix can also be expressed in other bases such as the coherent state basis |α〉.
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Wigner function

In general, it is not very convenient or trivial to characterise the density matrix of a system.

Therefore, alternative representations corresponding directly to the density matrix have

been invented. These different representations describe the probability distribution of

the system. The P-representation introduced by Glauber and Sudarshan is one such

representation. It is based on normal ordering of â and â† and thus only provides a

classical probability distribution for the system5.

Wigner introduced a quasi-probability function based on symmetric ordering. This

function can take negative values and always exists. In the Schrödinger picture, the

Wigner function is given by [190]

W (〈X̂+(t)〉, 〈X̂−(t)〉) =

∫ ∞

−∞

eix〈X̂
−(t)〉

π

〈

〈X̂+(t)〉 − x

4

∣
∣
∣ρ̂
∣
∣
∣〈X̂+(t)〉 +

x

4

〉

dx (2.39)

where 〈X̂+(t)〉 and 〈X̂−(t)〉 are the mean field components of the amplitude and phase

quadratures, respectively. The Wigner function representation is useful in experiments

since the only measurement required is that of the quadrature amplitudes6.

The Wigner functions of a coherent state |α〉, squeezed state |0, r〉 and number state

|n〉 are given respectively by [192, 190, 193]

W|α〉(〈X̂+(t)〉, 〈X̂−(t)〉) =
2

π
exp

(

−(〈X̂+(t)〉 − α+(t))2 + (〈X̂−(t)〉 − α−(t))2

2

)

W|0,r〉(〈X̂+(t)〉, 〈X̂−(t)〉) =
2

π
exp

(

−〈X̂+(t)〉2e−2r + 〈X̂−(t)〉2e2r
2

)

W|n〉(〈X̂+(t)〉, 〈X̂−(t)〉) =
2

π
(−1)nLn

(

4(〈X̂+(t)〉2 + 〈X̂−(t)〉2)
)

× exp
(

−2(〈X̂+(t)〉2 + 〈X̂−(t)〉2)
)

(2.40)

where α+(t) and α−(t) are the real and imaginary parts of the mean field amplitude, r is

the squeezing parameter and Ln(x) is the Laguerre polynomial of order-n.

The Wigner functions of coherent, squeezed and one-photon Fock states are given in

Fig. 2.2. The coherent state of Fig. 2.2 (1A) shows a positive Gaussian Wigner function

with equal variances in all quadratures. The squeezed state of Fig. 2.2 (2A) shows a

positive gaussian Wigner function with asymmetric variances in the amplitude and phase

quadratures. In this instance, the phase quadrature is squeezed due to the reduced variance

with respect to the variance of the coherent state. The amplitude quadrature is anti-

squeezed with an increased variance. The one-photon Fock state of Fig. 2.2 (3A) shows a

negative-valued non-Gaussian Wigner function.

Ball-on-stick picture

Typically for Gaussian states, we can represent the state by using the standard deviation

contour. This shows the noise in the relevant quadrature, when plotted on an phasor

5The representation based on anti-normal ordering is the Q-distribution.
6To measure the Wigner function, quadrature amplitudes 〈X̂θ(t)〉 are measured from θ ∈ [0, π). Then

the inverse Radon transform is used to reconstruct the total Wigner function from its projected slices [191].



§2.2 States of light 21

diagram, as shown in Fig. 2.2. For a coherent state with coherent amplitude α, the noise

contour is displaced with respect to the origin, as in Fig. 2.2 (1B). The standard deviation

of the noise circle is 1, for a coherent or vacuum state. The squeezed state has reduced

variance in one quadrature relative to the vacuum state, as shown in Fig. 2.2 (2B). The

one-photon Fock state has a standard deviation contour shown in Fig. 2.2 (3B).
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Figure 2.2: (1A) Coherent state with α+ = 2 and α− = 3. (2A) Amplitude squeezing with

r = 0.5. (3A) Single photon Fock state.

2.2.5 Fourier domain and sideband frequency picture

Since all our measurements were performed at the sideband frequency domain, we now

re-define all the relevant field operators in the Fourier domain. The Fourier transform of
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the time domain annihilation and creation operators are given by

ã(ω) ≡ 1√
2π

∫ ∞

−∞
â(t)eiωtdt (2.41)

ã†(w) ≡ 1√
2π

∫ ∞

−∞
â†(t)eiωtdt

where by definition â†(t) = [â(t)]†. Also,

[ã(ω)]† =

[
1√
2π

∫ ∞

−∞
â(t)eiωtdt

]†
(2.42)

=
1√
2π

∫ ∞

−∞
â†(t)e−iωtdt (2.43)

⇒ [ã(−ω)]† =
1√
2π

∫ ∞

−∞
â†(t)eiωtdt (2.44)

= ã†(w) (2.45)

Following this, the frequency domain quadrature operators can be defined by taking

the Fourier transform of X̂θ(t), given by

X̃θ(ω) = F{e−iθâ(t) + eiθâ†(t)} (2.46)

= (cos θ − i sin θ)ã(ω) + (cos θ + i sin θ)[ã(−ω)]† (2.47)

= cos θ
(

ã(ω) + [ã(−ω)]†
)

+ i sin θ
(

−ã(ω) + [ã(−ω)]†
)

(2.48)

= (cos θ)X̃+(ω) + (sin θ)X̃−(ω)) (2.49)

(2.50)

where the amplitude and phase quadratures in the sideband frequency picture are given

respectively by

X̃+(ω) = ã(ω) + [ã(−ω)]† X̃−(ω) = −i
(

ã(ω) + [ã(−ω)]†
)

(2.51)

The expressions show that there are two frequency components - the positive and

negative components. These can be interpreted as sidebands centred around a carrier

frequency ω0. The positive and negative sidebands are rotating at frequencies ω0 + ω and

ω0 − ω, respectively.

Fig. 2.3 shows models of the sideband picture for coherent and squeezed light. In

Fig. 2.3 (A), the sidebands are rotating at frequencies +ω and −ω around the carrier

frequency ω0. In Fig. 2.3 (B), a sideband picture of a coherent state is shown, where

there exists un-correlated sidebands at all frequencies. For squeezed light the sidebands

are correlated across a band of frequencies, as shown in Fig. 2.3 (C).

The corresponding commutation relations in the frequency domain are given by

[

ã(ω), ã†(ω)
]

= 1 (2.52)
[

X̃+(ω), X̃−(ω)
]

= 2i (2.53)
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Figure 2.3: (A) Sideband frequency picture with sidebands rotating at frequencies +ω and −ω
around the carrier frequency ω0. Sideband picture of (B) quantum noise, (C) squeezing, (D)

amplitude modulation and (E) phase modulation.

2.2.6 Phase and amplitude modulation

A signal can be applied at the sideband frequencies. When the sidebands give a non-

zero component along the real axis, an amplitude modulation signal on the optical field

is obtained. For sidebands which give a non-zero component along the imaginary axis, a

phase modulation signal is generated.

We now model the application of a phase modulation onto a field by introducing the

imaginary modulation term, given by

âPM(t) = â(t)eiAPM cos(ωPMt) (2.54)

≃ â(t) (1 + iAPM cos(ωPMt)) (2.55)

= â(t)

(

1 +
iAPM

2
(eiωPMt + e−iωPMt)

)

(2.56)

(2.57)

where APM is the amplitude of the phase modulation signal at frequency ωPM. We have

also assumed APM ≪ 1 to simplify the expressions. Taking the Fourier transform of the

expression gives

ãPM(ω) = ã(ω) +
iAPM

2

∫ ∞

−∞

[

â(t)ei(ω+ωPM)t + â(t)ei(ω−ωPM)t
]

dt (2.58)

= ã(ω) +
iAPM

2
ã(ω + ωPM) +

iAPM

2
ã(ω − ωPM) (2.59)

where the phase modulation is composed of sidebands at ω + ωPM and ω − ωPM, with

imaginary amplitudes, as shown in Fig. 2.3 (E).

To generate amplitude modulation on the field, a real modulation term is introduced,
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given by

âAM(t) = â(t)(1 +AAM cos(ωAMt)) (2.60)

= â(t)

(

1 +
AAM

2
(eiωAMt + e−iωAMt)

)

(2.61)

(2.62)

where AAM is the amplitude of the amplitude modulation signal at frequency ωAM. Taking

the Fourier transform gives

ãAM(ω) = ã(ω) +
AAM

2

∫ ∞

−∞

[

â(t)ei(ω+ωAM)t + â(t)ei(ω−ωAM)t
]

dt (2.63)

= ã(ω) +
AAM

2
ã(ω + ωAM) +

AAM

2
ã(ω − ωAM) (2.64)

where the amplitude modulation is composed of sidebands at ω+ωAM and ω−ωAM, with

real amplitudes, as shown in Fig. 2.3 (D).

2.3 Spatial mode basis

The equations of (2.2), (2.3) and (2.8) can be simplified under the paraxial approximation

to give the paraxial wave equation describing the mean electric field envelope, given by

(
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)

〈Ê+(r, t)〉 = 0 (2.65)

Since the dependence on r is explicitly written in Eq. (2.18), and is only contained in

the modal functions un(r), the paraxial wave equation can be re-expressed as [194]

(
∂2

∂x2
+

∂2

∂y2
− 2ik

∂

∂z

)

un(r) = 0 (2.66)

A general solution of the equation above is the Hermite-Gauss modes. The normalised

spatial mode function for the Hermite-Gauss basis is given by

TEMmn(x, y, z) =

(
2

πw(z)2

)1/2 1√
m!n!2m+n

Hm

(√
2x

w(z)

)

Hn

(√
2y

w(z)

)

exp

[

−x
2 + y2

w(z)2

]

× exp

[

−ikx
2 + y2

2R(z)

]

exp (−i[n+m+ 1]φG(z)) exp(ikz) (2.67)

where the transverse beam radius, the radius of curvature of the beam wave-front, the
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Rayleigh range and the Gouy phase shift are given respectively by

w(z) = w0

√

1 +

(
z

zR

)2

(2.68)

R(z) = z +
z2

zR
(2.69)

zR =
πw2

o

λ
(2.70)

φG(z) = arctan

(
z

zR

)

(2.71)

where w0 is the waist of the beam and the Hermite polynomials are given by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
(2.72)

Other spatial mode bases also exist, such as the Laguerre-Gauss and Ince-Gauss. The

solution for the paraxial wave equation in elliptical coordinates is given by the Ince-Gauss

modes. The solution for the paraxial wave equation in the circular cylindrical coordinates

is given by the Laguerre-Gauss modes.

The Laguerre-Gauss modes are given by

LGn,l(r, φ, z) =

√
√
√
√

4n!

(1 + z2

z2
R

)π(n + l)!

1

w(z)
exp(ilφ)

(√
2r

w(z)

)l

Lln

(
2r2

w(z)2

)

exp

[

− r2

w(z)2

]

× exp

[

−ik r2

2R(z)

]

exp (−i[2n + l + 1]φG(z)) exp(ikz) (2.73)

where n is the radial number and l is the azimuthal number. The generalised Laguerre

polynomials are given by

Lln(x) =

n∑

m=0

(
n+ l

n− l

)
(−x)m
m!

(2.74)

Fig. 2.4 shows the (A) intensity and (B) amplitude of Hermite-Gauss and Laguerre-

Gauss modes as a function of transverse directions x and y. The Hermite-Gauss intensity

distribution are given by Fig. 2.4 (1A)-(3A), whilst the electric field amplitude distri-

bution are given by Fig. 2.4 (1B)-(3B). The Laguerre-Gauss intensity distribution are

given by Fig. 2.4 (4A)-(6A), whilst the electric field amplitude distribution are given by

Fig. 2.4 (4B)-(6B).

2.3.1 Changing spatial mode basis

At times, it is convenient to work in a different basis. Let us consider a change of basis

for the un(r) → vm(r) modes. The positive frequency part of the field envelope operator

is then given by

Ê+(r, t) =

∞∑

n=0

i

√

h̄ω0

2ǫ0V
ân(t)un(r) ⇒

∞∑

m=0

i

√

h̄ω0

2ǫ0V
b̂m(t)vm(r) (2.75)
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Figure 2.4: Intensity distribution for (1A) TEM00, (2A) TEM10, (3A) TEM20, (4A) LGe
10, (5A)

LGe
01 and (6A) LGe

11. Electric field amplitude distribution for (1B) TEM00, (2B) TEM10, (3B)

TEM20, (4B) LG01, (5B) LG10 and (6B) LG11. All three axes have arbitrary units.

where the photon annihilation operator for mode basis un(r) and vn(r) are given by ân(t)

and b̂n(t), respectively.

In order to perform the basis change, the mode-overlap integral is calculated, given by

∞∑

n=0

ân(t)

∫ ∞

−∞
un(r)uk(r)dr =

∞∑

m=0

b̂m(t)

∫ ∞

−∞
vm(r)uk(r)dr (2.76)

ân(t) =

∞∑

m=0

b̂m(t)

∫ ∞

−∞
vm(r)un(r)dr (2.77)

=

∞∑

m=0

b̂m(t)Cnm(r) (2.78)

where Cnm(r) are the coefficients of the overlap integral between modes un(r) and vm(r).
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2.4 Detection

In continuous-variable quantum optics, many types of detection techniques are used. A

selection of the most commonly used detection schemes are shown in Fig. 2.5. To mea-

sure an intensity or amplitude signal, a single direct detector as in Fig. 2.5 (B) can be

used. In order to perform a phase sensitive measurement, an interferometric scheme as

in Fig. 2.5 (C) is used. These detectors provide amplitude and phase information as a

function of time or frequency. However, the detectors provide very limited information

on the spatial properties of the optical beam. In order to measure the transverse spatial

modes of a field, an array detector as shown in Fig. 2.5 (D) is used. Other simplified array

detectors such as the one-dimensional split detector (Fig. 2.5 (E)) or the two-dimensional

quadrant detector are commonly used to detect beam displacements and tilt.

(A)

(B) (C)

(E)

E1

(D)

π

-

--

θ

E2

E3

ELO

E1 E1
E2

E3

ELO

E1
EL

ER

Figure 2.5: (A) A beam-splitter, with input fields Ê1 and ÊLO. The output fields are labelled by

Ê2 and Ê2. Field Ê1 undergoes a hard-reflection at the beam-splitter resulting in a π phase shift

imposed on the field. (B) Direct detection. (C) Mach-Zehnder based homodyne detection. (D)

Array detection. (E) Split detection.

2.4.1 Direct detection

We now consider the direct detection of a laser beam on a single photo-detector, as shown

in Fig. 2.5 (B). This process is phase insensitive as it can only measure amplitude signals
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of the beam. We model the detected signal by calculating the photo-current7, given by

i1(ω) =
2ǫ0V

h̄ω0

∫ ∞

−∞

(

Ẽ+(r, ω)
)†

Ẽ+(r, ω)dr (2.79)

=

∫ ∞

−∞

∞∑

j,k=0

(

αj(ω)uj(r) + δã†j(ω)uj(r)
)(

αk(ω)uk(r) + δãk(ω)uk(r)
)

dr

=
∞∑

j=0

(

αj(ω)2 + αj(δãj(ω) + δã†j(ω)) + δã†jδãj(ω)
)

=

∞∑

j=0

(

αj(ω)2 + αj(ω)δX̃+
j (ω)

)

(2.80)

where we have utilised the linearisation approximation where terms δã†jδãj(ω) ≪ α2
j (ω)

are neglected. We also work in the frame where α∗
j = αj . In the above expression the

overlap integral between orthogonal modes is zero as shown in Eq. (2.17). Therefore direct

detection only gives the amplitude quadrature of the field. The detected signals correspond

to
∑

j αj(ω)2 whilst the noise terms are given by
∑

j αj(ω)δX̃+
j (ω), with the scaling of

αj(ω).

Now we take the usual case where only one mode has a coherent amplitude α0(ω), that

corresponds to the u0(r) mode. Thus the photo-current reduces to

i1(ω) = α0(ω)2 + α0(ω)δX̃+
0 (ω) (2.81)

where only the amplitude quadrature signal and noise corresponding to mode u0(r) are

detected. This result is expected as the signal is only contained in the u0(r) mode and

thus the only contributing noise mode is that corresponding to the u0(r) mode as well.

2.4.2 Homodyne detection

In order to perform a phase-sensitive measurement, a reference phase (or ‘clock’) has to

be used. Such a measurement scheme involves an interferometric scheme and there exist

many variations of interferometers. The most commonly used interferometer in quantum

optics is the Mach-Zehnder interferometer. Before we proceed to model the Mach-Zehnder-

based homodyne detector, the quantum effects of a beam-splitter on an input field has to

be considered.

The beam-splitter

A schematic of the beam-splitter with input beams is shown in Fig. 2.5 (A). Input beam

Ẽ+
1 (ω) is the beam to be measured, whilst Ẽ+

LO(ω) serves as the local oscillator (phase

reference) beam. The two output beams of the beam-splitter are denoted by Ẽ+
2 (ω) and

Ẽ+
3 (ω). Since beam Ẽ+

1 (ω) undergoes a hard-reflection at the beam-splitter, a π phase

7This is assuming that every photon is converted into an electron in the detector photo-current.
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shift is obtained due to Fresnel reflection. The output electric field operators are given by

Ẽ+
2 (ω) =

1√
2

(

Ẽ+
LO(ω) − eiθẼ+

1 (ω)
)

(2.82)

=
1√
2



β0(ω)u0(r) +

∞∑

j=0

δb̃j(ω)uj(r) − eiθα0(ω)u0(r) − eiθ
∞∑

j=0

δãj(ω)uj(r)





Ẽ+
3 (ω) =

1√
2

(

Ẽ+
LO(ω) + eiθẼ+

1 (ω)
)

(2.83)

=
1√
2



β0(ω)u0(r) +

∞∑

j=0

δb̃j(ω)uj(r) + eiθα0(ω)u0(r) + eiθ
∞∑

j=0

δãj(ω)uj(r)





where a phase factor eiθ is explicitly introduced and θ is the phase between beam 1 and

the local oscillator. We also assume the local oscillator and the input beams only have

coherent excitation in the mode-shape u0(r). β0 and α0 are the coherent amplitudes of

the local oscillator and input beams, respectively.

Mach-Zehnder-based homodyne detection

The output beams 2 and 3 are detected on their respective detectors, as shown in

Fig. 2.5 (C). The corresponding photo-currents for beams 2 and 3 are given respectively,

by

i2(ω) =
2ǫ0V

h̄ω0

∫ ∞

−∞

(

Ẽ+
2 (ω)

)†
Ẽ+

2 (ω)dr (2.84)

=
1

2

(
β0(ω)2 + α0(ω)2 − 2β0(ω)α0(ω) cos θ

)

+
1

2

(

β0(ω)δX̃+
b0

(ω) − β0(ω)δX̃−θ
a0 (ω) − α0(ω)δX̃θ

b0(ω) + α0(ω)δX̃+
a0(ω)

)

i3(ω) =
2ǫ0V

h̄ω0

∫ ∞

−∞

(

Ẽ+
3 (ω)

)†
Ẽ+

3 (ω)dr (2.85)

=
1

2

(
β0(ω)2 + α0(ω)2 + 2β0(ω)α0(ω) cos θ

)

+
1

2

(

β0(ω)δX̃+
b0

(ω) + β0(ω)δX̃−θ
a0 (ω) + α0(ω)δX̃θ

b0(ω) + α0(ω)δX̃+
a0(ω)

)

We now take the subtraction of the photo-currents 2 and 3, given by

i−(ω) = i3(ω) − i2(ω) = 2β0(ω)α0(ω) cos θ + β0(ω)δX̃−θ
a0 (ω) (2.86)

where we have used the assumption that the local oscillator is more intense than input

beam 1, β0 ≫ α0. We can also see that the local oscillator signal and noise terms are

cancelled out in this process - a process called common-mode subtraction. The equation

above is dependent on the phase θ. By setting the phase θ = 0 and θ = π/2, respectively,

the amplitude and phase quadratures of the input beam 1 are obtained.

When the sum of the photo-currents 2 and 3 are taken, we obtain

i+(ω) = i3(ω) + i2(ω) = β0(ω)2 + β0(ω)δX̃+
b0

(ω) (2.87)

which has the same form as Eq. (2.80), as expected. However, in this case, it is the local
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oscillator amplitude quadrature that is detected because β0 ≫ α0.

2.4.3 Array detection

In order for a detector to measure the beam mode and intensity distribution, an array de-

tector is required. The array detector consists of an array of pixels, each with a transverse

area Dj . The photo-current of the light beam at each pixel is then given by

iDj
(ω) =

2ǫ0V

h̄ω0

∫

Dj

(

Ê+(r, ω)
)†

Ê+(r, ω)dr (2.88)

We can obtain information from the image by computing a function dependent on the

intensities of every pixel in the detector.

M(Dj(ω)) =
N∑

j=0

gjiDj
(ω) (2.89)

where N is the total number of pixels and gj is the gain for each pixel8. In the limit that

the pixel size is infinitessimally small, we obtain

M(ω) =

∫ ∞

−∞
g(r)iD(ω)dD (2.90)

where D is an infinitessimal pixel area on the idealised array detector.

2.4.4 Split detection

The split detector is the most basic form of the array detector. It is commonly used to

detect beam displacements and tilt along one transverse axis. The photo-currents on the

left and right hand side of the split detector are given respectively by

iL(ω) =
2ǫ0V

h̄ω0

∫ 0

−∞

(

Ê+(r, ω)
)†

Ê+(r, ω)dr (2.91)

=
∞∑

n,m=0

(

αn(ω) + δã†n(ω)
)(

αm(ω) + δãm(ω)
) ∫ 0

−∞
un(r)um(r)dr

iR(ω) =
2ǫ0V

h̄ω0

∫ ∞

0

(

Ê+(r, ω)
)†

Ê+(r, ω)dr (2.92)

=
∞∑

n,m=0

(

αn(ω) + δã†n(ω)
)(

αm(ω) + δãm(ω)
) ∫ ∞

0
un(r)um(r)dr

(2.93)

The sum of the photo-currents gives

iL(ω) + iR(ω) =

∞∑

n,m=0

(

αn(ω) + δã†n(ω)
)(

αm(ω) + δãm(ω)
) ∫ ∞

−∞
un(r)um(r)dr

= αn(ω)2 + αn(ω)δX̃n(ω) (2.94)

8We have assumed here that the function is linear but this could in principle have non-linear dependence
on the pixel intensities.
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which is exactly of the same form as Eq. (2.80), since the split detector in sum mode is

effectively a direct detector.

The difference photo-current is given by

iL(ω) − iR(ω) =

∞∑

n,m=0

(

αn(ω) + δã†n(ω)
)(

αm(ω) + δãm(ω)
) [∫ 0

−∞
−
∫ ∞

0

]

un(r)um(r)dr

(2.95)

2.4.5 Power spectral variance

The power spectral variance is a measure of the amount of power in the fluctuations of

a field, within some bandwidth9, centred around a sideband frequency ω. In continuous-

variable quantum optics experiments, the spectrum analyser is often used to measure the

power spectral variance of the photo-current, given by [195]

VD(ω) = 〈(δi(ω))2〉 (2.96)

where δi(ω) is the photo-current fluctuation term. Substituting Eq. (2.86), we obtain

V θ
D(ω) = β0(ω)2〈(δX̃θ

a0(ω))2〉 (2.97)

= β0(ω)2V θ
a0(ω) (2.98)

We can see in this expression that the power spectral variance of the field scales with the

optical power of the beam (in this case of homodyne detection, the scaling follows the

local oscillator power), β0(ω)2. It is common to normalise the power spectral variance

with respect to the optical power of the beam, giving

V θ(ω) =
VD(ω)

β0(ω)2
= V θ

a0(ω) (2.99)

For coherent or vacuum beams, the normalised power spectral variance is given by V θ(ω) =

1, whilst for squeezed states, V θ(ω) < 1.

2.5 Einstein-Podolsky-Rosen (EPR) Entanglement

Continuous-variable EPR entanglement in the amplitude and phase quadratures can be

generated by combining two squeezed beams with an appropriate phase shift θ1, on a 50:50

beam-splitter, as shown in Fig. 2.6. The two input squeezed beams are labelled by 1 and

2, whilst the output entangled beams are labelled by 3 and 4. The two entangled beams

are measured in the amplitude and phase quadratures.

9This defines the resolution bandwidth of the measurement device.
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Figure 2.6: The input and output beams are labelled by Ê1,2 and Ê3,4, respectively. The phase

between the two input beams is given by θ1. The local oscillator beams are labelled by ÊLO, with

phases θ2 and θ3. All beam-splitters in the figure are 50:50 beam-splitters.

The electric field operators for beams 3 and 4 are given respectively by

Ẽ3(ω) =
1√
2

(

eiθ1 Ẽ2(ω) − Ẽ1(ω)
)

(2.100)

=

∞∑

j=0

i

√

h̄ω0

2ǫ0V

√

1

2

(

eiθ1δb̃j(ω)uj(r) − δãj(ω)uj(r)
)

(2.101)

Ẽ4(ω) =
1√
2

(

eiθ1 Ẽ2(ω) + Ẽ1(ω)
)

(2.102)

=
∞∑

j=0

i

√

h̄ω0

2ǫ0V

√

1

2

(

eiθ1δb̃j(ω)uj(r) + δãj(ω)uj(r)
)

(2.103)

where the squeezed beams are assumed to not have any coherent amplitude. The photon

annihilation operators corresponding to beams 2 and 1 are given by δb̃j(ω) and δãj(ω),

respectively.

The detection system used to measure the amplitude and phase quadratures of beams

3 and 4 is homodyne detection. The homodyne detection system was described in detail

in Section 2.4. We now assume beams 1 and 2 to be θ1 = π/2 out of phase. The detected
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photo-current corresponding to beams 3 and 4 are thus respectively given by

iθ23−(ω) =
1

2

∫ ∞

−∞

∞∑

j,k=0

[
(√

1

2

(

iδb̃j(ω)uj(r) − δãj(ω)uj(r)
)

+ eiθ2γ0u0(r) + eiθ2δg̃j(ω)uj(r)

)†

×
(√

1

2

(

iδb̃k(ω)uk(r) − δãk(ω)uk(r)
)

+ eiθ2γ0u0(r) + eiθ2δg̃k(ω)uk(r)

)

−
(√

1

2

(

iδb̃j(ω)uj(r) − δãj(ω)uj(r)
)

− eiθ2γ0u0(r) − eiθ2δg̃j(ω)uj(r)

)†

×
(√

1

2

(

iδb̃k(ω)uk(r) − δãk(ω)uk(r)
)

− eiθ2γ0u0(r) − eiθ2δg̃k(ω)uk(r)

)
]

dr

=
γ0

2

(

δX̃θ2
a0 (ω) − δX̃

θ2−π
2

b0
(ω)
)

(2.104)

iθ34−(ω) =
1

2

∫ ∞

−∞

∞∑

j,k=0

[
(√

1

2

(

iδb̃j(ω)uj(r) + δãj(ω)uj(r)
)

+ eiθ3γ0u0(r) + eiθ3δg̃j(ω)uj(r)

)†

×
(√

1

2

(

iδb̃k(ω)uk(r) + δãk(ω)uk(r)
)

+ eiθ3γ0u0(r) + eiθ3δg̃k(ω)uk(r)

)

−
(√

1

2

(

iδb̃j(ω)uj(r) + δãj(ω)uj(r)
)

− eiθ3γ0u0(r) − eiθ3δg̃j(ω)uj(r)

)†

×
(√

1

2

(

iδb̃k(ω)uk(r) + δãk(ω)uk(r)
)

− eiθ3γ0u0(r) − eiθ3δg̃k(ω)uk(r)

)
]

dr

=
γ0

2

(

δX̃θ3
a0 (ω) + δX̃

θ3−π
2

b0
(ω)
)

(2.105)

where the local oscillator has coherent amplitude γ0 in the mode u0(r). The noise terms

corresponding to the local oscillator beam are given by δg̃j(ω).

A signature of entanglement is the presence of quantum correlation and anti-correlation

in the conjugate observables. By computing the sum and difference between the photo-

current signals for the amplitude and phase quadratures, respectively, the following are

obtained
〈(
i+N4−(ω) + i+N3−(ω)

)2
〉

= γ0

〈

(δX̃+
b0

(ω))2
〉

→ 0 (2.106)
〈(
i−N4−(ω) − i−N3−(ω)

)2
〉

= γ0

〈

(δX̃+
a0(ω))2

〉

→ 0 (2.107)

where we have assumed beams 1 and 2 to be amplitude squeezed,
〈

(δX̃+
b0

(ω))2
〉

→ 0

and
〈

(δX̃+
a0(ω))2

〉

→ 0. The simultaneous reduction in noise on the correlation and anti-

correlation signals in the amplitude and phase quadratures, respectively, is the signature

of entanglement.
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2.6 Classical control

2.6.1 Classical control theory

Experimental parameters often drift with time. There are many causes for these experi-

mental drifts, such as the contraction and expansion of components due to temperature

changes as well as the presence of external mechanical and acoustic noise sources. There-

fore, in order to impose stability to the experiment, control is necessary. We will consider

the most basic first-order feedback control system [196], shown in Fig. 2.7.

- G(ω)

H(ω)

ξ (ω)i ξ  (ω)oξ  (ω)e

Figure 2.7: The input, error and output signals are given by ξi(ω), ξe(ω) and ξo(ω), respectively.

The transfer functions for the system and the feedback controller are given by G(ω) and H(ω),

respectively.

We will model the feedback loop by first considering the perturbation on an input

signal ξi(ω) by a system with transfer function G(ω). The corresponding output signal is

given by ξo(ω). In order to counter-act the perturbation introduced in G(ω), the output

signal has to be fed-back through a ‘feedback controller’, with transfer function H(ω).

The signal from H(ω) is then recombined with the input signal to yield an error signal

ξe(ω), which now forms the total effective input signal into system G(ω). We now derive

the transfer function of the feedback scheme, by considering the coupled equations given

by

ξe(ω) = ξi(ω) −H(ω)ξo(ω) (2.108)

ξo(ω) = G(ω)ξe(ω) (2.109)

Solving these two equations gives the transfer function of the total system

ξo(ω)

ξi(ω)
=

G(ω)

1 +G(ω)H(ω)
(2.110)

For G(ω)H(ω) = −1, the denominator of Eq. (2.110) is 0, giving an unstable feedback

system. Eq. (2.110) is a very important equation and forms the main consideration for

the design of all the feedback loops used in the experiments of this thesis10.

Now that the fundamentals of a feedback system are established, we proceed to describe

the various methods of deriving error signals.

10Our feedback controllers (servo systems) are designed to have a 1/f roll-off as a function of frequency
ω. This is to provide enough gain for lower frequencies and reducing the gain at higher frequencies to avoid
the unstable point of -1 in the Nyquist plot of the transfer function for the feedback system. Additional
gain can be provided at lower frequencies by the use of an integration stage in the feedback controller. More
sophisticated designs of servo controls include a sharp elliptic filter to remove resonances in the system.
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2.6.2 Power difference error signal

Suppose that phase quadrature detection is required in an interferometer. Therefore the

interferometer is to be stabilised at the half fringe of the interference signal, where the

powers at the two outputs of the interferometer are equal. An error signal can therefore

be obtained by taking the power difference of the signals from the two outputs of the

interferometer. The error signal is given by the signal term of Eq. (2.86), giving

〈iE(t)〉 = 2β0(t)α0(t) cos θ(t) (2.111)

where β0(t) and α0(t) are the coherent amplitudes of the two input beams of the interfer-

ometer. θ(t) is the phase difference between the two input fields of the interferometer.

The zero point of the error signal occurs when the input beams are π/2 out-of-phase. In

order to stabilise the system, any deviation from the zero-point error signal will require a

counter-action on the phase θ(t), which is provided by the error signal (with an appropriate

phase).

2.6.3 Pound-Drever-Hall (PDH) error signal

The Pound-Drever-Hall (PDH) technique of stabilisation is a very popular technique used

in performance applications. The PDH technique is based on the application of a phase

modulation to the laser beam [197]. It relies on the dispersion of a system to provide phase

shifts on the modulation signal, converting it into an error signal dependent on the phase

shift. We consider the signal terms of Eq. (2.85) with an input signal containing phase

modulation, given by eiθ(t)(α0(1 + iAPM sin(ωPMt)). Thus the signal terms of Eq. (2.85),

becomes

〈i3(t)〉 =
1

2

(

β2
0 + α2

0 + 2β0α0 cos θ(t)

+α2
0A

2
PM sin2(ωPMt) − 2β0α0APM sin θ(t) sin(ωPMt)

)

(2.112)

where β0(t) and α0(t) are the coherent amplitudes of the two input beams of the interfer-

ometer. θ(t) is the phase difference between the two input fields of the interferometer. APM

and ωPM are the amplitude and frequency of the phase modulation signal, respectively.

We assume that one input beam is more intense than the other input beam of the

interferometer. The modulation amplitude is also assumed to be small where, β0 ≫
α0, APM. Therefore Eq. (2.112) reduces to

〈i3(t)〉 =
1

2

(

β2
0 + 2β0α0 cos θ(t) − 2β0α0APM sin θ(t) sin(ωPMt)

)

(2.113)

The detected photo-current is demodulated at frequency ωPM, via a multiplication of the

photo-current with the modulation signal, giving

〈i3(t)〉 sin(ωPMt) =
1

2

(

β2
0 sin(ωPMt) + 2β0α0 cos θ(t) sin(ωPMt)

−2β0α0APM sin θ(t)

[
1

2
− cos(2ωPMt)

2

])

(2.114)
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We now apply a low-pass filter which filters all signals with frequency ≥ ωPM, giving

〈iE(t)〉 = −1

2
β0α0APM sin θ(t) (2.115)

The zero point of the error signal occurs when the input beams are in-phase. The stabili-

sation at the zero/full-fringe of the interferometer gives a detected amplitude signal.

Note that these techniques can be extended to multiple-beam interferometers, optical

cavities, atomic samples and another systems which are dispersive.

2.7 Summary

We have presented the basic quantum optics formalism necessary for understanding the

other work described in this thesis.



Chapter 3

Optimal spatial variable

measurement

Reductio ad absurdum.

- Zeno

In the 3rd century B.C., there lived King Hiero in Syracuse, Sicily and King Hiero

wore a golden crown to celebrate his royalty. One day, King Hiero heard rumours that

his royal goldsmith was stealing royal gold and using a silver-gold alloy instead to make

jewellery for the king. The king was faced with a dilemma as he did not know how to

prove if this was indeed the case. Thereafter, the task of determining precisely the gold

content of the royal crown was given to Archimedes. Archimedes was familiar with the

concept of densities and that silver was less dense than gold. However, Archimedes was

puzzled and could not think of a way to measure the density of the royal crown precisely,

without having to reshape it into the shape of a gold bullion, for a weight comparison.

One day, while Archimedes was entering the bath tub, he observed that the water level

rose correspondingly to how much he was submerged in the water. With this, he realised

immediately that he had the solution for measuring the density of the royal crown precisely

and ran around town shouting ‘Eureka! Eureka!’.

Like Archimedes in ancient times, humans today, are interested in measuring phys-

ical quantities precisely and optimally. In continuous-wave optics, measurements of the

three mechanical degrees of freedom of a beam are very important. Often it is required

to stabilise the positioning of a laser beam for interferometric measurements and for com-

munication between satellites separated by large distances [198, 199]. On the microscopic

level, highly precise control of the rotation and displacement of a biological cell is required,

thus demanding highly precise properties of an ‘optical tweezer’ beam [200]. Tradition-

ally, beam displacement and tilt were measured using a simplified array detector - the split

detector [155, 156, 198, 199, 151, 152, 153, 154]. For orbital angular momentum measure-

ments, a holographic filter is normally used to filter out the mode component corresponding

to orbital angular momentum and the power in that mode is detected [201, 202].

In this chapter, we ask the question that King Hiero asked more than 2 millennia ago

- “How do we know if the royal goldsmith is lying to us and stealing our gold?” or rather,

“How do we know if our spatial variable measurements are optimal and that we are de-

tecting the maximum signal possible?”. We approach this problem by investigating the

“noise modes” associated with these various mechanical degrees of freedom. The “noise

modes” are the vacuum noise components which are in the same spatial and frequency

mode as the signal component. In order for a measurement scheme to detect the signal

37
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and its relevant noise component only, the measurement scheme has to be ‘tailored’ to be

optimal in its detection efficiency. Our analysis shows that the “noise modes” correspond-

ing to beam displacement and tilt do not correspond to the “detection mode” of a split

detector. The “detection mode” of a detector is the mode which is specifically detected

by the detector and depends on the detector geometry. Therefore split detection is not

the optimal detection scheme for beam displacement and tilt.

This chapter considers the specific example of beam displacement of a TEM00 mode

and we show that split detection only measures beam displacement with ∼ 80% efficiency.

Our analysis also applies to beam tilt and this is discussed in more detail in the fol-

lowing chapter. We propose an optimal scheme to perform beam displacement and tilt

measurements, based on homodyne detection, with specifically tailored local oscillator

mode-shapes. Our scheme can be adapted relatively easily to measure beam orbital angu-

lar momentum as well. We show that although the quantum noise limit to displacement

measurements can be surpassed using squeezed light in appropriate spatial modes for both

split and homodyne detection, the homodyning scheme out-performs split detection for

all values of squeezing.

The work in this chapter has been published in the journal articles:

• M. T. L. Hsu, V. Delaubert, P. K. Lam, and W. P. Bowen, “Optimal optical mea-

surements of small displacements”, Journal of Optics B: Quantum and Semiclassical

Optics 6, 495 (2004).

• N. Treps, N. Grosse, W. P. Bowen, M. T. L. Hsu, A. Mâıtre, C. Fabre, H.-A. Ba-

chor, and P. K. Lam, “Nano-displacement measurements using spatially multimode

squeezed light”, Journal of Optics B: Quantum and Semiclassical Optics 6, S664

(2004).

• H.-A. Bachor, V. Delaubert, C. C. Harb, M. T. L. Hsu, P. K. Lam, C. Fabre, and

N. Treps, “Spatial quantum effects with continuous-wave laser beams”, Journal of

Modern Optics 53, 597 (2006).

3.1 Introduction

Efficient techniques for performing optical beam displacement measurements are crucial

for many applications. When an optical beam is reflected from, or transmitted through,

an object that is moving, the mechanical movement can be translated to a movement of

the optical beam. Characterisation of the transverse position of this beam then yields

an extremely accurate measurement of the object movement. Some example applications

that use these techniques are: Atomic force microscopy, where a beam displacement mea-

surement is used to characterise the vibration of a cantilever, and the force the cantilever

experiences [155, 156]; inter-satellite position stabilisation, where a displacement measure-

ment allows a receiving satellite to orient itself to an optical beam sent by another satellite,

thus allowing a reduction of non-common mode positional vibrations between satellites

[198, 199]; and optical tweezer, where the position of particles held in an optical tweezer

can be detected and controlled by measuring the position of the beam [151, 152, 153, 154].

An understanding of the fundamental limits imposed on these opto-mechanical positional

measurements is therefore important.

Recently there has been increasing interest, both theoretical [203] and experimental

[204, 1, 205], in using quantum resources to enhance optical displacement measurements.
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Much of the interest has been on how multi-mode squeezed light can be used to enhance

the outcome of split detector and array detector measurements. This is an important

question since split detectors and arrays are the primary instruments presently used in

displacement measurements and imaging systems.

In spite of the successes in using multi-mode squeezed light to achieve displacement

measurements beyond the quantum noise limit (QNL), we will show in this chapter that

split detection is not an optimum displacement measurement. Assuming that the beam

under interrogation is a TEM00 beam, we perform a multi-modal analysis to derive the

QNL for optical displacement measurements. We then analyse split detection, the conven-

tional technique used to characterise beam displacement, and compare it to the QNL. We

find that displacement measurement using split detection is not quantum noise limited,

and is at best only ∼ 80 % efficient. As an alternative, we consider a new homodyne de-

tection scheme, utilising a TEM10 mode local oscillator beam. We show that this scheme

performs at the QNL in the limit of small displacement. This technique, which we term

TEM10 homodyne detection, has the potential to enhance many applications presently

using split detectors to measure displacement. Furthermore, the QNL for optical displace-

ment measurement can be surpassed by introducing a squeezed TEM10 mode into the

measurement process.

3.2 Displacement Measurement

3.2.1 Quantum Noise Limit

The position of a light beam can be defined as the mean position of all photons in the

beam. Beam displacement is then quantified by the amount of deviation of this mean

photon position from some fixed reference axis. In this chapter, we assume that the

displaced beam has a transverse TEM00 mode-shape. To simplify our analysis, we assume,

without loss of generality, a one-dimensional transverse displacement d from the reference

axis. The normalised transverse beam amplitude function for a displaced TEM00 beam,

assuming a waist size of w0, is given by

u0(x− d) =

(
2

πw2
0

)1/4

exp

[

−
(
x− d

w0

)2
]

(3.1)

The transverse intensity distribution for a beam with a total of N photons is then given

by 〈I〉 = Nu2
0(x− d). This equation essentially describes the normalised Gaussian spatial

distribution of photons along one transverse axis of the optical beam.

To provide a simple and concise derivation of the QNL of optical displacement mea-

surement we first make two observations - the TEMmn modes are equivalent in quantum

and classical treatments and the displacement QNL is the optimum sensitivity achievable

when no spatial quantum correlations are present (i.e. when a spatial basis can be chosen

in which only one spatial mode is occupied [206]). It follows that if the beam is in a coher-

ent state, each photon in the beam is spatially uncorrelated to that of all other photons.

Thus for a TEM00 beam, the spatial wavefunction of each photon is defined by the TEM00

mode-shape in Eq. (3.1). Therefore, the QNL of optical displacement measurement on a

coherent TEM00 beam can be calculated directly from the arrival statistics of an ensemble

of uncorrelated photons with spatial distribution governed by the TEM00 mode-shape.

Consequently a detector which discriminates the transverse position of each photon will
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provide the maximum possible information about the displacement of the beam. Such

discrimination could, for example, be achieved using an infinite single photon resolving

array with infinitesimally small pixels. Although in reality such a detection device is un-

feasible, it nevertheless sets a bound to the information obtainable for beam displacement

without resorting to quantum resources. This bound therefore constitutes a quantum

noise limited displacement measurement. More practical detection schemes can therefore

be benchmarked against this limit.

Let us now examine an optimum measurement of beam displacement using our idealised

array detector. Using equation (3.1), the probability distribution of locating photons along

the x-axis of the detector is given by

P (x) =

√

2

πw2
0

exp

[

−2

(
x− d

w0

)2
]

(3.2)

As each photon in the beam impinges on the array, a single pixel is triggered, locating that

photon. The beam displacement is given by the mean photon arrival co-ordinate, 〈x〉, for

an infinitely large ensemble of photons. The uncertainty in the measurement of the beam

displacement is given by the standard deviation ∆d of the spatial distribution of photon

arrivals. The respective mean and standard deviation are then expressed as

〈x〉 =

∫ ∞

−∞
xP (x)dx = d, (3.3)

∆d =

√
∫ ∞

−∞
x2P (x)dx− d2 =

w0

2
. (3.4)

Since we possess a priori knowledge of the mode-shape of the beam, the arrival of a single

photon can therefore give us an estimate of the displacement of our beam with a standard

deviation given by ∆d. For N photons, the standard deviation becomes ∆dQNL = ∆d/
√
N .

The minimum displacement discernible by a given detection apparatus is directly related

to the sensitivity of the apparatus, defined here as the derivative of the mean signal divided

by its standard deviation. For infinite array detection, the signal expectation value is equal

to the displacement. Thus the QNL for optimal displacement measurement sensitivity is

given by

SQNL =
1

∆dQNL
=

2
√
N

w0
(3.5)

A plot of SQNL as a function of displacement is shown in Fig. 3.4. Since all pixels in

the array are assumed to be identical, the standard deviation ∆dQNL is independent of

displacement. We therefore observe that SQNL is constant for all displacements. SQNL

is also proportional to
√
N due to the quantum noise limited nature of the beam. Fi-

nally, the inverse scaling with waist size w0 suggests that the accuracy of a displacement

measurement can be enhanced by focussing the beam to a smaller waist.

3.2.2 Split Detection

In the previous section, we saw how an idealised array detector can be used to perform

quantum noise limited displacement measurements. Implementation of such a detector,

however, is clearly impractical. The most common technique for displacement measure-

ment is split detection [156, 204, 1]. In this scheme, the beam under interrogation is
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incident centrally on a split detector. The difference between the two photo-currents of

the two halves then contains information about the displacement of the beam (see Figure

3.1).

-

SD

Displaced beam

Reference axis
d

Figure 3.1: Split detection. The difference photo-current of the two halves measures the beam

displacement, d.

At this stage we must introduce a more methodical representation of the beam. A

beam of frequency ω can be represented by the positive frequency part of the electric field

operator Ê+
ine

iωt. We are interested in the transverse information of the beam which is

fully described by the slowly varying field envelope operator Ê+
in . We express this operator

in terms of the displaced TEMn0 basis modes, where n denotes the order of the x-axis

Hermite-Gauss mode. Since this chapter considers one-dimensional beam displacement,

we henceforth denote the beam amplitude function for the transverse modes with only one

index. Ê+
in can then be written as

Ê+
in = i

√

h̄ω

2ǫ0L

∞∑

n=0

ânun(x− d) (3.6)

where un(x − d) are the transverse beam amplitude functions for the displaced TEMn0

modes, L is a quantisation longitudinal length and ân are the corresponding annihilation

operators. ân is normally expressed as ân = αn + δân, where αn = 〈ân〉 is the coherent

amplitude and δân is a quantum noise operator. Since the beam is assumed to be a TEM00

mode, only this mode has coherent excitation and therefore only α0 is nonzero. The field

operator is then given by

Ê+
in = i

√

h̄ω

2ǫ0L

(
√
Nu0(x− d) +

∞∑

n=0

δânun(x− d)

)

(3.7)

where α0 =
√
N .

The difference photo-current, which provides information on the displacement of the

beam relative to the centre of the detector, is given by

n̂− = n̂x<0 − n̂x>0

=
2ǫ0L

h̄ω

[∫ 0

−∞
dx(Ê+

in)†Ê+
in −

∫ ∞

0
dx(Ê+

in)†Ê+
in

]

(3.8)

where n̂x<0 and n̂x>0 are the photon number operators for the left and right halves of the

detector, respectively.
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Flipped mode basis

Eq. (3.8) can be simplified by changing bases from the TEMn0 basis, to a TEMn0 basis

that has a π-phase flip at the centre of the detector [207, 203]. We denote the flipped

mode basis as the TEMfn0 basis. This new basis is termed the flipped mode basis and is

defined by

vn(x, d) =

{
un(x) for x > d

−un(x) for x < d
(3.9)

where we denote annihilation operators for this basis as b̂n. The first three intensity and

amplitude distribution for the flipped modes are shown in Fig. 3.2.

-3 -2 -1 0 1 2 3 -3
-2

-1
0

1

2
3

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-3 -2 -1 0 1 2 3 -3
-2

-1
0

1
2

3

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(1B) (2B)

x

y

xxx

Amplitude

Amplitude

Amplitude

y yy

(1A) (2A) (3A)

x

y y

x

(1B) (3B)(2B)

Figure 3.2: Transverse intensity profiles of the (1A) TEMf00, (2A) TEMf10 and (3A) TEMf20

modes. The amplitude distribution function for the (1B) TEMf00, (2B) TEMf10 and (3B) TEMf20

modes.

If the incident TEM00 field is bright, such that N ≫ |〈δâ2
n〉| for all n, the difference

photo-current n̂− can be written compactly as

n̂− =
√
N
(√

Nζ0 + δŶ +
0

)

(3.10)

where Ŷ +
0 is the amplitude quadrature operator associated with our new flipped basis,

given by Ŷ +
0 = 〈Ŷ +

0 〉+ δŶ +
0 = b̂0 + b̂†0; and ζ0(d) =

∫∞
−∞ v0(x, d)u0(x− d)dx is the overlap

coefficient between the first flipped mode and the displaced TEM00 mode. The beam

displacement can be inferred from the mean photo-current

〈n̂−〉 = Nζ0, (3.11)

where the standard deviation of the photo-current noise is given by ∆n̂− =
√

〈n̂2
−〉 − 〈n̂−〉2 =

√
N∆Ŷ +

0 . For a coherent field, ∆Ŷ +
0 = 1, making ∆n̂− =

√
N .

Figure 3.3 (i) shows the normalised difference photo-current 〈n̂−〉/N as a function of

beam displacement, d, for split detection. We see that for small displacements where d≪
w0, the normalised difference photo-current is linearly proportional to the displacement
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Figure 3.3: Mean value of the normalised difference photo-current, 〈n̂−(d)〉/N , as a function of

beam displacement, d, for (i) split and (ii) TEM10 homodyne detection.

and can be approximated by

〈n̂−〉d≪w0 = Nζ0,d≪w0 ≈
√

2

π

2Nd

w0
(3.12)

As d approaches the waist size of the beam, w0, the normalised difference photo-current

begins to roll off and asymptotes to a constant for larger d. This can be easily understood,

since for d≫ w0 the beam is incident almost entirely on one side of the detector. In this

regime, large beam displacements only cause small variations in 〈n̂−〉, making is difficult

to determine the beam displacement precisely.

The noise of our displacement measurement, ∆dSD, is then related to the noise of the

difference photo-current, ∆n̂−, via

∆dSD =
∂d

∂〈n̂−〉
∆n̂− (3.13)

giving a sensitivity of

SSD =
1

∆dSD
=
∂〈n̂−〉
∂d

1√
N

=
∂ζ0
∂d

√
N (3.14)

for a coherent state. This sensitivity is plotted as a function of displacement in Fig-

ure 3.4 (i). In the region of small displacement, we have

SSD,d≪w0 ≈
√

2

π

2
√
N

w0
(3.15)

The efficiency of split detection for small displacement measurement is therefore given by

the ratio

ǫSD =
SSD,d≪w0

SQNL
=

√

2

π
∼ 80% (3.16)

This
√

2/π factor arises from the coefficient of the mode overlap integral, ζ0, between
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v0(x, d) and u0(x − d), as shown in Eq. (3.12). Fig. 3.4 (i) shows that the sensitivity of

split detection decreases and asymptotes to zero for large displacement. The QNL in the

figure confirms that split detection is not optimal for all displacement.
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Figure 3.4: Sensitivity response of displacement measurement for (i) split and (ii) TEM10 homo-

dyne detection.

3.2.3 TEM10 Homodyne Detection

Before proceeding with our proposal for an optimal small beam displacement measurement,

let us express the displaced TEM00 beam in terms of the centred Hermite-Gauss basis

modes

un(x) =

(
2

πw2
0

)1/4 1√
n!2n

Hn

(√
2x

w0

)

exp

[

−
(
x

w0

)2
]

(3.17)

where Hn

(√
2x
w0

)

are the Hermite polynomials. The coefficients of the decomposed basis

modes are given by

αn√
N

=

∫ ∞

−∞
u0(x− d)un(x)dx =

dn

wn0
√
n!

exp

[

− d2

2w2
0

]

(3.18)

Plots of these coefficients as a function of beam displacement are shown in Fig. 3.5. We

notice that for small displacement only the TEM00 and TEM10 modes have significant non-

zero coefficients [208]. This means that the TEM10 mode initially contributes most to the

displacement signal. For larger displacement, other higher order modes become significant

as their coefficients increase. This suggests that an interferometric measurement of the

displaced beam with a centred TEM10 mode may be optimal in the small displacement

regime.

Figure 3.6 shows the TEM10 detection scheme considered in this chapter, the displaced

beam is homodyned with a TEM10 mode local oscillator. A reference axis for the displace-

ment of the TEM00 beam is defined by fixing the axis of the local oscillator. As can be seen

from Fig. 3.5, when the input beam is centred, no power is contained in the TEM10 mode.

Due to the orthonomality of Hermite-Gauss modes, the TEM10 local oscillator beam only

detects the TEM10 vacuum noise of the input beam. However we see from Fig. 3.5 that
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Figure 3.5: Coefficients of the decomposition of the displaced mode in terms of the TEMn0
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Figure 3.6: TEM10 homodyne detection beam displacement measurement. BS: 50/50 beam-

splitter, LO: local oscillator.

displacement of the TEM00 input beam couples power into the (centred) TEM10 mode.

This coupled power interferes with the TEM10 local oscillator, causing a change in the

photo-current observed by the homodyne detector. Therefore, the homodyne detects a

signal proportional to the displacement of the input beam.

The electric field operator describing the TEM10 local oscillator beam is

Ê+
LO =

√

h̄ω

2ǫ0L

(
√

NLOu1(x) +
∞∑

n=0

δâLO
n un(x)

)

(3.19)

where the first bracketed term is the coherent amplitude, the second bracketed term de-

notes the quantum fluctuations of the beam, and NLO is the number of photons in the local

oscillator. Using this expression and that of the input displaced beam, the photon number

operators corresponding to the two output beams of the beam-splitter are obtained, given
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by

n̂A,B =
2ǫ0L

h̄ω

∫ ∞

−∞
(Ê+
A,B)†Ê+

A,Bdx (3.20)

where subscripts {A,B} denote the two output beams. From these, the difference photo-

current between the two detectors used for homodyning is

n̂− =
√

NLO(2α1 + δX̂+
1 )

=
√

NLO

(

2
√
N

w0
d+ δX̂+

1

)

(3.21)

where δX̂+
1 = δâ1 + δâ†1 is the amplitude quadrature noise operator of the TEM10 compo-

nent of the input beam, and we have assumed that NLO ≫ N .

The mean photo-current as a function of beam displacement is shown in Figure 3.3 (ii).

For small displacement, the mean photo-current is linearly proportional to the beam dis-

placement. The factor of proportionality, 2
√
N/w0, in this case is the same as that of the

array detection scheme. Hence, this shows that the measurement is optimal. For larger

displacement, the sensitivity decreases as the displacement increases. This is due to the

power of the displaced beam being coupled to higher-ordered TEMn0 modes (for n > 1)

and thus less power is contained in the TEM10 mode.

The sensitivity response for the TEM10 detection, obtained in the same manner as

that for split detection, is shown in Figure 3.4 (ii). In the small displacement regime, we

obtain

SH,d≪w0 =
2
√
N

w0
(3.22)

The efficiency of the TEM10 detection is then

ǫH =
SH,d≪w0

SQNL
= 100%. (3.23)

3.3 Displacement measurement beyond the quantum noise

limit

3.3.1 Split Detection with Squeezed Light

It has been shown that the noise measured by split detection is the flipped mode defined

in Eq. (3.9) [203]. In order to improve the sensitivity of split detection, squeezing has to

be introduced on the flipped mode. This method was demonstrated in the initial work of

Treps et al. and the resulting spatial correlation between the two halves of the beam was

termed spatial squeezing [204]. By applying a displacement modulation to the spatially

squeezed beam, they demonstrated that sensitivities beyond the QNL could be achieved for

beam displacement measurements. Treps et al. recently extended their one-dimensional

spatial squeezing work to the two orthogonal transverse spatial axes [1, 205]. In this

scenario, the photon correlation was measured between the set of top and bottom halves

as well as left and right halves of a quadrant detector.

Restricting our analysis to one dimension, Fig. 3.7 (a) shows the detection of an in-

put TEM00 beam with a vacuum squeezed symmetric flipped mode v(x, 0) as defined in

Eq. (3.9). Loss-less combination of orthogonal spatial modes can be achieved in a number

of ways. One example is the use of optical cavities for mixing resonant and non-resonant
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modes as illustrated in Fig. 3.7. The cavity reflects off the vacuum squeezed symmetric

flipped mode whilst transmitting the TEM00 beam. The total beam is then displaced and

measured using a split-detector. The beam incident on the split detector is described by

Ê+
in = i

√

h̄ω

2ǫ0L

(√
Nu0(x− d) + δĉsqz

0 v0(x− d, 0)

+

∞∑

n=1

δĉnvn(x− d, 0)
)

(3.24)

where the first term arises from the TEM00 mode while the second term describes the

vacuum squeezed flipped mode and the last term in Eq. (3.24) represents all other higher

order vacuum noise terms. The photo-current difference operator in the limit of small

displacement is

n̂− =
√
N

(√

2

π

2
√
N

w0
d+ δẐ+

0,sqzξ0 +

∞∑

n=1

δẐ+
n ξn

)

(3.25)

where δẐ+
n = δĉn + δĉ†n are the amplitude quadrature operators. The first bracketed term

arises from the mode overlap between the v0(x, 0) and u0(x− d) modes, which has a value

of
√

2/π. The second term originates from the mode overlap between the v0(x, d) and

v0(x − d, 0) modes. The last term is a result of the overlap between the v0(x, d) and

vn(x− d, 0) modes. The overlap coefficients are given by ξn =
∫∞
−∞ v0(x, d)vn(x− d, 0)dx.

Figure 3.8 (i) plots the sensitivity, SSD, as a function of squeezing. Notice that the QNL

can only be surpassed with more than 1.9 dB of squeezing. This is a direct consequence

of the intrinsic inefficiency of displacement measurement using split detection.

3.3.2 TEM10 Homodyne Detection with Squeezed Light

Input
Beam

BS

Squeezed
Beam

Displacement

-

Mode-mixing
cavity

Homodyne
Detector

Reference
axis

TEM    LO10

Split
Detector

(a)

(b)

-
M

Figure 3.7: Measurement options: (a) Split detection with a vacuum squeezed symmetric flipped

mode or (b) TEM10 homodyne detection with a vacuum squeezed TEM10 mode. Both schemes

combine the squeezed beam and the TEM00 input beam loss-lessly using an optical cavity. M:

mirror, BS: 50/50 beam-splitter, LO: local oscillator.

We have shown that by squeezing the flipped mode and detecting the beam displace-

ment using a split detector, one is able to improve on the displacement sensitivity to

beyond the QNL. Correspondingly, we now consider the effect of squeezing the TEM10

mode of the detected beam in our homodyne detection. Figure 3.7 shows the combination



48 Optimal spatial variable measurement

0.8

0.9

1.0

1.2

1.1

1.3

1.6

1.5

1.4

0 1 2 3 4 5 6

2.0 dB

3.05 dB

Quantum Noise Limit

(i)(ii)

S
en

si
tiv

ity
 n

or
m

al
is

ed
 to

 th
e 

Q
N

L

Squeezing (dB)

Figure 3.8: Plots of sensitivity, S, for small displacement, as a function of squeezing for (i) split

and (ii) TEM10 homodyne detection. Shading indicates the region where displacement measure-

ment is below the QNL. The data points were obtained from Ref. [1].

of the TEM00 input beam with a vacuum squeezed TEM10 beam prior to displacement.

The displaced beam is then analysed using homodyne detection with a bright TEM10 local

oscillator beam as discussed previously (see Fig. 3.7 (b)). The detected beam is given by

Ê+
in = i

√

h̄ω

2ǫ0L

(√
Nu0(x− d) + δâsqz

1 u1(x− d)

+
∞∑

n 6=1

δânun(x− d)
)

(3.26)

where the first term arises from the TEM00 mode, the second term from the squeezed

vacuum TEM10 mode, and the last term from higher ordered vacuum noise. The difference

photo-current between the two detectors used for homodyning is given by

n̂− =
√

NLO

(2
√
N

w0
d+ δX̂+

1,sqzχ1 +
∞∑

n 6=1

δX̂+
n χn

)

(3.27)

where χn =
∫∞
−∞ u1(x)un(x − d)dx. For small displacement, the overlap between the

vacuum squeezed mode and the local oscillator beam is ∼ 100% whilst the last term is

negligible.

The sensitivity, SH, as a function of squeezing on the TEM10 mode is shown in

Fig. 3.8 (ii). Since the scheme is optimum for small displacement, any amount of squeezing

will lead to a sensitivity beyond the QNL. Furthermore, the TEM10 detection surpasses

the performance of split detection for all values of squeezing.

3.3.3 Discussion

In the paper on quantum displacement measurement by Treps et al. [1], displacement

measurements of the two transverse axes were performed using split detection with two

co-propagating squeezed beams. The squeezing values were 2.0 dB and 3.05 dB for the
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vertical and horizontal displacement measurement, respectively. Relating this result back

to our analysis, we find that the displacement measurements performed were indeed beyond

the QNL. These corresponded to sensitivities of 100.5% and 113.0% of the QNL as shown

in Fig. 3.8. However, using the same squeezed beams but adopting the TEM10 homodyne

detection, sensitivities of 126% and 141.5% above the QNL would be achievable.

The TEM10 homodyne detection can be extended to perform beam displacement mea-

surements in both transverse dimensions. The TEM10 mode component is responsible

for beam displacement in one transverse axis. Thus, by symmetry, the TEM01 mode

component is responsible for beam displacement in the orthogonal transverse axis. Corre-

spondingly, beam displacement measurement in the horizontal or vertical transverse axis

can be achieved by adapting the mode-shape of the local oscillator beam to either TEM10

or TEM01. To perform optimum larger beam displacement measurements, the local os-

cillator of the TEM10 homodyne detection can be modified by including higher order

components of the TEM00 displaced beam. Similarly, the homodyning scheme can be ex-

tended to measuring displacements of arbitrary mode-shapes assuming a priori knowledge

of the beam shape.

3.4 Conclusion and future directions

3.4.1 Conclusion

By defining the beam position as the mean photon position of a light beam, optical beam

displacement can be measured with reference to a fixed axis. Using an idealised array

detection scheme, we derived the QNL associated with optical displacement measurements.

A displaced TEM00 beam can be decomposed into an infinite series of Hermite-Gauss

modes but in the limit of small displacement, only the TEM00 and TEM10 components

are non-negligible. Since the split detector effectively measures the noise of an optical

flipped mode [203], it is only ∼ 80% efficient when used to measure the displacement of a

TEM00 beam. We have proposed an optimum displacement measurement scheme based

on homodyne detection. By using a TEM10 local oscillator, small displacement signals

can be extracted with 100% efficiency. We showed that in this small displacement regime

the TEM10 homodyne detection performs at the QNL, and is significantly more efficient

than split detection.

We have also shown that by mixing the input beam with a squeezed beam in the

appropriate mode, we can significantly improve the sensitivity of the TEM10 homodyne

detection. We compared the sensitivities of both split and TEM10 homodyne detection

for equal values of squeezing and found that for small displacements the TEM10 detection

outperforms split detection for all values of squeezing. For split detection, more than

1.9 dB of squeezing is required to achieve a sensitivity beyond the QNL. Whilst for the

TEM10 detection any amount of squeezing will suffice.

An experimental demonstration of the optimality of the TEM10 homodyne detection

scheme was published in Refs. [2, 3].

3.4.2 Future directions

The orbital angular momentum, l, of an optical beam is given by the LG0l mode [209].

Therefore, one could improve the sensitivity of rotation measurements by squeezing the

light in the LG0l mode. Our spatial homodyne scheme could be used, with a local oscillator
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in the LG0l mode-shape, for the optimal detection of the rotation signal. An analysis of the

orbital angular momentum signal modes for arbitrary mode-shapes should be performed.



Chapter 4

Spatial entanglement

Spukhafte Fernwirkung . . .

- Albert Einstein

Quantum mechanics is strange. The Copenhagen interpretation [210] of quantum

mechanics, proposed by Niels Bohr and Werner Heisenberg, ascribes a wave-function to

the possible outcomes of a system. Based on this, the actual outcome is purely probabilistic

and non-deterministic. A result of the Copenhagen interpretation is the Complementary

Principle [211], where an object can have simultaneous particle and wave properties. The

famous double-slit experiment yielded results which seemed contradictory, depending on

the observation process.

The notion that an outcome is non-deterministic disturbed Einstein deeply and he has

been quoted stating that, “God does not play dice with the universe” [212]. The issue

of non-realism (non-hidden variables) and non-locality (faster than light) for separate

component systems disturbed Einstein greatly. Einstein did not believe that separate

component systems could ‘communicate’ instantaneously across relativistic separations to

be affected by an observation process on one local system. This quantum entanglement

effect he termed, “spooky action at a distance” [213]. To counter the strange concepts

of the Copenhagen interpretation of quantum mechanics, Einstein, Podolsky and Rosen

proposed the EPR Paradox [10] to show that quantum theory is incomplete. Einstein

argued that quantum theory provides an incomplete characterisation of a system and this

has led to the possibility of realism or a “hidden-variables” theory.

In 1964, John Bell proposed a test for locality (not faster than light) and realism

(hidden variables). He assumed that a system has definite values which are not influenced

by the observation and that information travels at the relativistic limit. This resulted in

Bell’s inequality [214]. Following Bell’s proposal, many experiments have been conducted

and they have all thus far demonstrated a violation of Bell’s inequality. The most notable

experiments to date are those by Freedman and Clauser [215] and Aspect et al. [15, 14, 16].

A result of Bell’s inequality is that a physical theory that satisfies locality and realism

cannot be correct. Quantum mechanics is non-local, in the Schrödinger picture, whilst

non-realistic, in the Heisenberg picture. However, there also exists a non-local realistic

theory by Bohm [216], which can reproduce all the predictions of quantum mechanics

[217].

The early experiments that were conducted to demonstrate quantum entanglement

were performed with single particles. More recently, the question of whether it is pos-

sible to generate entanglement for ensembles of particles has been explored. This has

51
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led to some very impressive proposals and experimental demonstrations of continuous-

variable quadrature amplitude entanglement [17, 41, 218, 219, 18], polarisation entan-

glement [124, 220, 221], atomic spin entanglement [129, 130, 222, 132, 133] and atom

spin-optical polarisation entanglement [223, 134, 135, 106].

In this chapter, we focus our attention to entanglement of ensembles of photons.

Quadrature entanglement and polarisation Stokes entanglement are various manifestations

of entanglement in the continuous-variable regime. A natural pertinent question which

arises is, “What is the equivalent form of entanglement in the mechanical degree of freedom

(i.e. the spatial variable)?”. We approach this problem by taking concepts familiar to the

single particle regime - position and momentum, and extend it to the continuous-variable

regime. Beam displacement (position) and tilt (momentum) have been analysed classically,

in terms of modal decompositions of a beam [208]. We extend this analysis by quantising

the field operators used to describe the displaced and tilted beam and therefore can iden-

tify the “noise modes” relevant to beam position and momentum. We show that these

quantities are conjugate observables which satisfy the Heisenberg commutation relations.

Therefore, by combining squeezed light in appropriate spatial modes, position-momentum

entanglement can be generated for continuous-wave optical beams. Position-momentum

entanglement and quadrature entanglement are also shown to be directly equivalent to

each other.

Finally a natural question to arise is that relevant to the SU(2) group symmetry

properties of polarisation Stokes entanglement - “What is the equivalent of Stokes-operator

entanglement for the spatial basis?”. In this chapter, we identify the modes which span

the Poincaré sphere completely. Therefore, spatial Stokes operators based on the photon

annihilation and creation operators in the appropriate modes can be defined. Since the

spatial Stokes operators obey the cyclic commutation relation, spatial Stokes entanglement

between modes can be generated.

The work in this chapter has been published in

• M. T. L. Hsu, W. P. Bowen, N. Treps, and P. K. Lam, “Continuous-variable spatial

entanglement for bright optical beams”, Physical Review A 72, 013802 (2005).

4.1 Introduction

The concept of entanglement was first proposed by Einstein, Podolsky and Rosen in a

seminal paper in 1935 [10]. The original Einstein-Podolsky-Rosen (EPR) entanglement,

as discussed in the paper, involved the position and momentum of a pair of particles. In

this chapter, we draw an analogy between the original EPR entanglement and the position

and momentum (x-p) entanglement of bright optical beams.

Entanglement has been reported in various manifestations. For continuous wave (CW)

optical beams, these include, quadrature [18, 17] and polarisation [124] entanglement. Spa-

tial forms of entanglement, although well studied in the single photon regime, have not

been studied significantly in the continuous wave regime. Such forms of entanglement are

interesting as they span a potentially infinite Hilbert space. Spatial EPR entanglement

[140] has wide-ranging applications from two-photon quantum imaging [224, 225] to holo-

graphic teleportation [226, 144] and interferometric faint phase object quantum imaging

[227].

Current studies are focused on x-p entanglement for the few photons regime. Howell et

al. [147] observed near and far-field quantum correlation, corresponding to the position and
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momentum observables of photon pairs. Gatti et al. [139] have also discussed the spatial

EPR aspects in the photons pairs emitted from an optical parametric oscillator below

threshold. Other forms of spatial entanglement which are related to image correlation

have also been investigated. A scheme to produce spatially entangled images between the

signal and idler fields from an optical parametric amplifier has been proposed by Gatti

et al. [53, 138, 54]. Their work was extended to the macroscopic domain by observing

the spatial correlation between the detected signal and idler intensities, generated via the

parametric down conversion process [55].

Our proposal considers the possibility of entangling the position and momentum of a

free propagating beam of light, as opposed to the entanglement of local areas of images,

considered in previous proposals. Our scheme is based on the concept of position squeezed

beams where we have shown that we have to squeeze the transverse mode corresponding

to the first order derivative of the mean field in order to generate the position squeezed

beam [149]. Similarly to the generation of quadrature entangled beams, the position

squeezed beams are combined on a beam-splitter to generate x-p entangled beams. We

also propose to generate spatial entanglement for split detection, utilising spatial squeezed

beams reported by Treps et al. [204, 1, 205]. This form of spatial entanglement has

applications in quantum imaging systems.

By considering the relevant modal decomposition of displaced and tilted fields, we

arrive at general expressions for the position and momentum of an optical beam. We

then limit ourselves to the regime of small displacements and tilts. This is the relevant

regime for observing quantum optical phenomena, since for large displacements (tilts) the

overlap between displaced (tilted) and non-displaced (non-tilted) beams approaches zero

and hence they become perfectly distinguishable even in a classical sense. Applying this

restriction, we show that as expected the position and momentum of an optical field are

Fourier transform related. We then consider the specific case of a beam with TEM00

mode-shape. TEM00 beams have the unique feature of satisfying the position-momentum

uncertainty relation in the equality, and therefore represent an ideal starting point for the

generation of spatial entanglement. We explicitly show that the position and momentum

observables derived in this chapter for a TEM00 beam are conjugate observables which

obey the Heisenberg commutation relation. We then propose a scheme to produce x-p

entanglement for TEM00 optical beams.

4.2 Position-Momentum Entanglement

4.2.1 Definitions - Classical Treatment

Let us consider an optical beam with x- and y- symmetric transverse intensity profile

propagating along the z-axis. Since the axes of symmetries remain well defined during

propagation, we can relate the beam position relative to these axes. To simplify our anal-

ysis we henceforth assume without loss of generality, a one-dimensional beam displacement,

d, from the reference x-axis (see Fig. 4.1(a)). We denote the electric field profile of the

beam by E(x). For a displaced beam, the electric field profile is given by

Ed(x) = E(x) + d
∂E(x)

∂x
+
d2

2

∂2E(x)

∂x2
+ · · · (4.1)

In the regime where displacement is much smaller than the beam size, we can utilise the

linearised approximation where only the zeroth and first order terms are significant. We
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Figure 4.1: (a) Beam displacement d, and (b) beam tilt by angle θ, from a reference axis.

see from this expression that the zeroth order term is not dependent on d, and that the

displacement is directly proportional to the derivative of the field amplitude ∂E(x)/∂x

[149].

The transverse beam momentum p on the other hand, can be obtained from the trans-

verse component of the wave-number of the beam, p = k sin θ, where k = 2π/λ and the

beam tilt is θ. This beam tilt is defined with respect to a pivot point at the beam waist,

as shown in Fig. 4.1(b).

The electric field profile for a tilted beam with un-tilted electric field profile E(x) and

wavelength λ is given by

Eθ(x) = exp

[
i2πx sin θ

λ

]

E(x cos θ) (4.2)

We can again simplify Eq. (4.2) by taking the zeroth and first order Taylor expansion

terms to get a transverse beam momentum of p ≃ kθ. In the case of small displacement

or tilt, we therefore obtain a pair of equations

Ed(x) ≈ E(x) + d
∂E(x)

∂x
(4.3)

Ep(x) ≈ E(x) + p ixE(x) (4.4)

Eqs. (4.3) and (4.4) give the field parameters that relate to the displacement and tilt of

a beam. For freely propagating optical modes, the Fourier transform of the derivative of

the electric field, F(∂E(x)/∂x), is of the form ixE(x). Hence, the Fourier transform of

displacement is tilt.

In the case of a single photon, the position and momentum are defined by considering

the spatial probability density of the photon, given by |E(x)|2/I, where I =
∫
|E(x)|2dx is

the normalisation factor. The mean position obtained from an ensemble of measurements

on single photons is then given by 〈x〉 = 1
I

∫
x|E(x)|2dx. The momentum of the photon

is given from the spatial probability density of the photon in the far-field, or equivalently

by taking the Fourier transform of the spatial probability density of the photon. These

definitions are consistent with our definitions of position and momentum for bright optical

modes.
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4.2.2 TEMpq Basis

In theory, spatial entanglement can be generated for fields with any arbitrary transverse

mode-shape. However, as with other forms of continuous-variable entanglement, the ef-

ficacy of protocols to generate entanglement is highest if the initial states are minimum

uncertainty. For position and momentum variables, the minimum uncertainty states are

those which satisfy the Heisenberg uncertainty relation ∆x̂∆p̂ ≥ h̄/2, in the equality. This

equality is only satisfied by states with Gaussian transverse distributions [228], therefore

we limit our analysis to that of TEM00 modes.

A field of frequency ω can be represented by the positive frequency part of the mean

electric field E+eiωt. We are interested in the transverse information of the beam, described

fully by the slowly varying field envelope E+. We express this field in terms of the TEMpq

modes. For a measurement performed in an exposure time T , the mean field for a displaced

TEM00 beam can be written as

E+
d (x) = i

√

h̄ω

2ǫ0V

√
N
(

u0(x) +
d

w0
u1(x)

)

(4.5)

where the first term indicates that the power of the displaced beam is in the TEM00 mode

while the second term gives the displacement signal contained in the amplitude of the

TEM10 mode component. The corresponding mean field for a tilted TEM00 beam can be

written as

E+
p (x) = i

√

h̄ω

2ǫ0V

√
N
(

u0(x) +
iw0p

2
u1(x)

)

(4.6)

where the second term describes the beam momentum signal, contained in the π/2 phase-

shifted TEM10 mode component.

4.2.3 Definitions - Quantum Treatment

We now introduce a quantum mechanical representation of the beam by taking into account

the quantum noise of optical modes. We can write the positive frequency part of the electric

field operator in terms of photon annihilation operators â. The field operator is given by

Ê+
in = i

√

h̄ω

2ǫ0V

∞∑

n=0

ânun(x) (4.7)

where un(x) are the transverse beam amplitude functions for the TEMpq modes and ân
are the corresponding annihilation operators. ân is normally written in the form of ân =

〈ân〉+δân, where 〈ân〉 describes the coherent amplitude part and δân is the quantum noise

operator.

In the small displacement and tilt regime, the TEM00 and TEM10 modes are the most

significant [149], with the TEM10 mode contributing to the displacement and tilt signals.

We can rewrite the electric field operator for mean number of photons N as

Ê+
in = i

√

h̄ω

2ǫ0V

(√
Nu0(x) +

δX̂+
a0 + iδX̂−

a0

2
u0(x)

+

∞∑

n=1

(X̂+
ai

+ iX̂−
ai

2

)

ui(x)
)

(4.8)
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where the annihilation operator is now written in terms of the amplitude X̂+
a and phase

X̂−
a quadrature operators.

The displacement and tilt of a TEM00 beam is given by the amplitude and phase of

the u1(x) mode in Eqs. (4.5) and (4.6), respectively. We can, therefore, write the beam

position and momentum operators, respectively, as

x̂ =
w0

2
√
N
X̂+
a1 (4.9)

p̂ =
1

w0

√
N
X̂−
a1 (4.10)

4.2.4 Commutation Relation

Two observables corresponding to the position and momentum of a TEM00 beam have been

defined. We have shown that the position and momentum observables correspond to near-

and far-field measurements of the beam, respectively. Hence, we expect from Eqs. (4.9)

and (4.10), that the position and momentum observables do not commute. Indeed, the

commutation relation between the two quadratures of the TEM10 mode is [X̂+
a1 , X̂

−
a1 ] = 2i.

This leads to the commutation relation between the position and momentum observables

of an optical beam with N photons

[x̂, p̂] =
i

N
(4.11)

This commutation relation is similar to the position-momentum commutation relation for

a single photon, aside from the 1/N factor. The 1/N factor is related to the precision

with which one can measure beam position and momentum. Rewriting the Heisenberg

inequality using the commutation relation, gives

∆2x̂∆2p̂ ≥ 1

4N
. (4.12)

The position measurement of a coherent optical beam gives a signal which scales with

N . The associated quantum noise of the position measurement scales with
√
N . Hence

the positioning sensitivity of a coherent beam scales as
√
N [149, 204]. The same consid-

eration applied to the sensitivity of beam momentum measurement shows an equivalent

dependence of
√
N . This validates the factor of N in the Heisenberg inequality and the

commutation relation for a CW optical beam.

As an aside, it is interesting to consider the implications of the Heisenberg inequality

of Eq. (4.12) on recent discussions of ghost imaging in discrete variable quantum optics

[142, 146, 145, 141]. In ghost imaging, the spatial resolution of an imaging system is

enhanced using a pair of correlated fields. One field passes through the object, and object

information is then retrieved through spatially resolved photon coincidences between the

two fields. At first glance, the results of Bennink et al. [142, 146], and Gatti et al. [145]

appear contradictory. According to Bennink et al. the position-momentum uncertainty

relation sets an ultimate resolution limit which can only be surpassed using entangled

fields; while Gatti et al. show that thermal fields can achieve the same resolution as

entangled fields for large N . We see from Eq. (4.12) that these statements are not mutually

incompatible. For small N the position and momentum of the beams, and therefore also

the imaging resolution, are highly uncertain; however as N becomes large the uncertainty

product ∆2x̂∆2p̂ approaches zero, so that even without quantum resources x and p can
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be known simultaneously with arbitrary precision.

4.2.5 Entanglement Scheme

We have shown that the position and momentum observables of CW TEM00 optical beams

satisfy the Heisenberg commutation relation. Consequently, EPR entanglement for the po-

sition and momentum of TEM00 beams is possible. Experimentally, the usual quadrature

entanglement is generated by mixing two amplitude squeezed beams on a 50:50 beamsplit-

ter (see Chapter 2). The same idea can be applied to generate EPR x-p entanglement, by

using position squeezed beams [149]. Our scheme to produce x-p entanglement between

two CW TEM00 optical beams is shown in Figure 4.2. The position squeezed beams in
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Figure 4.2: Scheme for generating position-momentum entanglement for continuous wave TEM00

optical beams. OPA: optical parametric amplifiers for the generation of squeezed light, BS: 50:50

beam-splitter, HD: homodyne detectors, LO: local oscillator beams, φ: phase of local oscillator

beam.

Fig. 4.2 (a) and (b) are generated via the in-phase combination of a vacuum squeezed

TEM10 beam with a coherent TEM00 beam. Such beam combination can be achieved

experimentally, for example using an optical cavity or a beam-splitter [205]. The result

of the combination is a position squeezed beam. To generate entanglement, we consider

beams with zero mean position and momentum, but we are interested in the quantum

noise of the position and momentum of the beam. With this assumption, the electric field

operators for the two input beams at the beam-splitter are given by

Ê+
1 = i

√

h̄ω

2ǫ0V

(√
Nu0(x) +

∞∑

n=0

δânun(x)
)

(4.13)

Ê+
2 = i

√

h̄ω

2ǫ0V

(√
Nu0(x) +

∞∑

n=0

δb̂nun(x)
)

(4.14)

where in both equations, the first bracketed term describes the coherent amplitude of the

TEM00 beam. The second bracketed terms describe the quantum fluctuations present in

all modes. For position squeezed states, only the TEM10 mode is occupied by a vacuum

squeezed mode. All other modes are occupied by vacuum fluctuations. It is also assumed
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that the number of photons in each of the two beams, during the measurement window,

is equal to N . The two position squeezed beams (1,2) are combined, with a π/2 phase

difference, on a 50:50 beam-splitter (BS) in as shown in Fig. 4.2 (c).

The usual input-output relations of a beam-splitter apply. The electric field operators

describing the two output fields from the beam-splitter are given by Ê3 = (Ê1 + Ê2)/
√

2

and Ê4 = (Ê1 − Ê2)/
√

2. To demonstrate the existence of entanglement, we seek for quan-

tum correlation and anti-correlation between the position and momentum quantum noise

operators. The position operator corresponding to beams 3 and 4 are given respectively

by

δx̂3 =
w0

2
√

2
√
N

(

δX̂+
a1 + δX̂−

b1

)

=
1√
2

(

δx̂a +
w2

0

2
δp̂b

)

(4.15)

δx̂4 =
w0

2
√

2
√
N

(

δX̂+
a1 − δX̂−

b1

)

=
1√
2

(

δx̂a −
w2

0

2
δp̂b

)

(4.16)

The momentum operator corresponding to the photo-current difference for beams 3 and

4 are given by

δp̂3 =
1

w0

√

2
√
N

(

δX̂−
a1 + δX̂+

b1

)

=
1√
2

(

δp̂a +
2

w2
0

δx̂b

)

(4.17)

δp̂4 =
1

w0

√

2
√
N

(

δX̂−
a1 − δX̂+

b1

)

=
1√
2

(

δp̂a −
2

w2
0

δx̂b

)

(4.18)

In our case where the two input beams are position squeezed, the sign difference be-

tween the position noise operators in Eqs. (4.15) and (4.16) as well as that between the

momentum noise operators in Eqs. (4.17) and (4.18) are signatures of correlation and

anti-correlation for δx̂ and δp̂.

Many criterions exist to characterise entanglement, for example the inseparability cri-

terion [229] and the EPR criterion [230]. We have adopted the inseparability criterion to

characterise position-momentum entanglement. For states with Gaussian noise statistics,

Duan et al. [229] have shown that the inseparability criterion is a necessary and sufficient

criterion for entanglement.

4.2.6 Covariance matrix and the Inseparability Criterion

We now derive the generalised form of the inseparability criterion (i.e. the product form).

Gaussian states can be fully characterised using a covariance matrix. We define a covari-

ance matrix using the photon annihilation and creation operators, given by [190]

C(â, â†) =

( 〈â2〉 − 〈â〉2 1
2 〈ââ† + â†â〉 − 〈â†〉〈â〉

1
2〈ââ† + â†â〉 − 〈â†〉〈â〉 〈(â†)2〉 − 〈â†〉2

)

(4.19)
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The covariance matrix can be written in terms of the amplitude and phase quadrature

operators, given by

C(X̂+, X̂−) =

(
C++ C+−

C−+ C−−

)

(4.20)

where Cpq = 1
2〈X̂pX̂q + X̂qX̂p〉 − 〈X̂p〉〈X̂q〉 and p, q ∈ {+,−}. This equation shows

that measurements of the amplitude and phase quadratures are sufficient to completely

characterise a Gaussian state.

For a two-mode system, the covariance matrix for the amplitude and phase quadrature

operators, is given by [192]

C(X̂±
a , X̂

±
b ) =







C++
aa C+−

aa C++
ab C+−

ab

C−+
aa C−−

aa C−+
ab C−−

ab

C++
ba C+−

ba C++
bb C+−

bb

C−+
ba C−−

ba C−+
bb C−−

bb







(4.21)

where the matrix coefficients are given by

Cpqab =
1

2
〈X̂p

aX̂
q
b + X̂q

b X̂
p
a〉 − 〈X̂p

a〉〈X̂q
b 〉 (4.22)

=
1

2
〈X̂p

aX̂
q
b + X̂q

b X̂
p
a〉 (4.23)

where we have assumed that the two-beam system have no coherent amplitude. We now

make the assumption that the two beams labelled by a and b have identical variances and

are not cross-quadrature correlated, with the covariance matrix given by

C(X̂±
a , X̂

±
b ) =







C++
aa 0 C++

ab 0

0 C−−
aa 0 C−−

ab

C++
ba 0 C++

bb 0

0 C−−
ba 0 C−−

bb







(4.24)

where by symmetry C±±
ab = C±±

ba and C±±
aa = C±±

bb . Duan et al. [229], have shown

that any Gaussian state can be transformed through local unitary Bogoliubov operations

into a standard form described by the covariance matrix in Eq. (4.24), with the following

conditions

C++
aa − 1

C++
bb − 1

=
C−−
aa − 1

C−−
bb − 1

(4.25)

√

(C−−
aa − 1)(C−−

bb − 1) + |C++
ab | =

√

(C++
aa − 1)(C++

bb − 1) + |C−−
ab | (4.26)

Duan et al. [229] derived the inseparability criterion, where any separable quantum

state ρ =
∑

i piρi1 ⊗ ρi2 satisfies

〈(X̂+
I )2〉 + 〈(X̂−

I )2〉 ≥ 2

(

g2 +
1

g2

)

(4.27)

where g is a gain factor and

〈(X̂±
I )2〉 =

〈(

gX̂±
a − 1

g

C±±
ab

|C±±
ab |X̂

±
b

)2
〉

(4.28)
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where the factor of 2 in Eq. (4.27), arises due to the use of the amplitude and phase

quadrature operators, which satisfy the commutation relation [X̂+, X̂−] = 2i.

Duan et al. [229] showed that any Gaussian state which satisfies the inequality of

Eq. (4.27) is a state with a P-function with positive values (i.e. a classical state). Therefore

the inseparability criterion is a sufficient and necessary condition for separability for all

Gaussian states. A violation of the inequality shows that the state is entangled.

We now proceed to derive the inseparability criterion to a more general form, the

product form. The expansion of Eq. (4.28) is taken, given by

〈(X̂±
I )2〉 = g2〈(X̂±

a )2〉 +
1

g2
〈(X̂±

b )2〉 − C±±
ab

|C±±
ab | 〈X̂

±
a X̂

±
b + X̂±

b X̂
±
a 〉

=

√

C±±
bb − 1

C±±
aa − 1

C±±
aa +

√

C±±
aa − 1

C±±
bb − 1

C±±
bb − 2|C±±

ab |

= 2
√

(C±±
bb − 1)(C±±

aa − 1) +

√

C±±
bb − 1

C±±
aa − 1

+

√

C±±
aa − 1

C±±
bb − 1

− 2|C±±
ab |

= 〈(X̂∓
I )2〉 (4.29)

where we have used the conditions given in Eqs. (4.25) and (4.26). Therefore the insepa-

rability criterion can be written as

√

〈(X̂+
I )2〉〈(X̂−

I )2〉 ≥ g2 +
1

g2
(4.30)

Since both beams have identical variances (i.e. C±±
bb = C±±

aa ), thus

g =

√

C±±
bb − 1

C±±
aa − 1

= 1 (4.31)

and therefore the product form of the inseparability criterion is given by [192]

I(X̂±
a , X̂

±
b ) =

√

〈(X̂+
I )2〉〈(X̂−

I )2〉 ≥ 1 (4.32)

where a violation of this criterion (i.e. I < 1) shows that the state is inseparable and

entangled.

Since the commutation relation for our variables of interest, δx̂ and δp̂ is non-equal

to 2i, as shown in Eq. (4.11), we use the normalised product form of the inseparability

criterion given by [124, 218, 219, 231, 232]

I(x̂, p̂) =
〈(x̂3 + x̂4)

2〉〈(p̂3 − p̂4)
2〉

|[x̂, p̂]|2 (4.33)

for any pair of conjugate observables x̂ and p̂, and a pair of beams denoted by the subscripts

3 and 4. In this chapter, we consider the two beams to be perfectly interchangeable

and have symmetrical fluctuations in the amplitude and phase quadratures. By using

observables δx̂ and δp̂ from Eqs. (4.15), (4.16), (4.17) and (4.18) as well as the commutation
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relation of Eq. (4.11) the inseparability criterion for beams 3 and 4 is given by

I(δx̂, δp̂) =
16N2

ω4
0

〈(δx̂+
a1)

2〉〈(δx̂+
b1

)2〉

= 〈(δX̂+
a1)

2〉〈(δX̂+
b1

)2〉
< 1 (4.34)

where we have assumed that the TEM10 modes of beams 1 and 2 are amplitude squeezed

(i.e. 〈(δX̂+
a1)

2〉 < 1 and 〈(δX̂+
b1

)2〉 < 1).

Since I(δx̂, δp̂) < 1, we have demonstrated that CV EPR entanglement between the

position and momentum observables of two CW beams can be achieved.

4.2.7 Detection Scheme

Ref. [149] has shown that the optimum small displacement measurement is homodyne

detection with a TEM10 local oscillator beam (see Fig. 4.2 (d)). When the input beam

is centred with respect to the TEM10 local oscillator beam, no power is contained in the

TEM10 mode. Due to the orthogonality of Hermite-Gauss modes, the TEM10 local oscil-

lator only detects the TEM10 vacuum noise component. As the input beam is displaced,

power is coupled into the TEM10 mode. This coupled power interferes with the TEM10

local oscillator beam, causing a change in photo-current observed at the output of the

homodyne detector. Thus the difference photo-current of the TEM10 homodyne detector

is given by [149]

n̂d− =
2
√
N
√
NLO

w0
x̂ (4.35)

where NLO and N are the total number of photons in the local oscillator and displaced

beams, respectively, with NLO ≫ N . The linearised approximation is utilised, where

second order terms in δâ are neglected since N ≫ |〈δâ2
n〉| for all n.

In order to measure momentum, one could use a lens to Fourier transform to the

far-field plane, where the beam is then measured using the TEM10 homodyning scheme.

However, we have shown that the the position and momentum of a TEM00 beam differs

by the phase of the TEM10 mode component. Indeed for a tilted TEM00 beam, the

TEM10 mode component is π/2 phase shifted relative to the TEM00 mode component.

Consequently the phase quadrature of the TEM10 mode has to be interrogated. This

can be achieved by utilising a TEM10 local oscillator beam with a π/2 phase difference

relative to the TEM10 mode component of the TEM00 beam. The resulting photo-current

difference between the two homodyning detectors, for NLO ≫ N , is given by

n̂p− = w0

√
N
√

NLOp̂ (4.36)

4.3 Spatial entanglement for split detection

The entanglement presented in the previous section is analogous to x-p entanglement in

the single photon regime. However, the choice of the mean field mode is restricted to

the TEM00 mode. This limits the richness of a spatial variable and thus excludes the

possibility of generating an infinite Hilbert space. To exploit the properties of spatial

variables, we now consider more traditional forms of spatial squeezing. Consequently, we
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study the possibility of generating spatial entanglement for array detection devices, based

on spatial squeezed beams.

4.3.1 Spatial Squeezing

Spatial squeezing was first introduced by Kolobov [56]. The generation of spatial squeezed

beams for split and array detectors was experimentally demonstrated by Treps et al.

[1, 205, 204]. A one-dimensional spatial squeezed beam has a spatially ordered distribution,

where there exists correlation between the photon numbers in both transverse halves of

the beam. A displacement signal applied to this beam can thus be measured to beyond

the QNL.

We consider a beam of normalised transverse amplitude function v0(x) incident on a

split detector. The noise of split detection has been shown to be due to the flipped mode

[203], given by

v1(x) =

{
v0(x) for x > 0

−v0(x) for x < 0

When the field is centred at the split-detector, such that the mean value of the mea-

surement is zero, the flipped mode is thus orthogonal to the mean field mode. In this

instance, modes vi(x) (for i > 1) can be derived to complete the modal basis. The electric

field operator written in this new modal basis is given by

Ê+ = i

√

h̄ω

2ǫ0V

(√
Nv0(x) +

∞∑

n=0

δĉnvn(x)
)

(4.37)

where the first term describes the coherent excitation of the beam in the v0(x) mode and

N is the total number of photons in the beam. It has been shown that the corresponding

photon number difference operator for split detection is given by [149]

n̂
(+)
− =

√
NδX̂+

c0 (4.38)

The beam is spatially squeezed if the state of the flipped mode is vacuum squeezed

and in phase with the mean field mode (see Fig. 4.3 (a) and (b)).

4.3.2 Spatial Homodyne

Since split detection is commonly used as a detection device for beam position, one would

naturally consider taking the Fourier transform of a spatial squeezed beam to obtain the

conjugate observable for the beam. However, we have shown that split detection does

not correspond exactly to beam position measurement. Thus the Fourier plane of the

spatial squeezed beam does not provide the conjugate observable. More practically, the

flipped mode is not mode-shape invariant under Fourier transformation. In the far-field,

each odd-ordered mode component of the flipped mode obtains a (2n + 1)π Gouy phase

difference, compared to the near-field. Thus the mode-shape in the far-field is no longer a

flipped mode. Consequently, far and near-field measurements of a spatial squeezed beam

will not give the conjugate observables.

However, we can find the conjugate observables of a spatial squeezed beam by draw-

ing an analogy to standard homodyne detection. In split detection, the equivalent local

oscillator mode is the mean field v0(x) mode. The mode under interrogation by the split

detector is the flipped mode v1(x). In the case of homodyne detection, the phase of the
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local oscillator beam is varied to measure the conjugate observables (i.e. amplitude and

phase quadratures) of the input beam. Adapting this concept to the split detector, the

conjugate observables for the spatial squeezed beam are thus the amplitude and phase

quadratures of the flipped mode, while the mode-shape of the flipped mode remains unal-

tered. This is further verified upon inspection of Eq. (4.38).

Our scheme to perform a phase measurement of the flipped mode is shown in

Fig. 4.3 (d). In our scheme we assume that the mean field is a TEM00 mode. Note

that in principle, this analysis could be performed for any mode-shape. The coherent

TEM00 mode component provides a phase reference for the flipped mode, analogous to

that of a local oscillator beam in homodyne detection. Thus the phase quadrature of the

flipped mode can be accessed by applying a π/2 phase shift between the the TEM00 mode

and the flipped mode noise component. Experimentally, this is achievable using an optical

cavity. When the cavity is non-resonant for the v0(x) and v1(x) modes it will reflect off

the two modes, in phase, onto the split detector. This will give a measurement of the am-

plitude quadrature of the flipped mode. However, the cavity can be tuned to be partially

resonant on the v0(x) mode while reflecting the flipped mode. A π/2 phase difference can

then be introduced between the reflected v0(x) and v1(x) modes, giving a measurement of

the phase quadrature of the flipped mode. The corresponding photon number difference

operator is

n̂
(−)
− =

√
NδX̂−

c0 (4.39)

which is the orthogonal quadrature of the spatial squeezed beam. The photon number

operators corresponding to the two measurements in Eqs. (4.38) and (4.39) are conjugate

observables and satisfy the commutation relation [n̂
(+)
− , n̂

(−)
− ] = 2iN .

It is important to realise that the number of photons N in Eqs. (4.38) and (4.39) are

only approximately equal. This is due to the fact that partial power in the TEM00 mode

is transmitted by the cavity, when the cavity is partially resonant on the TEM00 mode.

Although it is possible to implement a scheme that conserves the total number of photons

at detection (e.g. loss-lessly separating the mean field and flipped modes and recombining

them with a phase difference), we would like to emphasise that our scheme is more simple

and intuitive, as well as being valid when N is large.

4.3.3 Entanglement Scheme

In order to generate spatial entanglement for split detection, two spatial squeezed beams

labelled 1 and 2 are combined on a 50:50 beam-splitter, as shown in Figure 4.3 (c).

The electric field operators for the two input spatial squeezed beams at the beam-

splitter are described in a form identical to that of Eq. (4.37). The annihilation operators of

the electric field operators for input beams 1 and 2 are labelled by ĉn and d̂n, respectively.

By following a similar procedure as before, the photon number difference operator for

output beams 3 and 4 from the beam-splitter are calculated.

For the amplitude quadrature measurement, the addition of the difference photo-

current between beams 3 and 4 yields

n̂
(+)
3− + n̂

(+)
4− =

√
N(δX̂+

c0 + δX̂+
d0

) (4.40)

For the phase quadrature measurement, the subtraction of the difference photo-current
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Figure 4.3: Scheme for generating spatial entanglement for TEM00 continuous wave light beams.

OPA: optical parametric amplifiers for generating squeezed beams, PP: phase plates for producing

flipped modes, BS: 50:50 beam-splitter.

between beams 3 and 4 gives

n̂
(−)
3− − n̂

(−)
4− =

√
N(δX̂+

d0
− δX̂+

c0) (4.41)

To verify spatial entanglement, the inseparability criterion is utilised. The substitution

of Eqs. (4.40), (4.41) and the commutation relation between the photon number difference

operators into the generalised form of the inseparability criterion gives

I(δn̂
(+)
− , δn̂

(−)
− ) =

N
(
V 2
c0 + 2Vc0Vd0 + V 2

d0

)

4N
< 1 (4.42)

where Vc0 = 〈(δX̂+
c0)

2〉 and Vd0 = 〈(δX̂+
d0

)2〉 are the variances for the flipped mode com-

ponent of the spatial squeezed beams 1 and 2. The inseparability criterion is satisfied for

amplitude squeezed flipped modes Vc0 < 1 and Vd0 < 1.

We have proposed a scheme to generate spatial entanglement for split detection, using

spatial squeezed beams. Spatial squeezing has been defined for any linear measurement

performed with an array detector [206]. Similarly, spatial entanglement corresponding

to any linear measurement, can be obtained. For an infinite span array detector with in-

finitessimally small pixels, it is thus possible to generate multi-mode spatial entanglement.

4.4 Spatial Stokes entanglement

In the preceding sections, we discussed EPR entanglement in the position-momentum

observables of optical fields. We also discussed entanglement for split detection, a specific

entanglement scheme, generalisable to array detection. We now consider a different form

of entanglement, where the Stokes operators (commonly represented on a Poincaré sphere)

are the entanglement variables.

In the discrete-variable regime, multi-dimensional entanglement between orbital angu-

lar momentum states have been proposed [233, 234] and demonstrated [201]. In Ref. [201],
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entanglement was generated in the parametric down-conversion process by using pump

photons with different orbital angular momentum values. A large body of study has been

dedicated to understanding and detecting the orbital angular momentum properties of

photons [235, 209, 236, 237, 202, 238, 239, 240, 4]. Applications of light fields with orbital

angular momentum have also been proposed, which include the generation of counter-

rotating superpositions in Bose-Einstein condensates [241, 242], transfer of orbital angular

momentum from an atomic ensemble to a light field [243], and optical angular momentum

transfer to trapped particles [244, 245, 246].

Our motivation is to study the generation of spatial entanglement between continuous-

variables which obey a commutation relation with cyclic permutations, [Ôx, Ôy] = Ôz.

These spatial Stokes variables completely span the Poincaré sphere [150], analogous to

that of polarisation Stokes operators [247].

Since we are dealing with two-dimensional spatial modes, we denote the normalised

transverse beam amplitude functions for the TEMpq mode by upq(r). The positive fre-

quency part of the electric field operator is then written explicitly in terms of a double-

subscript sum of the mode upq(r), given by

Ê+(r) = i

√

h̄ω

2ǫ0V

∞∑

p,q=0

âpqupq(r) (4.43)

where âpq is the photon annihilation operator associated with mode upq(r), which can be

obtained by projecting the umn(r) mode onto Ê+(r), given by

âpq =

∫∫ −∞

∞
dxdyÊ+(x, y)upq(x, y) (4.44)

Using the two orthogonal TEMp0 and TEM0p modes, a variety of modes can be gen-

erated. The diagonal modes of the TEMp0 and TEM0p modes are given by u45◦
p0 (r) =

u0p(r) − up0(r) and u45◦
0p (r) = u0p(r) + up0(r), respectively. The Laguerre-Gauss modes

LG0l with orbital angular momentum +l and −l, are given by u+l
0l (r) = u0l(r) + iul0(r)

and u−l0l (r) = u0l(r) − iul0(r), respectively. An example of the intensity distributions for

the diagonal and Laguerre-Gauss modes, generated from the combinations of TEM10 and

TEM01 modes, is shown in Fig. 4.4.

Since the diagonal and rotational modes can be generated purely from two orthogonal

TEMp0 and TEM0p modes, only by changing the phase between the modes, these set of

modes obey the SU(2) group properties. At this point, we restrict our analysis to the

TEM10 and TEM01 modes, for illustrative purposes. In principle, our analysis is valid for

all orthogonal TEMp0 and TEM0p modes. Using the classical Stokes parameter definition

[150], we derive the corresponding quantum mechanical spatial Stokes operators, given by

Ŝ0 = â†10â10 + â†01â01

Ŝ1 = â†10â10 − â†01â01

Ŝ2 = â†10â01e
iθ + â†01â10e

−iθ

Ŝ3 = iâ†01â10e
−iθ − iâ†10â01e

iθ

(4.45)

where θ is the phase difference between the operators â10 and â01, corresponding to the

TEM10 and TEM01 modes, respectively. A Poincaré sphere representation of the Stokes



66 Spatial entanglement

-    i 

+    i 

+ 

- 

=

=

=

=

+1

-1

(A)

(B)

(C)

(D)

Figure 4.4: Intensity distribution for the modes given by (A) u45◦

01 (r) = u01(r) + u10(r), (B)

u45◦

10 (r) = u01(r) − u10(r), (C) u+1
01 (r) = u01(r) + iu10(r), and (D) u−1

01 (r) = u01(r) − iu10(r).

operators is given in Fig. 4.5 [150].

By using the commutation relations of the photon annihilation and creation operators,

[âmn, âjk] = δmjδnk, the Stokes-operator commutation relations are thus given by

[

Ŝ1, Ŝ2

]

= 2iŜ3
[

Ŝ2, Ŝ3

]

= 2iŜ1
[

Ŝ3, Ŝ1

]

= 2iŜ2

(4.46)

which has cyclic permutations.

4.4.1 Spatial Stokes detection

Now that the spatial Stokes operators have been defined, we consider the detection system

for the spatial Stokes operators. Analogous to the polarisation Stokes operators, the spatial

Stokes detector consists of two detectors, with a mode phase shifter and a mode separator.

The spatial Stokes detection system is shown in Fig. 4.6.

Using the linearised formalism as described in the preceding chapters, the mean am-

plitude of the Stokes operators are given by

〈Ŝ0〉 = α2
10 + α2

01 = N

〈Ŝ1〉 = α2
10 − α2

01

〈Ŝ2〉 = 2α10α01 cos θ

〈Ŝ3〉 = 2α10α01 sin θ (4.47)
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Figure 4.5: (a) Poincare sphere representation based on the spatial modes TEM10 and TEM01.

S1 is the Stokes variable for the u01 and u10 modes, S2 is the Stokes variable for the u45◦

01 and u45◦

10

modes, and S3 is the Stokes variable for the u+1
01 and u−1

01 modes. (b) Poincare sphere representation

for the spatial Stokes operators. The shaded area indicates the quantum noise associated with the

mean amplitude of the Stokes operator.

where α01 and α10 the mean amplitude terms corresponding to modes u01 and u10, re-

spectively. 〈Ŝ0〉 = N is the total mean number of photons. 〈Ŝ1〉 is the difference in the

mean number of photons in the u10 and u01 modes. 〈Ŝ2〉 is the difference in the mean

number of photons in the u45◦
01 and u45◦

10 modes. 〈Ŝ3〉 is the difference in the mean number

of photons in the u+1
01 and u−1

01 modes.

The variance of the Stokes operators are given by

〈(δŜ0)
2〉 = α2

10〈(δX̂+
a10)

2〉 + α2
01〈(δX̂+

a01 )
2〉 + 2α10α01〈δX̂+

a10δX̂
+
a01〉

〈(δŜ1)
2〉 = α2

10〈(δX̂+
a10)

2〉 + α2
01〈(δX̂+

a01 )
2〉 − 2α10α01〈δX̂+

a10δX̂
+
a01〉

〈(δŜ2)
2〉 = α2

10〈(δX̂−θ
a01)

2〉 + α2
01〈(δX̂θ

a10 )
2〉 + 2α10α01〈δX̂−θ

a01δX̂
θ
a10〉

〈(δŜ3)
2〉 = α2

10〈(δX̂
−θ+ π

2
a01 )2〉 + α2

01〈(δX̂
θ−π

2
a10 )2〉 + 2α10α01〈δX̂

−θ+ π
2

a01 δX̂
θ−π

2
a10 〉

(4.48)

Since δX̂θ
a10 and δX̂θ

a01 are uncorrelated, therefore the variances of the Stokes operators

are simplified to the following expressions

〈(δŜ0)
2〉 = α2

10〈(δX̂+
a10)

2〉 + α2
01〈(δX̂+

a01 )
2〉

〈(δŜ1)
2〉 = α2

10〈(δX̂+
a10)

2〉 + α2
01〈(δX̂+

a01 )
2〉

〈(δŜ2)
2〉 = α2

10〈(δX̂−θ
a01)

2〉 + α2
01〈(δX̂θ

a10 )
2〉

〈(δŜ3)
2〉 = α2

10〈(δX̂
−θ+ π

2
a01 )2〉 + α2

01〈(δX̂
θ−π

2
a10 )2〉

(4.49)

4.4.2 Spatial Stokes squeezing

An examination of Eqs. (4.49) show that simultaneous squeezing of at least two Stokes

operators is possible, by the use of two squeezed input fields. Examples of these are given

by



68 Spatial entanglement
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Figure 4.6: Measurements of (a) Ŝ0 and (b) Ŝ1, by taking the sum and differences of the photo-

currents corresponding to mode components TEM10 and TEM01, respectively. Measurements of

(c) Ŝ2 is performed by using a π mode rotator. In order to measure (d) Ŝ3, π and π/2 mode

rotators are required. (e) An example of a mode separator (MS) is an asymmetric Mach-Zehnder

interferometer [2, 3]. The odd and even number of reflections each interferometer arm, together

with the relevant phase changes due to Fresnel reflection on the arms, set up appropriate destructive

and constructive interference conditions for the odd and even modes on each output arm of the

interferometer. The result of this is that the odd and even modes constructively interfere on

different arms of the interferometer. (f) The π and π/2 mode phase shifters could be constructed

using a pair of cylindrical lenses with lens separation given by 2f and
√

2f , respectively. f is

the focal length of the cylindrical lenses, M is a mirror, 50:50 BS is a symmetric non-polarising

beam-spliter. Ref. [4] contains a detailed analysis of the π and π/2 mode-selective phase shifters.

• Squeezing in 〈(δŜ0)
2〉, 〈(δŜ1)

2〉 and 〈(δŜ2)
2〉.

This can be achieved by having amplitude squeezed TEM10 and TEM01 modes (i.e.

〈(δX̂+
a10)

2〉 < 1 and 〈(δX̂+
a01 )

2〉 < 1) and θ = 0.

• Squeezing in 〈(δŜ0)
2〉, 〈(δŜ1)

2〉 and 〈(δŜ3)
2〉.

This can be achieved by having amplitude squeezed TEM10 and TEM01 modes and

θ = π/2.

• Squeezing in 〈(δŜ2)
2〉 and 〈(δŜ3)

2〉.
Quadrature squeezed TEM10 and TEM01 modes, at squeezing quadrature angle of

π/4 (i.e. 〈(δX̂
π
4
a10 )

2〉 < 1 and 〈(δX̂
π
4
a01)

2〉 < 1) and θ = π/4.

Phase squeezed TEM10 and TEM01 modes (i.e. 〈(δX̂−
a10 )

2〉 < 1 and 〈(δX̂−
a01 )

2〉 < 1)

will yield squeezing of 〈(δŜ2)
2〉 only.

4.4.3 Entanglement scheme

The spatial Stokes entanglement scheme is shown in Fig. 4.7. Two squeezed beams in the

TEM10 mode, labelled by â10,x and â10,y are combined on a beam-splitter. The resulting
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output beams from the beam-splitter are quadrature entangled. The output beams are

then each combined with a coherent beam, labelled by â01,x and â01,y, in the TEM01 mode

on a spatial mode splitter (combiner). The resulting output beams are thus entangled in

the spatial Stokes operator basis. Verification of the spatial Stokes entanglement can be

performed using the detection scheme described in the preceding sections.

squeezed

beam

50:50 BS

squeezed

beam

coherent beam

coherent beam

EPR

beam

EPR

beam
OPA

OPA

spatial

entangled

a10,x

a01,x

a10,y

a01,y

-

-

+/-
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measurement device

∆xySi
2
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MSMS

MSπ π/2

π/2π

Figure 4.7: Scheme to generate and characterise spatial Stokes entanglement. 50:50 BS is a

symmetric non-polarising beam-splitter, π and π/2 are mode-selective phase shifters.

The sum form of the inseparability criterion is now written in terms of the spatial

Stokes operators, using Eqs. (4.46) and (4.47). The degree of inseparability for the three

permutations of Stokes operators (assuming α01,x = α01,y = α01 and α10,x = α10,y = α10)

are given by

I(Ŝ1, Ŝ2) =
∆2
x±yŜ1 + ∆2

x±yŜ2

8|α10α01 sin θ|

I(Ŝ3, Ŝ1) =
∆2
x±yŜ1 + ∆2

x±yŜ3

8|α10α01 cos θ|

I(Ŝ2, Ŝ3) =
∆2
x±yŜ2 + ∆2

x±yŜ3

4|α2
10 − α2

01|
(4.50)

where the conditional variance is defined as ∆2
x±yÔ = min〈(δÔx±δÔy)

2〉. Since we assume

that α2
10,x,y ≪ α2

01,x,y, the conditional variances for the spatial Stokes operators are thus

given by

∆2
x±yŜ1 = α2

01∆
2
x±yX̂

+
a01

∆2
x±yŜ2 = α2

01∆
2
x±yX̂

θ
a10

∆2
x±yŜ3 = α2

01∆
2
x±yX̂

θ−π
2

a10

(4.51)
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Substituting these expressions into Eqs. (4.50), gives

I(Ŝ1, Ŝ2) =
α01

8α10| sin θ|
(

∆2
x±yX̂

+
a01 + ∆2

x±yX̂
θ
a10

)

(4.52)

I(Ŝ3, Ŝ1) =
α01

8α10| cos θ|
(

∆2
x±yX̂

+
a01 + ∆2

x±yX̂
θ−π

2
a10

)

(4.53)

I(Ŝ2, Ŝ3) =
α2

01

4|α2
10 − α2

01|
(

∆2
x±yX̂

θ
a10 + ∆2

x±yX̂
θ−π

2
a10

)

(4.54)

It is important to note that the inseparability criteria of Eqs. (4.52) and (4.53) scale with

respect to α01/α10. For increasing α01/α10, the correlation in X̂+
a01 and X̂θ

a10 have to

be correspondingly increased, in order to maintain inseparability. This could potentially

be a technical difficulty for experiments. For α01/α10 → 0, the inseparability values

increases to infinity and thus the verification of inseparability is not possible. Therefore,

in experiments, a compromise in α01/α10 values and sufficient degree of correlation in X̂+
a01

and X̂θ
a10 have to be considered, to demonstrate inseparability.

Eq. (4.54) can be simplified further to

I(Ŝ2, Ŝ3) =
1

4

(

∆2
x±yX̂

θ
a10 + ∆2

x±yX̂
θ−π

2
a10

)

=
1

4

(

∆2
x±yX̂

+
a10 + ∆2

x±yX̂
−
a10

)

(4.55)

where we have assumed θ = 0 and α2
01 ≫ α2

10. In this situation, quadrature entanglement

of the TEM10 input modes (as shown in Fig. 4.7) will yield spatial Stokes entanglement

between Ŝ2 and Ŝ3.

4.5 Conclusion

We have identified the position and momentum of a TEM00 optical beam. By showing

that x̂ and p̂ are conjugate observables that satisfy the Heisenberg commutation relation,

a continuous variable x-p entanglement scheme was proposed.

A form of spatial entanglement which has applications in quantum imaging was also

explored. The detection schemes for quantum imaging are typically array detectors. In

this chapter, we considered the split detector. We utilised the one-dimensional spatial

squeezing work of Treps et al. [204] and proposed a spatial homodyning scheme for the

spatial squeezed beam. By identifying the conjugate observables for the spatial squeezed

beam as the amplitude and phase quadratures of the flipped mode, we showed that split

detection-based spatial entanglement can be obtained.

We also studied the generation of spatial Stokes entanglement. The detection scheme

for spatial Stokes operators was identified and the generation of spatial Stokes squeezing

was analysed. Our spatial Stokes entanglement scheme is analogous to that of polarisation

Stokes entanglement [124] and could have potential applications for the transfer of spatial

Stokes entanglement from optical fields to atomic ensembles [241, 242, 243, 244, 245, 246].



Chapter 5

Application of spatial quantum

optics for phase coding

".-- ... .. ... - -.. -. -.. ... ..-. .-.

.- -. . ... -.-. .... ... . ?"

Humans have been obsessed with the possibility of encoding information for millennia.

The Chinese produced the I Ching (“Book of Changes”) in 2852 BC. A symbolic system

based on hexagrams with broken and/or solid lines (i.e. binary) is the main coding system

of the I Ching. Many scholars explain that the 64 codes in the I Ching describe the

evolution of phenomena and events - that change is a natural progression of nature, whilst

others argue that the I Ching is purely a form of divination. If one were to accept the former

interpretation, the I Ching could be one of the first human endeavours at information

dense-coding. On the other side of the globe, the Romans invented the Caesar cipher

where each letter in the text was substituted by another letter, at some fixed number of

positions further down the alphabet. This form of information encoding was performed

to encrypt information but does not provide any information compression.

Information theory was pioneered by Claude Shannon who developed theories on in-

formation compression using entropy arguments. In this chapter, we are interested in

‘packing’ as much information as possible into a memory device. However, we do not

approach this problem from the information theoretic perspective but from the quantum

experimentalist perspective. Our motivation is to imagine a new scheme to increase the

information storage capacities of optical memories. Instead of taking the traditional path

of using lasers with ever smaller wavelengths and improving data compression algorithms,

we investigate interferometric techniques to perform phase encoding. Our scheme encodes

information in both the longitudinal and spatial transverse phases of a continuous-wave

optical beam. One could envisage that using array detection, coupled with interferometers,

multi-modal transverse and phase properties of an optical beam can be resolved.

Fig. 5.1 illustrates our idea of information encoding where an input beam in a single-

mode is sent into a modal encoder (e.g. a transmissive or reflective phase mask). The

encoded beam could suffer power reduction due to a variety of sources such as absorptive

loss and having non-propagating evanescent wave components. The output encoded beam

could have a multi-modal transverse feature, up to mode order n, when decomposed in

terms of the input modal basis. All the possible encoded information would then be

described by functions fm which are dependent on the modal components E1, · · · , En. In

order for the phase coding scheme to have successful encoding, the number of functions

71
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Loss

Non-

propagating

Modal

encoding

Single-mode Multi-mode

E1

E2

En

Encoded mode function

f   ( E  , ... , E  )1 1 n

f   ( E  , ... , E  )2 1 n

f   ( E  , ... , E  )m 1 n

Figure 5.1: The input field consists of a single-mode mean field, represented by the solid-line

arrow. The broken-line arrows represent vacuum mode coupling in other orthogonal modes to the

single-mode mean field. The output field consists of a multi-mode expansion of means fields En, in

terms of the input mode basis, represented by the solid-line arrows. The broken-line arrows show

the vacuum modes. The possible functions to describe the encoded information is represented by

fm(E1, · · · , En).

has to be less than or equal to the total number of mode components (i.e. m ≤ n).

To achieve dense-coding capacities, the number m has to be maximised above a certain

specified signal-to-noise ratio.

In this chapter, we describe a simplified (specific) form of split detector-based inter-

ferometric scheme to optimally detect both encoded longitudinal and transverse phase

signals. In contrast to present-day optical storage devices, our phase coding scheme has

an information storage capacity which scales with the power of the read-out optical beam.

We analyse the maximum number of encoding possibilities at the shot noise limit. In

addition, we show that using squeezed light, the shot noise limit can be overcome and the

number of encoding possibilities increased. We discuss a possible application of our phase

coding scheme for increasing the capacities of optical storage devices, such as compact

discs and digital versatile discs.

The work in this chapter has been published in the journal article:

• M. T. L. Hsu, V. Delaubert, W. P. Bowen, C. Fabre, H.-A. Bachor and P. K. Lam,

“A quantum study of multibit phase coding for optical storage”, IEEE Journal of

Quantum Electronics 42, 1001 (2006).
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5.1 Introduction

The optical compact disc (CD) was developed in 1979 as a collaboration between two

corporations - Sony and Philips. Today, the CD has wide-ranging storage applications

from the audio-visual to computer industries. The CD system is based on a 780 nm laser

(laser spot size of 2.1 µm) with a storage capacity of approximately 670 MB. Since their

introduction there has been increasing demand for greater storage capacities in optical

discs. The digital versatile disc (DVD), based on a 650 nm laser system (spot size of

1.3 µm), was introduced. Depending on the format, it can have storage capacities ranging

from 4.7 GB to 17.1 GB. More recently, the HD DVD and Blu-Ray discs based on a

405 nm laser system were released. The HD DVD system has a spot size of 0.76 µm and

storage capacities of 15 GB to 45 GB, whilst Blu-Ray disc systems have a smaller spot

size of 0.6 µm, with capacities of 25 GB to 100 GB [158].

Whilst nano-technology allows the fabrication of mechanical surfaces with nanometer

size structures, it is the diffraction limit of the read-out optics that prevents data storage

densities beyond those of present day systems. The trend of compacting more information

into an optical disc therefore primarily relies on the use of shorter wavelength lasers to

achieve smaller diffraction limited spot sizes. One could envisage that in the not too

distant future, such improvement in the storage density would require the use of very

short wavelength light beyond the ultra-violet spectrum that cannot be generated with

known laser optics.

To date, there have been a number of suggested alternatives for obtaining higher op-

tical storage densities. For example, currently under development are next generation

holographic devices, the holographic versatile disc (HVD), which have capacities exceed-

ing 300 GB through the usage of volume storage. An alternative approach depends on

the encoding of spatial details beyond the diffraction limit of the read-out laser beam

[158]. This approach requires the use of near-field microscopy techniques to resolve sub-

diffraction limited features.

In this chapter, we revisit a well known alternative of using interferometric techniques

[57, 227, 224, 225, 142, 146, 145, 55, 56, 140] to extend optical storage density. We propose

to perform multi-bit phase-front coding of optical beams in an interferometric setup. Our

scheme does not require holographic nor near-field optics, instead it utilises two classes

of phase coding - the longitudinal and spatial transverse phases of an optical beam. We

encode information in the longitudinal phase of a beam, which could take discrete values

ranging from 0 to π. The total number of encodable phase values scales with the power of

the read-out optical beam. We then introduce an extra encoding degree of freedom, the

spatial transverse phase-front profile of the beam. Note that the spatial features of a beam

are limited by diffraction. In this chapter, dense storage is achieved via small changes in

longitudinal phase. We restrict all beam spatial structure to above the diffraction limit,

and as a result can describe the beam using the paraxial approximation. In order to

resolve the encoded longitudinal phase of the beam, an interferometric scheme is required.

To resolve the spatial phase profile of the beam, a multi-segment photo-detector (e.g. a

charge-coupled device (CCD)) can be used.

This chapter is sectioned as follows. We first reduce our analysis of spatial phase-

front beam encoding to the situation of a two-pixel array detector, the split detector

[155, 156, 151, 152, 153, 154]. We identify the possible phase profiles symmetric with a

split detector and give a modal analysis for these spatial profiles. We also introduce the

longitudinal phase of the beam and show how an interferometric scheme based on split
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detectors can be used to simultaneously obtain information on the longitudinal and spatial

phases. A quantum analysis of the measurement noise is then presented. We identify the

maximum number of encodable longitudinal phases at the shot noise limit (SNL). We

then show that using squeezed light, one can overcome the shot noise limit and thus the

number of encoding possibilities can be further increased. Consequently, we analyse the

spectral properties of the signal and noise of the encoded beam. We compare single and

consecutive measurement techniques, and show that consecutive measurements provides

an improved signal-to-noise ratio (SNR), whilst ensuring compatibility with squeezed light

frequency regimes.

5.2 Classical Phase Coding

We consider the detection of a specific set of possible transverse and longitudinal phase

transformations of a TEM00 field. To detect such transformations requires a spatially

selective detection system such as a CCD array, split detector or specifically configured

homodyne detector [149]. Split detectors in particular offer fast response (in the GHz

regime) and high efficiency. These factors are critical in high bandwidth optical systems.

We therefore concentrate our analysis on split detectors.

Restricting our analysis to one dimension, the set of eigenmodes that best describe

split detectors is the flipped eigenmode basis [203, 207], as defined in Chapter 3.

(1) (2) (3) (4)

eiθ -e iθ eiθ -e iθ eiθ-e iθ

Figure 5.2: The four possible phase-front profiles resulting from the transformation on the input

u0(x) beam.

To encode split detector compatible information on the phase-front of a TEMpq beam,

π phase flips of this kind should therefore be applied. This results in four possible bit

values, corresponding to the four possible two-pixel π phase shifts on u0(x), as illustrated

in Fig. 5.2. A longitudinal phase factor eiθ is also introduced to increase the total number

of encoding possibilities. The phase coded modes introduced in Fig. 5.2 are described by

the following transformation

u0(x)
(1)−→ eiθu0(x) (5.1)

u0(x)
(2)−→ −eiθu0(x) (5.2)

u0(x)
(3)−→ eiθuf0(x) (5.3)

u0(x)
(4)−→ −eiθuf0(x). (5.4)

In order to resolve the four possible phase-front profiles of Eqs. (5.1)-(5.4), we propose

the phase coding scheme shown in Fig. 5.3. Beam 1 undergoes a phase-front transformation

upon traversing a phase object (PO), resulting in transformed beam 3. Subsequently,

beams 2 and 3 are combined on a 50:50 beam-splitter and the two output beams are
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detected using split detectors. Each field can be represented by the positive frequency

part of its mean electric field E+e−iωt, where ω is the optical frequency. We are interested

in the transverse information described fully by the slowly varying field envelope E+. For

a measurement performed in an exposure time T , the mean field for input beams 1 and 2

are given by

E+
1 (x, t) = i

√

h̄ω

2ǫ0cT
α0(t)u0(x) (5.5)

E+
2 (x, t) = ieiφ

√

h̄ω

2ǫ0cT
β0(t)u0(x) (5.6)

where α0(t) and β0(t) are the coherent amplitudes of the TEM00 input beams 1 and 2,

respectively. φ represents the longitudinal phase of beam 2.
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Squeezing
resources

Measurement
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Figure 5.3: Two-pixel phase coding scheme. BS: beam-splitter, SD: split-detector. D1, D2, D3,

D4: labels for the split detector segments. OPA: optical parametric amplifier, PO: phase object.

The photo-current signal for all segments of the split detectors are then calculated.

The photo-current signal is related directly to the mean photon number, given by nx<0 =
2ǫ0cT
h̄ω

∫ 0
−∞ dxE†E and nx>0 = 2ǫ0cT

h̄ω

∫∞
0 dxE†E , for split detector x < 0 and x > 0 segments,

respectively.

Table 5.1: The photo-current signal terms.

Transformed Combination A Combination B Combination C Combination D
Mode (D1 −D2) (D1 +D2) (D1 −D2) (D1 +D2)

+(D3 −D4) +(D3 +D4) −(D3 −D4) −(D3 +D4)

eiθu0(x) 0 α2
0 + β2

0 0 2α0β0 sin(φ− θ)
−eiθu0(x) 0 α2

0 + β2
0 0 −2α0β0 sin(φ− θ)

eiθuf0(x) 0 α2
f0 + β2

0 2αf0β0 sin(φ− θ) 0
−eiθuf0(x) 0 α2

f0 + β2
0 −2αf0β0 sin(φ− θ) 0

We consider four possible combinations for the pair-wise photo-current addition and

subtraction, with the photo-current signal terms shown in Table 5.1. The table shows that

for both combinations A and B, all four mode transformations have identical signal values
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of 0 and α0(t)
2 + β0(t)

2, respectively. Thus the phase-front transformation on the input

beam cannot be determined. Combinations C and D, on the other hand, allow the uf0(x)

and u0(x) modes to be detected respectively with a sign change for the different phase-

front transformation. Moreover, the phase coding scheme is sensitive to the differential

longitudinal phase (θ − φ).

Note that φ has to be calibrated in order to determine the encoded phase θ. φ is

scanned between 0 and π until an extremum value of ±2α0β0 is obtained. For example,

for combination D, a value of −2α0β0 for φ = φopt tells us that the encoded mode-shape

is −u0(x) with longitudinal phase θ = π/2 − φopt. The maximal signal is obtained for a

phase difference of φ − θ = π/2. This interferometric scheme therefore enables a unique

distinction of all of the four phase-front transforms given in Eqs. (5.1)-(5.4).

5.3 Quantum Phase Coding

We would like to quantify the maximum number of encoding possibilities, whose limit is

ultimately set by the SNL. The SNL is identified and ways to improve the sensitivity of the

measurement using squeezed light are shown. Consider the field operators in the sideband

frequency domain, Ω. For brevity, we do not explicitly denote the frequency dependence

for the field operators hereon, which are given by

Ê+
1 = i

√

h̄ω

2ǫ0cT

(

α0u0(x) +
∞∑

n=0

δânun(x)

)

(5.7)

Ê+
2 = ieiφ

√

h̄ω

2ǫ0cT

(

β0u0(x) +
∞∑

n=0

δb̂nun(x)

)

, (5.8)

where the first terms are the coherent amplitude of the u0(x) mode. The second terms are

the quantum fluctuations δâ = â− 〈â〉 and δb̂ = b̂ − 〈b̂〉, with â and b̂ being annihilation

operators, of beams 3 and 2 in Fig. 5.3, respectively. Depending on the phase-front

transformation on beam 1, the field operator describing beam 3 is given by

Ê(1)+
3 = ieiθ

√

h̄ω

2ǫ0cT

(

α0u0(x) +
∑

n=0

δânun(x)

)

Ê(2)+
3 = −ieiθ

√

h̄ω

2ǫ0cT

(

α0u0(x) +
∑

n=0

δânun(x)

)

Ê(3)+
3 = ieiθ

√

h̄ω

2ǫ0cT

(

αf0uf0(x) +
∑

n=0

δâfnufn(x)

)

Ê(4)+
3 = −ieiθ

√

h̄ω

2ǫ0cT

(

αf0uf0(x) +
∑

n=0

δâfnufn(x)

)

(5.9)

where the superscript denotes the transformations corresponding to Eqs. (5.1)-(5.4).

The RF photo-current for all segments of the split detectors are then calculated simi-

larly to the previous section. The overlap integrals in the expressions for the photo-current

sum and difference operators are simplified using the respective orthogonality properties

of the un(x) and ufn(x) modes [204, 1, 205].
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The photo-current noise corresponding to combinations C and D are shown in Ta-

ble 5.2, where we have defined the quadrature noise operator as δX̂ψ
a = e−iψδâ + eiψδâ†.

We assume the phase-front transformation is loss-less. Therefore the photon statistics of

the transformed field are unchanged relative to the initial field, so that |αf0| = |α0| = |α|
and 〈(δX̂ψ

af0 )
2〉 = 〈(δX̂ψ

a0)
2〉 = 〈(δX̂ψ

a )2〉. Table 5.2 therefore suggests that squeezing the

input beams 1 and 2 will lead to enhanced noise performances.

Table 5.2: Photo-current noise.
Transformed Combination C Combination D

Mode (D1 −D2) − (D3 −D4) (D1 +D2) − (D3 +D4)

eiθu0(x) −β0δX̂
(φ−θ+π/2)
af0 + α0δX̂

(θ−φ+π/2)
bf0

−β0δX̂
(φ−θ+π/2)
a0 + α0δX̂

(θ−φ+π/2)
b0

−eiθu0(x) β0δX̂
(φ−θ+π/2)
af0 − α0δX̂

(θ−φ+π/2)
bf0

β0δX̂
(φ−θ+π/2)
a0 − α0δX̂

(θ−φ+π/2)
b0

eiθuf0(x) −β0δX̂
(φ−θ+π/2)
af0 + αf0δX̂

(θ−φ+π/2)
b0

−β0δX̂
(φ−θ+π/2)
a0 + αf0δX̂

(θ−φ+π/2)
bf0

−eiθuf0(x) β0δX̂
(φ−θ+π/2)
af0 − αf0δX̂

(θ−φ+π/2)
b0

β0δX̂
(φ−θ+π/2)
a0 − αf0δX̂

(θ−φ+π/2)
bf0

We now determine the maximum number of encoding possibilities in our phase coding

scheme. The encoding limit is determined by the minimum longitudinal phase difference

detectable ∆θmin. This corresponds to when the signal and noise variances are equal (i.e.

SNR =1).

The SNR is calculated by taking the ratio of the signal and noise variances, given by

〈n〉2 and 〈δn̂2〉, respectively. The corresponding SNR of the measurement for the ±u0 and

±uf0 modes are denoted by RC and RD, respectively, and have the same form given by

R =
4α2

0β
2
0 sin2(φ− θ)

α2
0〈(δX̂ψ

b0
)2〉 + β2

0〈(δX̂ψ
a0)

2〉
(5.10)

If the input beams are coherent with 〈(δX̂ψ
a0)

2〉 = 〈(δX̂ψ
b0

)2〉 = 1, then Rcoh =

4α2
0β

2
0 sin2(φ − θ)/(α2

0 + β2
0). This coherent state SNR serves as a benchmark, for com-

parison with the SNR achievable with squeezing. For quadrature squeezed input beams 1

and 2 (i.e. 〈(δX̂ψ
a0)

2〉, 〈(δX̂ψ
b0

)2〉 < 1), we see directly that Rsqz > Rcoh. Squeezed input

beams therefore increase the SNR achievable for all possible mode transformations.

Note that in the limit β0 ≫ α0, our phase imaging scheme reduces to that of a homo-

dyne measurement with a SNR given by Rhom = 4α2
0 sin2(φ − θ)/〈(δX̂ψ

a0)
2〉. The signal

and noise contribution arise from the transverse mode defined by the local oscillator mode-

shape.

The minimum longitudinal phase difference detectable (i.e. SNR =1) is given by

∆θmin = sin−1

√

α2
0〈(δX̂b0)

2〉 + 〈(δX̂a0)
2〉β2

0

4α2
0β

2
0

(5.11)

where we have assumed that the phase difference between beams 2 and 3 have been

optimised to φ − θ = π/2. Since the longitudinal phase of beam 3 is determined modulo

π, the total number of resolvable phase levels is π/∆θmin, which scales with the power of

the read-out optical beam α. Note that this contrasts with conventional optical storage

devices which are restricted to only two encodable values (i.e. ‘0’ and ‘1’), with a SNR

proportional to the power of the read-out beam.

Including the four possible transverse encoding combinations, the total number of
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encodable levels for our phase coding scheme is therefore given by

Lmax =
4π

∆θmin
(5.12)

We now consider Lmax levels for a fixed optical power and show how this can be

improved via squeezing. The mean number of photons per bandwidth-time in an optical

field n̄ can be related to its coherent amplitude α, amplitude 〈(δX̂+)2〉 and phase 〈(δX̂−)2〉
quadrature noise variances by

n̄ =
1

4
(α2 + 〈(δX̂+)2〉 + 〈(δX̂−)2〉 − 2). (5.13)

The first thing to note is that for squeezed states, n̄ is non-zero even when α = 0. Indeed,

as the squeezing increases (for amplitude squeezing 〈(δX̂+)2〉 → 0 and 〈(δX̂−)2〉 → ∞) n̄

increases monotonically. With regards to our phase-front detection scheme, these photons

do not contribute to the signal, α, and therefore for a given optical power, n̄, a balance

must be obtained between using photons to minimise the noise (maximise the squeezing),

and to maximise the signal (maximise α).

In this section, Lmax for a fixed optical power was maximised numerically. This was

performed over all possible ratios of photons used to minimise the noise, and those used to

maximise the signal. The total optical power is the sum of the number of photons in each

of the input beams, each individually given by Eq. (5.13). We considered three cases. In

the first case, to provide a benchmark, we considered Lmax levels when no squeezing was

available, and both input beams were coherent. In the second case, squeezing was allowed

for beam 1 but beam 2 was coherent. In the third case, both input beams were squeezed.

The maximum Lmax levels for each of these cases is shown in Fig. 5.4. We see that by far,

the best Lmax levels is achieved when both beams are allowed to be squeezed, with ∼ 25%

capacity improvement over the coherent state case when 100 photons per bandwidth-time

are used. In the case of only one squeezed beam, the capacity improvement is ∼ 10%.

Of course, due to decoherence and inefficiencies, arbitrary levels of squeezing are not

available. Therefore, it is interesting to consider not only the maximum Lmax levels that

can be achieved, but also whether the amount of squeezing required to achieve it are

feasible. The amount of squeezing required to achieve the maximum Lmax levels for a

given total photon number are shown in Fig. 5.5 for both the one squeezed beam and

two squeezed beam cases. In both cases, when less than 10 photons per time are utilised,

squeezing levels below 10 dB are required. Although challenging, such levels of squeez-

ing are experimentally achievable [176]. For more than 10 photons per bandwidth-time

however, the level of squeezing required to achieve the maximum encodable levels fast be-

comes unfeasible. Therefore, utilising squeezed light in the phase-front detection scheme

presented here will only be beneficial when less than 10 photons are available per mea-

surement interval.

Coherent beams can allow a large number of encodable levels. Assuming similar pa-

rameters to CD technology and idealised shot noise limited performance, we can encode

up to 5000 levels, for a 1 mW beam (λ = 780 nm, spot size = 2.1µm) in the limit that

β0 ≫ α, during a 10 µs measurement time (where SNR = 60 dB, based on current tech-

nology specifications). Therefore up to 12-bit encoding per site is possible. The capacity

of CDs can be potentially increased to 8 GB. For lower SNR standards (SNR=50), 19-bit

encoding per site can be achieved, giving a capacity increase of up to 13 GB. Squeezing

can further improve the maximum encodable levels in the limit of low laser power. Similar
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Figure 5.4: Maximum log2 Lmax levels of the phase-front coding scheme as a function of the

total mean number of photons / (Hz.s) utilised in the protocol. (i) Both input beams amplitude

squeezed, (ii) beam 1 amplitude squeezed and beam 2 coherent, (iii) both input beams coherent.

to the multi-bit encoding schemes of P. Török’s group [158], our scheme is a significant

improvement over current technology where only one bit per site is encoded.

5.4 Potential Application to Optical Storage

In this section, we investigate the compatibility of our phase coding scheme with an optical

disc read-out scheme.

5.4.1 Optical disc scheme

In conventional CDs, the information is encoded in binary format, by burning physical

indentations (commonly termed ‘pits’) on the disc. Regions where no physical indentations

exist are termed ‘lands’. A transition between ‘pit’ and ‘land’ encodes for ‘1’, whereas no

transition encodes for ‘0’ [248]. The reflected beam intensity from a focussed laser beam

onto the disc allows bit read-out, as the beam undergoes large diffractive losses when

impinging on a ‘land’-‘pit’ transition.

We propose to store more than one level on a single ‘pit’ site, by encoding levels as

shown on Fig. 5.6. The information is contained in the longitudinal and transverse phase

domains for each ‘pit’. The longitudinal phase is determined by the depth of the ‘pit’,

λθ/(2π), while the transverse phase profile is determined from its shape. By assuming

that the phase transformation structure is larger than the diffraction limit, and since the

longitudinal phase shift is not constrained by the diffraction limit, we can assume that the

reflected field has the same transverse profile as in Fig. 5.2. Note that when the transverse

structure is below the diffraction limit, the beam profiles of Fig. 5.2 cannot be generated

[60]. In this situation, two approaches can be used to obtain the transverse profile of the

read-out beam - (i) by using Maxwell’s equations, and/or (ii) by performing an initial
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Figure 5.5: Shot noise normalised level of squeezing required to achieve the optimum number of

encodable levels as a function of the total mean number of photons per bandwidth-time utilised in

the protocol. (i) Beam 1 amplitude squeezed and beam 2 coherent, (ii) both input beams amplitude

squeezed.

experimental calibration of all the possible transverse mode profiles, since we posses a

priori knowledge of the transverse phase structures.

Therefore, the reflection of the read-out beam has one of the four possible transverse

mode profiles, ±u0(x) or ±uf0(x), with an additional global phase shift θ. This reflected

beam (i.e. beam 3) can then be combined with beam 2 on a 50:50 beam-splitter, as shown

in Fig. 5.3 to perform the phase information decoding.

Thus far, our analysis has not considered the spectral properties of the read-out signal

and noise. Since the optical disc is spinning and the laser read-out time is limited, the

spectral power density of a realistic optical disc detection differs from that of an idealised

static phase sensing scheme. We examine these issues in the following subsections.

5.4.2 Spectral power density for a single measurement

We first consider the information extraction from a time-limited static disc read-out. N

photons are detected in a time interval T , as represented on the inset of Fig. 5.7, where

the integrated photo-current provides the encoded information.

Using a single top hat function as a time measurement window, the Wiener-Khinchine

relation yields the signal power spectral density (PSD), S1(ν) [249]. In the case of a double

sided power spectrum, the signal PSD is given by [249]

S1(ν) = T

[∫ ∞

−∞
s(ν ′).sinc(πT (ν ′ − ν))dν ′

]2

(5.14)

where ν is the frequency and s(ν) is the signal linear spectral density in the limit of an

infinite time measurement, defined as s(ν) =
√

S(ν). S(ν) is the number of photons per

bandwidth-time.
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Figure 5.6: Examples of bit encoding allowing denser information storage on optical discs. The

binary information is encoded in the transverse and longitudinal phases of the reflected read-out

laser beam. The depth of the ‘pit’ can range from discrete values between 0 and λ/2. Hence

θ1 ∈ (λ/4, λ/2] and θ2 ∈ (0, λ/4], where λ is the laser wavelength and θ is the longitudinal phase

shift of the laser beam. Note that the ‘pit’ depth is half that of the phase shift experienced by the

read-out laser beam due to a round-trip propagation from the optical disc.

For a single measurement, s(ν) is given by s(ν) = Nδ(ν), where N is the number of

photons per time in the signal and δ(ν) is a delta function centred at DC. Thus Eq. (5.14)

becomes

S1(ν) = N2T sinc2(πTν) (5.15)

where the signal PSD has a squared cardinal sine distribution with a maximum at DC.

Fig. 5.7 shows the normalised signal and noise PSD.

The noise power spectral density, N (ν) = ξ(ν)2 is now obtained. We assume that

read-out lasers are shot noise limited. Thus the noise linear spectral density is white and

proportional to
√
N , given by ξ(ν) =

√
N . The integration time in our measurement is T

and the noise PSD is given by

N1(ν) = NT

[∫ ∞

−∞
sinc(πT (ν ′ − ν))dν ′

]2

=
N

T
(5.16)

where the white noise spectrum has an amplitude of
√

N/T . We have chosen N = 1/T 2

for Fig. 5.7 such that the noise power is approximately equal to the maximum signal power.

The typical measurement time of a DVD device is T = 0.1 µs, corresponding to

N = 1014 photons/s for a read-out laser of 20 µW power at a wavelength of λ ≃ 1 µm.

The signal spectrum therefore is in the DC to 10 MHz regime. Improvements on the

measurement sensitivity beyond the shot noise limit thus requires broadband squeezing

from DC to 10 MHz. Although low frequency squeezing has recently been demonstrated

[24, 250], many technical challenges exist.

An alternative solution, compatible with current technology, could be the sampling

or modulation of the read-out beam to artificially shift the signal to a higher frequency

range. For optical discs rotating at approximately 10 bit/µs (4.32 Mb/s for CDs, and

26.16 Mb/s for DVDs), the sampling or modulation frequencies can be at least 1 GHz,

which is compatible with squeezing frequency ranges. However, the disadvantage of such

an approach is that the photon number in the signal sidebands is low. The majority of the
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Figure 5.7: The normalised (i) signal S1(ν) and (ii) noise N1(ν) PSD for a single measurement

in a time interval T . S1(0) and N1(0) are the maximum signal and noise powers at DC. The

inset shows the sequence corresponding to a single top hat measurement window, h(t), with N(t)

photons.

photons are still distributed in the frequency regime around DC. Thus the improvement

in the SNR may not be significant.

5.4.3 Spectral power density for consecutive measurements

We now propose to perform consecutive ‘pit’ measurements where the centre of the signal

PSD is shifted to a higher frequency. Two consecutive measurements of the variable N(t)

during two time intervals of length T , separated by a delay T ′, is shown schematically on

the inset of Fig. 5.8.

The difference between two consecutive measurements yields a signal PSD given by the

contribution of each individual sine-wave at frequency ν, to the total signal, and averaging

over all possible initial phases Θ, giving

S2(ν) = S(ν)η2(ν) (5.17)

where η2(ν) is given by

η2(ν) = κ
〈
(
∫ T

0
−
∫ 2T+T ′

T+T ′

sin(2πνt+ Θ)dt

)2
〉

(5.18)

and where κ is a normalisation constant. Note that a similar calculation can be applied

to the single measurement case.

The signal and noise PSD for T ′ = 0 are shown in Fig. 5.8. The signal PSD is shifted to

the MHz frequency regime (which is more compatible with routinely obtained experimental

squeezing frequency regimes). The signal PSD maximum is at ν ∼ 0.35/T for T ′ = 0. This

is also the regime where the bandwidth is maximum. Increasing T ′ shifts the maximum
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Figure 5.8: (i) Normalised signal S2(ν), (ii) shot noise and (iii) squeezed noise N2(ν) PSD for

two consecutive measurements of time intervals T separated by a delay T ′ = 0. The maximum

signal and noise powers are respectively, S2,COH and N2,COH, for a coherent state read-out laser

at ν ∼ 0.35/T . In the case of a squeezed read-out laser, the maximum signal and noise powers are

denoted by S2,SQZ and N2,SQZ, respectively. The inset shows the sequence corresponding to two

consecutive measurements.

signal power to lower frequencies and sharpens the distribution. Thus the bandwidth

reduces with increasing T ′. For T ′ = T , the maximum signal power is for example ∼ 1.5

times larger than that for the T ′ = 0 case and occurs at ν ∼ 0.2/T , whereas the bandwidth

reduces by half. T ′ can thus be tuned to obtain an optimum for signal power, bandwidth

and compatibility with squeezing frequencies.

The SNR of interest in our optical memory scheme corresponds to that of a single

frequency ν, as defined in Eq. (5.10). Therefore our proposed optical memory scheme will

require a frequency mixer or bandpass filter centred at ν, where the measurement SNR is

maximum.

Differential consecutive measurements is a technique already employed in current op-

tical disc devices, as it allows the cancellation of common-mode classical noise, provided

that the phase of the read-out laser is well calibrated in a ‘pit’-to-‘pit’ measurement. Fur-

thermore, the maximum of the normalised PSD for consecutive measurements is slightly

larger than that for the single measurement case, assuming a coherent state read-out laser

with the same parameters. If a broadband 3 dB squeezed state is used as the read-out

laser, the SNR doubles for consecutive measurements. However the SNR improvement for

the case of a single measurement is negligible. This is because low frequency noise sources

(e.g. acoustic noise) overwhelm the squeezing.

5.5 Conclusion

We have presented a scheme to perform longitudinal and transverse spatial phase coding of

continuous-wave optical beams. We have shown that by performing selective combinations

of photo-current addition and subtraction, the phase coded signal can be extracted. In
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order to optimise the phase signal, the longitudinal phase of beam 2 has to be calibrated

and optimised such that φ = π/2 + θ. Whilst current CD technologies are limited by

a number of different noise sources, such as thermal-Johnson noise and electronic noise,

our analysis assumes shot noise limited performance. The maximum number of encoding

possibilities for this regime was calculated, suggesting significant improvement with our

phase coding scheme. However, by using squeezed light, the shot noise limit can be

overcome and thus the maximum number of encodable levels increased. We then presented

a possible application of our phase coding scheme in increasing the capacities of optical

storage devices. We analysed the performance of single measurement techniques and

showed that the signal and noise PSD are centred around DC sideband frequencies. We

then analysed the PSD of differential consecutive measurements and showed that the PSD

spectrum is shifted to higher sideband frequencies. In order to extract the phase signal,

frequency mixing or narrow bandpass filtering techniques can be used. The differential

consecutive measurement technique provides a good SNR whilst ensuring compatibility

with squeezing frequencies.

Our phase coding scheme can be extended to implement a multi-pixel array detector.

Delaubert et al. [60] has performed a quantum study of multi-pixel array detection and

shown that it is possible to perform multi-pixel transverse spatial phase encoding. Pos-

sible implementation of a multi-pixel scheme would require the incorporation of multiple

interferometers and the use of multi-squeezed beams or a multi-mode OPO system [251].

5.6 Future Directions

5.6.1 Quantum noise and diffraction limits

In imaging problems, the resolution of the details of an image and the signal-to-noise ratio

(SNR) of the image are two factors which limit the imaging system.

The detail-resolution of an image is restricted by diffraction and involves resolving the

overlapping peaks of Airy disks. A fiducial limit was correspondingly introduced, termed

the diffraction limit, which is based on the Rayleigh criterion. For a circular aperture, the

Rayleigh criterion yields the minimum resolvable angle θ, given by

sin θ = 1.22
λ

d
(5.19)

where the factor of 1.22 arises from the first zero of the Airy function, λ is the wavelength

and d is the aperture diameter. An imaging system is diffraction limited when the first

diffraction minimum of the image overlaps with the maximum of another image. In order

to increase the detail-resolution, the wavelength of the imaging light has to be reduced.

The SNR of an image scales with the number of photons in the optical field used in

imaging. For a coherent state optical field, the noise in the measurement is due to that

of shot noise. In order to increase the SNR, one could increase the number of photons of

the imaging beam.

Kolobov and Fabre [58] discussed the limits imposed by quantum noise on the resolu-

tion of fine details in optical images. A similar analysis to Ref. [58] could be performed on

our phase imaging scheme, assuming a fixed optical power, P . By increasing the number of

photons, N , the image SNR increases. However, the wavelength, λ of the imaging field is

also increased (since P = Nhc/λ) and therefore the detail-resolution decreases. However,

one could reduce the wavelength of the imaging field to increase the detail-resolution at
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the expense of reducing the SNR of the image (since N decreases). Since optical power

could be limited in an optical imaging system (due to photo-bleaching of image samples,

limited laser power, etc.), it may be a worthwhile study to optimise the photon number

and wavelength of the optical field.
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Chapter 6

Experimental techniques

I don’t have to have faith, I have experience.

- Joseph Campbell

6.1 Introduction

In this chapter, we introduce the common experimental techniques used in the experiments

described in this thesis. The principles and techniques of laser cooling and trapping are

described in Chapter 10, as those techniques are specific to the cold atom experiment.

6.2 The laser

Experiments in quantum optics rely greatly on the optical source. Therefore, an under-

standing of the noise properties, the frequency and intensity stability of the laser source

is vital.

The laser beams used in our quantum measurements were derived from a 1 W

Ti:Sapphire laser (MBR-110 from Coherent), pumped by a 7 W Verdi laser. The

Ti:Sapphire laser had a bow-tie cavity configuration, with a birefringent filter used for

coarse frequency tuning. Finer frequency tuning was achieved using an intra-cavity etalon.

The laser was frequency locked with respect to the etalon which provided single-mode op-

eration and medium-term frequency stability (measured drifts were approximately 20 MHz

over a time window of 10 minutes). The laser was tunable in wavelength across ∼ 750 -

850 nm.

In order to measure the amplitude quadrature noise of the Ti:Sapphire laser, we used a

self-homodyne detection scheme, shown in Fig. 6.1 (A). The measured amplitude quadra-

ture noise of the laser is shown in Fig. 6.1 (B). The results show that the (i) laser noise is

above the (ii) shot noise level, from DC-1 MHz. Therefore the laser had excess noise and

was not shot noise limited within the DC-1 MHz sideband frequency range. Modulation

peaks were also present on the laser, in particular a strong (∼ 50 dB) etalon locking mod-

ulation signal located at 87 kHz, together with its harmonics. The (iii) dark noise of the

homodyne detection was approximately 10 dB below the shot noise level.

The laser noise spectrum shows that the Ti:Sapphire laser was non-ideal for quantum

measurements. The 87 kHz locking signal could saturate the RF response of detectors.

Therefore checks were constantly performed to ensure that detector saturation was not

occurring. The broadband 10 dB noise from DC to 1 MHz was common-mode rejected

89
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Figure 6.1: (A) Schematic diagram illustrating the self-homodyne measurement scheme. BS:

beam-splitter. (B) Measurement of the amplitude quadrature noise power of the Ti:Sapphire laser,

as a function of sideband frequency. The curves indicate (i) laser noise, (ii) shot noise level and

(iii) detector dark noise. The resolution bandwidth is 1 kHz, video bandwidth is 1 kHz and the

results were averaged over 5 measurements.

in a subtracted homodyne scheme as the homodyne detectors typically had 30-40 dB

common-mode subtraction across the detection bandwidth.

A feed-forward scheme to cancel out the 87 kHz locking peak was implemented and

suppression of the locking signal by up to 30 dB was achieved. However, the feed-forward

scheme was not stable over long time scales and therefore the feed-forward scheme was not

implemented in our experiments. An attempt was also made in implementing a feedback

“noise-eating” scheme and suppression of the 87 kHz locking peak by up to 10 dB was

achieved. However the suppression was not significant enough to warrant the use of a

feedback noise cancellation scheme. Our feedback scheme was limited by the gain and

bandwidth of the actuation stage of the feedback system.
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6.3 Atomic source

Often it is not possible to resolve the atomic transitions, in a thermal cloud of atoms,

via direct absorption measurement. Although the natural homogeneous linewidth of the

atomic transitions may be small, the atomic transitions tend to be broadened in a vapour

gas of atoms. The broadening mechanisms can be classified into two classes, inhomoge-

neous and homogeneous broadening. Inhomogeneous broadening occurs in a non-uniform

manner over different atoms (e.g. Doppler broadening), whilst homogeneous broadening

occurs uniformly across all atoms (e.g. pressure broadening). In an atomic vapour cell,

as commonly used in our experiments, the main source of broadening is that due to the

Doppler effect.

6.3.1 Doppler broadening

An atomic gas sample typically consists of an ensemble of atoms moving in different

directions, with different velocities. The fraction of atoms within the velocity range of v

to v + dv is given by the Maxwell-Boltzmann distribution [252]

f(v)dv =

√
m

2πkBT
exp

(

− mv2

2kBT

)

dv (6.1)

where m is the mass of the atom, kB is Boltzmann’s constant and T is the temperature

of the atomic gas.

We now discuss the Doppler effect on the absorption width of an atomic gas, illustrated

in Fig. 6.2. Consider an atom moving at velocity v, in the reference frame of the laboratory

(see Fig. 6.2 (A)). The atom is illuminated from two opposing directions with laser beams

of frequency ω. Changing to the reference frame where the atom is at rest, the frequencies

of the two laser beams are no longer ω. The laser beam from the left has a frequency

of ωR = ω − kv, which is red-shifted. The laser beam from the right is blue-shifted in

frequency, to ωB = ω + kv. The resonant frequency of the atomic transition is given by

ω0, in the reference frame of the atom, and k = ω0/c is the wave-vector. Therefore, the

laser beam is resonant with the atoms when the following condition is satisfied

ωR = ω0 or ωB = ω0 (6.2)

Expressing these equations in terms of the velocity gives

v =
c|ω − ω0|

ω0
(6.3)

Since the atom is resonant with the laser for a range of frequencies ω, the absorp-

tion width of the atoms is then directly proportional to the Maxwell-Boltzmann velocity

distribution function of the atoms, given by

A(v) = C

√
m

2πkBT
exp

(

−mc
2|ω − ω0|2
2kBTω2

0

)

(6.4)

where C is a normalisation constant. Therefore, the linewidth of the atomic transitions

are broadened according to the thermal distribution of the atomic vapour cloud. A direct

measurement of the natural linewidth of an atomic species in a gas sample, simply by

scanning the frequency ω of the laser, is thus not possible.
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(A)

(B)

v

ω ω

ω ωR B

Figure 6.2: Illustration of the Doppler effect in atoms. (A) In the reference frame of the lab-

oratory, the atom is moving in a certain direction with velocity v, and is illuminated by two

counter-propagating laser beams, each with frequency ω. (B) In the reference frame of the atom,

the two laser beams have different frequencies given by the red-shifted frequency ωR and the

blue-shifted frequency ωB.

6.3.2 Saturated absorption spectroscopy

There are many techniques to perform Doppler-free spectroscopy, to resolve the atomic

transitions of a thermal atom cloud sample. Examples of these techniques include, crossed

beam spectroscopy [253], two-photon spectroscopy [254, 255], laser polarisation spectroscopy

[256] and saturated absorption spectroscopy [257, 258]. Our experiments rely heavily on

the technique of saturated absorption spectroscopy, which we describe in this section.

When an intense optical beam is on resonance with an atomic transition, a majority of

the atoms in the ground state are raised to the excited state. The result is a depopulation

of the ground state, a hole burning process. The width of the hole-burning is given by

[252]

∆ωhole = γ

√

1 +
I

Isat
(6.5)

where γ is the natural linewidth and Isat is the saturation intensity of the atomic transition.

Saturated absorption spectroscopy consists of a strong pump beam and a weak probe

beam, propagating in opposite directions, as shown in Fig. 6.3. When the frequency of

the lasers are non-resonant with the atomic transition ω 6= ω0, the pump laser burns a

hole for the class of atoms which move at velocity v1. Since the probe laser is weak, it

gets absorbed by the class of atoms moving at velocity v2. When the pump and probe

lasers are resonant with the atomic transition ω = ω0, the pump laser burns a hole for

atoms with velocity v ≃ 0 and thus the absorption for the probe laser is reduced. For

laser beams with total power I = Isat, the width of the observed atomic transition is given

by ∆ωhole =
√

2γ, which is a factor of
√

2 greater than the actual hyperfine width γ, but

significantly less than that of the inhomogeneous Doppler width.

An artefact of saturated absorption spectroscopy is the cross-over resonance. When

the pump and probe lasers have a frequency midway between two atomic transitions,

ω1 and ω2 (where the transitions are separated by a width δ1→2, less than that of the

Doppler width), an additional feature appears at the midway frequency ω1→2. Since the

laser frequency is midway, the pump laser will burn holes at (ω1 + δ1→2) or (ω2 − δ1→2).
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Figure 6.3: Experimental scheme for saturated absorption spectroscopy. PBS: polarising beam-

splitter, λ/4: quarter wave-plate, ND: neutral density filter for attenuation, M: mirror, PZT:

piezo-electric actuator.

Therefore the probe beam has reduced absorption at the midway frequency, resulting in

a cross-over resonance feature.

In our experiments, the diameter of the saturated absorption spectroscopy beams were

enlarged to approximately the diameter of the atomic vapour cell. This ensured more

atoms were interacting with the laser beams and therefore a higher signal-to-noise ratio

for the saturated absorption signals were obtained. The vapour cells were also heated to

increase the atomic density.

In our experiments, we utilised two species of alkali atoms - Rubidium-87 (87Rb) and

Cesium-133 (133Cs).

Rubidium-87 lines

87Rb has two lines corresponding to two groups of the excited state, the 52S1/2 and

52S3/2 states. The 87Rb D2 and D1 hyperfine transitions are shown in Fig. 6.4 (A) and

(B), respectively. The ground state for 87Rb is given by the |52S1/2, F = 1, 2〉 hyperfine

transitions. The excited states corresponding to wavelengths of 780 and 795 nm are given

by the |52P3/2, F = 0, 1, 2, 3〉 and |52P1/2, F = 1, 2〉 hyperfine transitions, respectively.

Our measurements of the hyperfine structure of 87Rb for the D1 and D2 lines are shown

respectively in Figs. 6.5 (B) and 6.6 (B).

Cesium-133 lines

133Cs has two lines corresponding to two groups of the excited state, the 62S1/2 and

62S3/2 states. The 133Cs D2 and D1 hyperfine transitions are shown in Fig. 6.7 (A) and

(B), respectively. The ground state for 133Cs is given by the |62S1/2, F = 3, 4〉 hyperfine

transitions. The excited states corresponding to wavelengths of 852 and 895 nm are given

by the |62P3/2, F = 2, 3, 4, 5〉 and |62P1/2, F = 3, 4〉 hyperfine transitions, respectively.

6.4 Laser frequency stabilisation

In order to stabilise the frequency of the laser to an atomic resonance line, an error signal is

derived. Using saturated absorption spectroscopy, the atomic absorption lines become well
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Figure 6.4: The numbers for the (A) D2 and (B) D1 lines of 87Rb were obtained from [5,

6, 7]. A comprehensive line data for 87Rb is given by D. A. Steck and can be obtained from

http://steck.us/alkalidata/ .

resolved. Since the atomic lines have a sharp transmission profile, there is a corresponding

dispersion, from the Kramers-Kronig relations [259]. Therefore, a phase modulation signal

can be applied onto the probe beam to derive an error signal corresponding to the atomic

hyperfine levels. The dispersion will result in the sidebands of the modulation signal to

experience varying phase shifts. When the probe beam is detected and mixed down at the

same frequency, the differential phase shifts are converted into an amplitude modulation

signal, which constitutes the error signal [260, 261, 262]. Experimentally, we applied the

phase modulation signal either by modulating the current of the diode laser, or in the case

of a Ti:Sapphire laser, we used an acousto-optic modulator for modulation. The error

signals corresponding to the hyperfine structure of 87Rb are shown in Figs. 6.5 (A) and

6.6 (B).

6.4.1 Ti:Sapphire laser frequency stabilisation

The Ti:Sapphire laser was the main “work horse” for our experiments and stabilisation

of the laser frequency was critical in most of our experiments. However the internal fre-

quency stabilisation system for the Ti:Sapphire laser was insufficient for our experimental

requirements. Within the Ti:Sapphire laser unit, the output beam was partially reflected
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Figure 6.5: (A) Error signals and (B) saturated absorption spectroscopy signals for the D1 line

of 87Rb and 85Rb. Note that 85Rb is present in a natural mixture Rb vapour cell.

into a reference cavity to derive an error signal to stabilise the laser to the reference cavity.

However, the reference cavity had a slow length drift which induced a slow frequency drift

on the Ti:Sapphire laser. Therefore the Ti:Sapphire internal locking system had to be

bypassed. The Ti:Sapphire laser was instead stabilised to an atomic transition, which was

a significantly more stable reference than the internal reference cavity system. In order to

bypass the internal locking system, a beam block was inserted in front of the photodetector

that detected the reflected signal from the reference cavity; within the Ti:Sapphire laser

unit.

The saturated absorption spectroscopy scheme shown in Fig. 6.3, was implemented

for the Ti:Sapphire laser. The saturated absorption signal was sent to an SRS lock-

in amplifier. The lock-in amplifier mixed down and filtered the photodetector signal to

yield an error signal. The error signal was then fed to a home-built servo system and

consequently to the Ti:Sapphire laser.

The procedures for the Ti:Sapphire laser locking involved first scanning the frequency

of the laser as this gave an indication of the laser frequency. In order to lock to the desired

atomic transition, the scan amplitude (i.e. scan width) was reduced. The scan offset was

correspondingly adjusted such that the zero-crossing of the error signal always remained

at the centre of the scan. This procedure was performed until the scan amplitude was

turned down to zero. At this stage, the gain of the error signal into the laser was increased.

The DC level of the absorption signal was observed and should be stabilised to the peak
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Figure 6.6: (A) Error signals and (B) saturated absorption spectroscopy signals for the D2 line

of 87Rb and 85Rb. Note that 85Rb is present in a natural mixture Rb vapour cell.

level of the relevant atomic transition. Thereafter, the integrator circuit was turned on,

providing integration of the error signal between DC-100 Hz, to yield higher gain at low

frequencies.

6.4.2 Diode laser frequency stabilisation

We also utilised extended cavity diode lasers (ECDLs) in our experiments, particularly

for the magneto-optical trap experiments. In order to derive the error signal for frequency

stabilisation of ECDLs, the saturated absorption setup shown in Fig. 6.3 was used. The

current of the ECDL was modulated to provide phase modulation. Alternatively, a phase

modulation signal can be applied on the probe beam, via the use of a piezo-electric actuator

mounted on the retro-reflecting mirror, shown in Fig. 6.3. The detected signal from the

saturated absorption setup was then detected and mixed down to yield an error signal. The

error signal was fed into a servo system, which was then fed back to the PZT controlling

the grating angle in the ECDL. Since tuning of the grating angle alters the frequency of

the ECDL, the feedback stabilised the ECDL to atomic resonance.
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Figure 6.7: The numbers for the (A) D2 and (B) D1 lines of 133Cs were obtained from D. A. Steck

(http://steck.us/alkalidata/).

6.5 Atomic vapour cells

The experiments described in Chapters 7 and 8 used atomic vapour cells as the atomic

source. The vapour cell consisted of isotopically enhanced 87Rb. The cells typically had a

diameter of 25 mm and length of 75 mm, are uncoated and do not contain any buffer gas.

The atomic source for the work discussed in Chapter 10 used a cold atom cloud of 87Rb

atoms in a magneto-optical trap configuration. Details of this cold atom experiment are

discussed in Chapter 10.

The atomic vapour cell had to be mounted and heated. Heating could not be performed

using electrical resistors or Peltier heating elements as these could induce stray magnetic

fields in the vapour cell. Therefore, we adopted a water heating scheme.

The vapour cell was mounted in a cell holder, made out of Delrin (the mechanical

diagrams are shown in Appendix B). An illustration of the cell holder is shown in Fig. 6.8.

The cell holder consisted of 2 parts. The main body was located at the far bottom, with

its cover located at the far top. Within the main body, rested the black unit which had

a water reservoir and a curved surface for the cell to rest on. The water pipes connected

to the black unit. Hot water was pumped into the cell holder to heat up the vapour
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cell, from the bottom. A thermistor was placed at the top of the cell to monitor the cell

temperature. The temperature of the cell could be varied between 20◦ C and 75◦ C.

Figure 6.8: Schematic diagram showing the cell holder assembly.

6.6 Magnetic field compensation

In our experiments, it was important to compensate for stray background magnetic fields.

Often, we were interested in the coherences between degenerate ground states. The pres-

ence of an external magnetic field can induce Zeeman shifts between these ground states,

therefore affecting the coherences. For example, in EIT where degenerate ground states

are used, the Zeeman shift was particularly problematic as it resulted in a two-photon de-

tuning between the atomic transitions accessed by the pump and probe beams. Therefore,

the transmission and dispersion of the EIT system was affected dramatically. For 87Rb,

the Zeeman shift is approximately 1 MHz/G. Thus a field with mG strengths will induce

Zeeman shifts on the order of kHz.

The background magnetic fields were measured as a function of frequency, in all three

orthogonal directions, as shown in Fig. 6.9. The DC field is on the order of mG with

decreasing amplitude at higher frequencies. Harmonics of the 50 Hz AC line signal were

also observed.

We used two cylindrical layers of µ-metal alloy to enclose the vapour cell. The µ-metal

container had a high magnetic permeability and therefore the magnetic fields were drawn

to the metal. The result was that the inner central region of the µ-metal cylinder had very

small magnetic fields. We performed measurements inside the µ-metal cylinder to study

the magnetic field suppression, the results of which are shown in Fig. 6.10.

The double layer µ-metal cylinder suppressed stray background magnetic fields by up

to two orders of magnitude across a large range of magnetic field frequencies. This was

a significant improvement in magnetic field management and therefore µ-metal cylinders

were utilised in the experiments.
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Figure 6.9: Measurements of the magnetic field strength on the optical table, in the region

surrounding the MOT and cell experiments. The different curves correspond to the different

spatial directions as indicated on the top right direction indicator.

6.7 Detection

Most of the detectors used in our experiments were built in-house. We used Silicon pho-

todiodes (Hamamatsu S3883) that typically had measured quantum efficiencies of 94.5 %.

The quantum efficiency of a batch of bare photodiodes was measured by focussing a laser

beam onto the photodiode. A sensitive ammeter was then used to measure the output

current across the photodiode. The quantum efficiency is given by the ratio of the number

of electrons produced to the number of photons illuminating the photodiode. A sepa-

rate calibrated photo-detector was used to measure the optical power of the laser beam

illuminating the photodiode.

The home-built detectors consisted of a trans-impedance stage, followed by two sepa-

rate amplified outputs (see Appendix A.1 for the electronic circuit diagram). The band-

width of the detectors varied between 10-15 MHz. In order to AC-couple the output of the

detectors, an 1 µF capacitor was inserted at the detector output. Typically, for a 5 mW

beam, the detectors offered a 10 dB clearance between the shot noise and detector dark

noise power levels.

6.8 Interferometry

The theory of the Mach-Zehnder interferometric technique, used in homodyne detection

of amplitude and phase quadrature signals, was discussed in Chapters 2 and 3. In this

section, we give a brief intuitive description of how error signals are derived in Mach-



100 Experimental techniques

0 200 400 600 800 1000 1200 1400 1600
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

Frequency (Hz)

M
a

g
n

e
ti
c
 f

ie
ld

 (
G

)

(i)

(ii)

Figure 6.10: Measurements of the magnetic field (i) without and (ii) within the µ-metal cylinder.

Zehnder interferometers, in order to stabilise the length of the interferometer.

The interference signal can be observed by scanning the length of one arm of the inter-

ferometer with respect to the other. At the peak of the interference fringe, an error signal

can be obtained by applying a phase modulation signal. A phase signal will experience

differential phase shifts around this peak region which yields an error signal. This error

signal allows locking for amplitude quadrature detection. At the mid-fringe region, an

error signal can be obtained by taking the subtraction between the two detected outputs

of the interferometer. The error signal allows locking for phase quadrature detection.

6.9 Locking servo

The locking servo system used in our experiments typically consisted of an integration

stage, an offset and a gain stage, a 1/f filter stage and an optional elliptic filter stage.

The integration stage provided higher gain at low frequency and typically integrated signals

from DC to 20 Hz. The offset and gain stages gave the error signal the appropriate offset

and gain; with the 1/f filter stage determining the bandwidth of the servo system. The

optional elliptic filter serves to filter out the first resonance of the piezo-electric transducer

(PZT) actuation system, so as to extend the frequency response of the servo system. The

resonance frequency of the actuation system is dependent on the PZT type and mounting

with the mirror and counter-weight.

The amplitude and phase parts of the transfer function for a typical servo system used

in our experiments are shown in Fig. 6.11 (A) and (B), respectively. The example shown
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has an elliptic filter corresponding to an actuation system resonance1 of ∼ 14 kHz.
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Figure 6.11: The (A) amplitude and (B) phase parts of the transfer function for the servo locking

system.

The electronic circuit diagrams for the locking servo and high-voltage amplifier (for

driving the PZT) are shown in Appendices A.2 and A.3, respectively.

6.10 Summary

This chapter summarises the various basic experimental techniques utilised in the subse-

quent work described in this thesis. Details of the magneto-optical trapping apparatus are

described in Chapter 10,

1It is possible to extend the resonance frequency of the actuation system by a factor of two by clamping
the mirror with the PZT. This is as opposed to gluing the mirror onto the PZT. Also, the counter-weight
should have a large mass.
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Chapter 7

Polarisation self-rotation

Look for it, and it can’t be seen.

Listen for it, and it can’t be heard.

Grasp for it, and it can’t be caught.

These three cannot be further described,

so we treat them as The One.

It’s highest is not bright.

It’s depths are not dark.

Unending, un-nameable, it returns to nothingness.

Form-less forms, and image-less images,

subtle, beyond all understanding.

Approach it and you will not see a beginning;

follow it and there will be no end.

When we grasp the Tao of the ancient ones,

we can use it to direct our life today.

To know the ancient origin of Tao

this is the beginning of wisdom.

- Lao Tzu, from the Tao Te Ching

(a public domain translation by J. H. McDonald)

Does vacuum exist? For centuries, many cultures have been obsessed with understand-

ing the concept of the vacuum. Newton argued that the vacuum existed, since there is

a large amount of space outside the space occupied by matter. However, Aristotle and

Descartes argued that “nothing could not be something”.

With the discovery of quantum theory, the vacuum has been interpreted in a different

manner. Specifically, in quantum optics, a quanta of vacuum preserves the commuta-

tion relations, in the presence of loss on an optical field, and this relates to the concept

of coupling to a vacuum reservoir. Vacuum is also interpreted as the source of the ul-

timate noise floor in any optical measurement - the quantum noise limit or shot noise

[263]. However, quantum opticians have been manipulating the noise properties of light

by ‘shifting’ the noise from one variable to another. The process of such noise manipulation

is called squeezing [264] (formally defined in Chapter 2). A variety of techniques are avail-

able to generate squeezed light, such as the optical parametric oscillation/amplification

(OPO/A) process [170, 171, 172, 173, 120, 121, 174, 25, 175, 8], second harmonic genera-

tion [265, 266, 267, 119, 268, 269, 270, 271], four-wave mixing [122, 123, 165, 166, 272, 178],

103
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Kerr [273, 274, 275, 276, 18, 277, 90, 91, 167, 168, 169, 177] and diode-laser feedback mech-

anisms [278, 279, 280]. To date, the most widely used and reliable source of squeezed light

is generated via the optical parametric oscillation process.

The generation of squeezed light using atomic ensembles has been explored using var-

ious mechanisms such as the four-wave mixing [165, 166, 178] and Kerr [90, 91, 167, 168,

169, 177] processes. In particular, two recent experiments have revived interest in squeezed

light generation using atomic vapour cells. The 4-wave mixing squeezing experiment of

McCormick et al. [178] showed that up to 8.1 dB of squeezing is generated (assuming cor-

rection for loss). The polarisation self-rotation squeezing experiment of Ries et al. [177]

measured squeezing of 0.85 dB, with theoretical models by Matsko et al. [179] predicting

up to 8 dB of squeezing. These experiments showed great promise as they were exper-

imentally simpler, scalable and more cost-effective systems; compared to OPO systems.

In this chapter, we investigate the technique of generating squeezed light using the Kerr

process in atomic vapour cells, based on the polarisation self-rotation effect.

The traversal of an elliptically polarised optical field through a thermal vapour cell can

give rise to a rotation of its polarisation axis. This process, known as polarisation self-

rotation (PSR), has been suggested as a mechanism for producing squeezed light at atomic

transition wavelengths. In this chapter, we show results of the characterisation of PSR

in isotopically enhanced Rubidium-87 cells. We observed that, contrary to earlier work

[179, 177], the presence of atomic noise in the thermal vapour overwhelms the observation

of squeezing. We present a theory that contains atomic noise terms and show that a null

result in squeezing is consistent with this theory.

The work in this chapter has been published in

• M. T. L. Hsu, G. Hétet, A. Peng, C. C. Harb, H.-A. Bachor, M. T. Johnsson,

J. J. Hope, P. K. Lam, A. Dantan, J. Cviklinski, A. Bramati and M. Pinard, “Effect

of atomic noise on optical squeezing via polarisation self-rotation in a thermal vapour

cell”, Physical Review A 73, 023806 (2006).

7.1 Introduction

Squeezing is the reduction of the noise variance of an optical field below the quantum

noise limit (QNL). Many applications, ranging from increased sensitivity of interferometric

measurements [24] to quantum entanglement based information protocols [17, 41, 42], are

reliant on squeezed light. Recently, Duan et al. [118] proposed a long-distance quantum

communication network that is based on the interaction of atomic ensembles with squeezed

and entangled light beams. To achieve such goals, squeezed light at atomic wavelengths

is required.

Conventionally, squeezing can be generated via efficient non-linear optical processes,

such as χ(2) parametric down-conversion [17, 174, 184, 281]. The transparency windows of

non-linear optical crystals and phase matching conditions, however, may not coincide with

some atomic transitions. For example, commonly used Sodium and Rubidium atomic tran-

sition wavelengths are difficult to access via χ(2) crystals. Another method of generating

squeezed light is to utilise the χ(3) atomic Kerr effect at the required atomic wavelength.

These experiments, however, require ultra-cold atoms confined in cavities and are therefore

technically challenging [90, 91].

Recently, there has been a proposal for generating atomic wavelength squeezing via

the single traversal of an optical field through a thermal vapour cell [179]. This proposal
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promises a simple, scalable and cost-effective means of generating squeezed light for Rb

and potentially for other atomic species. Due to the ac Stark shift and optical pumping-

induced refractive index changes of the atomic vapour, an elliptically polarised input field

will experience an intensity dependent rotation of the optical polarisation axes [180]. This

effect, known as polarisation self-rotation (PSR), was suggested as a non-linear mechanism

for squeezing [282, 179]. Assuming negligible atomic spontaneous emission noise, Matsko et

al. [179] developed a phenomenological model that treats PSR as a cross-phase modulation

mechanism. In the situation of a linearly polarised input field propagating through the

vapour cell, a non-linear cross-phase interaction occurs between the two circularly polarised

field components. This results in the squeezing of the output vacuum field mode that is

orthogonally polarised to the input field. Analogous to cross-phase modulation squeezing

in optical fibres [273, 274, 275, 276, 18, 277], it was suggested that 6 dB of PSR squeezing

is possible with thermal Rb vapour cell. Subsequently Ries et al. [177] reported an

observation of 0.85 dB maximum squeezing from a Rb vapour cell and attributed their

squeezing to PSR.

The phenomenological model of PSR squeezing by Matsko et al. [179] ignored effects

such as atomic spontaneous emission. In contrast, Josse et al. [221] pointed out the

importance of noise terms arising from the atomic dynamics that could possibly degrade, if

not totally destroy, squeezing. The model of Josse et al. [221] was based on the interaction

of a linearly polarised field with 4-level atoms. They showed that in the above saturation

regime, the atomic noise contribution could potentially be larger than the squeezing term.

Nevertheless, in the below saturation regime and at sideband frequencies larger than the

atomic relaxation rate, squeezing on the vacuum mode can be generated via the cross-

Kerr effect induced by the bright field. Such a regime, however, can only be obtained with

ultra-cold trapped atoms enclosed in an optical cavity [91].

This chapter is structured as follows - In Section 7.2, we review the theoretical works of

Matsko et al. [179] and Josse et al. [221]. We modified the analysis of Josse et al. [221] to

the case of a single traversal optical field through a thermal vapour cell. In Section 7.3, we

report measurements of both the transmissivity and the PSR of an elliptically polarised

field through an isotopically enhanced 87Rb vapour cell on both the D1 and D2 lines.

We then study the noise properties of the outgoing vacuum field. The parameter regime

investigated extends beyond the squeezing regime reported in Ref. [177]. In contradiction

to the results in Ref. [177], no optical squeezing was observed. Instead, we observed excess

quadrature noise above the QNL for a wide range of parameters. Finally, in Section 7.4 we

relate experimental results to the theory and show that under our experimental conditions,

where atomic spontaneous emission is significant, squeezing is overwhelmed by atomic

noise terms.

7.2 Theory

7.2.1 Cross-phase modulation squeezing

For cross-phase modulation squeezing in fibres, a bright input optical pulse in the x-

polarisation is delivered into a weakly birefringent optical fibre. As a result of the χ(3)

non-linearity in the fibre, the annihilation (ây) and creation (â†y) operators for the y-

polarised vacuum field become coupled [273, 274, 275, 276]. The equation of motion for
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the y-polarised field, in the rotating frame, is given by

∂

∂z
ây(z, t) = i

κ

3
(2|〈âx〉|2ây + 〈âx〉2â†y) (7.1)

where κ = n2h̄ω
2
0/(cA) is the Kerr coefficient, n2 is the non-linear index coefficient of the

medium, ω0 is the carrier frequency and A is the effective transverse area of the propagating

field. The last term of Eq. (7.1) describes the cross-Kerr coupling between the bright x-

and vacuum y-linearly polarised fields, and is responsible for generating squeezing in the

y-polarised field.

Matsko et al. [179] proposed that the PSR effect in atomic vapour can be used to

generate vacuum squeezing. Their proposal was related to the mechanism of cross-phase

coupling between two orthogonal polarisation fields. We consider the PSR effect [180],

where an elliptically polarised field undergoes a rotation in its polarisation ellipse upon

propagation through an atomic medium. For an optically thin medium, the rotation angle

is given by

φ = Gǫ(0)l (7.2)

where G is the PSR parameter (dependent on the input field intensity and frequency), ǫ(0)

is the input field ellipticity (assumed to be small and constant during propagation and

thus ǫ(0) = ǫ(l)) and l is the length of the medium. One could take the analogy of the PSR

effect to the quantum regime by considering a bright linearly x-polarised input field. The

PSR effect projects fluctuations of the bright x-polarised field onto the y-polarised vacuum

field. The relative phase between the x- and y-polarised fields then provides amplification

or attenuation of the y-polarised field. This effect could potentially result in the reduction

of the quantum fluctuations of the y-polarised field.

We will now introduce a methodical representation for our optical field. For a mea-

surement performed in an exposure time T , a freely propagating single-mode optical field

can be described by the electric field operator given by

Ê(z, t) = E0

(

â(z, t)ei(kz−ωt) + â†(z, t)e−i(kz−ωt)
)

(7.3)

where E0 =
√

h̄ω
2ǫ0cTA , â(z, t) and â†(z, t) are the slowly varying field envelope annihilation

and creation operators, respectively. z is the field propagation axis, ω is the field carrier

frequency and A is the quantisation cross-section area. We can simplify the expression by

introducing χ = kz−ωt and phenomenologically extend the classical PSR1 to the quantum

regime. The resulting y-polarised field at the output of the PSR medium is given by

Êy(l) = E0

[

ây(0)
(
eiχ − iGl cosχ

)

+â†y(0)
(
e−iχ + iGl cosχ

) ]

(7.4)

The photon number variance for the Êy(l) field, taking into account a phenomenological

1The classical PSR equation is given in Ref. [179]. The positive frequency part of the electric field
amplitude for the y-polarised mode, undergoing PSR, is given by E+

y = (Ey(0) + Glǫ(0)Ex(0))eiχ.



§7.2 Theory 107

absorption parameter α [179], is given by

〈Ê†
y(l)Êy(l)〉 = E0

[(

1 − 2Gl sinχ cosχ

+G2l2 cos2 χ
)

e−αl + (1 − e−αl)
]

(7.5)

where the y-polarised field has zero mean amplitude and for appropriate values of the phase

χ, squeezing of the y-polarised field can be observed. Such a model predicts squeezing

values of 6-8 dB below the QNL. However, crucial details such as spontaneous emission

and atomic noise are completely ignored, the effects of which can reduce, if not completely

destroy, squeezing.

7.2.2 Squeezing in a 4-level System

Since optical pumping is the main cause of PSR in the above saturation regime [179, 283],

which is the relevant regime in our experiment, we can approximate the D1 and D2 lines of
87Rb using a 4-level atom model. In such a regime, the influence of atomic coherences are

negligible. We thus explore the alternative cross-Kerr squeezing model proposed by Josse

et al. [221]. In the model, 4-level atoms interact with two orthogonal circularly polarised

fields, as shown in Fig. 7.1. In the experiment of Ref. [91], squeezing was obtained in

the vacuum field (orthogonally polarised to the bright input field) from ultra-cold trapped

atoms, enclosed in a cavity. The 4-level squeezing model approximated the level structure

of ultra-cold Cesium atoms (|6S1/2, F = 4〉 to |6P3/2, F = 5〉), used in the experiment.

In this section, we extend this cavity model to a single-propagation scenario for a single-

mode bright x-polarised input field. We derive the equation of motion describing the noise

fluctuations of the output y-polarised vacuum field.

|2|1

|4|3

γ γ
γ γ

a+
^a-

^

∆ ∆

Figure 7.1: Two orthogonal σ+ and σ− circularly polarised light fields interacting with a 4-level

atomic system.
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Hamiltonian

The interaction Hamiltonian for a 4-level atomic system interacting with two optical fields,

with left- and right-circular polarisation, is given by

Ĥint =

N∑

j=1

er̂j · Ê(rj , t) (7.6)

= −
N∑

j=1

(

d14σ̂
(j)
14 + d∗14σ̂

(j)
41 + d23σ̂

(j)
23 + d∗23σ̂

(j)
32

)

·
(

Ê+(rj, t) + Ê−(rj, t)
)

(7.7)

where dµν is the dipole moment for the |µ〉 → |ν〉 transition. The atomic dipole operator

for the j-th atom at location rj is given by σ̂
(j)
µν = |µ(j)〉〈ν(j)|.

We now separate the electric field operator into the positive and negative frequency

components. The positive and negative frequency parts of the electric field operator are

given by

Ê±(z, t) = Ê±(z, t) exp
(

±iω0(
z

c
− t)

)

(7.8)

where ω0 is the central frequency of the field and z is the distance along the propagation

direction of the field. Ê+(z, t) and Ê−(z, t) are the positive and negative frequency parts

of the slowly varying field envelope operator, respectively. The spatial dependence of the

fields are not considered and thus the fields are assumed to be plane waves.

The interaction Hamiltonian written in terms of the electric field envelope operator is

then given by

Ĥint = −
N∑

j=1

(

gσ̂
(j)
14 + gσ̂

(j)
41 + gσ̂

(j)
23 + gσ̂

(j)
32

)

·
(

Ê+
+ (rj, t)e

−iω+t + Ê−
+ (rj, t)e

iω+t + Ê+
− (rj , t)e

−iω−t + Ê−
− (rj, t)e

iω−t
)

(7.9)

where we have assumed that the dipole moment for the transitions are all equal and real,

given by d14 = d∗14 = d23 = d∗23 = g.

The interaction Hamiltonian for a 4-level atomic system (corresponding to Fig. 7.1)

for an optically thick medium (where we replace the sum by an integral over the atomic

ensemble length L) and under the rotating wave approximation, is given by

Ĥint = h̄nAeff

∫ l

0
dz
[

∆σ̂44(z, t) + ∆σ̂33(z, t) − g
(

Ê+(z, t)σ̂41(z, t) + Ê†
+(z, t)σ̂14(z, t)

+Ê−(z, t)σ̂32(z, t) + Ê†
−(z, t)σ̂23(z, t)

)]

(7.10)

where n is the atomic density and g is the atom-field coupling constant. The atomic

dipole operator at position z in the rotating frame is defined by locally averaging over a

transverse slice containing many atoms

σ̂ij(z, t) =
1

nAδz

∑

zk∈δz
e

i(ωi−ωj )zk
c |i〉k〈j|k (7.11)
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Equations of motion

The time and longitudinal propagation of the fields through the EIT system is described by

the equations of motion for the atomic dipole and field operators. The equation of motion

for the atomic dipole operator is obtained from the Heisenberg equation of motion, given

by

ih̄
∂σ̂µν
∂t

= [σ̂µν , Ĥint] (7.12)

The optical Bloch equations for the atomic variables are then given by

∂

∂t
σ̂14 = −(γ + i∆)σ̂14 + igÊ+(σ̂11 − σ̂44) + F̂14

∂

∂t
σ̂23 = −(γ + i∆)σ̂23 + igÊ−(σ̂22 − σ̂33) + F̂23

∂

∂t
σ̂11 = γ(σ̂33 + σ̂44) − igÊ+σ̂41 + igÊ†

+σ̂14 + F̂11

∂

∂t
σ̂22 = γ(σ̂33 + σ̂44) − igÊ−σ̂32 + igÊ†

−σ̂23 + F̂22

∂

∂t
σ̂33 = −2γσ̂33 + igÊ−σ̂32 − igÊ†

−σ̂23 + F̂33

∂

∂t
σ̂44 = −2γσ̂44 + igÊ+σ̂41 − igÊ†

+σ̂14 + F̂44

(7.13)

where we have introduced the spontaneous decay term γ and Langevin noise operators F̂ij
that arise from the coupling of atoms to a vacuum reservoir. The Maxwell-Bloch equations

describing the σ+ and σ−-polarised optical fields are given respectively by

(
∂

∂t
+ c

∂

∂z

)

Ê+(z, t) = igNσ̂14(z, t) (7.14)

(
∂

∂t
+ c

∂

∂z

)

Ê−(z, t) = igNσ̂23(z, t) (7.15)

where N is the total number of atoms. To deduce the noise properties of the field, we

write the operators in the form Ê = 〈Ê〉 + δÊ and use the linearisation approximation.

Steady state solutions

The steady state mean field solutions for the atomic dipole operators are given by

〈σ̂14〉 =
ig〈Ê+〉
γ + i∆

(
1

2(1 + s)

)

(7.16)

〈σ̂23〉 =
ig〈Ê−〉
γ + i∆

(
1

2(1 + s)

)

(7.17)

〈σ̂11〉 = 〈σ̂22〉 =
2 + s

4(1 + s)
(7.18)

〈σ̂33〉 = 〈σ̂44〉 =
s

4(1 + s)
(7.19)

where the mean field for the left and right-circularly polarised optical fields are related

to the x-polarised input field by 〈Ê+〉 = −〈Ê−〉 = 〈Êx〉/
√

2. The saturation parameter is
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given by s = Ix/(γ
2 + ∆2) where Ix = |g〈Êx〉|2 is the mean field intensity.

Field equations

The fluctuation terms of the field operators in the Fourier domain are obtained by taking

the Fourier transform of the Maxwell-Bloch equations of Eqs. (7.14) and (7.15), given by

(

−iω + c
∂

∂z

)

δẼ+(z, t) = igNδσ̃14(z, t) (7.20)

(

−iω + c
∂

∂z

)

δẼ−(z, t) = igNδσ̃23(z, t) (7.21)

The fluctuation terms of the atomic dipole operators in the Fourier domain are obtained

by taking the Fourier transform of Eqs. (7.13)-(7.15), given by

−iωδσ̃14 = −(γ + i∆)δσ̃14 + ig〈Ẽ+〉(δσ̃11 − δσ̃44) + igδẼ+(〈σ̃11〉 − 〈σ̃44〉) + F̃14

−iωδσ̃23 = −(γ + i∆)δσ̃23 + ig〈Ẽ−〉(δσ̃22 − δσ̃33) + igδẼ−(〈σ̃22〉 − 〈σ̃33〉) + F̃23

−iωδσ̃11 = γ(δσ̃33 + δσ̃44) − ig〈Ẽ+〉δσ̃41 − igδẼ+〈σ̃41〉 + ig〈Ẽ†
+〉δσ̃14 + igδẼ†

+〈σ̃14〉 + F̃11

−iωδσ̃22 = γ(δσ̃33 + δσ̃44) − ig〈Ẽ−〉δσ̃32 − igδẼ−〈σ̃32〉 + ig〈Ẽ†
−〉δσ̃23 + igδẼ†

−〈σ̃23〉 + F̃22

−iωδσ̃33 = −2γδσ̃33 + ig〈Ẽ−〉δσ̃32 + igδẼ−〈σ̃32〉 − ig〈Ẽ†
−〉δσ̃23 − igδẼ†

−〈σ̃23〉 + F̃33

−iωδσ̃44 = −2γδσ̃44 + ig〈Ẽ+〉δσ̃41 + igδẼ+〈σ̃41〉 − ig〈Ẽ†
+〉δσ̃14 − igδẼ†

+〈σ̃14〉 + F̃44

(7.22)

Eqs. (7.22) are solved by considering the pairing of dipole operators to yield three

coupled equations given by

(γ + i∆ − iω)(δσ̃14 + δσ̃23) =
ig〈Ẽx〉√

2
(δσ̃11 − δσ̃22 + δσ̃33 + δσ̃44)

−
√

2g(〈σ̃11〉 − 〈σ̃44〉)δẼy + F̃14 + F̃23

(2γ − iω)(δσ̃33 − δσ̃44) = − ig〈Ẽx〉√
2

(δσ̃32 + δσ̃41) +
ig〈Ẽ†

x〉√
2

(δσ̃23 + δσ̃14)

+
√

2g(〈σ̃41〉δẼy + 〈σ̃14〉δẼ†
y) + F̃33 − F̃44

−iω(δσ̃11 − δσ̃22) = − ig〈Ẽx〉√
2

(δσ̃41 + δσ̃32) +
ig〈Ẽ†

x〉√
2

(δσ̃14 + δσ̃23)

+
√

2g(〈σ̃41〉δẼy + 〈σ̃14〉δẼ†
y) + F̃11 − F̃22 (7.23)

where we have introduced the field operator for the y-polarised vacuum mode given by Ẽy =

−i(Ẽ+ + Ẽ−)/
√

2. We now define new dipole operators to simplify the above expressions,

given by

B̃ =
δσ̃14 + δσ̃23√

2
C̃ = δσ̃11 − δσ̃22 D̃ = δσ̃33 − δσ̃44 (7.24)

By assuming that the sideband frequencies of interest are less than the atomic detuning
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(ω ≪ ∆) and solving for Eqs. (7.23), the following expressions are obtained

C̃ =
2ig2γ(2γ − iω)

(

〈Ẽx〉δẼ†
y − 〈Ẽ†

x〉δẼy
)

(γ2 + ∆2)(2 + s)[(γs(γ − iω) − iω(2γ − iω)]
+

−γ
2 sF̃D + (2γ + γs

2 − iω)F̃C

[(γs(γ − iω) − iω(2γ − iω)]

D̃ =
2g2γω

(

〈Ẽx〉δẼ†
y − 〈Ẽ†

x〉δẼy
)

(γ2 + ∆2)(2 + s)[(γs(γ − iω) − iω(2γ − iω)]
+

−γ
2 sF̃C + (γs2 − iω)F̃D

[(γs(γ − iω) − iω(2γ − iω)]

B̃ =
2g3γ〈Ẽx〉

(

−〈Ẽx〉δẼ†
y + 〈Ẽ†

x〉δẼy
)

(γ − iω)

(γ + i∆)(γ2 + ∆2)(2 + s)[(γs(γ − iω) − iω(2γ − iω)]
− g

(γ + i∆)(2 + s)
δẼy

+
ig〈Ẽx〉[(2γ − iω)F̃C − iωF̃D]

2(γ + i∆)[(γs(γ − iω) − iω(2γ − iω)]
+

F̃14 + F̃23√
2(γ + i∆

(7.25)

where the Langevin operators denoted by F̃C and F̃D are given by

F̃C = − ig
√

2〈Ẽx〉(F̃ †
14 + F̃ †

23)

2(γ − i∆)
+
ig
√

2〈Ẽ†
x〉(F̃14 + F̃23)

2(γ + i∆)
+ F̃11 − F̃22 (7.26)

F̃D = − ig
√

2〈Ẽx〉(F̃ †
14 + F̃ †

23)

2(γ − i∆)
+
ig
√

2〈Ẽ†
x〉(F̃14 + F̃23)

2(γ + i∆)
+ F̃33 − F̃44 (7.27)

Using these equations, the equation of motion for the quantum fluctuations of the

y-polarised vacuum mode is therefore given by

(

−iω + c
∂

∂z

)

δẼy = = gNB̃

(

−iω + c
∂

∂z

)(

− i√
2
(δẼ+ + δẼ−)

)

= = gNB̃ (7.28)

∂

∂z̄
δẼy = −Γ(ω)δẼy + κ(ω)

(

δẼy − δẼ†
y

)

+ F̃y (7.29)

where z̄ = z/l and

κ(ω) = κ(0)Λ(ω) (7.30)

Γ(ω) = −iω l
c

+ κ(ω) + κ(0)∗Λ′(ω)

κ(0) =
Cγ

2(γ + i∆)

1

1 + s

Λ(ω) =
Ix(γ − iω)(2γ − iω)

2Ix(γ − iω)2 − iω(2γ − iω)[(γ − iω)2 + ∆2]

Λ′(ω) = iω
Ix(γ − iω) − (γ − i∆)(γ − i∆ − iω)(2γ − iω)

2Ix(γ − iω)2 − iω(2γ − iω)[(γ − iω)2 + ∆2]

where C = g2Nl/γc is the co-operativity parameter. The last term of Eq. (7.29) represents

the atomic Langevin noise term and is responsible for a loss or degradation of squeezing.

Its exact form and noise spectrum are given and discussed in Sec. 7.4.

Note that for ω = 0, the imaginary part of κ(0) from the second term on the right hand

side of Eq. (7.29) equates to the first term on the right hand side of Eq. (7.1). This turns

out to be the parameter Gl given in Eq. (7.2). In the 4-level atom model, the PSR for one

velocity class increases with the number of atoms and is maximum when ∆2 = γ2 + Ix.
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For a Doppler-broadened vapour, Gl can be obtained by summing Eq. (7.30) over all

the velocity classes. Note that κ(ω) also gives the amplitude of the cross-Kerr squeezing

term in δẼ†
y , as in Eq. (7.29). However, the associated atomic noise contribution must be

evaluated in order to obtain the total noise spectrum for the output y-polarised field.

7.3 Experiment

In our experiment, a coherent beam at 795 nm (or 780 nm) was delivered from a

Ti:Sapphire laser (Coherent MBR-110), as shown2 in Fig. 7.2. The laser beam was mea-

sured to be quantum noise limited at sideband frequencies ≥ 1 MHz. A small fraction of

the beam was sent through another Rubidium (Rb) vapour cell for saturated absorption

spectroscopy. This provided us with a fine frequency reference for the laser and also al-

lowed the possibility of laser frequency stabilisation. The majority of the beam was sent

through a polariser which transmitted the x-polarised field.

Ti:Sapph ire

Saturated
Absorption
Spectroscopy

BS

PBS

Pol.
BS

PZT

Spectrum
Analyser

FI

Rb

µ−metal

1Hz

λ/4 λ/2

SR measurement

λ/2

Figure 7.2: Schematic of experimental setup. All polarising optics are of the Glan-Thompson

type. FI: Faraday isolator, BS: beam-splitter. Pol.: Polariser, PBS: polarising beam-splitter, λ/4:

quarter wave-plate, λ/2: half wave-plate, PZT: piezo-electric actuator.

In order to measure the PSR and absorption of an input elliptically polarised beam

through the vapour cell, the orange-shaded configuration of Fig. 7.2 was used. The x-

linearly polarised beam was converted into an elliptically polarised beam using a λ/4

wave-plate. The beam (collimated to a waist size of ∼ 425 µm) then passed through an

isotopically enhanced 87Rb vapour cell (75 mm length), which was temperature stabilised

at 72◦C (which corresponded to an atomic density of 1011 atoms/cm3). The vapour cell

was enclosed in a two-layer µ-metal alloy cylinder, with end caps. The stray magnetic

fields within the shielding region were measured to be < 2 mG in all three spatial axes.

The output beam from the cell was then analysed using a balanced polarimeter setup,

which consisted of a λ/2 wave-plate, a polarising beam-splitter and two balanced photo-

detectors. The λ/2 wave-plate was adjusted to balance the powers in the x- and y-linearly

polarised beams from the outputs of the polarising beam-splitter, when the frequency of

the laser was tuned far off-resonance. Thus any rotation of the axis of the input elliptically

2A detailed schematic of the experimental layout is shown in Fig. 7.12



§7.3 Experiment 113

polarised beam could be measured using the relationship [180]

φ =
V1 − V2

2(V1 + V2)
(7.31)

where V1 and V2 are the DC signals from the photo-detectors.

To measure the quadrature noise properties of the y-linearly polarised vacuum beam,

we then performed homodyne detection, as shown in Fig. 7.2, using the x-linearly polarised

output of the polarising beam-splitter as a local oscillator.

7.3.1 Classical results

The PSR and transmission of an input elliptically polarised beam through the Rb vapour

cell were measured by scanning the laser frequency across the energy levels of interest, for

a fixed input beam intensity. For the D2 line, the relevant levels were |52S1/2, Fg = 2〉
to |52P3/2, Fe = 1, 2, 3〉 and for the D1 line, |52S1/2, Fg = 2〉 to |52P1/2, Fe = 1, 2〉. We

repeated the measurements for varying input beam powers and obtained a contour map of

PSR and transmission as a function of laser frequency detuning and input beam intensity,

shown in Figs. 7.3, 7.4, 7.6 and 7.7.
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Figure 7.3: False colour contour plot of the normalised transmission results for the D2 line, as a

function of input beam intensity and laser frequency detuning. Zero frequency corresponds to the

|52S1/2, Fg = 2〉 to |52P3/2, Fe = 3〉 energy levels.

The transmission results for the D2 line are shown in Fig. 7.3. The region of lowest

transmission < 10 % occurred at input beam intensities ≤ 15 mW, around laser frequencies

close to zero detuning. For input beam powers ≥ 30 mW greater transmission (≥ 30 %)

was observed. However, power broadening effects were also observed for higher input

beam powers, with reduced transmission at frequencies ≤ −1 GHz. The transmission was

non-symmetric with high transmission (> 90 %) for frequencies ≥ 1 GHz, whilst reduced

transmission (> 60 %) for frequencies ≤ −1 GHz. This was due to the level structure
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of the excited states of the D2 line, where the separations between the hyperfine levels

are small (within a frequency band of ∼ 0.5 GHz). Power broadening effects were also

observed for input beam intensities ≥ 30 mW.
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Figure 7.4: False colour contour plot of Gl for the D2 line, normalised to the input beam ellip-

ticity of 2◦, as a function of input beam intensity and laser frequency detuning. Zero frequency

corresponds to the |52S1/2, Fg = 2〉 to |52P3/2, Fe = 3〉 energy levels.

The PSR results for the D2 line are shown in Fig. 7.4. The regions of largest PSR were

0.3 GHz and -0.6 GHz. The input beam powers which gave the largest Gl magnitudes of

8 and 13 were ∼ 8 mW and ∼ 30 mW, respectively. Zero Gl around zero detuning for

input beam powers ≤ 15 mW was due to the low transmission of the input beam for the

optically thick 87Rb vapour cloud. However, at frequency detuning ≥ 0.5 and ≤ −0.5 GHz,

significant PSR was observed even though the transmission was reduced. For input beam

intensities ≥ 20 mW, the PSR was preferentially larger with positive frequency detuning

as opposed to negative frequency detuning.

In order to explain the asymmetry present in the PSR results, we modelled the hyper-

fine energy levels of the D2 line and took into account Doppler broadening. The theoretical

fits to the experimental data are shown in Fig. 7.5.

The reduction in PSR in the negative frequency detuning region was due to reduced

transmission, as observed in Fig. 7.3. Broadening of the PSR profile was observed for

higher input beam powers.

The transmission results for the D1 line are shown in Fig. 7.6. The region of lowest

transmission (< 50 %) occurred for input beam intensities ≤ 3 mW. These regions were

confined around two frequency detuning bands, the −0.2 to 0.25 GHz band and the 0.4

to 0.8 GHz band. The two frequency bands corresponded to the absorption lines centred

at the |52S1/2, Fg = 2〉 to |52P1/2, Fe = 1〉 and |52S1/2, Fg = 2〉 to |52P1/2, Fe = 2〉 energy

levels, respectively. For input beam powers ≥ 5 mW, significant transmission was observed

(> 70 %). For most input beam powers, the transmission of the D1 line was significantly

higher than that of the D2 line. This was due to the weaker atom-field coupling in the D1
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Figure 7.5: The normalised transmission and Gl results for the D2 line are shown in Figures (a)

and (b), respectively. The (i) red curves are the theoretical fits to the experimental results ((ii)

green curve). Input beam intensity= 31.5 mW, and zero frequency corresponds to the |52S1/2, Fg =

2〉 to |52P3/2, Fe = 3〉 energy levels.

line compared to the D2 line.

The PSR results for the D1 line are shown in Fig. 7.7. The regions of largest PSR

occurred at frequency detuning -0.15 GHz and 0.6 GHz. The input beam powers that

gave the largest Gl magnitudes of 10 and 11 were ∼ 35 mW and ∼ 22 mW, respectively.

Significant PSR was observed for input beam powers > 3 mW since the transmission was

always > 50 %. The Gl magnitude was almost equal in both frequency bands correspond-

ing to the two absorption lines centred at the |52S1/2, Fg = 2〉 to |52P1/2, Fe = 1〉 and

|52S1/2, Fg = 2〉 to |52P1/2, Fe = 2〉 energy levels, for most input beam powers. This was

due to the excited state level structure of the D1 line, where the two excited state levels

have a large separation of ∼ 0.8 GHz. This is illustrated by modelling the hyperfine ex-

cited state level structure of the D1 line. The theoretical fits to the experimental data are

shown in Fig. 7.8.

The two transmission dips are of approximately the same magnitude, resulting in the

two PSR peaks to be of equal magnitudes.

7.3.2 Quantum results

The input field was linearly polarised in the x-axis and we measured the quadrature noise

of the outgoing y-polarised vacuum field, using the homodyne detection setup shown in

Fig. 7.2. The bright x-polarised output field was used as a local oscillator. The fringe

visibility of the interferometer was 99 %. The two outputs of the interferometer were

then detected using two balanced Silicon photo-detectors (which consisted of Hamamatsu

S3883 photo-diodes with measured quantum efficiency values of 94.6 %) with bandwidths

of ∼ 20 MHz. Blocking the weak field provided a measurement of the QNL. The QNL

was checked for linearity with beam power and the common mode rejection was optimised

to ∼ 30-40 dB from 100 kHz to 10 MHz. We also checked that the polarising beam-
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Figure 7.6: False colour contour plot of the normalised transmission results for the D1 line, as a

function of input beam intensity and laser frequency detuning. Zero frequency corresponds to the

|52S1/2, Fg = 2〉 to |52P1/2, Fe = 1〉 energy levels.

splitter was well aligned such that negligible amounts of the x-polarised field emerged at

the y-polarised output port. The result of the noise measurement for various sideband

frequencies at various laser frequency detuning and input beam powers, are shown in

Figs. 7.9 (D2 line) and 7.11 (D1 line).

The largest quadrature noise observed for the D2 line was 10 dB at a detuning of

-70 MHz as shown in Fig. 7.9 (c). A time scanned quadrature noise measurement is shown

in Fig. 7.10.

In the noise plots of Figs. 7.9 (a), (c) and (d), we observed large levels of excess noise

of typically 5 dB above the QNL. In Fig. 7.9 (b) the excess noise level was 0.8 dB above

the QNL. This was the lowest noise level observed around zero detuning. The largest

values of the phase quadrature noise level corresponded to the regions of maximum PSR

as shown in Fig. 7.4. At large frequency detuning from resonance, both quadrature noise

levels were reduced to the QNL.

The noise measurements of the output vacuum field, for the D1 line, are shown in

Fig. 7.11. The largest noise modulation observed was 7 dB which occurred at a frequency

detuning of 150 MHz as shown in Fig. 7.11 (c). In Figs. 7.11 (a)-(d), the phase quadrature

noise level around zero detuning was always above the QNL due to the presence of large

excess noise (3-4 dB). The largest values of the amplitude noise level corresponded to

the regions of maximum PSR as shown in Fig. 7.7. At large frequency detuning from

resonance, both quadrature noise levels were reduced to the QNL.

The noise measurement results presented do not vary qualitatively with varying beam

focussing geometry, incident power or temperature. A large amount of excess noise was

systematically observed close to resonance. Although the PSR and transmission results

measured were in a very similar regime to that of Ref. [177], the quantum noise results are

not in agreement with either the predictions of Ref. [179] or the observations of Ref. [177].
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Figure 7.7: False colour contour plot of Gl for the D1 line, normalised to the input beam ellip-

ticity of 2◦, as a function of input beam intensity and laser frequency detuning. Zero frequency

corresponds to the |52S1/2, Fg = 2〉 to |52P1/2, Fe = 1〉 energy levels.

We use the model presented in Sec. 7.2.2 to discuss our experimental observations.

7.4 Discussion

7.4.1 Langevin noise analysis

In order to contrast the effect of the atomic noise terms with the squeezing term in

Eq. (7.29), we consider the Langevin term given by

F̃y =
gNl

c

[

(A+B)f̃y +Bf̃ †y + i
√

IxA

(

f̃z
−iω +

f̃ ′z
2γ − iω

)]

(7.32)

where

A =
(γ − i∆ − iω)(−iω)(2γ − iω)

D

B =
Ix(γ − iω)

D

D = 2Ix(γ − iω)2 − iω(2γ − iω)[(γ − iω)2 + ∆2]

with Ix = |g〈Ẽx〉|2, f̃y = (F̃14 + F̃23)/
√

2, f̃z = (F̃22 − F̃11)/
√

2 and f̃ ′z = (F̃44 − F̃33)/
√

2.

The contribution of this noise term, which depends on the sideband frequency, is to be

compared with the cross-Kerr squeezing term κ(ω). As shown in Ref. [221], in the below

saturation regime, large excess atomic noise associated with optical pumping on the y-

polarised field dominates at sideband frequencies lower than the spontaneous emission
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Figure 7.8: The normalised transmission and Gl results for the D1 line are shown in Figures (a)

and (b), respectively. The (i) red curves are the theoretical fits to the experimental results ((ii)

green curve). Input beam intensity= 22.3 mW, and zero frequency corresponds to the |52S1/2, Fg =

2〉 to |52P1/2, Fe = 1〉 energy levels.

rate (ω ≪ γ). In the low sideband frequency regime (assuming ∆ ≫ γ), one obtains

∂

∂z̄
δẼy = i

δ0
1 + s

δẼ†
y +

gNl

2γc
(f̃y + f̃ †y +

∆

2
√
Ix
f̃z) (7.33)

where δ0 = Cγ/2∆ denotes the linear dephasing. Ignoring depletion of the mean x-

polarised field, the Langevin noise contribution is shown to be proportional to C/gl at

least. For the experiment, this quantity is greater than the QNL, such that large excess

noise is present in all quadratures for low sideband frequencies, even when absorption is

ignored. One therefore cannot observe squeezing in this regime.

In the experiment, the quantum noise of the vacuum field was measured only for

sideband frequencies greater than the excited state decay rate (ω ≥ γ). In this high

sideband frequency regime (assuming ∆ ≫ γ), we obtain succinct expressions for κ(ω),

Γ(ω) and F̃y given by

κ(ω) =
−iδ0s

(1 + s)(1 + 2s)
, Γ(ω) =

−iδ0
1 + s

(7.34)

F̃y ≃ −i gNl

∆c(1 + 2s)

[
(1 + Ix/ω∆)f̃y + (Ix/ω∆)f̃ †y

−(
√

Ix/ω)(f̃z + f̃ ′z)
]
. (7.35)

The above equations describe the atomic noise contribution that may degrade the squeez-

ing of the output y-polarised vacuum field.

The optimisation of squeezing is dependent on finding a regime that has low absorption

and strong non-linearity. We now proceed by dividing the discussion into low and high

atomic transition saturation regimes.
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Figure 7.9: (i) Amplitude and (ii) phase quadrature noise results for the D2 line, normalised to

the QNL and dark noise-subtracted. Figures (a) and (b) correspond to an input beam power of

21 mW at sideband frequencies of 3 MHz and 6 MHz, respectively. Figures (c) and (d) are results

for an input beam power of 35 mW, at sideband frequencies of 3 MHz and 6 MHz, respectively.

Zero frequency corresponds to the |52S1/2, Fg = 2〉 to |52P3/2, Fe = 3〉 energy level. ResBW:

100 kHz and VBW: 30 Hz.

7.4.2 Below saturation regime with ultra-cold atoms

Since cold atoms have higher atomic density, one can operate in the below saturation

regime (s ≪ 1) and still obtain strong PSR with minimal atomic noise [91], when off-

resonance. In the Kerr limit (∆ ≫
√
Ix ≫ γ), the equation of motion for the vacuum field

fluctuations is given by

∂

∂z̄
δẼy = iδ0δẼy − iδ0s(2δẼy − δẼ†

y) − i
gNl

c∆
f̃y. (7.36)

One recovers in the equation above the same terms as in the cavity model of Ref. [221]

under the same approximations. The term in δ0δẼy corresponds to the linear dephasing,

the second term gives the cross-Kerr squeezing term and the Langevin noise contribution

corresponding to the last term can be shown to be proportional to Cγ2/∆2, which can be

small in the off-resonant situation (∆ ≫ γ). In accordance with the prediction of Ref. [221]

and the experimental observations of Ref. [91] vacuum squeezing can be generated when

δ0s ∼ 1 and Cγ2/∆2.

7.4.3 Above saturation regime with thermal vapour cell

Contrary to the situation of cold atoms, the Doppler broadening in a thermal vapour

makes it impossible to work in the below saturation regime while simultaneously having

low absorption or high non-linearity. It is however possible to observe strong PSR in the

above saturation regime. In this regime, the atomic noise term is significantly different to
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Figure 7.10: Scanned quadrature noise for the D2 line measured in zero span at a sideband

frequency of 3 MHz. The input beam power was 35 mW and the laser frequency was -70 MHz

from the |52S1/2, Fg = 2〉 to |52P1/2, Fe = 3〉 energy level. All plots are dark noise subtracted.

ResBW: 100 kHz and VBW: 30 Hz.

that given in Eq. (7.36). For Ix ≫ ∆2, the equation of motion is given by

∂

∂z̄
δẼy =

iδ0
2s

(δẼy + δẼ†
y) − i

gNl

cω
(f̃y + f̃ †y). (7.37)

As we have seen experimentally with the PSR measurements, the non-linear term in

δ0/(2s) = Gl can still be significant when the number of atoms is increased. However, the

optical pumping processes associated with PSR now produce a lot of excess noise even

in the high sideband frequency regime. The contribution of the last term in Eq. (7.37)

can be shown to be proportional to Cγ2/ω2 ≫ 1. For our experimental parameters, the

atomic noise prevents the observation of squeezing at all sideband frequencies.

7.4.4 Further considerations

We now discuss the possible discrepancies between the theoretical models and the ex-

periment. Due to the complexity of the problem, many effects have not been taken into

account in the various models discussed in this chapter.

Firstly, the presence of resonance fluorescence has not been considered in Ref. [179].

In Ref. [221], it was shown that PSR cannot generate squeezing in the below saturation

regime because of optical pumping processes. We have shown in this chapter that this is

also true in the above saturation regime where the resonance fluorescence noise dominates

over the cross-Kerr squeezing term, even at high detection frequencies. This conclusion is

in agreement with other observations [284, 285, 283].

Secondly, none of the models presented have included the Doppler effect. Since we

are dealing with thermal atoms, the passage of light through the atoms will give rise to a

range of observed atomic detuning. The integrated effect due to Doppler broadening will
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Figure 7.11: (i) Amplitude and (ii) phase quadrature noise results for the D1 line, normalised

to the QNL and subtracted by the dark noise. Figures (a) and (b) correspond to an input beam

power of 21 mW at sideband frequencies of 3 MHz and 6 MHz, respectively. Figures (c) and (d)

are results for an input beam power of 35 mW, at sideband frequencies of 3 MHz and 6 MHz,

respectively. Zero frequency corresponds to the |52S1/2, Fg = 2〉 to |52P1/2, Fe = 1〉 energy level.

ResBW: 100 kHz and VBW: 30 Hz.

be detrimental to the observation of squeezing.

Thirdly, the multi-level hyperfine structure of the excited states of 87Rb have only been

considered for the theoretical fits to the classical PSR results, but have not been included

in any of the squeezing model. The experimental PSR data presented in this chapter

clearly shows that the multi-level hyperfine structure causes observable asymmetry in

the PSR spectrum. This feature cannot be explained by any of the theoretical models

presented in Sec. 7.2. The multi-level theory can be expanded to include Langevin noise

terms. However, a simple 4-level atom model is sufficient to demonstrate the lack of

squeezing. The multi-level structure is also certainly less favourable to the generation of

squeezing when compared with a simplified 4-level model. Different hyperfine levels will

not contribute constructively towards a collective interaction that will generate squeezing.

The added noise from these different levels will add up significantly. The inclusion of

Doppler broadening and multi-level effects would only result in a dominance of the atomic

noise term over the squeezing term.

Finally, the propagation of the transverse intensity profile of the input field has been

totally ignored in all models. A full treatment of the process should include the multi-

modal analysis of the evolution of the transverse field modes during propagation through

the vapour cell. In the above saturation regime and for high atomic densities, self-focussing

is readily observed. This is due to the atom induced Kerr lens-effect on the optical field.

Thus the centre of the field intensity distribution will undergo greater PSR than the

edges. The cross-Kerr non-linearity and the atomic absorption used in our calculations is

a result of an “integrated” effect of the various transverse modes. It therefore does not
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model accurately the situation of the experiment. Similar to the previous argument, it is

unlikely that the multi-modal consideration of the process will yield better squeezing.

7.5 Conclusion

We have presented experimental results of PSR and have observed no squeezing. Instead

we have observed excess noise in the output field spectrum at all sideband frequencies.

We have modelled semi-classically the multi-level hyperfine structure of 87Rb and obtained

theoretical fits to the experimental PSR data. Our multi-level modelling can predict the

asymmetry in the PSR, that is due to the presence of other hyperfine excited states. We

considered a quantum mechanical 4-level atomic model and showed that the squeezing

term is overwhelmed by atomic noise terms in the situation of a thermal vapour. The

effects of resonance fluorescence, the Doppler effect and the multi-level hyperfine structure

of 87Rb all contribute to overwhelm the squeezing term. Therefore, it is expected that a

full quantum mechanical treatment of a multi-level 87Rb atom will yield a result where

squeezing is unlikely be generated. In spite of this, the results of Ries et al. [177] and recent

experiments conducted in the group of A. I. Lvovsky3 have demonstrated the observation

of less than 1 dB of squeezing. The contradiction in experimental results [177, 181] should

serve as a caveat that more comprehensive theoretical modelling and experimental studies

are necessary to understand exactly the conditions in a thermal vapour cell under which

PSR squeezing can be generated, or become overwhelmed by excess noise.

The 4-level atom model shows that squeezing can be generated in the situation of

cold atoms where the Doppler effect is negligible. When the input field is off-resonance,

the non-linearity is large but the absorption low, such that the atomic noise term does

not overwhelm the squeezing term. Experimental demonstrations of squeezing generation

from cold atoms in an optical cavity have been published in Refs. [90, 91].

3personal communication
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Chapter 8

Electomagnetically induced

transparency

Enlightenment is not imagining figures of light but making the darkness conscious.

- Carl Jung

Imagine if you could see through walls. Today, companies such as Camero Inc. and

Cambridge Consultants are developing and selling products for ‘seeing through walls’1,

based on X-ray or microwave technology. In 1991, electromagnetically induced transparency

(EIT) was observed by the Harris group [162] in Stanford University. EIT was a clear

demonstration that by shining a pump field into an atomic medium, transparency on

the probe field can be obtained. This was due to a destructive interference process on

the absorption pathways for the light fields and held promise for ‘seeing through walls’

technology.

However, EIT also has the potential for delaying and storing light in atomic ensem-

bles. This was followed by impressive demonstrations of light delay to 17 m/s [163] and

pulse storage [164]. Proposals have also been made to extend the classical pulse delay

and storage in EIT to quantum information delay and storage [161]. However most EIT

experiments analysed the shape of delayed and stored pulses. In our experiment, we mea-

sure continuous-wave signals encoded in the sidebands of a probe beam. We quantify the

noise performance of an EIT system for the conjugate amplitude and phase quadratures of

the probe beam. In analogy with other continuous-variable quantum information systems,

the performance of our EIT system is characterised in terms of conditional variance and

signal transfer. It is shown that our EIT system adds excess noise to the delayed light that

has not hitherto been predicted by published theoretical modelling. A possible source of

excess noise transfer from pump to probe is identified. We also speculate on other effects

which may produce excess noise in EIT systems.

The work in this chapter has been published in

• M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and

P. K. Lam, “Quantum study of information delay in electromagnetically induced

transparency”, Physical Review Letters 97, 183601 (2006).

• G. Hétet, A. Peng, M. Johnsson, M. T. L. Hsu, O. Glöckl, P. K. Lam, H.-A. Bachor,

1http://www.camero-tech.com/ and http://www.cambridgeconsultants.com/
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and J. J. Hope, “Erratum: Squeezing and entanglement delay using slow light”,

Physical Review A 74, 059902(E) (2006).

8.1 Introduction

Following theoretical proposals [161, 286], electromagnetically induced transparency (EIT)

[162] has become the subject of much interest for controlled atomic storage of quantum

states of light. Indeed, the delay and storage of optical qubits in an atomic medium

via EIT has recently been shown allowing, in principle, the synchronisation of quantum

information processing systems [287, 288]. Earlier works with classical signals in a vapour

cell [289] and cold atoms [163] have shown large signal delay with group velocities as

low as 17 ms−1. Storage of classical pulses has also been shown for atomic vapour cells

[164, 290], cold atomic clouds [291], and solid state systems [292, 293] (although it should

be noted that alternative interpretations of such pulse storage experiments have also been

published [294, 295, 296]). One experiment [297] has shown the transmission of a squeezed

state through an EIT system in a vapour cell under the conditions of very small delay. A

more recent experiment reported the ultraslow propagation of a squeezed pulse via EIT

[298]. This experiment measured the delay as the shifting of the peak of the pulse, but

in this instance, the pulse has undergone reshaping. Therefore, we would like to take a

different approach to experimentally quantify the efficacy of EIT for continuous-variable

quantum information systems.

Quantum-theoretical treatments of delay and storage via EIT, in the presence

of decoherences, have suggested that no excess noise is added to the delayed light

[223, 286, 299, 182]. These works show that the degradation of a quantum state in an

EIT system results from - (i) the finite transparency window and (ii) a degradation in

the transparency induced by ground state dephasing. The implication is that, within the

EIT window and for small ground state dephasing, quantum states of light can be de-

layed and preserved in an EIT medium. In this chapter, we present experimental results

that examine the quantum noise performance of an EIT system for conjugate amplitude

and phase quadratures, that are measured at sideband frequencies (ω) around the optical

carrier. Since much work on EIT is motivated by quantum information processing, we

evaluate the performance of the EIT system using well established criteria for continuous

variable (CV) quantum state measurements. In analogy with quantum teleportation and

non-demolition experiments where states are transferred from an input to an output, we

utilise the conditional variance and signal transfer coefficients to quantify the quantum

noise properties of our EIT system.

This chapter describes our observations of excess noise in an EIT system [183]. It

should be emphasised that some of the basic quantum theoretical treatments of EIT pre-

sented here have been reported elsewhere [182, 300], and have been included for complete-

ness. In Section 8.2, we review the quantum treatment of a probe beam interacting with

an EIT system, using a 3-level atomic system. We then describe the conditional variance

measurement process and the noise penalties introduced from the use of coherent beams,

instead of entanglement, to characterise the EIT system. The experimental scheme is

described in detail in Section 8.3. In Section 8.4, we present experimental results of trans-

mission and delay of sideband signals on the probe beam, through an EIT system. The

results and discussion of conditional variance, signal transfer from pump-to-probe beams,

signal transfer coefficient, as well as cross-quadrature signal transfer of the probe beam

are described in this section. Finally, in the conclusion section, we speculate on the pos-
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sible sources of excess noise and aspects of the experiment that theoretical studies should

include for a comprehensive analysis of EIT.

8.2 Theory

8.2.1 Dark state

When resonant light is sent into a sample of 2-level atoms, the optical field will be ab-

sorbed by the atoms. It is possible to suppress the absorption by having a 3-level atomic

system with the application of a second optical pump field. This effect is termed electro-

magnetically induced transparency (EIT). EIT is created by the interaction of probe (Ep)

and pump (Ec) fields, in a 3-level Λ-atomic system, as shown in Fig. 8.1. The ground

states are denoted by states |1〉 and |2〉, while the excited state is denoted by |3〉. When

the probe and pump beams have zero two-photon detuning, a destructive quantum inter-

ference effect is induced which results in a dark state (i.e. a coherent superposition of the

ground states |1〉 and |2〉 only), given by

|D〉 =
Ec

√

|Ec|2 + |Ep|2
|1〉 +

Ep
√

|Ec|2 + |Ep|2
|2〉 (8.1)

Thus the absorption pathways between states |1〉 → |3〉 and |2〉 → |3〉 are suppressed. The

result is that transparency is obtained for the probe beam, which in the absence of the

pump, would be fully absorbed.

E cEp

5  S    , F = 2
2

1/2 g

5  P    , F = 1
2

1/2 e

γ

γ

0
1 2

3

Figure 8.1: Atomic level scheme used in our experiment. Ep is the probe field, Ec is the pump

field, γ is the spontaneous emission rate, γ0 is the ground state dephasing rate, |1〉 and |2〉 are

the ground states corresponding to different Zeeman sublevels in the experiment, |3〉 is the excited

state.

8.2.2 Hamiltonian

To model the time evolution and propagation properties of the probe field through an EIT

system, the Hamiltonian for a 3-level atomic system interacting with a probe and pump

field is considered. Prior to this, we first formalise the relevant field and atomic dipole

operators required for such a treatment.
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The positive frequency part of the electric field operator is defined as

Ê+(z, t) = Ê+(z, t) exp
(

iω0(
z

c
− t)

)

(8.2)

where ω0 is the central frequency of the field and z is the distance along the propaga-

tion direction of the field. Ê+(z, t) is the positive frequency part of the slowly varying

field envelope operator. Following all previous theoretical treatments on EIT, the spatial

dependence of the fields are not considered and thus the fields are assumed to be plane

waves.

We now consider the locally averaged atomic dipole operator for a system of transverse

slice with length ∆z with Nz ≫ 1 atoms. In this scenario, the slowly-varying field envelope

operator Ê(z, t) does not vary much and the spatial dependence is assumed to be planar.

Therefore, the atomic dipole operator is given by

σ̂µν(z, t) =
1

Nz

∑

zj∈Nz

σ̂(j)
µν (t) exp

(

iω0(
z

c
− t)

)

(8.3)

where the j-th atom has dipole operator σ
(j)
µν (t) = |µ(j)(t)〉〈ν(j)(t)|, and µ, ν = 1, 2, 3.

The interaction Hamiltonian for a 3-level atomic system interacting with a probe and

pump field is given by

Ĥint =

N∑

j=1

er̂j · Ê(rj , t) (8.4)

= −
N∑

j=1

(

d13σ̂
(j)
13 + d∗13σ̂

(j)
31 + d32σ̂

(j)
32 + d∗32σ̂

(j)
23

)

·
(

Êp(rj , t) + Êc(rj, t)
)

(8.5)

where dµν is the dipole moment for the |µ〉 → |ν〉 transition. The atomic dipole operator

for the j-th atom at location rj is given by σ̂
(j)
µν = |µ(j)〉〈ν(j)|.

The interaction Hamiltonian can be written in terms of the electric field envelope

operator given by

Ĥint = −
N∑

j=1

(

gσ̂
(j)
13 + gσ̂

(j)
31 + gσ̂

(j)
32 + gσ̂

(j)
23

)

·
(

Ê+
p (rj , t)e

−iωpt + Ê−
p (rj, t)e

iωpt + Ê+
c (rj, t)e

−iωct + Ê−
c (rj , t)e

iωct
)

(8.6)

where we have assumed that the dipole moment for the transitions are all equal and real,

given by d13 = d∗13 = d23 = d∗23 = g.

The interaction Hamiltonian, under the rotating wave approximation2, for a 3-level

atomic system (corresponding to Fig. 8.1) interacting with an intense, classical pump

field, 〈Êc〉, and weak quantum probe field, Êp, for an optically thick medium (where we

replace the sum by an integral over the atomic ensemble length L), is given by [182]

Ĥint = inAeff

∫ L

0
dz
(

− gÊp(z, t)σ̂31(z, t) − g〈Êc(z, t)〉σ̂32(z, t) + H.c.
)

(8.7)

2The energy non-conserving terms have been removed as they have minimal probability of occurring.
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where n is the atomic density and Aeff is the effective transverse area of the interaction

region.

8.2.3 Equations of motion

The time and longitudinal propagation of the probe field through the EIT system is

described by the equations of motion for the atomic dipole and field operators. The

equation of motion for the atomic dipole operator is obtained from the Heisenberg equation

of motion, given by

ih̄
∂σ̂µν
∂t

= [σ̂µν , Ĥint] (8.8)

and the equation of motion for the slowly varying field envelope operator is given by

ih̄

(
∂

∂t
+ c

∂

∂z

)

Ê(z, t) = [Ê(z, t), Ĥint] (8.9)

By phenomenologically including spontaneous emission from the excited state to the

ground states, γ, as well as a dephasing term for the ground state coherence, γ0, the

corresponding equations of motion for the atomic dipole operators are given by

∂

∂t
σ̂13 = −γσ̂13 + igÊp(σ̂11 − σ̂33) + ig〈Êc〉σ̂12 + F̂13 (8.10)

∂

∂t
σ̂23 = −γσ̂23 + ig〈Êc〉(σ̂22 − σ̂33) + igÊpσ̂21 + F̂23 (8.11)

∂

∂t
σ̂12 = −γ0σ̂12 + ig〈Êc〉∗σ̂12 − igÊpσ̂32 + F̂12 (8.12)

∂

∂t
σ̂11 = γσ̂33 + igÊ†

p σ̂13 − igÊpσ̂31 + F̂11 (8.13)

∂

∂t
σ̂22 = γσ̂33 + ig〈Êc〉∗σ̂23 − ig〈Êc〉σ̂32 + F̂23 (8.14)

∂

∂t
σ̂33 = −2γσ̂33 − igÊ†

p σ̂13 + igÊpσ̂31 − ig〈Êc〉∗σ̂23 (8.15)

+ig〈Êc〉σ̂32 + F̂33 (8.16)

where the corresponding Langevin noise operators corresponding to the atomic decoher-

ences are denoted by F̂µν , where 〈F̂µν〉 = 0. These terms are included in order to preserve

the commutation relations of the observable operators for the system.

The corresponding Maxwell-Bloch equation for the probe field is given by

(
∂

∂t
+ c

∂

∂z

)

Êp = ig∗σ̂13 (8.17)

Note that the pump field does not undergo evolution due to the weak probe assumption.

This assumption can be further verified by checking the mean-field steady state solution

for 〈σ̂23〉, given in Eq. (8.18).

8.2.4 Mean-field steady state solutions

The steady state solutions of the equations of motion are obtained by setting the time-

derivatives of Eqs. (8.10) - (8.16) to zero and solving for the mean-field components only,
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given by

〈σ̂13〉 =
iγ0g

γγ0 + g2|〈Êc〉|2
〈Êp〉

〈σ̂23〉 =
−ig3〈Êc〉

γ(γγ0 + g2|〈Êc〉|2)
|〈Êp〉|2

〈σ̂12〉 =
−g2〈Êc〉∗

γγ0 + g2|〈Êc〉|2
〈Êp〉

〈σ̂11〉 = 1

〈σ̂22〉 = 〈σ̂33〉 = 0

(8.18)

where the population in the states |2〉 and |3〉 are zero due to population pumping into

state |1〉 from the strong pump field. Note that the population in the states are conserved,

given by 〈σ̂11〉 + 〈σ̂22〉 + 〈σ̂33〉 = 1.

8.2.5 Probe field variance

Eqs. (8.10) - (8.12) are sufficient for obtaining a solution for the atomic operators. By

expressing the atomic dipole operators in terms of σ̂µν = 〈σ̂µν〉+ δσ̂µν , and the probe field

operators as Êp = δÊp, the noise terms of Eqs. (8.10) - (8.12) are thus given by

∂

∂t
δσ̂13 = −γδσ̂13 + igδÊp + ig〈Êc〉δσ̂12 + F̂13 (8.19)

∂

∂t
δσ̂23 = −γδσ̂23 + igδÊp〈σ̂21〉 + F̂23 (8.20)

∂

∂t
δσ̂12 = −γ0δσ̂12 + ig〈Êc〉∗δσ̂13 + F̂12 (8.21)

Now take the Fourier transform of the equations,

−iωδσ̃13 = −γδσ̃13 + igδẼp + ig〈Ẽc〉δσ̃12 + F̃13 (8.22)

−iωδσ̃23 = −γδσ̃23 + igδẼp〈σ̃21〉 + F̃23 (8.23)

−iωδσ̃12 = −γ0δσ̃12 + ig〈Ẽc〉∗δσ̃13 + F̃12 (8.24)

Solving these equations in terms of the probe field operator Ẽp, gives

δσ̃13 =
(γ0 − iω)

(

igδẼp + F̃13

)

+ ig〈Ẽc〉F̃12

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
(8.25)

δσ̃12 =
−g2〈Ẽc〉∗

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
δẼ

+
(γ0 − iω)ig〈Ẽc〉∗F̃13 − g2|〈Ẽc〉|2F̃12

(γ0 − iω)
(

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
) +

F̃12

γ0 − iω
(8.26)

Taking the Fourier transform of the probe field equation of motion gives

(

−iω + c
∂

∂z

)

δẼp(ω) = ig∗δσ̃13 (8.27)
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Since (δẼp(−ω))† = δẼ†(ω), therefore, we get

(

−iω + c
∂

∂z

)

δẼ†
p(ω) = −igδσ̃31 (8.28)

We are interested in obtaining expressions for the amplitude and phase quadratures of the

probe field, at the sidebands. The amplitude and phase quadratures are defined in terms

of the Fourier transformed field envelope operators (Ẽ(ω)), as X̃+(ω) = Ẽ(ω)+ Ẽ†(ω), and

X̃−(ω) = i(Ê†(ω) − Ẽ(ω)), respectively. Writing the equation of motion in terms of the

quadrature operator for the probe field, gives

∂

∂z
δX̃θ

p (ω) = −




|g|2(γ0 − iω)

c
(

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
) − iω

c



 δX̃θ
p (ω)

−
|g|2

(

〈Ẽc〉F̃12e
−iθ + 〈Ẽc〉∗F̃ †

12e
iθ
)

c
(

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
)

+
i(γ0 − iω)

(

g∗F̃13e
−iθ − gF̃ †

13e
iθ
)

c
(

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
) (8.29)

The coefficient for δX̃θ
p (ω) is the complex transmission coefficient, given by

Λ(ω) =
N |g|2(γ0 − iω)

c
(

(γ0 − iω)(γ − iω) + g2|〈Êc〉|2
) − iω

c
(8.30)

where k is the wave number andN is the total number of atoms. The complex transmission

parameter is related to the probe susceptibility [182, 105] by

ikχ(ω)

2
= −

(

Λ(ω) +
iω

c

)

(8.31)

The imaginary and real parts of χ(ω) describe the respective transmission and dispersion,

of the probe beam, shown in Figs. 8.2 (A) and (B), respectively. Full absorption of the

probe beam occurs when the pump beam is not present. In the presence of the pump beam,

a sharp transparency window is created. The transparency reduces with the presence of

ground state dephasing γ0, indicating that vapour cells with buffer gas or paraffin-coating

would yield better transmissivity. In the situation that γ0 = 0 and ω = 0, the EIT system

has perfect transmission. The corresponding dispersion curve shows a steep slope, leading

to reduced group velocity of the probe field. For higher pump powers, broadening of

the EIT transmission window occurs, as shown in Fig. 8.2 (C). The corresponding slope

for the dispersion reduces significantly, leading to increased group velocities, as shown in

Fig. 8.2 (D).

The solution to the equation of motion for the probe field operator in Eq. (8.29) is
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Figure 8.2: (A) Transmission and (B) dispersion plots for 〈Êc〉 = 106 Hz. (C) Transmission and

(D) dispersion plots for 〈Êc〉 = 107 Hz. The common parameter values are g = 107, N = 100,

γ = 106 Hz, γ0 = 104 Hz, L = 0.1 m.

given by

δX̃θ
p,out(ω) = e−Λ(ω)LδX̃θ

p,in(ω) − |g|2
c

∫ L
2

−L
2

e−Λ(ω)(L
2
−s) 〈Ẽc〉F̃12e

−iθ + 〈Ẽc〉∗F̃ †
12e

iθ

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
ds

+
g

c

∫ L
2

−L
2

e−Λ(ω)(L
2
−s)

(ω + iγ0)
(

F̃13e
−iθ − F̃ †

13e
iθ
)

(γ0 − iω)(γ − iω) + g2|〈Ẽc〉|2
ds (8.32)

When computing the quadrature variance from this equation, one needs to compute the

correlation between the Langevin terms. The Langevin correlation terms can be obtained
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using the Einstein relations, given by

〈F̂12F̂
†
12〉 = 〈D(σ̂12σ̂

†
12) −D(σ̂12)σ̂

†
12 − σ̂12D(σ̂†12)〉

δ(t − t′)δ(z − z′)
nA

= γ〈σ̂33〉 + 2γ0〈σ̂11〉

〈F̂13F̂
†
13〉 = 〈D(σ̂13σ̂

†
13) −D(σ̂13)σ̂

†
13 − σ̂13D(σ̂†13)〉

δ(t − t′)δ(z − z′)
nA

= γ〈σ̂33〉 + 2γ〈σ̂11〉

〈F̂12F̂
†
13〉 = 〈D(σ̂12σ̂

†
13) −D(σ̂12)σ̂

†
13 − σ̂12D(σ̂†13)〉

δ(t − t′)δ(z − z′)
nA

= 0

〈F̂13F̂
†
12〉 = 〈D(σ̂13σ̂

†
12) −D(σ̂13)σ̂

†
12 − σ̂13D(σ̂†12)〉

δ(t − t′)δ(z − z′)
nA

= 0

〈F̂ †
12F̂12〉 = 〈D(σ̂†12σ̂12) −D(σ̂†12)σ̂12 − σ̂†12D(σ̂12〉

δ(t − t′)δ(z − z′)
nA

= 0

〈F̂ †
12F̂13〉 = 〈D(σ̂†12σ̂13) −D(σ̂†12)σ̂13 − σ̂†12D(σ̂13〉

δ(t − t′)δ(z − z′)
nA

= γ〈σ̂23〉

〈F̂ †
13F̂12〉 = 〈D(σ̂†13σ̂12) −D(σ̂†13)σ̂12 − σ̂†13D(σ̂12〉

δ(t − t′)δ(z − z′)
nA

= γ0〈σ̂32〉

〈F̂ †
13F̂13〉 = 〈D(σ̂†13σ̂13) −D(σ̂†13)σ̂13 − σ̂†13D(σ̂13〉

δ(t − t′)δ(z − z′)
nA

= 0

(8.33)

The corresponding spectral variance for the field is then given by

V ±
p,out(ω) =

c

L
〈X̃θ

p,out(ω)X̃θ
p,out(ω

′)〉δ(ω + ω′) (8.34)

=
c

L

[

e(−2ℜ{Λ(ω)}L)〈
(

X̃θ
p,in(ω)

)2
〉

+

(
1 − e(−ℜ{Λ(ω)}L)

)(

〈F̃12F̃
†
12〉 + 〈F̃ †

12F̃12〉
)

|〈Ẽc〉|2

2ℜ{Λ(ω)}
∣
∣
∣(γ0 − iω)(γ − iω) + |〈Ẽc〉|2

∣
∣
∣

2

−
(
1 − e(−2ℜ{Λ(ω)}L)

) (

(−ω + iγ0)〈Ẽc〉∗〈F̃12F̃
†
13〉 − (ω + iγ0)〈Ẽc〉〈F̃ †

13F̃12〉
)

2ℜ{Λ(ω)}
∣
∣
∣(γ0 − iω)(γ − iω) + |〈Ẽc〉|2

∣
∣
∣

2

+

(
1 − e(−2ℜ{Λ(ω)}L)

) (
−ω2 − γ2

0

) (

〈F̃13F̃
†
13〉 + 〈F̃ †

13F̃13〉
)

2ℜ{Λ(ω)}
∣
∣
∣(γ0 − iω)(γ − iω) + |〈Ẽc〉|2

∣
∣
∣

2

]

(8.35)

Substituting Eqs. (8.18) and (8.33), into the variance expression, the variance of the

output probe field reduces to [300]

Vp,out(ω) = η(ω)Vp,in(ω) + (1 − η(ω)) (8.36)
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where the probe transmissivity is given by

η(ω) = exp[−2ℜ{Λ(ω)}L] (8.37)

In particular, on propagation through an EIT medium of length L, Eq. (8.36) de-

scribes the transfer of classical probe sideband information at frequency ω through the

EIT system, provided the modulation signal is much weaker than the coupling beam mean

field amplitude. The conclusion from this theoretical model is that an EIT system only

introduces passive loss to the output probe beam, and no excess noise is introduced.

8.2.6 Model inconsistencies

Peng et al. [182], formulated an EIT model where decoherence between the two ground

states arises from ground state dephasing and population re-shuffling. Such decoherences

may be due to effects such as elastic collisions that affects the phase between the ground

states and inelastic collisions that modify the population in the two ground states. Exper-

imentally, it has been shown that the dominant source of decoherence in atomic vapour

cells is due to dephasing, with minimal effects due to population shuffling [301]. The

equations of motion used in Peng et al. [182] are given by

∂

∂t
σ̂13 = −γσ̂13 + igÊp(σ̂11 − σ̂33) + ig〈Êc〉σ̂12 + F̂13 (8.38)

∂

∂t
σ̂23 = −γσ̂23 + ig〈Êc〉(σ̂22 − σ̂33) + igÊpσ̂21 + F̂23 (8.39)

∂

∂t
σ̂12 = −γ0σ̂12 + ig〈Êc〉∗σ̂12 − igÊpσ̂32 + F̂12 (8.40)

∂

∂t
σ̂11 = γσ̂33 + γ′0(σ̂22 − σ̂11) + igÊ†

p σ̂13 − igÊpσ̂31 + F̂11 (8.41)

∂

∂t
σ̂22 = γσ̂33 + γ′0(σ̂11 − σ̂22) + ig〈Êc〉∗σ̂23 − ig〈Êc〉σ̂32 + F̂23 (8.42)

∂

∂t
σ̂33 = −2γσ̂33 − igÊ†

p σ̂13 + igÊpσ̂31 − ig〈Êc〉∗σ̂23 (8.43)

+ig〈Êc〉σ̂32 + F̂33 (8.44)

In this subsection we show that an inclusion of population transfer terms leads to an

inconsistency in the equations derived under the weak probe approximation [300].

Solving for 〈σ13〉 under the weak probe assumption [182], and substituting the expres-

sion into the equations of motion for the populations, gives

〈σ11〉 =
−2g2

γγ0 + g2|〈Êc〉|2
|〈Êp〉|2 = 0. (8.45)

This relation is inconsistent with the weak probe approximation since the atomic pop-

ulation was assumed to optically pumped into state |1〉 (i.e. 〈σ11〉 = 1). The atomic

population inconsistency does not affect the expression for absorption and dispersion of

the probe field, since the susceptibility is only related to the off-diagonal elements of the

atomic density matrix (i.e. the ground state dephasing term only). However, the atomic

population inconsistency affects the Langevin noise terms since these terms are dependent

on the equations for the populations of the states, given by the diagonal density matrix

elements. Therefore the output probe variance expression of Eq. (19) in Peng et al. [182],
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given by

Vp,out(ω) = Vp,in(ω)e−2ℜ{Λ(ω)}L

+(1 − e−2ℜ{Λ(ω)}L)

(

1 − γ0(ω
2 + γ2

0)

γ(ω2 + γ2
0) + γ0|〈Êc〉|2

)

, (8.46)

violates the commutation relations for the output field. This violation is due to the use of

the weak probe approximation in conjunction with the diagonal decoherence terms, arising

from ground state population transfer.

Using the Heisenberg-Bloch equations of Eqs. (8.10) - (8.16) where only ground-state

dephasing is included, a set of three closed equations is obtained, under the weak probe

approximation (as given in Eqs. (8.19) - (8.21)). By solving for 〈σ13〉 and substituting this

into the steady-state equations of motion (Eqs. (8.18)), we find that the mean population

expressions are all consistent with the weak probe approximation assumption.

The conclusion from our calculations is the same as that of Peng et al. [182], despite

the inconsistency of the Peng et al. [182] analysis. A correct treatment of the propaga-

tion of a probe field through a 3-level atomic system shows that EIT does not introduce

any additional noise to the probe field beyond that which is necessary to preserve the

commutation relations of the probe field at the output, as shown in Eq. (8.36).

8.3 Experiment

We now describe the measurements performed to characterise the EIT system, in particular

the conditional variance measure.

8.3.1 Measurement

Ideally, we would like to possess a priori information about the probe input state and

then use this information to obtain the conditional variance (V ±
in|out) between the probe

input and output (see Fig. 8.3 (A)). The conditional variance is measured by minimising

the subtraction of input and output signals with variable gain G(ω) and time delay τ(ω),

giving

V ±
in|out(ω) = min|G,τ 〈|X̃±

out(ω) −G(ω)eiωτ(ω)X̃±
in(ω)|2〉. (8.47)

Without a pair of entangled beams at our disposal, such a direct measurement of

V ±
in|out is not possible. In practice we measure the conditional variance between the probe

reference and output beams, as shown in Fig. 8.3 (B), from which we can infer V ±
in|out

between probe input and output, as if the beamsplitter that separates the probe and

reference beams did not exist.

For an ideal delay line, the conditional variance limit is given by V ±
in|out(ω) = 0, since

the input and output are exactly equal. A more practical benchmark is an ideal delay

line with some inherent passive loss. Eq. (8.36) shows that EIT has frequency dependent

transmissivity η(ω). The quantum limit of the conditional variance is therefore found for

the situation where the loss is passive, in the sense that transmissivity η(ω) implies the

addition of 1−η(ω) unit of vacuum noise. In this case the quantum limit of the conditional

variance is given by

V ±
in|out = 1 − η(ω). (8.48)

Quantum models [182, 300] suggest that EIT systems should reach this passive loss limit,
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so that an experiment that compares the conditional variance to this quantum limit is a

good test of theory.
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Figure 8.3: (A) Illustration showing the characterisation of the EIT system using a pair of

entangled beams. In this instance, no vacuum penalty is incurred for the conditional variance

measurement. (B) Illustration showing the characterisation of the EIT system using a coherent

beam. A vacuum penalty is incurred for the conditional variance measurement, from the empty

port of the first beamsplitter. (C) A linear optics analogue of the potential noise sources for the

EIT system and the measurement scheme of (B).

Since we do not possess entanglement to characterise our system, we had to use a

beamsplitter to split our input beam - one as a reference, the other as the probe beam

for the EIT system (see Fig. 8.3 (B)). In Fig. 8.3 (C), we identify and model the possible

noise sources for the measurement scheme corresponding to Fig. 8.3 (B). The splitting of

the input beam into two introduces a vacuum loss corresponding to δv̂1. As the probe

input propagates through the EIT system, two possible sources of noise are introduced - (i)

passive loss and (ii) excess noise. For (i) passive loss, we use the analogy of a combination

of a half-waveplate and a polarising beam splitter which attenuates the input beam by

a variable amount, and in the process, introduces a second vacuum term δv̂2. For the

introduction of (ii) excess noise, the analogy with an amplitude/phase modulator is used

which introduces a noise term δv̂3.
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The conditional variance for this setup is given by

V ±
in|out(ω) =

∣
∣
∣G(ω)eiωτ(ω) −

√

η(ω)eiωτ
′(ω)
∣
∣
∣

2

2
Vain

+

∣
∣
∣G(ω)eiωτ(ω) +

√

η(ω)eiωτ
′(ω)
∣
∣
∣

2

2
Vv1

+ (1 − η(ω))Vv2(ω) + Vv3(ω) (8.49)

In order to minimise the expression above, the first term of Eq. (8.49) has to be eliminated.

This is best done experimentally by applying a large signal to the input beam (Vain ≫
Vv1 , Vv2 , Vv3) and then optimising the electronic gain G(ω) and delay τ(ω), such that

G(ω)eiωτ(ω) =
√

η(ω)eiωτ
′(ω). The measurement of the V ±

in|out(ω) thus yields

Vin|out(ω) = [1 + η(ω)] + Vv3(ω) (8.50)

However in the event that the quantum system only introduces passive loss (δv̂2) and

no excess noise (δv̂3 = 0), the V ±
in|out(ω) then becomes

V ±
in|out(ω) = 1 + η(ω) (8.51)

where the vacuum penalty from the introduction of δv̂1 changes Eq. (8.51) with respect to

Eq. (8.48), by two quanta of noise. Experimentally, we find the quantum limit by replacing

the gas cell with a beamsplitter that has the same transmissivity as the EIT system. The

transmission of the beamsplitter must be adjusted for each sideband frequency to account

for the finite EIT transmission, since for probe modulations much larger than the noise

added by the EIT medium, G(ω) → η(ω) in Eq. (8.49). This is how we determined η(ω)

independent of the beamsplitter used to separate the reference and probe beams.

At this stage, we have enough information to reconstruct the quantum benchmark limit

for a passive-loss EIT system and compare this with the V ±
in|out(ω) for the EIT system,

as if the first beamsplitter that separates the probe and reference beams did not exist.

The quantum benchmark of Eq. (8.48) can be obtained from the V ±
in|out(ω) minimisation

process for large input signals, which gives G(ω). The presence of excess noise Vv3(ω) is

quantified by taking the difference between the measured V ±
in|out(ω) of Eq. (8.50) with that

of Eq. (8.51).

8.3.2 Experimental setup

A schematic of our experiment3 is shown in Fig. 8.4. The experiment was driven using a

Ti:Sapphire laser, tuned to the |52S1/2, Fg = 2〉 to |52P1/2, Fe = 1〉 transition of the D1

line (795 nm) of Rubidium-87 (87Rb). A small fraction of the beam was sent through

another Rubidium (Rb) vapour cell for saturated absorption spectroscopy. This provided

us with a fine frequency reference for the laser. The laser was then locked to a reference

cavity, internal to the laser system.

The main fraction of the beam was then used for our experiment. This beam was

then split into three parts for - (i) probe-reference beams, (ii) pump beam and (iii) local

oscillator beams. One beam was encoded with sideband amplitude or phase modulation

3A detailed schematic of the experimental layout is shown in Fig. 8.13
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Figure 8.4: Schematic of experimental layout. BS: beamsplitter, PBS: polarising beamsplitter,

SA: spectrum analyser, DS: digital storage oscilloscope, λ/4: quarter wave-plate, λ/2: half wave-

plate and Pol.: polariser.

signals. The (i) probe-reference beam was polarised in the x-polarisation, and then split

equally in power on a 50:50 beamsplitter. One part of this beam was sent to a homo-

dyne detection system, as a reference beam for the input. The remainder of this beam

was used as a probe, by combining with the (ii) y-polarised pump beam at a polarising

beamsplitter. The overlapping pump and probe beams were converted to left and right

circularly polarised modes by a quarter-wave plate before entering an uncoated, isotopi-

cally enhanced 87Rb vapour cell (7 mm length, 25 mm diameter). The heated vapour cell

was shielded in two layers of high permeability alloy, that reduced stray magnetic fields to

≤ 1 mG, in all three spatial axes. The probe beam was extracted from the output of the

cell using a polariser and sent to a second homodyne detector. The homodyne detectors

were locked either to detect the amplitude or phase quadratures, using Pound-Drever-Hall

or DC-subtraction locking, respectively. The signals from the homodyne detectors were

monitored either using a digital storage oscilloscope or a network analyser, to obtain data

for delay measurements, and a spectrum analyser, which was used to measure the real-time

conditional variance and signal transfer coefficients, in the frequency domain.

8.4 Results and Discussion

8.4.1 Transmission and delay results

The group velocity in an EIT system is typically quantified by measuring the delay of

pulses. In our continuous wave system, we used a digital storage oscilloscope to measure

the delay of a broadband noise modulation. A 60 kHz bandwidth broadband Gaussian

noise modulation (i.e. using a function generator driving amplitude/phase modulators)

was applied to either the amplitude or phase of the probe. By comparing the auto-

correlation of the reference beam (Fig. 8.5 (i)) with the cross-correlation of the reference

and probe output beams (Fig. 8.5 (ii)) we could accurately determine the delay of the

amplitude or phase signal. The maximum correlation between the reference and probe

output beams occurred at a time delay of 7.5 µs. This corresponded to a group velocity

reduction of the input probe beam to ∼ c/30000. The width of curve (ii) is broader than
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curve (i), indicating that the probe beam has been filtered by the EIT system. Mikhailov

et al. [302] have reported the spectral narrowing of the modulation width through an EIT

medium. This spectral narrowing effect leads to increased correlation times, as shown in

Fig. 8.4 (C).
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Figure 8.5: Amplitude quadrature correlation plots. Similar results were observed for the

phase quadrature correlation. Cell temperature = 62◦C, probe and pump power densities were

0.32 mW/cm2 and 3.2 mW/cm2, respectively.

8.4.2 Noise Results

We now analyse the noise performance of our EIT system as a quantum delay line for

sidebands at a frequency ω, relative to the carrier frequency of the probe field. This

measurement was performed using a spectrum analyser and broadband Gaussian noise

modulation of the amplitude or phase of the probe input beam.

A sample set of V ±
in|out data is shown in Fig. 8.6. The output (i) and reference (ii)

signals, intersect at a sideband frequency of 305 kHz, corresponding to the frequency at

which the V ±
in|out for the EIT system (iii) is minimum. The V ±

in|out for the beamsplitter

benchmark (iv) is lower than the minimum point of curve (iii), indicating that the delayed

probe beam has excess noise. Since the EIT system has frequency dependent absorption

and delay, the gain and time delay for the V ±
in|out measurement had to be optimised for

each measurement frequency.

Conditional variance results for two different cell temperatures (corresponding to dif-

ferent atomic densities) of 42◦C and 56◦C are shown in Figs. 8.7 and 8.8, respectively.

The V ±
in|out found using a beamsplitter to simulate the passive loss of the EIT system are

the datasets labelled (ii). Due to the limited bandwidth of EIT, the passive loss increases

with sideband frequency so that in the limit of large frequency, the beamsplitter refer-

ence tends to a value of unity. Using Eq. (8.30), the EIT window has been fitted to this

beamsplitter data and is represented by the upper limit of the shaded area. The shaded

area therefore indicates the area in which a V ±
in|out measurement would be exceeding the
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Figure 8.6: V ±
in|out

for the amplitude quadrature, optimised for the sideband frequency of 305 kHz.

The curves represent the (i) output probe signal, (ii) reference signal with gain G and delay τ , (iii)

V ±
in|out

between the reference and output signals and (iv) V ±
in|out

for the beamsplitter benchmark.

The modulation peaks at 87 kHz and 174 kHz are the laser locking signals. Cell temperature

= 57◦C, probe and pump power densities were 9.6 mW/cm2 and 96 mW/cm2, respectively .

Measurements were made with a ResBW = 1 kHz, VBW = 30 Hz and 5 averages.

quantum measurement limit. EIT data (i) is well above the passive loss benchmark (ii),

showing that excess noise is added to the delayed probe beam. Moreover, the excess noise

is largest at low frequencies where the passive loss benchmark is at its best. For higher

sideband frequencies the loss in the EIT system dominates the behaviour and V ±
in|out → 1.

The excess noise is larger at higher cell temperatures (higher densities). For the lower

temperature data shown in Fig. 8.7, there exists a sideband frequency band (≥ 350 kHz)

where the EIT V ±
in|out is almost at the same level as the beamsplitter benchmark V ±

in|out.

However, in this region, the loss of the EIT system is large (≥ 5 dB) whilst the delay is

small (≤ 0.12 µs).

One source of excess noise is coupling from the pump to the probe [303, 304] since our

pump beam has amplitude and phase quadrature noise that lies about 7 dB above the

QNL. By adding amplitude and phase modulation to the pump beam, we were able to

measure the transfer functions of the pump-probe coupling, shown in Fig. 8.9.

The signal transfer from pump to probe beams has a quadrature-dependent frequency

spectrum. There appears to be more signal transfer from phase-to-phase rather than

from amplitude-to-amplitude. Cross-quadrature signal transfer is at least 10 dB less than

that of same-quadrature signal transfer. A maximum coupling of 3 % for classical phase

quadrature signals and 8 % for classical amplitude quadrature signals, with negligible

levels of cross quadrature coupling, was observed. This is only enough to explain 0.5 dB

of excess phase noise and 1.2 dB of excess amplitude noise.

We also measured cross-quadrature transfer of a signal on the input probe to the
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Figure 8.7: V ±
in|out

measurements for the (A) phase and (B) amplitude quadratures, for cell

temperature of 42◦C. The data point groups represent the (i) EIT V ±
in|out

and (ii) beamsplitter

benchmark V ±
in|out

. The shape of the shaded area has been fitted using the passive loss described

in Eq. (8.30). The corresponding (iii) gain and (iv) delay values measured for the (C) phase and

(D) amplitude quadratures are also shown. ResBW = 1 kHz, VBW = 30 Hz and 10 averages. The

beamsplitter benchmark and gain data points were fitted with γ0 = 3.5 kHz. The probe and pump

power densities were 9.6 mW/cm2 and 96 mW/cm2, respectively.

orthogonal quadrature of the output probe, given in Fig. 8.10. By adding amplitude or

phase modulation to the probe beam, we were able to measure the transfer functions of

the signal transfer to the phase and amplitude quadratures, respectively, of the output

probe beam, shown in Fig. 8.9.

The signal transfer from amplitude-to-phase is greater than that from phase-to-

amplitude. However, the amount of cross-quadrature coupling on the probe beam is less

than -15 dB.

We also quantify the performance of our EIT system in terms of the signal transfer

between probe input and output. The signal transfer coefficient is given by

T±
s (ω) =

SNR±
out(ω)

SNR±
in(ω)

(8.52)

where SNR±
out(ω) and SNR±

in(ω) are the signal-to-noise ratios of the output and input

probe fields, respectively. A signal transfer coefficient of unity indicates perfect transfer.

This would be the result for a loss-less delay line. For a passive system with transmission
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Figure 8.8: V ±
in|out

measurements for the (A) phase and (B) amplitude quadratures, for cell

temperature of 57◦C. The data point groups represent the (i) EIT V ±
in|out

and (ii) beamsplitter

benchmark V ±
in|out

. The shape of the shaded area has been fitted using the passive loss described

in Eq. (8.30). The insets show the zoom-in data points. The corresponding (iii) gain and (iv)

delay values measured for the (C) phase and (D) amplitude quadratures are also shown. ResBW

= 1 kHz, VBW = 30 Hz and 10 averages. The beamsplitter benchmark and gain data points were

fitted with γ0 = 4 kHz. The probe and pump power densities were 9.6 mW/cm2 and 96 mW/cm2,

respectively.

η(ω), the vacuum noise coupled in by the loss gives a signal transfer of η(ω). Measurements

of the signal transfer are shown in Fig. 8.11.

The signal transfer degrades as the frequency increases due to the limited bandwidth

of EIT. The EIT system signal transfer is similar to that of the beamsplitter benchmark

indicating that absorption in the EIT system is the dominant cause of reduced signal

transfer. There is some deviation from this behaviour for the phase quadrature for both

cell temperatures indicating that there is some extra degradation of the phase information.

8.4.3 Effects due to ground state population exchange

The model presented in the preceding sections showed that in the presence of ground state

dephasing, γ0, no excess noise is added to the output probe beam. The only effect due

to the presence of dephasing is reduced delay and transmission. However, in a realistic

atomic vapour cell, atom collision with the wall of the vapour cell could induce ground state

population exchange. Hétet et al. [305] have explored the quantum effects of population
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Figure 8.9: Pump-to-probe signal transfer measurements for cell temperature of 56◦C. The data

point groups in (A) represent amplitude modulation on the pump with an (i) amplitude measure-

ment of the output probe, and a (ii) phase measurement of the output probe. The data point

groups in (B) represent phase modulation on the pump with a (iii) phase measurement of the out-

put probe, and an (iv) amplitude measurement of the output probe. The probe and pump power

densities were 9.6 mW/cm2 and 96 mW/cm2, respectively. ResBW = 1 kHz, VBW = 300 Hz and

5 averages.

exchange on the output probe beam. In Ref. [305], a correct form of decoherence due to

population exchange was derived and the equations of motion were solved without the

weak probe assumption. Therefore, the equations were self-consistent, as opposed to the

earlier work of Peng et al. [182].

The Heisenberg-Langevin equations, including both ground state dephasing and pop-

ulation shuffling, are given by [305]
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Figure 8.10: Cross-quadrature transfer measurements for two different cell temperatures of (A)

42◦C and (B) 56◦C. The data point groups represent (i) amplitude modulation of the input probe

with a phase measurement of the output probe, and (ii) phase modulation of the input probe

with an amplitude measurement of the output probe. The probe and pump power densities were

9.6 mW/cm2 and 96 mW/cm2, respectively.

∂

∂t
σ̂13 = −

(

γ +
γ0

2
+
γ′0
2

)

σ̂13 + igÊp(σ̂11 − σ̂33) + ig〈Êc〉σ̂12 + F̂13 (8.53)

∂

∂t
σ̂23 = −

(

γ +
γ0

2
+
γ′0
2

)

σ̂23 + ig〈Êc〉(σ̂22 − σ̂33) + igÊpσ̂21 + F̂23 (8.54)

∂

∂t
σ̂12 = −(γ0 + γ′0)σ̂12 + ig〈Êc〉∗σ̂12 − igÊpσ̂32 + F̂12 (8.55)

∂

∂t
σ̂11 = γσ̂33 + γ′0(σ̂22 − σ̂11) + igÊ†

p σ̂13 − igÊpσ̂31 + F̂11 (8.56)

∂

∂t
σ̂22 = γσ̂33 + γ′0(σ̂11 − σ̂22) + ig〈Êc〉∗σ̂23 − ig〈Êc〉σ̂32 + F̂23 (8.57)

∂

∂t
σ̂33 = −2γσ̂33 − igÊ†

p σ̂13 + igÊpσ̂31 − ig〈Êc〉∗σ̂23 (8.58)

+ig〈Êc〉σ̂32 + F̂33 (8.59)

where the ground state population exchange rate is given by γ′0. The population of the

atoms are no longer assumed to be fully pumped into state |1〉. However, it is assumed

that |g〈Êc〉|2 ≫ γγ0, γγ
′
0.
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benchmark data points were fitted with γ0 = 4 kHz and γ0 = 3.5 kHz, respectively. ResBW =

1 kHz, VBW = 30 Hz and 10 averages.

Solving the equations of motion yields the output probe field variance, given by

Vp,out(ω) = η(ω)Vp,in(ω) + (1 − η(ω))(1 +Nexcess(ω)) (8.60)

where the absorption loss is given by

η(ω) = exp




−2Lℜ





g2N

c

(γ0 + γ′0 − iω)(1 − 3γ′0
γ ) − γ′0〈Êc〉

〈Êc〉∗

g2〈Êc〉2 − iω(γ + γ0
2 +

γ′0
2 )









 (8.61)

and the frequency-dependent excess noise term is given by

Nexcess(ω) =
4γ′0g

2〈Êc〉2
2γ0g2〈Êc〉2 + ω2(2γ + γ0 − 3γ′0)

(8.62)

The excess noise term Nexcess(ω) arises from the amplification of vacuum noise and

is phase-insensitive. The energy required for the amplification process is provided by the

coupling beam. Nexcess(ω) has the feature of large excess noise at low frequencies with

reduced noise at higher frequencies.

8.4.4 Model incompleteness

One should be circumspect in attributing entirely the observed excess noise to the ground

state population shuffling effect. This is because there are many other effects present in
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the atomic vapour cell system. The theoretical modelling [223, 286, 299, 182] of EIT does

not include several effects. For example,

• In principle, the pump-probe configuration of EIT means that the experiment is

performed on atoms of a particular longitudinal velocity class so that any effects of

atomic motion can be ignored. Transverse velocities, however, could play a crucial

role. The Gaussian intensity profiles of the pump and probe beams mean that atoms

with motion in the transverse plane will experience varying optical field intensities,

whereas the theory assumes uniform field intensities.

• Effects due to high atomic density have also been neglected. Various decoherence

mechanisms mean that there is always some fluorescence in the cell. The probability

that these photons are reabsorbed by the atoms grows exponentially with atomic

density. The quantum noise properties of such “radiation trapping” [306] has not

been considered in the context of EIT. Density dependent effects may be of particular

interest since they should be more severe in cold atom systems where the density is

higher.

• The coupling field was assumed to be classical. Whilst this is a reasonable theoretical

assumption, many experiments have pump-probe beam power ratios of (10 → 100):1,

where the pump noise could have a small effect on the output probe noise. Our

experiments have measured the effect of pump-induced noise and found the pump

noise transfer to be small but present.

The presence of excess noise could be due to a combination of the various effects

aforementioned.

8.5 Conclusion and future directions

8.5.1 Conclusion

As discussed above, a deviation of EIT system performance from the passive loss bench-

mark indicates a discrepancy with published theoretical modelling [223, 286, 299, 182].

Both in terms of conditional variance and signal transfer we see that the EIT system

performance measured in our experiment does not reach the passive loss limit.

In summary, our work shows that light delayed by EIT can have significant amounts

of excess noise. The latest theoretical modelling of Hétet et al. [305] shows that the

presence of ground state population shuffling terms do indeed give excess noise to the

output probe field, via a phase-insensitive amplification of vacuum noise. Experimentally,

the ground state population shuffling rate can be reduced via the introduction of a buffer

gas in the EIT system, and recent experiments have shown that excess noise may indeed

be reduced [297, 298]. In spite of this, one should be cautious in attributing the population

shuffling decoherence as the sole cause of excess noise. Recently, two experiments have

shown the storage of squeezed light via EIT. The experiments of Appel et al. [307] and

Honda et al. [308] demonstrated the retrieval of up to 0.28± 0.05 dB and 0.07± 0.005 dB

of squeezing, respectively. In their experiments, the input probe beam had 3 dB and 2 dB

of squeezing, respectively. In Ref. [307], excess noise in the form of Raman scattering from

pump to probe and small EIT transmissions (∼ 20 %) was attributed to the observation

of significantly reduced squeezing on the output probe beam. The experimental results

of Refs. [183, 297, 298, 307, 308] and the theoretical model of Hétet et al. [305] should
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serve as a motivation for more complete theoretical models to identify the origins of the

noise and also as a caveat to claims that EIT in thermal vapour cells is a good method

for storing and delaying quantum states.

8.5.2 Future directions

Measurements of EIT in cold atoms in a MOT were performed, the results shown in

Fig. 8.12. For a detailed description of the MOT setup, please refer to Chapter 10. The

results were measured by applying the coupling and probe beams after the MOT was

turned off.
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Figure 8.12: Transmission of a probe beam through a cold Rb87 atom cloud in a MOT, (i) with

and (ii) without the application of a coupling beam. The asymmetry of the EIT feature is possibly

due to the presence of stray magnetic fields and inefficient optical pumping in the ground state

levels.

The results indicate that close to 100 % transmission is achievable with EIT in a

MOT. This result is a significant improvement over the results observed in a vapour cell,

with approximately the same densities. Future experiments of EIT could therefore be

performed on cold atoms, as the following advantages are offered over a vapour cell:

• The confinement of atoms. Significantly reduced motion of atoms out of the interac-

tion region reduces the ground state dephasing rate γ0. Therefore, more efficient EIT

can be generated, as evident in the results of Fig. 8.12. However, a MOT system

restricts the measurement time since the MOT is turned off during the EIT pro-

cess. Typical measurement times for cold atoms in a MOT are less than 10 ms and

therefore EIT storage experiments have to be performed within this time window.

• In a vapour cell, atoms are constantly moving and may be lost from the interaction

region. Therefore the assumption that the population of atoms are conserved is not

valid for a vapour cell. During short measurement times of cold atoms released from

a MOT, the expansion of the atom cloud is minimal. Therefore the population of

atoms during the measurement time are conserved. Based on this, the population

shuffling term γ′0 is expected to be small.
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In conclusion, EIT measurements of cold atoms in a MOT hold promise for greater

transmission and reduced excess noise, since decoherences are reduced. This is possibly

one avenue for EIT experiments in the future.
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Chapter 9

Spin squeezing theory

Man needs difficulties; they are necessary for health.

- Carl Jung

9.1 Introduction

In the last decade, there has been an augmentation of optical experiments demonstrating

EPR entanglement [17, 218], violation of Bell’s inequality [14, 15, 16, 309], quantum gates

[310, 28], quantum teleportation [41, 42], quantum cryptography [311, 312, 51, 313, 314,

315] and quantum non-demolition (QND) [316, 47, 46]; performed in the discrete-variable

and continuous-variable regimes. For atomic media, there has been a corresponding suite of

single atom and single ion experiments demonstrating atomic state entanglement [160, 317,

318, 319, 320, 321], atomic state teleportation [322, 323], atomic gates [36, 324, 325, 326]

and quantum networking [327, 328]. The Polzik group has pursued atomic ensemble

measurements and demonstrated atomic spin squeezing [129, 130, 131], spin entanglement

[132, 133], atomic memory [134, 135, 136, 107, 137] and atomic state teleportation [222,

106].

Many of the aforementioned experiments have been motivated by quantum information

and quantum computing goals. However, there is a corresponding suite of experiments

with applications in improving the sensitivity of practical measurements. For example, the

enhancement of the measurement of the Cs clock transition pseudo-spin [115, 116, 117] and

performing sub-shot noise atomic magnetometry [111, 112, 113, 114]. In such applications,

squeezing of the collective atomic spin state is important. We are motivated by such goals

as well and dedicate the remainder of this thesis to studying atomic spin squeezing1.

In the experiment of Hald et al. [129], a squeezed light source was propagated through

a cold atom cloud. The state of the polarisation squeezed probe light was mapped onto the

atomic spin state. In order to verify the existence of spin squeezing, off-resonant light was

then propagated through the cold atoms. Faraday rotation measurements were performed

on the probe light to infer the atomic spin state via a QND interaction [128, 184, 107, 131].

A quantum spin noise reduction by −3 % was observed but the actual degree of spin

squeezing could not be inferred due to uncertainties in the atomic state read-out efficiency.

1For comprehensive treatments of this subject matter, please refer to B. Julsgaard’s [329] and
J. K. Stockton’s [330] PhD theses. This chapter is by no means a comprehensive treatment of this subject
matter but is aimed to provide the absolute necessary formalism to understand the work, which is currently
in progress.

151



152 Spin squeezing theory

In the experiment of Kuzmich et al. [331], continuous QND measurements were per-

formed on a collective atomic spin state in a vapour cell. Spin noise reduction of up to

5 dB below the quantum noise level for a coherent spin state was reported. A subsequent

QND-spin squeezing experiment by Geremia et al. [332] reported up to 10 dB of spin

squeezing. In their experiment, unconditional and conditional spin squeezing were shown,

using an applied magnetic field as the feedback to re-orient the collective spin direction.

However, there exists controversy with the results of Ref. [332]. The optical depth of the

experiment in Ref. [332] was at least an order of magnitude larger than that in typical cold

atom experiments and tensor effects were also not considered and characterised. Classical

polarisation noise in the probe laser beam (due to birefringence of cell windows) was also

present. All these issues are described in detail in the PhD thesis of J. K. Stockton [330].

In this chapter, we present the necessary formalism to explain the interaction between

optical Stokes polarisation and atomic spin state operators. We identify the different

components in the interaction Hamiltonian, in particular the tensor term. Important

experimental parameters that influence the degree of spin squeezing are also identified

and discussed.

9.2 Atomic spin states

In the previous chapters on atom-light interactions, we worked in the bases of amplitude

and phase quadrature operators for the optical field; and atomic dipole operators for the

atomic system. We now introduce alternate bases for the atomic and optical states. The

variables are transformed into bases which observe the SU(2) group properties, such as

the spin observables of an atom and the polarisation Stokes operators for the optical field

(introduced in Chapter 4).

The atomic spin operators are defined in terms of the total angular momentum oper-

ator. The total angular momentum operator, f̂ , for a single atom is given by

f̂ = ĵ + î (9.1)

where î is the nuclear spin operator and ĵ = l̂ + ŝ is the total electronic angular momen-

tum operator. l̂ and ŝ are the electronic orbital angular momentum and spin operators,

respectively.

For Rubidium, the ground state is given by the outermost electron in the 5S1/2 state.

In this case, the electronic angular momentum is zero. Since an electron has spin-1/2, the

total electronic angular momentum is thus j = 1/2. The nuclear spin of Rubidium-87 is

i = 3/2. Therefore the total angular momentum for the ground state of Rubidium-87 is

given by f = 1, 2. For Cesium-133, the nuclear spin is given by i = 7/2. Therefore the

total angular momentum for the ground state of Cesium-133 is given by f = 3, 4.

We denote the ground and excited states of an atom respectively by

|f,mf 〉 |f ′,mf ′〉 (9.2)

where f denotes the relevant hyperfine state and mf is the corresponding quantum number

for the state. |f,mf 〉 are the eigenstates of the f̂2 and f̂z operators, given by

f̂2|f,mf 〉 = h̄2f(f + 1)|f,mf 〉 (9.3)

f̂z|f,mf 〉 = h̄mf |f,mf 〉 (9.4)
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Here we are only interested in the atomic ground state. The excited state population

is assumed to be negligible since in the experiment, the probe beam which interacts with

the atom is far-detuned from the atomic transition. As will be shown in the following

section, any excitation into the excited state will spontaneously emit into the ground state

and thus it is reasonable to only consider the ground state.

The angular momentum operator can be written in the x, y and z components, given

by f̂x, f̂y and f̂z, respectively. These operators satisfy the cyclic commutation relations

given by

[

f̂x, f̂y

]

= ih̄f̂z (9.5)
[

f̂y, f̂z

]

= ih̄f̂x (9.6)
[

f̂z, f̂x

]

= ih̄f̂y (9.7)

Thus far, we have only considered the spin states for a single atom. In reality, we

are dealing with an ensemble of atoms and therefore, we introduce collective angular

momentum operators, given by

F̂ =

N∑

i=1

f̂ (i) F̂z =

N∑

i=1

f̂ (i)
z (9.8)

where N is the total number of atoms in the ensemble and f̂ (i) is the angular momentum

operator corresponding to the i-th atom.

9.2.1 Dicke state

We now introduce the state corresponding to an ensemble of atoms. The eigenstate of the

F̂z operator is given by the Dicke state2, |F,mF 〉, where

F̂z|F,mF 〉 = h̄mF |F,mF 〉 (9.9)

where F is the hyperfine ground state corresponding to an ensemble of atoms and mF is

the quantum number.

9.2.2 Coherent spin state

For a coherent spin state, all the atoms are prepared in the same state (e.g. the mf = f

or mf = −f state). We can write the spin state for the atomic ensemble prepared in the

mF = F state as a product of individual atomic states, given by

|F,F 〉 = |f, f〉(1)|f, f〉(2) · · · |f, f〉(N) (9.10)

where the superscript (i) denotes each atom in the N -atom ensemble.

For an atomic system prepared with all the spins aligned in the z-direction, the total

spin of the system therefore has a mean spin value given by 〈F̂z〉. The expectation values

2The Dicke state is strictly speaking applicable to both a single atom and an ensemble of atoms. In
this instance, we are interested in the Dicke state for the collective atomic system.
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for the F̂z , F̂
2
x and F̂ 2

y are given by

〈F,F |F̂z |F,F 〉 = h̄F (9.11)

〈F,F |F̂ 2
x |F,F 〉 = 〈F,F |F̂ 2

y |F,F 〉

=
h̄2

2
(F (F + 1) − F 2)

=
h̄2

2
F (9.12)

In this instance, the commutation relation between the F̂x and F̂y operators is given by

[F̂x, F̂y] = i〈F̂z〉 (9.13)

where the corresponding variances are related by

V (F̂x)V (F̂y) ≥ 〈F̂z〉2
4

≥ h̄2

4
F 2 (9.14)

These expressions show that the collective atomic system has a product of x and y-spin

variances proportional to the mean 〈F̂z〉2. We define the coherent spin state (CSS) as the

state where the spin variances in the x and y-directions are equal (i.e. V (F̂x) = V (F̂y))

and satisfy Eq. (9.14) in the equality.

9.2.3 Mixed state

In the situation where the ensemble of N number of atoms are not coherently populated

in their ground states, a mixed state is obtained. The density matrix corresponding to a

mixed state is given by

ρ̂ =

Nf
∑

m=0

|Nf,m〉〈Nf,m| (9.15)

where the variances of the spin operators, in a mixed state, are greater than that of the

coherent spin state.

9.2.4 Spin squeezed state

A spin squeezed state [333] is obtained when the spins of the atoms are quantum correlated.

The variance of a spin squeezed state in one observable is reduced below that of the CSS,

whilst the variance of the orthogonal observable is increased. For example, for a spin

squeezed state in the x-direction, the variances are given by

V (F̂x) <
〈F̂z〉

2
(9.16)

whilst the variance in the y-direction is given by

V (F̂y) >
〈F̂z〉

2
(9.17)
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Likewise, it is possible to squeeze in the y-direction with a corresponding anti-squeezing

in the x-direction. For a pure squeezed state, the product of the variances always satisfy

Eq. (9.14) in the equality.

9.3 Atom-light interaction

We have introduced all the observables corresponding to the spin state of an atomic system,

as well as the polarisation Stokes operators of an optical field (in Chapter 4). Now we

would like to derive the Hamiltonian for the interaction of an optical field with an atomic

ensemble in terms of the spin and polarisation bases.

The Hamiltonian describing the interaction between an atomic dipole with an electro-

magnetic field Ê is given by

Ĥint = −d̂.Ê(r) (9.18)

where the atomic dipole operator is given by d̂, located at position r.

For an atom in the presence of a magnetic field B̂, the Hamiltonian describing the

interaction between the magnetic field and the magnetic dipole of the atom is given by

ĤB = −
∑

f,mf

µBg
B
f f̂

B
j .B̂(rj) (9.19)

where f̂
B
j is the magnetic dipole operator, µB is the magnetic permeability of the atomic

medium and gBf is the magnetic coupling constant.

The total Hamiltonian for an atom interacting with optical and magnetic fields is given

by

Ĥtot = Ĥint + ĤB + Ĥe + Ĥg (9.20)

where the atomic excited state and ground state Hamiltonians are given by Ĥe and Ĥg,

respectively. The explicit form for Ĥe and Ĥg are given by

Ĥe =
∑

f,mf

h̄ωf |f,mf 〉〈f,mf | =
∑

f,mf

h̄ωf σ̂
ff
mfmf

(9.21)

Ĥg =
∑

f ′,mf ′

h̄ωf ′ |f ′,mf ′〉〈f ′,mf ′ | =
∑

f ′,mf ′

h̄ωf ′σ̂
f ′f ′
mf ′mf ′

(9.22)

where ωf and ωf ′ are the optical frequencies corresponding to the ground state f and

excited state f ′ transitions.

9.3.1 Far detuned limit

Now we would like to show that in the far detuned limit, the excited state dependence

is adiabatically eliminated. The derivation presented henceforth follows that of Ref. [329]

but we re-derive it here for completeness and introduce some additional details.

Let us consider the electric dipole interaction only and write the Hamiltonian in terms

of the atomic dipole operators corresponding to the ground state f and excited state f ′

with the respective quantum numbers given by mf and mf ′ . The sum over all possible

values of f and f ′ is also taken, to model all the hyperfine states in a real atom. The

integral across the atomic ensemble of cross-section area A and length L is taken. Therefore

the total Hamiltonian for the interaction of an atomic ensemble with and optical field is
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given by

Ĥ ′
tot = Ĥatom + Ĥint (9.23)

= h̄nA
∑

f ′,mf ′

∫ L

0
(ω0 + ∆f ′)σ̂

f ′f ′

mf ′mf ′
dz

+h̄nA
∑

f,f ′,mf ,mf ′

∫ L

0

((

g(+)f ′f
mf ′mf

â+ + g(−)f ′f
mf ′mf

â−
)

σ̂f
′f
mf ′mf

+ H.C.
)

dz (9.24)

where g
(+)f ′f
mf ′mf

and g
(−)f ′f
mf ′mf

are the atom-field coupling constants corresponding to the mf -

mf ′ transitions, with the superscript (+) and (−) denoting relevant coupling with the

circularly polarised light, â+ and â−, respectively. n and A are the respective atomic

density and interaction cross-section, and ∆f ′ is the detuning from resonance.

In the far-detuned limit, the optical field has to be sufficiently far detuned from the

atomic transition such that there is no population in the excited state. Therefore the

coherences between the excited and ground states, σ̂ff
′

mfmf ′ becomes dependent on the

ground states and optical fields only. The equation of motion for the coherence term

σ̂ff
′

mfmf ′ is obtained from the Heisenberg equations. Since we only consider dipole allowed

transitions, the equation of motion for the |mf = m− 1〉 to |mf ′ = m〉 state is given by

ih̄
∂

∂t
σ̂ff

′

m−1,m(z, t) = [σ̂ff
′

m−1,m(z, t), Ĥtot(z, t)] (9.25)

= h̄(ω0 + ∆f ′)σ̂
ff ′

m−1,m(z, t)σ̂f
′f ′
m,m(z, t)

+σ̂ff
′

m−1,m(z, t)
(

h̄g
(+)f ′f
m,m−1â+(z, t)

)

σ̂f
′f
m,m−1(z, t)

+σ̂ff
′

m−1,m(z, t)
(

h̄g
(−)f ′f
m,m+1â−(z, t)

)

σ̂f
′f
m,m+1(z, t)

−
(

h̄g
(+)f ′f
m,m−1â+(z, t)

)

σ̂f
′f
m,m−1(z, t)σ̂

ff ′

m−1,m(z, t)

−
(

h̄g
(−)f ′f
m−2,m−1â−(z, t)

)

σ̂f
′f
m−2,m−1(z, t)σ̂

ff ′

m−1,m−2(z, t) (9.26)

where all the other terms have zero state overlap. We can simplify the expression to obtain

ih̄
∂

∂t
σ̂ff

′

m−1,m(z, t) = h̄(ω0 + ∆f ′)σ̂
ff ′

m−1,m(z, t)

+
(

h̄g
(+)f ′f
m,m−1â+(z, t)

)

σ̂ffm−1,m−1(z, t)

+
(

h̄g
(−)f ′f
m,m+1â−(z, t)

)

σ̂ffm−1,m+1(z, t)

− h̄
(

g
(+)f ′f
m,m−1â+(z, t)

)

σ̂f
′f ′
m,m(z, t)

︸ ︷︷ ︸

≃0

− h̄
(

g
(−)f ′f
m−2,m−1â−(z, t)

)

σ̂f
′f ′

m−2,m(z, t)
︸ ︷︷ ︸

≃0

(9.27)

We now neglect the last two terms on the right hand side of the Eq. (9.27) as they are

dependent on the population in the excited states. To solve Eq. (9.27), we move into the

rotating frame of the optical field. The atomic dipole operators and photon annihilation

operators are written in terms of the slowly varying envelope operators, given respectively
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by

σ̂ff
′

m−1,m(z, t) = σ̂′
ff ′

m−1,m(z, t)e−iω0t (9.28)

â±(z, t) = â′±(z, t)e−iω0t (9.29)

where σ̂′
ff ′

m−1,m(z, t) and â′±(z, t) are the slowly varying envelope operators for the atoms

and photons, respectively. We substitute these equations into Eq. (9.27) and relabel the

envelope operators whereby σ̂′
ff ′

m−1,m(z, t) → σ̂ff
′

m−1,m(z, t), and â′±(z, t) → â±(z, t), for

notational convenience, giving

ih̄
∂

∂t
σ̂ff

′

m−1,m(z, t) = h̄∆f ′ σ̂
ff ′

m−1,m(z, t) +
(

h̄g
(+)f ′f
m,m−1â+(z, t)

)

σ̂ffm−1,m−1(z, t)

+
(

h̄g
(−)f ′f
m,m+1â−(z, t)

)

σ̂ffm−1,m+1(z, t) (9.30)

Since the rate at which atomic dynamics varies is less than that of the laser detuning,

therefore we can set the time derivative of the atomic coherence term to zero, giving

σ̂ff
′

m−1,m(z, t) = − 1

∆f ′

(

g
(+)f ′f
m,m−1â+(z, t)σ̂ffm−1,m−1(z, t) + g

(−)f ′f
m,m+1â−(z, t)σ̂ffm−1,m+1(z, t)

)

(9.31)

The coherence between the excited and ground state now adiabatically follows the

ground state and the optical fields. Similarly, the dipole operator describing the coherence

between the |mf = m+ 1〉 to |mf ′ = m〉 transition is given by

σ̂ff
′

m+1,m(z, t) = − 1

∆f ′

(

g
(+)f ′f
m,m−1â+(z, t)σ̂ffm+1,m−1(z, t) + g

(−)f ′f
m,m+1â−(z, t)σ̂ffm+1,m+1(z, t)

)

(9.32)

We now substitute these two expressions into the interaction Hamiltonian, given by

Ĥint = h̄nA
∑

f,m,f ′,mf ′

∫ L

0

[

−
2g

(+)f ′f
m,m−1â

†
+

∆f ′

(

g
(+)f ′f
m,m−1â+σ̂

ff
m−1,m−1 + g

(−)f ′f
m,m+1â−σ̂

ff
m−1,m+1

)

−
2g

(−)f ′f
m,m+1â

†
−

∆f ′

(

g
(+)f ′f
m,m−1â+σ̂

ff
m+1,m−1 + g

(−)f ′f
m,m+1â−σ̂

ff
m+1,m+1

) ]

dz (9.33)

We can simplify the product of the atom-field coupling constants by calculating the

Clebsch-Gordon coefficients for the relevant atom with ground state f and excited state

f ′. The product of the coupling constants are given by

(

g
(±)f ′f
m,m−1

)2
=

cγλ2

8πA

(

α(0) ±mα(1) +m2α(2)
)

(9.34)

g
(+)f ′f
m,m−1g

(−)f ′f
m,m+1 =

cγλ2

8πA

√

(f +m)(f + 1 +m)(f −m)(f + 1 −m)α(2) (9.35)

where the atomic polarisability are given by α(0), α(1) and α(2)
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Now substitute these into the interaction Hamiltonian to obtain

Ĥint =
h̄ncγλ2

8π∆f ′

∑

f,m

∫ L

0
−2
[ (

α(0) +mα(1) +m2α(2)
)

â†+â+σ̂
ff
m−1,m−1

+
(

α(0) −mα(1) +m2α(2)
)

â†−â−σ̂
ff
m+1,m+1

+
√

(f +m)(f + 1 +m)(f −m)(f + 1 −m)α(2)
(

â†+â−σ̂
ff
m−1,m+1 + â†−â+σ̂

ff
m+1,m−1

) ]

dz

(9.36)

We further simplify the expression above using the identities for the spin and polari-

sation Stokes operators to obtain

Ĥint = − h̄ncγλ
2

4π∆f ′

∫ L

0
α(0)Ŝ0
︸ ︷︷ ︸

Scalar

+α(1)Ŝz f̂z
︸ ︷︷ ︸

Vector

+α(2)
(

Ŝ0f̂
2
z − 2Ŝx(f̂

2
x − f̂2

y ) − 2Ŝy(f̂xf̂y + f̂yf̂x)
)

︸ ︷︷ ︸

Tensor

(9.37)

The Hamiltonian above is highly illustrative, with the different components given by

the following:

• Scalar term - This is a phase shift imposed on the optical field, independent of the

atomic state. The shift is the same on both polarisation components and therefore

does not affect the state-dependent result.

• Vector term - This is the term which gives rise to Faraday rotation signals. It

couples the polarisation state with the atomic state. A phase shift is introduced

between the two polarisation modes which is proportional to the spin polarisation

operator, f̂z.

• Tensor term - This is a second order term which couples the polarisation Stokes

operators to the atomic spin operators in a non-linear manner. In the case that

f = 1/2, this term is always zero as can be seen in Eq. (9.36). This term is non-zero

for higher values of f . In general, this term is undesirable as it affects the Faraday

rotation signal in a non-linear manner.

9.3.2 Equations of motion

In order to model the dynamics of the spin and polarisation variables, the equations of

motion are derived from the Hamiltonian given in Eq. (9.37). The optical Bloch equations
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for the atomic spin operators are given by

ih̄
∂

∂t
f̂x = [f̂x, Ĥint] (9.38)

∂

∂t
f̂x =

ncγλ2

4π∆f ′

[

α(1)Ŝzf̂y + α(2)
(

(Ŝ0 − 2Ŝx)(f̂y f̂z + f̂zf̂y) + 2Ŝy(f̂xf̂z + f̂zf̂x)
)]

ih̄
∂

∂t
f̂y = [f̂y, Ĥint] (9.39)

∂

∂t
f̂y =

ncγλ2

4π∆f ′

[

−α(1)Ŝz f̂x − α(2)
(

(Ŝ0 + 2Ŝx)(f̂xf̂z + f̂zf̂x) + 2Ŝy(f̂y f̂z + f̂zf̂y)
)]

ih̄
∂

∂t
f̂z = [f̂z, Ĥint] (9.40)

∂

∂t
f̂z =

ncγλ2

4π∆f ′
4α(2)

(

Ŝx(f̂yf̂x + f̂xf̂y) + Ŝy(f̂
2
y − f̂2

x)
)

Correspondingly the Maxwell wave equation for the polarisation Stokes operators for

the fields are given by

ih̄

(

c
∂

∂z
+
∂

∂t

)

Ŝx = [Ŝx, Ĥint] (9.41)

(

c
∂

∂z
+
∂

∂t

)

Ŝx =
ncγλ2

4π∆f ′

[

α(1)Ŝyf̂z + 2α(2)Ŝz(f̂xf̂y + f̂yf̂x)
]

ih̄

(

c
∂

∂z
+
∂

∂t

)

Ŝy = [Ŝy, Ĥint] (9.42)

(

c
∂

∂z
+
∂

∂t

)

Ŝy =
ncγλ2

4π∆f ′

[

−α(1)Ŝxf̂z − 2α(2)Ŝz(f̂
2
x − f̂2

y )
]

ih̄

(

c
∂

∂z
+
∂

∂t

)

Ŝz = [Ŝz, Ĥint] (9.43)

(

c
∂

∂z
+
∂

∂t

)

Ŝz =
ncγλ2

4π∆f ′
2α(2)

[

Ŝy(f̂
2
x − f̂2

y ) − Ŝx(f̂xf̂y + f̂yf̂x)
]

where the first order terms (i.e. scaling with α(1)) are the QND terms. The tensor terms

which scale with α(2) affects the QND measurement as non-linear phase shifts are induced

between the polarisation modes of the output probe beam.

9.4 Spin squeezing schemes

9.4.1 Squeezing via squeezed probe transfer

From the equations of motion given in Eqs. (9.38)-(9.43), we can observe that state transfer

from light to atoms and vice versa is possible, when the optical field is sufficiently far

detuned from the atomic transitions and therefore the second order tensor terms are

negligible (since α(2) ∝ 1/∆2
f ′ for detuning greater than the excited state separation [330]).

The equations of motion for atoms that are spin polarised in the x-direction and the

probe field with x linear polarisation, propagating in the z-direction through the atomic
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ensemble, are given by

∂

∂t
f̂x = 0 (9.44)

∂

∂t
f̂y =

ncγλ2

4π∆f ′

[

−α(1)Ŝz〈f̂x〉
]

(9.45)

∂

∂t
f̂z = 0 (9.46)

(

c
∂

∂z
+
∂

∂t

)

Ŝx = 0 (9.47)

(

c
∂

∂z
+
∂

∂t

)

Ŝy =
ncγλ2

4π∆f ′

[

−α(1)〈Ŝx〉f̂z
]

(9.48)

(

c
∂

∂z
+
∂

∂t

)

Ŝz = 0 (9.49)

where the macroscopic spin and polarisation are given by 〈f̂x〉 and 〈Ŝx〉, respectively.

The dynamics of the system are assumed to occur on a long time scale such that the

time evolution of the optical field is negligible. The resulting equations of motion for the

spin and polarisation operators can therefore be reduced to the following four equations

∂

∂t
F̂z = 0 (9.50)

∂

∂t
F̂y = −ncγλ

2

4π∆f ′
α(1)Ŝin

z 〈F̂x〉 (9.51)

Ŝout
y = Ŝin

y − ncγλ2

4π∆f ′
α(1)〈Ŝx〉F̂z (9.52)

Ŝout
z = Ŝin

z (9.53)

where Ŝin
y and Ŝin

z are the y and z Stokes operators of the input probe field. Following the

interaction of the probe field with the atomic ensemble, the output Stokes operators are

given by Ŝout
y and Ŝout

z .

We can observe in the equations above that information on the atomic spin state F̂z
can be obtained from the Stokes operator Ŝout

y . However, the noise contribution from the

input probe field Ŝin
y is always present. In order to maximise the information on F̂z, the

polarisability constant α(1) has to be large. A back-action term is also introduced on the

atomic state as the evolution3 of F̂y is dependent on Ŝin
z .

9.4.2 Squeezing by averaging

Thomsen et al. [334] proposed a scheme to perform quantum non-demolition (QND)

measurements on a cloud of atoms enclosed in an optical cavity. The cavity field interacts

with the atoms and the polarisation rotation of the optical field provides information on the

atomic spin state. The atomic spin state information can then be used to apply a feedback

control signal to alter the atomic spin state to a desired value, giving unconditional spin

squeezing.

3An experimental demonstration of the interaction of a polarisation squeezed field with a cold atomic
sample was shown in Refs. [129, 134, 130].
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In the experimental demonstration of spin squeezing, reported by Geremia et al. [332,

111], the free-space propagation of an optical probe field through a cold atom cloud scheme

was used. The probe field was far detuned from resonance such that the excited-ground

state coherences adiabatically follow the ground state coherences. The atom cloud was

first prepared to have a macroscopic spin vector in the x-direction. The probe field was

linearly polarised and sent through the atom cloud. Upon interaction with the atoms, the

polarisation state was rotated slightly and the rotation y(1) corresponded to F̂
(1)
z only4.

Following the initial measurement, there was a dark time window where the atomic state

was not measured or perturbed. Subsequently, a measurement of the atomic state was

performed and the polarisation rotation y(2) gave F̂
(2)
z . Conditional spin squeezing is

obtained when

〈(y(2) − y(1))2〉 < 〈(y(1))2〉 (9.54)

In order to perform unconditional spin squeezing, a feedback signal has to be applied

to reorient the atomic state. This was performed during the dark time window, where an

external magnetic field was applied to the atomic ensemble, to rotate the atomic spin po-

larisation such that F̂
(2)
z = 0. This was verified by performing a subsequent measurement

of the atomic state to confirm that y(2) = 0.

The important component in the QND spin squeezing experiment is the estimation of

the atomic spin state by averaging away noise in the polarisation rotation signal. Technical

noise and quantum noise of the probe field are the main noise sources which contribute to

the variance in the polarisation rotation signal.

Optimal filters can be derived and used to obtain the best estimate of the polarisation

rotation signal. However, in the experiment of Geremia et al. [332], the signal was obtained

by averaging within a limited time window. The fundamental limitation to the amount

of observed squeezing was due to shot noise. In principle, one could average for a longer

period of time to obtain better estimates of the signal, however, decays such as atom cloud

diffusion and atomic spin state decoherence, limit the measurement time. We would like

to work in the regime where these decays are slow and whereby the primary limitation is

due to that of the spontaneous emission-limited decay time of the atomic spin state.

Stockton et al. [113, 335] modelled the measured photo-current by an Ornstein-

Uhlenbeck damped diffusion process, given by

ytdt =
√
MFzdt+ dWt (9.55)

where M is the measurement strength (i.e. the rate at which information on the stochastic

value Fz is obtained) and dWt is a delta-correlated Gaussian white noise term with zero

mean (i.e. a Wiener increment). A filter equation can be derived to obtain an optimal

estimate for Fz in Eq. (9.55). The resulting variance of the Fz estimate at time t = τ is

given by [113, 335]

(∆2Fz)|t=τ =
(∆2Fz)|t=0

1 + 4Mτ(∆2Fz)|t=0
(9.56)

where (∆2Fz)|t=0 is the variance of Fz at time t = 0. Experimentally this is obtained from

the initial measurement of y(1).

The degree of squeezing is defined as the ratio of the variance of Fz|t=τ to the variance

4This is assuming that the tensor terms are negligible, with a sufficiently far detuned probe beam. As
will be discussed in the following section, this is not the case.
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of Fz|t=0, given by

W =
(∆2F̂z)|t=τ
(∆2F̂z)|t=0

(9.57)

=
1

1 + 4Mτ(∆2Fz)|t=0
(9.58)

Ref. [335] defines the square of the signal-to-noise ratio (SNR2) as

SNR2 = 4Mτ(∆2F̂z)|t=0 (9.59)

= OD
f

4

τ

τss
(9.60)

where the spin squeezing time τss has been introduced. OD is the optical depth, f refers to

the hyperfine ground state level and SNR is the signal-to-noise ratio of the measurement

of Fz. A formal definition of the spin squeezing rate is the rate at which photons are

scattered by the atomic medium, given by

1

τss
=

2Iσ0

h̄ω




γ

4

∑

f ′

α
(1)
ff ′

α0∆ff ′





2

(9.61)

where I is the intensity of the probe beam, σ0 is the scattering cross section and α0 is the

polarizability constant given by

α0 =
3ǫ0h̄γλ

3
0

8π2
(9.62)

In order for the squeezing to be large, we would like the value of W to be as small

as possible. This is only possible by maximising the SNR and this involves either one or

both of the following:

• Attaining large optical depths. Experimentally, this involves attaining a compressed

atomic cloud with high atomic densities.

• Minimising the spin squeezing time τss. This can be achieved either by increasing the

intensity and/or decrease the detuning of the probe beam. However, to minimise

the tensor term, the probe beam has to be far detuned. In such an instance, a

corresponding quadratic increase in the intensity of the probe beam is required to

maintain the same τss.

Decay times

We have thus far identified the important parameters to achieve spin squeezing - the optical

depth (OD) and the spin squeezing time (τss). Experimentally, many decay mechanisms

are present in a cold atom cloud. These include decays due to atomic cloud diffusion

and spontaneous emission decay. The atomic cloud diffusion can be minimised by cooling

the atom cloud using schemes such as polarisation gradient cooling and by optimising the

diameter of the probe beam with respect to the cloud size.

We now consider the decoherence of the spin state [336] due to the spontaneous emis-

sion. The decoherence model of the spin state F̂z assumes an exponential decay [330],
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given by
d

dt
〈F̂z〉

∣
∣
∣
t=0

= −〈F̂z〉
τsc

∣
∣
∣
t=0

(9.63)

where here we consider the decay of a macroscopic atom spin vector in the z direction.

The decay time τsc for Cs-133 is given by [330]

τsc =
Iσ0

2h̄ω

( γ2

γ2 + 4∆2
45

(0.16|ǫ0|2 + 0.04|ǫ−|2) +
γ2

γ2 + 4∆2
44

(0.83|ǫ0|2 + 0.41|ǫ−|2)

+
γ2

γ2 + 4∆2
43

(0.6|ǫ−|2)
)

(9.64)

where |ǫ+|2 = |ǫ−|2 = 0 and |ǫ+|2 = 1 for parallel spin and polarisation. |ǫ+|2 = |ǫ−|2 = 0.5

and |ǫ+|2 = 0 for orthognal spin and polarisation.

The decay time can be measured by preparing the atomic state to have a macroscopic

spin in the x-direction and then adiabatically rotating the spin vector to the z or y-

directions. The decay times corresponding to parallel or orthogonally oriented polarisation

and spin vectors can then be measured.

9.5 Tensor influence

The PhD thesis of J. K. Stockton [330] discusses in great detail the effects of technical

noise sources and tensor terms on the QND measurement. Ref. [330] claims that earlier

published spin squeezing results [332, 111] were erroneous. The results of Refs. [332, 111]

will not be discussed in this thesis. However we will focus this section to discussing the

effects of the tensor terms. Discussions of technical noise sources as well as measurements

of the tensor effect are presented in Chapter 10.

The tensor terms scaling with α(2) in the interaction Hamiltonian (given in Eq. (9.37)),

couples the various spin polarisation components with the polarisation Stokes operators, in

a non-linear manner. The tensor effects are present in a multi-level alkali atomic system

such as 87Rb and 133Cs (see Eq. 9.36), the only exception being atomic systems with

f = 1/2. The tensor terms scale according to ∝ 1/∆2
ff ′ . Therefore, for small detuning

from resonance, the tensor terms are significant [330]. Consequently in this regime, the

evolution of the probe beam polarisation is non-linear as it is not solely dependent on the

vector term α(1).

The tensor terms could be reduced in a multi-level atomic system by increasing the

detuning of the probe beam. However, in order to maintain the same measurement time

(Eq. 9.61), a quadratic increase in the intensity of the probe beam is required. Due

to technical considerations, a quadratic increase in the intensity is often not possible

(e.g. limited laser power, saturation of detectors). As a result, a compromise between

minimising the tensor effect whilst ensuring a short measurement time (less than the

decay time of the cold atom cloud and the coherent spin state τsc) is required.

9.6 Conclusion and future directions

9.6.1 Conclusion

We have presented the basic formalism to describe spin squeezing. The QND-type spin

squeezing via averaging scheme was described. Second order tensor terms in the interaction
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Hamiltonian, which could affect the QND measurement, was discussed. The relevant

measurement times, and associated decays are also described.

9.6.2 Future directions

The models presented have assumed homogeneous atomic samples interacting with plane

wave optical fields. In an experiment, the cold atom cloud typically has a Gaussian atomic

density profile. The optical fields have Gaussian modes. Therefore, the decay time of the

collective atomic spin state τsc varies across the transverse plane of the atomic sample.

Modifications to theory, taking into account the spatial profile of both the atom cloud and

optical fields, are currently being conducted by O. Crisafulli5.

5personal communication



Chapter 10

Towards spin squeezing

Remember that not getting what you want is sometimes a wonderful stroke of luck.

- Dalai Lama

10.1 Introduction

In the previous chapter, the theoretical formalism for spin squeezing was established.

The important experimental parameters to optimise for spin squeezing are the optical

depth, and the probe beam detuning and intensity. High optical depths are required to

achieve maximum spin squeezing. Large detuning and high probe beam intensities are

necessary for minimising tensor effects whilst maintaining short measurement times τss.

In this chapter, we present the details of the experimental scheme towards generating spin

squeezing1.

In order to minimise decoherence and achieve high optical depths, confined and dense

atomic samples are a requisite. There are many means to produce confinement of atoms.

The most basic technique involves the confinement of atoms in a vapour cell, with the

introduction of a buffer gas to increase the transit time of atoms within an interaction

region. However, the atomic sample in a vapour cell is limited by its optical depth.

Therefore more sophisticated techniques have to be used to cool and trap atoms [67, 68,

69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]. In a magneto-optical trap (MOT), cold

atom clouds are produced with typical atom numbers of 107 at µK temperatures. Cold

atoms produced in a MOT offer high optical depths and reduced ground state dephasing,

due to the significantly reduced mean free path of atoms. After MOTs were invented, the

production of Bose-Einstein condensates (BECs) [92, 93, 337, 338, 339] was accomplished.

A BEC is essentially a cloud of ultra-cold atoms all prepared in the same ground state.

BECs have high phase space density and and have minimal decoherence due to their ultra-

cold temperatures. With all these atomic samples on offer, the question remains, “What

is the ideal atomic source for spin squeezing?”.

1Some of the work in this chapter was performed at the California Institute of Technology (Caltech),
under the supervision of Prof. H. Mabuchi. The Caltech experiment was built by J. K. Stockton during
the course of his PhD research. Details of the experimental setup can be obtained from the thesis of
J. K. Stockton [330]. Whilst spin squeezing was not observed during the research of this thesis, the
experimental setup towards this goal was further developed, together with A. E. Miller. My specific role
in the Caltech experiment involved improving the optical depth of the cold atom cloud and reducing the
classical noise for the polarimeter measurement. The experiment at the ANU was developed by the author
and N. Robins and D. Oblak.

165
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For atoms in a vapour cell, atoms are constantly moving in and out of the probe beam

interaction region. The resulting change of atomic state population and loss of atomic

coherence affects the QND measurement. A BEC is an ideal source of trapped atoms as

the BEC has the largest optical depth. However, BECs are complicated to produce and

therefore a ‘middle ground’ was adopted. We decided to use cold atoms produced in a

MOT. Cold atoms in a MOT have long lived coherent spin states and high optical depths.

MOTs are also relatively inexpensive and less time-consuming to produce.

Typical optical depths attainable for cold atoms in a MOT are between 20-30 [69,

73]. However, this is insufficient for observing spin squeezing, as simulations have shown

that the atomic spin projection noise is below that of shot noise, under a large range

of experimental parameters [330]. A fiducial value for observing spin squeezing under

reasonable experimental conditions is an optical depth of at least 100 [330]. Therefore,

more sophisticated laser cooling and trapping techniques have to be employed to increase

the atomic density of cold atoms. The various schemes explored during the course of this

thesis included transient compression schemes [340] where the transient tightening of the

trapping potential increases the atomic density of cold atoms. This yielded an increase in

optical depths by up to 50% but was insufficient for the observation of spin squeezing. A

spatial dark spontaneous force trap (dark-SPOT) [341] was implemented and this yielded

optical depths close to the fiducial value of 100. The experimental setup for yielding high

optical depths is described in detail in this chapter. We conclude this chapter by presenting

results on tensor effects and suggesting future directions towards observing spin squeezing.

10.2 Magneto-optical trap theory

The main force involved in the cooling of atoms is due to radiation pressure. When a

photon scatters off an atom, a recoil force is applied on the atom, in the opposing direction

to that of the scattered photon, via the conservation of momentum. Although the atom

recoil force is quite small (since typical atom velocity changes are 1 cm/s), by tuning the

laser to be on-resonance, the atom scatters strongly (typically 107 photons).

In order to cool and trap a thermal cloud of atoms, velocity dependent photon scatter-

ing was used. Let us detune the laser frequency, νL, to the red of the atomic transition (for

example, by one atomic linewidth). An atom counter-propagating with the laser beam

will experience the laser at a frequency of (1 + v
c )νL. A co-propagating atom with the

laser beam will experience a laser frequency of (1− v
c )νL. Therefore the scattering rate for

an atom counter-propagating with the laser beam is higher than that of a co-propagating

atom. In order to perform velocity-dependent damping of atomic motion in all spatial

axes, counter-propagating laser beams were applied along 3 orthogonal axes. Experimen-

tally, the atoms will be pumped into an alternate ground state (since alkali atoms have

multiple hyperfine levels). Therefore in order to maintain the population of atoms in

the relevant ground state hyperfine level, for cooling, a repump beam is applied on the

alternate ground state level. The resulting cooled atoms are termed “optical molasses”.

However, in this scheme, the atoms are cooled and trapped at various locations, without

any form of spatial confinement. The atoms could also diffuse since there is no position-

dependent force. In order to introduce position dependence into the cooling and trapping

process, an inhomogeneous magnetic field is introduced, as shown in Fig. 10.1. The idea

is to introduce Zeeman shifts to the energy levels of the atoms, which varies with spatial

direction (see Fig. 10.1 (A)). The laser beams are appropriately circularly polarised in

order to interact with the relevant shifted Zeeman sublevels (see Fig. 10.1 (B)). This results
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Figure 10.1: (A) Illustration showing the inhomogeneous magnetic potential applied across the

central trapping region of the MOT. The atom on the left will scatter strongly from the σ+ light,

whilst the atom on the right will scatter strongly from the σ− light. The result is a force pushing

the atoms to the centre of the trap. At the centre of the trap, there is zero effective force acting on

the atom, thus confining the atom. (B) Atomic energy levels as a function of magnetic potential,

which varies spatially.

in position-dependent scattering which ‘pushes’ atoms towards the zero of the magnetic

potential. The combined use of inhomogeneous magnetic fields with optical fields to trap

and cool atoms is termed a magneto-optical trap (MOT).

10.3 Magneto-optical trap experiment

This section details the magneto-optical trap (MOT) experiments. The MOTs at the

Australian National University (ANU) and the California Institute of Technology (Caltech)

have similar layouts. The main difference lies in the atomic source, where

• Rubidium-87 (87Rb) is used in the ANU experiment, and

• Cesium-133 (133Cs) is used in the Caltech experiment.

10.3.1 Lasers

ANU experiment

The trapping and cooling lasers used in the ANU experiment were derived from two

separate extended-cavity diode lasers (ECDLs). In our early experiments, we used home-

built ECDLs. However, these lasers tended to be insufficient in power and mechanical

stability was constantly an issue. Thereafter we replaced our home-built ECDLs with

commercial ECDLs from Toptica Systems.

Our two diode lasers were at 780 nm and each had a maximum output power of 90 mW.

The lasers were frequency stabilised via Pound-Drever-Hall (PDH) locking, whose error

signal was derived via frequency modulation (FM) on saturated absorption spectroscopy

signals (see Chapter 6). The trapping laser was locked and frequency shifted using acousto-

optic modulators (AOMs) to the red of the 2 → 3′ transition of 87Rb, by 14 MHz. The

repump beam was also locked and frequency shifted to the 1 → 2′ transition of 87Rb. The
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trapping beam had a total power of 80 mW and the repump beam had a total power of

5 mW.

The trapping and repump beams were combined and overlapped using a polarising

beam splitter. The beams were then expanded and collimated to a diameter of 25 mm.

Subsequently, the beams were split equally in power, into three orthogonal directions - two

in the horizontal plane and one in the vertical axis. The beams were circularly polarised

using quarter wave-plates and intersected orthogonally in the central MOT region. The

MOT beams were then retro-reflected and a second set of quarter wave-plates ensured the

reflected beam polarisation had the correct circular polarisation.

The probe laser used was derived from a Ti:Sapphire laser, described in Chapter 6.

Caltech experiment

The Caltech experiment used home-made ECDLs. The trapping and repump lasers were

locked to the 4 → 5′ and 3 → 4′ transitions of 133Cs, respectively. The locking was

performed via FM modulation on saturated absorption spectroscopy signals. The trapping

ECDL served as a seed to an amplified system which gave approximately 100 mW of optical

power at 852 nm.

The trapping beam was then passed through AOMs to detune the laser frequency to

the red of the 4 → 5′ transition of 133Cs. The AOMs also provided intensity control on

the laser. The repump laser was passed through a mechanical shutter which served to

turn the beam on or off. The power of the repump beam was adjusted manually via a

waveplate and polarising beam-splitter configuration. Both repump and trapping beams

were combined and expanded to a diameter of approximately 25 mm. Subsequently, the

beams were split equally in power and sent into the MOT region along three orthogonal

directions - two in the vertical plane and one along the horizontal axis.

The probe laser used was derived from a commercial ECDL (Vortex from New Focus).

The probe laser was left unlocked and was seeded into an amplified system to provide up to

30 mW of optical power at 852 nm. A beat-note measurement of the probe laser frequency

with respect to the locked trapping laser was also set up to provide a frequency reference

for the probe laser. The probe laser was sent through an AOM for intensity control and

was subsequently coupled into a polarisation-maintaining fibre. The fibre output was

situated close to the glass cell of the MOT to minimise the free-space propagation of the

probe beam.

10.3.2 Quadrupole magnetic coils

The quadrupole magnetic coils consisted of a pair of anti-Helmholtz coils. The coils were

driven by a DC current power supply with typically 3 A, giving a magnetic field gradient

of 10 G/cm. The zero of the magnetic field potential was aligned to be at the centre of

the crossing of all MOT laser beams. Upon turning off the current supply to the coils,

the magnetic field decay was measured to be up to 100 µs for the ANU experiment2. The

Caltech experiment had a measured magnetic field decay of up to 500 µs.

2The magnetic field decay was measured using a single-loop coil, placed next to the quadrupole coils.
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10.3.3 Coils for the cancellation of background fields

Three pairs of Helmholtz coils were used to cancel out background magnetic fields. The

Helmholtz coil pairs were arranged in all three orthogonal axes and were driven indepen-

dently by three separate DC current supplies. Each coil had approximately 20 windings

of wire and could provide up to 0.5 G magnetic fields. We used the cold atom cloud in

the MOT to perform coarse tuning of background magnetic field cancellation. When the

quadrupole fields of the MOT were turned off, the cold atom cloud expanded. In the

presence of a stray magnetic field, the expansion of the MOT is non-isotropic and follows

the directionality of the field. By continuously switching the MOT coils on and off, and

tuning the current to the three pairs of Helmholtz coils, the cold atom cloud expansion

can be made isotropic. When such a state is achieved, the background DC fields in the

central MOT region are reasonably-well cancelled.

10.3.4 Vacuum chamber

The vacuum chamber is a setup consisting of a glass cell and an ion pump. In the ANU

experiment, a Rubidium dispenser was attached inside the vacuum chamber, as a supply

of Rubidium atoms. The glass cell was pointing in the horizontal axis with significant

optical beam access from all directions. A schematic diagram of the ANU MOT apparatus

is shown in Fig. 10.2.

10.4 Optical depth

Now that the experimental details of the MOT setup have been described, we proceed

to discuss the optimisation of the cold atom cloud optical depth. We also describe the

various techniques used to measure optical depth (or atomic density).

10.4.1 Definition

A measure of the absorption of a light beam in a medium is the optical depth (OD), given

by

OD = σ0nL (10.1)

where σ0 is the on-resonance scattering cross-section, n is the atomic density and L is the

length of the sample. The optical depth can also be obtained by taking the logarithm

of the ratio of the output to input intensities of a probe beam propagating through the

absorbing medium, given by
I

I0
= exp(−OD) (10.2)

where I is the output beam intensity and I0 is the input beam intensity. There are various

means to measure the optical depth of a system. The various techniques are described in

the following subsections.

10.4.2 Fluorescence measurement

When near-resonant light is illuminating an atomic sample, photons are absorbed and

scattered. By performing a fluorescence measurement (i.e. measuring the intensity of the

scattered light), the total number of atoms can be inferred. The total power of scattered
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Figure 10.2: Schematic diagram of the MOT apparatus. The Ti:Sapphire laser beam was split

into two parts, one which was used as a probe beam in the MOT experiment, whilst the other

was used in the optical squeezing experiment [8]. The legend on the top left corner of the diagram

describes the various optical and electronic components.

photons is given by

P = Nh̄ω0γ
I

2Isat

1 + 4
(

∆
γ

)2
+ I

Isat

(10.3)

where I is the total intensity of the beams illuminating the atomic sample, Isat is the

saturation intensity for the atomic transition, ∆ is the detuning of the laser beams from

resonance3, γ is the spontaneous emission rate and N is the total number of atoms inter-

acting with the light.

The atom is treated as a dipole which scatters isotropically in all directions. Therefore,

all the scattered photons have to be collected in order to measure the total scattered power.

However, this is typically not feasible in an experiment, and thus often a certain solid angle

3We assume here that the detuning is on the order of the atomic linewidth of the transition.
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of the scattered light is collected. Experimentally this is achieved by using a high numerical

aperture optic to collect and image the light onto a photo-detector. The measured light

power is given by

Pc =
AlensP

4πr2
(10.4)

where Alens is the area of the collecting lens, r is the distance from the scattering medium

to the lens and P is the total power of the scattered light.

We can now infer the total power of the scattered light and therefore further infer

the total number of interacting atoms. The spatial extent of the scattered light can be

measured using a CCD camera. Therefore an estimate of the atomic density can be

obtained and consequently the optical depth. The fluorescence technique is usually used

to obtain an order estimate of the atomic density. More direct and precise measurements

of atomic density can be obtained using absorption spectroscopy measurements which is

described in the following subsection.

Fig. 10.3 shows a typical atomic density distribution of a 87Rb cloud in a MOT (i.e. the

column density), obtained from fluorescence imaging. The transverse plane is the spatial

extent of the cold atom cloud whilst the vertical axis gives the number of atoms.
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Figure 10.3: Fluorescence image of a cold 87Rb cloud in a MOT. The total number of atoms is

∼ 107.

We can also characterise the loading time of the cloud in a MOT by measuring the

total number of atoms collected in the MOT, as a function of time. The increase in the

fluorescence signal during the loading period is shown in Fig. 10.4. The experimental curve

was fit using the expression, given by

N = N0

(

1 − exp

(

− t

τ

))

(10.5)

where τ is the time taken to load the MOT until it reaches a steady state atom number

N0. τ is also a measure of the mean time an atom will remain in the MOT before it gets

ejected from the MOT region via collisions with another atom. The atom cloud in the

MOT reaches a steady state in its atom number when the number of atoms leaving and
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entering the MOT are equal.
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Figure 10.4: Fluorescence signal measured during the loading of 87Rb atoms in a MOT. The

theoretical fit yielded a loading time of τ = 1.45 s.

10.4.3 Absorption measurement

We now describe a more accurate means of measuring the optical depth (or atomic density)

of an atomic medium. This technique involves measuring the absorption profile of a non-

saturating probe beam, which is scanned in its frequency. A standard model for absorption

in an atomic medium was then used to fit with the experimental data. As will be shown,

the theoretical fits agree very well with the experimental data and this technique yields

accurate values for the optical depth4.

We need to determine the scattering cross-section for an atom illuminated by a laser

beam of intensity I with detuning ∆ff ′ from the resonance line f → f ′. We assume that

the atoms are populated in the ground state f and the total scattered power is the sum

of the scattered powers from all the atomic transitions, given by

Ptot =
∑

f ′

Pff ′ (10.6)

=
∑

f ′

h̄ω0γ

I
2Iff ′

1 + 4
(

∆ff ′

γ

)2
+ I

Iff ′

(10.7)

where f , f ′ are the ground and excited state hyperfine levels, respectively. Iff ′ =

Isat,lin/Sff ′ is the saturation intensity for the f → f ′ transition. Isat,lin is the satura-

tion intensity assuming linearly polarised light and the transition strength for the f → f ′

transition is given by Sff ′ , which can be computed from the Clebsch-Gordon coefficients5.

The scattered power is related to the scattering cross-section via Ptot = σ0I. For probe

4This technique gives many data points as a function of detuning from atomic resonance. Note that
the signal-to-noise ratio of measurements around the edges of the absorption profile are higher than that
on-resonance. One can therefore be confident that a fit which replicates exactly both the shape and widths
of the absorption profile gives a reliable estimate of the optical depth of the medium.

5The numbers for the alkali atoms were obtained from D. A. Steck (http://steck.us/alkalidata/).



§10.5 Optimisation of the MOT OD 173

beam intensities below saturation, I ≪ Iff ′ , the scattering cross-section is given by

σ0 =
∑

f ′

h̄ω0γ

2Iff ′

(

1 + 4
(

∆ff ′

γ

)2
) (10.8)

This equation gives the scattering cross-section for stationary atoms. However, atoms

are often non-stationary. In the absorption measurement of an atom cloud in a MOT,

the background gas contribution has to be considered. Therefore, the line broadening

due to the Doppler effect of the background gas, has to be included into the absorption

model. The background gas scattering cross-section is obtained by the convolution of the

scattering cross-section of stationary atoms, with a Voight lineshape, given by

σ0,bg =
∑

f ′

h̄ω0γ

2Iff ′

∫ ∞

−∞
dt

exp(−t2)
√
π

(

1 + 4
(

∆ff ′−αDt

γ

)2
) (10.9)

where αD = 2πv/λ is the parameter which takes into account the mean velocity v of the

atoms in the background gas. In the limit where the temperature is sufficiently high such

that the Doppler broadening is much greater than that of the atomic linewidth, Eq. (10.9)

simplifies to that of a gaussian function given by

σ0,bg =
∑

f ′

h̄ω0γ

2Iff ′

γ
√
π

2αD
exp

(

−∆2
ff ′

α2
D

)2

(10.10)

Therefore the total optical depth for a measurement of atoms in a MOT, including the

background gas contribution, is given by

OD = σ0nL+ σ0,bgnbgLbg (10.11)

where n and L are the atomic densities and length of the cold atom cloud in the MOT. nbg

and Lbg are the atomic densities and ‘effective length’ of the background gas surround-

ing the cold atom cloud. The typical experimental errors for the OD measurement via

absorption are ±15 %.

10.5 Optimisation of the MOT OD

As discussed in Chapter 9, maximising the optical depth maximises the spin squeezing.

Therefore, this section describes in detail the procedures in optimising the optical depth

of a cold atom cloud in a MOT.

In order to align the laser beams for the MOT, we first apertured the trapping and

repump beams. The apertured repump and trapping beams were then aligned such that

they overlapped each other. The beams were then sent in three orthogonal directions into

the central MOT region, with the frequencies of the lasers scanning across the atomic

transitions. The power in the beams was adjusted to be distributed equally across all

three beams. At this stage, the vacuum chamber was filled with Rb (or Cs) atoms and

the fluorescence due to the laser beams was observed. The laser beams were then aligned

such that they were orthogonal and intersected at the centre of the MOT. Once the

alignment was satisfactory, the beams were then expanded and the lasers were locked to
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the appropriate transitions and the magnetic coils were turned on. A small cold atom cloud

should appear at the centre of the MOT. The waveplates were then adjusted slightly and

the alignment of the beams were optimised qualitatively by observing the fluorescence of

the MOT using a CCD camera. Once the cold atom cloud was significant in size (a couple

of mm in size and had a strong fluorescence signal), we proceeded to be more systematic

and quantitative in optimising the MOT beam alignment.

A probe beam scanning in frequency across the 4 → 3′, 4′, 5′ transitions of 133Cs was

applied to the centre of the cold atom cloud. Detection of the absorption signal of the

probe beam gave a quantitative measure for optimising the optical depth of the cold atom

cloud. At this stage, the alignment of the MOT beams and the strength of the magnetic

field gradient were all optimised to minimise the 4 → 3′ transmission. The transmission

attainable for the 4 → 3′ transition for a cold atom cloud is typically ∼ 15 − 20 %, as

shown in Fig. 10.5. The 4 → 4′, 5′ transitions should at this stage be at the dark level of

the detector, indicating full absorption at those transitions.
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Figure 10.5: (i) Experimental absorption profile of a probe beam propagating through the central

region of a cold atom cloud in a MOT. The theoretical fit to the absorption profile is shown as curve

(ii) whilst the background gas absorption fit is shown as curve (iii). The theoretical fit yielded an

optical depth of 19.6 with a background gas optical depth of 0.79. The probe beam had a power of

0.3 µW, beam diameter of 1 mm and was measured 1 ms after turning off MOT. The probe beam

was swept in frequency across the 4 → 3′, 4′, 5′ transitions of 133Cs. The scan rate was 100 Hz.

The probe beam causes scattering of atoms in the cloud and therefore it is important

that the probe beam has a low intensity yet can provide a significant signal-to-noise ratio

for the absorption measurement. The model for optical depth also assumes intensities

below saturation and thus for reliable estimates of the optical depth, the probe beam has

to be less than the saturation intensity of the atoms. Fig. 10.6 shows the effect of the

probe beam on the optical depth measurements for the (A) cold atom cloud and (B) the

background gas.

Fig. 10.6 shows that to minimise scattering loss, the probe beam power power should

be less than 1 µW, for a 1 mm diameter beam (which is less than the saturation intensity

for 133Cs, given by 1.6 mW/cm2). We typically performed the optical depth measurements

with probe powers of 0.3 µW and obtained sufficient signal-to-noise ratio for the absorption
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Figure 10.6: Optical depth as a function of probe beam power for the (A) cold atom cloud and

(B) background gas. The 133Cs cloud was measured 1 ms after turning off the MOT. The probe

beam had a beam diameter of 1 mm and was scanned in frequency across the 133Cs, 4 → 3′, 4′, 5′

transitions, with a scan rate of 100 Hz.

signal.

An important requirement of the MOT is its reliability in producing stable shot-to-

shot cold atom clouds with minimal variations in its optical depth. This is particularly

important in the spin squeezing experiment as the statistics of the spin squeezing have to

be obtained over many shot-to-shot measurements of the cold atom cloud. We measured

the variability of the optical depth of the 133Cs cloud by performing shot-to-shot optical

depth measurements, shown in Fig. 10.7.
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Figure 10.7: Shot-to-shot measurements of the optical depth of a 133Cs cold atom cloud in a

MOT. The measurement was performed 1 ms after turning off the MOT, with probe power of

0.3 µW, probe beam diameter 1 mm. The probe beam was scanned in frequency across the 133Cs,

4 → 3′, 4′, 5′ transitions, with a scan rate of (A) 100 Hz and (B) 200 Hz. The red dashed line

shows the average optical depth, with the green dashed curve showing the standard deviation of

the measurement.

The standard deviation in optical depth is between 10-15 % from a shot-to-shot mea-

surement. This is an important factor to take into account when performing measurements

for spin squeezing. Improvements in the shot-to-shot reliability for the MOT is therefore



176 Towards spin squeezing

crucial. The reliability could potentially be accomplished by improving the alignment of

the MOT beams and cancelling ambient magnetic fields.

10.6 Transient compression

In order to further increase the optical depth of cold atoms in a MOT, more sophisticated

compression schemes were utilised. Various groups [342, 340] have reported an increase in

atomic density via transient compression of cold atoms in a MOT. Transient compression

essentially involves tightening the confining potential of the atoms in a MOT.

We implemented a transient compression scheme which involved increasing the mag-

netic field gradient from 10 G/cm to 20 G/cm, in four time steps of 5 ms. The trapping

laser was frequency detuned from -15 MHz to -25 MHz to reduce scattering loss. The re-

sulting probe beam absorption profile following transient compression is shown in Fig. 10.8.
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Figure 10.8: (i) Experimental probe beam absorption profile for a compressed MOT. The optical

depth was measured 1 ms after turning off the MOT, with probe power of 0.3 µW and beam

diameter of 1 mm. The probe beam was scanned in frequency across the 133Cs, 4 → 3′, 4′, 5′

transitions, with a scan rate of 100 Hz. (ii) The theoretical fit gives a cold atom cloud optical

depth of 30.7 and the (iii) background optical depth is 0.133.

The increase in the OD of cold atoms in a transient compressed MOT is approximately

50 % relative to that of a normal MOT. However, the OD increase is insufficient and we

decided instead to adopt an alternate compression scheme.

10.7 Dark-SPOT

In the Caltech MOT experiment, atoms were cooled on the red-detuned frequency of the
133Cs 4 → 5′ transition, whilst a repump beam was applied on the 3 → 4′ transition to

repopulate atoms into the F = 4 ground state. The number of atoms being scattered out

of and cooled into the MOT region will reach an equilibrium and this limits the density

achievable in a standard MOT. In order to increase the density of the atoms further, we

implemented a dark-spontaneous force trap (dark-SPOT) [341, 343].
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The dark-SPOT involved applying a repump beam with a dark central region (i.e. a

doughnut-shaped beam). A depump beam was also applied to this central dark region,

tuned to the 4 → 4′ transition. The result of this was a central region in the cold atom

cloud which was optically pumped into the F = 3 ground state. Since the cooling beams

were tuned to the red of the 4 → 5′ transition, atoms in the central region were unaffected

by the cooling beams. Therefore, scattering in the central region of the atom cloud was

reduced significantly, but the temperature of the atoms was increased. The atoms in this

region were continuously loaded with atoms from the surrounding trapped and cooled

‘ring’ MOT region, resulting in an increase in the density of atoms in the dark region.

We now describe the OD optimisation procedure for atoms in the dark-SPOT. First,

the optical depth of the atoms in a standard MOT was optimised. The MOT beams were

then reduced in size via aperturing. The depump beam, tuned on the 4 → 4′ transition,

was aligned such that it “blew away” the atoms in the reduced MOT6. Once this was

accomplished, the MOT beams were expanded to the original sizes and a dark spot was

inserted into the central region of the repump beam. The probe laser was applied in the

central region of the dark-SPOT and scanned in frequency across the 133Cs 3 → 2′, 3′, 4′

transitions (since the atoms were now populated in the F = 3 ground state). The optical

depth of the atom cloud in the dark-SPOT was optimised by aligning the location of the

dark-spot in the repump beam, as well as varying the power and alignment of the depump

beam7. The resulting probe beam absorption profile for atoms in a dark-SPOT is shown

in Fig. 10.9.
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Figure 10.9: (i) Experimental probe beam absorption profile. The optical depth was measured

0.5 ms after turning off the dark-SPOT. The probe beam had a power of 0.3 µW, beam diameter of

1 mm and was scanned in frequency across the 133Cs, 3 → 2′, 3′, 4′ transitions with a 150 Hz scan

rate. The (ii) theoretical fit yielded a cold atom cloud optical depth of 93 and a (iii) background

optical depth of 0.31.

6The depump beam may have to increased in power to observe this effect.
7A simulation of the absorption profile for high optical depths was performed and the fine tuning of the

depump beam power and alignment was performed to attain this. The ‘key’ feature to observe was the
width and depth of the absorption dips. The wider and deeper the absorption dips, the higher the optical
depth.
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We observed that cold atoms in the dark-SPOT gave a factor of 4.5 improvement in the

optical depth of the cold atoms, relative to the standard MOT. However, the population

of the atoms were in the F = 3 ground state and needed to be repopulated into the F = 4

ground state, for spin squeezing experiments. Following the preparation of cold atoms in a

dark-SPOT (for 5 s), the dark-SPOT was then turned off and a repump beam was applied

for 2.5 ms. The repump beam served to repump the atoms back into the F = 4 ground

state. The measured probe absorption profile is shown in Fig. 10.10.
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Figure 10.10: (i) Experimental probe beam absorption profile. The optical depth was measured

0.5 ms after turning off the dark-SPOT. The probe beam had a power of 0.3 µW, beam diameter of

1 mm and was scanned in frequency across the 133Cs, 4 → 3′, 4′, 5′ transitions with a 150 Hz scan

rate. The (ii) theoretical fit yielded a cold atom cloud optical depth of 65 and a (iii) background

optical depth of 0.30.

The optical depth after pumping into the F = 4 ground state was 65. This was an

improvement of about a factor of 3 over cold atoms produced in a MOT. However, the

lifetime of the cold atom cloud was significantly reduced from 15 ms (for the MOT) to

5 ms (for the dark-SPOT). This was measured by applying the probe beam at different

times following the turning off of the trapping and cooling beams and observing the decay

of the absorption signal.

10.8 Larmor precession measurements

Larmor precession measurements were performed on the cold atoms. For Cesium-133, the

Larmor precession frequency to magnetic field ratio is given by 350 kHz/G.

In order to measure the Larmor signal, the cold atom cloud was spin polarised in the

x-direction8. The spin polarisation was then adiabatically rotated to the z-direction, by

smoothly varying the strengths of the magnetic fields in the appropriate directions. The

rotation rate had to be less than the Larmor precession rate in order to maintain adia-

baticity. Following this, a magnetic field was applied in the x-axis, causing the spin vector

8The spin polarisation was prepared by applying a circularly polarised optical pumping beam on the
4 → 5′ transition, propagating in the x-direction. A magnetic field was also applied in the x-direction.
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to precess around the magnetic field. Due to the vector-Hamiltonian interaction between

the spin vector and an x-linearly polarised probe field (propagating in the z-direction),

a Faraday rotation was induced on the probe beam polarisation. The Faraday rotation

signal (due to the Larmor precession) corresponding to a field strength of 29.68 mG is

shown in Fig. 10.11.
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Figure 10.11: Polarisation rotation signal due to the Larmor precession in a cold 133Cs atom

cloud, prepared in a MOT. The Larmor precession frequency was 10 kHz with an applied magnetic

field strength of 29.68 mG. The probe power was 1 mW, probe beam diameter 1 mm and detuned

by 2 GHz to the blue of the 133Cs, 4 → 5′ transition. The optical depth was 30.

The amplitude of the Larmor precession signal was also used to optimise the prepa-

ration of the spin polarisation. By re-cycling the Larmor precession measurement, the

intensity and alignment of the optical pumping beam relative to the applied magnetic

field can be optimised. Also, the optical depth can be optimised by maximisation of the

Larmor precession signal.

The Larmor precession signal decays due to a few factors, which we describe as follows

• Atomic diffusion decay. The atom cloud begins to diffuse when the MOT (or dark-

SPOT) is turned off. Therefore, the atomic density decreases over time. It is impor-

tant that the decay due to atomic diffusion is small over the measurement time for

spin squeezing. This can be accomplished by reducing the temperature of the cold

atom cloud and minimising all ambient magnetic fields.

• The tensor term. Since the tensor term couples the spin and polarisation vectors in

a non-linear manner, misalignment between the spin and polarisation vectors affects

the decay rate of the Larmor signal. The decay rate can thus be used as a measure of

the alignment between the polarisation of the probe beam and the spin polarisation

vector.

• Spontaneous emission. Ideally, the decay of the Larmor signal should be limited by

spontaneous emission, given in Eq. (9.64).
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10.9 Tensor measurements

The tensor terms discussed in Chapter 9 were undesirable for our experiment. We therefore

performed near-resonant probe measurements on the collective spin vector, to characterise

the effects due to the tensor term. The measurement involved initially preparing a col-

lective spin vector in the x-direction and then adiabatically rotating the vector in the

x-z plane or the x-y plane, to induce a misalignment between the spin vector and the

x-polarised probe beam (propagating in the z-direction). A holding field was applied in

the direction of the spin vector. The polarisation oscillations on the probe beam, due to

the holding field, were measured and the results are shown in Fig. 10.12
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Figure 10.12: (A) Illustration showing the various orientation of collective spin vectors. The

probe beam was propagating in the z-direction, with linear polarisation in the x-axis. A cold atom

cloud was prepared in a MOT, for 5 s. Following this, the MOT was turned off and a collective spin

direction was induced in the atoms via the application of a magnetic field and an optical pumping

beam, both in the x-direction. The optical pumping beam was locked on the 3 → 4′ transition. The

spin vector was then adiabatically rotated by polar θ and azimuthal φ angles. The magnetic holding

field was applied throughout the measurement time. (B) The measured trajectories corresponding

to various spin vector orientation. The various coloured curves correspond to a φ angle of (i) 15◦,

(ii) 0◦ and (iii) −15◦. The probe power was 11 mW, beam diameter of 1 mm and had a frequency

detuning of 1.1 GHz. The optical pumping beam had a power of 17 µW and was applied for 4 ms.

The holding field corresponded to a Larmor frequency of 250 kHz. The optical depth of the cold

atom cloud was 35.

The effect on the oscillations due to the tensor terms have been reproduced by solving
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the single-atom master equation, in Ref. [330]. In particular, a few effects due to the

tensor term should be present - (i) the oscillation phase is fixed irrespective of when the

probe beam is applied, (ii) the oscillation decay rate is faster than the spin vector decay

and (iii) the oscillation amplitude increases relative to the spin vector offset for decreasing

detuning.

The results in Fig. 10.12 show that for various angles of φ (assuming the same θ angle),

the oscillations have different phases and amplitudes. However, the oscillation phase does

not vary with the time that the probe beam is applied. The oscillations for the different

φ values decay at different rates (e.g. the oscillation in curve (ii) decays faster than that

in curve (i)) and decay faster than the atomic spin state decay rate (which is due to

spontaneous emission).

The phases and amplitudes for different values of θ (assuming the same φ angle) do

not vary. This suggests that the effects from the misalignment about the azimuthal angle

φ is more significant than that about the polar angle θ. Since the tensor effect is critically

dependent on the alignment between the spin and polarisation vectors, the misalignment

result of Fig. 10.12 shows that tensor effects are present at a probe detuning of 1.1 GHz.

Also, it was observed that the oscillation amplitude increases relative to the spin vector

offset for decreasing detuning, further verifying the presence of tensor effects.

As a consequence, the probe detuning has to be made larger. Simulations in Ref. [330]

have shown that a detuning of approximately 2 GHz would reduce the tensor effects

significantly. However, ODs of at least 100 is required in order to observe spin squeezing

[330].

10.10 Conclusion and future directions

10.10.1 Conclusion

We have described the magneto-optical trap developed towards the production of cold

atoms with high ODs. Cold atoms with high optical depth (OD ∼ 65) have been produced.

It is expected that improvements on the OD (possibly up to 100 on the 4 → F ′) can be

achieved with slight modification and further optimisation of the system. In spite of

the achievement of high ODs, the lifetime of the cold atoms were short (∼ 5 ms). The

cold atom cloud (produced in a dark-SPOT) lifetime can be further extended via the

implementation of polarisation gradient cooling. We also examined the decay times and

the effects due to the tensor term.

10.10.2 Future directions

In order to observe spin squeezing, the following ameliorations to the experiment have to

be implemented.

• Extension of the lifetime of the cold atom cloud. The dark-SPOT scheme yields

significant improvement in optical depth. However, the lifetime of the cold atoms

produced via the dark-SPOT are short (less than 5 ms). Therefore, the temperature

of the atoms produced by the dark-SPOT have to be reduced further in order to

extend the decay time due to atomic diffusion. A reduction in temperature can be

achieved via the implementation of the polarisation gradient cooling (PGC) scheme

[344, 345, 346].
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• Optimisation of probe beam intensity and detuning. The motivation is to minimise

the tensor effect whilst ensuring a short measurement time τss.

• If the probe polarisation and atomic spin vectors are not aligned (i.e. 〈F̂y〉 and 〈F̂z〉
are non-zero), then oscillations on the 〈Ŝx〉 will occur, due to the holding field. The

alignment between the probe polarisation and atomic spin vector can be optimised

by minimising the oscillation signal. However, despite this improved alignment, the

noise properties of the spin and polarisation operators will still be affected by the

tensor terms, if the probe detuning is not large enough.

• Background magnetic field and field-gradient cancellation. Larmor signals due to

background magnetic fields can be observed using the cold atom cloud and therefore

minimised.

• Reliable shot-to-shot optical depth for the cold atom cloud. The stability of the

atom cloud for a shot-to-shot measurement is crucial as deviations in optical depth

affects each QND trajectory measurement. The dark-SPOT and MOT alignment

have to be optimised such that the cold atom cloud produced is stable and does not

“jitter” from shot-to-shot.



Chapter 11

Conclusions

The future directions for the research of this thesis are discussed at the conclusion of each

chapter. This chapter summarises the results of the work in this thesis.

11.1 Quantum multi-mode optical imaging

We have shown that split detection is non-optimal for the detection of optical beam dis-

placement and tilt. For a TEM00 beam, the split detector is at best 80 % efficient. We

proposed an optimum displacement measurement scheme based on homodyne detection.

By using an optimally-tailored local oscillator beam, small displacement signals can be

extracted with 100 % efficiency. We have also shown that by mixing the input beam with

a squeezed beam in the appropriate mode, we can significantly improve the sensitivity of

the spatial homodyne detection.

We identified the conjugate observables - position, x, and momentum, p, of an opti-

cal beam. Correspondingly, an x-p entanglement scheme was proposed, which generates

macroscopic entanglement between optical beams. A form of spatial entanglement which

has applications in split-detection quantum imaging was also explored. We then studied

the generation of spatial Stokes entanglement, analogous to that of polarisation Stokes

entanglement.

An application of quantum multi-mode optical imaging to increasing the storage capac-

ities of optical memories was proposed. The optical memory scheme involved performing

longitudinal and transverse spatial phase coding of continuous-wave optical beams. The

total number of encodable phase values scales with the power of the read-out optical beam.

Squeezed light could be used as the read-out beam to enhance the resolution of the dif-

ferent phase values and as a result, further increase the storage capacity of optical disks

compared to a coherent state read-out beam.

11.2 Light-atom ensemble quantum interactions

We present a quantum mechanical 4-level atomic model to describe PSR quantum effects

and show that the squeezing term is overwhelmed by atomic noise terms in the situation

of a thermal vapour. Our experimental results show the non-observation of squeezing, and

the observation of excess noise in the output field spectrum at all sideband frequencies. In

spite of this, the results of Ries et al. [177] and recent experiments conducted in the group

of A. I. Lvovsky1 have demonstrated the observation of squeezing via PSR. Therefore, more

1personal communication
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comprehensive theoretical modelling and experimental studies are necessary to understand

the exact conditions under which PSR squeezing can be generated or become overwhelmed

by excess noise.

Our measurements of delayed light via EIT, in vapour cells, show significant amounts of

excess noise, hitherto unpredicted by published theoretical modelling [223, 286, 299, 182].

The latest theoretical modelling of Hétet et al. [305] showed that the presence of ground

state population shuffling terms do indeed give excess noise to the output probe field,

via a phase-insensitive amplification of vacuum noise. Recent experiments have shown

that excess noise may indeed be reduced [297, 298, 307, 308] by the use of buffer gas and

cold atom systems. The differing experimental and theoretical results should serve as a

motivation for more complete theoretical models to identify the origins of the noise.

We studied the light-atom ensemble coupling via the Faraday interaction. A QND

measurement of the atomic spin state, with the application of feedback, can generate spin

squeezed atoms. However, second order tensor terms in the interaction Hamiltonian, which

could affect the QND measurement were discussed. We then described the spin squeezing

experiment developed towards the production of cold atoms with high optical depths, as

well as examined the decay times and the effects due to the tensor term.
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Circuit diagrams
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Figure A.1: Electronic circuit diagram for the optical detector.
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Figure A.2: Electronic circuit diagram for the locking servo.
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Figure A.3: Electronic circuit diagram for the high voltage amplifier.
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Appendix B

Mechanical diagrams

Figure B.1: Mechanical diagram for the inner cell holder unit.
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190 Mechanical diagrams

Figure B.2: Mechanical diagram for the main body of the cell holder.

Figure B.3: Mechanical diagram for the V-blocks for mounting the main body of cell holder.
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[84] T. Udem, R. Holzwarth, and T. W. Hänsch, Optical frequency metrology, Nature

416, 233 (2002).

[85] S. Bize, P. Laurent, M. Abgrall, H. Marion, I. Maksimovic, L. Cacciapuoti,

J. Grünert, C. Vian, F. Pereira dos Santos, P. Rosenbusch, P. Lemonde, G. Santarelli,

P. Wolf, A. Clairon, A. Luiten, M. Tobar, and C. Salomon, Cold atom clocks and

applications, Journal of Physics B Atomic Molecular Physics 38, 449 (2005).

[86] S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth, P. Krüger, J. Schmied-
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[183] M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and

P. K. Lam, Quantum Study of Information Delay in Electromagnetically Induced

Transparency, Phys. Rev. Lett. 97, 183601 (2006).

[184] J. L. Sørensen, J. Hald, and E. S. Polzik, Quantum Noise of an Atomic Spin

Polarization Measurement, Physical Review Letters 80, 3487 (1998).

[185] G. Santarelli, P. Laurent, P. Lemonde, A. Clairon, A. G. Mann, S. Chang, A. N.

Luiten, and C. Salomon, Quantum Projection Noise in an Atomic Fountain: A High

Stability Cesium Frequency Standard, Physical Review Letters 82, 4619 (1999).

[186] D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D.

Jost, C. Langer, and D. J. Wineland, Toward Heisenberg-Limited Spectroscopy with

Multiparticle Entangled States, Science 304, 1476 (2004).

[187] J. C. Maxwell, A dynamical theory of the electromagnetic field, Philosophical Trans-

actions of the Royal Society of London 155, 459 (1864).

[188] R. Loudon, ‘The quantum theory of light’, Oxford University Press, 2000.

[189] K. Nemoto and S. L. Braunstein, Quantum coherence: myth or fact?, Physics

Letters A 333, 378 (2004).

[190] D. F. Walls and G. J. Milburn, ‘Quantum Optics’, Springer-Verlag, 1994.

[191] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, Measurement of the

Wigner distribution and the density matrix of a light mode using optical homodyne

tomography - Application to squeezed states and the vacuum, Physical Review Let-

ters 70, 1244 (1993).

[192] W. P. Bowen, ‘Experiments towards a quantum information network with squeezed

light and entanglement’, PhD thesis, Australian National University, Canberra,

ACT, Australia, 2003.

[193] P. K. Lam, ‘Application of quantum electro-optic control and squeezed light’, PhD

thesis, Australian National University, Canberra, ACT, Australia, 1998.

[194] A. E. Siegman, ‘Lasers’, University Science Books, 1986.

[195] B. C. Buchler, ‘Electro-optic control of quantum measurements’, PhD thesis, Aus-

tralian National University, Canberra, ACT, Australia, 2001.

[196] J. Schwarzenbach, ‘Essentials of Control’, Addison Wesley Longman, 1996.

[197] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley,

and H. Ward, Laser phase and frequency stabilization using an optical resonator,

Applied Physics B: Lasers and Optics 31, 97 (1983).

[198] S. Arnon, Use of Satellite Natural Vibrations to Improve Performance of Free-Space

Satellite Laser Communication, Applied Optics 37, 5031 (1998).



204 Bibliography

[199] V. V. Nikulin, M. Bouzoubaa, V. A. Skormin, and T. E. Busch, Modeling of an

acousto-optic laser veam steering system intended for satellite communication, Op-

tical Engineering 40, 2208 (2001).

[200] K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, Direct observation of

kinesin stepping by optical trapping interferometry, Nature 365, 721 (1993).

[201] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Entanglement of the orbital angular

momentum states of photons, Nature 412, 313 (2001).

[202] J. Leach, M. J. Padgett, S. M. Barnett, S. Franke-Arnold, and J. Courtial, Measuring

the Orbital Angular Momentum of a Single Photon, Physical Review Letters 88,

257901 (2002).
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[251] L. Lopez, S. Gigan, N. Treps, A. Mâıtre, C. Fabre, and A. Gatti, Multimode squeez-

ing properties of a confocal optical parametric oscillator: Beyond the thin-crystal

approximation, Physical Review A 72, 013806 (2005).

[252] C. J. Foot, ‘Atomic Physics’, Oxford University Press, 2005.

[253] S. R. Amin, C. D. Caldwell, and W. Lichten, Crossed-Beam Spectroscopy of Hy-

drogen: A New Value for the Rydberg Constant, Physical Review Letters 47, 1234

(1981).

[254] C. L. Cesar, D. G. Fried, T. C. Killian, A. D. Polcyn, J. C. Sandberg, I. A. Yu,

T. J. Greytak, D. Kleppner, and J. M. Doyle, Two-Photon Spectroscopy of Trapped

Atomic Hydrogen, Physical Review Letters 77, 255 (1996).

[255] M. Aymar, P. Camus, M. Dieulin, and C. Morillon, Two-photon spectroscopy of

neutral barium: Observations of the highly excited even levels and theoretical analysis

of the J=0 spectrum, Physical Review A 18, 2173 (1978).
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