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Introduction

O
ptical images are very familiar to anyone : they correspond to any light distribution,
that can be recorded onto our retinae or onto a detection device such as the film
or the CCD detector of a camera. A photograph is hence an example of image

intensity measurement.
In order to accurately describe the properties of optical images, the quantum nature

of light must be taken into account, even when the image is formed of a great number of
photons. Indeed, for most light sources, the time of arrival on the photons of the photons
composing the image on the detector is random. This randomness is called quantum fluc-
tuations and inevitably degrades the quality of the detected image, when all other sources
of noise - electronic, mechanical, thermal - have been canceled. This ultimate detection
limit is called the standard quantum noise limit. As a consequence, there exists a funda-
mental bound to the resolution of spatial details within an optical image arising from this
phenomenon, and which can be estimated using quantum mechanics.

Nevertheless, recent progress have been obtained in quantum optics with the simulta-
neous development of stable and reliable laser sources, high quality optics and non-linear
materials. These developments now allow the creation of strong quantum correlations or
even entanglement between light beams. The quantum fluctuations discussed above can
notably be reduced with the generation of the so called squeezed states of light. However,
such results cannot be directly applied to spatial resolution improvement within an optical
image, as these techniques only modify the fluctuations of the entire beam, considered as a
single mode field, and do not selectively improve the detection of local spatial parameters.

In order to account for local detection improvement, additional spatial degrees of free-
dom have to be considered, in order to extend the previous results to the case of multi-mode
quantum optics. This very recent field of research has notably introduced the notions of
local squeezing [Kolobov 99] and quantum imaging [Lugiato02, Kolobov06].

Two regimes can be considered for the multi-mode description of an image. The first
one is the photon-counting regime, for which photons can be detected individually and
images are described in terms of photon number states, i.e. Fock states. Spatial aspects
are usually not considered in this regime, but are still present and have been used to
reconstruct an image using spatial correlations in a two-photon or ”ghost imaging” setup
[Gatti04]. In this thesis, we restrict our analysis to the second regime, termed continuous
variable (CV) regime. It comprises experiments involving bright continuous wave (CW)
and intense pulsed laser beams, for which the number of detected photons per detection
time is large compared to the quantum fluctuations, and a continuous field description is
adapted. The broad variety of multi-mode optical images allows to envision applications
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2 Contents

such as high precision sensors and channels for quantum information. We hence distinguish
two main fields developed in this manuscript where such a description is required in this
regime : image processing - or quantum imaging - and parallel quantum communication.

Let us first introduce the field of image processing and its potential applications. To
each optical measurement performed on an image corresponds a standard quantum noise
limit for the extraction of information about a given spatial parameter. The performance
of photo-detectors and array detectors allow a precise and efficient detection of the local
field, and the Rayleigh criterion [Rayleigh1879], defined relative to the eye performance,
is no longer the ultimate limit. The ultimate detail that can be distinguished is thus
not necessarily the wavelength size anymore, and details below the diffraction limit are
accessible. Moreover, it can be shown, and this is one of the main challenges of this thesis,
that a specific multi-mode beam can be generated in order to reduce the fluctuations on
any image measurement below the standard quantum noise limit. This is of great interest
in ultra-sensitive image measurement for which quantum noise is a limiting factor, for
example in pattern recognition for optical disc read-out [VanDeNes06,1], or nanometer
scale laser beam displacement measurements in gravitational wave detectors [Willke02] or
atomic force microscopes [Putman92].

Let us now present the field of parallel quantum information communication. Quan-
tum information science is a new and rapidly expanding field of research which combines
the techniques developed in quantum optics with those of information science[Europe05].
One of the challenges is to provide quantum information channels to convey the quantum
information. Quantum protocols such as quantum entanglement, quantum cryptography,
dense coding and quantum teleportation are for example related to this issue and have
already been demonstrated in the single-mode regime [Ou92, Silberhorn01,2, Mattle96].
Moreover, it has been shown that parallel channels could coexist in a multi-mode laser
beam, thus ensuring a parallel transfer of quantum information [Caves94]. This field has
not yet been investigated experimentally in the continuous variable regime and its require-
ments are very similar to those of quantum imaging.

This thesis, which was a co-tutelle between the quantum optics groups of the Labora-
toire Kastler Brossel and of the Australian National University, has been undertaken in
the scientific context described above. The work presented in this manuscript has bene-
fited from the expertise of Claude Fabre’s group in image processing, and from the one of
Hans Bachor’s group in quantum communication. This PhD was a natural continuation of
the very close collaboration that already existed between both laboratories and which led
Nicolas Treps to spend some time in Canberra during his PhD and do a Post-Doctorate
there. In particular, the work on the measurement of small beam displacement had already
given high-quality results [Treps02, Treps03]. At this stage, the conjugate observable of
the position of the beam was still to be found. This is what motivated the first part of
my work, in collaboration with M. Hsu, and led first to propose a novel way of measuring
beam displacement, and then to introduce the tilt of the beam as the conjugate variable of
the beam displacement. My first experimental task has hence been to demonstrate similar
results as the one obtained by Nicolas Treps, with a new detection system, and involving
this time simultaneous displacement and tilt of a laser beam. The success of this experi-
ment was made possible at the ANU thanks to the availability of a single-mode squeezed
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light source developed by Ping Koy Lam and Ben Buchler. On the one hand, the seek
to prove the optimality of our detection scheme has led us to investigate for the quan-
tum limits in image processing in a very broad context and to collaborate with Philippe
Réfrégier from the Institut Fresnel de Marseille. This theoretical work was complementing
some results already obtained in image processing with multi-pixel detectors which had
led us to the field of optical data storage. On the other hand, it was very natural to try to
produce entanglement between the two spatial quantum variables that had been exhibited.
I have thus taken part with Mikael Lassen and Jiri Janousek to the elaboration of a double
squeezing source in order to produce entanglement between position and momentum of
laser beams. A study of Optical Parametric Amplification and Second Harmonic Genera-
tion of higher order transverse modes had been necessary prior to the development of the
entanglement setup. Note that most of the theoretical part of my work has been done in
Paris whereas the experimental part has exclusively been performed in Canberra.

In the first chapter of this manuscript, we precisely define optical images and their
quantum properties. We make a precise distinction between single-mode and multi-mode
optical field and present how to selectively measure the information carried by one spatial
mode of the field, either using a homodyne or an array detection. We also present how to
perform measurement beyond the standard quantum noise limit with the use of squeezed
light in an appropriate mode within the incident field.

The second chapter is dedicated to the application of array detection results to high-
density optical data storage [VanDeNes06,1]. We show that more than one bit of informa-
tion can be encoded and read-out per beam width on an optical disc, at a given wavelength
and numerical aperture. We give a brief overview and include in the manuscript two topic-
related articles published during the course of this PhD. The first article investigates the
possibility of implementing an array detector in optical discs systems in order to differ-
entiate complicated patterns diffracted by sub-wavelength details encoded onto the disc.
In the second article, we additionally consider data encoding in the longitudinal phase by
using pits of different heights.

In the third chapter, we introduce parameters that can be imprinted onto the transverse
plane of a laser beam. We notably show that displacement, tilt, waist-size and waist-
position mismatches of a gaussian TEM00 beam are simply related to specific Hermite
Gauss modes. We then define the lowest bound, the standard quantum noise limit, under
which the detection is seriously altered by quantum noise. Finally, we broaden our analysis
to any spatial parameter and tackle the following question : what is the lowest limit
imposed by a given distribution of quantum noise to the accuracy of a measurement of a
transverse parameter, independently of the information processing protocol used for the
information extraction?

The fourth chapter is experimentally oriented and presents how to manipulate single
and multi-mode optical images. Key elements for the implementation of quantum imaging
experiments are presented in the particular case of Hermite Gauss modes. We notably
detail the selective generation, combination, and separation of modes. We then focus on
parametric interaction between several modes in second harmonic generation (SHG) and
optical parametric amplification (OPA) systems. This led to the first generation of squeez-
ing in higher order Hermite Gauss modes.

The last chapter presents two entire setups making use of the concepts introduced
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in the previous chapters. The first experiment deals with the optimal measurement of
displacement and tilt of a TEM00 beam beyond the standard quantum noise limit. This
quantum imaging experiment introduces the notion of position squeezed beam whose dis-
placement measurement can be performed at a nanometer scale. The second one is more
quantum information oriented, and aims at generating entanglement between position and
momentum variables of two laser beams. Such an entanglement is obtained by combining
two position squeezed beams on a 50/50 beam-splitter. This demonstration opens the way
to parallel quantum information communication channels.



CHAPTER 1

Tools for Quantum Imaging

I
n most cases, the light used to carry an optical image comes from ”classical sources”,
such as natural objects, lamps or usual lasers. For any type of detection of this image,
the sensors provide signals in which the useful information contained in the optical

beam is mixed with random noise. The major contribution to this noise generally arises
from technical noise, i.e. mechanical vibrations or thermal noise, and is due to imperfec-
tions in the source, the optical system or the detector. Such sources of noise are termed
”classical” as there is no fundamental limit to their reduction; seismic noise and acoustic
noises can almost be canceled using complex dampening techniques and vacuum chambers
[Robertson02, Bertolini06, Willke02], whereas thermal noise can be reduced using cryo-
genic apparatus[Kuroda99]. Another contribution to the noise originates from the quantum
nature of light, monitored by the random arrival of individual photons on the detection
sensor. Contrarily to technical noise this fundamental noise cannot be reduced by elimi-
nating the defects in the measurement process. In our study, we will always consider that
the main detection noise source is induced by the quantum nature of light, and that all
other sources of noise have been canceled or reduced to a negligible amount of the quantum
fluctuations.

During the detection of such an image, the latter fundamental fluctuations give rise to
a measurement noise whose amplitude is proportional to the square root of the incident
number of photons in the case of a coherent illumination, and which is referred to as
shot noise [Grynberg97]. These fluctuations yield a ”standard quantum noise limit” in the
measurement of very small modifications in the optical image, namely when the noise
becomes of the order of the signal to be extracted. Under these conditions, it is now well-
known that ”non-classical light”, such as squeezed light or sub-Poissonian light, is likely to
reduce quantum fluctuations on a given measurement [Bachor03]. However, if non-classical
light in a single transverse mode is very effective to reduce the noise for a measurement
performed on the total beam [Fabre00], it is of little use for a measurement performed on
an image. One therefore needs ”multi-transverse-mode non-classical light” for our purpose.

In this chapter, we will first determine the precise origin of the quantum noise for a
non trivial detection of the optical field in the transverse plane. Then, we will devote the
second section to a definition of the concept of ”multi-transverse-mode non-classical light”.
And finally, we will focus on the detection devices that can be used from the extraction

5



6 Chapter 1. Tools for Quantum Imaging

of information from an optical image. We will analyze whether and how the quantum
fluctuations can be reduced for each type of detection. With the analysis of the spatial
distribution of this noise, we will single out the precise transverse modes whose fluctuations
are at the origin of this quantum noise, and determine the parameters that have to be
changed in order to reduce this noise.



A. Generalities on optical images 7

A Generalities on optical images

The purpose of this section is to present the notations and approximations compatible with
our quantum optics experiments. They will be used throughout the entire manuscript.

A.1 Image description in the transverse plane

A.1.1 Local electric field operator

Let us consider the general expression of the electric field operator in the Heisenberg
representation ~̂E(~r, z, t) [Cohen87]. Its mean value depends on the time evolution t, on
the position along the propagation axis z, and can vary according to the transverse plane
position ~r. A distribution of such a field in the transverse plane is referred to as an optical
image.

In the work presented in this thesis, we only deal with stationary, linearly polarized,
and quasi-monochromatic fields. These particular restrictions allow the manipulation of
simpler expressions of the field operator which we propose to detail below.

The evolution of a linearly polarized electric field can be described in terms of its
positive frequency part and hermitian conjugate as follows

~̂E(~r, z, t) = ~ε
[
Ê(+)(~r, z, t) + Ê(+)†(~r, z, t)

]
, (1.1)

where ~ε refers to the direction of polarization.
For a quasi-monochromatic field, whose linewidth δω is such that δω ¿ ω0, where ω0

is the optical angular frequency, it can be expanded into

~̂E(~r, z, t) = ~ε
[
Ê(+)(~r, z, t)e−iω0(t− z

c
) + Ê(+)†(~r, z, t)eiω0(t− z

c
)
]
, (1.2)

where e−iω0(t− z
c
) is the carrier for a wave propagating in vacuum along the z axis at

the speed of light c, and Ê(+)(~r, t) is the envelope field operator, which can be rewritten
[Grynberg97]

Ê(+)(~r, z, t) = i

√
~ω0

2ε0c
â(~r, z, t), (1.3)

where â(~r, z, t) is the photon annihilation operator. The proportionality constant with the
envelope field operator has been chosen so that â†(~r, z, t)â(~r, z, t) is homogeneous to a
photon flux, i.e. a number of photons per square meter per second incident at position
(~r,z).

In this thesis, only stationary field evolutions, for which the field variations are slow
compared to the integration time of the detector T , will be considered. Assuming that all
quantities are integrated during the same time interval T by synchronized detectors, we
will thus use the stationary envelope field operator given by

Ê(+)(~r, z) =
1
T

∫ t0+T

t0

Ê(+)(~r, z, t)dt, (1.4)

This quantity does not depend on the starting point of the time integration t0 for a
stationary evolution of the field, and does not explicitly depend on the time evolution. We
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will also use the following integrated annihilation operators

â(~r, z) =

√
1
T

∫ t0+T

t0

â(~r, z, t)dt, (1.5)

where the proportionality constant has this time been chosen so that â†(~r, z)â(~r, z) is
homogeneous to a number of photons per square meter incident at position (~r,z) during
the time interval T .

With these definitions, the stationary envelope can be rewritten in terms of stationary
operators as1

Ê(+)(~r, z) = i

√
~ω0

2ε0cT
â(~r, z). (1.6)

The stationary local photon annihilation operator satisfies the following commutation
relation

[
â(~r, z), â†(~r′, z)

]
= δ(~r − ~r′). (1.7)

Although we consider a stationary evolution of all operators, their detection will give
rise to quantum fluctuations around their mean value. We will thus write the annihilation
operators as [Reynaud92]

â(~r, z) = α(~r, z) + δâ(~r, z), (1.8)

where α(~r, z) = 〈â(~r, z)〉 is a complex number corresponding to the mean value of the
annihilation operator. With these definitions, |α(~r, z)|2 corresponds to the local mean
number of photons N(~r, z). δâ(~r, z) is the quantum fluctuations operator which satisfies
the same commutation relation as the initial annihilation operator, and which has a zero
mean value, i.e. 〈δâ(~r, z)〉 = 0.

A.1.2 Local quadrature operators

The local creation and annihilation operators are non Hermitian, and therefore non mea-
surable. Nevertheless, their real and imaginary parts are Hermitian. They are called the
local amplitude X̂+ and phase X̂− quadrature operators and are defined by2

X̂+(~r, z) = â†(~r, z) + â(~r, z)

= −i

√
2ε0cT

~ω0

[
Ê(+)†(~r, z) + Ê(+)(~r, z)

]
(1.9)

X̂−(~r, z) = i
[
â†(~r, z)− â(~r, z)

]

=
√

2ε0cT

~ω0

[
Ê(+)†(~r, z)− Ê(+)(~r, z)

]
(1.10)

1In the following, when there is no ambiguity on the transverse plane in which the field is considered

(in the detector plane for example), we will omit the z dependence in the expression of all the operators.
2Amplitude and phase quadratures are normalized here to number of photons, but can be defined

relative to field value, with the pre-factor i
q

~ω0
2ε0cT

.
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Positive frequency part of the electric field and local quadratures are thus related by

Ê(+)(~r, z) = i

√
~ω0

2ε0cT

[
X̂+(~r, z) + iX̂−(~r, z)

2

]
(1.11)

An arbitrary quadrature operator X̂θ can also be defined as a linear combination of
amplitude and phase quadratures by

X̂θ(~r, z) = X̂+(~r, z) cos θ + X̂−(~r, z) sin θ

= â†(~r, z)eiθ + â(~r, z)e−iθ (1.12)

X̂θ(~r, z) is a Hermitian operator for all θ values.
The quantum fluctuations on the quadrature θ of the mode are described by the fol-

lowing operator

δX̂θ(~r, z) = δâ†(~r, z)eiθ + δâ(~r, z)e−iθ (1.13)

which has a zero mean value 〈δX̂θ(~r, z)〉 = 0. The variance of this operator is therefore
given by

42 X̂θ(~r, z) = 〈δX̂θ 2
(~r, z)〉 − 〈δX̂θ(~r, z)〉2

= 〈δX̂θ 2
(~r, z)〉 (1.14)

and will be termed local quantum noise on the quadrature θ.
With these definitions, amplitude and phase quadrature operators are measurable,

but do not commute as they are shown to satisfy the following commutation relation
[TrepsPhD01]

[
X̂+(~r, z), X̂−(~r′, z)

]
= 2iδ(~r − ~r′) (1.15)

A.1.3 Local number of photons and local intensity

The local number of photons incident at position (~r,z), detected during the time interval
T , is described by the operator

N̂ (~r, z) = â†(~r, z)â(~r, z) (1.16)

=
2ε0cT

~ω0

[
Ê(+)†(~r, z)Ê(+)(~r, z)

]
(1.17)

The local intensity operator, which corresponds to the local energy density in the optical
image, is given by

Î(~r, z) = ~ω0N̂ (~r, z). (1.18)

Unless it is mentioned explicitly, we will always assume in the following that our de-
tection devices are 100% efficient, i.e. that each photon impinging on the detector gives
birth to an electron. We will thus often identify photocurrent and intensity.



10 Chapter 1. Tools for Quantum Imaging

A.1.4 Total number of photons and beam power

Total number of photons and beam power are not local quantities. They are related to the
integration of the local number of photons and local intensity over the transverse plane,
respectively

N̂(z) =
∫
N̂ (~r, z)d~r, (1.19)

P̂ (z) =
~ω0

T
N̂(z) =

1
T

∫
Î(~r, z)d~r, (1.20)

where we recall that T is the integration time of the detection.

A.2 Transverse modal decomposition of the electromagnetic field

In order to give a field description which is easier to manipulate, we propose to decompose
the field in transverse modes. We will see that such a discretization of the transverse plane
does not involve singularities, but also corresponds more closely to the experiments.

The evolution in free space of the mean value of the electric field is governed by
the electromagnetic wave equation. The homogeneous form of the equation is given by
[Siegman86]

(
∆− 1

c2

∂2

∂t2

)
~E(~r, z, t), (1.21)

where ∆ is the spatial Laplacian operator.
In the case of stationary fields, and in the paraxial approximation3, this equation

becomes

∆⊥E(+)(~r, z) + 2ik
∂

∂z
E(+)(~r, z) = 0, (1.22)

where E(+) is the mean electric field envelope4, ∆⊥ is the transverse Laplacian operator,
and where λ is the optical wavelength. In this case, one can show that the electric field
envelope can be decomposed in a transverse mode basis, where each mode is stable during
its propagation.

Depending on the physical setup which is considered, it is often convenient to use a
particular mode basis of the transverse plane in order to describe the field. The Hermite
Gauss and Laguerre Gauss mode basis are for example particularly adapted to the descrip-
tion of an optical field in a cylindrical cavity [Siegman86]. Indeed, the mode spatial profiles
thereby defined remain unchanged during propagation in such a cavity. They are called
eigen-modes of propagation. For a cavity with ”elliptical” symmetry5, Ince Gauss mode
basis would for instance be preferred [Bandres04]. As for the case of an array detection, a
pixel description of the plane is often used [TrepsPhD01].

3This approximation assumes that the beam extension remains localized around the z axis during its

propagation. We will wave temporarily this approximation in chapter 2.
4It corresponds to the mean value of the envelope field operator defined in Eq. 1.6.
5Such a cavity has two elliptical mirrors whose axes correspond to the same x and y axes.
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A.2.1 Modal creation and annihilation operators

We consider any orthonormal basis of the transverse plane whose modes satisfy the paraxial
wave equation, and are written {un(~r, z)}. The mode profiles are complex in the general
case and must satisfy the following orthonormal and completeness relations

∫ ∞

−∞
u∗n(~r, z)uk(~r, z)d2r = δn,k (1.23)

∑

i

u∗i (z, ~r)ui(z, ~r′) = δ(~r − ~r′) (1.24)

The local annihilation operator defined in Eq.1.5 can be univocally expanded into
[Fabre85]

â(~r, z) =
∑

n

ânun(~r, z) (1.25)

The position dependence of the local annihilation operator is entirely transferred to the
mode profiles un(~r, z). To each vector of the mode basis is associated a creation and an
annihilation operators ân and â†n, which we will refer to as modal creation and annihilation
operators. Note that with this definition, when the basis chosen for the field description is
stable during propagation, i.e. that the mode profiles satisfy the general field propagation
equation, the number of photons in each mode remains unchanged during the propagation
of the field.

The modal creation and annihilation operators satisfy the following commutation re-
lation

[
ân, â†m

]
= δnm (1.26)

where δnm is a Kronecker’s delta function. As a consequence of the transverse plane dis-
cretization, the singularity in position previously shown in Eq. 1.7 has thus been replaced
by a Kronecker delta. The singularity on the operators has been transferred to the com-
pleteness relation of the modes (see Eq. 1.24).

Using the definition of the field envelope given in Eq. 1.6, we obtain the general field
decomposition in transverse modes that will be used as a starting point of nearly all
theoretical sections in this thesis

Ê(+)(~r, z) = i

√
~ω0

2ε0cT

∑
n

ânun(~r, z) (1.27)

A separation of the mean value and quantum fluctuations, similar to the one introduced
in Eq.1.8 can be performed

ân = αn + δân, (1.28)

where 〈ân〉 = αn is the mean value of the annihilation operator of mode un, and δân is the
corresponding quantum fluctuation operator. With these definitions, |αn|2 corresponds to
the total number of photons in the mode un, and will be denoted as Nn.
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A.2.2 Modal quadratures

It is now natural to introduce quadrature operators for each transverse mode. They are
defined similarly to the local quadratures (see Eq.1.9 and 1.10) by6

X̂+
n = â†n + ân (1.29)

X̂−
n = i

(
â†n − ân

)
(1.30)

An arbitrary modal quadrature operator X̂θn
n can also be similarly defined, as in Eq.1.12

by

X̂θn
n = X̂+

n cos θn + X̂−
n sin θn

= â†neiθn + âne−iθn (1.31)

The quantum fluctuations on the quadrature θn of the mode un are described by

δX̂θn
n = δâ†neiθn + δâne−iθn (1.32)

and 〈δX̂θ2

n 〉 will be termed quantum noise in the mode un on the quadrature θn. X̂θn
n is

an observable, and we will show in section 1 C how to measure its mean value and noise
selectively. Moreover, the definition of the phase reference for each mode requires special
attention, and will be developed in section 1 B.2.2.

The modal quadrature operators defined here are measurable, but do not commute, as
shown similarly in Eq. 1.15, and are shown to satisfy the following commutation relation,

[
X̂+

n , X̂−
m

]
= 2iδnm (1.33)

Again, the delta function in position has been replaced by a Kronecker’s delta function.
As a direct consequence, using Cauchy-Schwarz inequality, modal quadrature operators

satisfy the following inequality relation7

42 X̂+
n 42 X̂−

n ≥ 1 (1.35)

It shows that precise simultaneous determination of the modal amplitude and phase
quadratures of a light beam is not possible. Electromagnetic fields that satisfy the equality
in Eq. 1.35 are termed minimum uncertainty states. The parameter used to characterize
how close a state is from a minimum uncertainty state is called the purity P8.

The manipulation of the balance of the Heisenberg inequality relation 1.35, i.e. en-
hancing the measurement precision of one quadrature at the cost of the other, is termed
squeezing, and will be studied in section 1 A.3.3.

6Note that X̂+
n and X̂−

n are somehow abusively defined defined as ”amplitude” and ”phase” quadratures

as they only correspond to the real and imaginary part of the annihilation operator when the mean field

is real, as explained in section 1 B.2.2.
7Although the expression given in Eq. 1.35 is always valid, taking into account the possibility of cor-

relations between the quadratures yields a more general expression of the Heisenberg inequality given

by

42 X̂+
n 42 X̂−

n − 1

4
〈X̂+

n X̂−
n + X̂−

n X̂+
n 〉2 ≥ 1. (1.34)

8For a pure state, i.e. a minimum uncertainty state, this value equals 1, and the state is termed pure,

whereas for mixed states, P < 1. We will come back on the expression of the purity in the case of Gaussian

states in section 1 A.3.
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A.2.3 Number of photons and intensity in a mode

The number of photons in mode n, detected during the interval T is described by the
operator

N̂n = â†nân (1.36)

Its mean value, fluctuations and noise power are respectively described by

〈N̂n〉 = Nn (1.37)

δN̂n = αn

(
δâ†n + δân

)
=

√
NnδX̂+

n (1.38)

〈δN̂2
n〉 = Nn〈δX̂+2

n 〉 (1.39)

These definitions are directly transposable to the optical power present in each mode,
defined by P̂n = ~ω0

T N̂n.

A.2.4 Description relative to the mean field

In order to manipulate expressions as simple as possible, we will often choose the transverse
basis so that its first vector - denoted u0(~r, z) - identifies with the mean field profile, i.e.

u0(~r, z) =
〈Ê(+)(~r, z)〉
|〈Ê(+)(~r, z)〉| (1.40)

In this case, the mean value of the local electric field operator can simply be described by9

〈Ê(+)(~r, z)〉 = i

√
~ω0

2ε0cT
α0u0(~r, z), (1.41)

where α0 and u0(~r, z) are complex numbers in the general case. α0 is defined such as
|α0|2 = N , where N corresponds to the total number of photons detected in the mean
field during the time interval T . α0 can thus be written α0 =

√
Neiθα0 . Without loss of

generality, by defining all phases relative to the one of the mean field, we can write θα0 = 0,
and α0 simplifies into α0 =

√
N . Nevertheless, the mean field profile is still complex in

the general case, and we write u0(~r, z) = |u0(~r, z)|eiθ0(~r,z). We therefore allow non-planar
wavefront, as the phase profile of the mean field depends on the transverse position ~r. The
mean values of amplitude and phase quadratures of the mean field simplify into

〈X̂+
0 (~r, z)〉 =

√
Nu0(~r, z) (1.42)

〈X̂−
0 (~r, z)〉 = 0, (1.43)

The profile of the transverse mode u0 is thus exactly following the mean field ampli-
tude quadrature along the propagation. This definition is of particular importance, as the
quadratures of all the transverse modes are defined relative to the amplitude quadrature
of the mean field, as will be explained in section 1 B.2.2.

9We will show a more complete description relative to the mean field by defining a mean field basis in

section 1 B.2.2.
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A.2.5 Changing the transverse basis

It is often useful to introduce at least two different transverse basis and change from one
to another in order to describe as simply as possible the entire evolution of the field.
For instance, it can be convenient to use one set of transverse modes to describe the
propagation of the beam, and another one for the detection.

Let us consider two different basis of the transverse plane {un}, and {vn}, and their
corresponding annihilation operators ân and b̂n. We want to deduce the field operator
description in the basis {vn}, i.e. the intensity and noise in each transverse mode, from
the operators given in the basis {un}. As the field dependence on the position along the
propagation axis is of no relevance here for this description, we will omit it.

The field is fully described in both transverse basis by

Ê(+)(~r) = i

√
~ω0

2ε0cT

∑
n

b̂nvn(~r) = i

√
~ω0

2ε0cT

∑
n

ânun(~r) (1.44)

We define the complex coefficient Γk,n as the overlap integral over the transverse plane
between un and v∗k

Γk,n =
∫ ∞

−∞
un(~r)v∗k(~r)d

2r (1.45)

Multiplying Eq. 1.44 by v∗k(~r) and integrating over the transverse plane yields

∑
n

b̂n

∫
vn(~r)v∗k(~r)d

2r =
∑

n

ân

∫
un(~r)v∗k(~r)d

2r (1.46)

Using now the orthonormality relation defined in Eq. 1.23) and the previous definition of
Γk,n, we can show that the final annihilation operators b̂n are related to the initial ones
ân by the following relation

b̂k =
∑

n

ânΓk,n (1.47)

We can now relate δX̂+
v,k, the fluctuations in the amplitude quadrature of the mode vk,

to quadrature fluctuations in the other basis. Using Eq. 1.32, and by defining Ψk,n such
that Γk,n = |Γk,n|e−iΨk,n , we get

δX̂+
v,k =

∑
n

|Γk,n|δX̂Ψk,n
u,n (1.48)

The general expression of the noise in this mode is thus given by

〈δX̂+2

v,k〉 =
∑

n

|Γk,n|2〈δX̂
Ψ2

k,n
u,n 〉+

∑

n 6=m

|Γk,n||Γk,m|〈δX̂Ψk,n
u,n δX̂

Ψk,m
u,m 〉 (1.49)

This general expression is difficult to use in practice and we will only be interested here
in the particular case of a non correlated field in the basis {un}, when the expressions of
un and vn are real, for which Γk,n is also real. In this case, the following correspondence
between the quantum noise can be written

〈δX̂+
v,k〉 =

∑
n

〈δX̂+2

u,n〉Γ2
k,n. (1.50)

This relation will notably be useful to deduce how the squeezing for a single mode is
distributed when one uses a description of the field in another basis.
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A.2.6 The Hermite-Gauss basis

We introduce here the mathematical formalism in order to describe the properties of the
transverse basis that will be widely used throughout the thesis, namely the Hermite-Gauss
basis [Siegman86].

The Hermite-Gauss basis is commonly used to describe the transverse distribution of
optical fields propagating in a medium of cylindrical symmetry, typically an optical cavity.
The cylindrical symmetry axis, which usually identifies with the beam propagation axis
z, and two particular orthogonal transverse direction, often horizontal and vertical axis x

and y, are usually chosen to give a complete description of the field.
Hermite-Gauss modes, denoted TEMnm, are solutions of the paraxial field propagation

equation, and are therefore limited to the description of beams whose propagation direction
remains within a small angle with respect to the z axis. Their expression is composed of
the Hermite polynomials Hn

10 multiplied by a Gaussian function.
Their general normalized expression is

TEMnm(x, y, z) =
Cnm

w(z)
Hn

(√
2x

w(z)

)
Hm

(√
2y

w(z)

)
e
− (x2+y2)

w(z)2 e
ik

(x2+y2)
2R(z) e−i(n+m+1)φG(z)(1.53)

where we have introduced

Cnm =
1√

π2n+m+1n!m!
(1.54)

zR =
πw2

0

λ
(1.55)

R(z) = z +
z2

zR
(1.56)

w(z) = w0

√
1 +

(
z

zR

)2

(1.57)

φG(z) = arctan

(
z

zR

)
(1.58)

where λ is the wavelength, w0 is the beam waist, zR is the beam Rayleigh range, R(z) is the
radius of curvature, and φG(z) is the Gouy phase shift for the fundamental mode, which
will play a particularly important role in the following. Note that a planar wave-front is
obtained only in the waist plane (z = 0).

The quantity w(z) is independent of n and m, but does not correspond to the beam
radius. Indeed, the spatial extension of the modes increases with the order of the mode.
A TEMnm mode has n and m zeros on the x and y axis, and therefore n + 1 and m + 1
lobes along the same axis. The position of the furthest lobe away from the beam center is

approximately at a distance (x, y) = (
√

n + 1
2w(z),

√
m + 1

2w(z)). As shown by Eq.1.53,

10We give below two interesting relations defining the Hermite polynomials. First, their definition relative

to the error function:

dn+1

dzn+1
Erf(z) =

2

π
(−1)nHn(z)e−z2

, (1.51)

and secondly their definition using a recurrence relation:

H0(z) = 1, H1(z) = 2z, and Hn+1(z) = 2zHn(z)− 2nHn−1(z). (1.52)
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Figure 1.1: First three Hermite-Gauss modes. a) TEM00, b) TEM10 and c) TEM20 normal-
ized one dimensional representation in the transverse plane. Transverse axes are expressed
in waist units. d)TEM00, e) TEM10 and f) TEM20 two-dimensional representation in the
transverse plane.

spatial modes of different order - n and m - can be present on each transverse direc-
tion. However, in our case of interest, we will consider the variations of the field along a
single transverse axis, namely x. For the sake of simplicity, we will thus denote the one
dimensional Hermite Gauss modes by un(x, z), unless it is specified differently. Moreover,
knowing that the dependence along the y axis will always be a simple Gaussian in our
experiments, these modes will be related to the two dimensional ones by the relation

un(x, z) =
∫ ∞

−∞
TEMn0(x, y, z)dy (1.59)

We will be primarily concerned with the first three one-dimensional Hermite Gauss modes
which are represented on Fig.1.1. We see that the spatial extension along the transverse
axis increases with the order of the mode, as discussed above. Their expressions are

u0(x, z) =
(

2
πw2(z)

) 1
4

e
− x2

w2(z) e
i kx2

2R(z) e−iφG(z)

u1(x, z) =
(

2
πw2(z)

) 1
4 2x

w(z)
e
− x2

w2(z) e
i kx2

2R(z) e−2iφG(z)

u2(x, z) =
(

2
πw2(z)

) 1
4 1√

2

(
4x2

w2(z)
− 1

)
e
− x2

w2(z) e
i kx2

2R(z) e−i3φG(z)

(1.60)

The complete expressions are heavy to manipulate, and we will therefore omit the phase
factors when they are not relevant, for example for the description of single mode fields.
The Gouy phase shift will however be of great importance in order to understand the
properties of multi-mode beams.

Other relations satisfied by Hermite polynomials can be found in reference [Abramowitz72].
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A.3 Gaussian quantum states of light

In this thesis, we limit ourselves to the analysis of the quantum states relevant to our
quantum optics experiments in the continuous variable (CV) regime11: Gaussian quantum
states12. They include coherent and squeezed states. We will also discuss the importance of
entangled states which are obtained by the combination of two squeezed states in quadra-
ture. Before presenting these optical states, we propose to introduce a way to describe
their noise properties: the covariance matrix.

A.3.1 Covariance matrix

A Gaussian state is fully described by its first and second order momentum. The first order
momentum simply corresponds to the complex mean value of the field, its amplitude and
phase. We will therefore concentrate on the second order momentum, which notably deter-
mines the squeezing and entanglement properties of a state, and which can be described by
a 2Nx2N symmetric real matrix called the covariance matrix13 Γ [Walls95, LauratPhD04].

Let us first consider the single mode case, N = 1, for which the covariance matrix is
written

Γ =

(
〈δX̂+2〉 〈δX̂+δX̂−〉S

〈δX̂+δX̂−〉S 〈δX̂−2〉

)
(1.61)

where we introduced the symmetrized notation

〈δX̂+δX̂−〉S =
1
2
〈δX̂+δX̂− + δX̂−δX̂+〉 (1.62)

The covariance matrix describes all the noise properties of the single mode state: noise
on amplitude and phase quadratures, 〈δX̂+2〉 and 〈δX̂−2〉, and noise correlations between
both quadratures 〈δX̂+δX̂−〉S . Its determinant is given by

det(Γ) = 〈δX̂+2〉〈δX̂−2〉 − 〈δX̂+δX̂−〉2S ≥ 1 (1.63)

where we have recognized the general Heisenberg inequality given in Eq. 1.34.
Still in the case of Gaussian states, the purity, already introduced in section 1 A.1.2, can

be shown to be related to the determinant of the covariance matrix by: P = 1/
√

det(Γ)14.
For a minimum uncertainty state for which the equality in Eq. 1.34 is fulfilled, the de-
terminant of the covariance matrix equals 1, and P = 1, i.e. the state is pure. For other
states, Eq. 1.63 shows that P < 1.

Considering now a gaussian continuous bi-partite state, the covariance matrix is a 4x4
matrix whose general expression is given by

Γ =




〈δX̂+2

x 〉 〈δX̂+
x δX̂−

x 〉S 〈δX̂+
x δX̂+

y 〉S 〈δX̂+
x δX̂−

y 〉S
〈δX̂+

x δX̂−
x 〉S 〈δX̂−2

x 〉 〈δX̂+
x δX̂−

y 〉S 〈δX̂−
x δX̂−

y 〉S
〈δX̂+

x δX̂+
y 〉S 〈δX̂+

x δX̂−
y 〉S 〈δX̂+2

y 〉 〈δX̂+
y δX̂−

y 〉S
〈δX̂+

x δX̂−
y 〉S 〈δX̂−

x δX̂−
y 〉S 〈δX̂+

y δX̂−
y 〉S 〈δX̂−2

y 〉


 , (1.64)

11This regime corresponds to large photon flux, and is to be opposed to the photon counting regime.
12Quantum optics is however not limited to the study of Gaussian states. The production of non-

Gaussian states is now a hot field of research. One achievement is for example the generation of

optical states with negative Wigner function, aiming at producing optical Schrödinger cat states

[Ourjoumtsev06, Neergaard-Nielsen06].
13This matrix is sometimes also called correlation matrix.
14Note that this expression can be proved using the most general definition of the purity with the trace

of the square of the density matrix ρ : P = 1/Trρ2.
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where x and y respectively refer to the first and second mode, and where each coefficient
corresponds to the correlation between two variables among δX̂+

x , δX̂−
x , δX̂+

y and δX̂−
y .

We used symmetrized notations similarly to the one presented in Eq. 1.62. Note that in
Eq. 1.64, the two 2x2 diagonal blocks correspond to the covariance matrix of individual
modes as in Eq. 1.61, and that the anti-diagonal 2x2 blocks correspond to the correlations
between the two modes.

A.3.2 Coherent states

Let us first comment on a very specific quantum state : the vacuum state. This state must
satisfy the Heisenberg inequality, and therefore present quantum fluctuations although
its mean photon number is zero. Every mode component of a vacuum state has identical
fluctuations along all quadratures, i.e.

〈δX̂θ2
n

n 〉 = 1, ∀n, ∀θn. (1.65)

These noise properties set a reference for fluctuations and are called the standard quantum
noise limit. We will often abusively term it the quantum noise limit (QNL) in the following.

A coherent state is then defined as a classical field on which are added vacuum fluctu-
ations. Such states have been introduced by R. Glauber in 1965 [Glauber65], and describe
very well the properties of a stable laser output beam15.

Adopting a corpuscular description of the beam, made of photons - here thought as
grains of light - the QNL is often called the shot noise limit, in reference to the noise that
would arise for example from sand grains impinging on a metal board.

R. Glauber showed that the photons were randomly ordered in time in a coherent beam,
and that their temporal distribution was Poissonian [Glauber65]. We can also add here
that photons are additionally randomly ordered in the transverse plane of the beam, and
that their spatial distribution is defined by the amplitude of transverse mode of interest16.

Let us briefly present the consequences of these quantum fluctuations on the intensity
measurement of a coherent beam17. Considering the detection of N photons in the beam,
and assuming a perfect detection of the entire field, the intensity signal corresponds to
the mean beam power 〈N̂〉, whereas the noise in the mean field corresponds to the shot

noise
√
〈δN̂2〉, the signal-to-noise ratio (SNR) thus equals

SNR =
〈N̂〉√
〈δN̂2〉

=
√

N (1.66)

where we have used the expression of the noise on the number of photons given in Eq.
1.39 transposed here to the coherent mean field mode : 〈δN̂2〉 = N〈X̂+2〉 = N . The noise
power is thus equal to the signal. The

√
N factor shown in Eq. 1.66 is characteristic of the

shot noise. In our continuous variable quantum experiments, this factor is typically of the
order of 107 − 10818.

A convenient representation of the quantum noise is given by the superposition of
an fluctuations area to a classical field19. The classical field is represented in the Fresnel

15This statement assumes that the phase diffusion of the laser output is negligible.
16This distribution can have any profile, as we will see nearly everywhere in this thesis.
17Note that we dedicate a full section(see section 1C) to the detection of optical images.
18This value is obtained for a beam power of 1 mW, and an integration time of 1 µs.
19This representation is often called ”the ball on stick picture”.
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plane by a vector whose norm defines the amplitude and whose angle to the horizontal
axis defines its phase. The quantum fluctuations generate a displacement of the extremity
of this vector within a zone of the Fresnel plane. The distance from the mean value to the
contour of this zone represents the variance of the noise for a given quadrature.

In the case of a coherent field, this contour is a circle, as represented in Fig. 1.2a).

X
-

X
+

X
+

a) b)X
-

Figure 1.2: Gaussian quantum states of light. Single mode states: a) a coherent state, and
b) an amplitude squeezed state.

A.3.3 Squeezed states

Even if the Heisenberg inequality introduced in Eq. 1.35 defines a minimum value to the
product of the variance of two conjugated quadratures, it does not impose any restriction
to the value of individual variances. It is therefore possible to produce states for which
the variance of one quadrature is reduced below the standard quantum noise limit, at the
cost of increasing the variance of the conjugate quadrature. It is not restricted to minimal
uncertainty states. Such a state is termed squeezed20, and have already been produced using
many non-linear physical systems [SQZ87], such as four-wave mixing, optical parametric
amplifier, optical fiber, cold atomic vapors. The first demonstration has been done by
Slusher et al. in 1985, using four wave mixing in a sodium vapor [Slusher85] .

As for the need of this thesis, we will focus on the production of squeezed light by
parametric down-conversion, which was first achieved by Wu et al. in 1986 [Wu86]. More
recently, squeezed noise power variances of -7 dB [Lam99, Suzuki06], and even -9.5 dB
[Furusawa07], at sideband frequencies down to sub-kHz frequencies [McKenzie04] and up
to the GHz regime [Senior07] have been demonstrated. Note that the squeezed optical
mode was limited until recently to the TEM00 mode, and that we will present in section
4C the first generation of squeezed light in higher order Hermite Gauss modes.

The fluctuations of squeezed states are represented by an ellipse in the diagram de-
scribed in the previous section, as shown in Fig. 1.2b). We have chosen the example of an
amplitude squeezed state, for which a corpuscular image can be given : it corresponds to
a beam whose photons are ordered more regularly in time than in the coherent case. The
photon distribution is in this case sub-Poissonian. The influence of loss as a decoherence
process on such a beam appears clearly . Loss corresponds to randomly taking photons

20The term squeezed state, strictly speaking, is reserved to free propagating quantum states. It has been

shown that the use of a feedback loop could reduce the fluctuations in one quadrature of the in-loop field

without increasing the fluctuations in the other. Such a state is called squashed [Buchler99, Wiseman99].
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out of the beam, and rapidly shapes the initial distribution to a Poissonian one. More
formally, the effect of any losses can be modeled by a partially reflecting beam-splitter, of
transmission η, which couples vacuum fluctuations in the input field, as shown in Fig. 1.3.
The fluctuations δX̂θ

n,out on any quadrature θ of mode n within the output field is related

Input

beam

η

Output

beam

Vacuum

Fluctuations

Loss

Figure 1.3: Modelisation of loss on a quantum state using a partially reflecting beam-
splitter of transmission η. The noise properties of the output state are modified by the
vacuum fluctuations entering via the empty port of the beam-splitter.

to the one of the input field δX̂θ
n,in by

δX̂θ
n,out =

√
ηδX̂θ

n,in +
√

1− ηδX̂θ
n,vac (1.67)

where δX̂θ
n,vac corresponds to vacuum fluctuations21. Using Eq. 1.65, the noise power of

the output quadrature thus becomes

〈δX̂θ2

n,out〉 = η〈δX̂θ2

n,in〉+ 1− η (1.68)

This relation, as well as Eq. 1.50 giving the distribution of the noise when the basis of
description is changed, will be most useful to analyze the detection of squeezed states in
our experiments. The detection of such states will be detailed in section 1C.

Let us now briefly comment on the relevance of squeezed states. First, in order to give
a clear idea of the order of the noise reduction experimentally achievable, let us give two
examples. -3dB and -10dB of noise reduction on the amplitude quadrature corresponds to
〈δX̂+2〉=1/2 and 1/10. It means that the amplitude of the fluctuations are respectively
reduced by a factor of

√
2 = 1.4 and

√
10 = 3.2 relative to the coherent case. Nevertheless,

such a factor can be of great importance in order to distinguish a very faint signal from
the quantum noise. Although the typical beam power used in our experiments is 1 mW,
the SNR of the measurement only equals 107 − 108 for a total measurement of the beam,
i.e. for intensity measurement, and do not correspond to other detections. For instance,
the signal obtained with a split-detection, when the position of an incident laser beam
is modulated around the center of the detector, only involves a few photons. When the
displacement is very small, the SNR can thus go below 122.

21Note that vacuum fluctuations can also be squeezed similarly to the fluctuations of a bright state. A

squeezed vacuum state has the particularity to have a zero mean field value, but a non-zero squared field

mean value. In terms of photons, it means that a squeezed vacuum field has photons, unlike the vacuum

state.
22This is effectively observed in the experiment presented in section 5 A.
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Moreover, the use of squeezed light is only appropriate when the available optical power
is limited, for example because of the existence of a damage threshold in the experiment,
or because of safety restrictions. Indeed, as shown in Eq. 1.66, similar signal-to-noise ratios
can be achieved with a resource demanding beam with -3dB of noise reduction below the
QNL and with a coherent beam twice as powerful.

Finally, the squeezing spectrum has to be compatible with the frequency of analysis and
the bandwidth required for the experiment. We have chosen not to develop the frequency
aspect of the light fluctuations in this thesis, as one can directly transpose all the theoretical
results presented before23 to any sideband frequency24. Details on side-band representation
can be found in references [BowenPhD03, Bachor03]. Although no calculation presented
in this thesis will explicitly specify the frequency dependence of the quantum operators,
it is important to keep in mind that we will always consider an analysis at RF side-band
frequency - typically at frequencies above 1 MHz, as squeezed sources of light present excess
noise at lower frequencies, mainly because of the contributions of electronic, acoustic,
thermal noise and relaxation oscillation [Bachor03]. It means that the use of squeezed
light for measurement noise reduction is restricted to physical systems oscillating at RF
frequencies.

The use of squeezed states is thus restricted to RF measurements, for which quantum
noise is a limiting factor, i.e. when all other sources of noise are negligible or have been
previously canceled, and for which the optical power is limited. Pertinent examples of
applications of single mode squeezed light are hence the detection of gravitational waves
using large interferometers [McKenzie02, Vahlbruch05], or sub-shot-noise high-sensitivity
spectroscopy [SoutoRibeiro97]. Moreover, the production of squeezed states of light is
also required for CV quantum communication protocols and quantum calculations, such
as teleportation, dense coding, etc25, as the combination of squeezed states allows the
production of CV entanglement, as shown in the next section. Moreover, we will show in
this thesis how the use of multi-mode squeezed beams, i.e. squeezing not limited to the
TEM00 component, can broaden these possibilities of applications to imaging beyond the
quantum limit, or even beyond the diffraction limit, and to parallel quantum information
processing.

A.3.4 Entangled states

Entanglement is certainly the most intriguing feature of quantum mechanics. Its theoretical
as well as experimental implications are at the core of all quantum information protocols.
The concept of entanglement was first introduced by Einstein, Podolsky, and Rosen in 1935
[Einstein35]. They demonstrated that an apparent violation of the Heisenberg inequality
could be achieved between the position and momentum observables of a pair of particles.

23We recall that we have restricted our analysis in section 1A.1.1 to stationary evolutions of the field

without specifying the frequency of analysis in the following, as our calculations were transposable to any

frequency.
24Optical measurements are limited by the bandwidth of the photo-detectors, typically around 20 MHz

in our experiments, and are performed at a frequency Ω such as Ω ¿ νL, where νL is the laser frequency. A

detection of the fluctuations at sideband frequency Ω - with a spectrum analyzer on zero span for example

- hence correspond to detection of the optical beam fluctuations at frequency νL ± Ω.
25It would be impossible to list all the different protocols. One could therefore first refer to [BowenPhD03]

for an excellent introduction to this domain.



22 Chapter 1. Tools for Quantum Imaging

This apparent violation has since been termed the EPR paradox. Demonstration of the
EPR paradox relies on quantum correlations between a pair of non-commuting observables,
so that measurement of either observable in sub-system x allows the inference of that
variable in sub-system y to better than the quantum noise limit.

In this thesis, we will focus on the entanglement of optical fields in the continuous vari-
able regime26, which has recently been extensively investigated since the first experiment
by Ou. et al. in 1992, which involved a non-degenerate optical parametric amplifier [Ou92].
More recently, we can reference the generation of sideband entanglement [Pirandola03],
and quadrature entanglement using phase-locked OPOs [Jing06]. For an excellent review
on optical quadrature entanglement, see reference [BowenPhD03].

The generation of optical quadrature entanglement can be obtained directly out of
a nonlinear device such as an OPO [Laurat05, Laurat06], or by a combination of two
quadrature squeezed beams with orthogonal squeezing27 on a 50/50 beam-splitter [Ou92,
Zhang00, Silberhorn01,1, Bowen03, Laurat04], as shown in Fig. 1.4. Two input fields28

denoted with the indexes 1 and 2 are incident on the beam-splitter. Their amplitude and
phase quadratures are respectively described by X̂±

1 and X̂±
2 . The quadratures of the

output beams x and y after the beam-splitter are given by

X̂±
x =

1
2

(
±X̂+

1 + X̂+
2 + X̂−

1 ∓ X̂−
2

)
(1.69)

X̂±
y =

1
2

(
X̂+

1 ± X̂+
2 ∓ X̂−

1 + X̂−
2

)
(1.70)

Sum of amplitude fluctuations, and difference of phase fluctuations between both beams
can be written

δX̂+
x + δX̂+

y = δX̂+
1 + δX̂+

2 (1.71)

δX̂−
x − δX̂−

y = δX̂+
2 − δX̂+

2 (1.72)

(1.73)

We see for example that when the amplitude quadrature of the two input beams are
perfectly squeezed, i.e. when {∆X̂+

1 , ∆X̂+
2 } → 0, we get

〈
(
δX̂+

x + δX̂+
y

)2
〉 → 0 (1.74)

〈
(
δX̂−

x − δX̂−
y

)2
〉 → 0 (1.75)

In this limit, an amplitude quadrature measurement on beam x would therefore provide
an exact prediction of the amplitude quadrature of beam y. Similarly a phase quadrature

26Attempts are now being made to entangle light beams with atoms [Blinov04, Haine05], atoms with

atoms [Duan00,2], and light with nano-mechanical devices [Eisert04]. In the condensed matter field, schemes

are proposed to couple nano-mechanical resonators and a super-conducting electrical resonator, using

SQUID technology [Tian06].
27This can first be achieved with two amplitude - or phase - squeezed beams in quadrature in the beam-

splitter plane. Another option is to combine an amplitude squeezed and a phase squeezed beam, in phase

in the beam-splitter plane. Note that the generation of entanglement with two squeezed beams incident

on a beam-splitter does not allow to produce all the possible entangled states accessible with an OPA, as

shown in reference [Laurat05, Laurat06].
28We have chosen in Fig. 1.4 to emphasize the fact that the entanglement considered here is involving

only one spatial transverse mode, generally the TEM00 mode, as represented in the figure.
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Figure 1.4: TEM00 quadrature entanglement. Two TEM00 amplitude squeezed beams in
quadrature, i.e. such as φE = π/2, are incident on a 50/50 beam-splitter. Two homodyne
detections (HD) with TEM00 local oscillators (LO) are used to analyze the properties of
each output beam. The appropriate combination of both detected signal yields either the
degree of EPR paradox E or the degree of inseparability I of the two latter beams.

measurement on beam x would provide an exact prediction of the phase quadrature of
beam y. However, note that both variables cannot be simultaneously measured. Fluctua-
tions on the amplitude quadratures of both beams are said to be anti-correlated, whereas
the fluctuations on their phase quadratures are said to be correlated. These properties
are summarized in Fig. 1.5 [LauratPhD04]. Although each part of the entangled state
represented in Fig. 1.5a) is noisy on all its quadratures, some particular quadratures are
correlated with the other part of the entangled state, as represented in Fig. 1.5b) and c).

The short calculation presented above is a demonstration of entanglement, similar to
the one thought of in the seminal paper of Einstein et al. [Einstein35]. Analysis of the
entanglement in the physically realistic regime where {∆X̂+

1 , ∆X̂+
2 } 6= 0 is more complex,

and is what we concentrate on in the end of the section.

Although the specification of the coefficients of the covariance matrix offers a complete
description of the entanglement, it does not immediately provide a measure of whether
beams x and y are entangled, or how strongly they are entangled. We use two criteria, both
of which can be inferred from the correlation matrix, to measure those properties. We first
discuss the inseparability criterion proposed by Duan et al. [Duan00,1], which provides
a necessary and sufficient condition for Gaussian entanglement. We then introduce the
EPR paradox criterion proposed by Reid and Drummond [Reid88] which has been used to
characterise entanglement in past experiments. It should be noted that a good measure of



24 Chapter 1. Tools for Quantum Imaging

X
-

X
+

δX
-

x

δX
+

y

δX
-

y

δX
+

x

δX
+

δX
+

a) b)

c) δX
-

δX
-

y

y

x

x

  Entanglement
X

-

X
-

X
+

X
-

X
+
/

d)

Figure 1.5: a) Representation in the Fresnel plane of ideal EPR states, for which b) am-
plitude fluctuations are anti-correlated (δX̂+

x = −δX̂+
y ), and c) phase fluctuations are

correlated (δX̂−
x = δX̂−

y ). d) Common representation of an amplitude-phase entangled
state. It shows the axis along which correlations are hidden in the apparently noisy states
represented in a).

entanglement should satisfy four conditions detailed in reference [Vedral97, Plenio00], and
that neither the inseparability nor the EPR criteria have been shown to satisfy these con-
ditions. Indeed, to our knowledge no such measure exists to date for continuous variable
entanglement [Peres96, Horodecki97, Simon00, Laurat05]. However, both criteria consid-
ered here have strong physical significance, as they have a straightforward dependence on
the strength of the quantum resources used to generate the entanglement, and are com-
monly used to gauge the strength of entanglement in experiments. We therefore refer to
both criteria as measures of the strength of entanglement.

• Inseparability criterion and degree of inseparability I
This criterion quantifies the entanglement or inseparability of a quantum state. Note

that the term inseparability, refers to the definition of entanglement with respect to a
property of its density matrix operator : ”a state is said entangled if and only if its density
matrix operator is non-separable”.

For entanglement produced on a 50/50 beam splitter, the quadratures of beams x

and y given in Fig.1.4 are symmetric. In such a case, the estimation of the degree of
inseparability I proposed by Duan et al. in reference [Duan00,1]29 is equivalent to the one
proposed by Giovannetti et al. in reference [Giovannetti03] and provides a direct measure
of the strength of the entanglement between the two input beams. It is given by the rather
simple expression [Bowen03], expressed here in the case of two amplitude squeezed beams30

I =
√

∆2X̂+
x+y∆2X̂−

x−y (1.76)

29Note that the criterion given in reference [Duan00,1] corresponds to I = 1
2

�
∆2X̂+

x+y + ∆2X̂−
x−y

�
< 1,

and is often referred to as the ’sum form’, in opposition with the ’product form’ presented in Eq. 1.76.

30In the general case, I =
q

∆2X̂+
x±y∆2X̂−

x±y, where ∆2X̂+
x±y is the minimum of the variance of the

sum or difference of the operators X̂+
x and X̂+

y between beams x and y normalized to the quantum noise

limit, ∆2X̂+
x±y = min〈

�
δX̂+

x ± δX̂+
y

�2

〉/2. A similar definition applies for ∆2X̂−
x±y.
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where ∆2X̂+
x+y is the variance of the sum of the amplitude operators X̂+

x and X̂+
y of beams

x and y, normalized to the quantum noise limit, i.e. ∆2X̂+
x+y = 〈

(
δX̂+

x + δX̂+
y

)2
〉/2. A

similar definition applies for ∆2X̂−
x−y. The boundary I = 1 of the quantum regime corre-

sponds to two incident coherent beams. If I < 1, two incident beams are said inseparable.
In the symmetric case for which both incident beams have identical gaussian noise, it can
be shown that this criterion is a necessary and sufficient condition for entanglement. Note
that the best possible entanglement is obtained for two perfectly squeezed beams, which
corresponds to the case detailed at the beginning of the section. Eq. 1.74 and 1.75 directly
show that I = 0 in this limit case.

It is interesting to focus on the effect of de-coherence in the form of optical loss on the
inseparability criteria. It can be shown [BowenPhD03] that for entanglement generated
from a pair of uncorrelated squeezed beams, with equal optical loss for beams x and y, I
can be expressed as a function of the overall detection efficiency η as

I = η∆2X̂+ + (1− η) (1.77)

where ∆2X̂+ refers to the common noise variance on the amplitude quadrature of both
input beams 1 and 2, i.e. ∆2X̂+ = ∆2X̂+

1 = ∆2X̂+
2 . Eq. 1.77 shows that as long as the

two beams used to generate the entanglement are squeezed, whatever this level, and even
when η approaches zero, I remains below unity, i.e. that the output beams are always en-
tangled according to this criterion31. We see that the entanglement is robust against losses
at least in the sense that loss alone cannot transform an inseparable state into a separable
one. These results are compared with the ones obtained for the second criterion in Fig. 1.6.

• Reid or EPR paradox criterion and degree of EPR paradox E
This criterion quantifies the degree of EPR paradox of a state, which is slightly more

restrictive than the general concept of entanglement or inseparability. Its is derived from
the ability of a state to produce an apparent violation of Heisenberg inequalities between
two conjugate variables, similarly to what Einstein, Podolsky, and Rosen have shown in
1935 between the position and momentum observables of a pair of particles.[Einstein35].
This apparent violation has since been termed the EPR paradox. It relies on the fact that
measurement of either observable in sub-system x allows the inference of that variable
in sub-system y to better than the quantum noise limit, even if the two beams are far
apart from each other. Between the amplitude and phase quadratures of a pair of optical
beams this is quantified by the product of conditional variances [Reid88], the degree of
EPR paradox E can therefore be defined as

E = ∆2X̂+
x|y∆

2X̂−
x|y, (1.78)

where the EPR paradox is demonstrated for E < 1 and the quadrature conditional vari-
ances ∆2X̂±

x|y are given by

∆2X̂±
x|y = ∆2X̂±

x − |〈δX̂±
x δX̂±

y 〉|2
∆2X̂±

y

= ming±〈
(
δX̂±

x − g±δX̂±
y

)2
〉, (1.79)

31We will see that it is not the case for the EPR criterion.
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where g± are experimentally adjustable variables. Experimentally, such adjustable gains
can be achieved electronically as shown in Fig.1.4.

In order to see the sensitivity to optical loss, assuming identical noise properties for
the two beams incident on the beam-splitter in Fig.1.4, i.e. ∆2X̂+

1 = ∆2X̂+
2 = ∆2X̂+ and

∆2X̂−
1 = ∆2X̂−

2 = ∆2X̂−, and assuming an identical detection efficiency η for each beam,
the degree of EPR paradox becomes

E = 4


1− η +

2η − 1 + η2(∆2X̂+.∆2X̂− − 1)

η
(
∆2X̂+ + ∆2X̂− − 2

)
+ 2




2

(1.80)

The degree of EPR paradox is thus directly related to optical losses, to the amount of
squeezing, and also to the purity of the state, as we will emphasize later on.

A comparison between both characterization of entanglement is presented in Fig.1.6
as a function of the detection efficiency η32. In Fig. 1.6a), we have compared the degree
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Figure 1.6: Comparison of EPR paradox criterion (continuous lines) and Duan’s insep-
arability criterion (dotted lines). a) influence of the squeezing level of the input beams,
for pure states. b) influence of the purity of the input states, with a fixed value of the
squeezing level of the input beams of -3dB, with 3dB, 4dB and 5dB of anti-squeezing. The
corresponding values of the purity are respectively 1, 0.89, and 0.79.

of EPR paradox E (continuous lines) and degree of inseparability I (dotted lines) for
pure states, for different squeezing values. Note that in this case of pure input states
for which ∆2X̂+

1 .∆2X̂−
1 = ∆2X̂+

2 .∆2X̂−
2 = ∆2X̂+.∆2X̂− = 1, E = 1 when η = 0.5,

independently of the level of squeezing. This defines a boundary such as if η > 0.5, the
EPR paradox criterion is satisfied for any level of squeezing, and if η < 0.5, it can never
be satisfied. This is a striking contrast to the inseparability criterion which, as we showed
earlier in Eq. 1.77, is satisfied for any level of squeezing and any detection efficiency.
Satisfaction of the EPR paradox criterion between two beams is thus a sufficient but
not necessary condition for their entanglement. However, we have chosen to present this

32Losses which can occur before and after the beam combination are assumed to be symmetrical and are

taken into account in the detection efficiency.
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criterion as it is used to characterize the strength of entanglement in several experiments
[Ou92, Zhang00, Silberhorn01,1], and still often referred to33.

Fig .1.6b) presents the influence of the purity of the input states that are mixed on the
beam-splitter for a fixed squeezing value of -3dB. Again, continuous lines represents the
degree of EPR paradox E , whereas the dotted line34 refers to the degree of inseparability I.
We see that the inseparability criterion is independent of the purity of the entanglement, a
property to which the EPR paradox criterion is very sensitive. The boundary below which
the EPR paradox is satisfied is highly dependent on the purity. The observation of EPR
paradox therefore requires very low losses for increasingly non-purity of the input states.
Optical loss changes the purity of the entanglement and therefore affects the EPR paradox
and inseparability criteria differently. However, if η = 1, the measured entangled state is
pure, and both criteria are monotonically increasing functions of the amount of squeezing.
In the limit of pure measured entanglement, the inseparability and EPR paradox criteria
become equivalent.

Note that quadrature entanglement has already been extended to polarization entan-
glement in the continuous variable regime. Indeed, any pair of conjugate observables can
be used to generate entangled beams. In this precise case, Stokes parameters account-
ing for the polarization states do not commute and can lead to polarization entanglement
[Bowen02, Korolkova02]. We will also extend this notion in section 5 B to the entanglement
of position and momentum of two TEM00 mode beams.

33It can be shown that the production of EPR beams compared to the one a simple entangled state is

as different as performing a QND and a squeezing measurement [Treps04,2].
34Note here the absence of dependence of the inseparability criterion with the purity of the input states.



28 Chapter 1. Tools for Quantum Imaging

B Single/Multi-mode criterium

In this section, we introduce the theoretical basis required to develop a quantum study
of optical image measurements. A part of the work presented here has been published in
reference [Treps05].

We have already termed the quantum states described in the transverse plane by Eq.
1.27 as multi-mode transverse fields. We propose here to give an accurate definition of this
term.

First, we will show that a pure classical state35. Then, we will give a precise defini-
tion of a transverse multi-mode quantum state, and finally, we give experimental tools to
differentiate a single mode field from a multi-mode quantum field.

B.1 Classical approach

We consider the propagation of a coherent light beam in vacuum. We can describe such a
field with the same formalism as the one used in Eq.1.27 by

E(+)(~r, z) = i

√
~ω0

2ε0cT

∑
n

αnun(~r, z) (1.81)

where quantum operators are replaced by numbers, and especially ân is replaced by its
mean value αn,i.e. the square root of the number of photons in mode n.

When more than one αn is non zero, it seems at first sight natural to state that this
field is multi-mode. However, if the αn coefficients are fixed (i.e. we deal with a coherent
superposition of modes and not a statistical one), one can always define a new mode v0

such as

v0(~r, z) =
1√∑
n |αn|2

∑
n

αnun(~r, z) (1.82)

and build a basis {vn} in which v0 is the first element. In this basis, the field is proportional
to v0. It means that we deal with a single mode field.

We can conclude that for a coherent superposition of modes, there is no intrinsic
definition of a multi-mode beam (i.e. a definition independent of the basis choice). Of
course if the field is a stochastic superposition of modes, the mode v0 cannot be defined as
in Eq. 1.82, and the multi-mode character has a clear meaning. We will exclude this case
in the following and only consider spatial ”mode-locked”field patterns. We will restrict our
analysis to spatial variables, but it can be applied to any physical dimension. For instance,
in the time domain, a mode locked laser is single mode, as it is a coherent superposition
of many temporal modes. However, a usual laser is often multi-mode because its output
is a statistical superposition of polarization, temporal and spatial modes. Note that an
approach with the density operator formalism could extend our considerations to mixed
states.

35Such a state has all its classical parameters fixed, and has thus a perfect degree of spatial and temporal

coherence. In other words, it does not result of a statistical superposition of states.
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B.2 Quantum approach

B.2.1 Single Mode quantum light

In order to give a proper definition of a single mode state, let us write the most general
state of the field in the Fock state basis |N1, . . . , Nn, . . .〉[Grynberg97], where Nn stands for
the number of photons in the transverse mode n, whose transverse distribution is described
by un(~r)

|ψ〉 =
∑

N1,...,Nn,...

CN1,...,Nn,...|N1, . . . , Nn, . . .〉 (1.83)

where {CN1,...,Nn,...} are complex coefficients of the decomposition in the Fock state basis36.
In order to link this description with the previous notations, for which the most general
envelope field operator was written 37

Ê(+)(~r) = i

√
~ω0

2ε0cT

∑
n

ânun(~r), (1.84)

we write the mean value of the electric field positive envelope as

〈ψ|Ê(+)(~r)|ψ〉 = i

√
~ω0

2ε0cT

∑
n


 ∑

N1,...,Nn>1,...

C∗
N1,...,Nn−1,...CN1,...,Nn,...


√

Nnun(~r)

Using these notations, we can now give a definition of a single mode beam :

Definition 1 A state is single mode if there exists a mode basis {v0, v1, . . . } in which it
can be written :

|ψ〉 = |φ〉 ⊗ |0, . . . , 0, . . .〉 (1.85)

where |φ〉 is the field state in the first transverse mode.

The question is now whether, in contrast with classical states, there exists quantum
states that cannot be written as in Eq. 1.85. To answer this question, we will demonstrate
the following proposition :

Proposition 1 A quantum state of the field is single mode if and only if the action on it
of all the annihilation operators of a given basis gives proportional vectors.

One can note that if this property stands for a given basis, it then stands for the action
of any annihilation operator.

In order to prove the first implication, we initially assume that |ψ〉 is a single mode
field with respect to the basis {un, ân}, then

â0|ψ〉 = |ψ0〉 and ân|ψ〉 = 0 ∀n 6= 0 (1.86)

Consider now any linear combination of the operators

b̂ =
∑

n

cnân (1.87)

36Note that such a description allows any photon distribution in the transverse modes, but also allows

correlations between the different modes.
37It corresponds to Eq.1.27, where we have not specified here the field propagation through the z depen-

dence, as our study will always remain in the detector plane.
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where
∑

n |cn|2 = 1. The action of this operator on the state |ψ〉 is given by

b̂|ψ〉 =
∑

n

cnân|ψ〉 = c0|ψ0〉 (1.88)

This demonstrates the first implication of our proposition : all the projections of the field
are proportional.

In order to prove the other implication, we consider now a field |ψ〉 on which the action
of any annihilation operator ân is proportional to |ψ0〉. This is in particular true for the
basis {un, ân} :

ân|ψ〉 = αn|ψ0〉 (1.89)

If we assume that
∑

n |αn|2 = 1 (which is always possible by changing the normalization
of |ψ0〉), we can define a new basis {vn, b̂n} such as

b̂0 =
∑

k

α∗kâk, and v0(~r) =
∑

k

α∗kuk(~r) (1.90)

and complete the basis by choosing the other vectors and defining a unitary matrix [cnk]
such as

b̂n =
∑

k

cnkâk with c0k = α∗k and
∑

k

cnkc
∗
jk = δnj . (1.91)

It is then straightforward to show that

b̂n|ψ〉 = δ0n|ψ0〉 (1.92)

which concludes the demonstration.

In addition to the proposition, Eq. 1.90 gives the expression of the mode on which
lies the field, knowing its projection on a particular basis. We can also note that, in order
to show that a field is single mode, it is sufficient to show that all its projection on the
annihilation operators of one particular basis are proportional.

To illustrate the proposition, if one considers the superposition of coherent states

|ψ〉 = |α1〉 ⊗ . . .⊗ |αn〉 ⊗ . . . (1.93)

it is straightforward to see that all the projections of this state are proportional to the
state itself. Hence, it corresponds to a single mode beam. The basis in which it is single
mode is the same as the one already introduced for the classical case, i.e. the one whose
first vector is set to v0(~r) as given by Eq. 1.82.

Using this proposition, we can also look for the different states that qualify to our
definition of single mode quantum beam. As a state that cannot be written as follows in
any mode basis :

|ψ〉 = |φ1〉 ⊗ . . .⊗ |φn〉 ⊗ . . . (1.94)

is obviously not a single mode beam, we will consider now such a factorized state of the
field, on which the action of the annihilation operators gives :

ân|ψ〉 = |φ1〉 ⊗ . . .⊗ (ân|φn〉)⊗ . . . (1.95)

Consequently, there are only two possibilities to have all these states proportional :
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• either only one of the projection is different from zero, which means we are already
in the basis in which the state is single mode.

• or all the states are coherent states.

We have described here all the possible single mode states, which agree with the intu-
itive description one can have. For instance, if one considers the superposition of several
transverse modes, if at least one of them is a non-coherent state, one gets a multi-mode
quantum state.

B.2.2 Multi-mode quantum light

A beam of light is said multi-mode, from a quantum point of view, when ... it is not single
mode according to definition 1! We can characterize such a beam by its degree n (this
degree equals one for a single mode beam):

Definition 2 For a beam |ψ〉, the minimum number of modes necessary to describe it (or
the minimum number of non-vacuum modes in its modal decomposition), reached by choos-
ing the appropriate basis, is called the degree n of a multi-mode beam. Any corresponding
basis is called a minimum basis for the field |ψ〉.

The degree of a multi-mode beam can also be related to the generalization of proposi-
tion 1 to a n-mode beam. Using the same technique, one can show that a quantum field
is a n-mode beam if and only if the action on it of all the annihilation operators belongs
to the same n dimensioned sub-space.

Whereas the previous paragraph gives a good definition of the degree of a multi-mode
beam, it is not very convenient as one has no information on the basis in which the beam
is exactly described by n modes. We can however define a particular basis38, useful for
calculations :

Proposition 2 For a beam |ψ〉 of degree n, it is always possible to find a basis {ui, âi}
such as

• The mean value of the electric field is non zero only in the first mode.

• It is a minimum basis for the field |ψ〉, as defined in definition 2.

We will call this basis an eigenbasis or a mean-field basis.

In order to demonstrate this proposition, we consider a minimum basis {ui, âi} for the
field |ψ〉. This basis is supposed to be ordered such as the n first modes are the relevant
ones. We can then define a new basis {vi, b̂i} such as :

v0 =
1√∑n−1

i=0 〈âi〉2

n−1∑

i=0

〈âi〉ui

vi,0<i<n =
n−1∑

j=0

cijuj

vi,i≥n = ui (1.96)
38It is straightforward to see that such a basis is not unique.
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mode, operator single mode quantum light multi-mode quantum light

any state such as any state such as
v0, b̂0 < ψ|b̂0|ψ >= 〈ψ|Ê|ψ〉 < ψ|b̂0|ψ >= 〈ψ|Ê|ψ〉

vacuum non-classical state such as
v1, b̂1 < ψ|b̂1|ψ >= 0

...
...

...
vacuum non-classical state such as

vn, b̂n < ψ|b̂n|ψ >= 0
vn+1, b̂n+1 vacuum vacuum

...
...

...

Table 1.1: Comparison between single and multi-mode light beam written in the mean
field basis. In this example, the multi-mode beam is of order n, as n modes are filled with
non vacuum states in the eigenbasis.

where the coefficient {cij} are chosen in order to get an orthonormal basis. Definitions
similar to the one of Eq.1.96 apply for the creation operators with the conjugated basis.
The first vector of this basis is the same as the one defined for a classical beam in Eq.1.82.
This description completes the definition of the mean field given in section 1 A.2.4. In
that basis, the field is single mode in a classical sense. However the energy lying in all the
modes indexed from 1 to n is not necessarily zero. These states are indeed not necessarily
traditional vacuum states. Although their electric field mean value is zero, then can still
correspond to squeezed vacuum states or correlated vacuum states. As the modes for i ≥ n

are not changed, this new basis is still a minimum one for the field |ψ〉. This demonstrates
the proposition and illustrates the construction of a basis as defined in proposition 2
from a minimum basis39. A representation of a multi-mode quantum field in such a basis,
compared with the one of a single quantum mode field, is given in table B.2.2.

The existence of this basis is also a confirmation of the intuitive idea of the difference
between single mode and multi-mode quantum light. Indeed, for a single mode beam, the
spatial variation of the noise is the same as the one of the mean field. For a multi-mode
beam, the previous description shows that some of the modes orthogonal to the mean field
are sources of noise but do not contribute to the mean field. This implies that the spatial
variation of the noise is independent of the one of the mean field. This property can be used
to experimentally characterize the multi-mode character of light. One of the difficulties of
such experiments is the knowledge of the mode structure of the field, as it is not possible
to test all the transverse modes. Nevertheless, there exists some simple experimental tests
which can provide signatures of a multi-mode quantum field. This is what we propose to
present in the next section.

39Because of the absence of restrictions for the choice of the {cij} coefficients, their exists an infinite

number of possible eigenbasis.
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Before that, let us now come back on the modal quadrature definition given in section
A.2.2. The phase reference relative to which the modal quadratures θn are defined has
to be clearly introduced at this point. For a single mode field, there is no ambiguity
as amplitude and phase quadratures correspond to the real and imaginary part of the
annihilation operator, respectively. However, for a multi-mode field, in order to have a
single phase reference for the description of the field, we define all quadratures relative to
the ones of the mean field. For this reason, X̂+

n and X̂−
n defined in Eq. 1.29 and 1.30 with

real and imaginary part of ân only when the mean field is real.
This definition is of particular importance for the definition of the quadratures of a

state orthogonal to the mean field. Such a state is necessarily a vacuum state, as a direct
consequence of the definition of the mean field, and the importance of a clear definition of
a phase reference is easy to understand as no orientation in the Fresnel plane is given by
the amplitude of the field.

Moreover, it means that real and imaginary parts of the annihilation operator of a
mode component different from the mean field do not necessarily identify with amplitude
and phase quadratures in thus mode, as we will see in Fig. 3.4.

B.3 Towards an experimental criterium

It has been shown recently that the quantum multi-mode character of light could be tested
experimentally by cutting the beam with a razor blade [Poizat98, Hermier99], or by using
an iris whose aperture size is continuously varied [Martinelli03]. The proposed criterium
in the last reference can be summarized as follows : When the normalized noise variance is
plotted as a function of the iris transmission, the beam is multi-mode if the noise variation
is not linear.

We propose here to use our formalism to explain this result, through the study of the
differences that can be observed between two very basic examples : single and bi-mode
fields.

The idea is here to predict the evolution of the noise variance measured on a photo-
detector, when a knife edge - which will play the role of the iris here - is slowly moved into
the detected beam, cutting it in its transverse plane, as schematized in Fig.1.7.

Spectrum

Analyser

Knife

edge

Detector

Single or 

Multi-mode 

light source

Figure 1.7: An experiment to investigate for the multi-mode transverse character of a light
beam. The variation of the detected noise when a ”knife-edge” is slowly translated into the
beam can yield a multi-mode signature.

The quantum operator describing the total number of photons detected during the time
interval T , when the knife edge is positioned at x = d, is denoted N̂(d) and its expression
is

N̂(d) =
2ε0cT

~ω0

∫ d

−∞
Ê(+)†(x)Ê(+)(x)dx (1.97)
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where the incident field operator is described by Eq.1.2740.
Let us first consider a single mode quantum field. We will call u0 the mode of its mean

field, which is potentially squeezed. As explained in proposition 2, all other modes are
filled with vacuum, and the field can be described by

α0 =
√

N (1.98)

αn = 0 , ∀n 6= 0 (1.99)

where N is the total number of photons in the mean field41.
Using the definitions presented in section 1 A.2.3, the mean value of the total number

of photons detected when the knife-edge is at the position x = d is given by

〈N̂(d)〉 = NΓ00(d) (1.100)

where we have introduced the overlap integral Γnm(d) between the modes un and um,
whose expression is

Γnk(d) =
∫ d

−∞
u∗n(x)uk(x)dx (1.101)

Note that Γ00(d) introduced in Eq.1.100 identifies with the transmission of the knife edge.
In order to simplify the expressions, we will consider from now on in this section that the
mode profiles are all real.

A simple calculation yields the general expression of the detection noise variance :

〈δN̂2(d)〉 = N

[
〈δX̂+

0

2〉Γ2
00(d) +

∞∑

n=2

Γ2
0n(d)

]
(1.102)

where the first term corresponds to the noise contribution of the mode u0, and the sum
represents the noise contribution of all the other modes. All these latter modes are vacuum
fields as we deal with a single mode field, and are such as 〈δX̂+

n
2〉 = 1.

Eq.1.102, normalized to the shot noise, can be simplified as follows

〈δN̂2(d)〉
〈N̂(d)〉 = 1 + Γ00(d)

[
〈δX̂+

0

2〉 − 1
]
, (1.103)

by using the following relation42

Γ00(d) =
∞∑

n=0

Γ2
0n(d). (1.104)

The normalized noise varies linearly as a function of the transmission factor Γ00(d),
as shown by trace (i) in Fig.1.8a), in the case of a -3dB amplitude squeezed single mode
beam. This will be the case whatever the profile of the mean field mode. Measuring only

40We recall that using transverse modes limited to a single dimension in the detection plane Eq.1.27 can

be written as Ê(+)(x) = i
q

~ω0
2ε0cT

P∞
n=0 ânun(x).

41Note that does N not strictly correspond to the number of photons in the entire beam, but in the

mean field only. Indeed, squeezed vacuum modes do not belong to the mean field but still have photons

[Grynberg97]. However, in the regime of bright optical beams, i.e. of large photon flux, to which this thesis

is restricted, the number of photons contributing to the squeezed vacuum modes is negligible relative to

the one in the mean field.
42This relation between the overlap integrals can be proven using the particular case of a coherent

illumination, for which 〈δX̂+
0

2〉 = 1. In this case, the noise level corresponds to the shot noise, i.e. 〈N̂(d)〉 =

〈δN̂2(d)〉, as shown by Eq. 1.66. Rewriting the previous expression with Eq. 1.100 and 1.102 directly yields

Eq. 1.103.
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Figure 1.8: Single squeezed mode case. a) (i) Normalized noise as a function of the transmis-
sion with -3dB of squeezing.(ii) Shot noise level. (iii) Squeezing level for a total detection
of the mode u0. b) Spatial repartition of the noise reduction on the transverse plane for
the particular case of a single mode squeezed TEM00 field. The detection of each zone
independently would lead to identical noise reduction relative to the shot noise.

half of a single mode field will for instance always result in a 50% losses effect on the noise
reduction.

Let us now briefly comment on the measured noise for extreme positions of the knife
edge. On the one hand, when the beam is completely blocked, i.e. for d → ∞, the trans-
mission goes down to zero, and Γ00(∞) = 0. Hence, the noise tends towards a value of 1,
corresponding to the shot noise limit (trace (ii) on Fig.1.8a)). On the other hand, when
the knife edge is completely removed, i.e. for d → 0, the transmission reaches unity, and
Γ00(0) = 1. Therefore, the noise tends towards the noise of the mode u0 only, i.e. towards
〈δX̂(+)2

0 〉 (trace (iii) on Fig.1.8a)).
The linear variation of the noise with the transmission for a single mode state is some-

times at the origin of the unappropriate term of ”homogeneous squeezing” in a single mode
squeezed state43. A more accurate statement is that the local noise reduction relative to
the shot noise is directly proportional to the local intensity. Indeed, if we were to par-
tially detect a squeezed beam with a detector small compared to the beam size, the noise
reduction would be measured mostly in the intense regions of the beam. As expected, it
implies that the detection of a squeezed field with finite detectors is possible as long as
the most intense areas of the beam are localized on the detector. Moreover, it justifies
why the presence of, for instance, a dust particle in the most intense part of the beam
can have dramatic consequences on the squeezing level. In order to help visualizing these
properties, we have schematized in Fig.1.8b) the spatial extension of detectors that would
measure identical noise reduction relative to the shot noise44, in the particular case of a
squeezed TEM00 mode.

43The term of ”homogeneous squeezing” would be more adapted to a totally multi-mode beam, which

detection yields the same noise reduction with any detection device. This property is also termed local

squeezing.
44The spatial extension of such detectors has to be inversely proportional to the detected power.
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Assuming now that the field is bimodal, we use the eigenmode basis described in
proposition 2, in which the first mode u0 carries the mean field, and u1 is a vacuum mode
that can be squeezed or correlated with the mode u0. All the other modes are vacuum
modes.

Similarly to the single mode case, a simple calculation yields the following noise vari-
ance in the general bi-modal case, normalized to the shot noise

〈δN̂2(d)〉
〈N̂(d)〉 = 1 + Γ00(d)

[
〈δX̂+

0

2〉 − 1
]

+
Γ2

01(d)
Γ00(d)

[
〈δX̂+

1

2〉 − 1
]

+ 2Γ01(d)〈δX̂+
0 δX̂+

1 〉

where the second and third terms correspond to the noise modification relative to the
shot noise, arising from the properties of the modes u0 and u1, and the fourth one to the
modification due to the presence of correlations between the same modes. Note that none
of the other modes contribute to the final expression.

Let us now illustrate this result with two very simple examples. We have first repre-
sented on Fig.1.9a) the normalized noise as a function of the transmission, in a bimodal
case, where the mean field is a TEM00 mode with -3dB of amplitude squeezing, and where
the TEM10 - trace (iv) - or TEM20 - trace (v) - vacuum modes are filled with -3dB of
amplitude squeezing, respectively. We see that the noise goes below the line defined for a
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Figure 1.9: Bimodal case. a) Normalized noise as a function of the transmission, when the
mean field is a TEM00 mode with -3dB of squeezing, and where the TEM10 - trace (iv) - or
TEM20 - trace (v) - vacuum modes are filled with -3dB of squeezing, respectively. Traces
(i), (ii) and (iii) respectively correspond to the single mode case with -3dB of squeezing, the
shot noise level, and the squeezing level, as in Fig.1.8. b) Normalized noise as a function of
the transmission, when the mean field is a coherent TEM00 mode, and where the TEM10

- trace (i) - or TEM20 - trace (ii) - vacuum modes are filled with 3dB of anti-squeezing,
respectively. Trace (iii) corresponds here to the shot noise level.

single mode beam - trace (i) - for intermediate positions of the knife edge in both cases.
This is the proof of the multi-mode character of this beam. Note that for zero transmission,
the noise always tends to the shot noise level - trace (ii) -, as no squeezing can obviously
be detected. Moreover, the noise goes back to the noise level defined by the mean field -
trace (iii) - when the knife edge is entirely removed from the beam. A complete detection
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of the transverse plane corresponds to the detection of the mean field, i.e. to the TEM00

mode. It corresponds to a simple ”bucket” detector intensity measurement. Since complete
TEM10 and TEM20 modes are orthogonal to the mean field, i.e. Γ01 = 0 and Γ02 = 0,
they do not contribute to the measurement noise. The variations of the noise in between
these two extreme values are mode dependent as they are related to the overlap integral
between the mean field and the other modes.

Secondly, we consider the bimodal case where the TEM00 mode is a coherent mean
field and the TEM10 - trace (i) -, or the TEM20 - trace (ii) - mode is a squeezed vacuum
field with 3dB of amplitude anti-squeezing. The results are presented in Fig.1.9b). As in
the previous example, the noise goes from the shot noise - trace (iii) - when the beam is
blocked, and back to the shot noise when the entire field is detected, as mean field and
squeezed mode are orthogonal45, i.e. Γ01 = 0 and Γ02 = 0. Again, for intermediate knife
edge positions, the noise diverges from the shot noise. Even if the noise goes above the
line this time, it is still a proof of the multi-mode aspect of the field.

The observation of a non linear variation of the noise as a function of the transmission
- above or below the single mode line - is thus the signature of a multi-mode field. This is
the key element of the statement presented in reference [Martinelli03].

It is very important to note that observing a non linear variation of the noise with the
transmission is only a sufficient condition to state that the measured field is multi-mode.
Indeed, particular multi-mode fields that yield a linear variation of the measurement noise
with the transmission can be found46

As a conclusion, it is possible to deduce from experimental results that a field is multi-
mode, but no definite experimental proof can ensure that we are in presence of a single
mode state, unless one tries an infinite set of experiments! In order to give an idea of
the complexity of the results that can be obtained, we present in appendix C knife edge
experiments with several detection schemes : complete detection, split-detection, homo-
dyne detection with different local oscillator profiles. We show that several experiment can
provide a complementary analysis of a multi-mode beam.

45This result can be generalized easily to a multi-mode beam of any order : the modes orthogonal to the

mean field do not contribute to the measurement noise for a complete detection of the field. We will come

back in section 1 C on the very important consequences of this remark.
46For instance, a knife edge experiment with an incident bimodal field, again composed of a bright

squeezed TEM00 mode and a TEM10 or TEM20 squeezed vacuum mode, results in a linear variation of the

noise if the beam is cut along the y axis instead of the x axis. Indeed, even when the knife edge is moved

into the beam, the partially blocked TEM00, TEM10 and TEM20 modes always remain orthogonal relative

to the x axis. As a consequence, no squeezing in these modes is detected, whatever the position of the knife

edge. This provides an example of a multi-mode beam yielding a linear noise variation with a knife edge

experiment. Several simple examples are presented in appendix C with different types of detection.
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C Image detection in the transverse plane

We present here the optical detection devices that are used throughout the experimental
demonstrations of this thesis. The first one is the common photo-detector - also termed
”bucket detector” - measuring the total beam power. Secondly, we will briefly introduce
a measurement relying on the interference with another beam whose properties are well
known, hence providing information on the mode quality of the incident beam. The third
one is the homodyne detection, well adapted to the study of a particular spatial mode
within an optical image, and which allows field quadrature measurement. The fourth one
is the array detector, adapted to a pixel description of the transverse plane. Finally, we
will investigate briefly for the possibility of combining the two latter detections devices.
All detection devices are presented in Fig. 1.10.
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Figure 1.10: Optical detection devices. a) ”Bucket” detection. b) Interference detection.
c) Homodyne detection. d) Array detection. e) Homodyne array detection. (BS) 50/50
beamsplitter.

In this section, we will always assume a prefect detection efficiency, i.e. that we consider
that each photon impinging on the detector creates an electron. The photo-current is
reproducing exactly the number of created electrons, and hence the intensity of the incident
beam.

Before detailing each detection device, let us introduce the notion of noise mode of
detection.

C.1 Noise-modes of detection

When a measurement is performed on an optical image, a single parameter within the
image is interrogated. The measurement of this parameter, which can be for instance the
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beam intensity, position, or rotation, is characterized by a single number. It seems thus
reasonable to expect the detection to extract an optical information and its corresponding
noise from a single mode within the optical image. This mode does depend on the detection
device, and we therefore term it noise-mode of detection. This concept was first introduced
in reference [Delaubert06,1].

The concept introduced here is very general. For any type of detection, a single spatial
mode contributes to the detected signal and noise. The information encoded in any other
mode orthogonal to the noise-mode of detection is thus undetected.

This apparently very simple result is of most importance for the detection of spatial
parameters within an optical image. The identification of the only transverse mode which is
contributing to the measurement noise notably allows to match the detection system to the
spatial information that we want to extract from the light beam. It also allows to modify
the fluctuation properties of specific modes within the input beam in order to improve
the signal-to-noise ratio of the detection. Indeed, filling the noise-mode of detection with
squeezed light within the incident beam is a necessary and sufficient condition to reduce
the noise related to the measurement47.

C.2 ”Bucket” detection

The ”bucket” detector measures the intensity of the incident beam integrated over the
entire transverse plane as shown on Fig.1.10a), and thus gives access to the beam power
P̂ , and the total number of photons N̂ .

Although it corresponds to the simplest possible optical detection, it is still interesting
to briefly study the properties of its measured noise. We will especially focus on the spatial
modes within the optical beam that are contributing to it.

For any optical image incident on the photo-detector, the field can be described by
Eq.1.27. It yields in the detector plane

Ê(+)(~r) = i

√
~ω0

2ε0cT

∞∑

n=0

ânun(~r). (1.105)

Using the field expansion in the eigenmode basis defined in proposition 2, for which the
mean field lies in mode u0, the operator describing the total number of photons detected
over the entire transverse plane during the time interval T is

N̂ =
2ε0cT

~ω0

∫ ∞

−∞
Ê(+)†(~r)Ê(+)(~r)dr2 =

∑

n,k

â†nâkΓnk =
∑

n

â†nân, (1.106)

where we have used the spatial modal overlap integral Γnk defined by

Γnk =
∫ ∞

−∞
u∗n(~r)uk(~r)dr2 = δn,k, (1.107)

and the orthonormality relation satisfied by the spatial modes, as presented in Eq. 1.23.
The mean number of photons is thus

〈N̂〉 =
∞∑

n=0

〈â†nân〉 = N (1.108)

47The proof of this statement directly arises from the definition of the noise-mode of detection.
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where we have used that 〈â†nân〉 = |αn|2δn,0 = N , where N is the total number of photons
detected in the mean field (see section 1A.2).

Let us now introduce the linearization approximation, for which the modal annihilation
operators and their fluctuations introduced in Eq. 1.28 are such that 〈ân〉 ¿ δân. 48

The fluctuation operator of the number of photons is given at first order in the lin-
earization approximation by

δN̂ =
∞∑

n=0

αn(δâ†n + δân) =
√

NδX̂+
0 (1.109)

The detection noise is finally given by

〈δN̂2〉 = N〈δX̂+2

0 〉 (1.110)

It shows that mean number of photons - which we can call the signal - and the measurement
noise both arise solely from the mean field mode49.

For a ”bucket” detection of the field, the noise-mode of detection, defined in section 1
C.1, thus corresponds to the mean field mode.

C.3 Interference detection

The previous detector only allows global intensity measurements. A first idea in order to
access some information on the image profile would be to combine the image - the incident
beam on Fig.1.10b) - with a reference beam on a 50/50 beam-splitter. We will call this
reference beam, whose profile is well defined, the local oscillator.

Let us analyze the classical detection of the interferences between an input field and a
local oscillator whose mean fields are respectively described by

〈Ê(+)(~r)〉 = i

√
~ω0

2ε0cT
α0u0(~r) (1.111)

〈Ê(+)
LO (~r)〉 = i

√
~ω0

2ε0cT
αLOuLO(~r) (1.112)

where u0 and uLO respectively correspond to the input and local oscillator mean field
profile. Denoting N0 and NLO the number of photons in each beam and taking the input
beam as a phase reference50, we can write α0 =

√
N0 and αLO =

√
NLOeiθLO , where θLO

is the phase of the local oscillator beam, as shown on Fig.1.10b). The mean value of the
detected intensity I is therefore given by

I =
~ω0

4ε0cT

[
N0 + NLO + 2Γ

√
N0NLO cos θLO

]
(1.113)

48This approximation is generally fulfilled in most continuous variables (CV) quantum optics experi-

ments. Nevertheless, it is sometimes necessary to go beyond this approximation for example when vac-

uum states are considered, or other particular cases as the optical parametric oscillation near threshold

[Dechoum04].
49This result explains why the common description of the field in quantum optics, where the positive

frequency part is given by Ê(+) = i
q

~ω0
2ε0cT

â is perfectly valid as long as one detects the total beam power.

Any noises present in other modes than the mean field are not detected, and hence does not necessarily

need to be described. However, they will be of most importance in the experiment presented in this thesis,

as we will notably consider partial detection of the field, hence also interrogating other spatial modes.
50Note that a calibration of the local oscillator phase could potentially lead to phase measurements of

the incident beam using Eq 1.113.
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where Γ is the spatial overlap between the input mean field and the local oscillator mean
field, and is defined by

Γ =
∫ ∞

−∞
u∗0(~r)uLO(~r)d2r (1.114)

Some interesting information on the mode quality can be extracted from this measure-
ment. First, in the case of two incident beams of equal optical power, i.e. N0 = NLO, the
optimal fringe visibility yields the ”spatial purity” of the input beam relative to the local
oscillator profile. Indeed, the fringe visibility identifies with the spatial overlap coefficient
Γ, as shown by51

V =
Imax − Imin

Imax + Imin
= Γ (1.115)

This can notably be useful in order to see the spatial modification of a given transverse
mode after propagation or after amplification with a non linear device as will be discussed
in chapters 4 and 5.

C.4 Homodyne Detection

The homodyne detection is widely used in quantum optics as it allows quadrature mea-
surements, as a result of interferences between an incident beam and a bright beam called
local oscillator on a 50/50 beam-splitter, similar to the one defined in the previous section.
The difference between the intensity detected on both output ports of the beam-splitter
yields the quadrature information. The detection scheme is presented in Fig.1.10c).

We detail here how a homodyne detection can measure any quadrature of any trans-
verse mode of the incoming beam, according to the phase and profile of the local oscillator
beam (LO).

The electric field operator to be detected, denoted as ”input beam” in Fig.1.10c) can
be described as in Eq.1.27, by52

Ê(+)(~r) = i

√
~ω0

2ε0cT

∞∑

n=0

ânun(~r). (1.116)

We introduce the local oscillator field operator in the same basis53

Ê(+)
LO (~r) = i

√
~ω0

2ε0cT

∞∑

n=0

âLO,nun(~r). (1.117)

51We can generalize the definition of the fringe visibility in the case of the interference of two beams of

different optical power by V ′ = Imax−Imin

2
√

N0NLO

. Using the expression of the intensity given in Eq.1.113 with

the previous definition gives V ′ = Γ. The fringe visibility is thus still measurable when one of the beams is

much brighter than the other one. This is especially interesting to characterize the mode purity of the very

dim squeezed beam coming out of an optical parametric amplifier (OPA), as will be detailed in chapter 4.
52Note that there is here no restriction on the choice of the transverse basis. In particular, the mean field

is not necessarily filling only the first mode as presented in proposition 2.
53Strictly speaking, the basis used to describe the LO cannot be identical to the previous one, as input

field and LO beam are contained in orthogonal planes before the beam-splitter, as represented in Fig.

1.10. However, after the beam-splitter, the propagation axis is identical for both beams and they can be

described in the same basis. Not to complicate our equations uselessly, we will therefore not distinguish

the two basis as long as the spatial variation of the modes are identical in a given plane.



42 Chapter 1. Tools for Quantum Imaging

The two uncorrelated field operators described by Eq.1.116 and 1.117 are combined on
a 50/50 beam-splitter. The two output field operators, indexed 1 and 2 as in Fig. 1.10c),
are given by

Ê(+)
1 (~r) =

Ê(+)(~r) + Ê(+)
LO (~r)√

2

= i

√
~ω0

2ε0cT

∞∑

n=0

[
ân + âLO,n√

2
un(~r)

]
, (1.118)

Ê(+)
2 (~r) =

Ê(+)(~r)− Ê(+)
LO (~r)√

2

= i

√
~ω0

2ε0cT

∞∑

n=0

[
ân − âLO,n√

2
un(~r)

]
, (1.119)

where we have used a particular convention for the beam-splitter output field, which
will always be used throughout this thesis. Note that other conventions can be adopted
[Bachor03].

Both fields are then detected by ”bucket”detectors. We assume that the phase curvature
of the beams in the detector planes is small, i.e. that the detection is done close to the
waist position. Focusing now on the intensity operator of beam 1, we get

Î1 =
∫ ∞

−∞
Ê(+)†

1 (~r)Ê(+)
1 (~r)d2r

=
~ω0

4ε0cT

∑

n,k

[
(â†n + â†LO,n)(âk + âLO,k)

∫ ∞

−∞
u∗n(~r)uk(~r)d2r

]
, (1.120)

where we recognize the overlap integral Γnk given in Eq.1.107. It yields for both beams

Î1 =
~ω0

4ε0cT

∞∑

n=0

[
â†nân + â†nâLO,n + â†LO,nân + â†LO,nâLO,n

]
, (1.121)

Î2 =
~ω0

4ε0cT

∞∑

n=0

[
â†nân − â†nâLO,n − â†LO,nân + â†LO,nâLO,n

]
. (1.122)

The difference between these two operators, denoted Î−, which is the quantity measured
experimentally, can be written

Î− =
~ω0

2ε0cT

∞∑

n=0

[
â†nâLO,n + â†LO,nân

]
(1.123)

Using the fluctuations operators defined in section 1 A.1.1, it becomes

Î− =
~ω0

2ε0cT

∞∑

n=0

[
(α∗n + δâ†n)(αLO,n + δâLO,n) + (α∗LO,n + δâ†LO,n)(αn + δân)

]

Let us now consider the case of a local oscillator beam whose mean field profile is
described by the transverse mode uk, i.e. αLO,n = δn,k

√
NLOeiθLO54, where NLO is the

54θLO does not depend on the transverse position ~r as we have assumed that the wave front was plane

in the detector plane.
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number of photons detected during T in the LO beam, and where θLO is the local oscillator
longitudinal phase, which is typically experimentally controlled with a piezoelectric device
(PZT). The mean value of the intensity difference is in this case

〈Î−〉 =
~ω0

2ε0cT
2
√

NLONk cos (θLO), (1.124)

where Nk is the number of photons present in mode uk of the input beam55. It is important
to note here that the only component of the input beam contributing to 〈Î−〉 is the one
defined by the profile of the local oscillator56.

In order to provide a noise reference57, the LO beam is chosen experimentally much
brighter than the input beam, i.e. such as NLO À N . The quantum fluctuations at first
order on the intensity difference, in the linearization approximation defined in section C.2
are given by

δÎ− =
~ω0

2ε0cT

√
NLO(â†ke

iθLO + âke
−iθLO) =

~ω0

2ε0cT

√
NLOδX̂θLO

k , (1.125)

where we have used the definition of the quadrature of angle θLO introduced in Eq.1.31.
The noise on the intensity difference is finally given by approximation presented in

Eq.1.28,

〈δÎ2
−〉 =

(
~ω0

2ε0cT

)2

NLO〈δX̂θLO
k

2〉. (1.126)

Again, only the mode selected by the local oscillator profile is contributing to the noise.
Moreover, it is interesting to note here that the shot noise level, defined for 〈δX̂θLO

k

2〉 = 1,
is independent of the power of the input beam58.

The previous results show the importance of homodyne detection for the study of
quantum optical images. Signal - i.e. mean detected value - and noise contributions arise
only from one single mode within the input beam, which can be selected at will by the
local oscillator profile. Moreover, for each mode, the analyzed noise quadrature can easily
be varied by tuning the LO phase. Homodyne detection therefore acts as a projection of
the input beam on a particular quadrature of a particular mode determined by the local
oscillator phase and mode, respectively.

Using the concept introduced in section 1 C.2, we can state that when a measurement
is performed with a homodyne detector, the noise-mode of detection is the mode defined
by the local oscillator.

C.5 Array Detection

We now consider intensity measurements of an optical beam with an array detector, where
the electronic gain of each pixel is individually tunable, as represented in Fig. 1.10d). Such

55We recall that the quadratures, and thus the phases of each components, are defined relative to the

mean field, i.e. αk =
√

Nkeiθk . Each component can thus have a different phase.
56In particular, it is not necessarily the mean field.
57This can be clearly understood by looking at Eq.1.126 obtained later on, where the shot noise is defined

solely relative to the local oscillator beam.
58This results from the approximation NLO À N , and is not the case for comparable LO and input

beam powers.
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detection device allows to explore the complexity of optical images, thanks to the many
degrees of freedom offered by the gain distribution on all the pixels. Depending on the
need, there exist many ways to extract an information coded into an image intensity
distribution in the transverse plane [Jain89, Katsaggelos91, Bertero98]. The extraction of
the pertinent information generally arises from the numerical computation of a function
F (I(D1), I(D2), ..., I(Dn)) of the intensities I(Di) (i = 1, ..., n) measured on each pixel
Di. To simplify the following discussion, we will restrict ourselves to the linear case. It is
often encountered in real situations, for example when one wants to determine the spatial
Fourier components of an image, or when the variations of the parameter to measure are
small enough so that the function F can be linearized.

The most simple configurations - split-detector and quadrant-detector - are well known,
and widely used. We will often refer to these cases, which have been extensively studied
in our group in order to measure very small displacements of a laser beam. We propose
here a generalization of the results obtained in the following references [Treps02, Treps03,
Treps04,1], not limited to split and quadrant detections.

We first briefly define here the processed signal, and then present in the next sections
the interesting properties and applications of what is referred to as difference measure-
ments. Finally we will give some more general results on linear measurement using an
array detector. Most of the work presented here has been published in reference [Treps05].

C.5.1 Measured signal

An array detector will be described in its most general configuration by a set of pixels,
each of whom occupying a transverse area Di, and measuring the optical power on this
area. The detectors will be assumed to cover the entire transverse plane, with no overlap
between each of them. Each photo-detector delivers a power given by

Î(Di) = 2ε0cT
∫

Di

Ê(+)†(~r)Ê(+)(~r)d2r (1.127)

where T is the integration time, assumed to be identical for all detectors. The quantum
field operator Eq. 1.127 can also be written in photons per second as

N̂(Di) =
2ε0cT

~ω0

∫

Di

Ê(+)†(~r)Ê(+)(~r)d2r. (1.128)

In the following, we will use the expansion of the positive frequency part of the field Ê(+)(~r)
in any transverse basis59, written in the detection plane (see Eq. 1.27)

Ê(+)(~r) = i

√
~ω0

2ε0cT

∑
n

ânun(~r). (1.129)

The quantum operator describing the number of photons incident on pixel i, previously
introduced in Eq. 1.128 can thus be rewritten

N̂(Di) =
∑

i,j

â†i âj

∫

Di

u∗i (~r)uj(~r)d2r (1.130)

59The field does not need to be written in its eigenbasis at this stage.
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A given information will be extracted from an image through the computation of a
definite function of the intensities measured by each pixel. We assume this function to be
linear and we define a measurement by :

M̂({gi}) =
∑

i

giÎ(Di) such as gi ∈ R (1.131)

or again in terms of number of photons per second :

N̂({gi}) =
∑

i

giN̂(Di) (1.132)

where gi corresponds to the electronic gain of detector i.

C.5.2 Difference measurements

• Description
The first type of measurement we consider consists in recording the difference between

the intensities on transverse areas of the field60, which are such as

〈N̂({gi})〉 = 0, (1.133)

where we have used the notations introduced in the previous section. We call such a
measurement, whose mean value is zero, a difference measurement. It has high experimental
relevance. We have proven in appendix A.1 that difference measurements was the an
optimal gain configuration in the two-zone detection case.

A direct consequence arising from the definition is that any difference measurement
yields a cancelation of what is termed the ”common mode noises”, i.e. the noises which
have the same distribution as the mean field. Such noises are directly proportional to the
detected intensity and will therefore cancel for a difference measurement. They for example
arise from classical intensity fluctuations of the light source.

This simple technique of noise cancelation is used to measure for example very small
absorptions [SoutoRibeiro97] by inserting the absorbing medium in the path of one of the
detection areas. It is also extensively used in multi-pixel measurements, either with split-
detectors or quadrant detectors, to measure sub-micrometer displacements, for example
of nano-scale fluorophores in biological samples [Tisher01], for Atomic Force Microscopy
[Senden01], and for ultra-small absorptions by the mirage effect [Boccara80].

However, the detailed analysis of the origin of quantum noise in multi-pixel detectors
has been investigated only for the most simple configurations, i.e. for split-detectors and
quadrant detectors, for which it has been investigated theoretically [Fabre00] and exper-
imentally [Treps02, Treps03, Treps04,1]. This work, done previously in our group, led to
the identification of a particular transverse mode called the flipped mode which was iden-
tified as the only spatial mode contributing to the noise altering a gaussian beam position
measurement. Squeezing this component within the incident field has allowed a reduc-
tion of the measurement noise, and hence an improvement of the detection sensitivity for
displacement measurement.

60Note that even if the detection areas are not paving the entire plane, we can still consider its full

description by virtually adding detectors with null gain to complete it. Moreover, the different detection

areas can even be physically separated, for example using a 50/50 beam-splitter.
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What we propose here is to extend this quantum study to an array of arbitrary shaped
detectors, still for difference measurements first. Of course, this kind of measurement is
strongly field dependent, as the detector is adapted to the field used in the measurement.
For instance, in the case of small displacement measurement of a gaussian beam with a
split-detector, the beam must be centered on the detector, in order to qualify as a differ-
ence measurement. The quantum limits then also depend on the position and shape of the
incident field. It is necessary first to consider which image we want to characterize, and
then consider the limitations in its characterization.

• Single difference measurement with two ”detectors”
Let us begin with the description of simplest difference measurement : a difference

between the intensities on two areas61 of the transverse plane, which means that gi = ±1.
This configuration corresponds for instance to split-detection or quadrant-detection. If
one consider such a difference measurement performed with a coherent state, which has
spatially uncorrelated quantum fluctuations, the noise arising from the measurement will
not depend on the choice of {gi} if gi = ±1, and will be equal to the square root of the
total number of photons [TrepsPhD01]. This corresponds to the shot noise, as detailed in
section 1 A.3.2. In the general case, in order to compute the noise, an analysis equivalent
to the one performed in the case of a small displacement measurement, as done in reference
[Fabre00], is necessary. We recall it here and extend it to the general case of transverse
modes of any shape, in order to show the following proposition :

Proposition 3 The noise on a difference measurement performed on an optical beam
originates from a single mode, orthogonal to the mean field : the ”flipped mode”. In order
to reduce the noise in that measurement, it is necessary and sufficient that the flipped mode
component is a squeezed state.

In order to perform the general noise calculation, let us define the two ”detectors” :

D+ =
⋃

i,gi=+1

Di

D− =
⋃

i,gi=−1

Di (1.134)

which gives, using Eq. 1.130

N̂− = N̂(D+)− N̂(D−)

=
∑

i,j

â†i âj

[ ∫

D+

u∗i (~r)uj(~r)d2r −
∫

D−
u∗i (~r)uj(~r)d2r

]
(1.135)

Considering the quantum fluctuations operators δâi = âi − 〈âi〉, the fluctuations of N̂−
are, at first order in the linearization approximation

δN̂− = N̂− − 〈N̂−〉
=

∑

i

[
δâ†iC

i
− + δâiC

i∗
−

]
(1.136)

61Both areas can consist of several non-joined parts, as in the case of the quadrant detector.
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with Ci− defined as

Ci
− =

∑

j

〈âj〉
[ ∫

D+

u∗i (~r)uj(~r)d2r −
∫

D−
u∗i (~r)uj(~r)d2r

]

= −i

√
2ε0cT

~ω0

[∫

D+

u∗i (~r)〈Ê(+)(~r)〉d2r −
∫

D−
u∗i (~r)〈Ê(+)(~r)〉d2r

]
(1.137)

and where 〈Ê(+)(~r)〉 = i
√

~ω0
2ε0cT

∑
j〈âj〉uj(~r) is the mean value of the positive frequency

part of the electric field operator. Hence, the Ci− coefficients are the partial overlap integrals
between the modes ui and the mean field.

We can now compute the noise related to this measurement :

〈δN̂2
−〉 =

∑

i

|Ci
−|2 +

[∑

i,j

〈δâ†iδâ†j〉Ci
−Cj

− + 〈δâ†iδâj〉Ci
−Cj∗

− + c.c.

]
(1.138)

This shows that the noise related to this measurement arises a priori from all the modes.
We will now demonstrate that the noise comes in fact from a single mode when we

write 〈δN̂2−〉 in the appropriate basis.
We call v0 the amplitude62 of the mode carrying the mean field as defined in section 1

A.2.4, such as

〈Ê(+)(~r)〉 = i

√
~ω0

2ε0cT

√
Nv0(~r) (1.139)

where the mean number of photons in the entire field will be denoted N . Let us define
an eigen-basis63 of the field, using v0 as the first mode of the basis. The mean value of
the electric field in all the other modes will therefore be zero. We define the real mode v1,
which we will refer to as the ”flipped mode” of v0, such as :

v1(~r) = v0(~r) if r ∈ D+

v1(~r) = −v0(~r) if r ∈ D− (1.140)

A one-dimensional example of a flipped mode is presented in Fig. 1.11 for a gaussian TEM00

mean field illumination, and where D− and D+ respectively correspond to the left and
right half of the transverse plane, i.e. to a split-detection64. The profile is in this case a
TEM00 with a π phase flip in its center [Delaubert02].

A very important property of the mode defined in Eq.1.140 is its orthogonality to the
mean field. Using Eq. 1.135, the mean value of the total measurement is

〈N̂−〉 = N

[ ∫

D+

v0(~r)v0(~r)d2r −
∫

D−
v0(~r)v0(~r)d2r

]

= N

∫

D
v0(~r)v1(~r)d2r = 0, (1.141)

62As the array detector is only sensitive to the mean intensity of the field and not to the phase of the

mean field, we choose to take into account only the amplitude of the light field. v0 is thus a real mode

profile.
63See proposition 2.
64Note that this particular case has been extensively studied in reference [TrepsPhD01]. We will also

detail the experimental relevance of this flipped mode in the following.
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Figure 1.11: Flipped mode in the case of a TEM00 illumination on a split-detector.

where we have used the expression flipped mode defined in Eq. 1.140, and where we
have added that 〈N̂−〉 = 0, as we deal with a difference measurement. Hence, we get∫
D v0(~r)v1(~r)d2r = 0, where the integration spans here over the entire transverse plane.

This proves that v1 is orthogonal to v0. It is thus possible to find a real basis {vi, b̂i} where
v0 and v1 are the two first modes. In that basis, the overlap integrals defined in Eq. 1.137
become :

Ci
− =

√
N

[ ∫

D+

vi(~r)v0(~r)d2r −
∫

D−
vi(~r)v0(~r)d2r

]

=
√

N

∫

D
vi(~r)v1(~r)d2r

=
√

Nδi,1. (1.142)

These integrals are different from zero only for the flipped mode. The noise defined in Eq.
1.138 thus becomes

〈δN̂2
−〉 = N

[
1 + 〈δb̂†21 〉+ 〈δb̂2

1〉+ 〈δb̂†1δb̂1〉+ 〈δb̂1δb̂
†
1〉

]
, (1.143)

and ordering terms in the natural order yields

〈δN̂2
−〉 = N〈: (δb̂†1 + δb̂1)2 :〉

= N〈δX̂+2
1 〉 (1.144)

where N represents the shot noise, i.e. the noise level obtained for a coherent illumination,
for which 〈δX̂+2

1 〉 = 1. This calculation shows that, for a difference measurement with
two ”detectors”, the noise in the measurement is exactly the one of the flipped mode of v0

which is in phase with the mean field mode, and does not arise from any other mode. It is
therefore here the noise-mode of detection, as defined in section 1 C.2. Changing the noise
properties of the flipped mode is then the only way to change the noise in the measure-
ment. Filling this mode with squeezed light is thus a necessary and sufficient condition to
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improve the measurement relative to the quantum noise limit. This demonstrates propo-
sition 3. Note that the result given in Eq. 1.144 involves the noise of only one quadrature
of the flipped mode. Therefore, the conjugate quadrature of the flipped mode can be filled
with large anti-squeezing noise without increasing the measurement noise. Moreover, all
the other modes do not contribute either, and can be in any state. Note that there is
not only one practical solution to the improve the measurement below the quantum noise
limit65.

In order to summarize our results, we present below a definition of a perfect difference
measurement, which can be shown to be valid not only in the two-zone case, but for any
difference measurement66.

Proposition 4 In order to improve the sensitivity of a difference measurement, it is nec-
essary to use a non-classical multi-mode beam of degree superior or equal to 2. A two mode
beam is a perfect solution of the problem if and only if it can be described in a transverse
mode basis {âi, vi} such as :

• v0 is proportional to the electric field profile of the beam, it is then the only non-
vacuum mode.

• v1 is the flipped mode of the measurement defined by Eq. 1.140.

• all the modes, apart from v0 and v1, are vacuum states (i.e. it is an eigen-basis of
the field).

• the noise of the flipped mode, in the quadrature homodyned by the main mode, is
perfectly squeezed.

We have demonstrated which mode one needs to fill with squeezed light in order to
perform a single difference measurement on a beam. We can now extend this analysis to
the case of several difference measurements.

• Multiple difference measurement with two ”detectors”
Let us consider n difference measurements of the type of equation (1.133). We will

assume that these measurements are independent, which means that none of them is a
linear combination of the other ones. One can show that the corresponding flipped modes
are then also linearly independent. We have shown that in order to improve simultaneously
the sensitivity of all these measurements, it is necessary and sufficient to fill all these flipped
modes with squeezed light. Practically these modes are in general not orthogonal, but one
can find an orthogonal basis of the subspace generated by these modes. Injecting squeezed
vacuum states in each of these modes will result in squeezed states in each of the flipped
modes.

65A locally squeezed state would yield the same result. However, the cost in resources is enormous com-

pared to the requirement of a single squeezed state.
66We have chosen here to limit our analysis to 2 detection zones in order to highlight the properties

of difference measurements more clearly. All the results presented here are still valid for any number of

pixels, with gains different from gi = ±1. The general case of the difference measurement is in fact a

particular case of linear measurement presented in section C.5.3, from which results it can be proven that

any difference measurement satifies proposition 4.
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Regarding the degree of the beam necessary to improve simultaneously all the mea-
surements, it is clear that in order to perfectly squeeze all the flipped modes, a beam
of degree n + 1 is necessary (and sufficient). We can summarize all the considerations of
section 1 C.5.2 into a proposition :

Proposition 5 In order to reduce the noise simultaneously in n independent difference
measurements it is necessary and sufficient to use a beam of degree at least n+1 that can
be described in a transverse mode basis {âi, ui} such as : u0 is proportional to the electric
field profile of the beam; {ui}0<i≤n is the basis of the space-vector generated by the flipped
modes of the measurements and all these modes are perfectly squeezed.

It is interesting to note that this proposition involves only the noise of a single quadra-
ture of each flipped mode. All the other parameters (noise of the other quadrature, of the
remaining modes,...) are not relevant for these specific measurements67.

C.5.3 General linear measurement

Difference measurements are obviously not the only ones performed in image processing
[Jain89, Katsaggelos91, Bertero98].

We consider now a general linear measurement of the optical field. In the formalism of
Eq. 1.131 and 1.132, it means that the electronic gains gi can now take any real value and
are not restricted to ±1 anymore. A measurement is now defined by

M̂({gj}) =
∑

j

gj Î(Dj)

N̂g =
∑

j

gjN̂(Dj) (1.145)

We emphasize that, unlike in the previous section, the mean value of the measurement is
not necessarily zero. In that case, we will show the following proposition :

Proposition 6 Considering a field described in an eigenbasis {b̂i, vi}, and considering
a linear measurement performed with and array of detectors Di, each detector having a
gain gi, the noise on the measurement N̂g =

∑
j gjN̂(Dj) arises only from the generalized

flipped mode w defined by :

∀~r, ~r ∈ Di ⇒ w1(~r) =
1
f

giv0(~r) (1.146)

where f is a normalization factor, and v0(~r) is the mode carrying the mean field.

Here, there is not much sense in defining the positive and negative gain domains. We
can however extend the notion of overlap integral between a basis vector and the mean
field, as defined in Eq. 1.137 :

Ci
g = −i

√
2ε0cT

~ω0

∑

j

gj

∫

Dj

u∗i (~r)〈Ê(+)(~r)〉d2r (1.147)

67Our proposition corresponds to the minimal resources necessary to have a perfect measurement. How-

ever, more complex states can be used, with the same performances, such as locally squeezed beams.
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which leads to the following expression, equivalent to Eq. 1.138

〈δN̂2
g 〉 =

∑

i

|Ci
g|2 +

[ ∑

i,j

〈δâ†iδâ†j〉Ci
gC

j
g + 〈δâ†iδâj〉Ci

gC
j∗
g + c.c.

]
(1.148)

Recalling that 〈Ê(+)(~r)〉 = i
√

~ω0
2ε0cT

√
Nv0(~r), we can also extend the notion of flipped

mode introduced in Eq.1.140 and define a generalized flipped mode, or a noise-mode of
detection by

∀~r, ~r ∈ Di ⇒ w1(~r) =
1
f

giv0(~r) (1.149)

where f ensures the normalization of w1 :

f2 =
∑

j

g2
j

∫

Dj

v∗0(~r)v0(~r)d2r. (1.150)

In order to calculate the noise in the measurement, it is necessary to construct a basis
that contains the detection mode w1. However, as the mean value of the electric field in
this mode is different from zero, w1 in not necessarily orthogonal to v0, and it is not always
possible to obtain an eigenbasis with w1. Nevertheless, we can still choose w0 such as the
mean field mode v0 is a linear combination of w0 and w1. Choosing all the other modes
wi (with i ≥ 2) in order to obtain an orthonormal basis, we get a basis such as the mean
field is distributed in the two first modes w0 and w1, where w1 is the detection mode. The
other modes are chosen in order to complete the basis, and are such as their mean electric
field value is zero. We can then perform a calculation similar to the one presented in the
previous section, yielding:

Ci
g =

√
Nf

∫

D
wi(~r)∗w1(~r)d2r =

√
Nfδi,1 (1.151)

Once again the detection mode is the only relevant one for the calculation of the measure-
ment noise. Taking into account that the normalization giving rise to the shot noise has
changed because the gains do not all necessarily have a gain of modulus 1,

∑

i

|Ci
g|2 = |C1

g |2 = Nf2, (1.152)

and the noise formula given in Eq. 1.148 becomes

〈δN̂2
g 〉 = f2N〈δX̂+2

1 〉 (1.153)

where 〈δX̂+2

1 〉 is the amplitude quadrature noise corresponding to the mode w1(~r) of the
incoming field.

The f2 factor is a global effect of the gain, and modifies both the measured signal
and the shot noise level. In any case, if the flipped mode is perfectly squeezed, we can
still perform a perfect measurement. However, the experimental configuration is more
complicated as, in general, the mean value of the electric field in mode w1 is different from
0, which means that, as is shown in appendix A.2, generating the good mode is difficult.
An appropriate approach would be to describe the field back into an eigen-basis, and check
how to set the noise of the different modes in that basis. We will see in appendix A how
this can be done in a simple case. The important result of this part is that whatever the
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measurement we perform, the noise arises only from one mode. Changing the noise of this
mode allows us to improve the sensitivity of the measurement. As in the previous section,
it is also possible in the general case to perform several simultaneous measurements, and
to identify the subspace of modes responsible for the noise.

It is interesting to note that, in the particular case of a measurement where the gains
are adapted to have 〈M̂({gj})〉 = 0, the mode v0 coincides with w0. Indeed, v0 is here
orthogonal to w1 :

∫

D
w∗1(~r)v0(~r)d2r =

∑

j

gj

f

∫

Dj

v∗0(~r)v0(~r)d2r (1.154)

∝ 〈
∑

j

gjN̂(Dj)〉

= 0

hence the basis is an eigen-basis of the field. Again, that case is relevant experimentally as
it means that one can act on the noise without perturbing the mean field mode. Indeed, in
order to implement the theory developed here to complex experimental configurations, it
is preferable for the various detection modes to be orthogonal to the mean field (i.e. they
do not contribute to the mean electric field). They can then be mixed with the mean field
without introducing losses. For instance, one can use the proposal which has be detailed
in [Treps04,1], in order to mix two non-classical beams in orthogonal transverse modes,
and a mean coherent field, in order to improve the sensitivity of the transverse position
measurement of a laser beam. These experimental techniques will be developed in chapter
4.

In this section, we have shown that it was possible to perform one array-detector mea-
surement beyond the quantum noise limit by injecting squeezed light in an identified mode
called the flipped mode, which corresponds here to the noise-mode of detection. Moreover,
we have proposed a way to extend this to simultaneous independent measurements.

C.6 Homodyne array detection

A homodyne array detection consists of a combination of identical array detectors in a
homodyne detection configuration, as shown in Fig. 1.10e). Such a device has never been
implemented experimentally, but could be very interesting as it would combine advantages
of both array and homodyne schemes. Indeed, the pixel detectors allows simultaneous spa-
tial measurements in the image, without having to change the local oscillator between each
measurement, and the homodyne configuration allows to probe all different quadratures
of the incident image [Raymer93]. The shape of the local oscillator and the pixel gain
distribution best adapted for a particular type of measurement will be investigated .

D Conclusion

In this first chapter, we have rigourously defined multi-mode quantum state of light, and
have presented their general expression when decomposed in a transverse spatial basis.
Moreover, we have shown how to selectively measure a particular component of the multi-
mode field with different measurement devices. This has notably allowed us to introduce
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the concept of noise-mode of detection. This crucial point will provide an understanding
of optimal measurements of a given parameter in chapter 3. Our analysis has been so
far limited to pure states and a more complete description involving mixed states will be
investigated.
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H
igh density data storage represents a major challenge for opticians [VanDeNes06,1].
Since the first commercialization of the Compact Disc in 1983, optical techniques
have been developed in order to store more and more information on a 12 cm

diameter disc, as shown in table 2.1. Such an evolution has been allowed by the modification
of two main key parameters : the read-out laser wavelength λ and the numerical aperture
NA of the optical system.

Further developments along this track will now be confronted to several difficulties.
First, further decrease of the laser wavelength to the UV domain is not realistic yet, as
compact and low-cost UV laser sources are not available. Moreover, further increase of the
numerical aperture would require solid immersion lenses or near-field optics, which would
compromise the accessibility of the optical media and the robustness of the system for

55
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System Year λ [µm] NA λ/NA Capacity [GB/layer]
Compact Disc 1983 0.785 0.45 1.74 0.65

DVD 1995 0.650 0.60 1.08 4.7
HD-DVD 2006 0.405 0.65 0.62 16
Blu Ray 2006 0.405 0.85 0.48 23

Table 2.1: Evolution and properties of commercial optical disc data storage systems.

commercial use. Furthermore, this modification would not yield noticeable improvement
as the size of the focal point in Blu-Ray systems is already almost reaching the diffraction
limit.

An alternative approach consists in multiplexing the information by encoding and
reading several bits in a single storage location, i.e. within the focussed laser spot1. As such,
we have proposed two complementary schemes [Delaubert06,2, Hsu06]. First, information
is encoded onto the transverse profile of the beam and read-out with a spatial resolving
detector such as a CCD camera. Secondly, the information is encoded in the longitudinal
phase of the beam and read-out using interferometric measurements. Each one of these
schemes is detailed in the two articles reported at the end of this chapter.

We emphasize that both proposals should be considered as proofs of principle as they
do not provide a concrete apparatus yet. We did not seek to optimize the shape of the
pits, nor their dimension and the detection device. However, we have shown the enormous
potential of these schemes for high-density optical data storage. Moreover, note that they
are compatible with further modifications of wavelength and aperture.

Encoding and reading details whose size is of the order, or below, the wavelength
onto an optical beam is termed super-resolution. In such a regime, the non-paraxial beam
propagation has to be taken into account. Diffraction plays a major role, signals to be
distinguished are small, and noise becomes an important issue.

In our analysis, we concentrated on the influence of quantum noise in optical read-out.
The shot noise already represents a few percents of the overall noise in Blu-Ray systems,
and will surely be a limiting factor in the next generation of optical data storage equipment.
As our analysis does not intrinsically depends on the focussing regime, we have chosen,
as a first step, to restrict our study to the paraxial regime. Although the non-paraxial
propagation of strongly focussed laser beams, for which the vectorial aspects of light has
to be taken into account, has been investigated for decades now, it remains a difficult
problem and is still an active field of research [VanDeNes06,1, VanDeNes06,2].

In further development of this work, we will include the non-paraxial propagation of
light. Moreover, an experiment is being set-up in order to establish a clear correspondence
between diffraction limit and standard quantum noise limit. Indeed, when one asks the
simple question : ”what is the limiting factor to the imaging of smaller and smaller details
in an optical image?”, the answer can either be ”diffraction” or ”quantum noise”, according
to which research community the question is addressed...

1Note that other alternatives are currently investigated, such as multi-layered optical discs VMD (Ver-

satile Multilayer Disc) and holographic medium HVD (Holographic versatile disc).
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beyond the quantum noise limit.
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I. INTRODUCTION

The reconstruction of an object from its image beyond the
diffraction limit, typically of the order of the wavelength, is a
hot field of research, though a very old one, as Bethe already
dealt with the theory of diffraction by subwavelength holes
in 1944, to the best of our knowledge �1�. More recently, a
theory has been developed to be applied to the optical stor-
age problem, in order to study the influence of very small
variations of pit width or depth relative to the wavelength
�1–6�. To date, only a few super-resolution techniques �7�
include a quantum treatment of the noise in the measure-
ment, but to our knowledge, none has been applied to the
optical data storage problem.

Optical disks are now reaching their third generation, and
have improved their data capacity from 0.65 Gbytes for
compact disks �using a wavelength of 780 nm�, to
4.7 Gbytes for DVDs ��=650 nm�, and eventually to 25 GB

for the Blu-Ray disks �using a wavelength of 405 nm�. In
addition to new coding techniques, this has been achieved by
reducing the spot size of the diffraction-limited focused laser
beam onto the disk, involving higher numerical apertures and
shorter wavelengths.

Several further developments are now in progress, such as
the use of volume holography, 266 nm reading lasers, im-
mersion lenses, near field systems, multidepths pits �8�, or
information encoding on angle positions of asymmetrical pits
�9�. These new techniques rely on a bit discrimination using
small variations of the measured signals. Therefore, the noise
is an important issue, and ultimately, quantum noise will be
the limiting factor.

In this paper, we investigate an alternative and comple-
mentary way to increase the capacity of optical storage, in-
volving the retrieval of information encoded on a scale
smaller than the wavelength of the optical reading device.
We investigate a way to optimize the detection of subwave-
length structures using multipixel array. With an attempt to a
full treatment of the optical disk problem being far too com-
plex, we have chosen to illustrate our proposal on a very
simple example, leaving aside most technical constraints and
complications, but still involving all the essence of the over-
all problem.

We first explain how the use of an array detector can lead
to an improvement of the detection and distinction of sub-

wavelength structures present in the focal spot of a laser
beam. We then focus on information extraction from an op-
tical disk with a simple but illustrative example, considering
that only a few bits are burnt on the dimensions of the focal
spot of the reading laser, and show how the information is
encoded from the disk to the light beam, propagated to the
detector, and finally detected. We explain the gain configu-
ration of the array detector that has to be chosen in order to
improve the signal-to-noise ratio of the detection. Moreover,
as quantum noise is experimentally accessible, and will be a
limiting factor for further improvements, we perform a quan-
tum calculation of the noise in the detection process. Indeed,
we present how this detection can be optimized to perform
simultaneous measurements below the quantum noise limit,
using nonclassical light.

II. PROPOSED SCHEME FOR BIT SEQUENCE

RECOGNITION IN OPTICAL DISKS

We propose an optical readout scheme shown in Fig. 1
allowing information extraction from optical disks beyond
the diffraction limit, based on the multipixel detection. Bits,
coded as pits and holes on the optical disk, induce phase flips
in the electric field transverse profile of the incident beam at
reflection. The reflected beam is imaged in the far field of the
disk plane, where the detector stands. In the far field, the
phase profile induced by the disk is converted into an inten-
sity profile, that the multipixel detectors can, at least partly,
reconstruct.

FIG. 1. �Color online� Scheme for information extraction from

optical disks, using an array detector.

PHYSICAL REVIEW A 73, 013820 �2006�
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Taking into account that a lot of a priori information is
available—i.e., only a finite number of intensity profiles is
possible—we propose to use a detector with a limited num-
ber of pixels Dk whose gains can independently be varied
depending on which bit sequence one wants to detect. The
signal is then given by

S = �
k

�kNk, �1�

where Nk is the mean photon number detected on pixel Dk,
and �k is the electronic gain of the same pixel. Ideally, to
each bit sequence present on the disk corresponds a set of
gains chosen so that the value of the measurement is zero,
thus canceling noise from the mean field. Measuring the sig-
nal for a given time interval T around the centered position
of a bit sequence in the focal spot, and testing, in parallel, all
the predefine sets of gain in the remaining time, allows us to
deduce which bit sequence is present on the disk.

We will first show that this improvement in a density of
information encoded on an optical disk is already possible
using classical resources. Moreover, as the measurement is
made around a zero mean value, the classical noise is mostly
canceled. Hence, we reach regimes where the quantum noise
can be the limiting factor. We will demonstrate how to per-
form measurements beyond the quantum noise limit, using
previous results on quantum noise analysis in multipixel de-
tection developed in Ref. �10�.

III. ENCODING INFORMATION FROM A DISK ONTO A

LIGHT BEAM

We have explained the general principle of readingout
subwavelength bit sequences encoded on an optical disk, and
now focus on the information transfer from the optical disk
to the laser beam, through an illustrative example.

Let us recall that bits are encoded by pits and holes on the
disk surface: a step change from hole to pit �or either from
pit to hole� encodes bit 1, whereas no depth change on the
surface encodes bit 0, as represented in Fig. 2. A hole depth
of � /4 ensures a � phase shift between the fields reflected by
a pit and a hole. In this section, we compute the incident field
distribution on the optical disk affected by the presence of a
bit sequence in the focal spot, and finally analyze the inten-
sity back reflected in the far field, in the detection plane, as
sketched in Fig. 1.

A. Beam focalization

Current optical disk readout devices involve a linearly
polarized beam strongly focused on the disk surface to point
out details whose size is of the order of the laser wavelength.
The numerical aperture �NA� of the focusing lens can be
large �0.47 for CDs, 0.6 for DVDs, and 0.85 for BLU RAY
disks�, and the exact calculation of the field cannot be done
in the paraxial and scalar approximation. Thus, the vectorial
theory of diffraction has to be taken into account.

The structure of the electromagnetic field in the focal
plane of a strongly focused beam has been investigated for
decades now �11�, as its applications include areas such as
microscopy, laser microfabrication, micromanipulation, and
optical storage �12–19�.

In our case of interest, we can restrict the field calculation
to the focal plane, which is the disk plane. Thus Richards and
Wolf integrals �20�, that are not suitable for a general propa-
gation of the field, but which can provide the field profile in
the focal plane for any type of polarization of the incoming
beam as long as the focusing length is much larger than the
wavelength, can be used to achieve this calculation. These
integrals have already been used in many publications deal-
ing with tight focusing processes �21–28�. As highlighted in
these references, the importance of the vectorial aspect of the
field can easily be understood when a linearly polarized
beam is strongly focused, as the polarization of the wave
after the lens is not perpendicular to the propagation axis
anymore and has thus components along this axis. In order to
estimate the limit of validity of the paraxial approximation,
we computed focused spot sizes of linearly polarized beams
in the focal plane for different numerical apertures, first in
the paraxial approximation, and then calculated with
Richards and Wolf integrals. The results are compared in Fig.
3 for an incident plane wave in an air medium with
�=780 nm, where the spot size is defined as the diameter

FIG. 2. �Color online� Example of a bit sequence on an optical

disk. The spacing between the bits is smaller than the wavelength,

the minimum waist of the incident laser beam being of the order of

�. A hole depth of � /4 insures a � phase shift between fields re-

flected on a pit and a hole.

FIG. 3. �Color online� Evolution of the focused spot size of an

incident plane wave with the numerical aperture �for �=780 nm in

air medium�. The spot size is limited to the order of the wavelength

in the nonparaxial case ���, whereas it goes to zero for very high

numerical apertures in the paraxial case ���.

DELAUBERT et al. PHYSICAL REVIEW A 73, 013820 �2006�
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which contains 86% of the focused energy, as in Ref. �29�.
We see that when the numerical aperture exceeds 0.6, a good
prediction requires a nonparaxial treatment. Moreover,
whereas there is no theoretical limit to focalization in the
paraxial case, we see that nonparaxial effects prevent us to
reach a waist smaller than the order of the wavelength. Note
that this limit is not fundamental and can be overcome by
modifying the polarization of the incoming beam. Quabis
and co-workers have indeed managed to reduce the spot area
to about 0.1 �

2 using an incident radially polarized doughnut
beam �21,24�.

As our aim is to present a demonstration of principle and
not a full treatment of the optical disk problem, the following
calculations will be done using the physical parameters of
the actual compact disks ��=780 nm and NA=0.47, corre-
sponding to a focalization angle of 27° in air medium�. In
this case, the paraxial and scalar approximations are still
valid. Indeed, Fig. 4, giving the transverse profile of the three
field components and the resultant intensity in the focal plane
using the former parameters, shows that although the field is
not strictly linearly polarized as foreseen before, Ey �Ez

�Ex, and we can thus consider that only Ex is different from
zero with a good approximation. Note that the exact expres-
sion would not intrinsically change the problem, as our
scheme can be adapted to any field profile discrimination.

B. Reflection onto the disk

In order to compute the reflected field, we simply assume
that bumps and holes are generated in such a way that
they induce a � phase shift between them at reflection on the
field profile. Note that the holes’ depth is usually � /4, but
precise calculations would be required to give the exact
shape of the pits, as they are supposed to be burnt below the
wavelength size, and as the field penetration in those holes is
not trivial �4–6�. As we have shown that only one vectorial
component of the field was relevant in the focal plane, we
can directly apply this phase shift to the amplitude profile of
this component.

We first envision a scheme with only three bits in the
focal spot, which means that 23 different bit sequences, i.e., a
byte, have to be distinguished from each other, using the
information extracted from the reflected field. Note that we
neglect the influence of other bits in the neighborhood. A
more complete calculation involving this effect with more
bits will be considered in a further approach.

The amplitude profiles obtained when the incident beam
is centered on a bit of the CD are presented on Fig. 5, for a
particular bit sequence. Note that we have chosen the space
between two bits on the disk equal to the waist size of the
reading beam. The first three curves, respectively, show the
field amplitude profile incident on the disk, an example of a
bit sequence, and the corresponding profile just after reflec-
tion onto the disk. We see that binary information is encoded
from bumps and holes on the CD to phase flips in the re-
flected field.

C. Back propagation to the detector plane

In order to extract the information encoded in the trans-
verse amplitude profile of the beam, the field has to be back
propagated to the detector plane. A circulator, composed of a
polarizing beam splitter and a Faraday rotator, ensures that
the linearly polarized reflected beam reaches the array detec-
tor, as shown in Fig. 1. Assuming that the detector is posi-
tioned just behind the lens plane, the expression of the de-
tected field is given by the far field of the disk plane,
apertured by the diameter of the focusing lens. As the focal
length and the diameter of the lens are large compared to the
wavelength, we use the Rayleigh Sommerfeld integral to
compute the field in the lens plane �30�. As an example, the
calculated far field profile when the bit sequence 111 is
present in the focal spot is shown on the fourth graph of
Fig. 5.

FIG. 4. �Color online� Norm of the different field components

and resultant intensity in the focal plane with a linearly polarized

incident field along the x axis, focused with a 0.47 numerical

aperture.

FIG. 5. �Color online� Modifications of the transverse amplitude

field profile trough propagation, in the case of a 111 bit sequence in

the focal spot: �a� incoming beam profile; �b� 111 bit sequence; �c�

corresponding reflected field in the disk plane; �d� far field profile in

the detector plane.
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60 Chapter 2. Quantum study of optical storage

The presence of the lens provides a limited aperture for
the beam and cuts the high spatial frequencies of the field,
which can be a source of information loss, as the difference
between each bit sequence can rely on those high frequen-
cies. However, we will see that enough information remains
in the low frequency part of the spatial spectrum, so that the
8 bits can be distinguished. This is due to the fact that we
have in this problem a lot of a priori information on the
possible configurations to distinguish.

We see in Fig. 6 that, with the physical parameters used in
compact disk readout devices, 6 over 8 profiles in the detec-
tor plane are still different enough to be distinguished. At this
stage, we are nevertheless unable to discriminate between
symmetric configurations, because they give rise to the same
far field profile. Therefore, 100 and 001, and 110 and 011,
cannot be distinguished. Note that this problem can be
solved thanks to the rotation of the disk. Indeed, an asym-
metry is created when the position of the disk relative to the
laser beam is shifted, thus modifying differently the two pre-
viously indistinguishable profiles. As shown in Fig. 7, where
the far field profiles are represented after a shift of w0 /6 in
the position of the disk, the degeneracy has been removed.
Moreover, it is important to note that the other profiles ex-
perience a small shape modification. This redundant informa-
tion is very useful in order to remove ambiguities while the
disk is rotating.

IV. INFORMATION EXTRACTION FOR BIT SEQUENCE

RECOGNITION

In this section, we describe the detection, present some
illustrative results, and the way they can be used to increase
the readout precision of information encoded on optical
disks. We show here that a pixellized detector with a very
small number of pixels is enough to distinguish between the

8 bit sequences. Note that for technical and computing time
reasons, it is not realistic to use a charge-coupled device
�CCD� camera to record the reflected images, as such cam-
eras cannot yet combine good quantum efficiency and high
speed.

A. Detected profiles

For simplicity reasons, we limit our calculation to a
5 pixels array detector D1 , . . . ,D5, each of whom has an
electronic gain �1 , . . . ,�5, as shown in Fig. 8 The size of
each detector has been chosen without a systematic optimi-

FIG. 6. �Color online� Field profiles in the array detector plane,

for each of the 8 bit sequence configuration. Note that they are

clearly distinguishable, except for the bit sequences 100 and 001,

and 011 and 110, which have the same profile because of the sym-

metry of the bit sequence relative to the position of the incident

laser beam.

FIG. 7. �Color online� Field profiles in the array detector plane,

for each of the 8 bit sequence configuration, when the position of

the disk has been shifted of w0 /6 relative to the incident beam. The

profile degeneracy for 100 and 001, and 011 and 110 is raised. Note

that the other profiles have experienced a much smaller shape modi-

fication between the two positions of the disk.

FIG. 8. �Color online� Far field profiles for each bit configura-

tion, and array detector geometry. The 5 detectors D1 , . . . ,D5 have

electronic gains �1�i� , . . . ,�5 , . . . , �i� according to the bit sequence i

which is present in the focal spot.
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zation, which will be done in a further approach. Gain values
are adapted to detect a mean signal equal to zero for each bit
configuration present in the focal spot, in order to cancel the
common mode classical noise present in the mean field �10�.
It means that for each bit sequence i, gains are chosen to
satisfy the following relation:

�
k=1

5

�k�i�Nk�i� = 0, �2�

where Nk�i� is the mean photon number detected on pixel Dk

when bit i is present in the focal spot on the disk

Nk�i� = �
Dk

ni�x�dx , �3�

where ni�x� is the number of photons incident on the array

detector, at position x, when the bit sequence i is present in
the focal spot.

As all profiles are symmetrical when the incident beam is
centered on a bit, we have set �1=�5 and �2=�4. In addi-
tion, we have chosen �3=−�1 /2. Using these relations and
Eq. �2�, we compute gain values adapted to the recognition
of each bit sequence. Note that the calculation of each gain
configuration requires a priori information on the far field
profiles, or at least an experimental calibration using a well-
known sample.

Now that these gain configurations are set, we can inves-
tigate for a bit sequence on the optical disk.

B. Classical results

The expression of the detected signal Si�j� is given by

Si�j� = �
k=1

5

�k�j�Nk�i� , �4�

where i refers to the bit sequence effectively present in the
focal spot, and j to the gain set adapted to the detection of
the bit sequence j. It merely corresponds to the intensity
weighted by the electronic gains. Note that for i= j—and
only in this case if the detector is well chosen—the mean
value of the signal Si�i� is equal to zero, according to Eq. �2�.

All possible values of Si�j� are presented for a total number

of incident photons Ninc=25, in Table I where i is read ver-
tically, and corresponds to the bit sequence on the disk,
whereas j is read horizontally and refers to the gain set
adapted to the detection of bit j. In order not to have redun-
dant information, we have gathered results corresponding to
identical far field profiles. A zero value is obtained for only
one gain configuration, allowing an identification of the bit
sequence present in the focal spot.

The reading process to determine which bit sequence is lit
on the disk follows these few steps: the time dependent in-
tensity is first measured on each of the five detectors with all
electronic gains set to 1; these intensities are integrated for a
time T; the signal is then calculated, using the different gain
configurations j; the bit sequence effectively present in the
focal spot is determined by the only signal yielding a zero
value. Note that the second step just corresponds to the Nk

measurements. The integration time T is chosen as the time
interval during which the signal leads to the determination of
a unique bit sequence. The third step corresponds to the
simple calculation of a line in Table I. This can be done in
parallel thanks to the speed of data processing on dedicated
processors, and the reading rate will thus not be affected
compared to current devices. Finally, note that the last step
requires a good choice of the parameters in order to be able
to distinguish all bit sequences. It means that the noise level
has to be smaller than the difference between the two closest
values from 0, in order to get a zero mean value for only one
bit sequence. Indeed, there must be no overlap between the
expectation values when we take into account the noise and
thus the uncertainty relative to each measurement. Note that
using the zero value as the discriminating factor could be
combined with the use of all the calculated values, as each
line of Table I is distinct. We just need to know how to
weight each data point according to the noise related to its
obtention.

V. NOISE CALCULATION

A. The shot noise limit

To include the noise in our calculation, we separate clas-
sical and quantum noise contributions. The classical noise
comprises residual noise of the laser diode, mechanical, and
thermal vibrations. The major part of this noise is directly
proportional to the signal, i.e., to the number of detected
photons. For a detection of the total number of photons Ninc

in the whole beam during the integration time of the detector,

the classical noise contribution ���Ninc
2 	 would thus be writ-

ten as

���Ninc
2 	 = �Ninc, �5�

where � is a constant factor. And the individual noise vari-
able �Ni�k� arising from detection on pixel Dk is given by

�Ni�k� =
Ni�k�

Ninc

�Ninc. �6�

Using Eqs. �4�–�6� a simple calculation yields the variance of
the signal arising from the classical noise

TABLE I. Detected signals Si�j� where i is read vertically and

corresponds to the bit sequence on the disk, whereas j is read hori-

zontally and refers to the gain set adapted to the detection of bit j.

A zero value means that the tested gain configuration is adapted to

the bit sequence.

000 001/100 010 011/110 101 111

000 0 −34 −204 −254 −77 −303

001/100 15 0 −76 −99 −19 −121

010 23 20 0 −6 16 −13

011/110 24 22 5 0 19 −5

101 19 11 −36 −50 0 −63

111 24 23 9 5 20 0
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��Ŝi
2�j�	Cl =

BSi
2�j�

Ninc

, �7�

where the constant B=Ninc�
2 is the classical noise factor, and

is chosen so that, when B=1 and when all the intensity is
detected by one detector, the classical noise term is equal to
the shot noise term. Note that classical noise does not dete-
riorate measurements having a zero mean value. For this
reason, we have chosen to discriminate bit sequences by
choosing gains such as Si�i�=0, as mentioned earlier.

The calculation of the quantum contribution requires the
use of quantum field operators, describing the quantum fluc-
tuations in all transverse modes of the field. By changing the
gain configuration of the array detector, not only the signal
Si�j� is modified, but also the related quantum noise denoted

��Ŝi
2�j�	Qu, as different gain configurations are sensitive to

noise in different modes of the field. We have shown in Ref.
�10� that for a multipixel detection of an optical image, the
measurement noise arises from only one mode component of
the field, referred to as the detection mode, or noise mode

�31,32�. The expression of the quantum noise is then

��Ŝi
2�j�	Qu = f i,j

2
Ninc��X̂wi,j

2 	 , �8�

where �X̂wi,j
is the quantum noise contribution of the noise-

mode wi,j�x� which is defined for one set of gain j, when the

bit sequence i is present in the focal spot, as

wi,j�x� =
�k�j�ni�x�

f i,j

, ∀ x � Dk �9�

and where f i,j is a normalization factor, which expression is

f i,j
2 =

�k=1

5
�k

2�j�Nk�i�dx

Ninc

. �10�

The noise mode corresponds in fact to the incident field pro-
file weighted by the gains. The shot noise level corresponds

to ��X̂wi,j

2 	=1.

The variance of the signal can eventually be written as

��Ŝi
2�j�	 = f i,j

2
Ninc��X̂wi,j

2 	 +
BSi

2�j�

Ninc

. �11�

We have first represented the classical noise with an ex-
cess noise of 10 dB, as error bars for each result Si�j�, in Fig.

9. We have chosen a representation with a number of de-
tected photons of only 25. Each of the six insets refers to the
measurement obtained for a particular bit sequence in the
focal spot. The six data points and associated error bars refer
to the results obtained when the six gain configurations are
tested. One inset thus corresponds to one line in Table I. We
can see that with this choice of parameters, the bit sequence
effectively present in the focal spot can be determined with-
out ambiguity by the only zero value. The sequence corre-
sponds to the one for which the gains were optimized. We
see that the bit sequence discrimination can be achieved even
with a very low number of photons. The relative immunity to
classical noise of our scheme arises from the fact that mea-
surements are performed around a zero mean value. Thus,
given this limit in the minimum necessary photon number
and the flux of photons one can calculate the maximum data
rate, which is found to be 2�107 Mbits/ s �this estimation

takes into account an integration time T corresponding to
1

10

of the delay between the readout process of two adjacent bits
with a 1 mW laser�. This very high value shows that classi-
cal noise should not be a limit for data rates in such a
scheme.

FIG. 9. �Color online� Classical noise �10 dB

of excess noise� represented as error bars, for �

=0.78 �m, NA=0.47, and 25 detected photons.

Each inset corresponds to the 6 signals obtained

for the different gain configurations, when one

particular bit sequence is present in the focal

spot. Each bit sequence present in the focal spot

can be clearly identified as only one gain configu-

ration can give a zero value for each inset.
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The effect of quantum noise is very small, but becomes a
limiting factor for such a small number of detected photons,
or for a large number of bits encoded on the disk in the
wavelength size. In order to see independently the effect of
each contribution to the noise, we have thus represented in
Fig. 10 the shot noise also for 25 detected photons, appearing
as the threshold under which it is impossible to distinguish
bit sequences because of the quantum noise. Note that for the
represented case, the shot noise is the most important contri-
bution, and that it prevents a bit sequence discrimination, as
a zero value for the signal can be obtained for several gain
configurations in the same inset.

B. Beyond the shot noise limit

When the shot noise is the limiting factor, nonclassical
light can be used to perform measurements beyond the quan-

tum noise limit. We have shown in Ref. �10� that squeezing
the noise mode of the incident field was a necessary and
sufficient condition to a perfect measurement. What we are
interested in is improving the measurements that yield a zero
value, which are obtained when the gain configuration
matches the bit sequence in the focal spot, as Si�i�=0. Using
Eq. �11�, we see that wi,i has to be squeezed. As no informa-
tion on the bit present in the focal spot is available before the
measurement, in order to improve simultaneously all the bit
sequence detections, the six noise modes have to be
squeezed at the same time in the incident field. These six
transverse modes are not necessarily orthogonal, but one can
show that squeezing the subspace that can generate all of
them is enough to induce the same amount of squeezing.

The quantum noise with 10 dB of squeezing on the sub-
space generated by the wi,i is represented as error bars in Fig.

FIG. 10. �Color online� Shot noise repre-

sented as error bars, for �=0.78 �m, NA

=0.47,25 detected photons. Some bit sequences

cannot be determined without ambiguity because

of the noise level.

FIG. 11. �Color online� Quantum detection

noise represented as error bars, for �=0.78 �m,

NA=0.47,25 detected photons and −10 dB of si-

multaneous squeezing for all the flipped modes.

The ambiguity in the presence of shot noise has

been removed and each bit sequence can be

identified.
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64 Chapter 2. Quantum study of optical storage

11. The noise of each noise-mode wi,j is computed using its
overlap integrals with the generator modes of the squeezed
subspace, assuming that all modes orthogonal to the
squeezed subspace are filled with coherent noise. In this
case, the effect of squeezing, reducing the quantum noise on
the measurements, and especially on the measurement for
which the gains have been optimized, is enough to discrimi-
nate bit sequences that were masked by quantum noise.

VI. CONCLUSION

We have proposed a way of information extraction from
optical disks, based on a multipixel detection. We have first
demonstrated, using only classical resources, that this detec-
tion could allow large data storage capacity, by burning sev-
eral bits in the spot size of the reading laser. We have pre-
sented a proof of principle through a simple example which
will be refined in further studies. We have also shown that in

shot noise limited measurements, using squeezed light in ap-
propriate modes of the incident laser beam can lead to im-
provement in bit sequence discrimination.

The next steps are to study in detail how to extract the
redundant information when the disk is spinning, and to sys-
tematically optimize the number of bits in the focal spot, the
number and size of pixels in the array detector. Such a re-
gime involving a large number of bits in the focal spot will
ultimately be limited by the shot noise, and will require the
quantum noise calculations presented in this paper.
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A Quantum Study of Multibit Phase
Coding for Optical Storage

Magnus T. L. Hsu, Vincent Delaubert, Warwick P. Bowen, Claude Fabre, Hans-A. Bachor, and Ping Koy Lam

Abstract—We propose a scheme which encodes information in
both the longitudinal and spatial transverse phases of a contin-
uous-wave optical beam. A split detector-based interferometric
scheme is then introduced to optimally detect both encoded phase
signals. In contrast to present day optical storage devices, our
phase coding scheme has an information storage capacity which
scales with the power of the read-out optical beam. We analyze
the maximum number of encoding possibilities at the shot noise
limit (SNL). In addition, we show that using squeezed light, the
SNL can be overcome and the number of encoding possibilities
increased. We discuss a possible application of our phase-coding
scheme for increasing the capacities of optical storage devices.

Index Terms—Array detection, interferometer, multimode, op-
tical storage, phase coding, quantum noise limit, split detection,
squeezing.

I. INTRODUCTION

T
HE optical compact disc (CD) was developed in 1979

as a collaboration between two corporations—Sony and

Philips. Today, the CD has wide ranging storage applications

from the audio–visual to computer industries. The CD system is

based on a 780-nm laser (laser spot size of 2.1 m) with a storage

capacity of approximately 670 MB. Since their introduction,

there has been increasing demand for greater storage capacities

in optical discs; the digital versatile disc (DVD), based on a

650-nm laser system (spot size of 1.3 m), was introduced.

Depending on the format, it can have storage capacities ranging

from 4.7 to 17.1 GB. More recently, the HD DVD and Blu-Ray

discs, based on a 405-nm laser system, were released. The HD

DVD system has a spot size of 0.76 m and storage capacities of

15–45 GB, while the Blu-Ray disc systems have a smaller spot

size of 0.6 m, with capacities of 25–100 GB [1].
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While nanotechnology allows the fabrication of mechanical

surfaces with nanometer size structures, it is the diffraction limit

of the read-out optics that prevents data storage densities beyond

those of present day systems. The trend of compacting more in-

formation into an optical disc, therefore, primarily relies on the

use of shorter wavelength lasers to achieve smaller diffraction

limited spot sizes. One could envisage that in the not too distant

future, such improvement in the storage density would require

the use of very short wavelength light beyond the ultra-violet

spectrum that cannot be generated with known laser optics.

To date, there have been a number of suggested alternatives

for obtaining higher optical storage densities. For example, cur-

rently under development are next generation holographic de-

vices, the holographic versatile disc (HVD), which have capac-

ities exceeding 300 GB through the usage of volume storage. An

alternative approach depends on the encoding of spatial details

beyond the diffraction limit of the read-out laser beam [1]. This

approach requires the use of near-field microscopy techniques

to resolve subdiffraction limited features.

In this paper, we revisit a well known alternative of using in-

terferometric techniques [2]–[11] to extend optical storage den-

sity. We propose to perform multibit phase-front coding of op-

tical beams in an interferometric setup. Our scheme does not

require holographic nor near-field optics, instead it utilizes two

classes of phase coding—the longitudinal and spatial transverse

phases of an optical beam. We encode information in the lon-

gitudinal phase of a beam, which could take discrete values

ranging from 0 to . The total number of encodeable phase

values scales with the power of the read-out optical beam. We

then introduce an extra encoding degree of freedom, the spatial

transverse phase-front profile of the beam. Note that the spatial

features of a beam are limited by diffraction. In this paper, dense

storage is achieved via small changes in longitudinal phase. We

restrict all beam spatial structure to above the diffraction limit,

and as a result can describe the beam using the paraxial approx-

imation. In order to resolve the encoded longitudinal phase of

the beam, an interferometric scheme is required. To resolve the

spatial phase profile of the beam, a multisegment photo-detector

[e.g., a charge-coupled device (CCD)] can be used.

This paper is sectioned as follows. We first reduce our anal-

ysis of spatial phase-front beam encoding to the situation of a

two-pixel array detector, the split detector [12]–[17]. We iden-

tify the possible phase profiles symmetric with a split detector

and give a modal analysis for these spatial profiles. We also in-

troduce the longitudinal phase of the beam and show how an

interferometric scheme based on split detectors can be used to

simultaneously obtain information on the longitudinal and spa-

tial phases. A quantum analysis of the measurement noise is then

0018-9197/$20.00 © 2006 IEEE
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Fig. 1. The four possible phase-front profiles resulting from the transformation
on the input u (x) beam.

presented. We identify the maximum number of encodeable lon-

gitudinal phases at the shot noise limit (SNL). We then show that

using squeezed light, one can overcome the SNL and thus the

number of encoding possibilities can be further increased. Con-

sequently, we analyze the spectral properties of the signal and

noise of the encoded beam. We compare single and consecutive

measurement techniques, and show that consecutive measure-

ments provides an improved signal-to-noise ratio (SNR), while

ensuring compatibility with squeezed light frequency regimes.

II. CLASSICAL PHASE CODING

In this paper, we consider the detection of a specific set of

possible transverse and longitudinal phase transformations of a

field. To detect such transformations requires a spatially

selective detection system such as a CCD array, split detector or

specifically configured homodyne detector [18]. Split detectors

in particular offer fast response (in the gigahertz regime) and

high efficiency. These factors are critical in high bandwidth op-

tical systems. We, therefore, concentrate our analysis on split

detectors in this paper.

Restricting our analysis to one-dimension, the set of eigen-

modes that best describe split detectors is the flipped eigenmode

basis [19]. The normalized beam amplitude function for

the flipped eigenmode (henceforth termed simply the flipped

mode) of order is defined by a mode with a phase

flip at the center of the mode [19], [20]

for

for
(1)

where is the one-dimensional normalized beam ampli-

tude function of a mode.

To encode split detector compatible information on the phase-

front of a beam, phase flips of this kind should, there-

fore, be applied. This results in four possible bit values, corre-

sponding to the four possible two-pixel phase shifts on ,

as illustrated in Fig. 1. A longitudinal phase factor is also in-

troduced to increase the total number of encoding possibilities.

The phase-coded modes introduced in Fig. 1 are described by

the following transformation:

(2)

(3)

(4)

(5)

In order to resolve the four possible phase-front profiles of

(2)–(5), we propose the phase coding scheme shown in Fig. 2.

Beam 1 undergoes a phase-front transformation upon traversing

Fig. 2. Two-pixel phase coding scheme. BS: beam-splitter, SD: split-detector.
D1, D2, D3, D4: labels for the split detector segments. OPA: optical parametric
amplifier, PO: phase object.

a phase object (PO), resulting in transformed beam 3. Subse-

quently, beams 2 and 3 are combined on a 50:50 beam-splitter

and the two output beams are detected using split detectors.

Each field can be represented by the positive frequency part

of its mean electric field , where is the optical

frequency. We are interested in the transverse information

described fully by the slowly varying field envelope . For a

measurement performed in an exposure time , the mean field

for input beams 1 and 2 are given by

(6)

(7)

where and are the coherent amplitudes of the

input beams 1 and 2, respectively. represents the

longitudinal phase of beam 2.

The photocurrent signal for all segments of the split

detectors are then calculated. The photocurrent signal is re-

lated directly to the mean photon number, given by

and ,

for split detector and segments, respectively.

We consider four possible combinations for the pair-wise

photocurrent addition and subtraction, with the photocurrent

signal terms shown in Table I. The table shows that for both

combinations and , all four mode transformations have

identical signal values of 0 and , respectively.

Thus, the phase-front transformation on the input beam cannot

be determined. Combinations and , on the other hand,

allow the and modes to be detected respectively

with a sign change for the different phase-front transformation.

Moreover, the phase coding scheme is sensitive to the differen-

tial longitudinal phase .

Note that has to be calibrated in order to determine the

encoded phase . is scanned between 0 and until an ex-

tremum value of is obtained. For example, for combi-

nation , a value of for tells us that the

encoded mode-shape is with longitudinal phase

. The maximal signal is obtained for a phase differ-

ence of . This interferometric scheme, therefore,

enables a unique distinction of all of the four phase-front trans-

forms given in (2)–(5).
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TABLE I
PHOTO-CURRENT SIGNAL TERMS

TABLE II
PHOTO-CURRENT NOISE

III. QUANTUM PHASE CODING

We would like to quantify the maximum number of encoding

possibilities, whose limit is ultimately set by the SNL. The SNL

is identified and ways to improve the sensitivity of the measure-

ment using squeezed light are shown. Consider the field oper-

ators in the sideband frequency domain, . For brevity, we do

not explicitly denote the frequency dependence for the field op-

erators hereon, which are given by

(8)

(9)

where the first terms are the coherent amplitude of the

mode. The second terms are the quantum fluctuations

and , with and being annihilation op-

erators, of beams 3 and 2 in Fig. 2, respectively. Depending on

the phase-front transformation on beam 1, the field operator de-

scribing beam 3 is given by

(10)

where the superscript denotes the transformations corre-

sponding to (2)–(5).

The RF photocurrent for all segments of the split detectors

are then calculated similarly to the previous section. The overlap

integrals in the expressions for the photocurrent sum and differ-

ence operators are simplified using the respective orthogonality

properties of the and modes [21]–[23].

The photocurrent noise corresponding to combinations

and are shown in Table II, where we have defined the

quadrature noise operator as . We

assume the phase-front transformation is lossless. Therefore,

the photon statistics of the transformed field is unchanged

relative to the initial field, so that and

. Table II, therefore,

suggests that squeezing the input beams 1 and 2 will lead to

enhanced noise performances.

We now determine the maximum number of encoding possi-

bilities in our phase coding scheme. The encoding limit is deter-

mined by the minimum longitudinal phase difference detectable

. This corresponds to when the signal and noise variances

are equal (i.e., ).

The SNR is calculated by taking the ratio of the signal and

noise variances, given by and , respectively. The cor-

responding SNR of the measurement for the and

modes are denoted by and , respectively, and have the

same form given by

(11)

If the input beams are coherent with

, then .

This coherent state SNR serves as a benchmark for which to

compare the SNR achievable with squeezing. For quadrature

squeezed input beams 1 and 2 (i.e., ),

we see directly that . Squeezed input beams,

therefore, increase the SNR achievable for all possible mode

transformations.

Note that in the limit , our phase imaging scheme

reduces to that of a homodyne measurement with a SNR given

by . The signal and noise

contribution arise from the transverse mode defined by the local

oscillator mode-shape.
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Fig. 3. Maximum log L levels of the phase-front coding scheme as a func-
tion of the total mean number of photons/(Hz.s) utilized in the protocol. (i) Both
input beams amplitude squeezed, (ii) beam 1 amplitude squeezed and beam 2
coherent, (iii) both input beams coherent.

The minimum longitudinal phase difference detectable (i.e.,

) is given by

(12)

where we have assumed that the phase difference between

beams 2 and 3 have been optimized to . Since the

longitudinal phase of beam 3 is determined modulo , the total

number of resolvable phase levels is , which scales

with the power of the read-out optical beam . Note that this

contrasts with conventional optical storage devices which are

restricted to only two encodeable values (i.e., “0” and “1”),

with a SNR proportional to the power of the read-out beam.

Including the four possible transverse encoding combina-

tions, the total number of encodeable levels for our phase

coding scheme is, therefore, given by

(13)

We now consider levels for a fixed optical power

and show how this can be improved via squeezing. The mean

number of photons per bandwidth–time in an optical field

can be related to its coherent amplitude , amplitude

and phase quadrature noise variances by

(14)

The first thing to note is that for squeezed states, is non-zero

even when . Indeed, as the squeezing increases (for am-

plitude squeezing and ) in-

creases monotonically. With regards to our phase-front detec-

tion scheme, these photons do not contribute to the signal,

and, therefore, for a given optical power, , a balance must be

obtained between using photons to minimize the noise (maxi-

mize the squeezing), and to maximize the signal (maximize ).

In this paper, levels for a fixed optical power was max-

imized numerically. This was performed over all possible ra-

Fig. 4. Shot noise normalized level of squeezing required to achieve the op-
timum number of encodeable levels as a function of the total mean number
of photons per bandwidth–time utilized in the protocol. (i) Beam 1 amplitude
squeezed and beam 2 coherent, (ii) both input beams amplitude squeezed.

tios of photons used to minimize the noise, and those used to

maximize the signal. The total optical power is the sum of the

number of photons in each of the input beams, each individu-

ally given by (14). We considered three cases. In the first case,

to provide a benchmark, we considered levels when no

squeezing was available, and both input beams were coherent. In

the second case, squeezing was allowed for beam 1 but beam 2

was coherent. In the third case, both input beams were squeezed.

The maximum levels for each of these cases is shown in

Fig. 3. We see that by far, the best levels is achieved when

both beams are allowed to be squeezed, with 25% capacity

improvement over the coherent state case when 100 photons

per bandwidth–time are used. In the case of only one squeezed

beam, the capacity improvement is 10%.

Of course, due to decoherence and inefficiencies, arbitrary

levels of squeezing are not available. Therefore, it is interesting

to consider not only the maximum levels that can be

achieved, but also whether the amount of squeezing required

to achieve it are feasible. The amount of squeezing required

to achieve the maximum levels for a given total photon

number are shown in Fig. 4 for both the one squeezed beam

and two squeezed beam cases. In both cases, when less than

10 photons per time are utilized, squeezing levels below 10 dB

are required. Although challenging, such levels of squeezing

are experimentally achievable. For more than 10 photons per

bandwidth–time however, the level of squeezing required to

achieve the maximum encodeable levels fast becomes unfea-

sible. Therefore, utilizing squeezed light in the phase-front

detection scheme presented here will only be beneficial when

less than 10 photons are available per measurement interval.

Coherent beams can allow a large number of encodeable

levels. Assuming similar parameters to CD technology and ide-

alized shot noise limited performance, we can encode up to 5000

levels, for a 1-mW beam ( nm, spot size m)

in the limit that , during a 10- s measurement time

(where dB, based on current technology specifi-

cations). Therefore, up to 12-bit encoding per site is possible.

The capacity of CDs can be potentially increased to 8 GB. For
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Fig. 5. Examples of bit encoding allowing denser information storage on op-
tical discs. The binary information is encoded in the transverse and longitudinal
phases of the reflected read-out laser beam. The depth of the “pit” can range from
discrete values between 0 and�=2. Hence, � 2 (�=4; �=2] and � 2 (0; �=4],
where � is the laser wavelength and � is the longitudinal phase shift of the laser
beam. Note that the “pit” depth is half that of the phase shift experienced by the
read-out laser beam due to a round-trip propagation from the optical disc.

lower SNR standards , 19-bit encoding per site

can be achieved, giving a capacity increase of up to 13 GB.

Squeezing can further improve the maximum encodeable levels

in the limit of low laser power. Similar to the multibit encoding

schemes of P. Török’s group [1], our scheme is a significant

improvement over current technology where only one bit per

site is encoded.

IV. POTENTIAL APPLICATION TO OPTICAL STORAGE

In this section, we investigate the compatibility of our phase

coding scheme with an optical disc read-out scheme.

A. Optical Disc Scheme

In conventional CDs, the information is encoded in binary
format, by burning physical indentations (commonly termed
“pits”) on the disc. Regions where no physical indentations
exist are termed “lands.” A transition between “pit” and “land”
encodes for “1,” whereas no transition encodes for “0” [24]. The
reflected beam intensity from a focussed laser beam onto the
disc allows bit read-out, as the beam undergoes large diffractive
losses when impinging on a “land”–“pit” transition.

We propose to store more than one level on a single “pit” site,
by encoding levels as shown on Fig. 5. The information is con-
tained in the longitudinal and transverse phase domains for each
“pit.” The longitudinal phase is determined by the depth of the
“pit,” , while the transverse phase profile is determined
from its shape. By assuming that the phase transformation struc-
ture is larger than the diffraction limit, and since the longitudinal
phase shift is not constrained by the diffraction limit, we can as-
sume that the reflected field has the same transverse profile as
in Fig. 1. Note that when the transverse structure is below the
diffraction limit, the beam profiles of Fig. 1 cannot be generated
[28]. In this situation, two approaches can be used to obtain the
transverse profile of the read-out beam: 1) by using Maxwell’s
equations and/or 2) by performing an initial experimental cal-
ibration of all the possible transverse mode profiles, since we
posses a priori knowledge of the transverse phase structures.

Therefore, the reflection of the read-out beam has one of the
four possible transverse mode profiles, or ,
with an additional global phase shift . This reflected beam (i.e.,
beam 3) can then be combined with beam 2 on a 50:50 beam-
splitter, as shown in Fig. 2 to perform the phase information
decoding.

Fig. 6. The normalized (i) signal S (�) and (ii) noiseN (�) PSD for a single
measurement in a time interval T . S (0) and N (0) are the maximum signal
and noise powers at dc. The inset shows the sequence corresponding to a single
top hat measurement window, h(t), with N(t) photons.

Thus far, our analysis has not considered the spectral prop-
erties of the read-out signal and noise. Since the optical disc
is spinning and the laser read-out time is limited, the spectral
power density of a realistic optical disc detection differs from
that of an idealized static phase sensing scheme. We examine
these issues in the following subsections.

B. Spectral Power Density for a Single Measurement

We first consider the information extraction from a time-lim-

ited static disc read-out. photons are detected in a time in-

terval , as represented on the inset of Fig. 6, where the inte-

grated photocurrent provides the encoded information.

Using a single top hat function as a time measurement

window, the Wiener–Khinchine relation yields the signal power

spectral density (PSD), . In the case of a double sided

power spectrum [25], the signal PSD is given by

(15)

where is the frequency and is the signal linear spectral

density in the limit of an infinite time measurement, defined

as . is the number of photons per band-

width–time.

For a single measurement, is given by ,

where is the number of photons per time in the signal and

is a delta function centred at dc. Thus, (15) becomes

(16)

where the signal PSD has a squared cardinal sine distribution

with a maximum at dc. Fig. 6 shows the normalized signal and

noise PSD.

The noise PSD, is now obtained. We as-

sume that read-out lasers are shot noise limited. Thus, the noise

linear spectral density is white and proportional to , given
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by . The integration time in our measurement is

and the noise PSD is given by

(17)

where the white noise spectrum has an amplitude of .

We have chosen for Fig. 6 such that the noise power

is approximately equal to the maximum signal power.

The typical measurement time of a DVD device is

s, corresponding to photons/s for a

read-out laser of 20 W power at a wavelength of m.

The signal spectrum, therefore, is in the dc to 10 MHz regime.

Improvements on the measurement sensitivity beyond the

SNL thus requires broad-band squeezing from dc to 10 MHz.

Although low frequency squeezing has recently been demon-

strated [26], [27], many technical challenges exist.

An alternative solution, compatible with current technology,

could be the sampling or modulation of the read-out beam to

artificially shift the signal to a higher frequency range. For op-

tical discs rotating at approximately 10 bit/ s (4.32 Mb/s for

CDs, and 26.16 Mb/s for DVDs), the sampling or modulation

frequencies can be at least 1 GHz, which is compatible with

squeezing frequency ranges. However, the disadvantage of such

an approach is that the photon number in the signal sidebands is

low. The majority of the photons are still distributed in the fre-

quency regime around dc. Thus, the improvement in the SNR

may not be significant.

C. Spectral Power Density for Consecutive Measurements

We now propose to perform consecutive “pit” measurements

where the center of the signal PSD is shifted to a higher fre-

quency. Two consecutive measurements of the variable

during two time intervals of length , separated by a delay ,

is shown schematically on the inset of Fig. 7.

The difference between two consecutive measurements yields

a signal PSD given by the contribution of each individual sine-

wave at frequency , to the total signal, and averaging over all

possible initial phases , giving

(18)

where is given by

and where is a normalization constant. Note that a similar

calculation can be applied to the single measurement case.

The signal and noise PSD for are shown in Fig. 7.

The signal PSD is shifted to the MHz frequency regime (which

is more compatible with routinely obtained experimental

squeezing frequency regimes). The signal PSD maximum is

at for . This is also the regime where the

bandwidth is maximum. Increasing shifts the maximum

signal power to lower frequencies and sharpens the distribution.

Thus, the bandwidth reduces with increasing . For ,

Fig. 7. (i) Normalized signal S (�), (ii) shot noise and (iii) squeezed noise
N (�) PSD for two consecutive measurements of time intervals T separated
by a delay T = 0. The maximum signal and noise powers are respectively,
S and N , for a coherent state read-out laser at � � 0:35=T . In
the case of a squeezed read-out laser, the maximum signal and noise powers are
denoted by S and N , respectively. The inset shows the sequence
corresponding to two consecutive measurements.

the maximum signal power is for example times larger

than that for the case and occurs at , whereas

the bandwidth reduces by half. can thus be tuned to obtain

an optimum for signal power, bandwidth and compatibility

with squeezing frequencies.

The SNR of interest in our optical memory scheme corre-

sponds to that of a single frequency , as defined in (11). There-

fore, our proposed optical memory scheme will require a fre-

quency mixer or bandpass filter centred at , where the mea-

surement SNR is maximum.

Differential consecutive measurements is a technique already

employed in current optical disc devices, as it allows the cancel-

lation of common-mode classical noise, provided that the phase

of the read-out laser is well calibrated in a “pit”-to-“pit” mea-

surement. Furthermore, the maximum of the normalized PSD

for consecutive measurements is slightly larger than that for the

single measurement case, assuming a coherent state read-out

laser with the same parameters. If a broad-band 3-dB squeezed

state is used as the read-out laser, the SNR doubles for con-

secutive measurements. However the SNR improvement for the

case of a single measurement is negligible. This is because low

frequency noise sources (e.g., acoustic noise) overwhelm the

squeezing.

V. CONCLUSION

We have presented a scheme to perform longitudinal and

transverse spatial phase coding of continuous-wave optical

beams. We have shown that by performing selective combina-

tions of photocurrent addition and subtraction, the phase-coded

signal can be extracted. In order to optimize the phase signal,

the longitudinal phase of beam 2 has to be calibrated and opti-

mized such that . While current CD technologies

are limited by a number of different noise sources, such as
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thermal-Johnson noise and electronic noise, our analysis as-

sumes shot noise limited performance. The maximum number

of encoding possibilities for this regime was calculated, sug-

gesting significant improvement with our phase coding scheme.

However, by using squeezed light, the SNL can be overcome

and thus the maximum number of encodeable levels increased.

We then presented a possible application of our phase coding

scheme in increasing the capacities of optical storage devices.

We analyzed the performance of single measurement tech-

niques and showed that the signal and noise PSD are centred

around dc sideband frequencies. We then analyzed the PSD of

differential consecutive measurements and showed that the PSD

spectrum is shifted to higher sideband frequencies. In order to

extract the phase signal, frequency mixing or narrow bandpass

filtering techniques can be used. The differential consecutive

measurement technique provides a good SNR while ensuring

compatibility with squeezing frequencies.

Our phase coding scheme can be extended to implement a

multipixel array detector. Delaubert et al. [28] has performed

a quantum study of multipixel array detection and shown that

it is possible to perform multipixel transverse spatial phase en-

coding. Possible implementation of a multipixel scheme would

require the incorporation of multiple interferometers and the use

of multisqueezed beams or a multimode OPO system [29].
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O
ptical images can convey enormous amounts of information. At the classical level,
complicated amplitude and phase distributions are commonly recorded, processed,
analyzed and stored. Digital cameras of several mega-pixels are for instance found

nearly everywhere at very low price, and image processing has been developed for decades
now, allowing for example real-time shape recognition, or ”intelligent” analysis for facial
identification [Aizawa04].

Moreover, it is well known now that quantum information can be encoded onto opti-
cal images [Caves94]. Attempts are currently made to generate such images. Due to the
extreme sensitivity to losses of this information, particular care has to be given to the
detection process. Optimal detection is in this case crucial. Optimal detection refers here
to the best possible detection performance, given the quantum fluctuations imposed by
the random arrival time of the photons in the optical image. Using the results of section
1 C, an optimal detection also corresponds to a detection for which the noise-mode of
detection identifies with the mode in which lies the information of interest.

Furthermore, this study is of most interest in the quantum imaging field, when the
magnitude of the signal to be retrieved in an optical image is comparable to the quantum
noise. Optimal detection using coherent light is first investigated. Then, we address the
type of non classical light required to improve this detection.

In this chapter, we will first focus on simple optical images related to physical parame-
ters of a Gaussian beam: displacement, tilt, waist-size and waist-position mismatch, and
orbital angular momentum. We will show that these properties can be simply described
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with the first Hermite Gauss modes previously presented in Fig. 1.1, and will present the
quantum operators to which they are related. The understanding of these parameters at
the quantum level allow to measure them with the best possible accuracy, and also to
potentially convey parallel quantum information.

The second part of this chapter will be dedicated to the determination of the best
possible detection of a parameter within an optical image, given the properties of an
incident image. We will first consider the simple case of the quantum noise limit imposed
on the measurement of the displacement and tilt of a TEM00 mode beam. Then, in a
much more general context, we will determine the bound to the maximum achievable
sensitivity in the estimation of information contained in an optical image in the presence
of quantum noise. This limit, based on the Cramer-Rao bound, is valid for any image
processing protocol. It is calculated both in the case of a shot noise limited image and of a
class of non-classical illumination. We also propose practical experimental implementations
allowing to reach this limit.
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A Spatial optical information carried by transverse modes

In this section, we detail the physical significance of the first Hermite Gauss modes relative
to a bright TEM00 beam. A part of the work presented here has been published during
the course of this PhD in reference [Hsu04]. We notably show that displacement and tilt,
waist-size and waist-position mismatch of a TEM00 mode can be simply expressed in terms
of Hermite Gauss modes. The corresponding modifications of the TEM00 reference beam
are represented in Fig.3.1. Finally, we introduce the angular momentum of the beam and
will use a description of the field with Laguerre-Gauss modes.

We limit our analysis to a one-dimensional description of the physical parameters, along
the x axis. Nevertheless, an identical set of variables could be similarly defined along the
other orthogonal direction of the transverse plane, namely along the y axis.
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Figure 3.1: Representation of simple spatial modifications of a TEM00 gaussian beam,
relative to a reference axis (propagation axis), and a reference plane containing the beam
waist. a) Displacement d in the transverse plane. b) Tilt or angular displacement θ. c)
Waist-size mismatch. d) Waist-position mismatch b.

The detailed understanding of these physical parameters in terms of transverse modes
is notably of great importance for the optimization of their detection, as we will de-
tail in section 5 A. This can be applied to any system for which beam alignment and
beam focusing have to be finely controlled as, for example, in gravitational wave detectors
[Grote02, Chow04, Morrison94, Anderson84].

A.1 Displacement and Tilt of Gaussian beams

A.1.1 Classical description

Displacement and tilt of a single-mode TEM00 laser beam are very intuitive notions as
they refer to macroscopic properties of the beam, as shown in Fig. 3.1a) and b). We assume
here that the beam is constrained in two dimensions, namely the figure plane of the paper,
considering that the non represented transverse component remains centered in the same
figure plane. A displacement corresponds to a beam translation by a distance d along the
transverse direction x, whereas a tilt corresponds to an angular displacement by an angle
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θ1. Displacement is naturally defined relative to the propagation axis z of a non displaced
TEM00 beam, i.e. with the beam centered on x = y = 0 all along the propagation, as
shown in Fig 3.1a). Tilt is defined on the other hand relative to a pivot point centered on
the beam waist for simplicity2, as represented in Fig. 3.1b).

The displaced field can always be expanded into the following development

Ed(x) = E(x) + d · ∂E(x)
∂x

+
d2

2
· ∂2E(x)

∂x2
+ ... (3.1)

and, in the regime where the displacement d is much smaller than the beam size, i.e.
d ¿ w0 where w0 is the beam waist of the incident TEM00 mode, the mean displaced field
reduces at first order to3

Ed(x) ≈ E(x) + d · ∂E(x)
∂x

(3.2)

We see from this expression that the zeroth order term is not dependent on d, and that the
displacement is directly proportional to the first derivative of the field amplitude ∂E(x)

∂x ,
whose amplitude profile is found to exactly identify with the one of a TEM10 mode4 . A
representation in the transverse plane of the decomposition of a displaced beam into its
TEM00 and TEM10 components is given in Fig. 3.2.

d0 0 0
d

0
wx x x

y y y

Figure 3.2: Representation of a displaced beam in the transverse plane. The displacement
information d is carried by the TEM10 component, at first order, and is proportional to
its amplitude. w0 is the beam waist of the incident TEM00 mode.

On the other hand, the electric field profile for a tilted beam is given by

Ep(x) = e
i2πx sin θ

λ E(x cos θ) (3.3)

where E(x) is the non-tilted electric field profile, λ is the optical wavelength, and where
naturally appears the transverse momentum of the beam p, which is given in the limit of
small angles by the following expression

p =
2π sin θ

λ
' 2πθ

λ
, (3.4)

1Note that a rotation of the entire transverse plane of the beam about the propagation axis, i.e. a torque

action, corresponds to a different property, namely to angular momentum, as we will detail in section 3

A.3.
2Choosing the reference point at the waist position is arbitrary. We will see in section 5 A that it can

be more appropriate to define the reference for both displacement and tilt in another plane, namely the

plane of a moving object, which does not necessarily coincides with the beam waist position.
3A discussion on the limit of validity of this assumption is given at the end of this subsection.
4This simple calculation relies on the mode expressions given in Eq. 1.60.
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Eq. 3.3 can thus be written for small tilt, i.e. for θ < λ/w0 ¿ 15, as

Ep(x) ≈ E(x) + ip · xE(x). (3.5)

Again, no information about the beam modification is carried in the zeroth order term, as
it is not dependent on p. The beam tilt is directly proportional to xE(x), itself proportional
to the TEM10 mode again in the case of a TEM00 reference beam.

Using the expressions un(x) of the first Hermite Gauss TEMn0 modes given in Eq.
1.60, taken in the plane defined by z = 06, we can combine Eq. 3.2 and 3.5 into

Ed,p(x) = A0

[
u0(x) +

(
d

w0
+ i

w0p

2

)
u1(x)

]
, (3.6)

where A0 is the amplitude of the incident TEM00 mode7.
Note that all transverse modes defined here need a reference frame, which is provided

by the axis of the detection device. Displacement and tilt are thus measured relative to
this reference.

Eq. 3.6 shows that the information about displacement and tilt of a TEM00 laser beam
can be extracted by measuring the TEM10 mode component of the field. Any displacement
information8 is transferred to the ”in-phase” amplitude of the TEM10 mode relative to
the ”carrier” (TEM00 mode), whereas any tilt information is transferred to the TEM10

component ”in quadrature” relative to the TEM00 mode. The amplitude of these ”in phase”
and ”in quadrature” components present opposite dependence with the beam waist w0.
Indeed, for a given displacement d, a smaller beam yields a larger TEM10 component,
whereas for a given tilt, it yields a smaller TEM10 component. A change in position is more
clearly identified when the beam size is small relative to the displacement amplitude, in
the near field (NF) of the beam waist. Similarly, a change in tilt is more clearly identified
in the far field (FF) of the beam waist, when the beam size in this plane is small. This
situation corresponds to a large beam in the near field, due to the expansion properties of
gaussian beam, as presented in Eq. 1.53.

In order to estimate the limit of validity of the expansion of a displaced field involving
only u0(x) and u1(x) given by Eq. 3.6, we calculate the exact decomposition coefficients
in the TEMn0 basis as a function of beam displacement9:

cn(d) =
∫ ∞

−∞
u0(x− d)un(x)dx =

dn

wn
0

√
n!

exp

[
− d2

2w2
0

]
(3.7)

where we recall from Eq. 1.60 that u0(x − d) =
(

2
πw2

0

)1/4
exp

[
− (x−d)2

w2
0

]
. The results

are plotted in Fig. 3.3. For small displacement (d ¿ w0), only the TEM00 and TEM10

modes have significant non-zero coefficients. This means that the TEM10 mode initially
contributes most to the displacement signal. Moreover, we notice a linear dependence of

5λ/w0 ¿ 1 as we consider the paraxial approximation for which λ ¿ w0.
6Note that in this plane, u0(x) and u1(x) have real profiles, which will not be the case in another plane,

as we detailed in section 1 A.2.6.
7A0 identifies with the amplitude of the displaced and tilted beam at first order for small value of d and

p.
8This information can for example be a modulation at RF frequency as we will see in section 5 A.
9This expression can be proven using a recurrence relation, and using the modes profiles given in Eq.

1.53.
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Figure 3.3: Coefficients of the decomposition of the displaced mode in terms of the TEMn0
modes for the (i) TEM00, (ii) TEM10, (iii) TEM20, (iv) TEM30, (v) TEM40 and (vi) TEM50

mode components.

its coefficient with respect to the displacement amplitude for displacement as large as the
waist size. For larger displacement, other higher order modes become significant as their
coefficients increase.

We have detailed a classical description of the displacement and tilt of a TEM00 mode
beam and analyzed the validity of the proposed the expressions with respect to the am-
plitude of the displacement. The next section is dedicated to the study of their quantum
operators analogous: position and momentum.

A.1.2 Quantum operators : position and momentum

In order to give a quantum mechanical description of displacement and tilt of a laser
beam, we need to take into account the quantum noise of all the optical modes of the
beam, including the vacuum modes.

We can write the positive frequency part of the electric field operator in terms of
photon annihilation operators â. The field operator is then given in its more general form
as in Eq. 1.27 by:

Ê+(x) = i

√
~ω

2ε0cT

∞∑

n=0

ânun(x). (3.8)

For a mean photon number N , defined by |〈â0〉|2 in the small displacement and tilt
regime, written in the mean-field basis, the quantum counterpart of equation (3.6), assum-
ing that only u0 and u1 are non-vacuum modes, is

Ê+
d,p(x) = i

√
~ω

2ε0cT

[√
N

(
u0(x) +

(
d

w0
+ i

w0p

2

)
u1(x)

)
+

∞∑

n=0

δânun(x)

]
, (3.9)
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where we have introduced the mean value10 of position and momentum quantum operators
of a laser beam, d = 〈x̂〉 and p = 〈p̂〉, respectively. Moreover, Eq. 3.8 can be rewritten in
terms of its modal quadratures as follows

Ê+(x) = i

√
~ω

2ε0cT

∞∑

n=0

[
X̂+

n + iX̂−
n

2

]
un(x), (3.10)

The identification of the TEM10 components in Eq. 3.9 and 3.10 yields position and mo-
mentum quantum operators are given by11

x̂ =
w0

2
√

N
X̂+

1 (3.11)

p̂ =
1

w0

√
N

X̂−
1 , (3.12)

where we see that position and momentum are linked to the amplitude and phase quadra-
ture of the TEM10 mode component of the field, where the quadratures are defined relative
to the TEM00 mean field phase, as introduced in section 1 A.2.4. Performing measurements
of these quantities beyond the standard quantum noise limit will thus require the produc-
tion of squeezing in the same mode12. Section 4 C is dedicated to this generation, also
extended to the TEM20 mode.

The relation between the squeezing of amplitude or phase quadratures of the very dim
TEM10 component of a bright TEM00 beam and the squeezing of position or momentum
variables is illustrated on Fig. 3.4, according to the relative phase Φ between the TEM00

and TEM10 modes13. Such a representation of a bi-mode field in the same diagram is
possible as both modes are orthogonal. As they are part of the same multi-mode beam,
their relative phase φ is very important as it determines whether the state is position or
momentum squeezed.

Moreover, a simple calculation shows that position and momentum are conjugate ob-
servables and satisfy the following commutation relation [Hsu05]

[x̂, p̂] =
i

N
. (3.13)

Position and momentum do not commute, and this is the property we propose to
investigate in chapter 5. We will first give a detailed study of their detection using split-
detectors or homodyne detectors in section 5 A. We will show that a first consequence of
this property is that squeezing a beam in position will result in the production of excess
noise on the conjugate observable. Secondly, this will allow the generation of entanglement
between these two observables, as detailed in section 5 B.

10The related quantum fluctuations are incorporated in the sum of fluctuations operators in all the

transverse modes, and in particular in δâ1.
11Note that beam position and momentum along the orthogonal directions y are similarly defined with

the quadratures components of the TEM01 mode.
12Producing squeezing in higher order transverse modes is a more difficult task than in the TEM00

mode. One can thus wonder what mode has its displacement information in the TEM00 mode. In order

to measure very small displacement, one could think of using a tailored beam with an available source of

TEM00 squeezed light. Unfortunately, this mode corresponds to the integral of the TEM00 profile, which is

the error function Erf(x) =
R x

−∞ exp− l2

w2
0
dl. This mode is non zero at infinity and is therefore of difficult

use as it generation would require infinite power. Producing squeezing in higher modes is therefore an

important breakthrough for any transverse displacement measurement beyond the QNL.
13In the experiments presented in chapter 5, we will consider only the case of an amplitude squeezed

TEM10 mode, as presented in Fig. 3.4a).
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Figure 3.4: Simultaneous ’ball on stick’ representation in a position-momentum Fresnel
diagram of a bright TEM00 component and an a) amplitude and b) phase quadrature
squeezed TEM10 component. The position axis is oriented with respect to the TEM00

mean field. In each case, according to the relative phase Φ between the TEM10 and the
TEM00 components, the beam is position (P-SQZ) or momentum squeezed (M-SQZ).

A.1.3 Displacement and tilt of other beams

Displacement and tilt of other beam profiles can be similarly analyzed. A first remark is
that the transverse mode carrying the displacement information is always orthogonal to
the mean field. Indeed, Eq. 3.2 is not specific to a TEM00 profile. And we can show that
for any physical amplitude field distribution14

∫ ∞

−∞
E(x)

∂E(x)
∂x

dx = 0, (3.14)

which means that E(x) - the mean field - and ∂E(x)
∂x - which is carrying the displacement

information - are orthogonal.
Secondly, Eq. 3.5 defines xE(x) as the mode carrying the tilt information for any field

profile. Again, in the general case, mean field mode and mode carrying the tilt information
are orthogonal as

∫ ∞

−∞
xE2(x)dx = 0, (3.15)

simply because x and E2(x) are respectively odd and even functions.
We now propose to show that position and momentum are in the same mode only in

the TEM00 beam case. As explained previously, Eq. 3.2 and 3.5 are valid for any field
profile, as long as displacement and tilt are small enough. At first order, the only mode
carrying the displacement is described by ∂E(x)

∂x , whereas the tilt information lies in the

14The relation can be obtained using the following integration by parts :
R∞
−∞E(x) ∂E(x)

∂x
dx =

[E(x)2]∞−∞ − R∞−∞E(x) ∂E(x)
∂x

dx, which implies that
R∞
−∞E(x) ∂E(x)

∂x
dx = 0, as physical distributions al-

ways tend towards 0 at infinity.
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mode described by xE(x). They are corresponding to the same mode if and only if these
two profiles are proportional, i.e.

∂E(x)
∂x

= βxE(x) (3.16)

where β is a real constant. A simple integration of Eq. 3.16 yields

E(x) = E(0)eβx2
(3.17)

This relation shows that only exponential profiles allow position and momentum as a pair
of conjugate variables. Physical modes for which β < 0 correspond to Gaussian TEM00

modes of waist defined by w0 =
√−β. This proves the previous proposition.

Hence, position and momentum can still be defined in the general case, but they are
not carried by the same transverse mode, and they form a pair of conjugate variables only
in the TEM00 mode case.

We present now the general expression of the displacement and tilt modes for any
TEMn0 mode, denoted un(x) in a one-dimensional description. As the displacement mode
is proportional to the first derivative of the mode profile relative to x, we get

∂u0(x)
∂x

= −u1(x)
w0

(3.18)

∂un(x)
∂x

=
√

n

w0
un−1(x)−

√
n + 1
w0

un+1(x), ∀n ≥ 1 (3.19)

This shows that, in the general case, the displacement mode of a TEMn0 mode is a com-
bination of next and previous order Hermite Gauss modes. As for the modes containing
the tilt information, whose profile is proportional to xE(x), we get

xu0(x) =
w0√

2
u1(x) (3.20)

xu1(x) =
w0√

2
u2(x) (3.21)

xun(x) =
w0√

2
un+1(x) +

n(n− 1)w0

4
√

2
un−2(x), ∀n ≥ 2 (3.22)

The tilt of the two first modes are contained only in the next order Hermite Gauss mode,
but the expression also involves the mode which is two orders below in the general case.

A.2 Waist position and size mismatch

Let us now detail other modifications of a TEM00 mode beam: waist-position and waist-
size mismatch. They are presented in Fig. 3.1c) and d). Such mismatches can for instance
result from imperfect mode-matching with an optical cavity. Being able to identify the
transverse modes carrying these properties within the beam can for instance be applied
to the design of active mode-matching devices, notably in gravitational wave detectors
[Kogelnik64, Morrison94, Penn91, Anderson84].
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A.2.1 Waist-size mismatch

We first consider a transformation that would change the waist by a small amount δw

such as

w′0 = w0 + δw (3.23)

Knowing that δw ¿ w0, we can do a development at the first order of the TEM00 mode
given by Eq. 1.60 which has undergone such a transformation, denoted u0(x, δw) :

u0(x, δw) =
(

2
πw2

0

)1/4

e
− x2

w2
0

[
1 +

δw

w0

(
4x2

w2
0

− 1
)]

(3.24)

where the first order bracketed terms respectively correspond to the development of the
exponential term, and of the pre-exponential factor.

In the first order term, we recognize the expression of the amplitude of u2(x) given in
Eq. 1.60. Eq. 3.24 thus becomes

u0(x, δw) = u0(x) +
δw√
2w0

u2(x) (3.25)

Similarly to the displacement information given in Eq. 3.6, the waist-size mismatch lies
in the ”in phase”TEM20 component of the field. Let us now present the physical parameter
which contributes to the TEM20 component ”in quadrature” relative to the mean field.

A.2.2 Waist-position mismatch

We now consider a small waist-position mismatch. The waist is now positioned at z 6= 0,
such as δz ¿ 115. The longitudinal field phase factor given in Eq. 1.60 is now important
as it yields the following field at first order in z, in the transverse plane defined by z = δz

u0(x, δz) =
(

2
πw2

0

) 1
4

e
− x2

w2
0

[
1 + i

δz

zR

(
1 +

x2

w2
0

)]
(3.26)

Using the expression of u0(x, 0) and u2(x, 0), we get, at first order in z

u0(x, δz) = u0(x, 0) + i
δz

zR

[
5
4
u0(x, 0) +

1
2
√

2
u2(x, 0)

]
(3.27)

A.2.3 General relation for mode-mismatch

The results of Eq. 3.25 and 3.27 can be gathered into

u0(x, δw, δz) = u0(x, 0) + u2(x, 0)
[

δw√
2w0

+ i
δz

2
√

2zR

]
+ i

5δz

4zR
u0(x, 0) (3.28)

Hence, real and imaginary parts of the TEM20 components of a slightly modified
TEM00 mode beam respectively correspond to waist-size and to a part of the waist-position
information16.

15We recall that z = 0 corresponds to the reference waist position.
16Note that the waist-position information is not entirely comprised into the TEM20 component. A quick

calculation shows that only 2/27 ' 7% of the information is in fact contained in the TEM20 component.
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A.3 Orbital angular momentum

Let us now consider a small rotation of a beam about its propagation axis. The beam
physical property which linked with such a transformation is referred to as orbital angular
momentum17[Mandel95, Mair01, Barnett06, Padgett06]. This torque action is different
from the one that has been introduced before, the tilt, which corresponds to an angular
displacement relative to an axis of the transverse plane18. It also has to be distinguished
from the spin angular momentum of circularly polarized light19.

A.3.1 Rotation of a Hermite Gauss beam about its propagation axis

In order to measure the effect of a beam rotation about its propagation axis, intensity
or phase distribution must not have a cylindrical symmetry. For instance, the rotation of
a TEM00 mode does not yield any modal change, obviously, whereas the rotation of any
other TEMnm mode does.

Let us take the example of the rotation of TEM10 and TEM01 mode beams by a small
angle δθ about the propagation axis. Using the expression of the modes given by Eq. 1.53,
a simple calculation yields at first order

TEM10(δθ) = TEM10 + δθ · TEM01 (3.29)

TEM01(δθ) = TEM01 − δθ · TEM10 (3.30)

The modes carrying the rotation information of a TEM10 or TEM01 beams are thus
simply the TEM01 and TEM10 modes, respectively. Note that these components are in
and out of phase relative to the mean field.

The rotation of such beams can thus be measured by extracting the TEM01 or TEM10

component of the beam, which is orthogonal to the mean field in both cases. Again,
squeezing the TEM01 or TEM10 component of the incident field can potentially allow
sub-shot noise rotation measurements of such modes. TEMnm modes are relatively easy
to generate (see section 4 A.2), and could therefore be used in order to provide ultra
sensitive rotations of a beam. However, more simple beams, related to the orbital angular
momentum of a TEM00 beam, can be preferred, as we propose to explain now.

A.3.2 Rotation of a Laguerre Gauss beam about its propagation axis

We propose here to introduce another orthonormal basis of the transverse plane, more ap-
propriate20 for the description of beam rotation about the propagation axis, the Laguerre-
Gauss (L-G) mode basis [Siegman86]. A Laguerre-Gaussian (LG) laser beam has an optical
vortex in its center, i.e. that its phase representation is twisted like a corkscrew around the
propagation axis. We call topological charge the integer number of twists the light does in
one wavelength. Optical vortices are for instance used in optical tweezers to manipulate
micrometer-sized particles such as cells. Such particles can be rotated in orbits around the
axis of an orbital vortex [Paterson01]. Micro-motors have also been created using optical

17Angle of rotation φ and orbital angular momentum L̂z define the rotation operator R̂φ = exp(− iL̂zφ
~ ).

18Tilt with respect to the x and y axis are respectively linked with L̂x and L̂y.
19Note that a conversion from one to the other has been recently demonstrated [Marrucci06].
20In opposition with the Hermite Gauss modes, the Laguerre-Gauss modes corresponds to eigenmodes

of the orbital angular momentum L̂z.
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vortex tweezers [Luo00]. Laguerre-Gaussian modes can be generated experimentally with
spiral phase plates [Beijersbergen94], or computer-generated holograms [Basistiy93].

The expression of the Laguerre-Gauss modes is given in cylindrical coordinates (r,θ,z)
by

LGl
p(r, θ, z) = C l

p

(
r
√

2
w(z)

)|l|
L|l|p

(
2r2

w(z)2

)
e
− r2

w(z)2 eilθe−i(2p+|l|+1)φG(z) (3.31)

where l is the topological charge of the beam, C l
p is a normalization constant, and w(z),

φG(z) have been defined in section 1 A.2.6.
The normalized expressions of the first L-G modes in the plane defined by z = 0 are

LG0
0(r, θ) =

(
2

πw2
0

) 1
2

e
− r2

w2
0 (3.32)

LG1
0(r, θ) =

(
2

πw2
0

) 1
2
√

2r

w0
e
− r2

w2
0 eiθ (3.33)

LG−1
0 (r, θ) =

(
2

πw2
0

) 1
2
√

2r

w0
e
− r2

w2
0 e−iθ (3.34)

Let us now consider the rotation of LG1
0 and LG−1

0 mode beams by a small angle δθ

about the propagation axis. Using the expression of the modes given by Eq. 3.37, a simple
calculation yields at first order21

LG1
0(δθ) = LG1

0 + iδθ · LG1
0 (3.35)

LG−1
0 (δθ) = LG−1

0 − iδθ · LG−1
0 (3.36)

The modes carrying the orbital angular momentum of a LG1
0 and LG−1

0 beams are thus
simply the same modes. However, the rotation signal is in quadrature relative to the mean
field. This information can thus still be extracted with a homodyne detection whose local
oscillator profile is defined by a LG1

0 or LG−1
0 mode. A calibration of the local oscillator

phase can allow a selective extraction of information along a single quadrature. Filling
the LG1

0 or LG−1
0 mode of the incident field with squeezed vacuum light can again allow

sub-shot noise rotation measurements of LG1
0 or LG−1

0 modes.

In order to establish a simple link with the results obtained with Hermite Gauss modes,
we can rewrite the first Laguerre Gauss modes in terms of Hermite Gauss modes as

LG0
0 = TEM00 (3.37)

LG1
0 =

1√
2

(TEM10 + iTEM01) (3.38)

LG−1
0 =

1√
2

(TEM10 − iTEM01) (3.39)

TEM10 and TEM01 modes are thus related to the orbital angular momentum of the first
order Laguerre Gauss modes22.

21These relations directly arise from the fact that Laguerre-Gauss modes are eigen-modes of L̂z, and

also of R̂φ : R̂φLGl
p = exp(−ilφ)LGl

p.
22We recall that the quadratures of these two modes also carry information on displacement and tilt of
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B Quantum limits for information extraction from an opti-

cal image

Before considering the general case of the optimal detection of a parameter within an
optical image, let us first study the simple case of displacement and tilt measurement of
a Gaussian beam. We will come back on more practical aspects of such measurements in
section 5 A. A part of the work presented here has been published in reference [Hsu04].

B.1 Displacement and tilt measurements

B.1.1 Quantum limits for displacement and tilt measurements

The position of a light beam can be defined as the mean position of all photons in the
beam. Beam displacement is then quantified by the amount of deviation of this mean
photon position from some fixed reference axis. We assume here that the displaced beam
has a transverse TEM00 mode-shape, as presented in section 3 A.1 but this can easily be
extended to the displacement of any beam profile. To simplify our analysis, we assume,
without loss of generality, a one-dimensional transverse displacement d from the reference
axis.

We recall from section 3 A.1 that the normalized transverse beam amplitude function
for a displaced TEM00 beam is given by

Ē(x, d) = u0(x− d) =
(

2
πw2

0

)1/4

exp

[
−

(
x− d

w0

)2
]

. (3.40)

and the transverse intensity distribution normalized to a number of photons, for a beam
with a total of N photons, can then be written

n̄(x, d) = Nu2
0(x− d). (3.41)

This equation essentially describes the normalized Gaussian spatial distribution of pho-
tons along one transverse axis of the optical beam. For a coherent TEM00 light beam, the
photons have Gaussian distribution in transverse position, and Poissonian distribution in
time. It is clear that a detector which discriminates the transverse position of each pho-
ton will provide the maximum possible information about the displacement of the beam.
Such discrimination could, for example, be achieved with an infinite single photon resolv-
ing array with infinitesimally small pixels. Although in reality such a detection device is
unfeasible, it nevertheless sets a bound to the information obtainable for beam displace-
ment without resorting to quantum resources. This bound therefore constitutes a quantum

a TEM00 mode along both x and y axis. At this stage, in order to provide a very general description of

the results presented in this chapter, it is tempting to define 4 spatial Stokes parameters (intensity of a

TEM00 beam, displacement, tilt, and orbital angular momentum), and to represent them in a Poincaré

sphere. Such a representation has already been used in continuous variables for the complete description

of polarization states [Korolkova02, Bowen02], similarity to the representation of spin variables of atomic

systems in the Bloch sphere. However, although our system has great similarity with polarization states,

orbital angular momenta expressed with TEM10 and TEM01 modes are related to a LG±1
0 mean field, and

not to a bright TEM00 beam. Such a representation is therefore not appropriate here.
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noise limited displacement measurement. More practical detection schemes can therefore
be bench-marked against this limit23.

Let us now examine an optimum measurement of beam displacement using our ide-
alized array detector. Using Eq. 3.40, the probability distribution of photons along the
x-axis of the detector is given by

P(x) =

√
2

πw2
0

exp

[
−2

(
x− d

w0

)2
]

. (3.42)

As each photon in the beam impinges on the array, a single pixel is triggered, locating
that photon. The mean arrival position of each photon x̄ and the standard deviation ∆d

are given by

x̄ =
∫ ∞

−∞
xP(x)dx = d, (3.43)

∆d =
∫ ∞

−∞
x2P(x)dx− d2 =

w0

2
(3.44)

From the arrival of a single photon we can therefore estimate the displacement of our
mode with a standard deviation given by ∆d. For N photons, the standard deviation
simply becomes ∆dQNL = ∆d/

√
N .

In the case of a coherent illumination, the minimum displacement discernible dQNL

taking into account the minimum uncertainty in its determination ∆d corresponds to a
signal to noise ratio value of 1. This limit is known as the standard quantum limit. dmin is
thus given by24

dQNL = w0

2
√

N
, (3.45)

which directly shows that the accuracy of a displacement measurement can be enhanced
by focussing the beam to a smaller waist, or by increasing the number of detected photons
during the measurement, as already explained in section 3 B.1. When the number of
detected photons is small, the measurement of the beam position is highly uncertain. This
has direct consequences on the resolution of optical images at low photon flux. It is only
when N is large enough that a good image resolution is accessible. Experimentally, a few
parameters determine N and can be tuned in order to obtain a sufficient resolution. N

corresponds to the total number of photons detected in the interval T=1/RBW, where
RBW is the resolution bandwidth. Ideally, T is maximized according to the stability of
the physical system. For instance in the case of bits read-out in optical disc devices,
the RBW roughly corresponds to the scanning frequency. For a 100 µm waist, 1 mW
of power at a wavelength of λ = 1 µm, with RBW = 100 kHz, the quantum noise
limit is for instance given by dQNL = 0.2 nm. Note that during test or characterization
procedures, the precision can be increased by averaging with the spectrum analyzer, for
instance by reducing the video bandwidth (VBW). The QNL effectively corresponds to
the minimum measurable displacement measured on the spectrum analyzer when V BW =
RBW , without averaging.

23We will give a more mathematical proof of the existence and of the value of this bound in the next

section using a Cramer Rao bound calculation.
24Note that this fundamental limit has already been introduced in [Fabre00, Treps04,1].
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We have discussed here only the case of a displacement measurement, but we can
similarly define the QNL for momentum measurements as25

pQNL = 1
w0

√
N

. (3.46)

In the same conditions as the ones defined above, the QNL for momentum measurement
is pQNL = 4.10−2 m−1, corresponding to a tilt angle of θQNL = 7 nrad.

B.1.2 Optimal displacement measurements

One can now wonder if there exists a device allowing an optimal measurement of beam
displacement, i.e. a detection whose performances reach the QNL with TEM00 coherent
illumination.

• Split-detection
The conventional way to measure the displacement of a laser beam is to use a split

detector. It is widely used in a large range of applications, as we will detail in section 5
A. As shown in Fig. 3.5a), the difference between the intensity on each side of the split
detector yields a photocurrent proportional to the displacement.
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Figure 3.5: Beam displacement detection devices. a) split-detection. b) TEM10 homodyne
detection.

This detection exactly corresponds to the difference measurement analyzed in section 1
C.5.2. We proved that, in the precise case of the split-detection, the noise-mode of detection
is the flipped mode whose profile is presented in Fig. 1.11. However, we have shown in
section 3 A.1, that the displacement information was carried by the TEM10 mode. As a
detection device measures only the information lying in its noise-mode of detection, we
expect the split detection to be limited to an efficiency of Γ2

1,f relative to the QNL, where
Γ1,f is the overlap integral between the TEM10, u1(x) and the flipped mode uf (x), and is
defined by

Γ1,f =
∫ ∞

−∞
u1(x)uf (x)dx =

√
2
π

, (3.47)

25The detection device to be considered in this case is required to be a phase resolving detector positioned

in the waist plane, as the tilt information cannot be detected with a traditional array detection. Another

possibility is to consider the measurement in the far field of the waist plane, for which the displacement is

transferred to a displacement as we will explain in section 4 A.1, and use exactly the same analysis as the

one proposed here.
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The split-detection is thus 2/π ' 64% efficient relative to the QNL. The quantum limit
on a displacement measurement with a split-detector (SD) is thus given by

dSD =
√

π
2 dQNL =

√
π

8N w0, (3.48)

which identifies with the limit presented in reference [Treps04,1]. Split-detection is there-
fore not an optimal detection of optical beam displacement.

• TEM10 homodyne detection
Let us now consider a TEM10 homodyne detection, i.e. a homodyne detection whose

local oscillator is a bright TEM10 beam, as illustrated in Fig. 3.5b).
We have shown in section 1 C.4 that the noise-mode of detection of this device was

precisely the TEM10 mode. This directly proves that this type of detection is an optimal
beam displacement device.

We will demonstrate the experimental performances of such a scheme in section 5 A.

B.1.3 Displacement and tilt measurements beyond the QNL

In order to perform measurements beyond the QNL, i.e. for a given T , we have shown in
section 1 C that filling the appropriate transverse mode of the input field26 with squeezed
light is a necessary and sufficient condition.

For example, using 3 dB of squeezing in the appropriate component of the beam for a
displacement measurement leads to a noise power reduction by a factor 2. We recall that,
in the case of a split-detection, the noise-mode of detection is the flipped mode, whereas it
is the TEM10 mode for the TEM10 homodyne detection. The new quantum limit is thus
given in each case by

dSQZSD
=

√
π

2
dQNL, (3.49)

dSQZHD
=

1√
2
dQNL. (3.50)

It is important to note that, as imposed by Heisenberg inequality, the measurement of
the conjugated observable - the momentum in this case - is degraded27. Similar relations
can be shown for a tilt measurement with a TEM10 homodyne detection.

26We have called this mode the noise-mode of detection in section 1 C.
27We will give an experimental demonstration of this phenomenon in section 5 A.
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B.2 Quantum limits in general image processing

B.2.1 Introduction

In this section, we consider the extraction of a piece of information contained in an optical
image, by means of space sensitive detectors28 and information processing, in the case
of large photon flux29. The information contained in the image is here not restricted to
displacement and tilt parameters, and the image itself can be any amplitude and phase
distribution in the transverse plane, and is not restricted to a Gaussian profile anymore.

When all the sources of technical noise have been removed, quantum fluctuations still
affect the optical measurement and limit its sensitivity, as introduced in chapter 1. We
propose here to answer the following broad question: what is the lowest limit imposed by a
given distribution of quantum noise to the accuracy of the measurement, independently of
the information processing protocol used for the information extraction? We have answered
this question in the case of a displacement measurement of a TEM00 beam, and propose
now to answer it in the general context.

Let us define p as the parameter which carries the information of interest, and which
is assumed without loss of generality to be scalar30. As we will see, the optimum limit on
the determination of p only depends on the statistics of the fluctuations of the incoming
light. We use an approach based on the Cramer-Rao Bound (CRB). This tool, widely used
in the signal processing community [Refregier02], has already been applied to different
domains, such as gravitational wave detection [Nicholson98] or diamagnetism [Curilef05].

One example is when p modifies the total intensity or amplitude of the light beam.
It is then well known [Kimble87, SoutoRibeiro97, Gao98, Bachor03] that there exists a
standard quantum limit in the sensitivity of the measurement of p when the light beam is
in a coherent state, and that it is possible to go beyond this limit using sub-Poissonian or
squeezed light. This case has already been studied in section 1 C.

Another example is when the parameter p modifies the distribution of light in the
transverse plane but not its total intensity. We will focus on this latter case, for which
the parameter p modifies for example the position or direction of a light beam. This con-
figuration has been studied at the quantum level, both theoretically and experimentally
using split detectors or homodyne detections, as we have already discussed in section 3
B.131. In many other instances the parameter p affects the image in a complicated way.
For example a fluorescent nano-object imbedded in a biological environment modifies the
image recorded through a microscope in a complex way because of diffraction. Nevertheless
its position can be determined from the information contained in the image with a sen-
sitivity which can be much better than the wavelength [Rohrbach04]. In order to extract
the parameter value in such experiments, one needs to use detector arrays or CCD cam-
eras and to combine in an appropriate way the information recorded on the different pixels.

28Any detector is included in this category. We still allow here phase resolving array detectors, including

homodyne detectors, and do not only restrict our analysis to CCD type detectors.
29Note that most of the work presented in this section has been submitted for publication in the format

[Delaubert06,4].
30The detection systems are assumed to be linear, and the analysis of complex parameters is equivalent

to two separate studies of its real and imaginary components.
31Section 5 A is also devoted to this configuration and focusses on the experimental part.
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Let us now present the field and intensity notations we will use in this section, similarly
to the definitions given in section 3 B.1. The mean value of the local complex electric field
operator in the image plane, normalized to a number of photons, will be written for a
given value of the parameter as

Ē(~r, p) = 2
√

Nu0(~r, p), (3.51)

where N refers to the total number of photons detected in the mean field during the
integration time of the detector. N is assumed to be independent of p, as stated previously.
u0(~r, p) is the p-dependent normalized transverse distribution of the mean field, complex
in the general case. The local mean photon number detected during the same time interval
is

n̄(~r, p) =
Ē∗(~r, p)Ē(~r, p)

4
= N |u0(~r, p)|2. (3.52)

Field or intensity measurements respectively allow an estimation of the distribution of
Ē(~r, p) or n̄(~r, p) in the transverse plane. This field and photon number measurements will
be respectively denoted E(~r) and n(~r) in the following. As a consequence of the quantum
fluctuations in the optical measurements, there will be an uncertainty on the estimation of
the distributions Ē(~r, p) and n̄(~r, p) from the measurements E(~r) and n(~r). Moreover, the
way the measurements are performed and the signals are processed has a direct influence
on this uncertainty.

Assuming that one knows the dependence of the beam profile with the parameter of
interest p, a value of p can be inferred from the previous measurements32. Again, the
accuracy of this value is directly related to the measurement performance. An evaluation
of the measurement uncertainty can thus provide the precision on the determination of
the parameter p around its a priori value p0, chosen here for simplicity to be p0 = 0.

This achievable precision on the estimation of the parameter p is limited by the Cramer-
Rao Bound. More precisely, one can show that the variance of any unbiased estimator of
p cannot be smaller than [Refregier02]

σ2
pmin

= 1/IF , (3.53)

where the Fisher information IF is related to the maximum information retrievable for
any possible measurement, and exclusively depends on the statistics of the studied phe-
nomenon. Instead of giving its abstract definition here, we prefer to define it throughout
a commented example in the next section.

We will now use this powerful tool in order to investigate for the quantum limit on the
estimation of the parameter p using first intensity measurements, and secondly complex
field measurements.

B.2.2 Intensity measurements

• Cramer Rao bound calculation

32When the parameter of interest p is an image displacement, one can for example measure the position

of the image relative to its center, or relative to the position of a specific detail within the field distribution.
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We first assume that p is obtained by processing the information contained in mea-
surements of local intensities, or local number of photons in the entire transverse plane33.
The best possible local intensity detection device would consist in a set of indexed pixels
paving the entire transverse plane, in the limit when their spatial extension approaches
0. Let n(~r) = [n1, ..., nk, ...] be one measurement of the photon distribution with such a
hypothetical detector, where nk corresponds to the number of photons detected on pixel
k. Because of the noise present in the light, the sample n differs from its statistical mean
value n̄(p) = [n̄1(p), ..., n̄k(p), ...], where n̄k(p) is the mean number of photons incident on
pixel k. Let L(n|p) be the likelihood of the observation of n(~r). Note that n corresponds to
a single measurement and hence does not explicitly depend on p, contrarily to the average
on all the possible realizations.

As presented in the introduction of this chapter, the achievable precision on the esti-
mation of p is limited by the Cramer-Rao Bound (CRB), which corresponds to the inverse
of the Fisher information. In the case of intensity measurements when the actual value of
p is 0, the Fisher information is given by

IF = −
∫

∂2

∂p2
l(n|p)

∣∣∣∣
p=0

L(n|0)dn, (3.54)

where we have introduced the log-likelihood l(n|p) = lnL(n|p). The log-likelihood simply
corresponds to the information about the parameter p which is contained into the measured
sample n(~r), taking into account its probability of occurrence34.

The value of the parameter for which the mean value of first derivative of the log-
likelihood ∂

∂p l(n|p) is null corresponds the value which maximizes l(n|p), and thus the
information on the parameter. This maximum is reached for p = p0 = 0 if the estima-
tor is unbiased, as represented in Fig. 3.6. In the case of an unbiased estimation, the

pp
0

ii)

i)ln(n  |p)
k

Figure 3.6: Two distributions of the log-likelihood of the mean value of the number of
photons incident on pixel k, according to the value of the parameter p. The estimation of
p0 is obviously more precise from i) than ii) because it is narrower and has a larger curvature
around its maximum value. Note that both distributions represented are unbiased as their
maximum corresponds to p = p0.

second derivative of the log-likelihood taken for the a priori value of the parameter, i.e.
33Note that such a device does not provide any phase information. The phase will be considered in

section 3 B.2.3.
34We recall that in information theory, a phenomenon contains all the more information as it is unlikely.
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∂2

∂p2 l(n|p)
∣∣∣
p=0

, directly corresponds to the local curvature of the log-likelihood. When the

absolute value35 of the previous parameter is large, the curve is narrow, the uncertainty on
the estimation of p is small, and the information about p contained into the measurement
n(~r) is large. In order to obtain the maximal information retrievable from all possible
measurements, all contributions weighted by their probability to occur are summed. In
Eq. 3.54, the integration thus spans over all the possible photon distributions that can be
detected when the parameter value is p = 036. The Fisher information is highly dependent
on the quantum noise affecting the measured number of photons, and we need to specify
the noise statistics in order to calculate the likelihood of each possible realizations.

Let us first consider coherent illumination, for which the photo-current delivered by
each pixel has Poissonian fluctuations [Glauber65, Loudon00]. The probability of measur-
ing nk photons on pixel k, when the parameter equals p is given by

Pnk
(k, p) =

n̄k(p)nk

nk!
e−n̄k(p). (3.55)

Restricting our analysis to spatially uncorrelated beams37, the likelihood L(n|p) of observ-
ing the photon distribution n(~r) = [n1, ..., nk, ...] corresponds to the product of the local
probabilities on each pixel given in Eq. 3.55

L(n|p) =
∏

k

Pnk
(k, p). (3.56)

The log-likelihood is thus

l(n|p) =
∑

k

ln [Pnk
(k, p)]

=
∑

k

[
− n̄k(p) + nkln [n̄k(p)]− ln [nk!]

]
. (3.57)

Taking the limit to infinitely small pixels38, for which the sum can be replaced by an inte-
gral, and for which n(~r) is a continuous distribution independent of p, the first derivative
of the log-likelihood with respect to p can be written

∂

∂p
l(n|p) =

∫ [
− n̄′(~r, p) + n(~r)

n̄′(~r, p)
n̄(~r, p)

]
d2r, (3.58)

where the ′ denotes a derivative relative to p. Recalling now that we restrict our analysis
to images whose total intensity is independent of p, i.e. images for which

∫
n̄(p, ~r)d2r is a

constant, we get
∫

n̄′(~r, p)d2r = 0. (3.59)

35This second derivative is negative. This explains the minus sign in the expression of the Fisher infor-

mation.
36The photon number distribution can easily be assumed continuous for a large number of incident

photon, and the notation
R

...L(n|0)dn simply corresponds to a statistical average over all possible photon

distributions, when the parameter equals 0.
37Spatially uncorrelated beams either correspond to coherent or locally squeezed fields.
38The type of detection considered here exactly corresponds to the array detector introduced in section

3 B.1 in order to define the best possible detection device.
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Using this property of the photon distribution, the first term in Eq. 3.58 cancels, and we
get

∂

∂p
l(n|p) =

∫
n(~r)

n̄′(~r, p)
n̄(~r, p)

d2r, (3.60)

Moreover, we assume that our estimation of the photon number distribution is unbiased,
i.e. the statistical average of sets of photon measurements n(~r) taken for p = 0 identifies
with the mean photon distribution n̄(~r, 0)

∫
nL(n|0)dn = n̄(~r, 0). (3.61)

Using Eq. 3.60, the statistical average of the first derivative of the log-likelihood, taken for
p = 0 thus becomes ∫

∂

∂p
l(n|p)

∣∣∣∣
p=0

L(n|0)dn = 0, (3.62)

which exactly corresponds to the case described in Fig. 3.6. The maximum of the mean
value of the log-likelihood is obtained for p = 0.

A second derivation of the log-likelihood, taken for p = 0, yields

∂2

∂p2
l(n|p)

∣∣∣∣
p=0

=
∫

n(~r)
[
n̄′′(~r, 0)
n̄(~r, 0)

− n̄′(~r, 0)2

n̄(~r, 0)2

]
d2r, (3.63)

where n̄′′(~r, 0) is second derivative relative to p of the mean photon distribution when
p = 0. As stated previously, the Fisher information given by Eq. 3.54 corresponds to the
statistical mean value of − ∂2

∂p2 l(n|p)
∣∣∣
p=0

, and thus, using Eq. 3.61,

IPoisson
F =

∫ [
n̄′(~r, 0)2

n̄(~r, 0)
− n̄′′(~r, 0)

]
d2r. (3.64)

Using Eq.3.59, we show that the integration of the second term over the transverse
plane cancels in Eq. 3.6439. Recalling from Eq. 3.52 the expression of the photon distrib-
ution as a function of the mean field profile, we get

IPoisson
F = N

∫
1

|u0(~r, 0)|2
[

∂

∂p
|u0(~r, p)|2

∣∣∣∣
p=0

]2

d2r, (3.65)

Simply expanding the square modulus in Eq. 3.65 yields

IPoisson
F = N

∫ [
∂

∂p
|u0(~r, p)|

∣∣∣∣
p=0

]2

d2r (3.66)

In order to simplify this expression, let us introduce a global positive parameter, denoted
a, characterizing the variation of the image intensity with p, defined by the relation

1
a2

=
∫ [

∂

∂p
|u0(~r, p)|

]2

p=0

d2r. (3.67)

39The second term of Eq. 3.64 indeed corresponds to the derivative relative to p of Eq. 3.59, which is

valid for any p, and in particular for p = 0.
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Using Eq. 3.67, the expression of the Fisher information becomes

IPoisson
F =

4N

a2
. (3.68)

The smallest value of p that can be distinguished from the shot noise - i.e. corresponding
to a signal to noise ratio (SNR) equal to 1 -, whatever the algorithm used to determine it
from the local intensity measurements, provided that it gives an unbiased estimation of p,
is finally given by

pPoisson
min =

a

2
√

N
. (3.69)

This value sets the standard quantum noise limit for intensity measurements of p, imposed
by the random time arrival of photons on the detector. It is inversely proportional to the
square root of the number of photons and depends on the parameter a defined in Eq. 3.67.

We now consider a non-classical illumination, still with identical mean intensity, but
with local sub-Poissonian quantum fluctuations described by a noise variance σ2

+ < 1
(assumed to be the same over the entire transverse plane). One can show that the CRB
leads to40

psub−Poisson
min =

aσ+

2
√

N
. (3.70)

Let us now compare these results with the ones obtained in section 3 B.1 in the case
of displacement measurements.

Using Eq.3.69 in the case of any amplitude detection of a coherent TEM00 beam, the
parameter a corresponds to the beam waist w0. The smallest displacement dmin that can
be distinguished from the quantum noise is thus given by

dmin =
w0

2
√

N
(3.71)

which identifies with the quantum noise limit given in Eq. 3.45.

As we have already stressed, the limits given by Eq. 3.69 and 3.70 are valid for any
measurement strategy. But a practical way enabling us to reach such an absolute limit in
the general case remains to be found. This is what is presented in the next section.

• Array Detection performance
Let us assume that an image processor calculates a given linear combination of the

local intensity values recorded by the pixels of an array detector, as represented in Fig. 3.7.
Assuming that the pixels are small compared to the characteristic variation length of the
image, the mean value S(p) of the computed signal can be written as an integral over the
transverse plane as follows

S(p) =
∫

g(~r)n̄(~r, p)d2r, (3.72)

40The proof has been obtained by P. Réfrégier but has not been published yet.
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Input

beam

Array

Detector

S(p)
g

Encoding

of p

Figure 3.7: Array detector as an optimal detection of a parameter p within an optical
image. This optical parameter has been encoded on the beam intensity via a physical
interaction with a phase object, typically a phase mask or a nano-particle. g refers to the
pixel gain distribution. S(p) is the p-dependent processed signal.

where g(~r) is the local gain on the pixel localized at position ~r, which can either be positive
or negative. Assuming that p is small, we can write the modulus of the mean field profile
as41

|u0(~r, p)| = |u0(~r, 0)|+ p

a
v(~r) (3.73)

where a is the same parameter as the one already introduced in Eq. 3.67, and where v is
a normalized42 transverse function43. Choosing the gains such as S(p = 0) = 044, i.e. such
as

∫
g(~r)n̄(~r, 0)d2r = 0, so that the signal can be written, at first order, as

S(p) =
2Np

a

∫
g(~r)|u0(~r, 0)|v(~r)d2r. (3.74)

For a coherent illumination, as the local quantum fluctuations are uncorrelated, the noise
variance ∆S2 on S(p) is equal to the shot noise on each pixel weighted by the squared
gain function g2(~r), as explained in section 1 C.5.2. Moreover, as p is small, the noise is
independent of p at first order, and we get

∆S2 = N

∫
g2(~r)|u0(~r, 0)|2d~r, (3.75)

It is then possible to optimize the gain factor g(~r) in order to get the highest possible
Signal-to-Noise Ratio (SNR) defined by

SNR =
S(p)2

∆S2
(3.76)

Using Cauchy-Schwartz inequality, one can show45 that the highest SNR value for the
41This simply corresponds to a first order Taylor development of |u0(~r, p)|.
42The normalization means here that the integration of its squared modulus over the transverse plane

equals 1, i.e.
R |v(~r)|2d2r = 1.

43The function v(~r) satisfies the following relation v(~r)
a

= ∂
∂p
|u0(~r, p)|

���
p=0

. Note that such a mode, whose

transverse envelope corresponds to the derivative of the mean field profile, has already been introduced in

the particular case of displacement and tilt measurements in section 3 A.
44Note that this corresponds to a difference measurement, introduced in section 1 C.5.2
45Cauchy-Schwartz inequality for two square-integrable functions f(~r) and h(~r) is given by�R
f(~r)h(~r)d2r

�2 ≤ �R
f2(~r)d2r

� �R
h2(~r)d2r

�
. Transposing this inequality in order to maximize the sig-

nal given by Eq. 3.74, with f(~r) = g(~r)|u0(~r, 0)| and h(~r) = v(~r) yields
�R

g(~r)|u0(~r, 0)|v(~r)d2r
�2 ≤�R

g2(~r)|u0(~r, 0)|2d2r
� �R

v2(~r)d2r
�
. The first factor of this maximal value is proportional to the noise

given in Eq. 3.75, and the second factor equals 1.
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present measurement strategy is given by

SNR =
4Np2

a2
, (3.77)

and is obtained46 for an optimal value of the gain distribution given by

gopt(~r) = β
v(~r)

|u0(~r, 0)| , (3.78)

where β is an arbitrary constant. The minimum measurable value of p - corresponding to
comparable signal and noise, i.e. SNR=1 - is given by

pmin =
a

2
√

N
, (3.79)

which identifies with the standard CRB, previously obtained in Eq. 3.69. The present
measurement strategy is therefore optimal as it allows us to reach the CRB47, with the
certainty that no other measurement strategy can do better. Note that we have not proven
that it is the unique way to reach the CRB48.

Let us now propose practical solution to perform measurement beyond the quantum
limit described above, with the use of non classical light. As the only non classical state
included in the determination of the limit given in Eq. 3.70 corresponds to the use of a
very particular light field49, we also consider here the use of single mode squeezed states50,
which can be generated experimentally as shown in section 4 C.

In order to maximally reduce the measurement noise obtained with an array detector
below the shot noise limit, we know from section 1 C.5.2 that the noise-mode of detection
- which corresponds to the mean amplitude profile multiplied by the gain distribution -
has to be filled with squeezed vacuum. Using Eq.3.78, the noise-mode of detection uI is
thus given by51

uI(~r) = a
u0(~r)
|u0(~r)|

∂

∂p
|u0(~r, p)|

∣∣∣∣
p=0

(3.80)

Using a bimodal field described in its eigen-basis52 composed of a bright mode u0(~r, 0)
in a coherent state carrying the mean field, and a squeezed vacuum state in the appropriate
mode uI(~r)53, the detected noise power is modified into

∆S2 = Nσ2
+, (3.81)

46The equality case in Cauchy-Schwartz inequality is reached when both functions f(~r) and h(~r) are

proportional, i.e. here that g(~r)|u0(~r)| and v(~r) are proportional.
47The only restriction relative to the most general case is the assumption of small values of the parameter

p.
48There is in fact not unicity as one can for instance already use several value of β for the gain configu-

ration.
49The only non classical light whose fluctuations are spatially uncorrelated corresponds to the case of a

locally squeezed beam.
50We recall that such states are always spatially correlated, to some extend.
51Note that this mode is normalized such as

R |uI(~r)|2d2r = 1.
52See section 1 B.2.2.
53Note that we also know from section 1 C.5.2 that mean field - u0(~r, 0) - and noise-mode of detection

- uI(~r) - are orthogonal for a difference measurement. They can thus be chosen as the first two modes of

the eigen-basis.
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when the noise variance on the amplitude quadrature of the flipped mode is given by σ2
+.

The minimum measurable p value becomes

pmin =
aσ+

2
√

N
. (3.82)

Note that the fact that the performance obtained here identifies with the non classical
bound presented in Eq. 3.70 can only be qualified of ”coincidence” at this stage. We have
indeed not yet derived the quantum limit in presence of single mode squeezed light in
the general case, and the bound could potentially be lower than the one obtained with
uncorrelated beams.

Nevertheless, this result also provides information about the context of spatially uncor-
related illumination. A beam with local squeezing would also give the same performance
and reach in this case the associated non-classical CRB presented in Eq. 3.70. Indeed, as
all the transverse modes of such a field are squeezed, and thus in particular the appropriate
one uI(~r), the noise-mode of detection, the result would be identical, and the squeezing
present in all the other modes would not contribute to the measurement noise.

As a conclusion, the result proposed with the single mode squeezed state is obviously
of more experimental relevance, and still allows to reach the same sub-QNL performances
with minimal resources. Practically, in order to have the best precision of a measurement
of the parameter p, one can use the proposed scheme with first, maximum available power
in the incident beam54, as pmin is inversely proportional to the square root of the beam
intensity, secondly with a beam profile tending to minimize the parameter a defined in
Eq. 3.67, and finally with a squeezed vacuum state in the component of the noise-mode of
detection.

B.2.3 Field measurements

• Cramer Rao bound calculation
We now assume that the information about p is extracted from the knowledge of the

local complex field, i.e. local amplitude and phase, obtained by interferometric techniques55.
We will assume that this field is monochromatic. The best possible detection would here
access the local complex field on k-indexed areas paving the entire transverse plane, in the
limit when their spatial extension approaches 0. Using similar notations as in the previous
section, we denote E(~r) = [E1, ..., Ek, ...] a single measurement of the field distribution,
hence independent of p, where Ek corresponds to the complex field detected on area k.
Again, because of the noise present in the light, the sample E(~r) differs from its statistical
mean value Ē(~r, p) =

[
Ē1(p), ..., Ēk(p), ...

]
, where Ēk(p) refers to the mean complex field

measured on pixel k. Let L(E|p) be the likelihood of the observation of each possible
realization E(~r) = [E1, ..., Ek, ...] .

As explained in the introduction of this chapter, the maximal precision on p can again
be calculated from the CRB, which, for a field measurement, is the inverse of the following

54The incident beam power still has to be compatible with the properties of the detection device (sat-

uration, damage threshold for instance), with the specificity of the sample from which the information is

extracted (if a biological sample is studied, shining a high power beam onto it can alter or even destroy

it), and with safety requirements.
55Note that we do not restrict here to a single quadrature measurement, potentially allowing any kind

of field detection.
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Fisher information

IF = −
∫ [

∂2

∂p2
l(E|p)

]

p=0

L(E|0)dE, (3.83)

where the integration is taken on all the possible field distributions.56

We now need to specify the photon statistics in order to do the calculation of the
Fisher information. We assume that the local field fluctuations in the transverse plane can
be described by a generalized Gaussian probability density function independent from the
mean field. The probability of measuring a field Ek on pixel k, when the parameter equals
p, is given by

Pk,p(Ek) =
e−

1
2(Ek−Ēk(p))T

Γk(p)−1(Ek−Ēk(p))

2π
√
|Γk(p)| (3.84)

where the exponent T refers to a transposition of the fields written as Fresnel vectors57Ēk(p) =(
X̄+

k (p)
X̄−

k (p)

)
and Ek =

(
X+

k

X−
k

)
, where X̄+

k (p) is the statistical average of amplitude quadra-

ture measurements on pixel k, denoted X+
k . Similar notations are used for the phase

quadrature X−. Γk(p) is the local covariance matrix on pixel k, and |Γk(p)| is its de-
terminant. Assuming in the following that the field fluctuations are homogeneous in the
transverse plane, and independent of the parameter p, the covariance matrix neither de-
pends on ~r, nor on p, and we will simply denote it as Γ. Moreover, we will only consider
fields whose amplitude and phase quadratures respectively have fluctuations described by
the variances σ2

+ and σ2−, and whose covariance matrix has the following expression58:

Γ =

(
σ2

+ 0
0 σ2−

)
. (3.85)

Such a covariance matrix either corresponds to coherent fields for which σ2
+ = σ2− = 1, or

locally squeezed beams, for which we will assume σ2
+ < σ2−. We can describe here classical

and some range of non-classical illuminations with the same formulation59. With such
illuminations, the probability introduced in Eq.3.84 can now be expanded into

Pk,p(Ek) =
1

2πσ+σ−
e
−
"
(X+

k
−X̄+

k
(p))2

2σ2
+

+
(X−

k
−X̄−

k
(p))2

2σ2−

#

, (3.86)

56Again, we can consider that the different field distributions range continuously in the transverse plane,

when the amplitude of the field is not too small.
57The quadratures are defined relative to the mean field, as presented in section 1 A.2.4. As the mean

field is p-dependent, the phase reference for the definition of the quadrature is continuously rotating in the

Fresnel diagram when the parameter p is varied. This was summarized by arguing that ”the phase reference

was following the mean field”.
58In order to simplify our expressions, we consider that the noise properties are conserved when the

parameter p varies. This is not the case in general as the quadratures are rotating when the parameter p

varies. We should therefore have included a p-dependence of the noise factors, or for instance have applied

a rotation to the covariance matrix relative to the reference p = 0. This will have no consequence on the

generality of our final results, as noise quadratures will be evaluated precisely for the reference value of the

parameter p = 0, as shown by Eq.3.91.
59Note that, as in the previous section, the calculation does not include the case of single mode squeezed

states, which are spatially correlated.
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The likelihood L(E1, ...,Ek, ...|p) of observing the field distribution E(~r) = [E1, ...,Ek, ...]
corresponds to the product of the local probabilities, as we only consider non spatially
correlated beams60:

L(E1, ..., Ek, ...|p) =
∏

k

Pk,p(Ek). (3.87)

The log-likelihood is thus given by

l(E1, ..., Ek, ...|p) =
∑

k

ln [Pk,p(Ek)] . (3.88)

Taking the limit of infinitely small pixels, for which the sum can be replaced by an integral,
one finally obtains

l(E|p) = −
∫ [(

X+(~r)− X̄+(~r, p)
)2

2σ2
+

+
(X−(~r)− X̄−(~r, p))2

2σ2−
+ ln(2πσ−σ+)

]
d2r,

whose first derivative relative to p is61

∂l(E|p)
∂p

=
∫ [(

X+(~r)− X̄+(~r, p)
)

σ2
+

∂X̄+(~r, p)
∂p

+

(
X−(~r)− X̄−(~r, p)

)

σ2−

∂X̄−(~r, p)
∂p

]
d2r.

Assume that our estimation of the photon number distribution is unbiased, i.e. the
statistical average of sets of field measurements E(~r) taken for p = 0 identifies with the
mean field distribution Ē(~r, 0), i.e.

∫
E(~r)L(E|0)dE = Ē(~r, 0). (3.89)

This can be similarly shown for each quadrature, and the statistical average of the first
derivative of the log-likelihood, taken for p = 0 thus becomes

∫
∂

∂p
l(E|p)

∣∣∣∣
p=0

L(E|0)dE = 0, (3.90)

which again exactly corresponds to the case described in Fig. 3.6. The maximum of the
mean value of the log-likelihood is obtained for p = 0. We now need to calculate the second
derivative in order to estimate the local curvature of the log-likelihood around p = 0.

The second derivative of the log-likelihood, taken for p = 0, yields

∂2l(E|p)
∂p2

∣∣∣∣
p=0

=
1

σ2
+

∫ [
(
X+(~r)− X̄+(~r, 0)

) ∂2X̄+(~r, p)
∂p2

∣∣∣∣
p=0

− ∂X̄+(~r, p)
∂p

∣∣∣∣
2

p=0

]
d2r

+
1

σ2−

∫ [
(
X−(~r)− X̄−(~r, 0)

) ∂2X̄−(~r, p)
∂p2

∣∣∣∣
p=0

− ∂X̄−(~r, p)
∂p

∣∣∣∣
2

p=0

]
d2r

As the Fisher information corresponds to the statistical average of −∂2l(E|p)
∂p2 over all pos-

sible measurements, when p = 0, we get

IGauss
F =

1
σ2

+

∫
∂X+(~r, p)

∂p

∣∣∣∣
2

p=0

d2r +
1

σ2−

∫
∂X−(~r, p)

∂p

∣∣∣∣
2

p=0

d2r. (3.91)

60The states to which we have restricted our analysis - coherent and locally squeezed beams - are precisely

not spatially correlated.
61Note that the last integrated term diverges but vanishes as it is independent of p.
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Two terms canceled as the statistical average of the measured quadratures X±(~r) corre-
sponds to the amplitude quadrature mean value for p = 0, X̄±(~r, 0), as explained in Eq.
3.89.

Recalling from Eq. 3.51 that Ē(~r, p) = 2
√

Nu0(~r, p), the definition of the quadratures
given in section 1 A.2.4 yield X̄+(~r, p) = 2

√
Nu0(~r, p) and X̄−(~r, p) = 062. It is interesting

to note that with this definition of the quadratures, the information about the parameter
p is entirely comprised in the amplitude quadrature of the incident field.

Hence, the second term of the Fisher information given in Eq.3.91 cancels, and intro-
ducing the global positive parameter - denoted b - characterizing the variation of the image
field with p

1
b2

=
∫ [

∂

∂p
u0(~r, p)

]2

p=0

d2r, (3.92)

we finally obtain the Fisher information

IGauss
F =

4N

b2σ2
+

. (3.93)

The smallest value of p that can be distinguished from the quantum noise using any field
detection of the optical beam is thus given by

pGauss
min =

bσ+

2
√

N
. (3.94)

This value sets the quantum noise limit63 for field measurements of p, imposed by the
quantum fluctuations of the light beam, and therefore valid for any measurement strategy.
It is again inversely proportional to the square root of the number of photons, and depends
on the variation of the field profile with the parameter p towards b, which is defined in Eq.
3.92. Moreover, Eq. 3.94 shows that squeezing the amplitude quadrature of the incident
field improves the CRB through the factor σ+ without the counterpart of measuring excess
noise σ− on the orthogonal quadrature64.

• Homodyne Detection performance
As in the intensity case in section 3B.2.2, we propose a scheme in order to reach this

limit in the case of a small parameter p, and for which the mean value of the complex
electric field can be written at first order around p = 065

E(~r, p) = 2
√

N
[
u0(~r, 0) +

p

b
uE(~r)

]
, (3.95)

where b has been introduced in Eq. 3.92, and where uE(~r) is a normalized transverse
function defined such as ∂

∂pu0(~r, p)
∣∣∣
p=0

= uE(~r)
b

66.

Let us consider a balanced homodyne detection67, whose local oscillator (LO) is defined
62We recall that the amplitude and phase quadratures are respectively defined relative to the real and

imaginary parts of the factor in front of the mean field profile u0(~r). The reference of the amplitude

quadrature is following the mean field.
63We can define the related quantum noise limit when σ+ = 1, corresponding to pGauss

min = b

2
√

N
.

64For instance for a minimum squeezed state, we recall that σ+ = 1/σ−.
65This simply corresponds to a Taylor development of the mean field profile at first order around p = 0:

u0(~r, p) = u0(~r, 0) + p ∂u0(~r,p)
∂p

���
p=0

.

66uE(~r) is normalized such as
R |uE(~r)|2d2r = 1. This can easily be shown using the definition of b in

Eq. 3.92.
67The homodyne detection and its properties have been presented in section 1 C.4.
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by the following complex field operator

ELO(~r) = 2
√

NLOuE(~r)eiθLO , (3.96)

where NLO corresponds to the number of photons detected in the entire LO beam during
the integration time. The setup is schematized on Fig. 3.8. The LO is much more intense

-
Homodyne
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Figure 3.8: Balanced homodyne detection as an optimal detection of an parameter p within
an optical image. This optical parameter has been encoded on local amplitude and phase
of the beam via a physical interaction with a phase object, typically a phase mask or
a nano-particle. n−(p) is the p-dependent homodyne detection signal. φLO is the local
oscillator phase. BS : 50/50 beamsplitter.

than the image, i.e. NLO À N . θLO is the global local oscillator phase. The mean intensity
difference n−(p) between the two homodyne detectors is given in terms of number of
photons by68

n−(p) =
1
4

∫
[E∗

LO(~r)E(~r, p) + E∗(~r, p)ELO(~r)] d2r. (3.97)

Note the great similarity with Eq. 3.72. Incident field amplitude and local oscillator field
play here identical roles of incident intensity and electronic gain, respectively. Though
detectors do not resolve the spatial distribution of the beams and no processing of the
spatial information is made, the balanced homodyne technique directly provides an ”ana-
log” computation of the quantity of interest.

Using Eq. 3.95 and 3.96, the signal given in Eq. 3.97 becomes

n− = 2
√

NNLO

[p

b
cos(θLO) + |γ| sin(θLO)

]
. (3.98)

where γ is the overlap integral between u0(~r, 0) and uE(~r), which are not orthogonal in
the general case69. γ is defined by

γ =
∫

u∗0(~r, 0)uE(~r)d2r. (3.99)

68 Note the great similarity with Eq. 3.72. Incident field amplitude and local oscillator field play here

identical roles to incident intensity and electronic gain, respectively.
69u0(~r, 0) and uE(~r) are orthogonal if the mean field profile is real for p = 0, i.e. if u0(~r, 0) is real. Indeed,

in this case γ = b
R

u0(~r, 0) ∂u0(~r,p)
∂p

���
p=0

d2r = b
2

R ∂|u0(~r,p)|2
∂p

���
p=0

d2r = 0, as the global beam intensity is

not modified by p and
R |u0(~r, p)|2d2r is a constant.
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The local oscillator phase can be tuned to θLOopt = 0 [π] in order to maximize the first
term of Eq.3.98, and hence the information about p that can be extracted.

For a coherent illumination, the noise power on the homodyne signal, denoted 〈n̂2−〉,
corresponds to NLO, i.e. to the shot noise of the LO, as shown by Eq. 1.126. The SNR of
the homodyne measurement is thus given by

SNR =
n2−
〈n̂2−〉

=
4Np2

b2
. (3.100)

The minimum measurable value of p - corresponding to a SNR of 1 - with a homodyne
detection is given by

pmin =
b

2
√

N
. (3.101)

This is the Cramer Rao Bound.
Similarly to section 3 B.2.2, let us now propose practical solution to perform measure-

ment beyond the quantum limit described in Eq. 3.101, with the use of non classical light.
Again, as the only non classical state included in the determination of the limit given in
Eq. 3.94 corresponds to light field which is very difficult to produce, we also consider here
the use of single mode squeezed light.

Hence, when the component of the image selected by the LO is in a non classical state,
i.e. allowing a squeezed uE mode, which appears here as the noise-mode of detection70,
with a noise variance on the amplitude quadrature equal to σ2

+ within the incoming beam,
we get

pmin =
bσ+

2
√

N
, (3.102)

when uE and u0 are orthogonal.
Note that the fact that the performance obtained here again identifies with the non

classical bound presented in Eq. 3.94 can only be qualified of ”coincidence” at this stage.
We have indeed not yet derived the quantum limit in presence of single mode squeezed
light in the general case, and the bound could potentially be lower than the one obtained
with uncorrelated beams.

Nevertheless, again, this result also provides information about the context of spatially
uncorrelated illumination. A beam with local squeezing, yet unphysical, would also give
the same performance and reach in this case the associated non-classical CRB presented
in Eq. 3.94. Indeed, as all the transverse modes of such a field are squeezed, and thus in
particular the appropriate one uE(~r), the noise-mode of detection, the result would be
identical, and the squeezing present in all the other modes would not contribute to the
measurement noise.

As a conclusion, the result proposed with the single mode squeezed state is obviously
of more experimental relevance, and still allows to reach the same sub-QNL performances
with minimal resources.

70See section 1C.
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B.2.4 Comparison

In the previous sections, we have presented two optimum signal processing techniques
for the extraction of information contained in an optical image. They are optimum in
the sense that they potentially71 allow to reach the associated quantum limit imposed by
the statistics of the measured light beam, namely the Cramer-Rao Bound. We have also
shown that they could perform measurements beyond this limit with the use of single
mode squeezed light within the incident beam.

Let us now compare the limits obtained for intensity and field measurements. The two
expressions of the Fisher information about the parameter p that can be deduced from such
detections are presented in Eq. 3.70 and 3.94. They only differ by the parameters a and
b. We can thus compare intensity and field detection performances simply by comparing
these two positive parameters. Recalling that the mean field profile is a complex function,
we can write

u0(~r, p) = |u0(~r, p)|eiθ0(~r,p), (3.103)

where θ0(~r, p) is the phase distribution of the mean field. The first derivative of Eq. 3.103
relative to p, taken for p = 0 yields

∂u0(~r, p)
∂p

∣∣∣∣
p=0

=
∂|u0(~r, p)|

∂p

∣∣∣∣
p=0

eiθ0(~r,0) + i|u0(~r, 0)| ∂θ0(~r, p)
∂p

∣∣∣∣
p=0

eiθ0(~r,0) (3.104)

Similarly to the definition of a and b in Eq. 3.67 and 3.92, we define a real positive number
c by the relation

1
c2

=
∫
|u0(~r, 0)|2

∣∣∣∣
∂θ0(~r, p)

∂p

∣∣∣∣
2

p=0

d2r (3.105)

Then, the squared modulus of Eq. 3.104, integrated over the transverse plane, yields

1
b2

=
1
a2

+
1
c2

(3.106)

The first conclusion is that a ≥ b, i.e. that the CRB for field measurements is smaller than
the one for intensity measurements. Moreover, it is interesting to note that each term given
in Eq.3.106 exactly corresponds to the maximum information that can be extracted from
field, intensity, and phase measurements72, respectively. Indeed, multiplying Eq. 3.106 by
4N yields

Ifield
F = I intensity

F + Iphase
F . (3.107)

It is not surprising to see that the information that can be extracted from field measure-
ments, in which all quadratures can be accessed, corresponds to the sum of the information
given by intensity and phase measurements. The case a = b thus obviously corresponds to
a parameter which is only affecting the intensity.

71The CRB is effectively reached when the detection process is done without any losses, i.e. for perfect

detection efficiencies, perfect mode-matching...
72The information about the dependence of the phase of the mean field with respect to the parameter p

is contained in c, as shown in Eq. 3.105.
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Although field measurements give more precision on the parameter p, both detection
schemes previously presented are still useful: the intensity scheme is simple to imple-
ment experimentally, and is not restricted to monochromatic light, whereas the amplitude
scheme does not need pixellized detectors.

This work provides limits as well as optimal schemes for any coherent illumination.
However, it does not account for all quantum field illumination, as we have restricted
our analysis to spatially uncorrelated beams. In some future work, we will include spatial
correlations in the transverse plane of the incident beam, i.e. single mode squeezed states,
and will investigate the modifications of the CRB. The non classical performance of our
schemes will thus be compared to the best possible measurement using the same non
classical source. This will apply to the optimal extraction of any information from any
quantum field in the transverse plane.

C Conclusion

In this chapter, we have presented simple physical parameters that can be encoded onto
the transverse plane of an optical beam. We have notably introduced the displacement
and tilt of a TEM00 reference beam, which are key elements of this thesis. Moreover, we
have identified the bound under which such transverse parameters cannot be distinguished
from the quantum noise, in any type of detection. Furthermore, we have proposed practical
solutions to optimally extract any transverse information with classical resources. Finally,
we have shown that measurements beyond this bound were accessible with the use of
squeezed light in an appropriate mode which identifies with the noise-mode of detection
introduced in the previous chapter.
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T
here has been a growing interest during recent years in spatial quantum optical ef-
fects, usually called quantum imaging effects [Lugiato02, Kolobov 99, Gigan06], as
the generation of spatial correlations or spatial squeezing in the transverse plane

of laser beams may open the way to new applications in many different areas. Among
them are laser physics, quantum information, and potentially astrophysics and biopho-
tonics. Some pertinent examples are the measurement of small transverse displacement
and tilt of a TEM00 laser beam below the quantum noise limit [Treps02], detection of
weak phase images [Lugiato02], quantum teleportation of optical information [Sokolov01],
transverse spatial quantum correlation for transmission of images [Gigan06] and noise-
less image amplification [Kolobov95, Lopez07,2]. Multiple spatial modes can also provide
advantages in regard to the complexity of quantum information protocols [Caves94] and
can allow parallel transfer of quantum information through an optical network. In single
photon optics, this has created considerable interest in the use of modes with different
angular momentum [Zeilinger00, Oemrawsingh04, Langford04, Barnett06]. An advantage
of continuous wave light beams is that close to perfect modulation and detection schemes
are available, which is a requirement for the effective use of squeezed and entangled light
in quantum information protocols.

An infinite number of orthonormal basis are available to describe the spatial properties
of laser beams. The most commonly used are the Hermite-Gauss and the Laguerre-Gauss
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basis. In this chapter, we will concentrate on the H-G modes, but a similar study could be
undergone with any another set of modes. The higher order H-G modes are particularly
interesting with a cartesian description of the transverse plane, as they are directly related
to simple spatial properties of Gaussian beams, as we have detailed in the previous chapter
in section 3 A. We recall that the real and imaginary parts of the TEM10 mode represent
small changes in tilt and position of a TEM00 beam, whereas the real and imaginary parts
of the TEM20 mode correspond to a small waist-size and waist-position mismatch.

Using the results obtained in the previous chapter, we know how to extract a spatial
information from an image, even in the case of a multi-mode quantum illumination, and
can thus potentially determine the spatial parameters of an object with which the beam has
interacted better than what could be done with classical light. In order to be compatible
with the use of squeezed light, note that the interaction with the object must not induce
losses on the optical beam. This is for example the case for the imaging of a phase object.

LASER

Propagation

and

imaging

Detection

of

HG modes

α +β +...

SQZ

SQZ

Squeezed

State

Generation

Squeezed

State

Generation

Combination

of

HG modes

Generation

of

HG modes
Object

Figure 4.1: Quantum Imaging with Hermite Gauss modes. Five major steps are required
and are detailed in this chapter. The scheme allows the generation of a multi-mode beam
with squeezed components (SQZ), as illustrated by the transverse mode profiles, in order
to retrieve spatial parameters of an object, with an accuracy better than the QNL.

However, we have not detailed yet the production and the manipulation of such a
beam. This is what we propose to detail in this chapter, following the general quantum
imaging scheme presented in Fig. 4.1. Some of this work has been accepted for publication
[Lassen07].

First, we will give some properties about the propagation of Hermite Gauss modes,
then present some devices that allow us to selectively produce these modes or excite the
physical property of interest developed in section 3A. In order to scale the manipulation of
such transverse modes, we will show how to combine them, and especially how to achieve
the combination without modifying the non-classical properties of each beam. We will not
come back on the selective detection of the information lying in each transverse mode, as
this has already been detailed in section 1 C.

Then, we will concentrate on the second harmonic generation (SHG) of higher order
transverse modes. And finally, we will present how the results obtained in the SHG section
in the classical regime can be used to generate squeezing in higher Hermite Gauss modes.
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A Basic manipulations of Hermite Gauss modes

A.1 Propagation of Hermite Gauss modes

A.1.1 Gouy phase shift

As we already briefly introduced in section 1 A.2.6, Hermite Gauss modes not only differ
by their amplitude functions but also by their phase dependence, due to the Gouy phase
ψG(n,m, z) [Siegman86]. It is responsible for the existence of a phase shift between modes
of different order during their propagation.

ψG(n,m, z) = (n + m + 1)φG(z) = (n + m + 1)arctan
(

z

zR

)
(4.1)

In order to give an idea of its importance, let us give two examples. For a beam at λ =1064
nm focused to w0 = 100µ m, the Rayleigh range corresponds to zR = πw2

0/λ ' 3 mm. A
phase shift as large as 45◦ is thus accumulated between two modes of consecutive order for
a propagation over 3 mm. However, the Gouy phase shift can be neglected for collimated
beams, for which the Rayleigh range zR is large. Indeed, for a for a beam waist of w0 = 2
mm, zR =' 13 m, and less than 10◦ phase shift is obtained between two consecutive modes
for a propagation over 2 meters.

The Gouy phase shift has a direct consequence on the displacement and tilt defined
in Eq. 3.6. For a TEM00 beam, the displacement is proportional to the real part of the
TEM10 component of the field, whereas the tilt is defined relative to imaginary part of the
TEM10 component, but only in the reference plane. Nevertheless, knowing the coefficients
of the decomposition in a particular plane, here in z = 0, a field can simply be propagated
using the mode expansion as long as the paraxial approximation is still fulfilled1. Taking
into account the phase shift accumulated between the TEM00 and the TEM10 modes, Eq.
3.6 can be rewritten as

Ed,p(x, z) = A0e
i kx2

2R(z) e−iφG(z)

[
|u0(x, z)|+

(
d

w0
+ i

pw0

2

)
|u1(x, z)|e−iφG(z)

]
, (4.2)

where we have used the complete expression of the Hermite Gauss modes given in Eq.
1.60.

Hence, displacement and tilt generated in z = 0 do not correspond to the real and
imaginary parts of the TEM10 mode at position z anymore. Denoting as dapp(z) and
papp(z) the real and imaginary parts of the TEM10 component at position z, respectively,
we get, using Eq. 4.2

dapp(z)
w(z)

=
d

w0
cos [φG(z)] +

pw0

2
sin [φG(z)] (4.3)

papp(z)w(z)
2

= − d

w0
sin [φG(z)] +

pw0

2
cos [φG(z)] (4.4)

1Indeed, the mean value of Eq. 1.27, shows that there exists a unique decomposition of the field as

E(x, z) = A0

X
n

cnun(x, z)

, where un(x, z) are the full expressions of the transverse modes which are satisfying the paraxial propaga-

tion equation, and where the coefficient cn are independent of z. With these notations, Eq. 3.6 corresponds

to E(x, 0) = A0

P
cnun(x, 0), and coefficients c0 and c1 can be identified in both cases.
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dapp(z) and papp(z) can be seen as ”apparent” displacement and tilt at position z. A split-
detector is for example only sensitive to the amplitude of the field and only measures an
apparent displacement, as we will show in section 5 A.

We now focus on the consequences of the Gouy phase shift between two particular
planes, which are called near-field and far-field. We define the near field (NF) as the plane
z = 02. The far field (FF) corresponds to z → ∞. These definitions are common in
Fourier optics, as the transformation of an optical image from NF to FF corresponds to
the Fraunhofer diffraction regime and is described by a Fourier Transform [Born97].

The expression of the Gouy phase shift given in Eq. 4.1 immediately implies that a
TEMnm mode accumulates a (n + m + 1)π/2 Gouy phase shift between NF and FF. A π

phase difference is hence for instance accumulated between a TEM00 and a TEM20 mode,
between NF and FF. A direct consequence of this is the modification of a multi-mode
beam profile during propagation. This phenomenon is well known and corresponds to the
diffraction of the image. The only fields which are stable during propagation are the modes
solution of the paraxial propagation equation, as presented in section 1 A.2.

Let us now come back to the displacement and tilt of a TEM00 mode, and the way they
are modified in such a Fourier transformation. Knowing that a TEM10 mode accumulates
a π/2 phase difference relative to the TEM00 mode during the propagation between NF
and FF. It shows that tilt and displacement information now respectively correspond to
imaginary and real parts of the TEM10 component. A split-detector far from the reference
plane, i.e. the one where displacement and tilt are produced, will be sensitive to the tilt but
not to the displacement, whereas it was only sensitive to the displacement in the reference
plane (NF). A measurement of the displacement in the FF yields the value of the tilt in
the NF. These two variables, both related to the TEM10 component of a TEM00 mode
beam, are therefore linked by Fourier Transform [Hsu05].

One can then wonder whether there also exists such a Fourier relation between waist-
size and waist-position mismatch, the pair of variables related to the TEM20 component
of a TEM00 mode beam. Recalling that a TEM20 accumulates a π phase shift relative to
a TEM00 mode between NF and FF, it is obvious from Eq. 3.28 that waist-size and waist-
position are not inverted by Fourier Transform. The inversion between both variables is
obtained here between the NF and the plane which is such as 2arctan (z/zR) = π/2, i.e.
z = zR.

For a TEM00 beam, displacement and tilt are thus the only variables contained in
Hermite Gauss modes that are Fourier Transform of each other.

A.1.2 Imaging in terms of Hermite Gauss modes

In the previous section, we have presented the free propagation of an optical image in terms
of the evolution of its Hermite Gauss components. We now consider a general imaging
setup, and analyze in particular the image modification when transmitted through a lens,
still in terms of individual Hermite Gauss modes evolution.

2Note that the near field can be defined more generally relative to a reference object or plane, and

could also be taken elsewhere on the propagation axis. We have chosen here z = 0 as the expressions are

simpler in this plane, but the properties which are discussed are completely transposable to any reference

transverse plane situation.



A. Basic manipulations of Hermite Gauss modes 109

Setting up an imaging experiment with Gaussian beams adds a degree of complexity
relative to geometrical optics. The position of the beam waists and their size is here of
great importance.

Let us first consider the most simple case of the imaging of a planar intensity or
phase mask onto a detector. For ideal performance of the imaging setup, the beam wave-
front must match the mask and the detector properties. The beam used to convey the
information must therefore be imaged such that it has a waist, i.e. a planar wave-front in
the mask and in the detector planes.

In such a case, the most convenient ways to proceed are to build ”2f-2f” or ”f1-f1-f2-f2”
setups, as presented in Fig. 4.2. In these two simple configurations, the object and image
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Figure 4.2: The two most simple imaging setups, a)”2f-2f”and b) ”f1-f1-f2-f2”configurations.
In both cases, object AB and image A’B’ planes are situated at waists position, and the
magnifying factor equals 1.

planes are both situated at waists position. In the first case, the magnifying factor equals
1 whereas it can be tuned in the second configuration by the ratio f1/f2.

General imaging properties using ABCD matrices have been very clearly detailed in
reference [GiganPhD04], and we therefore propose only the resolution of a simple example,
that will be useful to understand the imaging setup demonstrated in section 5 A. The most
important feature of imaging a given object plane with gaussian beams is that there exists
no simple relation between the position of the images and the position of the waists.

Let us consider the configuration presented in Fig. 4.3. We want to answer the following
question: what is the Gouy phase shift accumulated from the plane defined by the waist w0

to the plane defined by the waist w′0, between a TEM00 and a TEM10 components, initially
in phase in the plane containing w0? As represented in Fig. 4.3, it is always possible to
choose a fictitious object plane anywhere on the optical axis before the lens, and calculate
its image using geometrical optics. Both planes, referred as NF and NF’ in Fig. 4.3, are
optically conjugated through the lens. As a consequence, the intensity distributions in both
planes identify up to a scaling factor. It is easy to show in this case that the expression
of the ABCD matrix used to propagate the field from plane NF to plane NF’ is such that
B = 0 and C = −1/f [Gigan05]. The field distribution in plane NF’ can then be shown
to be related to the field in plane NF by [Siegman86, Gigan05]

E(~r′) = −ME(M~r)ei kCM~r′2
2 (4.5)

There is thus an additional curvature in the image plane NF’ with respect to the field
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Figure 4.3: Example of imaging setup where gaussian beam profile and geometrical optics
are simultaneously represented. An object in plane NF(near field) is imaged in NF’ using
a lens of focal lens f . The beam waists before and after the lens are respectively denoted
w0 and w′0.

distribution in plane NF. However, knowing that our optical systems are typically such as
M ' 1, f ' 0.1m, w ' 100µm, λ ' 1µm, the curvature is small as the exponential term
is of the order of 0.1 rad3. In our experiments4, we can thus neglect this curvature, and we
will assume that the image in plane NF’ has exactly the same modal decomposition as the
one in plane NF. This means that no mode-dependent phase shift has been accumulated
during the propagation through the lens from NF to NF’5.

This property can then be used to deduce all phase shifts between modes in any plane
on each side of a lens. In particular, we can now answer the question regarding the phase
shift ∆φ01 accumulated between TEM00 and TEM10 modes from w0 waist plane to w′0 waist
plane in Fig. 4.3. Starting from the plane containing w0, the phase shift between TEM00

and TEM10 components in plane NF corresponds to the Gouy phase shift arctan(L/zR) by
back propagation of the beam (see Fig. 4.3). Then using the previous property, we know
that no phase shift is accumulated between planes NF and NF’. Finally, a phase shift of
arctan(L′/z′R) is accumulated between NF’ and the plane containing w′0. zR and z′R are
respectively the beam Rayleigh ranges before and after the lens. In the end, the phase
shift accumulated between both waist plane between TEM00 and TEM10 components is

∆φ01 = arctan(L/zR) + arctan(L′/z′R).

This method, illustrated here in a particular case, is useful to deduce the beam Gouy phase
shift modification after a lens, and will be used in section 5 A.

Let us give another important imaging scheme for the need of section 5 A. We have
seen earlier in this section that displacement and tilt were Fourier transform of each other.
This property is illustrated in Fig. 4.4, where the far field (FF) is classically accessed in a
”f -f” configuration with a lens of focal length f . In configuration a), a pure displacement

3This value is not so small and one has to be careful about the validity of the approximation for large

beams or large magnifying factors.
4See section 5 A.
5Note that taking into account the additional curvature of the beam would add a mode-dependent phase

shift between the two field distributions, resulting from the decomposition of E(~r′) given in Eq. 4.5 in the

Hermite Gauss basis.
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Figure 4.4: Correspondence between a) displacement in the near field (NF) and tilt in the
far field (FF), and b) tilt in the near field (NF) and displacement in the far field (FF).
Displacement and tilt are Fourier Transform of each other.

in NF plane translates into a pure tilt in plane FF. Similarly, in configuration b), a pure
tilt translates into a pure displacement. Using measurements in the FF, we can infer the
value of the Fourier related component using the following expressions6

pFFwFF

2
= − dNF

wNF
(4.6)

dFF

wFF
=

pNFwNF

2
(4.7)

where the relation between wNF and wFF can simply be deduced from ABCD matrix
calculation.

A.2 Generation of higher order modes

We now introduce some devices that allow selective and controllable generation of spatial
modes. We will first present ”universal” mode converters, i.e. techniques that potentially
converts any mode into any other mode. Then, we will concentrate on the selective gener-
ation of higher order Hermite Gauss modes. Finally, we will present devices that allow the
production of controllable displacement and tilt. For each apparatus, efficiency, simplicity
and cost are of course the main issues, and will be investigated.

6These relations can be shown using the previous results. In the imaging scheme shown in Fig. 4.4,

NF’ - the conjugated plane with NF by the lens - is positioned at infinity after the lens. We know that

no differential phase shift exists between the TEM00 and TEM10 components between the planes NF and

NF’. In order to back-propagate the field to the plane denoted FF, a Gouy phase shift equal to π/2 is

accumulated between TEM00 and TEM10 components. This shows that the displacement generated in

plane NF is carried by the imaginary component of the TEM10 mode in plane FF and appears as a tilt in

this plane. Similar relation exists for the tilt in plane NF.
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A.2.1 ”Universal” mode-conversion devices

The first ”universal” device one could mention is the hologram mask. Its advantages are
its wide range of applications, its very low price, and the way it can easily be duplicated7.
A picture of an example of hologram is presented in Fig. 4.5a) [Arlt98]. This pattern

a) b) c)

Figure 4.5: ”Universal” mode-converting devices. a) hologram mask, b) phase mask, c)
spatial modulator.

converts an incident TEM00 mode into a LG1
0 mode in its first order diffracted pattern.

Such a hologram can be generated by interfering the illumination mode and the mode
that one wants to generate. The drawback of such a mode converting device is mainly
its specificity. One hologram indeed corresponds to a single mode generation, for a very
particular illumination mode, for which the hologram has been processed. For instance if
the waist of the incident TEM00 mode is slightly modified, the purity of the converted mode
drops rapidly. Moreover, when the mode-conversion of non classical beams is considered,
the loss caused by the holograms can be a limiting factor.

A second interesting mode-converting device is the phase mask. The first advantage
of such a pure phase object is its very high efficiency, as a non classical beam does not
necessarily suffers from losses when transmitted through the mask. An example of phase
mask is given in Fig. 4.5b). This wave-plate converts a TEM00 mode into a flipped gaussian
mode. This conversion has been studied in detail in reference [Delaubert02], and will
be used in the experiments presented in chapter 5. Nevertheless, similarly to hologram
masks, such devices are limited to a very specific use, and must be changed each time the
illumination mode profile or the desired profile changes.

The most flexible ”universal” device remains the phase modulator, although it is also
the most complex one to use, and obviously the most expensive. A picture of an ex-
ample of spatial phase modulator is presented in Fig. 4.5c). It consists of an array of a
large number of micro-controlled mirrors8 [MISA], than can either be used in reflection
or transmission - depending on designs - in order to produce any mode, according to the
preprogrammed phase profile provided by the tunable mirrors. Such a system is perfect
from classical imaging applications, but the losses, close to 50%, are still a limiting factor
for its implementation in quantum imaging.

7Most holograms masks can be generated simply by photocopying a pre-existing mask.
8This type of micro-element technology is referred to as the MEMS (MicroElectroMechanical Systems)

technology.
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A.2.2 Hermite Gauss mode generation using a misaligned optical cavity

Let us now focus on the selective generation of Hermite Gauss modes. We propose a
simple scheme to convert a TEM00 input beam into a pure TEMn0 beam by using an
optical cavity.

We consider a TEM00 beam incident on a ring cavity9, as illustrated in Fig. 4.6a).
When the beam is perfectly aligned and mode-matched into the cavity, the transmission
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Figure 4.6: Hermite Gauss mode-converting device. A misaligned cavity is locked at res-
onance to the desired Hermite Gauss mode. a) Cavity aligned to the TEM00 mode. b)
Transmitted intensity IT as a function of the cavity length L, when the cavity is aligned.
c) Cavity misaligned in order to maximize the TEM10 mode peak. d) Transmitted intensity
as a function of the cavity length, when the cavity is misaligned. The numbers above each
peak corresponds to the TEMn0 mode resonant for this cavity length. FSR:free spectral
range. D:locking detector. PZT:piezoelectric device.

as a function of the cavity length is given by the well-known Airy function, as represented
in Fig. 4.6b). A TEM00 output mode is obtained when the cavity length is locked to the
maximum of the peaks. Experimentally, this locking is achieved with the Pound Drever
Hall technique [Drever83]. The error signal is generated from the measurement of the
reflected beam on the input coupler of the cavity and retro-acted on a mirror-mounted
piezoelectric stack inside the cavity10.

When the beam is misaligned relative to the previous configuration, the displaced or
tilted beam projects onto several transverse modes of the optical cavity, as shown in Fig.
4.6c)and d). The transmission as a function of the cavity length is hence composed of
several peaks, each one of them corresponding to the resonance of a particular transverse
mode inside the cavity. Locking the cavity length to any of the peaks allows the generation
of the corresponding mode. Moreover, if the cavity is designed in order to prevent any mode

9Note that a ring-cavity can also be used as a mode combiner, as explained in section 4 A.3.3.
10Note that the generation of the error signal requires the encoding of a phase modulation at RF fre-

quency Ω on the input beam, for instance with an EOM (Electro-Optic-Modulator), and to demodulate

the measured signal with the locking detector at the same frequency Ω.
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degeneracy, each peak can be clearly separated from the others, and the output mode
can easily be more than 99% pure. Furthermore, for an impedance-matched cavity11,
the relative height of each resonance peak directly corresponds to the coefficient of the
decomposition of the displaced or tilted input TEM00 beam, as presented in section 3 A.1.
The maximum of the coefficient of each TEMn0 mode as a function of the displacement
presented in Fig. 3.3 can thus directly give us the best conversion efficiency achievable
with this method. Hence, the conversion of a TEM00 into a TEM00 is 100% efficient, as
expected, whereas the conversion into TEM10 and TEM20 modes is only 0.602 = 36% and
0.502 = 25% at best.

Note that the efficiencies presented here can be improved with different methods. For
instance, for the generation of a TEM10 output mode, a special wave-plate can be inserted
into the beam before the cavity [Delaubert02]. It converts the TEM00 beam into a flipped
mode, which is a TEM00 with a π phase flip in the center of the beam, as already pre-
sented in Fig. 1.11. The TEM10 coefficient of the flipped mode decomposition equals 0.8.
Therefore, without misaligning the beam, the conversion efficiency of the combination of
wave-plate and cavity can be improved to 0.82 = 64%. This technique will be used in
section 5 B. Another example is to de-focus the input beam inside the cavity in order to
increase the TEM20 component. The relation between de-focusing and TEM20 mode is
explained in section 3 A.2.

The advantages of the mode conversion with a ring cavity are the purity of the output
mode, and the simplicity of use when one often needs to change the output field from
one mode into another. The propagation axis of the output beam is never modified as it
is defined by the cavity axis. No realignment it thus required between the operation of
the cavity on resonance in different modes. As we will present in chapter 5, this device
will be particularly useful for our experiments. However, the low efficiency does not allow
the conversion or the transmission of non-classical fields, and will therefore be limited to
modification of coherent beams.

Let us briefly mention that the production of a tunable combination of transverse
modes, which cannot be achieved with the cavity technique, is possible by means of second
harmonic generation of TEMn0 pump modes, as presented in section 4 B.

A.2.3 Displacement and tilt modulators

The generation of displacement of a beam is an easy task with the use of a mirror mounted
on a piezoelectric material (PZT). At low frequency, i.e. at frequencies below the mechan-
ical resonance of the PZT device, typically below 20 kHz in our experiments, a pure
displacement12 of the beam can be achieved when the angle of incidence of the beam is
around 45◦. However, at higher frequencies, using the accidental resonances of the PZT
in the MHz regime, we noticed that a combination of displacement and tilt was generated
on the beam. This result is presented in section 5 A. The latter combination is intrinsic
to the PZT device and cannot be modified.

However, it can be useful to be able to either generate a pure beam displacement, or

11A cavity is said impedance-matched if the reflectivity of its mirrors potentially allows 100% of the light

to be transmitted through. Experimentally, transmission of around 90% can typically be achieved in the

fundamental mode of the cavity.
12Note that although it does not generate any tilt, such a method adds a global phase shift to the beam.
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to control the amount of displacement and tilt generated. A scheme for the production of
tunable displacement and tilt is presented in Fig. 4.7.

NF FF

EOM

EOM 1

EOM
2

3
d θ

Figure 4.7: Tunable beam displacement and tilt generator. The modulation of a beam using
an electro-optic modulator (EOM), when the angle of incidence is non zero, generates a
pure displacement of the output beam. The combinations of two identical devices in Fourier
related planes allows a tunability of displacement and tilt independently. A third EOM
(EOM3) can be used at the very beginning of the setup in order to compensate for the
phase shift induced by the EOM1 and EOM2. Cases of pure displacement d and pure tilt θ

are represented in dotted lines. The solid line is the beam path when no voltage is applied
to the EOMs. NF:near field. FF:far field.

Such a device has first been implemented in reference [Treps02], and relies on the
properties of electro-optic modulators (EOM). The refractive index of an EOM crystal
can be modulated at RF frequency. This feature is usually used in order to produce a
phase modulation on an optical beam whose direction of propagation corresponds to the
crystal axis. When the input beam is tilted, the modulation of the refractive index also
results in a pure displacement of the output beam. The displacement can thus be tuned
at RF frequency by changing the amplitude of the modulation.

Moreover, the combinations of two identical devices in Fourier related planes allows a
simultaneous tunability of displacement and tilt independently. Indeed, the production of
pure displacement in one plane will result in a pure tilt in its far field. The displacement
of this controllable tilted beam is then achievable using the same method.

Furthermore, a third EOM (EOM3) can be used at the very beginning of the setup in
order to compensate for the phase shift induced by EOM1 and EOM2.

Such a tunable displacement and tilt generator has not been demonstrated yet, and
that only a pure displacement generator has been set up [Treps02].

A.3 Combination of higher order modes

A.3.1 Beam-splitter

The most simple combination of Hermite Gauss modes is obviously the one using a simple
beam-splitter. Such a combination gives rise to mode-to-mode interferences at the output
of the beam-splitter, i.e. that a state in a given mode of the first beam will only interfere
with the state which has the same transverse profile within the second incident beam. Both
outputs of the beam-splitter depend on the relative phase between the two input beams.
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The use of a 50/50 beam-splitter can be appropriate in quantum optics experiments
in order to combine two beams with identical profiles. This is for instance what is used
in a homodyne detection. It is also used in order to produce single-mode quadrature
entanglement from two squeezed beams in quadrature.

However, when only one the input state in the mode of interest is a non-vacuum state,
the other one being vacuum, it is obvious here that the only action of the beam-splitter
will be to add vacuum fluctuations. This typically corresponds to a beam attenuation,
whatever the beam-splitter ratio. As squeezed states are not robust to loss, we will try
not to make use of beam-splitters in such a case. Still, this has for example been done
in reference [Treps02], in order to combine a bright TEM00 and a dim squeezed flipped
mode. Only a few percent loss was induced on the squeezed beam, whereas almost all the
intensity of the coherent TEM00 was lost in the process. We now present ways to combine
different beams without losses, in order to prevent squeezed states from any loss during
combination operation similar to the one described in the example above. We will first
present how the addition of a second beam-splitter can allow a lossless combination of
modes.

A.3.2 Special Mach-Zehnder

D

SD

PZT (ϕ)

PZT (Φ   )rel

1

2

Figure 4.8: Special Mach Zehnder interferometer for lossless combination of Hermite Gauss
beams of opposite parity. The particularity of the interferometer is to present one addi-
tional mirror in one arm. This insures an additional π phase shift between both arms only
for the odd modes. Both input beams - here TEM00 and TEM10 modes - are combined
without losses. The interferometer is locked using a locking detector (D) and a PZT in one
arm of the interferometer, PZT (ϕ). The relative phase Φrel between both input beams is
locked using a split detector (SD) and a PZT before the interferometer.

We consider the special Mach-Zehnder (MZ) interferometer represented in Fig. 4.8. Its
particularity is to present an additional mirror in one arm of the interferometer.

Such a device allows the lossless combination of beams whose transverse profiles have
opposite parity. We will typically use such an interferometer to combine a TEM00 mode,
whose profile is even with respect to the transverse axis, with a TEM10 or a flipped mode,
whose profiles are odd.
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In order to explain this property, let us use the following notations for the mean value
of the two input fields

Ein,e(x) = Aeue(x) (4.8)

Ein,o(x) = Aouo(x)eiφrel , (4.9)

where the indexes e and o respectively refer to even and odd modes ue(x) and uo(x). Ae

and Ao are the field amplitudes, and φrel is the relative phase between the two input fields
in the plane defined by the first beam-splitter.

It is then easy to show that the mean field expressions at the two output ports are
given by

Eout,1(x) =
1
2

[
iAeue(x)

(
1 + eiϕ

)−Aouo(x)eiφrel
(
1 + eiϕ

)]
(4.10)

Eout,2(x) =
1
2

[
Aeue(x)

(
1− eiϕ

)
+ iAouo(x)eiφrel

(
1− eiϕ

)]
(4.11)

where ϕ is the relative phase between both arm of the interferometer, and where we have
used that the reflection of an odd mode on a mirror is equivalent to the transformation
uo(−x) → −uo(x), whereas it has no effect on an even mode ue(−x) → ue(x). The presence
of an odd number of mirrors in the interferometer therefore insures, only for odd modes,
an additional phase shift between both arm of the interferometer propagating inside the
special MZ.

Taking ϕ = 0[2π] in Eq. 4.10 and 4.11 yields

Eout,1(x) = iAeue(x)−Aouo(x)eiφrel (4.12)

Eout,2(x) = 0 (4.13)

which exactly corresponds to a lossless combination of both beams, as the integrality of
both input fields is going through the same output port of the interferometer. Note that
this due to the presence of the extra mirror. Otherwise, the two beams would have been
re-separated at the output of the interferometer, the even beam going out through port 1,
and the odd beam going through port 2.

In order to implement this interferometer, a few experimental considerations have to
be taken into account. First, the interferometer needs to be as small as possible, in order
to maximize its stability, with arms of comparable length. The best operation is achieved
with collimated beams, for which a small discrepancy in the arm lengths has not critical
consequences on the mode matching of the beams on the second beam-splitter of the
interferometer13.

We now consider a single input field, which has been carefully mode-matched on both
beam-splitters. In order to lock the interferometer, i.e. to lock φ to 0[2π], the error signal
can be taken on the output port 2 of the interferometer with a normal detector. It will be
locked to a dark fringe, leaving all the intensity in the first output port. The modulation
to be used to create the error signal has to be generated on the same PZT as the one
which is used to control the phase difference between both arms14. The phase modulation

13This is of particular importance for the combination of a TEM00 mode with a flipped mode, as the

latter mode evolves very rapidly during propagation due to its high order components [Delaubert02].
14Any modulation produced before the interferometer is of no use here, as it will be present in both arms

of the interferometer and does not allow the generation of the MZ.
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is generated with an accidental resonance of the PZT at RF frequency Ω, typically around
1 MHz15. The error signal is generated by demodulating the intensity measured on the
locking detector at Ω, similarly to the Pound Drever Hall locking technique [Drever83].
The interferometer is now locked in order to transmit the first beam, with up to 98%
efficiency.

A way to align the second input beam on the first beamsplitter with the other mode
has now to be found. Both modes are orthogonal as they have opposite parity, and it is
therefore impossible to use the usual method of maximization of the interference fringes.
In each particular case, we found to transform one of the beam profiles to fit the other one,
without misaligning the beam16. At this stage, both beams are combined at the output of
the interferometer, but the relative phase between them, denoted Φrel in Fig. 4.8, has not
been fixed.

The locking of the relative phase between both input beams Φrel again requires special
attention. As both beams are orthogonal, no interference signal can be generated with a
normal ”bucket” detector in order to infer Φrel. However, both beams are not orthogonal
anymore with respect to a split-detection, as both beams interfere on each half of the
overall beam. The error signal is hence directly generated without using any modulation,
and retro-acted on a mirror mounted PZT placed on one beam before the interferometer.
The split-detector can be set without blocking the output beam by using the ”leakage” of a
mirror of the interferometer, as represented in Fig. 4.8. A dichroic mirror can for instance
replace one mirror. The angle of the dichroic mirror can be tuned in order to allow only
1% of the light to go through, in order to minimize the losses. Note that both lockings are
independent, which is easier to manage experimentally.

The combination technique presented here is rather easy to implement, and does not
require any special component17. However, it does not allow to combine any pair of modes.

A.3.3 Ring cavity

An optical ring-cavity, similar to the one presented in section 4 A.2.2, can be used to com-
bine any orthogonal modes. The combination scheme is presented in Fig. 4.9, in the case
of the combination of TEM00 and TEM10 modes. First, the cavity is locked to resonance
on one of the input beam mode, which is transmitted through the cavity, as explained
in section 4 A.2.2. If the cavity is designed in order to prevent degeneracy between the
resonance peaks of both modes, the second beam will be totally reflected by the cavity,
and will therefore be combined with the other transmitted beam. Note that this condition
is always achievable as long as both modes are orthogonal. No other restriction, for ex-
ample on the parity of the mode, is introduced here. Moreover, the combination does not
have any influence on the relative phase of the two output beams and has to be locked
independently.

15Note that this requires one signal generator to be dedicated only to the locking of the MZ, as the

resonance depends on the mount and the mirror.
16In the case of the combination of a bright TEM00 with a squeezed flipped mode, we temporarily removed

the flipped mode waveplate to perform alignments, as detailed in section 5 A. As for the combination of

a bright TEM00 mode with a dim squeezed TEM10 mode, we locked the ring cavity which was generating

the TEM00 mode temporarily on the TEM10, as explained in section 5 B.
17The split-detector is not even indispensable as one could use a normal detector and block one half of

the beam. The error signal would only be halved.
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Figure 4.9: Optical ring-cavity for orthogonal modes combination. It is illustrated her for
the combination of TEM00 and TEM10 modes. The cavity is locked to the resonance of
the TEM00 mode, and the first TEM00 beam is transmitted through. The second one is
totally reflected if the cavity is designed to prevent degeneracy between its resonances
on the TEM00 and TEM10 modes. A lossless combination of both orthogonal modes is
achieved. The relative phase Φrel is not fixed by this combination. D: locking detector.
PZT: piezoelectric device used for locking the cavity length.

Such a lossless combining device has already been demonstrated in reference [Treps03,
Treps04,1]. It is important to note that losses are experienced mainly on the transmitted
beam, and are of the order of 10%. The combination of a coherent beam with a squeezed
beam will thus be performed preferentially with a transmitted coherent beam and a re-
flected squeezed beam.

In our experiments, we have preferred to use the Mach Zehnder technique mainly be-
cause of the cost of making cavities18, but we could also have used ring-cavities for our
beams combinations. An important advantage given by the cavity compared to the Mach-
Zehnder interferometer is its stability for alignments. Indeed, the cavity axis itself provides
a reference, and allows to decouple the experiment parts before and after the combination.
Changing a beam alignment before the Mach-Zehnder basically required to rebuild the
entire interferometer...

As a conclusion, we have presented all the main basic elements for the realization of
quantum imaging experiments with Hermite Gauss modes. The generation of squeezing
in these modes is the only missing part to the scheme presented in Fig. 4.1. In order
to understand how to produce these quantum correlations in the transverse, let us first
present the second harmonic generation of Hermite Gauss modes, that will allow us to
develop the fundamental properties of the parametric interaction in the transverse plane.

18In order to reduce the cost, non tunable cavities could be designed for specific combination of modes,

like for instance coated prisms whose shape would have been optimized for this purpose.
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B Second Harmonic Generation with higher order Hermite

Gauss modes

Second harmonic generation (SHG), also called parametric up-conversion or frequency
doubling, is based on the second order susceptibility χ(2) of nonlinear crystals, where a
wave at frequency ω is converted into a wave at frequency 2ω. Optical SHG was first pro-
posed by Khokhlov in 1961 [Khokhlov61] and demonstrated in the same year by Franken
et al. [Franken61]. In the case of continuous wave (CW) laser sources, SHG is now rou-
tinely achieved with very high conversion efficiencies. More than 80% power conversion
is possible using enhancement cavities, [Paschotta94]. Frequency doubling is now widely
used to generate wavelengths from the far UV to the far IR [Yu03, Patel66]. The most
common application is the generation of coherent green light at 532 nm by up-converting
a Nd:YAG laser at 1064 nm19

As for quantum applications of SHG, it has been used for the production of squeezed
light [Kurz92, Ralph95, Serkland97] and is now proposed to generate harmonic entangle-
ment [Grosse06].

The fundamental requirements for insuring efficient power conversion are high pump
intensity, tight pump focusing, high second order nonlinearity and low losses in the crystal
at both wavelengths involved in the frequency doubling. Moreover, the fundamental pump
and second harmonic generated fields must preserve their phase relation over the length
of the nonlinear crystal as we already discussed in the introduction of this chapter. The
last requirement is also known as the nonlinear phase-matching condition and is achieved
experimentally by taking advantage of the birefringence of the nonlinear crystal, or by
manufacturing a periodic poling of the non linear material [Grynberg97].

A full analysis of the SHG efficiency, assuming a Gaussian spatial profile, i.e. a TEM00

pump mode, has been described in the work by Boyd and Kleinman in 1968 [Boyd68].
But no general extension of this analysis to higher order transverse mode has - to our
knowledge - been proposed. In the last few years, there has been a growing attention
in spatial nonlinear and quantum optical effects, as the introduction of spatial features
in the transverse plane of laser beams may lead to parallel information processing and
multichannel operations [Caves94]. At the same time, SHG experiments are no longer
limited to single mode operation. The operation of optical cavities resonant on the TEM00

mode is indeed now being extended to the SHG of complex optical images [Lopez07,1]. The
basic principles of SHG of optical images, i.e. a field comprising several transverse modes,
can for instance help understanding the transfer of spatial correlations during the nonlinear
process. There is indeed a limit to the focusing of an optical image into the crystal above
which the local quantum information is lost in the frequency doubled image [Lopez05].
Moreover, as SHG is the reciprocal process of optical parametric amplification (OPA),
also called parametric down-conversion, understanding the higher order mode conversion
in SHG enables the optimization of the second harmonic pump profile in order to pump
the OPA cavity efficiently [Lassen06, Lopez07,2].

In this section, we propose a study of second harmonic generation with higher order
Hermite Gauss modes, both experimental and theoretical. This work has been submitted
for publication [Delaubert07]. We present here only results for the TEM00, TEM10, and

19Commercial lasers of up to 18W are now available at this wavelength [Coherent].
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TEM20 modes. Nevertheless, the experimental method as well as the theoretical calcu-
lations can easily be extended to any transverse mode. We will first present our single
pass SHG experimental setup with TEMn0 pump modes. Secondly, we will concentrate on
the thin crystal approximation, which is valid experimentally as long as the beam is not
too strongly focused in the crystal. This simple case will allow us to introduce the basic
concepts of SHG with non trivial pump profile. We will then consider the up-conversion
process beyond the thin crystal approximation, hence taking into account the propagation
of the field inside the crystal. We will notably show the high sensitivity of the profile of the
second harmonic (SH) generated field relative to the crystal temperature, the frequency
of the laser, and the focusing of the pump beam into the crystal. Finally, we will propose
potential applications making use of this phenomenon.

B.1 Single pass SHG experiment

We consider a single pass parametric up-conversion experiment using TEMn0 pump modes,
as represented in Fig. 4.10. The TEM00 pump beam at a wavelength of 1064 nm is produced

Figure 4.10: Scheme for single pass SHG measurement, illustrated in the case of a TEM10

pump mode.

by a diode-pumped monolithic Nd:YAG ring laser. We then generate a TEMn0 pump
mode, successively here the TEM00, TEM10 and TEM20 mode, by misaligning a ring
cavity designed to prevent any transverse mode degeneracy and locked to the resonance
of the TEMn0 mode, as detailed in section 4 A.2.2. This mode converting device thus
delivers a pure transverse TEMn0 output mode, which is then focused into a bulk 5x5x20
mm3 lithium niobate (LiNbO3 7% MgO doped) type I nonlinear crystal20. In type I phase-
matching, the fundamental pump and SH fields are orthogonally polarized with respect
to each other. The generated green SH beam at 532 nm is easily filtered out from the
remaining transmitted fundamental beam with a dichroic element, and read-out with a
CCD camera in the far field of the center of the crystal. The influence of four experimental
parameters can be investigated with this setup : pump mode, laser frequency, crystal

20The experiment has been first operated in Canberra, and then reproduced in Copenhagen by Mikael

Lassen in the same conditions.
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temperature and pump focusing into the crystal. The beam focusing of the pump into the
crystal, defined by the ratio l/2zR, can be tuned by changing the focusing lens before the
crystal. zR is the Rayleigh range of the pump beam and l is the crystal length.

B.2 Thin crystal approximation

We now focus on to the de-focused case (!), namely the thin crystal approximation, which
is valid experimentally as long as the beam is not too strongly focused in the crystal, i.e.
as long as zR À l. Ideally, it corresponds to a beam of very large waist, which is therefore
roughly collimated.

In this section, we calculate the transverse profile of the SH modes when the nonlinear
crystal is pumped with a collimated TEMn0 beam, where n = 0, 1, 2. We then give an
estimation of the SHG efficiency in each pump case and compare them to experimental
results.

B.2.1 Transverse profile of the generated SHG modes

For a type I non linear interaction, both fundamental fields (signal and idler) are necessarily
degenerate in frequency and have the same polarization. Moreover, the polarization of the
second harmonic field is orthogonal to this common orientation. The SHG process combines
two fundamental photons to generate one SH photon with twice the energy. The transverse
profile of the SH mode therefore corresponds locally, i.e. in one specific crystal plane, to the
decomposition of the square of the fundamental pump mode profile into the SH basis21.

Two sets of Hermite-Gauss modes will be required to describe the second harmonic
generation. A first basis {un} will be used to describe the fundamental modes at a wave-
length λ, and the second one {vn} will be used to describe the second harmonic modes, at
a wavelength of λ/2. We denote w0 the waist of the TEM00 mode of the first basis. The
waist of the TEM00 mode of the SH basis is chosen to be w0/

√
2. This particular choice

can be simply understood with Eq.1.53. In order to maximize the parametric interaction
between two beams at different wavelengths, the best possible spatial overlap is needed.
Both beams must in particular have the same Rayleigh range during their propagation in-
side the crystal. Without taking into account the dispersion of the crystal material, the two
Rayleigh ranges match with this particular choice of waists as zR = πw2

0
λ = π(w0/

√
2)2

λ/2 . As a
direct consequence, beam sizes and phase automatically match all along the beam propa-
gation for two TEM00 defined in these two basis, thus maximizing the spatial interaction
between both beams.

The SH field is composed of n + 1 mode components22 which are all even since the
TEMn0 pump squared profile is necessarily even. Moreover, 2n is their highest order as
the squared TEMn0 profile does not project onto higher order modes23.

21It is important to note that this statement is valid only for type I interaction, and that other relations

can exist between fundamental and SH field in type II interaction. For instance, intra-cavity type II SHG

allows an input image to be perfectly transferred from the fundamental to the SH frequency, i.e. without

quadratic effect [Scotto03].
22Note that even if the field has several components, it does not necessarily imply that the it is a quantum

multi-mode field according to the definition we have given in section 1 B.
23This property can easily be shown by recalling that the expression of the TEMn0 involves a Hermite

polynomial of order n.
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In the thin crystal approximation, the normalized profile of the generated SH field, in
the case of a TEMn0 pump and restricting ourselves to a one-dimensional description of
the phenomenon, can be written as

En(x) =
n∑

i=0

Γn2iv2i(x), (4.14)

where v2i denotes the even SH mode of order 2i and Γn2i describes the spatial overlap
between the squared pump and the SH modes in the transverse plane24. Its expression is
given by

Γn2i =
∫ ∞

−∞

u2
n(x)
αn

v2i(x)dx, (4.15)

where un denotes the fundamental modes and αn corresponds to the normalization of the
squared pump, i.e. α2

n =
∫∞
−∞ u4

n(x)dx.
The common case of using a pump with a TEM00 mode profile yields Γ00 = 1. It

corresponds to a perfect spatial overlap as the profile of the generated SH mode is also a
TEM00 mode [Paschotta94]. For non TEM00 pump modes, the overlap coefficients can be
calculated from Eq. 4.15. In the case of a TEM10 pump mode, they are given by Γ10 = 0.58
and Γ12 = 0.82. For a TEM20 pump mode, we get Γ20 = 0.47, Γ22 = 0.44 and Γ24 = 0.77.
The presence of several non zero coefficients implies that for all cases, except a TEM00

pump mode, the generated profiles do not correspond to the pump intensity distribution.
This is shown in Fig.4.11 in the particular cases of TEM10 and TEM20 pump modes,
where we have included theoretical expectation and 1D and 2D experimental transverse
profiles obtained with collimated pump beams, i.e. in the thin crystal approximation. We
see a good agreement although the local pump power was quite low in these operating
conditions. Indeed, the pump beam waist was large (1200 µm) and the available pump
power in the TEM10 and TEM20 modes was limited to 80 mW and 55 mW, respectively.
It is important to note that the profiles represented in Fig.4.11 can either be fitted with a
the squared profile of the infrared pump modes, or by the green mode profile defined by
Eq. 4.14, but cannot be fitted using a single SH mode profile.

The temperatures reported as insets in Fig. 4.11 correspond to phase matching crystal
temperatures, i.e. to the best SH conversion efficiency. Note that they do not match. We
will find the explanation for this phase matching temperature shift later on in section 4
B.3. Moreover, if tuning the crystal temperature had notable effect on the efficiency itself,
no noticeable SH profile was witnessed.

B.2.2 Conversion efficiency

Still in the thin crystal approximation, we can compare the SHG efficiency ηn for different
TEMn0 pump profiles by comparing the integrated power of the SH field over the transverse
plane, for a given pump power. As the amplitude of the SH field is proportional to the
square of the fundamental field, it simply yields

ηn =

∫∞
−∞ u4

n(x)dx∫∞
−∞ u4

0(x)dx
(4.16)

24A similar overlap integral has been introduced by Schwob et. al in order to describe the multi-mode

properties of the field in the transverse plane of an optical parametric amplifier [Schwob98].
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Figure 4.11: SH profiles generated in the crystal far field with TEM10 and TEM20 colli-
mated pump modes, i.e. in the thin crystal approximation. The cross-section traces contain
both the data and theory fits. Pump modes and optimal phase matching temperatures are
reported on each inset.

where un(x) refers to the profile of the TEMn0 pump mode, and where we have normalized
the efficiency relative to the TEM00 pump mode case. For given TEM10 and TEM20

pump powers, we get η1 = 3/4 and η2 = 41/64. A comparison between theoretical and
experimental results is presented in Table 4.1. The measured green powers have also been
normalized to the TEM00 pump mode case, and have been obtained with collimated pump
beams of identical properties, 55 mW and 1.2 mm of diameter.

Collimated Pump TEM10 TEM20

Exp. 0.73 ± 0.04 0.56 ± 0.06
Th. 0.75 0.64

Table 4.1: SHG conversion efficiency for TEM10 and TEM20 mode pumps, normalized to
the TEM00 pump mode case. Theory in the thin crystal approximation and experimental
results obtained for collimated pumps are presented. The relatively high uncertainties are
mainly due to the low power of the detected SH modes.

Theoretical model and experiment show very good agreement, taking into account the
uncertainties in our experiments, which are mainly due to the relatively low power of the
generated SH beams (less than 1 µW ). In the regime considered here, the absolute SH
conversion efficiency is very small because the local intensity is law in a large collimated
beams. Efficient SHG is rather achieved with a pump tightly focused into the crystal, as
we will see in the next section.

Moreover, the results presented in Table 4.1 show that the SHG efficiency is a decreas-
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ing function of the pump mode order. This property is due to the lower local intensity in
higher order modes. Indeed, as discussed in section 1 A.2.6, the transverse mode extension
increases with the order of the mode, which implies a lower local intensity as the modes
are normalized.

The study of the thin crystal approximation, although not relevant for experimental
applications because of the very low efficiency, has allowed us to introduce the basic con-
cepts of type I second harmonic generation. We now propose to consider a more general
case.

B.3 Beyond the thin crystal approximation

We now consider the case of a focused pump into the nonlinear crystal. Because of the
different evolution of each H-G component of the generated SH field, a local field de-
scription and a propagation of the SH modes along the crystal is necessary. We therefore
propose to develop a similar approach to the one adopted by Boyd and Kleinman in 1968
[Boyd68] which was limited to the TEM00 mode. We will extend their analysis to the
second harmonic generation of higher order modes25.

The major difference with Boyd and Kleinman derivation is the great importance of
the Gouy phase shift accumulated by the different H-G modes during the mode propaga-
tion [Siegman86]. Consequently, all of the SH components are not simultaneously phase
matched with the pump along the length of the nonlinear crystal26. Since the birefrin-
gence of the crystal material is highly temperature dependant, phase matching for each
mode occurs at different crystal temperatures. We therefore expect different temperature
dependence for the generation of each SH modes, and thus also to see a modification of
the global SH profile when the crystal temperature is varied. It is interesting to note that
this effect, although due to mode interference in the crystal, does not need any cavity or
interferometer to be observed. This will be of great importance for potential application
of this effect as detailed in section 4 B.4.

B.3.1 Generalization of Boyd and Kleinman’s approach to higher order modes

In this analysis, we restrict ourselves to the SHG of the three first Hermite Gauss modes,
namely the TEM00, TEM10 and TEM20 modes. Moreover, we make one approximation and
two hypotheses. First, we consider negligible loss in the crystal for both the fundamental
and second harmonic fields. This approximation allows a simplification of the calculations,
and does not intrinsically modify the results, as we expect to have similar losses for all
transverse modes27. Secondly, we consider that the beam propagation axis z corresponds
to the optical axis of the Type I nonlinear crystal and therefore omit any walk-off effect of

25Note that another analysis on the SHG of higher order modes has been conducted by Lue and Sun in

1987 [Lue87] using another approach, but does not provide a description of the profile of the output SH

field.
26In the thin crystal approximation, this phase shift was negligible because this phase shift is all the

more important as the beam is focused, and has no effect on collimated beams, as detailed in section 1

A.2.6.
27Although it has indeed not noticeable effects on the classical behavior of the second harmonic genera-

tion, we will see in section 4 C that losses have to be taken into account to efficiently model quantum effects

in such systems. In our experiments, losses originate from GRIIRA (GReen Induced Infra-Red Absorption),

and probably also from direct infrared absorption in the nonlinear crystal.
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the beams. Finally, we consider that the beam waist of the input beam is centered in the
crystal. This corresponds to the optimum case and is generally adopted in the experiments.

Starting from a TEM00, TEM10 or TEM20 mode propagating along the z axis, we can
show (see appendix B) that the respective SHG intensity I2ω0,00, I2ω0,10 and I2ω0,20, at
frequency 2ω0, outside the crystal of length l, can be written along one direction of the
transverse plane denoted x as

I2ω0,00(s, ξ,∆k) = κIe
−4s2

[
H0,0(ξ,∆k)

]2
, (4.17)

I2ω0,10(s, ξ,∆k) = κI
e−4s2

4

[
H1,0(ξ,∆k) + (8s2 − 1)H1,2(ξ, ∆k)

]2
, (4.18)

I2ω0,20(s, ξ,∆k) = κI
e−4s2

4

[
3
4
H2,0(ξ,∆k)− 1

2
(8s2 − 1)H2,2(ξ, ∆k)

+
1
4
(64s4 − 48s2 + 3)H2,4(ξ,∆k)

]2

, (4.19)

where κI is a constant independent of the transverse position parameter s = xzR/w0z , of
the focusing parameter ξ = l/2zR and of the phase mismatch ∆k. Hn,2p(ξ,∆k) integrates
the nonlinear effects on the crystal length, and is defined by

Hn,2p(ξ,∆k) =
1
2π

∫ ξ

−ξ

(1 + iτ)n−p e
−i l∆kτ

2ξ

(1 + iτ)n−p+1 dτ, (4.20)

where τ is defined by τ = (z − f)/zR, and where z = f corresponds to the position of the
beam waist. We recall that l is the crystal length. The indexes n and 2p respectively refer
to the TEMn0 pump mode and to the even TEM2p0 SH mode thereby generated. Each
term in Eq. 4.17, 4.18 and 4.19 accounts for the contribution of an even SH mode to the
total SHG. The expression of the SHG intensity is hence very similar to the one given in
Eq. 4.14, with additional correcting terms taking into account propagation effects in the
crystal. The same modes as in section 4 B.2 appear naturally here. Because of the Gouy
phase shift, their propagation strongly depends on the beam focusing towards ξ, and on
the crystal temperature towards ∆k. These effects between the fundamental TEMn0 and
the SH TEM2p0 modes are described by the function Hn,2p(ξ, ∆k). Again, as detailed in
section 4 B.2, only a few even modes contribute to the SH beam, and the SH beam profile
always differs from the pump profile, except in the case of a TEM00 pump mode.

The SHG powers P2ω0,00, P2ω0,10 and P2ω0,20 can simply be obtained by integrating
the previous intensity distribution given in Eq. 4.17, 4.18 and 4.19 and are given by

P2ω0,00(ξ, ∆k) =
κP

ξ
|H0,0(ξ, ∆k)|2 (4.21)

P2ω0,10(ξ, ∆k) =
κP

ξ

[
1
4
|H1,0(ξ,∆k)|2 +

1
2
|H1,2(ξ,∆k)|2

]
(4.22)

P2ω0,20(ξ, ∆k) =
κP

ξ

[
9
64
|H2,0(ξ, ∆k)|2 +

1
8
|H2,2(ξ,∆k)|2 +

3
8
|H2,4(ξ,∆k)|2

]
(4.23)

where κP is a constant independent of the focusing and phase matching parameters, ξ and
∆k. We propose now to analyze the influence of the focusing parameter and the crystal
temperature T , which is directly related to the phase mismatch ∆k.
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B.3.2 Sensitivity to experimental parameters

• Influence of the beam focusing
In order to find the best SHG achievable experimentally, i.e. the optimum regime, we

have plotted P0, P1 and P2 as a function of the beam focusing in Fig.4.12, using Eq. 4.21,
4.22 and 4.23. These curves are all normalized to the maximum achievable SHG power in
the case of a TEM00 pump. Moreover, this representation corresponds to optimal phase
matching conditions, i.e. for the value of ∆k that maximizes the SHG power.
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Figure 4.12: SHG efficiency as a function of the focusing parameter ξ, in optimal phase
matching conditions, for i) TEM00, ii) TEM10 and iii) TEM20 pump modes. All curves
are normalized to the best conversion efficiency obtained for the TEM00 case. We have
represented the three most relevant regimes to our analysis : ’thin crystal approximation
regime’ corresponding to collimated beams, ’optimal focusing regime’, and ’tight focusing
regime’. Two experimental points corresponding to the measurements presented in Table
4.2 are represented in the optimal focusing region.

The maxima are respectively obtained for ξopt0 = 2.84, ξopt1 = 2.7 and ξopt2 = 2.5. Note
that ξopt0 = 2.84 exactly corresponds to the value cited in the work by Boyd and Kleinman
[Boyd68]28. The maximum SHG efficiency achievable with a TEM10 and a TEM20 pump
modes, relative to the TEM00 case, for a given pump power are respectively 50% and 40%.
These drops in conversion efficiency relative to the TEM00 case are easily explained by the
smaller local intensity in higher order modes, as we already explained in section 4 B.2.

All efficiency curves, shown in Fig. 4.12, are rather flat around the optimal value,
allowing an operating range between ξ = 2 and ξ = 4 in which close to maximum con-
version efficiency can be obtained experimentally. This ’optimal focusing regime’ is hence

28It has been shown very recently in reference [Lastzka06] that generating a position dependent refractive

index in order to compensate for the Gouy phase shift inside the crystal could slightly improve the non

linear efficiency, and that the optimal focusing parameter was in this case ξ′opt0 = 3.32. We can also wonder

how the calculations presented here are modified in a periodically poled material.
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Optimally Focused Pump TEM10 TEM20

Expt. 0.45 ± 0.05 0.34 ± 0.05
Th. 0.5 0.4

Table 4.2: Comparison between theory (Th.), and experimental SHG efficiency results
(Expt.) in the optimal focusing case (zR = l/6 and w0 = 35µm). These results are nor-
malized related to the TEM00 case.

comprised between zR values of l/4 and l/8.
The case ξ ¿ 1 corresponds to zR À l, i.e. to the ’thin crystal approximation regime’.

This is obviously not the optimum regime as it corresponds to a large waist w0 and
therefore to a smaller local intensity. In the opposite regime corresponding to a very tight
focusing, i.e. to ξ À 1, the efficiency drops because of de-focusing and because of the the
importance of the phase shift between fundamental and SH beams at both ends of the
crystal. When this phase shift exceeds π/2, the parametric interaction is indeed partly
leading to a down-conversion of the SH power.

We have also performed experimental measurements of the SHG efficiency in the op-
timal focusing regime (zR = l/6 and w0 = 35µm) for TEM10 and TEM20 pump modes,
and compared the results with our theoretical predictions in Table 4.2. We have also
represented the two points in Fig. 4.12. The results show good agreement.

As we have seen earlier, the SH field profile can be composed of several components,
and we have therefore studied the modal decomposition of the output SH field. The re-
sults calculated with Eq. 4.21, 4.22 and 4.23 are represented in Fig. 4.13, and respectively
comprise a) 1, b) 2 and c) 3 SH components. This demonstrates the sensitivity of the SH
profile with the beam focusing. We will study the profile of the mode itself in the next
section. Note that at low pump focusing, we get the square of the values obtained earlier
from Eq. 4.15, i.e Γ2

10 = 0.34 and Γ2
12 = 0.67 for a TEM10 pump mode, and Γ2

20 = 0.22,
Γ2

22 = 0.19 and Γ2
24 = 0.59 for a TEM20 pump mode.

• Influence of the crystal temperature
So far, we have studied the influence of the beam focusing on the SHG efficiency, where

we have assumed perfect phase matching. On the contrary, we will now detail the influence
of the phase mismatch ∆k, in optimal focusing conditions.

We have plotted in Fig. 4.14 the normalized SHG efficiency as a function of the crystal
temperature, still for a a) TEM00, b) TEM10 or c) TEM20 pump mode. The variation
of the crystal temperature T is related to the variations of the phase mismatch ∆k via
the temperature dependence of the ordinary and extraordinary refractive index no and ne

[Smith76] by ∆k = 2kω0−k2ω0 = 4π
λ0

[ne(ω0, T )− no(2ω0, T )], where ω0 and λ0 respectively
refer to the frequency and wavelength of the fundamental field.

Experimental results, presented as dots and error bars, show good agreement with
theoretical curves, presented as solid lines. In the case of the TEM00 pump mode, the
phase matching curve corresponds to the common ’sinc function’29. As for higher order

29This ’sinc function’ distribution is only symmetrical for SHG operation in the thin crystal approxima-

tion. Here however, we are using focused beams. This accounts for the fact that this distribution is not
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Figure 4.13: Modal decomposition of the SH field as a function of the focusing parameter
ξ, in optimal phase matching conditions, for a) TEM00, b) TEM10 and c) TEM20 pump
modes. Mode components are represented in percentage of the overall power. In all insets,
trace i) corresponds to a TEM00 SH component, whereas traces ii) and iii) respectively
refer to TEM20 and TEM40 SH components.

pump modes, we have represented with dotted lines the different contributions of the
TEMn0 SH components as a function of the crystal temperature, using Eq. 4.21, 4.22 and
4.23. Due to Gouy phase shift, the propagation along the crystal length leads to different
phase matching conditions for each SH mode. This explains why the overall phase-matching
curves correspond to a sum of shifted ’sinc functions’, and are all the more asymmetric as
the pump mode order is high. This property of asymmetry is also clearly visible on the
experimental results. Note that the optimal overall phase-matching condition corresponds
in each case to the generation of the SH mode of highest order in the decomposition of the
SH beam. The general agreement is good between experimental and theoretical curves.
Discrepancy mainly arises from the overall SH conversion efficiency due to the difficulty
to reach the optimal focusing regime experimentally.

In order to have a better description of the modal composition according to the crys-
tal temperature, we have plotted the percentage of the TEM00, TEM20 and TEM40 SH
components in the overall generated SH field in Fig. 4.15. Note the high dependence of
the composition of the SH field with the crystal temperature. We will come back on this
property in section 4 B.4.

We have seen that the profile of the SH mode should strongly depend on the pump
focusing and on the crystal temperature, but we have not given a representation of this
profile yet, nor have we confronted this to the experiment. This is what we propose to
present now.

We now concentrate on the influence of the crystal temperature on the spatial SH beam

centered on ∆k = 0 and slightly asymmetric.
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Figure 4.14: SHG efficiency as a function of the phase matching temperature, in optimum
focusing conditions, for TEM00, TEM10 and TEM20 pump modes. Experimental data are
represented by black dots with error bars, whereas analytical model is represented by a
solid line. The decomposition of the SH mode is also shown for each temperature with
dotted lines. Traces i), ii) and iii) hence respectively correspond to the TEM00, TEM20

and TEM40 SH components. All traces are normalized to the best efficiency in the TEM00

case.

profile in optimal focusing conditions30. Experimental results are again obtained with the
setup presented in Fig. 4.10. The generated SH profiles at 532 nm, normalized to their
maximum, are presented for different crystal temperatures in Fig. 4.16 (a) and (b) for a
TEM10 and TEM20 pump mode, respectively. The power of the TEM10 and TEM20 pump
beams are 80 mW and 55 mW, respectively.

We have compared these experimental results with the expected generated profiles
in the same experimental conditions, using Eq.4.17, 4.18 and 4.19. They are in excellent
agreement as shown in the cross-sections in Fig. 4.16. As accounted by Fig. 4.15, the
profile of the mode is highly temperature dependent. In the case of a TEM10 pump, the
SH field can thus be tuned from a predominantly TEM00 mode to a predominantly TEM20

profile. Note that changing the crystal temperature allows reproducible control over the
coefficients of the linear combination between the TEM00 and TEM20 modes. Similarly,
for the TEM20 pump mode, we find that the SH field is a temperature dependant linear
combination of the TEM00, TEM20 and TEM40 modes. For even higher order pump modes,
there is an increasing mode profile sensitivity with the crystal temperature.

30We have not detailed the influence of the focusing parameter here. It is experimentally difficult to

vary this parameter continuously, and would require to modify the focal length of the lenses between each

focusing regime.



B. Second Harmonic Generation with higher order Hermite Gauss modes 131

67.5 68 68.5 69 69.5 70 70.5 71 71.5
0

50

100

Temperature (in °C)

M
o

d
e 

co
m

p
o

n
en

ts
 (

in
%

)

67.5 68 68.5 69 69.5 70 70.5 71 71.5

Temperature (in °C)

M
o

d
e 

co
m

p
o

n
en

ts
 (

in
%

) 

5 68 68.5 69 69.5 70 70.5 71 71.5
0

Temperature (in °C)

M
o

d
e 

co
m

p
o

n
en

ts
 (

in
%

)

TEM

TEM

00

10

20

a)

b)

c)

0

50

100

50

100

TEM

i)

i)

ii)

i)

ii)

iii)

Figure 4.15: Mode components of the SH fields as a function of the phase matching tem-
perature, in optimum focusing conditions, for a) TEM00, b) TEM10 and c) TEM20 pump
modes. Traces i), ii) and iii) respectively correspond to the TEM00, TEM20 and TEM40

SH components.

The results we have presented here, taking into account the full propagation of the
modes in the crystal, show a very good agreement, in conversion efficiencies as well as
in mode profiles. This proves that transverse mode coupling can be understood in terms
of mode overlaps, and that a full quantitative description can be obtained in the general
case.

B.4 Potential applications

The single pass SHG described above show very interesting properties. It offers a highly
stable device delivering a temperature tunable optical beam profile.

The consequence of this result is of most importance. It shows that mode coupling
between different transverse modes is possible in a χ(2) second order nonlinear interaction,
and that the ratio between the generated SH components can be adjusted continuously
via changes in the crystal temperature. We have used this effect in reverse to pump an
OPA and selectively generate squeezed light in a desired higher order spatial mode, as
explained in section 4 C31.

Moreover, this effect arises from interferences in the crystal, but does not need any
cavity or moveable mirrors to be controlled. It is therefore intrinsically stable. This opens
the way to other applications, such as a very accurate temperature sensors [Delaubert07].

31The best non-classical properties on optical beams have lately been reported with periodically poled

material, such as PPKTP [Hetet06, Schnabel06, Furusawa07], and we will investigate whether our results

presented here with bulk material can be generalized.
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Figure 4.16: Two-dimensional SH profiles generated in the crystal far field for three phase
matching temperatures. (a) TEM10 and (b) TEM20 pump mode. The cross-section traces
contain both the data and theory plots calculated with Eq. 4.18 and 4.19 using experi-
mental parameters.

Note that D. Pulford has developed a numerical model allowing studies with any transverse
pump distribution. This model already shows perfect agreement with the analytical results
present in this chapter.

Furthermore, the continuous variation of the spatial profile of the output field could
be of great interest for trapping, un-trapping, or continuously displacing particles in an
optical beam. A ring-shaped input beam would be implemented, like a LG0

1 beam , as
defined in Eq. 3.35. When the crystal temperature is continuously varied, several rings can
surely be generated, moving in or out from the center of the beam. Further optimization
of the input profile for best trapping performances could again be investigated using the
numerical model. Similar optical manipulation is currently performed using interference
between several optical beams whose frequency is continuously varied [MacDonald02].
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C Generation of higher order Hermite Gauss modes squeez-

ing

The production of squeezed light by parametric down-conversion was first achieved by Wu
et al. in 1986 [Wu86]. More recently, squeezed noise power variances of -7 dB [Lam99,
Suzuki06], and even -9.5 dB [Furusawa07], at sideband frequencies down to sub-kHz fre-
quencies [McKenzie04] and up to the GHz regime [Senior07] have been demonstrated. Note
that the squeezed optical mode was limited until recently to the TEM00 mode, and that
we propose here to present the first generation of squeezed light in higher order Hermite
Gauss modes. Most of the work presented here has been work published or accepted for
publication [Lassen06, Lassen07].

C.1 Theoretical analysis of TEMn0 mode Optical Parametric Amplifica-

tion

C.1.1 Introduction

Optical Parametric Amplification exactly corresponds to the reverse process of the Second
Harmonic Generation presented in section 4 B. A pump photon of energy ~ωp down-
converts into two photons, signal and idler, of energy ~ωs and ~ωi, respectively. Frequencies
necessarily satisfy the energy conservation relation : ωp = ωs + ωi

32. Moreover, in order
to have a significant effect, the nonlinear interaction must satisfy the phase-matching
conservation relation : kp = ks + ki. In the continuous wave regime, in order to enhance
the effect, the nonlinear crystal used for the down-conversion is usually inserted into an
optical cavity33. When only a pump beam is used, the system is referred to as an Optical
Parametric Oscillator (OPO), whereas when an additional seed beam at fundamental
frequency, the signal, it is called Optical Parametric Amplifier (OPA). We will concentrate
on latter case, restricted to a type I interaction, as in section 4 B, for which signal and
idler are degenerate at frequency ω0. As they cannot be distinguished, signal and idler
will be described by the same quantum operator Â0. The pump field at frequency 2ω0

is orthogonally polarized and will be described by B̂P . According to the relative phase
between both beams, the signal beam is either amplified or de-amplified. Locking this
phase to de-amplification, the output fundamental beam is amplitude squeezed [Bachor03].
We propose to use this effect in order to produce amplitude squeezed higher order modes.

C.1.2 Multi-mode description of the parametric interaction

Let us now present a multi-mode description of the Optical Parametric Amplification of a
TEMn0 seed beam, in order to understand the effect of the pump profile on the threshold
value. We will limit this theoretical analysis to the thin crystal approximation, which can
already provide very interesting results.

32This relation is at the origin of the numerous applications of optical parametric systems as frequency

converters [Zhang:95].
33According to the number of fields resonant in the cavity, the system is said to be singly, doubly or

triply resonant, knowing that it is at least resonant for one of the fundamental fields. Note that in order

to access high field intensities inside the crystal, the input fields can be pulsed.
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Using a one-dimensional transverse definition of the field, as introduced in section 1
A.2, for which we have kept the time dependance, we can write34

Â0(x, t) =
∞∑

n=0

ân(t)un(x), (4.24)

B̂P (x, t) =
∞∑

n=0

b̂n(t)vn(x), (4.25)

where ân(t) corresponds to the annihilation operators of the fundamental signal and idler
modes {un}. b̂n(t) and vn(x) refer to the same parameters for the pump beam. We will
consider that the mode profiles are real. We recall that the transverse modes basis are
different as their modes are defined relative to different reference waists35.

Taking into account a lossless parametric interaction inside the crystal, and using the
notation conventions presented in Fig. 4.17, the equations of motion of the intra-cavity
fields can be written [Walls95, BowenPhD03]

∂Â0

∂t
= −γ0Â0 + ΛÂ†0B̂P −

√
2γ0,icÂ0,ic,in (4.26)

∂B̂P

∂t
= −γP B̂P − Λ

2
Â2

0 −
√

2γP,ocB̂P,oc,in (4.27)

where γ0 = γ0,ic+γ0,oc is the total resonator decay rate for the fundamental beam. γ0,ic and

B P,oc,in

B P,oc,out

A0,oc,out

A0,ic,out

A0,ic,in 

B P

A0

χ(2)

ε0,ocε0,ic

εP,ocεP,ic

Figure 4.17: Schematic of an Optical Parametric Amplifier. A non linear χ(2) crystal is
inserted into a doubly (signal-idler) resonant cavity, which acts as a double pass system
for the pump. ε refer to the cavity mirror transmission. Subscripts 0 and P respectively
correspond to fundamental and second harmonic beams, and ic and oc refer to input and
output coupler.

γ0,oc respectively correspond to decay rates at the same frequency, due to the transmission
of the input and output coupler. They are related to the respective mirror transmissivity
ε0,ic and ε0,oc, and the resonator round trip time τ by γ0,ic = ε0,ic/2τ and γ0,oc = ε0,oc/2τ .
Same notations apply for the pump with γP = γP,ic + γP,oc. Λ describes the non linear
coupling strength. It is related to the nonlinearity of the material, but also on of the beam
focusing and phase mismatch. We have studied a similar dependance in section 4 B.

34We do not write here the pre-factor i
p
~ω0/2ε0cT as these relations directly apply to the photon

numbers operators.
35If the waist of the fundamental TEM00 mode is w0, the waist of the second harmonic TEM00 mode is

w0/
√

2.
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We consider here a doubly resonant optical cavity, resonant for signal and idler, i.e.
ε0,ic and ε0,oc are close to 036 and no cavity detuning. Moreover, we have chosen a double
pass system for the pump, i.e. εP,ic = 0 and εP,oc ' 1, which is seeded via the input cou-
pler with Â0,ic,in, and pumped via the output coupler via B̂P,oc,in, as represented in Fig.
4.17. The output fields are denoted Â0,ic,out and Â0,oc,out for the reflected and transmit-
ted fundamental fields. The transmitted field is represented with a dotted line, and will
correspond to the dim squeezed beam when the system is operated below threshold. The
reflected pump is denoted B̂P,oc,out.

By decomposing the previous fields on the TEMpq basis, as presented in Eq. 4.24 and
4.25, we get

∂ân

∂t
= −γ0ân + Λ

∑

i,j

Γ′njiâ
†
j b̂i −

√
2γ0,icân,ic,in (4.28)

∂b̂n

∂t
= −γP b̂n − Λ

2

∑

i,j

Γ′ijnâiâj −
√

2γP,ocb̂n,oc,in (4.29)

where Γ′ijn is an overlap integral defined by37

Γ′ijn =
∫ ∞

−∞
vn(x)ui(x)uj(x)dx. (4.30)

The resonator has a much higher finesse for the fundamental field than for the second
harmonic field, as γ0 ¿ γP . The evolution of the second harmonic thus occurs rapidly
compared to the one of the fundamental field. In this case, we can assume that ∂b̂n

∂t = 0.
Substituting b̂n in the previous equation yields,

∂ân

∂t
= −γ0ân +

Λ
γP

∑

i,j

Γ′njiâ
†
j


Λ

2

∑

k,l

Γ′kliâkâl + b̂i,in


− ân,in (4.31)

where we have introduced the notations ân,in =
√

2γ0,icân,ic,in and b̂n,in =
√

2γP,ocb̂n,oc,in.
Let us now consider that a single mode is resonant inside the cavity : the TEMn00

mode. This is experimentally achievable if the cavity length and the mirror reflectivity
has been chosen so that no other transverse mode can simultaneously resonate with the
TEMn00 mode, as explained in section 4 A.2.2 for example. ân0 is therefore the only fun-
damental operator which has a non zero mean value.

• TEM10 fundamental mode resonant in the cavity
Restricting ourselves to the mean value of the operators, denoted 〈ân〉 = an, in Eq.

4.31 we get, for n0 = 1

∂a1

∂t
= −γ0a1 +

Λ
γP

∑

i

Γ′11ia
∗
1

[
Λ
2

Γ′11ia
2
1 + bi,in

]
− a1,in (4.32)

36The reflectivity is a crucial parameter for the design of the cavity, as it is related to the escape efficiency,

as we will later in section 4 C.2.4.
37It is not surprising here to find a very similar expression to Eq. 4.15 for the spatial factor describing

the parametric interaction. We will relate both later on.
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Using the notations introduced in Eq. 4.15 in section 4 B.2, we get Γ′nni = αnΓni
38.

Eq. 4.32 becomes

∂a1

∂t
= −γ0a1 +

Λ′2

2γP
a∗1a

2
1 +

Λ′

γP
a∗1b

′
in − a1,in (4.33)

where b′in = Γ10b0,in + Γ12b2,in, and Λ′ = α1Λ. We can show39 that this field operator
corresponds to the component whose profile is proportional to u2

1(x). .
Eq. 4.33 is very similar to the equation of motion describing the parametric interaction

in the single TEM00 mode case [BowenPhD03]. The first difference is the modification of
the nonlinear coupling strength Λ′ = α1Λ, which has been multiplied by α1 < 1. This factor
corresponds to the drop in local intensity, because of the spatial extension increases with
the number of the mode. This has direct consequences on the ideal impedance matching of
the cavity40. The second difference is the way the input pump field has been decomposed
into its modal components to yield b′in. This has a direct effect on the threshold value,
which is determined from Eq. 4.33 by the following condition

b′◦in ≥
γ0γP

Λ′
(4.34)

This result shows that pumping the OPA with a beam whose normalized profile is given by
Γ10v0(x) + Γ12v2(x), v0(x) or v2(x), yields a threshold respectively given by (γ0γP /α1Λ)2,
(γ0γP /α1Γ10Λ)2, or (γ0γP /α1Γ12Λ)2.

The normalized mode profile Γ10v0(x)+Γ12v2(x), or u2
1(x)/α1, is therefore the optimum

pump profile for a TEM10 fundamental mode operation, as already explained in Eq. 4.14.
Indeed, as explained in section 4 B, in order to pump efficiently the crystal for a TEMn0

signal mode, we have shown that the transverse profile of the pump mode had to locally
match the square of the signal mode.

Note that even in the optimum case, since the threshold is directly related to the local
intensity in the crystal, it is increased for higher order signal mode operations. Indeed,
higher order mode intensity is more spread out in the transverse plane than for the TEM00

mode, as discussed in section 1 A.2.6. Therefore the best conversion efficiency is expected
to happen for a TEM00 mode pump and a TEM00 signal beam resonant inside the cavity.
We call P◦thr the threshold value corresponding to this operation. Coming back to the OPA
operation with a fundamental TEM10 mode in the thin crystal approximation, pumping
in the optimal SH mode, in the TEM00 or TEM20 SH mode respectively increases the
threshold relative to P◦thr by a factor of 1/α2

1 ' 1.3, 1/Γ2
10α

2
1 ' 4 and 1/Γ2

12α
2
1 ' 2.

38We recall that Γni =
R∞
−∞

u2
n(x)

αn
vi(x)dx, where α2

n =
R∞
−∞ u4

n(x)dx, and that for n = 1, only Γ10 and

Γ12 are different from zero and fulfill Γ2
10 + Γ2

12 = 1.
39Any pump spatial profile b(x) can be decomposed into b(x) = b0v0(x) + b2v2(x). Its projection on

the ”mode” u2
1(x) yields

R
b(x)u2

1(x)dx = α1 [Γ10b0 + Γ12b2]. This proves that the component which is

effectively taking part in the interaction is defined by b′in = Γ10b0,in + Γ12b2,in. This result is in perfect

agreement with Eq. 4.14.
40We prefer not to give all the details here and propose to refer to [BowenPhD03] and analyze the effect

of a modification of Λ. In a word, the value of the coupling strength determines the optimal value of

the output coupler transmissivity, in order to have the highest possible escape efficiency. It is difficult to

quantify the modification of the squeezing level without going into details, but we can already expect an

effect on the escape efficiency, if the output coupler is not changed from one TEMn0 mode operation to

the other. The measured squeezing should decrease with the order of the mode, as changing the output

coupler would require to realign the entire experiment each time.
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• TEMn0 fundamental mode resonant in the cavity
We now concentrate on the case n0 = n, in the same conditions, for which we can show

that the equation of motion describing the evolution of the TEMn0 mode inside the cavity
is given by

∂an

∂t
= −γ0an +

α2
nΛ2

2γP
a∗na2

n +
αnΛ
γP

a∗nb
(n)
in − an,in (4.35)

where b
(n)
in = αn

∑
k Γnkbk,in. We can again show that this field operator corresponds to

the component whose profile is proportional to u2
n(x).

Eq. 4.35 shows exactly the same properties as Eq. 4.33, the modification of the nonlinear
coupling strength Λ, which has been multiplied by αn < 1. The threshold value is also
defined by the following condition

b(n)◦
in ≥

γ0γP

Λ
(4.36)

The normalized optimum pump mode is given by
∑

k Γnkvk(x), or u2
n(x)/αn. Pumping

the OPA with a beam whose normalized profile is given by vk(x) yields a threshold given
by (γ0γP /αnΓnkΛ)2.

We now focusing on the OPA operation with a resonant fundamental TEM20 mode.
Pumping in the optimal mode, in the TEM00, TEM20 or TEM40 SH mode respectively in-
creases the threshold relative to P◦thr by a factor of 1/α2

2 ' 1.6, 1/Γ2
20α

2
2 ' 7, 1/Γ2

22α
2
2 ' 8.3

or 1/Γ2
24α

2
2 ' 2.7.

The multi-mode description of an OPA operated with a TEMn0 mode in the thin
crystal approximation has allowed interesting predictions on the threshold values for a
given pump profile. We have identified the optimal pump profile and shown the effect
of the lower local intensity in higher order modes, quantitatively on the threshold value,
and qualitatively on the squeezing level. These theoretical results will be important to
understand the experimental ones presented in the next section.

We have limited here our study to the thin crystal approximation but the full calcula-
tion, corresponding more closely to the experimental case, will be investigated41.

C.2 Experimental demonstration of higher order Hermite Gauss mode

squeezing

Most of the work presented in this section has been published in reference [Lassen06].

C.2.1 Experimental setup

The experimental setup is schematized in Fig. 4.18. The laser source is a dual output laser
delivering two coherent TEM00 output beams, 195 mW of infrared power at 1064 nm, and
950 mW of green at 532 nm, using a cw solid-state monolithic YAG laser and an internal
frequency doubler [Innolight]. The infrared and green beams are respectively used to seed
and pump the OPA cavity.

41The formalism used for this derivation will be similar to the one presented in reference [Lopez05].
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Figure 4.18: Experimental setup to generate higher order transverse mode squeezing, il-
lustrated in the case of the TEM10 mode. An OPA is seeded with a misaligned TEM00

beam. The cavity is locked to the fundamental TEMn0 mode and pumped with a sec-
ond harmonic TEM00 beam. The TEMn0 squeezed beam is analyzed using a homodyne
detection, whose TEMn0 local oscillator is created from a misaligned ring cavity.

The infrared beam is first filtered through a mode-cleaning cavity42 (non represented
in Fig. 4.18), which filters out the intensity and frequency noise of the laser above the
bandwidth of the ring-cavity, and also defines a high quality spatial mode. A bandwidth
of 2.5 MHz is measured and a transmission greater than 90% is obtained for the TEM00

mode. The infrared TEM00 output beam is then misaligned into the OPA cavity in order
to excite higher order H-G modes43. The cavity is then locked to resonance on the TEMn0

mode.
The green output beam, used as a TEM00 pump44, passes through an optical isolator

(ISO: isolation > 40 dB) and is carefully mode-matched (95%) into the OPA cavity. Below
threshold, the seed is either amplified or de-amplified depending on the relative phase
between the pump and the seed. The phase of the pump beam is stably locked to de-
amplification in order to generate an amplitude quadrature squeezed beam.

42We have already detailed such a cavity in section 4 A.2.2.
43As explained in section 4 A.2.2, this is analogous to seeding the OPA directly with a TEMn0 mode,

but has the advantage of using much less resources.
44We will comment later on the influence of the pump profile, using the results of section 4 C.1. This

does obviously not correspond to optimal pump profile in the case of an OPA operation with any TEMn0

mode.
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The OPA is a hemilithic cavity as represented in Fig. 4.18. This type of cavity has
high intrinsic frequency stability. The crystal is a bulk 2x2.5x6.5 mm3 lithium niobate
(MgO:LiNbO3) type I nonlinear crystal doped with 7% of magnesium. Its back surface is
polished so that it has a 8 mm radius of curvature and is high reflectance coated for both
wavelengths. The output coupler has 96% reflectivity for 1064 nm and 10% reflectivity for
532 nm, has a radius of curvature of 25 mm, and is placed 23 mm from the front-end of the
crystal. The cavity is therefore near concentricity with a waist of 24 µm for the 1064 nm
cavity and 19 µm for the non-resonant 532 nm pump45. The OPA has a finesse of 165 with
a free spectral range of 10 GHz and a bandwidth of 70 MHz.

The dim TEMn0 squeezed beam generated at the output of the OPA is separated from
the pump beam with a dichroic mirror (DC). The squeezed beam is then analyzed with a
particular homodyne detection, for which the local oscillator (LO) is a TEMn0 mode. As
explained in section 1 C.4, such a device selectively extracts from the squeezed beam the
information contained in the TEMn0 component. The LO is created with a ring cavity,
used as a mode transferring cavity locked to the TEMn0 mode, as explained in section 4
A.2.2.

In order to ensure the stability of the system, 6 locking loops are implemented in the
experiment. We use the Pound Drever Hall locking technique, where a phase-modulation
is imparted on the optical beams with an electro-optic modulator (EOM). The gener-
ated error-signals are then fed back to the cavities through piezo-electric elements (PZT)
[Drever83]. All cavities in the experiment are held at resonance at the same time. The ex-
periment stays locked for longer than 20 minutes. The main limiting factor is temperature
fluctuations in the laboratory.

In order to have large parametric interaction we need the best possible mode overlap
between pump and seed modes. To achieve this, different issues have to be addressed
such as mode-matching and alignment of pump and seed into the cavity. A useful tool
for optimizing the parametric interaction - and at the same time the possible amount of
squeezing to be extracted - is to measure the classical gain factor of the seed.

C.2.2 Optimization of the pump profile

We focus here on the particular question of the pump profile, which has already been proven
to play an important role in the theoretical section 4 C.1. We have shown that the optimal
pump profile was complicated in the general case, and composed of several SH TEMn0

modes. Although generating such a complicated mode is in principle possible by using
holograms [Vaziri02] or forcing a laser cavity to emit in these mode [Lassen05, Schwarz04],
we choose, as a first step, to simply use the TEM00 green mode delivered by the laser.

In order to improve the setup for optimal pump operation in the TEM10 case only,
we propose the scheme presented in Fig. 4.19. The scheme involves two ring cavities as
the ones presented in section 4 A.2.2. The first one is used to generate a pure SH TEM20

component, by misaligning the input TEM00 beam, and locking the cavity to the resonance
of the TEM20 mode. The reflected beam is then mixture of mainly TEM00 and TEM10

45This design has been changed for a longer cavity in the latest experiment presented in section 5 B.

As our experiments require the resonance of a single transverse mode inside the cavity, it is preferable to

operate the OPA cavity as far as possible from any multi-mode cavity, like the concentric or the confocal

configuration.
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Figure 4.19: Proposition to generate an optimal pump mode for a TEM10 operation of
the OPA cavity with two ring cavities. An incident green TEM00 mode is misaligned in
order to couple into the TEM20 component of the first ring cavity. The cavity is locked
to the TEM20 mode. The reflected field is then filtered with a second ring cavity in order
to produce a pure TEM00 mode. The amplitude ratio η and the relative phase Φ can be
varied using a variable attenuator and a piezoelectric device, respectively.

modes. We use a second cavity used as a spatial filter in order to produce a pure TEM00

mode, which is sent back on the first cavity and perfectly reflected. The amplitude ratio
η between the two output components is controlled by an attenuator in the TEM00 arm,
which simply consists of a polarizing beam-splitter and a half waveplate. The relative
phase Φ between the two components is tuned with a PZT in the TEM00 arm. The output
field is thus proportional to v2(x) + ηeiΦv0(x). Even if the results given in the theoretical
section were limited to the thin crystal approximation, they give a good idea of the value
of the parameters. Moreover, we have seen in section 4 B that even beyond the thin crystal
approximation, the same two modes allowed a full description of the parametric properties.
It seems therefore reasonable to believe that the optimal pumping profile can be obtained
with the setup presented in Fig. 4.19.

Nevertheless, we have performed the experiments only with a TEM00 at this stage, as
the implementation of an optimal pump is resource demanding. The TEM00 pump mode
was always aligned with the cavity axis and mode-matched to the TEM00 mode of the
cavity46. We therefore expect the increase of the oscillation threshold as predicted in the
theoretical section. In the cases relevant to our experiment, when the signal mode resonant
in the OPA is a TEM10 mode, pumping with a SH TEM00 mode increases the threshold

46We have checked that this configuration was giving maximal gain. Since our OPA is not a cavity for

the pump beam, the output coupler has only 10% reflectivity for 532 nm, we can envision three different

cases for pumping the OPA efficiently, knowing that we are restricted to a TEM00 pump mode operation,

as discussed in the previous section. Firstly, we can match the pump profile to the TEM00 mode defined

through the infrared mode. Secondly, we can de-focus the pump. Finally, we can misalign the pump to

match with one lobe (one side) of the infrared mode, in the TEM10 mode case for instance. In each case

we have tuned the crystal temperature to maximize the gain, and we find in the end that the most efficient

option is to pump with a TEM00 mode aligned with the cavity axis.
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relative to the TEM00 case by a factor 4. As for a TEM20 signal mode, pumping with a
SH TEM00 mode increases the threshold by a factor 7.

In order to confront this values with experimental results, we have maximized the
classical amplification factor by tuning the relative phase between pump and seed, the
pump power, and the crystal temperature47. The measured amplification gain curves for
TEM00, TEM10 and TEM20 H-G modes are presented in Fig. 4.20. The gain corresponds
to the ratio between the OPA output power when the non-linearity is on and off, i.e. when
the pump is used or not.
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Figure 4.20: Experimental measurements of classical amplification curves for the OPA
operation in the a) TEM00, b) TEM10 or c) TEM20 mode. Solid lines correspond to
exponential fits.

We measured a maximum amplification of 300, 23, 5 for the TEM00, TEM10 and TEM20

H-G modes, respectively. The best measured de-amplification factors are 0.30, 0.56 and
0.70 for the TEM00, TEM10 and TEM20 H-G modes, respectively. On the one hand, the
de-amplification of 0.30 for the TEM00 indicates that the system is close to ideal operation,
since the theoretical value for de-amplification from a back seeded OPA at threshold is
0.25 [Bachor03].

The oscillation threshold of the system is reached for 260 mW of pump power when
the OPA is resonant for the TEM00 signal mode. However, the threshold for higher order
modes cannot be accessed experimentally because the system oscillates on the TEM00

mode as soon as the pump power reaches 300 mW, even for crystal temperatures opti-
mized for an operation on the TEM10 and TEM20 modes. Nevertheless, we can use the
gain curves to infer the threshold values for the TEM10 and TEM20 modes. A linear fit of
the curves at low pump power gives the relative gain slopes between each case, yielding
an estimation of the relative threshold. We find thresholds for the TEM10 and TEM20

OPA operation of approximately 1000 mW and 1600 mW, respectively. These values can
be compared with the theoretical calculation presented in section 4 C.1, taking into ac-

47We noticed at this stage that the optimum phase matching temperature was shifted between OPA

operation in different TEMn0 modes. We will come back on this property in the next section.
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TEM00 TEM10 TEM20

Experimental 1 3.9 ± 0.5 6.2 ± 0.8
Theoretical 1 4 7

Table 4.3: Threshold comparison between experimental results and theory in the thin
crystal approximation. The threshold for the different modes is normalized with respect
to the TEM00 threshold power.

count the imperfect spatial overlap between the infrared mode resonant in the cavity and
the TEM00 pump mode, and the lower local intensity for higher order modes. This com-
parison is presented in Table 4.3, and shows a very good agreement between theory and
experimental measurements.

C.2.3 Optimization of the phase matching condition

We now concentrate on the phase matching condition, which is obtained by tuning the
crystal temperature.

The birefringence of the crystal is highly temperature dependent, as discussed in sec-
tion 4 B where we studied this effect in the same material. Accurate heating of the crystal
can therefore be used to achieve optimal phase-matching for the different modes at approx-
imately 62◦C, as shown in Fig. 4.21. This figure shows the classical gain factor measured
as a function of the crystal temperature, in the case of infrared TEM00, TEM10 or TEM20

mode OPA operation, still using the best available pumping option detailed in the previous
section. The optimal temperature is specific to each TEMn0 signal mode operation of the
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Figure 4.21: Classical gain factor as a function of the crystal temperature for OPA oper-
ation with a TEM00, a TEM10 and a TEM20 signal modes. The optimal phase-matching
temperature are 62.1◦C, 61.6◦C and 60.6◦C for the TEM00, TEM10 and TEM20 H-G
modes, respectively.

OPA, mainly because of the different Gouy phase-shift between H-G modes, as explained
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in section 4 B. Indeed, a temperature shift between optimal phase matching condition
clearly appears in Fig. 4.21. The temperature has thus to be re-optimized for each ex-
periment. We find that the optimal phase-matching temperatures are 62.1◦C, 61.6◦C and
60.6◦C for the TEM00, TEM10 and TEM20 modes, respectively. The width (FWHM) for
optimal phase-matching temperature is approximately 1◦C for all phase-matching curves.

In order to have a full understanding of the link with the results obtained for second
harmonic generation in the single pass experiment, we have operated the OPA cavity as
a SHG by blocking the green pump beam and by increasing the power of the infrared
seed beam. Even if the OPA cavity is not designed for SHG, a green beam is generated
as SHG systems do not have an operation threshold. The intensity of the SH beam as
well as some profiles are given in Fig. 4.22 as a function of the crystal temperature,
when the system is operated with an infrared TEM10 mode. The phase-matching curve
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Figure 4.22: SHG operation of the OPA cavity. The intensity of the SH beam is plotted
as a function of the crystal temperature, when the seed beam is a TEM10 infrared mode.
Some profiles of the generated SH beams are also presented. Phase-matching curve for the
nonlinear crystal and different SHG TEM modes as a function of temperature.

is more complicated than the one presented in Fig. 4.16b) as the crystal is inserted here
into the OPA cavity48. We clearly notice on the profile presented in Fig. 4.22 that the
output SH profile is temperature dependent. Indeed, a predominant TEM00 component
can be obtained for T=60.3 ◦C, whereas a predominant TEM20 component can be obtained
for T=61.3 ◦C. For an OPA operation with a given pump profile, the phase-matching
temperature has thus to be optimized in order to match the temperature for which the
system operated as an SHG would generate a SH beam whose profile would be identical
to the pump profile. For example, in the case of the infrared TEM10 mode OPA operation
with a green TEM00 pump mode, the temperature should be set to 60.3 ◦C, as shown

48Indeed, phase reflections on the cavity mirrors and standing wave effect have to be taken into account in

order to model the curve presented in Fig. 4.22. These properties modulate the single pass phase-matching

curve because of interference effects [Juwiler99]. The cavity parameters are usually chosen not to create

destructive interferences at the optimal phase matching temperature.
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by Fig. 4.22. However, as the intensity of the generated SH mode at this temperature is
rather low, the effective non linearity in the OPA operation with a TEM00 will not be as
high as the operation with a pump profile given by a TEM20 profile, as shown by Fig. 4.22.
Note that it is difficult to compare the temperature axis between the different experiments
as the presence of the intense pump power modifies the properties of the system for the
results presented in Fig. 4.2149. Nevertheless, these results still explain clearly the way to
proceed experimentally to adjust the crystal temperature, and link the properties of SHG
and OPA with higher order H-G modes.

C.2.4 TEM00, TEM10 and TEM20 squeezing

Amplitude squeezed states are generated at the output of the OPA when the phase of
the pump beam is locked to de-amplification, as explained in section 4 C.2.1. The OPA
cavity is operated with its best pump and phase matching parameters, as detailed in
the previous sections. Experimental squeezing curves in the TEM00, TEM10 and TEM20

modes are successively obtained using a homodyne detection whose local oscillator has the
same profile as the squeezed mode. Scanning the phase of the local oscillator beam allows
measurements of the amplitude (squeezed) and phase (anti-squeezed) quadratures of the
input beam. The results presented in Fig. 4.23 are recorded with a spectrum analyzer
with a resolution bandwidth of 300 kHz and video bandwidth of 300 Hz at a detection
frequency of 4.5 MHz.

All traces are normalized to the quantum noise level (QNL), which corresponds to
trace ii), and which is measured by blocking the squeezed beam before the homodyne
detector. Trace i) is obtained by scanning the phase of the LO, and trace iii) by locking
the LO phase to the squeezed amplitude quadrature. The smooth line is the theoretical fit
of the noise variance assuming the experimental parameters. We measured −4.0± 0.2 dB
of squeezing and +8.5 ± 0.5 dB of anti-squeezing for the TEM00 mode, −2.6 ± 0.2 dB of
squeezing and +5.4 ± 0.4 dB of anti-squeezing for the TEM10 mode, and −1.5 ± 0.3 dB
of squeezing and +2.7± 0.4 dB of anti-squeezing for the TEM20 mode. To our knowledge,
this is the first demonstration of higher order transverse mode squeezing using an OPA.
These values have been corrected for electrical noise, which is 9.1±0.1 dB below the QNL,
and is mostly due to the amplifiers in the photo-detectors.

In order to perform these measurements, we used the following pump powers which
were maximizing the amount of squeezing: 100 mW for the TEM00 mode and 300 mW for
TEM10 and TEM20 modes. We were unable to pump the OPA with higher power, as the
system was starting to oscillate on the TEM00 mode at 300 mW, even when the cavity
was locked to another mode, as discussed in the previous section.

The values obtained above are the values detected with the homodyne detection. Nev-
ertheless, they do not exactly correspond to the squeezing coming out of the OPA, i.e. to
the squeezing that would be measured with perfect detection efficiency. In order to fully
characterize our squeezing source, we propose to infer this squeezing value by correct-
ing our experimental results for propagation ηprop, photo-detection ηdet, and homodyne
detection ηhd efficiency.

49We thought about taking the results of Fig. 4.22 in presence of the pump, but on the orthogonal

polarization to the one we use to generate parametric interaction. However, the generated SH profiles were

too dim to be easily separated from the intense reflected pump, even if they were orthogonally polarized.
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Figure 4.23: Experimental squeezing traces on the a) TEM00, b) TEM10 and c) TEM20

modes, recorded by homodyne detection. i) Scan of the relative phase between the LO and
the squeezed beam. ii) Quantum noise limit. iii) Phase of the LO locked to the squeezed
amplitude quadrature.

The total detection efficiency of our detection system after the output of the OPA
cavity is hence given by ηtot = ηpropηdetηhd, where ηprop = 0.97± 0.02 is the propagation
efficiency, taking into account the losses at reflection on the optics, ηdet = 0.96 ± 0.03
is the photo-detector (Epitaxx ETX500) efficiency, and ηhd is the homodyne detection
efficiency, measured to be ηhd(TEM00) = 0.98 ± 0.01, ηhd(TEM10) = 0.95 ± 0.01 and
ηhd(TEM20) = 0.91 ± 0.01 for the different modes. The homodyne detection efficiency
depends on the transverse mode of interest. This dependence is due to three main factors.
First, higher order modes have larger spatial extension and are more apertured by the
optics50. Moreover, the fringe visibility drops for higher order modes compared to the
TEM00 case because of the additional transverse degree of freedom that has to be adjusted.
Finally, a small mode mismatch has more dramatic effects on the fringe visibility for a
complex intensity distribution. The total detection efficiency for our experiment are then
ηtot(TEM00) = 0.91 ± 0.04, ηtot(TEM10) = 0.88 ± 0.04 and ηtot(TEM20) = 0.85 ± 0.04
for the different modes. From these efficiencies, we can directly infer the squeezing and
anti-squeezing values just at the output of the OPA using Eq. 1.68. The values are reported
in Table 4.4.

An upper limit of the squeezing and anti-squeezing values, generated at the output of
the OPA cavity, can also be calculated using the characteristics of the OPA operation,
namely the escape efficiency ηesc, the threshold Pthr, and the pump power P . The noise

50Our TEM00 beam had a waist of approximately 2 mm. This large diameter, corresponding to a colli-

mated beam, was chosen in order to facilitate mode matching with the local oscillator.
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TEM00 TEM10 TEM20

SQZ A-SQZ SQZ A-SQZ SQZ A-SQZ
a) Measured -4.0 +8.5 -2.6 +5.4 -1.5 +2.7

b) Inferred just after OPA -4.7 +8.9 -3.1 +5.8 -1.8 +3.0
c) Calculated just after OPA -7.6 +11.0 -6.8 +9.1 -5.4 +6.5

Table 4.4: TEMn0 mode squeezing (SQZ) and anti-squeezing (A-SQZ) a) Measured with
the homodyne detection, and corrected only for electronic noise. b) Inferred from the
previous values by taking detection and propagation losses into account. c) Calculated
using Eq. 4.37, i.e. taking the cavity escape efficiency and relative pump power into account.

variance on the amplitude and phase quadratures can hence be written as [Bachor03]

〈δX̂±2〉 = 1± ηesc
4
√

P/Pthr(
1∓

√
P/Pthr

)2 , (4.37)

The expression of the escape efficiency is ηesc = ε/(ε + L), where L is the intra-cavity
loss and ε is the transmittance of the output-coupler. The estimated intra-cavity loss for
our OPA is approximately L = 0.0043, considering a material absorption of 0.1%/cm and
scattering at the mirror and crystal. This gives a cavity escape efficiency of approximately
ηesc = 0.89. The calculated squeezing and anti-squeezing for the different modes, using
Eq 4.37 are shown in Table 4.4c). The high discrepancy with the previous inferred values
suggests that there exists additional losses inside our system. A direct manifestation of
this intra cavity loss is the impurity of the squeezed states produced with our system, as
shown by Fig. 4.23.

A common extra possible loss factor is caused by the existence green induced infra-red
absorption (GRIIRA) [Furukawa01] inside the crystal. However, according to Furukawa et
al., no effect of GRIIRA should be seen in our setup as we have chosen a 7% MgO doped
LiNbO3 crystal for this purpose.

Another possibility is the presence of direct infrared loss inside the crystal. However,
this parameter is difficult to measure experimentally.

Moreover, we notice a discrepancy between the results obtained with operation on
different modes. We can propose two explanations for this phenomenon. First, it seems
reasonable to measure less and less non classical properties when the pump has less and
less overlap with the ideal pump mode. Indeed, this overlap coefficient respectively equals
1, 0.58 and 0.47 for the TEM00, TEM10 and TEM20 mode operation. Secondly, as we
pointed out in section 4 C.1, the nonlinear coupling parameter Λ decreases with the order
of the mode. As a consequence, the escape efficiency no longer corresponds to the ideal
value for the squeezing extraction out of the cavity.

We have demonstrated the generation of squeezed light in the TEM00, TEM10 and
TEM20 modes. To our knowledge this is the first demonstration of higher order transverse
mode squeezing. Losses in the material limit us presently to noise suppressions below the
QNL of -4 dB, -2.6 dB and -1.5 dB. However, we believe that there is a potential for further
improvement. First, optimal pumping could be tested experimentally, using for example
the setup proposed in Fig. 4.19 in the case of the TEM10 mode. And secondly, a complete
study of the influence of the effect of the modification of the nonlinear coupling parameter
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could determine the ideal output coupler for a specific mode operation.
Moreover, the recent squeezing results obtained with periodically poled materials [Furusawa07]

are very promising, and encourages us to investigate the compatibility of such nonlinear
material with the generation of squeezing in higher order modes.

D Conclusion

In this chapter, we have presented in detail how to selectively manipulate transverse modes
within an optical field. We have in particular focused our analysis on the Hermite Gauss
modes basis. All the key elements required for the implementation of a full quantum imag-
ing experiment have been demonstrated, namely the selective production, combination,
and separation of transverse modes with very high efficiency, i.e. without altering the
quantum state of the modes. The study of parametric interaction between these modes in
SHG and OPA configuration has also allowed the first demonstration of squeezing in these
modes.

These ”building blocks” are assembled together in the two experiments presented in
the next chapter.
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U
sing the transverse spatial properties of laser beams, we are now able to produce
all the required basic elements for higher order continuous laser quantum optics
experiments. The key components developed in the previous chapters are the

ability to generate the H-G modes selectively with high efficiency and the availability of
simple and fully efficient modulation and detection techniques. The first practical quantum
imaging schemes with continuous variables in the transverse plane of a laser beam, using
the basis of H-G modes, are now accessible.

In a first section, we will present an optimal detection of beam displacement and tilt
using the concepts developed earlier in this thesis.
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Moreover, the previous results potentially open the way to parallel quantum informa-
tion processing in the transverse plane, as first suggested by Caves and Drummond in 1994
[Caves94]. Indeed, a very similar general scheme as the one described in Fig. 4.1 could be
used. No object is involved here, but modulations are encoded on the transverse modes.
This process can be performed with electro-optic spatial modulators, which would selec-
tively encode modulations into the H-G modes. The information can then be extracted
using homodyne detections with adapted transverse profiles for the local oscillator. We can
thus encode and detect parallel quantum information in the transverse plane of continuous
wave light beams. However, each quantum channel would be independent at this stage. It
is well known that, in order to implement quantum information and communication proto-
cols, one of the key elements is the production of entanglement. This element was missing
until now. We propose to demonstrate all the major steps required for such entanglement
in a second section.
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A Experimental demonstration of optimal small displace-

ment and tilt measurements

Efficient techniques for performing optical beam displacement measurements are crucial
for many applications. When an optical beam is reflected from, or transmitted through,
an object that is moving, the mechanical movement can be translated to a movement
of the optical beam. Characterization of the transverse position of this beam then yields
an extremely accurate measurement of the object movement. Some example applications
that use these techniques are: Atomic force microscopy, where a beam displacement mea-
surement is used to characterize the vibration of a cantilever, and the force the cantilever
experiences [Santhanakrishnan95, Putman92]; inter-satellite position stabilisation, where
a displacement measurement allows a receiving satellite to orient itself to an optical beam
sent by another satellite, thus allowing a reduction of non-common mode positional vibra-
tions between satellites [Borah06, Nikulin01]; and optical tweezers, where the position of
particles held in optical tweezers can be detected and controlled by measuring the position
of the beam [Guo03, Simmons96, Gittes:98, Denk90]. An understanding of the funda-
mental limits imposed on these opto-mechanical positional measurements is therefore an
important step.

Recently our group has been investigated the possibility, both theoretical [Fabre00]
and experimental [Treps02, Treps03, Treps04,1], to use quantum resources to enhance
optical displacement measurements. Optical beam displacement below the standard quan-
tum noise limit has been demonstrated1. Much of the interest has been on how multi-mode
squeezed light can be used to enhance the outcome of split detector and array detector
measurements. This is an important question since split detectors and arrays are the pri-
mary instruments presently used in displacement measurements and imaging systems.

In spite of the successes in using multi-mode squeezed light to achieve displacement
measurements beyond the standard quantum noise limit (QNL), we have shown in section
3 B.1.1 that split detection is not an optimum displacement measurement, as it extracts,
at best, only ∼ 80 % of the signal. In this section, we propose a detailed theoretical
and experimental comparison of split-detection and TEM10 homodyne detection. We will
demonstrate the performances of the TEM10 homodyne detection and its advantages. This
technique has the potential to enhance many applications presently using split detectors
to measure displacement. Furthermore, we will demonstrate that the QNL for optical
displacement measurement can be surpassed by introducing a squeezed TEM10 mode into
the measurement process. This work has been published in references [Delaubert06,1,
Delaubert06,3].

A.1 Displacement and tilt measurements

A.1.1 Split-detection

• Theory

1Note that displacement of mechanical resonator with other detection devices can also be measured

below the standard quantum noise limit imposed to the motion of the oscillator. For example, Knobel et.

al. have reported a sensitivity of the displacement of a micro-resonator about 100 lower than the QNL

using single electron transistor [Knobel03].



152 Chapter 5. Quantum Imaging with a small number of transverse modes

The conventional way to measure the displacement of a laser beam is to use a split
detector. As illustrated in Fig. 5.1a), the difference between the intensity on each side
of the split detector yields a photocurrent proportional to the displacement. Nevertheless,

-

Z

d

Displacement

Tilt

a)

b)
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Figure 5.1: Measuring displacement and tilt of a Gaussian beam with a split detector.
Taking a reference plane where displacement and tilt components are needed, displacement
can be measured directly with a split detection in the near field (NF) of the reference plane,
whereas tilt can be accessed in its far field (FF).

such a detection device only accesses the beam position in the detector plane, and is totally
insensitive to the orientation of the propagation axis of the beam, i.e. tilt, as presented in
section 3 A.

Let us now consider the evolution of the field operator of Eq. 3.9 under propagation
along the z axis, we get

Ê+(x, z) = i

√
~ω

2ε0cT

[√
Nu0(x, z) +

√
N

(
d

w0
+ i

w0p

2

)
u1(x, z)eiφG(z)

+
∞∑

i=0

δânun(x, z)einφG(z)

]
, (5.1)

where un(x, z) is the Hermite Gauss TEMn0 mode, φG(z) is the Gouy phase shift, which
equals arctan(z/zR), where zR is the Rayleigh range of the beam. N is the number of
photons detected in the mean field during the integration time T . The displacement and
tilt ratio varies along z because of the Gouy phase shift, i.e. diffraction, up to be perfectly
inverted in the far field where φG(∞) = π/2. As explained in section 4 A.1.1, this Fourier
Transform relation is a well known result in classical optics, for which a displacement in
the focal plane of a simple lens is changed into an inclination relative to the propagation
axis, and can be easily understood with transverse modes. Therefore, if the exact amount
of tilt and displacement is needed in a particular transverse plane, for instance at z = 0,
displacement can be measured in this plane (or in its near field), whereas tilt can only be
accessed in its far field, as presented in figure (5.1b).
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The field presented in Eq. 5.1 is detected via a split detector whose position is varied
along the z axis. The photocurrent is directly proportional to the difference of intensity
incident on the two halves of the detector

Î−(z) =
∫ ∞

0
Ê+(x, z)Ê+†(x, z)dx−

∫ 0

−∞
Ê+(x, z)Ê+†(x, z)dx, (5.2)

where the center of the split-detector itself is chosen as the reference frame, i.e. as the origin
of the transverse axis x. The beam displacement is thus measured relative to the position
of the split-detector. Any perturbation modifying this position will create artificial beam
displacement. Consequently, we have performed our measurements at an RF frequency
(4 MHz as presented later on), far from the usual mechanical or thermal instabilities in
optical set-ups, that would potentially generate noise on the detector position.

Replacing Ê+(x, z) with the previous expression yields, for very small displacement
and tilt

Î−(z) =
~ω

2ε0cT

[
2Nc1

(
d

w0
cosφG(z) +

w0p

2
sinφG(z)

)

+
√

N
∞∑

p=0

c2p+1δX̂
−(2p+1)φG(z)
2p+1


 , (5.3)

where δX̂φ
n = δâne−iφ + δâ†neiφ refers to the noise of the quadrature of the TEMn,0 mode

defined by the angle φ, and2

cn =
∫ ∞

0
−

∫ 0

−∞
un(x)u0(x)dx

=
∫ ∞

−∞
un(x)uf (x)dx, (5.4)

where uf is the flipped mode, which is a TEM00 mode whose transverse profile has a π

phase shift at the origin for z = 0 [Delaubert02], as already introduced in Fig. 1.11. Its
decomposition in the TEMpq basis during propagation is given by3

uf (x, z) =
∞∑

p=0

c2p+1u2p+1(x, z)ei(2p+1)φG(z), (5.5)

and the fluctuations of its amplitude quadrature operator are found to be

δX̂+
f =

∞∑

p=0

c2p+1δX̂
+
2p+1, (5.6)

where δX̂+
2p+1 corresponds to the fluctuations of the amplitude quadrature of the mode

u2p+1(x, z).
Experimentally, we measure the displacement for different split detector positions.

This displacement is induced by a modulating device generating at z = 0 displacement
and tilt modulations of amplitude d and p, respectively. A measurement at the modulation

2Note that the coefficient c1 identifies with the overlap integral Γ1,f defined in Eq. 3.47.
3As the flipped mode profile is odd, its decomposition in the Hermite Gauss mode basis only involves

odd modes.
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frequency, using a spectrum analyzer yields the modulation signal as well as the noise at
this frequency. As usual in quantum optics, all equations are directly transposable into the
frequency domain. Using Eq. 5.3, the variance measured by a spectrum analyzer at the
precise modulation frequency is given by

VSD(z) = κN

(
~ω

2ε0cT

)2
[

8N

π

(
d

w0
cosφG(z) +

pw0

2
sinφG(z)

)2

+ 〈



∞∑

p=0

c2p+1δX̂
−(2p+1)φG(z)
2p+1




2

〉

 , (5.7)

where κ is a constant depending only on the electronic gains of the spectrum analyzer,
T = 1/RBW is the integration time and c1 =

√
2/π. The first and second bracketed

terms in Eq. 5.7 respectively correspond to modulation signal and noise. In the plane
of the modulating device (i.e. for z = 0), the noise term can be written 〈δX̂+2

f 〉 and
corresponds to the noise of the amplitude quadrature of the flipped mode. We see that
the flipped mode comes out as the only mode contributing to the noise in this particular
plane, and corresponds to the noise-mode of detection, as explained in section 1C. This
result was first introduced in reference [Treps02]. Note that this is not true all along the
propagation axis. For a coherent incoming beam, this noise term defines the shot noise
level, and is equal to 1. Note that using non classical resources for which 〈δX̂+2

f 〉 < 1 in
the detection plane results in noise reduction. This case will be discussed in section 5A.2.

The Signal to Noise Ratio (SNR) for a coherent beam is found from Eq. 5.7

SNRSD =
8N

π

(
d

w0
cosφG(z) +

pw0

2
sinφG(z)

)2

.

As stated in section 3 B.1, the SNR has a quadratic dependence in displacement d and
momentum p. This expression allows the dependence of the measured signal with the split-
detection during the beam propagation. Note that for pure displacement, it is in agreement
with the minimal measurable displacement value obtained in Eq. 3.48. Indeed, for a SNR
value of 1, corresponding to comparable signal and noise, also called the standard quantum
limit below which a signal cannot be distinguished from the noise, dSD =

√
π

8N w0.
Let us now present the experimental results.

• Experiment
We have performed split detection measurements of displacement and tilt of a Gaussian

beam, by moving the position of the detector along the propagation axis, as shown in
Fig. 5.2. Displacement and tilt are produced by a piezoelectric element (PZT) modulated
at 4 MHz. A modulation signal at such a high frequency has two main advantages. The first
one is to operate far from mechanical instabilities, as stated previously. The second one is
to be insensitive to the technical noise of our laser source, which is shot noise limited above
1 MHz. Each measurement along the propagation axis refers to a different quadrature of
the modulation (i.e. a different mixture of displacement and tilt modulation). The results
are normalized to the shot noise and taken with a 4.2 mW incident beam, ensuring 7dB of
clearance between the shot noise and the electronic noise level. From these measurements,
we can infer the displacement and tilt relative amplitude modulation in the PZT plane
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Figure 5.2: Modulation measurement normalized to the shot noise along the propagation
axis of a tilted and displaced beam, using a split detector. The modulation was produced by
a PZT at 4 MHz, the near field image is located 1.6 cm after the waist plane which is taken
as the reference position z = 0. The modulation detected in this plane (NF) corresponds to
the displacement modulation and represents only 10 % of the overall modulation strength.
The tilt information lies in its far field (FF). Classical and non-classical experimental and
theoretical results are presented.

where the waist is 106 µm. The displacement signal, accessible in the near field of the
PZT, is found to be much smaller than the tilt signal, and even so that it cannot clearly
be distinguished from the shot noise. This unusual behavior of the piezoelectric material
arises from the operation regime, where the modulation is generated via an accidental
mechanical resonance of the PZT. The theoretical curve has been plotted for a coherent
illumination, using Eq. 5.7 for 10% displacement modulation, and 90% tilt modulation,
ratio determined with the more accurate results presented in the section 5 A.1.2. There
is a very good agreement with the experimental data. The last experimental point in
Fig. 5.2 lies below the theoretical prediction, as the beam started to be apertured by the
split detector, leading to a smaller measured modulation. Note that for technical reasons,
our experimental setup is slightly different from the simplest setup presented on Fig. 5.1,
where the reference plane coincides with the beam waist position. The waist size is 65µm

after the lens, corresponding to a Rayleigh range of 1.3 cm. As shown on Fig. 5.2, the
waist position lies at 1.6 cm for the near field of the PZT in our imaging setup, and we
have used the imaging properties of Hermite Gauss modes developed in section 4 A.1.2.

We have shown in this section how to retrieve displacement and tilt information from
a gaussian beam with a split detector, and have taken experimental results which will be
used as a reference in the following sections.
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A.1.2 Homodyne detection with a TEM10 mode local oscillator

We have proved theoretically in section 3 B.1.1 that split detection was non optimal to
retrieve displacement information, as it is only sensitive to the flipped mode instead of the
TEM10 mode component of the input field. In order to extract all the displacement and tilt
information with up to 100% efficiency, we have proposed a homodyne detector involving
a TEM10 mode local oscillator, which selects the TEM10 mode component of the field. We
now first detail the theoretical detected signal dependence with the local oscillator phase.

In the homodyne detection scheme, two beams are mixed on a 50 : 50 beam-splitter.
The first one is the signal beam containing the displacement and tilt modulations, whose
field operator is given by Eq. 3.9. The second one is the local oscillator (LO), whose field
operator is

Ê+
LO(x) = i

√
~ω

2ε0cT

[√
NLOu1(x) +

∞∑

i=0

δâLOnun(x)

]
,

where NLO denotes the number of photons detected that can be detected in the LO beam
during the time interval T . This definition of the LO profile, namely its axis and spatial
extension, sets a spatial reference for beam displacement and tilt measurements, similarly
to the position of the split detector in the previous section. Since displacement and tilt
modulations are very small and the local oscillator is much brighter than the signal beam
(i.e. NLO À N), the usual calculation of the intensity difference between the two homodyne
detectors at the modulation frequency gives

Î− =
~ω

2ε0cT

[
2
√

NNLO

(
d

w0
cosφLO +

w0p

2
sinφLO

)
+

√
NLOδX̂φLO

1

]
, (5.8)

where φLO is the local oscillator phase. Similarly to Eq. 5.7, the variance of the intensity
difference at the displacement and tilt modulation frequency is therefore

VHD(φLO) = κNLO

(
~ω

2ε0cT

)2
[
4N

(
cos(φLO)

d

w0
+ sin(φLO)

pw0

2

)2

+ 〈δX̂φ2
LO

1 〉
]

, (5.9)

where the constant κ is identical to the split detection part as long as the spectrum analyzer
settings have not been changed. The first bracketed term corresponds to the modulation
signal. The second one refers to the noise of the TEM10 component of the detected field, and
its variation with the local oscillator phase φLO is given by 〈δX̂φ2

LO
1 〉 = 〈δX̂+2

1 〉 cos2 φLO +
〈δX̂−2

1 〉 sin2 φLO, where 〈δX̂+2

1 〉 and 〈δX̂−2

1 〉 are the noise of the amplitude and phase
quadrature of the TEM10 mode, respectively. Scanning the local oscillator phase allows
to measure all the quadratures of the displacement and tilt modulation. We have omitted
the Gouy phase shift in the previous expression, as it can be incorporated as a constant
term in the local oscillator phase. This phase is still defined so that φLO = 0 corresponds
to a displacement measurement in the PZT plane.

Again, we find that the TEM10 mode of the incoming beam contributes to the noise, as
it matches the local oscillator transverse shape. All the other modes contributions cancel
out since they are orthogonal to the local oscillator. The TEM10 mode is thus the noise-
mode of the homodyne detection, and precisely matches the information to be extracted.
This is in this sense an optimal beam displacement and tilt detection device, as explained
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in section 3 B. It shows that no other device can perform better measurement of the same
parameters.

For a coherent incoming TEM10 mode, the previous noise term defines the shot noise
level, and is equal to 1. Using squeezed light in the TEM10 mode component of the incoming
beam would result in noise reduction, and will be discussed in the section 5A.2.

The SNR for a coherent incoming beam can be derived from Eq. 5.9 in the homodyne
detection case

SNRHD = 4NT

(
d

w0
cosφLO +

pw0

2
sinφLO

)2

. (5.10)

Comparing the split and homodyne detections schemes yields certain similarities be-
tween Eq.(5.7) and (5.9). First, a variation of the local oscillator phase φLO in the ho-
modyne scheme is equivalent to a propagation along the z axis inducing a Gouy phase
shift φG in the split detection case. Secondly, an additional 2/π geometry factor in the
split detection case arises from the imperfect overlap between the flipped mode and the
TEM10 mode, as discussed in section 3 B.1.1. The comparison between the two SNRs in
the coherent case yields a theoretical efficiency ratio given by

Rth =
SNRSD

SNRHD
=

2
π

NSD

NHD
, (5.11)

where NSD and NHD refer to the number of photon in the displaced and tilted beam, for
the split detection and the homodyne detection case, respectively. As explained earlier,
for identical signal beams powers, this means that the split detection is only 2/π = 64%
efficient compared to the homodyne detection. Using the homodyne detection thus corre-
sponds to an improvement of (100− 64)/64 = 56%.

Eventually, the intensity factor before the bracketed term in Eq. 5.9 and Eq. 5.7 can
be much bigger in the homodyne detection case, as it corresponds to the local oscillator
intensity instead of the input beam intensity in the split detection case. It is thus easier
to have more electronic noise clearance in the homodyne case for weak signals. This is
of particular interest when the intensity of the input beam is limited, for instance if it
interacts with an intensity sensitive medium which has a low damage threshold.

In this section, we have shown - still theoretically - how to retrieve displacement and
tilt using a homodyne detector with a TEM10 local oscillator. Moreover, we have proved
a 56% theoretical improvement of this scheme compared to the split detection.

A.2 Displacement measurement beyond the standard quantum noise

limit

When the information to be retrieved is below - or of the order of - the quantum noise,
non classical resources (i.e. squeezed laser beams) can help extracting the information.
For each type of detection (i.e homodyne- and split detection), the only transverse mode
component within the incident field which contributes to the noise has been identified
in the previous sections. The noise modes of the split and homodyne detection are the
flipped mode and the TEM10 mode, respectively. Since displacement and tilt of a TEM00

beam lies in the TEM10 component of the beam, noise mode and information encoded are
matched for the homodyne detection only.
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Figure 5.3: Schematic of displacement and tilt modulation measurement beyond the quan-
tum noise limit. a) With a split detector and b) with a homodyne detector. Prior to the
modulation generated via a PZT at a few MHz, a bright TEM00 beam is combined without
losses with a squeezed vacuum noise mode. This was done with a special Mach-Zehnder
which has an additional mirror in one arm. A mirror leakage is used to lock the relative
phase between both input modes. All different combinations of displacement and tilt mod-
ulations are accessible when a) the position of the split detector along the propagation axis
z is varied, and b) when the local oscillator phase φLO is scanned.

Sub shot noise measurements with both schemes can be performed using the setups
shown in Fig. 5.3, by filling the noise mode of the input beam with squeezed light. A mode
combiner has to be used to merge the signal beam - in our case a bright TEM00 beam -
with the noise mode of detection, filled with squeezed vacuum. Note that it has to be a
vacuum mode, or a very dim field not to contribute to the signal, but only to reduce the
quantum noise properties4. The combination of beams cannot be done with a sheer beam-
splitter as the squeezing is not robust to losses. Instead, we used a special Mach-Zehnder
interferometer with an additional mirror in one arm, as already introduced in section 4

4Note that even if the combination of the reference TEM00 beam with the squeezed beam is made before

the displacement of the beam, the displacement involved is so small compared to the beam waist that the

non-classical properties of the beam are unchanged at first order in d/w0. We can therefore consider in the

following that noise reduction useful for the detection corresponds to the squeezing of the input field with

an excellent approximation.
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A.3.2. This mirror has no effect on even transverse profiles, but induces an additional π

phase shift to odd transverse profiles. Therefore, thanks to this asymmetry, orthogonal
even and odd modes, which are incident on the two input ports of the Mach-Zehnder,
interfere constructively on the same output port without experiencing any losses. The
integrality of the bright beam and the squeezing of the squeezed vacuum mode - a) flipped
mode or b) TEM10 mode - are thus preserved at the output of the interferometer. Note
that other devices can be used for the mode combination, such as an optical ring-cavity,
as explained in section 4 A.3.3.

In order to make a direct comparison of the performances of the split detection and the
homodyne detection, we have built the experimental setup sketched in Fig. 5.4, where both
schemes are tested in the same operating conditions. In addition to a simple comparison
involving only classical resources, we designed the experience in order to allow measure-
ments beyond the QNL. At this stage, we were unable to produce directly a squeezed
TEM10 mode, as the experiment on higher order mode squeezing (see section 4 C) has
been demonstrated after the one presented here. We have therefore chosen to generate a
squeezed flipped mode, which also corresponds to a squeezed TEM10 mode having expe-
rienced 36 % losses. Indeed, the amount of squeezing in the amplitude quadrature of the
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Figure 5.4: Experimental scheme to measure displacement and tilt with a split detector
and a homodyne detector in the same operating conditions. f: flipped mode.

TEM10 component of the flipped mode can be deduced from

〈δX̂+2

1 〉 =
2
π
〈δX̂+2

f 〉+
(

1− 2
π

)
, (5.12)
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as all the modes except the flipped mode are filled with coherent light. This expression can
be obtained by changing the basis for the description of the field, as explained in section 1
A.2.5. If the flipped mode is a classical coherent state, 〈δX̂+2

f 〉 = 1, which also implies that

the TEM10 component is coherent 〈δX̂+2

1 〉 = 1, as expected. In the end, if we start with
3.6 dB of squeezing in the amplitude quadrature of the flipped mode as discussed below,
we get 2 dB of squeezing in the TEM10 mode, which is exactly what can be measured
experimentally by using the homodyne detection with a TEM10 local oscillator.

We used the following experimental procedure. First we generated a 3.6 dB squeezed
TEM00 mode from a monolithic optical parametric amplifier (OPA) pumped by a frequency
doubled YAG laser delivering 600 mW at 1064 nm, and seeded by a TEM00 mode5. This
very low power (µW) squeezed beam then experiences a mode conversion into the flipped
mode thanks to a special wave-plate made of two half wave-plates whose optical axis have
been rotated 90◦ relative to each other [Delaubert02]. A beam incident on such an optical
element yields a π phase shift on half of its transverse profile.

Thanks to the special Mach-Zehnder interferometer formerly presented, we combine
this beam with a bright TEM00 beam, therefore preserving their potential non classical
properties. To achieve this experimentally, we first mode matched both input beams of
the interferometer without the special wave-plate, reaching 99.5 % visibility on the first
beam-splitter of the interferometer. The squeezed beam, although very dim, is still bright
enough to be mode matched with the other bright TEM00 beam. The interferometer is
then aligned on the OPA beam without the wave-plate with 98 % visibility and then the
wave-plate is slid in the center of the beam to a maximum visibility of 97.8 %. Note that
we purposely introduced a leakage in one of the mirrors to lock the relative phase φrel

between the two input modes with a split detector (SD), as drawn in Fig. 5.3). In the
end, the global mode combiner efficiency is still higher than 97%.

The multi-mode squeezed beam hereby generated is then displaced and tilted with a
PZT, as presented in section 5 A.1.1, and the information is detected with either one of
the split or homodyne detection schemes. Let us first briefly concentrate on the results
obtained with the split-detector, in presence of the squeezed flipped mode. We see in
Fig.5.2 that we were able to measure a modulation below the QNL. These measurements
precisely correspond to detection in the near field of the mode converting wave-plate -
which is also the far field of the PZT - as the flipped mode is not stable with propagation,
and the squeezing degrades very quickly along the z direction.

We now focus on the TEM10 homodyne detection. The TEM10 local oscillator is pro-
duced with a misaligned ring cavity locked to resonance on the TEM10 mode represented
in Fig. 5.4, and has already been presented in section 4 A.2.2. We recall that the cavity
has been designed such that it delivers a pure transverse output mode (i.e. high order
modes are not simultaneously resonant in the cavity). We mode matched this local oscil-
lator beam to the signal beam by previously locking the ring cavity to the TEM00 mode
resonance, reaching a visibility of 98.9 % with the TEM00 input mode.

The experimental results, obtained with the spectrum analyzer in zero-span mode at
4 MHz, are presented in Fig. 5.5(a) and Fig. 5.5(b), when the TEM10 local oscillator phase
is scanned and locked for displacement (φLO = 0) and tilt (φLO = π/2) measurement.

5This operation of this monolithic OPA is not presented in this thesis, as it has already been very clearly

described in reference [BuchlerPhD01].
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Figure 5.5: Demonstration of sub-shot noise measurements of (a) displacement and (b)
tilt modulations using spatial homodyne detector. The figures show an example with 90%
of tilt, and 10% of displacement modulations. Left hand side of the figures shows the
scanning of the local oscillator phase φLO that continuously access the pure displacement
(at φLO = 0 and π) to pure tilt (at φLO = π/2 and 3π/2) information of the beam. QNL:
quantum noise limit. SQZ: quadrature noise of squeezed light with 2 dB of squeezing and
8 dB of anti-squeezing on the TEM10 mode, but without any modulation signal. MOD:
measured modulation with coherent light. MOD-SQZ: measured modulation with squeezed
light. Right hand side of the figures shows the corresponding locked local oscillator phase
to the (a) displacement or (b) tilt measurement. SQZ: at φLO = 0 the squeezed noise level
is 2 dB below the shot noise and at φLO = π/2 there is 8 dB of anti-squeezing noise. DISP:
MOD-SQZ curve locked to φLO = 0 for displacement measurement. TL: MOD-SQZ curve
locked to φLO = π/2 for tilt measurement. Displacement measurement is improved by the
2 dB of squeezing, while the tilt measurement is degraded by the 8 dB of anti-squeezing.

The electronic noise is 11.7dB below the shot noise level. All traces are corrected for
this noise. Without the use of squeezed light, the displacement modulation cannot clearly
be resolved, as in the split detection case. Improvement of the SNR for displacement
measurement beyond the quantum noise limit is achieved when the squeezed quadrature
of the TEM10 mode is in phase with the displacement measurement quadrature (i.e. in
phase with the incoming TEM00 mode). Since we are dealing with conjugate variables,
improving the displacement measurement degrades the tilt measurement of the same beam,
as required by the anti-squeezing of the other quadrature. The displacement measurement
is improved by the 2 dB of squeezing, whereas the tilt measurement is degraded by the
8 dB of anti-squeezing. Theoretical curves calculated with 2 dB of noise reduction and
8 dB of anti-squeezing, and 90 % of tilt modulation and 10 % of displacement modulation
- continuous curves in Fig. 5.5(a) - are in very good agreement with experimental data.
In our experiment, we have a TEM00 waist size of w0 = 106 µm in the PZT plane, a
power of 170 µW, RBW = 100 kHz and VBW= 100 Hz, corresponding to a QNL of
dQNL = 0.6 nm. The measured displacement lies 0.5 dB above the squeezed noise floor,
yielding a displacement modulation 0.08 times larger than the QNL. As the modulation
has a square dependence on the displacement d, we get dexp =

√
0.08dQNL = 0.15 nm.

This would correspond to a trace only 0.3 dB above the QNL (trace MOD:φLO = 0 in
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Fig5.5a))6. The ratio between displacement and tilt modulations can be inferred from the
theoretical fit in figure 5.5, giving a measured tilt of 0.13 µrad.

We have in this section demonstrated measurements of a pair of quantum conjugate
variables - displacement and tilt - with a homodyne detector involving a TEM10 mode
local oscillator, and performed sub shot noise displacement measurements.

A.3 Comparison of TEM10 homodyne and split-detection for displace-

ment and tilt measurements

Split-detection and homodyne detection efficiencies would ideally be compared exactly
in the same regime. However, the optimum operating regimes for both schemes are not
compatible. Indeed, on the one hand, in the split detection case, the incident beam power
must be ”intense” in order to have enough clearance relative to the electronic noise level, i.e.
several mW for our split detection device. On the other hand, in the homodyne detection
case, the local oscillator has to be the ”intense” beam, and is the one whose power must
ensure an electronic noise clearance. Its power must thus be of the order of the mW for
our homodyne detectors. In this case the power of the incident displaced and tilted beam
should beat least 10 times less than the power of the LO beam, i.e. its power cannot exceed
about 100µW . In order to provide a comparison, we use Eq.5.11 which takes into account
the power discrepancy between both experiments. Note however that all other parameters
are identical, as shown by the symmetry of the system shown in Fig.5.4.

The experimental efficiency ratio can be accessed by the ratio of maximum modulation
power relative to the shot noise ModSD and ModHD, respectively detected with the split-
detection and the homodyne detection:

Rexp =
ModSD

ModHD
. (5.13)

The two experimental curves presented in Fig. 5.2 and 5.5a) (MOD) read ModSD = 23dB

and ModHD = 11.3dB, for beam powers of PSD = 4.2mW and PHD = 170µW , respectively.
Using Eq. 5.11 and 5.13, we can compare our theoretical prediction and the experimental
efficiency ratio with the following ratio:

Rexp

Rth
= 1± 0.05, (5.14)

where the uncertainty is mainly due to the determination of the maximum modulation
values. We therefore report an efficiency improvement of 56%, in perfect agreement with
the theoretical value calculated earlier.

Let us now compare the advantages or drawbacks of both detection devices. Although
we have proven that the homodyne scheme is more efficient, it is not always the most
convenient or the most appropriate to operate in some experimental setups.

The main advantage of the split-detector is obviously its simplicity for a single displace-
ment measurement and its compatibility with incoherent illumination. When the beam to

6It is important to note that even if the signal is smaller than the QNL, it still yields a measurable

trace above the QNL. The use of squeezed light only allows to better resolve this modulation signal from

the noise of the QNL, but similar resolution could be obtained by averaging the traces. Squeezed light is

therefore mostly useful when the phenomenon of interest is non stationary and when this averaging process

cannot be used, i.e. when the noise level itself fluctuates.
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be analyzed is intense enough to be distinguished from the electronic noise, such a simple
device has to be preferred. However, as soon as both conjugated variables are investigated,
several split-detections are required, potentially involving a displacement of the detector
itself in between two consecutive measurements. There are additional limitations to the
use of a split detector due to its gap and to its finite size, which are imposing constraints
when the variation of the modulation on the propagation axis is measured. The accessible
range to a good detection on the z axis is small, as the beam can neither be too small
(because of the gap), nor too large because of the finite size of the detector).

When it comes to ultra-sensitive measurements, the gain in efficiency provided by
the homodyne scheme relative to the split-detection is a simpler technique than the use
of non classical light with a split-detector. In order to perform measurements beyond
the QNL, one has to carefully image the squeezed flipped mode onto the sample with
which the beam is interacting, and also onto the detector, as the flipped mode is not
stable in propagation. As a 56% improvement roughly corresponds to the use of 3dB
of squeezing, homodyne detection with coherent7 illumination should be preferred in this
case. Another advantage of the homodyne device is to allow measurements of displacement
and tilt of a beam without changing the position of the detector, just by varying the local
oscillator phase, which has to be carefully mode-matched to the incoming beam. High
measurement rates of both variables can thus be achieved. Moreover, weak signals that
would have been drowned in the electronic noise of a split-detector are measurable as
the noise clearance is determined by the intense local oscillator8. Nevertheless, using this
detection device requires coherent illumination as it relies on interference measurement.
Additionally, implementing a local oscillator beam is sometimes impossible, typically when
the source of the beam to be analyzed cannot be accessed.

In order to further improve the measurement sensitivity, for instance when the signal
is so weak that it cannot be distinguished from the quantum noise, a non classical beam
with a squeezed TEM10 component can be generated. The homodyne detection noise will
be reduced either for displacement or tilt measurement, according to the relative phase
between squeezed beam and carrier beam. Such detection can for instance be applied to
track the position and orientation - at high frequency not to have thermal and mechanical
perturbations - of a phase object or a biological sample - we recall that the use of non
classical light is limited to transparent propagation media, as the squeezing rapidly decays
with losses.

As a conclusion, we have demonstrated the generation of position-squeezed and momentum-
squeezed beams and their optimal detection with a TEM10 homodyne detection. We now
propose to use this knowledge to combine two of these non-classical beams on a beam-
splitter in order to generate entanglement between position and momentum of macroscopic
bright optical beams.

7The term ”coherence” means here temporal coherence, i.e. that local oscillator and signal beams must

be generated with the same source.
8The total available power for the experiment can of course be a limiting factor, which would limit the

performances in the same way as in the split-detection case.
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B Spatial entanglement

In 1935, Einstein, Podolsky and Rosen introduced the notion of entanglement, and what are
now referred to as EPR states, in order to answer the following question : ‘Can quantum-
mechanical description of physical reality be considered complete?’[Einstein35]. In their
demonstration, involving the position and momentum of particles, they presented a para-
dox that could be solved only by invoking the non completeness of Quantum Mechanics.

States realizing the EPR paradox have now been produced in many laboratories, as
detailed in section 1A.3.4. Position-momentum entanglement has already been demon-
strated in the discrete regime with atoms [Parkins00, Riedmatten06] and quantum corre-
lations have been observed between near and far-field corresponding to the position and
momentum observables of photon pairs in the regime of a few incident photons [Howell04].
However, to date, no such states have been generated with optical beams in the continuous
variable regime.

The aim of the work presented in this chapter is to generalize the former continuous
variable quadrature entanglement experiments [Ou92, Bowen03, Jing06] to the spatial do-
main, similarly to what has been done in the polarization domain [Bowen02, Korolkova02,
Zambrini03, Josse04, Laurat06], in order to produce entanglement of position and momen-
tum conjugate observables, as first considered by Einstein, Podolsky and Rosen in 1935
[Einstein35]. This theoretical proposition using two bright optical beams was first intro-
duced by M.T.L. Hsu et al. in 2005 [Hsu05], and was termed spatial entanglement of bright
optical beams. Here, by spatial entanglement, they referred to the entanglement of spatial
observables, namely position and momentum, involving a complete detection of the beams
in the transverse plane. This has be to distinguished from previous use of this term, where
it referred to quadrature entanglement between restricted spatial areas of optical images
[Gatti99, Navez01, Gatti03], or local areas of a Bose-Einstein condensate [Heaney06].

In this section, we will first discuss the latter proposal, then focus on its experimental
implications, and will finally present the latest experimental results towards the generation
of spatial entanglement of bright optical beams.

B.1 Theory

B.1.1 Heisenberg inequality relation

As introduced in section 3A, position and momentum of a bright TEM00 mode laser beam
are simply related to the TEM10 quadratures components of the beam by

x̂ =
w0

2
√

N
X̂+

1 (5.15)

p̂ =
1

w0

√
N

X̂−
1 , (5.16)

It is important to note that the quadratures of the TEM10 mode are defined relative to
the quadratures of the bright TEM00 carrier beam, which corresponds here with the mean
field (to a first order approximation) as explained in section 3A.1.2. This is of particular
importance when the TEM10 mode beam of interest is not strictly a vacuum state, as it
is the case in our experiment.
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We recall that these position and momentum variables are conjugate observables which
satisfy the following commutation relation

[x̂, p̂] =
i

N
. (5.17)

This commutation relation is similar to the position-momentum commutation relation
for a single photon, apart from the 1/N factor. This factor is related to the precision
with which one can measure beam position and momentum. Rewriting the Heisenberg
inequality using the commutation relation gives

∆2x̂∆2p̂ ≥ 1
4N

. (5.18)

The 1/N factor is to be related to the result presented in section 3B.1 showing that both
the sensitivity of beam position and beam momentum of a coherent beam scales as

√
N .

We see from Eq. 5.18 that for a small number of incident photons N , the measurement
of position and momentum of the beams are highly uncertain. However, as N becomes
large, the uncertainty product ∆2x̂∆2p̂ approaches zero, so that even without quantum
resources9, x and p can be known simultaneously with very high precision.

B.1.2 Entanglement scheme

Position and momentum observables of a TEM00 beam do not commute and hence sat-
isfy a Heisenberg inequality. One consequence of this has been presented in section 5A,
when we showed that using squeezed light in order to improve the accuracy of a position
measurement was simultaneously altering the associated momentum measurement.

Another interesting consequence is that EPR entanglement for the position and mo-
mentum of TEM00 beams is possible. Entanglement can be generated by mixing two
beams, each containing two components - a bright TEM00 mode, and a dim vacuum-
squeezed TEM10 mode. As with previous experiments generating quadrature entanglement
[Ou92, Bowen03, Jing06], these two beams can be combined on a 50/50 beamsplitter, from
now on to be referred to as the entanglement beam-splitter. For clarity, we will only dis-
cuss in the theoretical section the particular case of the orthogonal combination of two
position-squeezed beams, as defined in section 3A10. However, it is easy to show that all the
results still hold as long as the relative phases φrel1 and φrel2 between the dim squeezed
TEM10 and bright coherent TEM00 components are identical, and that both squeezed
TEM10 components interfere in quadrature on the entanglement beam-splitter, as shown
in Fig.5.6. A schematic of the spatial entanglement scheme is presented in Fig.5.7. The
setup involves the interferences of four fields, in analogous to the setup for polarization
entanglement [Bowen02].

As discussed in section 1A.3.4, the production of entanglement requires two orthogo-
nal squeezed states. Both position squeezed beams must therefore be in quadrature, i.e.
π/2 shifted relative to each other, when they interfere on the beam-splitter. A summary
of all the different phases involved in the experiment, and the values they have to be
locked to, is given in Fig. 5.8. In addition to the relative phases between the TEM00 and

9Quantum resources means here sub-QNL sources and ideal detection devices.
10We recall that a light beam is said to be position-squeezed if its position can be determined to an

accuracy beyond the standard quantum limit. Such beams are composed of a coherent bright TEM00 mode
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Figure 5.6: Fresnel representation of the TEM10 component for spatial entanglement, a)
in the particular case of the orthogonal combination of two position-squeezed beams (x-
p entanglement), and b) in the more general case of any orthogonal combination of two
beams, for which the relative phase φrel between the TEM00 carrier mode and the squeezed
TEM10 component is non zero. The orthogonality of the two non classical beams on the
entanglement beam-splitter corresponds to φE = π/2. Similarly to the definition used in
Fig. 3.4, the horizontal axis of the Fresnel diagrams corresponds here to the TEM00 phase
reference, and therefore designates the position axis, whereas the vertical axis refers to the
momentum of the beam.

TEM10 components (φrel1 and φrel2), and the relative phase between the two non-classical
beams interfering on the entanglement beam-splitter (φE), we also present the local oscil-
lator phases required for amplitude X̂+ and phase X̂− quadrature measurements at the
homodyne detection

(
φLOx(X̂+), φLOx(X̂−), φLOy(X̂+), andφLOy(X̂−)

)
.

B.1.3 Inseparability criterion

In order to generate x-p entanglement, we consider beams with zero mean position and
momentum. Nevertheless, the quantum noise of the position and momentum of both beams
can already yield a signature of entanglement as shown below11. The electric field operators
for the two input beams at the beam splitter are given by

Ê(+)
1 (x) = i

√
~ω0

2ε0cT

(√
Nu0(x) +

∞∑

n=0

δânun(x)

)
(5.19)

Ê(+)
2 (x) = i

√
~ω0

2ε0cT

(√
Nu0(x) +

∞∑

n=0

δb̂nun(x)

)
(5.20)

where ân and b̂n correspond to the annihilation operators of the nth mode of the first and
second input beams, respectively. N is the number of photons detected in each of the two
beams during the measurement time. In both equations, the first bracketed term describes

component and a squeezed vacuum TEM10 mode component whose squeezed quadrature is in phase with

the TEM00 component.
11Note that the use of entangled beams carrying a displacement and momentum signal, i.e. a modulation,

would however be necessary for a teleportation protocol.
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Figure 5.7: Scheme for position-momentum entanglement between two bright TEM00

beams. Two position-squeezed beams a) and b), denoted 1 and 2, are combined on a
50/50 beam-splitter. The two output beams, denoted x and y, are entangled when beams
1 and 2 are in quadrature, i.e. when φE = π/2. The entangled beams are analyzed with
two homodyne detections (HDx and HDy). Amplitude (X̂+) and phase (X̂−) quadratures
are alternatively accessible for both beams, for determined phases of the local oscillators
beams (φLOx and φLOy). The appropriate combination of both homodyne signals yields
the degree of EPR paradox E or the degree of inseparability I.

⊗
: lossless mode combiner

(special Mach Zehnder for instance).

the coherent amplitude of the TEM00 beam, and the second one the quantum fluctuations
present in all modes. For position squeezed states, only the TEM10 mode is occupied
by a vacuum squeezed mode, and all other modes are occupied by vacuum fluctuations.
Knowing that both beams are combined in quadrature on the 50/50 beam-splitter, we get

Ê(+)
x =

1√
2

(
Ê(+)

1 + iÊ(+)
2

)
(5.21)

Ê(+)
y =

1√
2

(
Ê(+)

1 − iÊ(+)
2

)
(5.22)

To demonstrate the existence of entanglement, we seek quantum correlation and anti-
correlation between the position and momentum quantum noise operators. The position
fluctuation operators corresponding to beams x and y are given, respectively, by

δx̂x =
w0

2
√

2N

(
δX̂+

a1
+ δX̂−

b1

)
=

1√
2

(
δx̂1 +

w2
0

2
δp̂2

)
(5.23)

δx̂y =
w0

2
√

2N

(
δX̂+

a1
− δX̂−

b1

)
=

1√
2

(
δx̂1 − w2

0

2
δp̂2

)
(5.24)



168 Chapter 5. Quantum Imaging with a small number of transverse modes

Ent-BSComponentBeam

1

2

TEM00

TEM10

TEM00

TEM10

0

0

π/2

π/2

Beam

x

LO

0

0

π/2

π/2

x

X
+

Measurement X
-

Measurement

y

LOy

0

0

0

0

a) b)
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The momentum fluctuation operators corresponding to beams x and y are given by

δp̂x =
1

w0

√
N

(
δX̂−

a1
+ δX̂+

b1

)
=

1√
2

(
δp̂1 +

2
w2

0

δx̂2

)
(5.25)

δp̂y =
1

w0

√
N

(
δX̂−

a1
− δX̂+

b1

)
=

1√
2

(
δp̂1 − 2

w2
0

δx̂2

)
(5.26)

It is not surprising to find here a direct link with the inseparability criterion introduced
in section 1A.3.4, which can be written in its product form as [Hsu05]

I(x̂, p̂) =

√
〈(x̂x + x̂y)2〉〈(p̂x − p̂y)2〉

|[x̂, p̂]|2 (5.27)

Using Eq. 5.23, 5.24 and 5.25, 5.26, the degree of inseparability for the quantum fluctua-
tions of the observables of both beams thus becomes

I(δx̂, δp̂) =
4N

w2
0

√
〈δx̂2

1〉〈δx̂2
2〉 =

√
〈δX̂+2

a1 〉〈δX̂+2

b1
〉 < 1 (5.28)

where we have chosen to combine two position squeezed beams, i.e. 〈δX̂+2

a1
〉 < 1 and

〈δX̂+2

b1
〉 < 1, position noise anti-correlations and momentum noise correlations are cre-

ated12 and I(δx̂, δp̂) < 1. We have proved here as in reference [Hsu05] that continuous
variable EPR entanglement between two beams could be achieved. This is what we propose
to demonstrate experimentally in the next sections.

B.2 Experimental setup

B.2.1 Optical layout

A complete diagram of the optical layout is presented in Fig. 5.9. Let us now present the
main elements of this setup.

• The dual output laser source

12Combining two momentum squeezed beams for which 〈δX̂−2

a1 〉 < 1 and 〈δX̂−2

b1
〉 < 1, would result in

position noise correlations and momentum noise anti-correlations are created.
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Figure 5.9: Experimental setup for spatial entanglement. D: detector, SD: split-detector,
L: lens (focal length in mm), R: radius of curvature (in mm), FHWP: flipped mode half-
waveplate, GTP: Glen-Thomson polarizer, EOM: electro-optic modulator, att: attenuator,
P-Filter: polarization filter, PZT: piezoelectric device.

The laser source that has been used for this experiment is the same dual-output Diabolo
laser as the one used in section 4C. This device delivers two coherent output TEM00 beams,
195 mW of infrared power at 1064 nm, and 950 mW of green at 532 nm13.

• The two Optical Parametric Amplifiers (OPA)
In order to produce the two TEM10 squeezed beams, we use two optical parametric

amplifiers (OPA) seeded with TEM10 modes at 1064 nm, and pumped with TEM00 beams
at 532 nm. A picture of a single OPA is represented in Fig. 5.10. The hemilithic OPA
cavity design has been improved from the one presented in section 4C. The oven and the
2x2.5x6.5 mm3 LiNbO3 crystal - 7% MgO doped - are still identical. However, the optical
length of the cavity has been increased to 90 mm, and the output coupler mount has been
completely re-designed by Jiri Janousek, in order to increase the stability of the system.
The PZT is spring-loaded in order to increase the resonance frequency of the mount, which
results in an increase of the locking bandwidth from around 20 kHz to 60 kHz. A complete
study of the influence of pre-loading on the PZT resonance can be found in reference
[BowenPhD03]. With these cavity characteristics, the waist size of the infrared beam is 16
µm, and is located in the middle of the crystal.

13Note that this laser can have different power ratios according to the reflecting property of the beam-

splitter used inside the laser box to pump the second harmonic generation cavity.
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Figure 5.10: Picture of one of the two identical Optical Parametric Oscillators. On the left-
hand side, only a white MACOR container maintaining the crystal in its oven is visible.
The output coupler and the spring-loaded piezoelectric stack are located in the optical
mount on the right part of the picture.

In this setup, we seed the OPA cavity with a TEM10 mode, rather than misaligning a
TEM00 seed beam. The TEM10 beam is generated by a misaligned ring cavity with TEM00

input, locked to the resonance of the TEM10 mode. As explained in section 4A.2.2, we have
introduced a special wave-plate, referred to as a flipped mode waveplate, in order to improve
the conversion efficiency from the TEM00 laser output mode into a TEM10 mode. This
mode transferring cavity (MTC1) acts also as a mode cleaning cavity, thus delivering a
pure TEM10 output mode, shot noise limited above 1.5 MHz. The infrared TEM10 mode
thereby produced is used not only to seed both OPAs, but also as local oscillators for
both homodyne detections, and also to create the two carrier TEM00 beams using another
mode transferring cavity, as we will explain later.

As described in section 4C, we lock the OPA cavity on resonance with the TEM10

mode14, and then we use a TEM00 pump beam. We found that a good compromise between

14We should mention here an experimental complication that arose. Unlike the mode converting ring

cavities which we presented in section 4A.2.2 which have non degenerate x and y axes, the linear OPA cavity

has close to cylindrical symmetry. As a consequence, TEM10 and TEM01 modes can be simultaneously

resonant in the OPA cavity. This causes dramatic effects on the orientation of the two lobes of the output

mode, when either the seed or the cavity itself is not perfectly aligned. This effect was clearly occurring

for OPA2, but not for OPA1 (was it better aligned, or were the crystal and output coupler fortunately

not of cylindrical symmetry?). We noticed that even a small amount of coupling in the TEM01 component

(it is difficult to estimate the minimum amount of this component we were producing) was inducing a

clear - visible to the eye - rotation of the beam, and thus a large drop in the efficiency of the whole setup

which needed to be operated with pure TEM10 modes. We also noticed that this rotation effect was very

sensitive to the crystal temperature. A temperature change of 0.05 degrees only could have such large effects

as the drop of the visibility with the TEM10 local oscillator by more than 20%. A possible explanation

is that the x-y degeneracy is raised when the crystal temperature is changed, due to the anisotropy in

the crystal itself. For some crystal temperature regions, both TEM10 and TEM01 resonance peaks are

separated enough, and both modes are not simultaneously resonant anymore. The solution we found was

to operate the OPA in this non degenerate temperature range. The trade-off was that this temperature

was not perfectly corresponding to the optimum phase matching temperature. Nevertheless, we noticed

that it was preferable to operate the OPA with less de-amplification and a pure mode, than at best de-
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the amount of squeezing and the noise induced by a high power pump, was to operate OPAs
with the following power : Ppump1=90 mW and Ppump2=200 mW. The discrepancy between
the two pump powers arises from the impossibility to run OPA2 at exact phase matching
temperature, as discussed in the previous footnote. In this regime, amplification and de-
amplification were respectively 4 and 0.44 for OPA1, and 3.5 and 0.57 for OPA2. The phase
matching crystal temperatures were found to be 61.45◦C and 59.60◦C, respectively. In
order to produce amplitude squeezed TEM10 beams, we locked the phase of the green pump
to de-amplification. Note that for the following parts of the experiment where we required
two squeezed beams of identical power15, we adjusted both seed beam powers so that the
squeezed beam powers were equal to PSQZ1=PSQZ2=320 µW16. The generated squeezing
and anti-squeezing spectra of both OPAs can be found in Fig. 5.11a)17. Each spectrum
analyzer trace of 2000 points corresponds to the average of 50 traces, and was taken with
a sweep time of 100 ms, a resolution bandwidth RBW=300 kHz, and a video bandwidth
VBW=300 Hz18. The large modulation peaks visible on the spectra correspond to beating
between phase modulations generated for locking purposes19. In order to characterize our
sources, we have also represented in Fig. 5.11b) the purity, i.e. the product 〈δX̂+2〉〈δX̂−2〉,
of the states produced by OPA1 and OPA2 as a function of frequency, where the squeezing
and anti-squeezing spectra are corrected for losses after the output of the OPAs, and taken
from Fig. 5.11a).

• The two TEM00 carrier beams
The reference for position and momentum of each beam is provided by two TEM00

carrier beams. They are simply generated and filtered20 with a second mode transferring
cavity (MTC2), identical to the first one (MTC1), whose operation has already been de-
scribed in section 4A.2.2. The cavity converts the TEM10 mode coming from the MTC1

into a TEM00 mode beam, which is then equally split into two carrier beams and sent to the
two Mach-Zehnders. The power of the carrier beams is chosen to be Pcarrier1=Pcarrier2=1.6
mW, in order to be large relative to the squeezed TEM10 beam power21.

• The two special Mach-Zehnders

amplification and a non-pure mode. This technical problem explains the discrepancy between the optimal

operating conditions of both OPAs. Note that a solution to prevent this phenomenon to occur, would be

to manufacture the crystal or the output coupler purposely with slightly different radius of curvature along

the x and y axis, in order to force the non-degeneracy along identifiable directions.
15This requirement is crucial for the locking of the two position squeezed beams in quadrature, in order

to produce good entanglement.
16This power was the smallest power compatible with the stability of all the locking loops.
17Note that the curves presented here are not raw data, as they have been taken with the entire setup on

the optical table. The losses induced by the Mach-Zehnder interferometer - 98% visibility -, the homodyne

detection - 96% visibility -, the 96% photo-detection efficiency, and foremost the 50% loss on the entangle-

ment beam-splitter have been corrected. We have also corrected the traces for electronic noise, which was

around 5 dB below the shot noise level.
18These spectrum analyzer settings have been kept for all the traces presented in this section, and will

therefore not be mentioned again.
19A list of the modulation frequencies is given in table B.2.2. The peak at 4 MHz arises, for example,

from a beating between the 16 MHz and 12 MHz modulations.
20The output mode of the laser needs to be spatially and spectrally filtered and could not have been

used directly here.
21Ideally, the power of the carrier beams would be much larger, but the carrier beams must also have little

power compared to the local oscillator beams. The beams power are all chosen limited by the saturation

of the homodyne detectors.
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Figure 5.11: a) Squeezing and anti-squeezing spectra of OPA1 (blue trace), and OPA2 (red
trace). The spectra have been back inferred from measurements using the whole setup, and
have been corrected for electronic noise. b) Purity of the states generated at the output
of OPA1 (blue trace), and OPA2 (red trace). Both curves have been corrected for losses
after the output of the devices. Resolution and video bandwidth were set to 300 kHz and
300 Hz respectively.

Each Mach Zehnder interferometer has one additional mirror in one of the arms, in
order to combine without loss the TEM00 carrier beam and the squeezed TEM10 beams, as
explained in section 4A.3.2. We recall that this method relies on the different parity of the
two transverse modes to be combined, in this case the TEM00 and TEM10 modes. Similarly
to what has done in section 5 A, each interferometer is first aligned on the squeezed TEM10

beam22, as we want to minimize losses on this particular beam. For both interferometers,
a fringe visibility of 98 % was achieved23. We then aligned the TEM00 carrier beam with
the TEM10 squeezed beam on the first beam-splitter of the interferometer. As both beams
would not interfere on the beam-splitter as they are orthogonal, we temporarily locked the
mode transferring cavity (MTC2) to the TEM10 mode in order to perform the alignment of
the carrier beams24. Note that the relative phase between the two beams circulating in each
arm is not imposed yet. However, as explained in section 4A, this relative phase determines
which spatial quadrature of the beam is squeezed. In order to lock this relative phase,
denoted φrel in Fig.5.7, we have replaced one of the mirrors by a dichroic mirror in one
arm of the interferometer. This dichroic mirror has been preferred to a weak transmission
mirror as it allows tunable transmission relative to the angle of incidence of the beam 25.
We therefore managed to tune the dichroic angle in order to have only 1% of the light
transmitted through, in order not to alter the squeezing circulating in the interferometer.
This low power beam is then incident on a split-detector to lock the relative phase between

22Note that we increased the seed power in order to have a better accuracy during all alignments, as the

TEM10 beams coming out of the OPAs are very dim (320 µW).
23This visibility dropped to less than 80 % in MZ2 when the crystal temperature was not well optimized,

because of the problem we mentioned earlier in OPA2.
24This required in practise to change slightly the alignment of the input beam of MTC2.
25This angle value was around 22◦, and does not correspond to angles for which coatings are conven-

tionally made.
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TEM00 and TEM10 beams26. Strictly speaking, the generation of two position-squeezed
beams would require an adjustment of the locking system 27 so that the TEM00 and
TEM10 components of each beam are in phase in the plane defined by the entanglement
beam-splitter. However, as stated earlier, the generation of spatial entanglement, that is,
entanglement of two spatial quadratures of the beam, is possible as long as the relative
phases between the two components of each beams are identical, i.e. φrel1 = φrel2 . As all
beams are collimated to a beam radius of about 2 mm, Gouy phase shifts between the two
different components28 only occur between the split-detectors and the focusing lens which
are used to match the size of the beams to the two pixel detectors. We have therefore
carefully positioned both split-detectors at the same distance away from their focusing
lens.

Two non classical beams with identical properties have thus been separately gener-
ated29.

• The entanglement beam-splitter
Both non classical beams are combined on the 50/50 entanglement beam-splitter. In

order to perform the alignment of these two beams, the TEM00 components are blocked,
and the TEM10 components are aligned. We obtained a fringe visibility of 98%. The two
output beams thereby generated are entangled when the relative phase between the two
position-squeezed beams, denoted φE, is locked to φE = π/2. This phase was locked using
DC locking with the difference between the sum of the homodyne detectors : [D1 + D2]−
[D3 + D4], as reported in table B.2.2.

• The two TEM10 homodyne detectors
Both homodyne detections have a bright TEM10 local oscillator, which is aligned to

the entangled beams when all but one TEM10 component are blocked. The power of the
local oscillators was set to PLO1=PLO2=6 mW, in order to be simultaneously large relative
to the power of the squeezed TEM10 and TEM00 beams, without reaching the saturation
of the homodyne detectors. Both homodyne detections were limited to a fringe visibility
of 96% at this stage of the experiment. The local oscillator beams were slightly spatially
distorted because of the number of optics they had to go through before interfering on the
homodyne beam-splitter30.

B.2.2 Electronic layout

One of the major difficulties encountered in the experiment was the simultaneous stability
of the 13 locking loops. We have presented the specifications of each of them in table B.2.2.
It lists the detectors, names of the locking servo, DC locking or AC locking system using
Pound Drever Hall (PDH) technique [Drever83, Pound46] with a high frequency modula-
tion, and piezoelectric device, referenced according to the notations introduced in Fig. 5.9.

26Note that a conventional detector does not allow such a locking as both beams are orthogonal for

complete transverse detection. This justifies the necessity of the use of a measuring device for which both

modes are not orthogonal.
27We will come back to the details of this locking method later on in section 5B.2.2.
28This phenomenon is detailed in section 1A.2.6.
29We will often improperly term them position-squeezed beams for simplicity in the following section,

even if the relative phase between the TEM00 and TEM10 components is not necessarily zero.
30This problem has been solved recently by adding another mode-cleaning ring cavity common to both

local oscillator beams. This allowed to reach a fringe visibility of 98 %.
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Detector Name AC/DC modulation for PDH PZT
D1 −D2 LOy (X̂+) AC 360 kHz PZT1

LOy (X̂−) DC ∅
D3 −D4 LOx (X̂+) AC 177 kHz PZT2

LOx (X̂−) DC ∅
[D1 + D2]− [D3 + D4] Ent DC ∅ PZT13

SD5right
-SD5left

SD2 DC ∅ PZT6

SD6right
-SD6left

SD1 DC ∅ PZT4

D7 MZ1 AC 373.6 kHz PZT3

D8 MZ2 AC 317.4 kHz PZT5

D9 OPO1 AC 16 MHz PZT7

Green1 AC 1 MHz PZT9

D10 OPO2 AC 16 MHz PZT8

Green2 AC 1 MHz PZT10

D11 MTC2 AC 12 MHz PZT11

D12 MTC1 AC 16 MHz PZT12

Table 5.1: List of locking loops and their related information. For each servo loop, we list a
correspondence between locking detectors, names to which we refer every locking loop, type
of locking (AC or DC) with the modulation frequency used for Pound Drever Hall (PDH)
locking if relevant, and PZTs. All the notations used in the table have been introduced
in Fig.5.9. The mention (X̂+) or (X̂−) refers to the quadrature which is measured by the
homodyne detections, respectively amplitude and phase quadratures.

The notation (X̂+) or (X̂−) refers to the quadrature which is measured by the homodyne
detections, the amplitude and phase quadratures respectively. As we will explain later,
the inseparability measurements require us to successively measure correlations and anti-
correlations between homodyne detection signals when the phases of the local oscillator
are locked to the phase and amplitude quadratures, respectively. In order to make clear
the combinations of the signals recorded by the homodyne detectors, and then used either
for locking or measuring quantum correlations Fig. 5.12 has been included. The different
locking systems can be grouped into 4 categories.

The first category is the conventional PDH locking [Drever83] using an external phase
modulation reflected by an optical cavity (MTC1, MTC2, OPO1, OPO2, Green1, Green2).

The second one corresponds to dark - or bright - fringe locking in a low finesse in-
terferometer [Bachor03]. A technique very similar to PDH locking is used, where a high
frequency phase modulation is applied, in one arm of the interferometer, on the same PZT
that is used to lock the interferometer (MZ1, MZ2, LOx (X̂+), LOy (X̂+)).

The third one corresponds to half-fringe locking in a low finesse interferometer [Bachor03].
The error signal is here directly generated with the subtraction of the DC intensities from
the output ports of the interferometer (Ent, LOx (X̂−), LOy (X̂−)). Note that the lock-
ing of the relative phase between the two non-classical beams before the entanglement
beam-splitter requires excellent symmetry in the setup between the intensity of the beams
in each half of the setup. Indeed, the error signal (Ent) resulting from the combination
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Figure 5.12: Cabling of homodyne detections in order to lock and perform entanglement
measurements (E ,I). Five locking loops are monitored using sum and differences of ho-
modyne DC and AC signals : LOx and LOy either locked on amplitude (X̂+) or phase
(X̂−) quadratures, and relative phase between the two beams incident on the entanglement
beam-splitter (Ent).

[D1 + D2] − [D3 + D4] will be centered on a zero value only if the power of both local
oscillators, both carrier beams, and both squeezed beams are carefully matched.

The last category involves split-detectors and deserves special attention. The subtrac-
tion of the DC intensity between right and left parts of the split-detectors provides an
error signal that can be used to lock the relative phase φrel between the two incident
beams, namely the TEM00 carrier and the TEM10 squeezed beams. Such an error signal
allows to lock the relative phase to φrel = π/2, i.e. to lock the two modes in quadrature
in the split-detector plane. The generation of two position-squeezed beams would require
us to lock the TEM00 and TEM10 components in phase in the entanglement beam-splitter
plane31. We would either need to apply a DC offset to the error signal in order to modify
the locking point in the relative phase, or find an imaging system on the split-detectors
which is not introducing any Gouy phase shift. Nevertheless, as we have stated earlier in
section 5B.1.2, it is not necessary to produce two-position squeezed beams. As long as the
relative phases between the TEM00 and TEM10 components are identical, i.e. that the
imaging systems on the split-detectors are rigourously identical, spatial entanglement can
be fully observed. We have therefore simply locked the two components of each beam in
quadrature in the split-detectors plane.

31Because of the Gouy phase shift, both TEM00 and TEM10 modes accumulate different phase shift

when propagating from the detector plane to the entanglement beam-splitter plane, as we have discussed

earlier in section 4A.1.1.



176 Chapter 5. Quantum Imaging with a small number of transverse modes

B.3 Experimental results

B.3.1 TEM10 mode quadrature entanglement

Before presenting the full operating system, we have first demonstrated TEM10 quadrature
entanglement. To our knowledge, this is the first experiment of quadrature entanglement
for higher order Hermite Gauss modes.

The schematic of this experiment corresponds exactly to the one presented in Fig. 1.4
with TEM10 modes replacing the TEM00 modes. To match this scheme with our setup
represented in Fig. 5.7, we simply blocked both carrier beams, and left everything else
unchanged. This experiment provides an important step towards the generation of spatial
entanglement, as it provides a calibration of the entanglement source.

We first investigated the degree of inseparability of the two beams generated at the
output of the entanglement beam-splitter. This involves the measurement of ∆2X̂+

x+y =

〈
(
δX̂+

x + δX̂+
y

)2
〉/2 and ∆2X̂−

x−y = 〈
(
δX̂−

x − δX̂−
y

)2
〉/2, for two incident amplitude squeezed

beams, as explained in section 1A.3.4. ∆2X̂+
x+y corresponds to the quantum noise mea-

sured with the sum of the two homodyne detections subtracted AC outputs, when both
homodyne detections locked to amplitude quadratures, whereas ∆2X̂−

x−y corresponds to
the quantum noise measured with the difference of the two homodyne detections sub-
tracted AC outputs, when both homodyne detections locked to phase quadratures. The
cabling to perform these successive measurements is shown in Fig. 5.12 (in both cases,
g± = 1). The results normalized to the shot noise are presented in Fig. 5.13. ∆2X̂+

x+y and
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respectively. This noise reduction below the quantum noise limit is the signature that the
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two beams generated after the entanglement beam-splitter are indeed entangled. We have
also measured ∆2X̂+

x−y and ∆2X̂−
x+y, which correspond to the blue and red curves above

the quantum noise limit (QNL). They show excess noise as expected from measurements
of orthogonal quadratures of sub-QNL entities32.

Let us now quantify the entanglement produced between the two quadratures of the
TEM10 modes. We have presented the two most commonly used criteria in section 1A.3.4,
and propose to apply them to our experimental results.

We first concentrate on the inseparability criterion. The results are presented in Fig.
5.14. The blue trace shows the measured33 degree of inseparability using the product
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Figure 5.14: Degree of inseparability I, a) measured, b) corrected for losses, c) inferred from
OPA1 and OPA2 spectra, and degree of EPR paradox E , d) inferred assuming two spectra
similar to OPA1. The degree of inseparability of the beams produced experimentally is
clearly below 1, i.e. the quantum noise limit (QNL) that would be obtained with coherent
incident fields. However, the states produced do not show any EPR paradox, as E is always
above 1.

form34, i.e. I =
√

∆2X̂+
x+y∆2X̂−

x−y. The best measured inseparability value is I = 0.76±
0.02 and is obtained at around 5 MHz. We have also plotted in Fig. 5.14 the degree of
inseparability, corrected for losses, in green. The trace is calculated using Eq. 1.77, with a
detection efficiency on a single beam given by η = 0.81. This estimation of the detection
efficiency is calculated as follows η = ηMZ.ηEnt.ηHD.ηdet, where ηMZ = (0.98)2 is the trans-

32The results presented here are preliminary and are being improved. The modulation peak at 4 MHz is

clearly visible only on the two curves taken when the homodyne detections were locked to the amplitude

quadratures. This shows that at least one locking loop was not perfectly optimized and could potentially be

improved. As a consequence, the two corresponding traces are not as far apart from each other, compared

to the traces taken when the homodyne detections were locked to the phase quadratures.
33This value has just been corrected for electronic noise, and taken directly from the traces shown in

Fig. 5.13.
34We could have plotted any of Duan or Mancini’s inseparability criteria, as both states produced by

the OPAs are alike.
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mission of the Mach-Zehnders as the fringe visibility of both interferometers was 98%,
ηEnt = (0.98)2 is the entanglement beam-splitter efficiency as the fringe visibility between
the two squeezed beam was 98%, where ηHD = (0.96)2% is the homodyne detections effi-
ciency as the fringe visibility with the local oscillator was 96%35, and where ηdet = 0.96
is the photo-detection efficiency36. The degree of inseparability corrected for losses, which
corresponds to the blue trace b), goes down to I = 0.71±0.02. This value can be compared
with the value inferred from the spectra of OPA1 and OPA2 presented in Fig. 5.11a), using
Eq. 5.28. The calculated red trace c) is only slightly below the previous one, meaning that
our system, and especially the locking of the different phases, is reliable.

Let us now try to apply the EPR criterion to our setup. The measurement of this
quantity requires the optimization of a gain parameter g± using a variable attenuator37.
Before such an optimization, we have inferred the best values of E that could be generated
using our two sources, given their non classical properties. We have seen in section 1A.3.4
that not only the squeezing level was important but also the purity of the two squeezed
states used to generate the entanglement. We have therefore calculated the spectrum d)
shown in Fig. 5.14, using Eq. 1.80, and assuming that both sources had the squeezing
and anti-squeezing properties of OPA1, given in Fig.5.11a). The values of E are all clearly
above 1, with a lowest value of 1.1± 0.02 being found at around 9.5 MHz. As explained in
section 1A.3.4, the degree of EPR paradox E is more restrictive when it comes to quantify
entanglement. In particular, it is very sensitive to the purity of the states used to generate
the entanglement. Unfortunately, as shown on both spectra presented in Fig. 5.11b), the
states generated by our OPAs are far from pure at the best squeezing performances of the
device. The best purity is found at around 9 MHz and equals 1.2±0.1 for OPA1. However,
at this frequency, the squeezing is low, and not sufficient to give a value of the degree of
EPR paradox below 1. The OPAs are now being re-designed in order to produce more
squeezing with PPKTP crystals.

We have been able to generate TEM10 quadrature entanglement, and characterized
the quantum correlations between the two output beams using the inseparability criterion,
yielding a measure of the degree of inseparability of I = 0.76± 0.02.

B.3.2 Towards spatial entanglement

The major difficulty of the spatial entanglement experiment is the TEM10 entanglement
source, and has already been demonstrated in the previous section. The operation of the en-
tire experiment as shown in Fig. 5.9 requires the addition of the two TEM00 carrier beams.
Two position-squeezed beams now need to be combined on the entanglement beam-splitter,
instead of two amplitude squeezed TEM10 mode beams. This addition greatly increases

35As stated earlier, this relatively low fringe visibility has been brought up to 98% in the current apparatus

by the addition of a mode-cleaning cavity on the local oscillator path. Indeed, this latter was distorted

because of the high number of lenses it was going through.
36It is very difficult to estimate the absolute value of the photo-detector efficiency, as it would require

an absolute power meter. The number provided here is an estimation of the efficiency of the ETX-500

photo-diodes we used in our setup.
37This method allows a direct measurement of the degree of EPR paradox, in real time, on the spectrum

analyser, but is difficult to implement, as it requires to re-measure the shot noise level for each attenuation

value in order to find the optimum configuration. A data acquisition system can also be used to record

individual homodyne detection signals, and the optimal gain can be found by post processing the data.
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the complexity of the experiment, as it requires the implementation of one additional mode
converting ring cavity, two Mach-Zehnder interferometers and the locking of the two rel-
ative phases between TEM00 and TEM10 components. However, it is important to realize
that we do not expect any modification to the correlations between the measured signals
on the homodyne detectors compared to the experiment detailed in the previous section!
Indeed, the TEM00 mode is orthogonal to the TEM10 local oscillator, and should therefore
not modify the non-classical properties lying in the TEM10 component of the field. We
have first demonstrated that the homodyne detection of a single position-squeezed beam
(in presence of the TEM00 carrier beam) gives identical noise reduction below the QNL
to the homodyne detection of a single squeezed TEM10 mode beam. This comparison
is shown in Fig. 5.15. Both spectra, after normalization to the shot noise, show perfect
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Figure 5.15: Squeezing (SQZ) and anti-squeezing (A-SQZ) noise spectra, normalized to
the shot noise (QNL), of a single TEM10 beam a) without, and b) with TEM00 carrier
beam. The presence of the carrier beam is not modifying the quantum properties of the
TEM10 component of the beam.

agreement 38. The shot noise is modified between the two cases by the contribution of the
TEM00 carrier beam, whose power, as stated earlier39, is not totally negligible relative to
the local oscillator power. The absence of cross-talk between the orthogonal modes shows
the quality of our experiment. Any drop in a fringe visibility would indeed couple some of
the TEM00 power into the TEM10 component and reduce the amount of squeezing.

These results show the feasibility of the spatial entanglement, and we expect a similar
degree of inseparability as obtained in the previous section, since we have shown that the
presence of the TEM00 carrier beams did not modify the non-classical properties of the

38The results obtained without the presence of the carrier even have slightly less squeezing and slightly

more anti-squeezing than in the presence of the carrier. This can be explained by the imperfect cancelation

of the modulation peak at 4 MHz in the trace without the carrier, testifying that the locking to de-

amplification was not perfect during this measurement.
39We recall that PSQZ=320 µW , Pcarrier=1.6 mW and PLO=6 mW).
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TEM10 components of the beam.
The final operation of the experiment is now being done, and has not been finished at

the current stage of this thesis yet.

C Conclusion

In this chapter, we have presented two complete quantum imaging experiments involving
bi-modal fields, namely a bright TEM00 carrier beam and a dim squeezed TEM10 mode,
which are related to the displacement and tilt of a laser beam. Our experimental results
have clearly shown that position and momentum of a TEM00 beam were conjugated ob-
servables. In order to witness this property, we have proposed a new scheme, which was
proven to be optimal in the previous chapters, to detect these variables. The major achieve-
ments are the demonstration of displacement measurement below the standard quantum
noise limit, and the demonstration of quadrature entanglement in the TEM10 mode.

The experimental setup is now being modified in order to produce better non classical
states in the TEM10 modes. The implementation of periodically poled KTP crystals is
investigated. A natural next step to these results could then be to generalize them to
the second dimension of the transverse plane similarly to what has been demonstrated in
reference [Treps03].



Conclusion and perspectives

I
n this manuscript, we have proposed a broad study of quantum imaging in the contin-
uous variable regime, and have focused our attention on the possibilities offered by
experiments involving a small number of transverse modes. We have demonstrated

all the key elements required in image processing experiments and in parallel quantum
communication in the Hermite-Gauss mode basis: generation of squeezed and entangled
states, modulation, combination, separation and detection of modes. These elements have
already allowed us to perform sub-QNL measurements of specific spatial parameters :
displacement and tilt.

Although experiments built with such blocks are scalable, we scarcely imagine to im-
plement a setup involving more than a few transverse modes. However, the knowledge
developed in the context of this thesis with relatively large components like cavities and
interferometers now encourages to develop such elements as integrated components. A
promising alternative is offered by periodically poled lithium niobate waveguides devices
which are already converting, combining and separating TMnm modes with high effi-
ciency [Kurz03, Kurz04]. Nonlinear effects such as Second Harmonic Generation have been
demonstrated [Kurz02], but no quantum correlations have been produced to our knowledge
in these systems.

The first part of this thesis has provided an accurate definition of quantum multi-mode
light with pure modes - the case of mixed modes remains to be considered. Moreover, for a
given type of detection, we have identified a unique transverse mode within an optical im-
age, denominated ’noise-mode of detection’, which is contributing to the measured signal
and noise. Filling this mode with squeezed light was shown to reduce quantum fluctuations
in the measurement below the standard quantum noise limit. As such, we have analyzed in
great detail the origin of quantum noise in a multi-pixel measurement. A natural continu-
ation of this work will be to study the optimization of the gain configuration with respect
to the signal to noise ratio in such measurement.

The previous result has motivated the proposition of implementing array detectors
in optical disc devices in order to distinguish bit sequences at the shot noise level. The
model was at this stage limited to a paraxial illumination. Experiments and theoretical
developments will be investigated in order to establish a clear relation between diffraction
limit and quantum noise limit.

We have then presented the question raised by the definition of the noise-modes of
detection regarding the optimal extraction of information from an optical image. This very
general theoretical analysis has identified the bound imposed by quantum noise on any
intensity or quadrature measurement. We have proposed two practical schemes performing
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at this level, which are termed ’optimal’. This analysis was restricted to coherent states
and a specific class of non-classical states and we wish to extend the results and allow
spatial correlations in transverse plane of the optical image.

In a more experimentally oriented part, we have established a link between Hermite
Gauss modes and simple physical parameters of optical beams, displacement and tilt.
Moreover, we have detailed their manipulation and presented all the ’building blocks’
required to a quantum imaging experiment involving Hermite-Gauss modes. A similar
analysis with Laguerre-Gauss modes has been initiated. These developments have necessi-
tated a multi-mode study of SHG and OPA operation in order to produce squeezing in the
TEM10 and TEM20 modes, and which has given interesting results. The multi-mode OPA
operation out of the thin crystal approximation remains to be investigated, as it might
help understanding the higher losses observed for higher order modes.

Finally, we have generated the first entanglement of higher order Hermite Gauss modes,
towards the demonstration of spatial entanglement. Such a scheme could be used as an
entanglement source for teleportation or dense coding of displacement and tilt modulations
encoded onto a TEM00 beam. However, prior to any new experiment, we are currently
investigating for the possibility of using periodically poled material in our setup in order
to improve its performance. The production of larger noise reductions in the TEM10 mode
would lead to a degree of EPR paradox smaller than 1, inaccessible at this stage.

What we have demonstrated until now is quadrature entanglement between two single-
mode or two bi-mode fields. However the entanglement is until now always generated
between modes of identical profiles. We wish now to go one step further and to seek
entanglement between quadratures of different modes. This would require a transfer of
quantum properties from one spatial mode to another mode. Such a demonstration would
increase even more the possibilities offered by optical images.

Similarly to what has been studied with light beams, a multi-mode analysis of low
density atom clouds and Bose-Einstein condensates could also be conducted. We wish in
the future to consider interaction between optical images with these systems, and study
the spatial effects generated by such interaction.



Appendix

A Array detection: two-zone case

A.1 Gain optimization

We have so far limited our analysis to a given configuration of the gains. We will now
demonstrate which gains one has to choose to optimize a measurement in the two-zone
case, i.e. when we use only two different gains g1 and g2 for the whole set of pixels. We
will finally prove the efficiency and the experimental advantages of the provided solution,
which corresponds to a difference measurement, introduced in section 1C.5.2.

Let us consider two detection areas D1 and D2 paving the entire transverse plane. The
measurement is described by

Ng1,g2 =
[
g1N(D1) + g2N(D2)

]
with {g1, g2} ∈ R2 (A-1)

where g1 and g2 are the electronic gains respectively corresponding to D1 and D2, and
where the mean number of photons detected on both detector are given by

N(D1) = N

∫

D1

v∗0(~r)v0(~r)d2r (A-2)

N(D2) = N

∫

D2

v∗0(~r)v0(~r)d2r (A-3)

where N is the total mean number of photons detected in the entire beam, and v0(~r) is
the mode carrying the mean field. The signal-to-noise ratio (SNR) of the measurement is
given by :

SNR =
Ng1,g2√
〈δN̂2

g1,g2
〉
. (A-4)

The modification of the SNR for a given variation of the image field directly maps the
sensitivity of the measurement. In order to find the best possible set of gains correspond-
ing to the maximal sensitivity, we propose to study the influence of a small transverse
displacement d~ρ of the beam on the SNR, according to the choice of the set of gains. We
thus compute the values of g1 and g2 which optimize the variation of the SNR.

Let us first calculate the variation of the number of detected photons Ng1,g2 , which is
proportional to the measured intensity (we assume that the transverse displacement d~ρ of
the image field is very small compared to the characteristic width of the beam). Using the
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conventional vector integral properties, we get

dN̂g1,g2 = N
[
g1

∫

D1

v∗0(~r + d~ρ)v0(~r + d~ρ)d2r + g2

∫

D2

v∗0(~r + d~ρ)v0(~r + d~ρ)d2r(A-5)

− g1

∫

D1

v∗0(~r)v0(~r)d2r − g2

∫

D2

v∗0(~r)v0(~r)d2r
]

= N
[
g1

∮

CD1

v∗0(~r)v0(~r)d~ρ.~ds + g2

∮

CD2

v∗0(~r)v0(~r)d~ρ.~ds
]

where both integrals are calculated on the contour lines of D1 and D2, and where ~ds

is the circulating unitary vector orthogonal to these contour lines. As D1 and D2 are
complementary zones of the transverse plane, the first integral is the exact opposite of the
second one because of the direction of ~ds during the calculation. Finally, we get

dN̂g1,g2 = N(g1 − g2)
∮

CD1

v∗0(~r)v0(~r)d~ρ.~ds (A-6)

We can now evaluate the variation of the SNR when the beam is slightly displaced, as-
suming that the noise is not modified at first order:

dSNR =
dN̂g1,g2√
〈δN̂2

g1,g2
〉

(A-7)

When the incident beam is in a coherent state, it yields :

dSNR =
N0(g1 − g2)√

g2
1N(D1) + g2

2N(D2)

∮

CD1

v∗0v0d~ρ.~ds (A-8)

A simple calculation determines the values of g1 and g2 that maximize this ratio. They
are given by :

g1 = −g2
N(D2)
N(D1)

(A-9)

which means that the optimum values of g1 and g2 are such as M̂({g1, g2}) = 0, i.e. a
difference measurement.

This gain configuration is therefore nonetheless giving the best sensitivity, but is also
ideal for classical noise cancelation, as discussed in section 1C.5.2. The general case for n
zones will be investigated in further development of this work.

A.2 Non-differential measurement

In section 1C.5, we have exhibited the mode structure of the light in a multi-pixel mea-
surement, using a basis that contain the detection mode. However, when the mean value
of the measurement is different from zero, we have shown that this detection mode has a
mean electric field value different from zero. In that configuration, it is very difficult ex-
perimentally to address the detection mode without modifying the mean field distribution.
We have shown that the only basis pertinent for such a task was an eigen-mode basis, we
will show here what is the structure of that basis for a two zone measurement of non-zero
mean value.
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Using the notations of the previous sections, we consider two detectors D+ and D−
whose gains are respectively +1 and −1. We recall here the mode structure defined in the
main text of that article. v0 is the transverse mode carrying the mean field of the beam
and w1 is the detection mode as define in Eq. 1.149 (which, in that case is equivalent to
the flipped mode of Eq. 1.140. w0 is the mode orthogonal to w1 in the subspace generated
by v0 and w1. Let us call i+ and i− the partial integrals of v0 on each zone,

i+ =
∫

D+

v∗0(~r)v0(~r)d2r and i− =
∫

D−
v∗0(~r)v0(~r)d2r

a simple calculation gives

w0(~r) =

√
i−
i+

v0(~r) if r ∈ D+

w0(~r) =

√
i+
i−

v0(~r) if r ∈ D− (A-10)

The first mode of an eigen-basis for the field is v0. The second one, v1 is defined as the
mode orthogonal to v0 in the subspace generated by w0 and w1, its expression is found to
be

v1 such as

{
v1(~r) = w0(~r) if r ∈ D+

v1(~r) = −w0(~r) if r ∈ D−
(A-11)

As w0 is orthogonal to w1, which is the flipped mode of v0, one can show that v0 is
orthogonal to v1, which is the flipped mode of w0 (see Fig. 6.1).
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Figure 6.1: Example of a generalized flipped mode in the two zone case, when the gains are
not equal.

In order to calculate the noise in the measurement using that basis, the flipped mode
is expressed as a linear combinaison of the two first modes of the eigenbasis :

w1(~r) = αv0(~r) + βv1(~r) (A-12)

where α = i+ − i− and β = 2
√

i+i−, which leads to :

〈δX̂+2

w1
〉 = α2〈δX̂+2

v0
〉+ β2〈δX̂+2

v1
〉+ 2αβ〈δX̂+

v0
δX̂+

v1
〉 (A-13)
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where 〈δX̂+2

w1
〉, 〈δX̂+2

v0
〉 and 〈δX̂+2

v1
〉 correspond to the noise of the amplitude quadrature of

the component w1 and v0 and v1, and where 〈δX̂+
v0

δX̂+
v1
〉 is the correlation term between

the amplitude quadratures of components v0 and v1. Expressed in an eigenbasis, that do
not contain the detection mode, we see that the noise arises from the individual noise of
the two first modes and from their correlation function. In that basis, in order to reduce
the noise we have several solutions : either the two first modes are perfectly squeezed,
either they are perfectly correlated, or any solution in between. Anyway, we can assume
that if we want to make a lot of different measurements, it is very difficult to produce
correlation between the mean field and the different vacuum modes, hence the easiest
solution is to have the mean field squeezed, and the corresponding vacuum squeezed. The
same argument as before applies, and we show that we still need an extra mode for each
extra information.



B. Boyd-Kleinman’s derivation of SHG with higher order Hermite Gauss modes 187

B Boyd-Kleinman’s derivation of SHG with higher order

Hermite Gauss modes

We present here the complete calculation of the SHG of higher order Hermite Gauss
modes, using a generalization of the approach adopted by Boyd and Kleinman in reference
[Boyd68]. The results have already presented and commented in section 4 B.3.1, and we
will therefore only present here the calculations.

We recall that we make three main approximations in all our calculations. First, we
consider negligible loss in the crystal for both the fundamental and second harmonic fields.
This approximation allows a simplification of the calculations, and does not intrinsically
modify the results, as we expect to have similar losses for all transverse modes. Secondly,
we consider that the beam propagation axis z corresponds to the optical axis of the Type I
nonlinear crystal and therefore omit any walk-off effect of the beams. Finally, we consider
that the beam waist of the input beam is centered in the crystal. This corresponds to the
optimum case and is generally adopted in the experiments.

We will first detail the case of a TEM00 pump mode in a type I crystal [Boyd68]. The
results hereby obtained will be taken as a reference for a comparison with the TEM10 and
TEM20 pump cases.

B.1 Calculation for the TEM00 pump mode

We start with a TEM00 pump mode as the fundamental field at frequency ω incident on
the non linear crystal. We use two systems of coordinates (x’,y’,z’) in the crystal, and
(x,y,z) in the far field of the crystal. In the crystal, the field is written as

Eω,00(x′, y′, z′) = Eω
w0

w(z′)
e

�
−x′2+y′2

w2(z′) −ikωz+iΨ(x′,y′,z′)+iΦG(z′)
�

(B-1)

where kω
1 is the fundamental wave vector, w0 is the fundamental waist inside the crystal,

Ψ is the phase front curvature, ΦG is the Gouy phase shift, Eω = A
√

2/πw2
0 (where A

is the amplitude of the beam), and given that τ ′ = z′ = z′/zR where zR is the Rayleigh
range,

w(z′) = w0

√
1 + τ ′2 (B-2)

Ψ(x′, y′, z′) =
kω(x′2 + y′2)

2R(z′)
=

τ ′(x′2 + y′2)
w2

0(1 + τ ′2)
(B-3)

eiΦG(z′) = eiarctan(τ ′) =
1− iτ ′√
1 + τ ′2

(B-4)

where R(z′) refers to the curvature of the phase front. Rearranging the previous field
equation yields

Eω,00(x′, y′, z′) = Eω
e

�
− x′2+y′2

w2
0(1+iτ ′)

�

1 + iτ ′
e−ikωz′ (B-5)

1Note that in a type I phase matching case with LiNbO3, the fundamental fields are polarized along the

extraordinary axis, and kω = 2πne(ω,T )
λ

, where ne(ω, T ) is the extraordinary refractive index at frequency

ω and temperature T .
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The harmonic polarization is proportional to the electric field and can thus be written in
the crystal as

P(x′, y′, z′) = Pω
e

�
−2 x′2+y′2

w2
0(1+iτ ′)

�

(1 + iτ ′)2
e−i2kωz′ (B-6)

We now compute the harmonic field outside the crystal and therefore us the other coordi-
nates (x,y,z),

E2ω,00(x, y, z) = A2ω,00(x, y, z)eik2ωz (B-7)

The amplitude of this field can be integrated from the field contributions from slabs of
thickness dz′ inside the crystal

dA2ω,00(x′, y′, z′) =
i4πω

cno(2ω, T )
P(x′, y′, z′)eik2ωz′dz′

=
i4πω

cno(2ω, T )
Pω

e

�
−2 x′2+y′2

w2
0(1+iτ ′)−i∆kz′

�

(1 + iτ ′)2
dz′ (B-8)

where no(2ω, T ) is the refractive index at the second harmonic frequency 2ω, at tempera-
ture T , and where we have introduced the phase mismatch ∆k defined by

∆k = 2kω − k2ω =
4π

λ
[ne(ω, T )− no(2ω, T )] . (B-9)

If we want to compute the field outside the crystal, we need to know which part can
propagate, i.e. the part of the field which is solution of the wave equation, and which can
propagate. In order to identify this, we need to decompose dA2ω,00(x′, y′, z′) in the SH
Hermite Gauss basis defined by the TEMpq modes which have a fundamental waist equal
to w0/

√
2. Note that the Rayleigh range of the second harmonic (SH) modes is unchanged

as zR2ω = π(w0/
√

2)2/(λ/2) = πw2
0/λ = zRω . The expressions of the TEM00, TEM10,

TEM20 and TEM40 modes of this basis are

u2ω,00(x′, y′, z′) =

√
2

πw2
0

√
2
e

�
−2 x′2+y′2

w2
0(1+iτ ′)

�

1 + iτ ′
(B-10)

u2ω,10(x′, y′, z′) =

√
2

πw2
0

√
2

2
√

2x′

w0(1 + iτ ′)
e

�
−2 x′2+y′2

w2
0(1+iτ ′)

�

1 + iτ ′
(B-11)

u2ω,20(x′, y′, z′) =

√
2

πw2
0


4

( √
2x′

w0

√
1 + τ ′2

)2

− 1


 (1− iτ ′)

(1 + iτ ′)
e

�
−2 x′2+y′2

w2
0(1+iτ ′)

�

1 + iτ ′
(B-12)

u2ω,40(x′, y′, z′) =

√
2

πw2
0

1√
12

[
64x′4

w4
0(1 + τ ′2)2

− 48x′2

w2
0(1 + τ ′2)

+ 3
]

(1− iτ ′)2

(1 + iτ ′)2
e

�
−2 x′2+y′2

w2
0(1+iτ ′)

�

1 + iτ ′

where each mode is normalized such as
∫ ∫ |u2ω,0n(x′, y′, z′)|2dx′dy′ = 1.
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The field produced inside the the crystal in the slab of thickness dz’, at position
(x′, y′, z′) can thus be written using a SH TEM00 component as follows

dA2ω,00(x′, y′, z′) =
i4πω

cno(2ω, T )
Pω

√
πw2

0

2
u2ω,00(x′, y′, z′)√

2(1 + iτ ′)
e−i∆kz′dz′ (B-13)

Only the mode component propagates outside the crystal, and the integrated second har-
monic field over the entire length of the crystal l is therefore

E2ω,00(x, y, z) =
i2πωPω

√
πw2

0

cno(2ω, T )
u2ω,00(x, y, z)

∫ l

0

e−i∆kz′

1 + iτ ′
dz′. (B-14)

We introduce dimensionless coordinate parameters s = x/w0τ and s′ = y/w0τ . As we
detect the SH field in the far field of the crystal, i.e. τ− > ∞ and we can use the following
approximations

1
1 + iτ

' −i

τ

x2

w2
0(1 + iτ)

' s2

Using these approximations in the expression of u2ω,00 given in Eq. B-10, the SH field
can thus be written

E2ω,00(x, y, z) =
8π2zRωPω

cno(2ω, T )τ
H0,0(ξ,∆k)e−2(s2+s′2) (B-15)

where we have also introduced a dimensionless focusing parameter ξ = l/2zR and the
following real function

H0,0(ξ,∆k) =
1

2πzR

∫ l

0

e−i∆kz′

1 + iτ ′
dz′ =

1
2π

∫ ξ

−ξ

e
−i l∆kτ ′

2ξ

(1 + iτ ′)
dτ ′ (B-16)

Moreover, the effective polarization Pω can be written in terms of the laser fundamental
power Pω

Pω = dE2
ω =

16Pωd

ne(ω, T )cw2
0

(B-17)

where d is an effective non linear coefficient. Using the previous equations, we can write
the SHG intensity I2ω,00 as

I2ω,00(s, s′) =
no(ω, T )c

8π
|E2ω|2

= 4πK

(
Pωkω

τ

)2

e−4(s2+s′2) [H0,0(ξ, ∆k)]2 (B-18)

where

K =
128π2ω2

c3n2
e(ω, T )2no(2ω, T )

d2 (B-19)
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The SHG power P2ω,00 can be obtained by integrating the intensity distribution

P2ω,00 = w2
0τ

2

∫ ∫
I2ω,00(s, s′)dsds′

= 4πKP2
ωk2

ωw2
0

π

4
|H0,0(ξ, ∆k)|2

= π2KP2
ωkωl

1
ξ
|H0,0(ξ, ∆k)|2 (B-20)

Eq. B-18 and B-20 yield the Eq. 4.17 and 4.21 introduced in section 4 B.3.1, and are
analogous to the ones presented in reference [Boyd68].

B.2 Calculation for the TEM10 pump mode

We now do the same calculation in the case of a TEM10 mode as the fundamental field
incident on the non linear crystal.

The incident field is defined by

Eω,10(x′, y′, z′) = Eω
w0

w(z′)
2x′

w(z′)
e

�
−x′2+y′2

w2(z′) −ikωz+iΨ(x′,y′,z′)+i2ΦG(z′)
�

Note that the coefficient 2 in front of ΦG(z′) is due to the Gouy phase shift of the TEM10

mode. Rearranging the previous field equation yields

Eω,10(x′, y′, z′) = Eω
(1− iτ ′)√

1 + τ ′2

(
2x′

w0

√
1 + τ ′2

)
e

�
− x′2+y′2

w2
0(1+iτ ′)

�

1 + iτ ′
e−ikωz′ (B-21)

The use of the TEM10 mode leads to an additional factor 2x′/w0(1+ iτ ′) compared to the
previous calculation for the TEM00 mode. The harmonic polarization can be written in
the crystal

P(x′, y′, z′) = Pω
(1− iτ ′)
(1 + iτ ′)

(
4x′2

w2
0(1 + τ ′2)

)
e

�
−2 x′2+y′2

w2
0(1+iτ ′)

�

(1 + iτ ′)2
e−i2kωz′ (B-22)

We now compute the harmonic field outside the crystal

E2ω,10(x, y, z) = A2ω,10(x, y, z)eik2ωz (B-23)

The amplitude of this field can be integrated from the contributions of slabs of thickness
dz′

dA2ω,10(x′, y′, z′) =
i4πω

cno(2ω, T )
P(x′, y′, z′)eik2ωz′dz′ (B-24)

Again, we need to expand dA2ω,10(x′, y′, z′) into its propagating components, using Eq.
B-10, B-11, and B-12. Its integration over the crystal length yields

E2ω,10(x, y, z) =
iπωPω

√
2πw2

0

cno(2ω, T )

[
u2ω,20(x, y, z)

∫ l

0

e−i∆kz′

1 + iτ ′
dz′

+
u2ω,00(x, y, z)√

2

∫ l

0

(1− iτ ′)e−i∆kz′

(1 + iτ ′)2
dz′

]
(B-25)
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In the crystal far field of the crystal, i.e. for τ− > ∞ the field can be rewritten

E2ω,10(x, y, z) =
4π2ωPωzR

cno(2ω, T )τ
e−2(s2+s′2)

[
H1,0(ξ,∆k) + (8s2 − 1)H1,2(ξ, ∆k)

]
,(B-26)

where we have introduced Hn,2p(ξ,∆k), which integrates the nonlinear effects on the crys-
tal length, and is defined by

Hn,2p(ξ,∆k) =
1
2π

∫ ξ

−ξ

(1 + iτ)n−p e
−i l∆kτ

2ξ

(1 + iτ)n−p+1 dτ, (B-27)

Similarly to the previous section, using the same notations, we get the SHG intensity
I2ω,10 as

I2ω,10(s, s′) = πK

(
Pωkω

τ

)2

e−4(s2+s′2)
[
H1,0(ξ, ∆k) + (8s2 − 1)H1,2(ξ,∆k)

]2(B-28)

The SHG power P2,10 can be obtained by integrating the intensity distribution

P2ω,10 =
π2KP2

ωkωl

ξ

[
1
4
|H1,0(ξ,∆k)|2 +

1
2
|H1,2(ξ, ∆k)|2

]
(B-29)

Note that there are no crossed terms, as the SH TEM00 and TEM20 modes are orthogonal.
Eq. B-28 and B-29 yield the Eq. 4.18 and 4.22 introduced in section 4 B.3.1.

B.3 Calculation for the TEM20 pump mode

We now do the same calculation again, in the case of a TEM20 mode as the fundamental
field incident on the non linear crystal, defined by

Eω,20(x′, y′, z′) =
Eω√

2
w0

w(z′)

[
4x′2

w(z′)2
− 1

]
e

�
−x′2+y′2

w2(z′) −ikωz+iΨ(x′,y′,z′)+i3ΦG(z′)
�

(B-30)

The harmonic polarization can be written in the crystal

P(x′, y′, z′) =
Pω

2

[
4x′2

w2
0(1 + τ ′2)

− 1
]2 (1− iτ ′)2

(1 + iτ ′)2
e

�
−2 x′2+y′2

w2
0(1+iτ)

�

(1 + iτ ′)2
e−i2kωz (B-31)

We now compute the harmonic field outside the crystal

E2ω,20(x, y, z) = A2ω,20(x, y, z)eik2ωz (B-32)

The amplitude of this field can be integrated from the contributions of slabs of thickness
dz′

dA2ω,20(x′, y′, z′) =
i4πω

cno(2ω, T )
Pω(x′, y′, z′)eik2ωz′dz′

=
i2πω

cno(2ω, T )
Pω

[
4x′2

w2
0(1 + τ ′2)

− 1
]2 (1− iτ ′)2

(1 + iτ ′)2
e

�
−2 x′2+y′2

w2
0(1+iτ)

−i∆kz′
�

(1 + iτ ′)2
dz′
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Again, we need to expand dA2ω,20(x′, y′, z′) into its propagating components, using Eq.
B-10, B-11, and B-12. Its integration over the crystal length yields

E2ω,20(x, y, z) =
iπωPω

√
2πw2

0

cno(2ω, T )

[√
3

2
u2,40(x, y, z)

∫ l

0

e−i∆kz′

1 + iτ ′
dz′

+
1
2
u2,20(x, y, z)

∫ l

0

(1− iτ ′)e−i∆kz′

(1 + iτ ′)2
dz′

+
3

4
√

2
u2,00(x, y, z)

∫ l

0

(1− iτ ′)2e−i∆kz′

(1 + iτ ′)3
dz′

]
(B-33)

In the crystal far field of the crystal, i.e. for τ− > ∞ the field can be rewritten

E2ω,20(x, y, z) =
2πω2P0x

cn2τ

πb

2
e−2(s2+s′2)

[
3
4
H2,0(ξ,∆k)− 1

2
(8s2 − 1)H2,2(ξ,∆k)

+
1
4
(64s4 − 48s2 + 3)H2,4(ξ,∆k)

]
(B-34)

The SHG intensity I2ω,20 can be written, still using the same notations introduced in
section B.1, as

I2ω,20(s, s′) = πK

(
Pωkω

τ

)
e−4(s2+s′2)

[
3
4
H2,0(ξ, ∆k)− 1

2
(8s2 − 1)H2,2(ξ, ∆k)

+
1
4
(64s4 − 48s2 + 3)H2,4(ξ, ∆k)

]2

(B-35)

The SHG power P2ω,20 can be obtained by integrating the intensity distribution

P2ω,20 =
π2KP2

ωkωl

ξ

[
9
64
|H2,0(ξ,∆k)|2 +

1
8
|H2,2(ξ, ∆k)|2 +

3
8
|H2,4(ξ,∆k)|2

]
(B-36)

Note that again, there are no crossed terms, as the SH TEM00, TEM20 and TEM40 modes
are orthogonal. Eq. B-35 and B-36 yield the Eq. 4.19 and 4.23 introduced in section 4
B.3.1.
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C Knife-edge experiment for single and bi-mode fields
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Figure 6.2: Single mode knife edge experiments. Results given for an incident squeezed
TEM00 mode with −3 dB of amplitude squeezing.
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Bucket detector
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Figure 6.3: Bi-mode knife edge experiments. Results given for an incident coherent bright
TEM00 mode and a TEM10 squeezed vacuum mode with −3 dB of amplitude squeezing.
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Figure 6.4: Bi-mode knife edge experiments. Results given for an incident coherent bright
TEM00 mode and a TEM20 squeezed vacuum mode with −3 dB of amplitude squeezing.
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Figure 6.5: Bi-mode knife edge experiments. Results given for an incident coherent bright
TEM00 mode and a squeezed vacuum flipped mode with −3 dB of amplitude squeezing.
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surement of very small displacements in optical images, Opt. Let.
25, 76 (2000). Quoted p. 5, 45, 46, 86, 151

[Franken61] P.A. Franken, A.E. Hill, C.W. Peters, and G. Weinreich, Generation
of Optical Harmonics, Phys. Rev. Lett. 7 4 (1961). Quoted p. 120

[Furukawa01] Y. Furukawa, A. Alexandrovski, R. Route, M. Fejer, and G. Foulon,
Green-induced infrared absorption in MgO doped LiNbO3, Appl.
Phys. Lett. 78, 1970 (2001). Quoted p. 146

[Furusawa07] Furusawa’s group, 9.5 dB of squeezing in PPKTP, to be published.
Quoted p. 19, 131, 133, 147

[Gao98] J. Gao, F. Cui, C. Xue, C. Xie, and P. Kunchi, Generation and
application of twin beams from an optical parametric oscillator in-
cluding an α-cut KTP crystal, Opt. Let. 23, 870 (1998). Quoted p.
89

[Gatti99] A. Gatti, E. Brambilla, L.A. Lugiato and M.I. Kolobov, Quantum
Entangled Images, Phys. Rev. Lett. 83, 1763 - 1766 (1999). Quoted
p. 164

[Gatti03] A. Gatti, E. Brambilla, and L. A. Lugiato, Entangled Imaging and
Wave-Particle Duality: From the Microscopic to the Macroscopic
Realm, Phys. Rev. Lett. 90, 133603 (2003). Quoted p. 164



Bibliography 201

[Gatti04] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, Correlated
imaging, quantum and classical, Phys. Rev. A 70, 013802 (2004).
Quoted p. 1

[GiganPhD04] S. Gigan, Amplification paramétrique d’images en cavité : Effets
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