
Experiments towards a Quantum Information Network
with Squeezed Light and Entanglement

Warwick Paul Bowen

B. Sc. (Hons.), University of Otago, 1998.

A thesis submitted for the degree of
Doctor of Philosophy

The Australian National University

October, 2003





To Eluca

My one true love.





Declaration

This thesis is an account of research undertaken between April 1999 and October 2003 at The De-
partment of Physics, Faculty of Science, The Australian National University, Canberra, Australia.

Except where acknowledged in the customary manner, the material presented in this thesis is,
to the best of my knowledge, original and has not been submitted in whole or part for a degree in
any university.

Warwick P. Bowen
10th October, 2003

v



vi



Acknowledgements

This thesis was made possible by the support I received from many friends, family, and colleagues.
I am extremely grateful to each of them. Firstly, thank you Ping Koy Lam and Hans Bachor, you
have been the most fantastic supervisors. Hans, your ability to judge the evolution of our field is
remarkable, and something that can only be truly appreciated with hindsight; and Ping Koy, your
insight and breadth of knowledge never ceases to amaze, and the friendship that has developed
over the last few years is one that I will treasure. Special thanks also to Tim Ralph, my Ph.D.
advisor. Tim, there are so many things I could say, but perhaps the essence is your natural ability
to get to the heart of the matter. You make complicated stuff simple, so that even I can understand
it.

During my time at the A.N.U. I’ve been lucky enough to be involved with many talented peo-
ple. Of everyone, Roman Schnabel deserves particular attention for slaving in the lab with me
for what seemed like forever before we finally saw some squeezing, and had a beer. I appreciate
also Dan Shaddock, Ben Buchler, and Nicolas Treps, I learnt so much from each of you. Specific
thanks to Roman for lab-work in Chapters 3-5, and 7; to Nicolas in Chapters 3, 5, 7, and 8; to
Ben in Chapter 5; and to Andrew Lance, Thomas Symul, and Tomáš Tyc in Chapter 6. I deeply
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Chelkowski, Aśka Dolińska, Nicolai Grosse, Magnus Hsu, Mat Lawrence, and Kirk McKenzie.
The gravitational wave group at A.N.U. provided me with a fantastic laboratory and exquisite ex-
perience with optics, interferometers, and control systems. Jong Chow, Glenn Devine, Mal Gray,
David McClelland, Ben Sheard, and Bram Slagmolen, thank you. I highly value the interaction I
have had with the atom optics guys (and guyettes) John Close, Cameron Fletcher, Simon Haine,
Joe Hope, Jessica Lye, Adele Morrison, Nick Robins, and Craig Savage. I particularly appreci-
ate your approachability and patience with my naive quantum optical perspective. I also deeply
appreciate Aiden Byrne, Neil Manson, and John Sandeman for their irrepressible good humour
and support throughout my Ph.D. Special thanks go to Magnus, Kirk, John, Andrew, Ping Koy,
and Hans for proof-reading this thesis; and to Aśka for allowing me to use some of her fantastic
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Abstract

Quantum information science is a new and promising field of research that combines the tech-
niques developed in quantum mechanics with those of information science. One primary exper-
imental goal of the field is to implement a quantum information network consisting of nodes of
atoms at which quantum computational algorithms can be performed connected by optical links.
This thesis presents the development of techniques applicable to such a network in the continuous
variable regime of quantum mechanics.

We develop a pair of optical parametric amplifiers, each producing a stable strongly squeezed
output field at 1064 nm. These optical parametric amplifiers form the work-horse utilised for the
majority of the experiments performed in this thesis. The output fields are either amplitude or
phase squeezed depending on our control system, with 4.4 dB of squeezing below the quantum
noise limit consistently observed. A quadrature entangled state is generated by interfering the
squeezed fields on a 50/50 beam splitter. The signature of this form of entanglement is strong
correlations between the amplitude and phase quadratures of a pair of fields. We demonstrate that
the correlations exhibited in our case are non-classical using a criterion for wave function insepa-
rability, and through observation of the EPR paradox. Since the efficacy of quantum information
protocols depends strongly on the properties of the entanglement used, we perform a complete
characterisation of our entanglement, introducing a convenient physically relevant characterisa-
tion technique. The entanglement is utilised in a quantum teleportation protocol, demonstrating
that the quantum statistics of a field can be transferred to another field via detection and classical
communication. We investigate in some detail methods that can be used to characterise continu-
ous variable quantum teleportation, and propose a new method that has a direct correspondence
to entanglement swapping. We introduce a scheme to perform quantum secret sharing using our
entangled state and quantum electro-optical feed-forward. In quantum secret sharing an encoded
secret state is distributed securely to a group of players. In ideal circumstances, even if some of
the players are malicious, or some distribution channels faulty, the secret can be reconstructed
perfectly.

We consider techniques to implement the transfer of quantum states from optical to atomic
media. In the continuous variable regime such a transfer has been achieved for polarisation states.
We investigate continuous variable polarisation states, demonstrating the transformation of our
quadrature squeezed states into a variety of polarisation squeezed states; with one such state ex-
hibiting squeezing of three of the four Stokes operators. Utilising our quadrature entanglement,
we then generate continuous variable polarisation entanglement between two Stokes operators of
a pair of fields. Interacting this entanglement with a pair of atomic ensembles could provide a
macroscopic, spatially separated, source of atomic entanglement. Finally, we investigate the inter-
action between optical Raman pulses and a cold Cesium atomic ensemble. We manipulate such
an ensemble with a sequence of optical pulses, producing non-classically correlated photon pairs.
The non-classicality of the correlation is verified through a violation of the Cauchy-Schwarz in-
equality. The technology developed during this investigation has been shown to enable a feasible
quantum information network, quantum memory, and ‘on demand’ single photon sources.
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Chapter 1

Introduction

The field of quantum optics investigates how the quantum mechanical properties of optical fields
can be manipulated, characterised, and utilised. Until recently, experiments in the field were
motivated primarily by a desire to test properties of the microscopic world. As laser physics
has advanced, however, many new quantum optical techniques have been developed that of-
fer the potential to improve the technology utilised in many fields, including interferometry[1],
spectroscopy[2], microscopy[3], and lithography[4]. These techniques could not only provide
better methods to interrogate the microscopic world, but also real improvements to data storage
and manipulation techniques[5], and enhancements of biological and medical applications such as
atomic force microscopy[6]. Over the last two decades the field has been further invigorated by
the realisation that computers utilising quantum mechanical techniques, or quantum computers,
can far out-perform conventional computers for some problems[7, 8]. The new field of quantum
information science, which investigates how quantum mechanics can be used to improve infor-
mation processing and communication, then came into being. One of the primary experimental
goals of quantum information science is to develop a quantum information network analagous to
the internet. Although the specific details of an optimal quantum information network have yet
to be resolved, it is generally accepted that such a network would consist of atomic nodes where
information is processed, connected by optical links through which quantum optical fields can be
distributed[9]. There are still many developments required before quantum information networks
become feasible. In particular, techniques to effectively perform the quantum information proto-
cols required at the atomic nodes[10], to store quantum states for long periods of time[11, 12],
and to transfer quantum states between atomic and optical media must be developed[12, 13]. This
thesis experimentally examines some of these unresolved issues, with the majority of the work
focussing on optical technology within the continuous variable regime of quantum mechanics. In
the continuous variable regime measurements can yield any result from a continuum of possible
results, this contrasts the discrete variable regime where only a limited number of specific results
are possible.

The thesis is divided into three Parts as shown in Fig. 1.1. The first Part introduces the the-
oretical and experimental techniques used throughout the thesis, and describes the techniques
used to generate optical squeezed states. These squeezed states have proved to be the most read-
ily accessible optical fields with demonstrably quantum mechanical behaviour in the continuous
variable regime. Furthermore, they can be directly applied to improve the resolution of optical
measurements[14], and have been shown to be useful in many quantum information protocols[15].
The squeezed states generated for the work presented in this thesis were produced in a pair of be-
low threshold optical parametric amplifiers, developed during the course of my Ph.D.. Both optical
parametric amplifiers could be stably locked with amplitude or phase squeezed output fields.

In the second Part of this thesis, we analyse several quantum information protocols that can be
facilitated using squeezed states. In the work presented in Chapter 4 we used our pair of squeezed
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states to produce quadrature entanglement between two optical fields. These entangled fields ex-
hibited non-classical correlations between their amplitude and phase quadratures. Entanglement
of this form was first described by Einstein as ‘spooky interactions at a distance’[16], and is the
core ingredient of most continuous variable quantum information protocols[15]. The efficacy of a
given quantum information protocol depends strongly on the specific properties of the entangled
state utilised. We thoroughly characterise our entangled state, and propose a new, experimentally
convenient and intuitive characterisation method, the photon number diagram, which partitions
the mean number of photons in the entangled state into meaningful categories. In Chapter 5 the
entangled state is directly applied in a quantum teleportation protocol, which can perform useful
functions in quantum computation[17]. The protocol itself demonstrates that the quantum statis-
tics of an optical field can be transferred onto another field using measurement and conventional
communication. We analyse our experiment using several techniques, and demonstrate that it
could be used to perform entanglement swapping, which is an important quantum communication
technique[18]. Chapter 6 proposes a scheme to perform secret sharing of quantum states of light
utilising the entanglement of Chapter 4. Such a scheme has the potential to facilitate error cor-
rection in a quantum computer or communication system, and allows the secure transmission of
information even in the presence of malicious parties and faulty communication channels[19].

In the final Part of this thesis we consider the interaction between optical fields and atomic
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ensembles. Chapters 7 and 8 investigate quantum polarisation states in the continuous variable
regime. These states are of particular relevance to the implementation of quantum information
networks since quantum state transfer has been demonstrated from them to the collective spin
state of atomic ensembles[20]. In Chapter 7 we experimentally transform the amplitude and phase
squeezed fields generated in our optical parametric amplifiers onto a polarisation basis, demon-
strating a variety of polarisation squeezed fields. The polarisation of a field can be described using
the four Stokes operators. One of our polarisation squeezed fields exhibited simultaneous squeez-
ing of three of the four Stokes operators. We then transform our quadrature entanglement onto a
polarisation basis, resulting in the first observation of continuous variable polarisation entangle-
ment between a pair of fields. The entanglement is exhibited through non-classical correlations of
two Stoke operators between the fields. We propose an extension utilising two pairs of quadrature
entangled fields, that should exhibit non-classical correlations between three of the Stokes opera-
tors. Finally, in Chapter 9 we experimentally investigate the interaction of optical fields with an
atomic ensemble. Such systems have been shown to enable quantum information networks with
entanglement purification and quantum memory capabilities[21]. We demonstrate that after ma-
nipulating the atomic ensemble using appropriate optical pulses, non-classically correlated photon
pairs are emitted. The non-classicality of the correlation was confirmed through violation of the
Cauchy-Schwarz inequality. The time interval separating the photons could be tuned, and their
spatial modes were well defined. This represents an enabling step towards an atomic ensemble
quantum information network[21], and has potential as an ‘on demand’ single photon source with
applications in multi-photon quantum information protocols[22].

Throughout this thesis, motivation for the work presented is given primarily from the context of
quantum information science. There was a deeper underlying motivation, however, to investigate
the behaviour of quantum mechanical systems and to develop techniques to control systems at a
quantum mechanical level. Some of the research performed during my Ph.D. was focussed towards
these sort of investigations. Included in that work were experimental demonstrations of two-
dimensional displacement measurements to better than the quantum noise limit [23, 24, 25]; of
squeezing using periodically-poled Lithium-Niobate [26]; of the recovery of squeezing obscured
by low frequency classical noise [27]; and of a non-modulation based method to control second
harmonic generation [28]. For the sake of continuity these results have, for the most part, been
omitted from this thesis.

The thesis is formulated predominantly in the Heisenberg picture of quantum mechanics,
where the operators describing our optical fields evolve with time. We switch to the Schrödinger
picture in places so that the photon statistics of the fields can be conveniently examined. Operators
in the Heisenberg picture can be represented complimentarily in the frequency and time domains.
Our usual approach to modelling experimental systems is to propagate the operators in the time
domain, and to switch to the frequency domain for analysis after measurement.

The majority of this thesis has been published, submitted to, or accepted for publication in
international peer-reviewed journals. Some selected articles resulting from the work performed
during my Ph.D. are:

1. Quadrature entanglement: W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph. An ex-
perimental investigation of criteria for continuous variable entanglement. Physical Review
Letters 90, 043601 (2003).

2. Polarisation entanglement: W. P. Bowen, N. Treps, R. Schnabel, and P. K. Lam. Exper-
imental demonstration of continuous variable polarization entanglement. Physical Review
Letters 89, 253601 (2002).
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3. Polarisation squeezing: W. P. Bowen, R. Schnabel, H.-A. Bachor, and P. K. Lam. Polar-
ization Squeezing of Continuous Variable Stokes Parameters. Physical Review Letters 88,
093601 (2002).

4. Displacement measurements to better than the quantum noise limit: N. Treps, N. B.
Grosse, W. P. Bowen, C. Fabre, H.-A. Bachor and P. K. Lam. A Quantum Laser Pointer.
Science 301, 940 (2003).

5. Quantum optical manipulation of atomic ensembles: A. Kuzmich, W. P. Bowen, A. D.
Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble Generation of Nonclassical
Photon Pairs for Scalable Quantum Communication with Atomic Ensembles. Nature 423,
731 (2003).

6. Quantum teleportation: W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph,
H.-A.Bachor, T. Symul, and P. K. Lam. Experimental investigation of continuous variable
quantum teleportation. Physical Review A 67, 032302 (2003).

7. Advancement of squeezing technology: W. P. Bowen, R. Schnabel, N. Treps, H.-A. Ba-
chor, and P. K. Lam. Recovery of continuous wave squeezing squeezing at low frequencies.
Journal of Optics B: Quantum and Semi-Classical Optics 4, 421 (2002).

8. Quantum secret sharing: A. Lance, T. Symul, W. P. Bowen, T. Tyc, B. C. Sanders, and
P. K. Lam. Continuous Variable (2,3) Threshold Quantum Secret Sharing Schemes. New
Journal of Physics 5, 4 (2003).

Refs. [24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38] were also published during the course
of my Ph.D..



Part I

Quantum optical techniques and
quadrature squeezing

5





7

Overview

The first two Chapters of this thesis are concerned with the description of quantum states in the
continuous variable regime, and the generation of optical squeezed states. The development of
quantum optical methods to describe squeezed states is explicitly linked to the understanding of
coherent states. The concept of the coherent state, a minimum uncertainty state with noise inde-
pendent of the quadrature of measurement, was introduced by Schrödinger in 1926[39]. This con-
cept pre-empted the field of quantum optics, which lay more-or-less dormant until the discovery
of the laser in 1960 [40]. The laser provided optical fields of exquisite coherence enabling ex-
periments that were previously thought unfeasible. It was soon-after found that the traditional de-
scription of optical fields in terms of the harmonic oscillator and number states was not well suited
to the output of a conventional laser. More that thirty years after their introduction, Glauber[41]
re-examined the coherent states and found them to provide a natural description of the output field
of a laser. Shortly thereafter, in a number of works Glauber’s formalism was extended to de-
scribe minimum uncertainty states with noise dependent on the quadrature of measurement, these
states were later termed the squeezed states [42, 43, 44, 45, 46]. At that time there was much
excitement about squeezed states since the quantum noise on optical fields had been found to limit
the sensitivity of many measurement devices [14]. Squeezed states were expected to overcome
this limitation. Experiments then began with the objective to observe squeezed states. In 1985
Slusher et al. [47, 48] did just that, observing optical field squeezing via a four-wave mixing
process facilitated by the χ(3) nonlinear susceptibility of a beam of sodium atoms. Squeezing
has now been observed in a diverse range of systems utilising both the χ(2) and χ(3) nonlinear-
ities, for a good summary see [49]. These include, but are not restricted to: fibre squeezing via
the Kerr effect [50], squeezing via subthreshold optical parametric oscillation [51, 52] and op-
tical parametric amplification[53], second harmonic squeezing[54], microwave squeezing from
a Josephson-parametric amplifier[55], optical soliton squeezing [56], mode-locked optical para-
metric oscillation [57], semiconductor squeezing [58], waveguide squeezing [59, 60], and most
recently squeezing using polarisation self-rotation in atomic ensembles[61].

To date, the most stable and strongly squeezed optical fields have been achieved in via optical
parametric processes [2, 51, 52, 53, 62, 63, 64]. The following two Chapters of this thesis intro-
duce some theoretical models required to understand this particular set of squeezing processes;
the experimental tools used to generate optical squeezing via optical parametric amplification, and
to characterise, and manipulate the resulting state; a theoretical analysis of squeezing via opti-
cal parametric amplification; and finally an analysis of the squeezed fields generated and used
throughout the work presented in thesis[27].
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Chapter 2

Theoretical concepts and experimental
techniques

This Chapter introduces the quantum optical techniques utilised throughout my thesis. In the first
three Sections we introduce the uncertainty principle, the field states relevant to our experiments,
and methods to characterise those states. We then discuss photodetection of an optical field, and
introduce the specific sideband states examined by this process. Each of these sideband states is
a coherent sum of the states of a pair electromagnetic oscillations with frequencies on either side
of the optical carrier frequency. We introduce optical modulation as a technique to manipulate
the sideband states. We then turn to the more technical issues of controlling optical interference,
characterising the efficiency of various optical processes, and accurate measurement of quantum
states. We introduce methods to model optical resonators, and techniques to accurately control
their length; before finally discussing the second order optical nonlinearities through which optical
frequency conversion, optical parametric amplification, and squeezing are made possible.

2.1 The uncertainty principle

In a Newtonian universe, given complete knowledge of the universe at one instant, its future be-
havior also becomes completely known. This concept posed a dilemma for philosophers and
people who believed in free will. This dilemma was made irrelevant when in 1927 Heisenberg
introduced the Heisenberg uncertainty principle [65], which, at some level, replaced this absolute
determinism with unpredictable randomness. The Heisenberg uncertainty principle states that it is
impossible to simultaneously obtain precise knowledge of two non-commuting observables. That
is, given the commutation relation between two arbitrary observables Â and B̂

[Â, B̂] = ÂB̂ − B̂Â = C, (2.1)

where C is a complex constant; the product of the uncertainties of simultaneous measurements on
the observables is bounded by

∆Â∆B̂ ≥ 1

2
|C|, (2.2)

where ∆Â and ∆B̂ are the standard deviation of measurements of Â and B̂ performed on an
ensemble of identically prepared systems. For an arbitrary operator Ô this standard deviation is
given by

∆Ô =

√
〈Ô2〉 − 〈Ô〉2. (2.3)

9
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If |C| > 0 the observables Â and B̂ are non-commuting, the precision of our knowledge of ob-
servable Â then dictates the maximum precision we can obtain for observable B̂, and visa versa.
Of course given that it is impossible to determine the observable B̂ (or Â) to better than this preci-
sion, it is natural to ask whether it really exists to better than that precision? The hidden variable
model of quantum mechanics states that at all times observables Â and B̂ both have well defined
values, and that it is simply impossible for us to determine their values simultaneously. On the
other hand, the standard model of quantum mechanics states that, before we measure the opera-
tors, they are in a super-position of all possible measurement outcomes. In 1964 Bell proposed
a method to distinguish between these two models [66], and experimental tests were performed
by Kasday et al. [67] in 1970. The result was that the standard form of quantum mechanics was
correct, and the hidden variable model was false. This means that, not only does the Heisenberg
uncertainty principle set bounds on how well we can simultaneously know two noncommuting
observables, but also on how precisely they exist. It is this ability of quantum mechanics to allow
superpositions of several possible outcomes to exist simultaneously, that facilitates entanglement
- one of the main topics studied in this thesis - which Einstein termed as “spooky interactions at a
distance”.

The most common example of the Heisenberg uncertainty principle is that between the po-
sition and momentum of a free particle. This uncertainty principle can be interrogated via the
Heisenberg microscope [68], which measures the position of a particle by interacting it with a
photon of light. During the process the photon necessarily imparts some momentum to the par-
ticle. The more accurately the position is determined, the more disruptive the measurement is to
the momentum. So although the microscope allows - in theory - a perfect measurement of the
position of the particle, in the process it would completely disrupt the particle’s momentum. The
same uncertainty principle exists when the particle is trapped in a harmonic potential. The particle
then oscillates in the potential in a simple harmonic manner. This situation is highly analogous to
the oscillation of the electromagnetic field at some frequency ω, which is the system interrogated
throughout this thesis. In the Heisenberg picture of quantum mechanics an electromagnetic oscil-
lation at frequency ω is representable by the field annihilation operator â(ω), which together with
its conjugate, the field creation operator â†(ω), satisfy the boson commutation relation

[â(ω), â†(ω)] = 1. (2.4)

The annihilation and creation operators are non-Hermitian, and therefore not measurable. On the
other hand, their real and imaginary parts are Hermitian. The real part of â(ω) is the amplitude
quadrature of the field X̂+(ω) - which is analogous to the position of a particle in a harmonic
potential - and the imaginary part is the phase quadrature of the field X̂−(ω) - which is itself
analogous to the momentum of a particle in a harmonic potential

X̂+(ω) = â†(ω) + â(ω) (2.5)

X̂−(ω) = i(â†(ω)− â(ω)). (2.6)

An arbitrary quadrature operator X̂θ(ω) can also be defined

X̂θ(ω) = â(ω)e−iθ + â†(ω)eiθ = X̂+(ω) cosθ + X̂−(ω) sinθ. (2.7)

We see that this arbitrary quadrature operator is a linear combination of the amplitude and phase
quadratures.

Perhaps unsurprisingly given their analogous nature to the position and momentum of a parti-
cle in a harmonic potential, the amplitude and phase quadrature operators do not commute. Their
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commutation relation is dictated by the boson commutation relation of Eq. (2.4), and is given by

[X̂+(ω), X̂−(ω)] = 2i. (2.8)

Eq. (2.2) then yields an uncertainty relation between the quadratures

∆X̂+(ω)∆X̂−(ω) ≥ 1. (2.9)

We see then, that precise simultaneous determination of the amplitude and phase quadratures of
a light field is not possible. The fluctuations in the measurements of each quadrature are referred
to as the quantum noise of the electromagnetic field. Electromagnetic fields that satisfy Eq. (2.9)
in the equality are termed minimum uncertainty. Manipulation of the balance of this uncertainty
relation - that is, enhancing the measurement precision of one quadrature at the cost of the other -
is one of the core technologies used in this thesis, and is termed squeezing.

2.2 Squeezing a single electromagnetic oscillation

The ground state of an electromagnetic oscillation is the vacuum state, or in other words the state
with zero photons in it, and can be represented in the Schrödinger picture as |0〉. Of course, we
have already seen that for any electromagnetic oscillation the amplitude and phase quadratures
must satisfy an Heisenberg uncertainty relation. So even though the vacuum state has no photons,
its electromagnetic field still fluctuates. In fact ∆X̂+ = ∆X̂− = 1, so that the fluctuations of the
amplitude and phase quadratures of a vacuum state are equal. Thus processes such as optical loss
that couple vacuum states, or vacuum noise, to a system will have the unavoidable consequence
of also introducing fluctuations to the system amplitude and phase quadratures. The fluctuations
of a vacuum state pose a limit to most optical measurement devices that is sometimes termed the
quantum noise limit, or from an engineering perspective the shot noise limit.

One result of the coupling of vacuum noise to optical systems is that the output of an ideal
laser has the same fluctuations as a vacuum state, that is ∆X̂+ = ∆X̂− = 1. Such a state is
termed a coherent state. In the Schrödinger picture of quantum mechanics coherent states are the
eigenstates of the annihilation operator

â(ω)|α(ω)〉= α(ω)|α(ω)〉, (2.10)

and can be produced by applying the displacement operator D[α(ω)] =

e−
1
2
|α(ω)|2eα(ω)â†(ω)e−α

∗(ω)â(ω) to a vacuum state

D[α(ω)]|0〉= |α(ω)〉. (2.11)

The coherent state contains a non-deterministic number of photons. This may be seen through
an expansion in terms of Fock, or number, states

|α(ω)〉 =
∑
|n〉〈n|α(ω)〉 = e−

1
2
|α(ω)|2∑ α(ω)n√

n!
|n〉 (2.12)

where |n〉 are the Fock states, or in other words the electromagnetic oscillation states that contain
exactly n photons, and α(ω) is the coherent amplitude of the field at frequency ω, α(ω) = 〈â(ω)〉.
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From Eq. (2.12) the coherent state photon number distribution can be seen to be

P (n) = |〈n|α(ω)〉|2 =
|α(ω)|2ne−|α(ω)|2

n!
. (2.13)

We see that the photon number distribution of a coherent state is Poissonian. Since any truly
random system exhibits Poissonian statistics the photon number distribution of a coherent state is
therefore entirely random. The average number of photons in a coherent state is n̄ = |α|2, and the
standard deviation of the photon number is ∆n = |α|.

We are interested in states that have different noise properties to the vacuum state. One of the
simplest classes of these states is the squeezed states. That is, states for which either ∆X̂+ < 1 or
∆X̂− < 1. Of course, the Heisenberg uncertainty principle of Eq. (2.9) must still be satisfied, so
that the noise in the non-squeezed quadrature must be greater than unity. In fact, due to the optical
loss and other imperfections present in any real experiment, the product ∆X̂+∆X̂− is always
greater than unity.

Mathematically, the squeezed state can be derived from the vacuum state via the unitary
squeeze operator S[r(ω), φ(ω)] [69]

S[r(ω), φ(ω)] = exp

(
r(ω)

2

(
e−2iφ(ω)â(ω)2 − e2iφ(ω)â†(ω)2

))
, (2.14)

where φ(ω) defines the quadrature of the squeezing relative to some local oscillator, and r(ω) is
the so called squeeze factor which is real and positive and can be directly related to the standard
deviation of the squeezed quadrature

∆X̂φ(ω)(ω) = e−r(ω). (2.15)

The pure squeezed state |α(ω), φ(ω), r(ω)〉can then be obtained by applying this squeeze operator
to the vacuum state in conjunction with the displacement operator

|α(ω), φ(ω), r(ω)〉= D[α(ω)]S[r(ω), φ(ω)]|0〉 (2.16)

The photon number distribution of a squeezed state is given by [46]

P (n) = |〈n|α(ω), φ(ω), r(ω)〉|2 , (2.17)

with

〈n|α, φ, r〉=

√
einφ tanhn r

2nn! cosh r
exp

(
−1

2

(
|α|2+ α∗2eiφ tanh r

))
Hn

[
α + α∗eiφ tanh r√

2eiφ tanh r

]
, (2.18)

where Hn[x] are the Hermite polynomials. This photon distribution can be broader or narrower
than the Poissonian distribution evident for coherent states, depending on the coherent amplitude
α(ω) and the quadrature of the squeezing φ(ω). Fig. 2.1 shows photon distributions for some
typical states. In this case we have chosen the coherent amplitude α(ω) to be real and positive.
We see that the photon number distribution of an amplitude squeezed state (φ(ω) = 0) is narrower,
while that of a phase squeezed state (φ(ω) = π/2) is broader than the equivalent distribution for
a coherent state. Fig. 2.1 d) shows the photon number distribution for a vacuum squeezed state,
which is strikingly different from the other three photon distributions shown. Only even photon
numbers have non-zero probabilities. This ‘pairing’ of photons can be used to explain much of the
unusual behaviour of the squeezed state. Amplitude and phase squeezed states also exhibit photon
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pairing, although it is disguised by the presence of photons due to the coherent amplitude α(ω) of
the state.
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Figure 2.1: Photon number distribution for: a) a coherent state with α(ω) = 3, b) a pure amplitude
squeezed state with α(ω) = 3 and ∆2X+(ω) = 0.2, c) a pure phase squeezed state with α(ω) = 3 and
∆2X−(ω) = 0.2, and d) a pure vacuum squeezed state with α(ω) = 0 and ∆2X+(ω) = 0.02.

2.2.1 The Wigner function and the ball and stick picture
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Figure 2.2: Wigner function and ball and stick picture for: a) a coherent state with α(ω) = 1.5, b) a pure
amplitude squeezed state with α(ω) = 1.5 and ∆2X+(ω) = 0.2, and c) a pure phase squeezed state with
α(ω) = 1.5 and ∆2X−(ω) = 0.2.

Any quantum state can be fully characterised by its density matrix ρ̂. Typically the density
matrix is expressed in terms of Fock states. For the coherent, squeezed, and entangled states
considered throughout this thesis, this expression results in a density matrix of infinite dimen-
sion. Furthermore, the density matrix does not provide a particularly intuitive representation of
the state. In classical optics we can represent an electromagnetic oscillation perfectly by its co-
herent amplitude α(ω), this coherent amplitude may be perfectly stable, or, if the field is partially
incoherent, it may fluctuate in some manner. This fluctuation could then be represented as a joint-
probability distribution for the real and imaginary parts of the coherent amplitude (the amplitude
and phase quadratures). Of course such a distribution is forbidden by quantum mechanics, since
it implicitly assumes that at any given time the oscillation exists with well defined amplitude and
phase quadratures. We know that this is not true as a result of the Heisenberg uncertainty principle
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present between the quadratures. It is possible, however, to define quasi-probability distributions
for the electromagnetic oscillation. Perhaps the most intuitive such distribution is the Wigner func-
tion [70]. The Wigner function is a one-to-one map of the density matrix and can be written in the
Schrödinger picture as [71]

W (X+(ω), X−(ω)) =
1

π

∫ ∞

−∞
exp(ixX−(ω))

〈
X+(ω)− x

4

∣∣∣ ρ̂
∣∣∣X+(ω) +

x

4

〉
dx, (2.19)

where since the Wigner function is a quasi-probability distribution with X̂± treated as classical
quantities, the respective decorations (̂) have been removed. One somewhat surprising feature of
the Wigner function is that it can have negative values. In a conventional probability distribution
this would be highly unphysical. Negative values are allowed in this quasi-probability distribution
since simultaneous exact measurements of the amplitude and phase quadratures are not possible.
Ensemble measurements on a quadrature of the state measure the projection of the Wigner function
onto that quadrature, and always yield a positive definite probability distribution.

With the exception of Chapter 9, all of the states investigated in this thesis have Gaussian
statistics. The Wigner function is then a very natural representation of the state. In this one
exceptional case the Wigner function is equivalent to a classical probability distribution, and is a
two-dimensional Gaussian. The Wigner functionWG of a displaced Gaussian state with semimajor
and semiminor axe variances of ∆2X̂±(ω) and coherent amplitude α(ω) = α+(ω) + iα−(ω) is
[71]

WG(X+(ω), X−(ω)) =
2

π∆X̂+(ω)∆X̂−(ω)
exp

(
−(X+(ω)−2α+(ω))

2

2∆2X̂+(ω)
− (X−(ω)−2α−(ω))

2

2∆2X̂−(ω)

)
.

(2.20)

Wigner functions corresponding to a coherent state, and displaced amplitude and phase squeezed
states are shown in Fig. 2.2. The Wigner function of any Gaussian state can be completely defined
by its standard deviation contour, and a stick representing the coherent amplitude of the state1.
This is the so called ‘ball and stick picture’ used to represent Gaussian quantum states in many
textbooks, and is shown in Fig. 2.2 for each of the Wigner functions plotted. The standard devia-
tion contour of a Gaussian Wigner function is an ellipse, and is fully characterised by the width of
the ellipse along its semimajor and semiminor axes, which for a squeezed state correspond to the
standard deviations of the anti-squeezed and squeezed quadratures, respectively. Therefore, the
Wigner function of a Gaussian state may be fully characterised by its coherent amplitude α(ω),
and the width of its semimajor and semiminor axes, which throughout this thesis are given by
∆X̂+(ω) and ∆X̂−(ω) (not necessarily respectively). We can, therefore, achieve a complete char-
acterisation of the states relevant to the experiments presented in this thesis through measurements
of α(ω), ∆X̂+(ω), and ∆X̂−(ω).

2.3 The quantum optics of optical sidebands

Previously in this thesis we have discussed the quantum mechanical description of an electromag-
netic oscillation in terms of field annihilation and creation operators2. We have introduced some
simple linear operations that can be performed on these operators, and their representation in terms

1Note that the stick is actually twice the length of α(ω), this is a result of the definitions of X̂+(ω) and X̂−(ω)
(〈X̂±(ω)〉 = 2α±(ω))

2A more detailed analysis of this Section can be found in Appendix A
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of the measurable Hermitian amplitude X̂+(ω) and phase X̂−(ω) quadrature operators. In reality,
however, we cannot directly measure the quadrature operators at a particular frequency ω. Instead,
choosing a frame rotating at our laser carrier frequency Ω and moving back into the Heisenberg
picture, we interrogate the time varying field annihilation operator ã(t),

ã(t) =

∫ ∞

−Ω
âΩ+ω(ω)eiωtdω, (2.21)

where ω now denotes the frequency separation from the laser carrier, and the sub-script Ω + ω

labels the electromagnetic oscillation at that optical frequency, which in the rotating frame ap-
pears at frequency ω. Throughout this thesis we distinguish the rotating time domain annihilation
operator via the decoration ,̃ as opposed to the frequency domain decoration .̂ Each measurement
performed on an electromagnetic field is a combined measurement on all of the infinite electro-
magnetic oscillations defining each frequency component of the field. It is easy to show from
Eq. (2.21) that for ω < Ω the frequency domain annihilation operator can be extracted from its
time domain counterpart via the Fourier transform

âΩ+ω(ω) = F (δã(t)) (2.22)

where throughout this thesis F(Ô) denotes the Fourier transform of the operator Ô from time to
frequency domain.

The time domain annihilation operator ã(t) has properties similar to its frequency domain
counterpart. It satisfies the boson commutation relation

[ã(t), ã†(t)] = 1, (2.23)

and analogous amplitude and phase quadrature operators can be defined

X̃+(t) = ã†(t) + ã(t) (2.24)

X̃−(t) = i
(
ã†(t)− ã(t)

)
. (2.25)

Similarly to ã(t) (see Eq. (2.22)), when ω < Ω the frequency domain amplitude and phase quadra-
ture operators can be extracted from their time domain counterparts via

X̂±(ω) = F
(
δX̃±(t)

)
. (2.26)

Photodetection of a field is described by the photoelectric effect, with electrons being liberated
from a material when it is subjected to a radiant field3. Within the bandwidth of the detectors, the
photocurrent produced is directly proportional to the number of photons in the field

i(t) = gDñ(t) = gDã
†(t)ã(t) (2.27)

= gD

(
α(t) + δã†(t)

)(
α(t) + δã(t)

)
(2.28)

= gDα(t)2 + gDα(t)
(
δã†(t) + δã(t)

)
(2.29)

= gDα(t)2 + gDα(t)δX̃+(t), (2.30)

3A detailed quantum mechanical analysis of this process can be found in [72, 73, 74], for the work presented in this
thesis, however, the following analysis is sufficient.
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where gD is the gain of the detection process, and α(t) = 〈ã(t)〉 is the coherent amplitude of
the laser which throughout this thesis is assumed to be real without loss of generality. Since
the linewidth of a laser field is typically extremely narrow, and the power within the linewidth
is much larger than the power in the same frequency band around any other frequency, we have
neglected the second order term δã†(t)δã(t). This process is termed the linearisation approxima-
tion. The optical beams used for the majority of the work presented in this thesis were bright with
α(t)� |〈δã†(t)δã(t)〉|, so that this approximation is valid throughout. The exception is Chapter 9
where experiments were performed involving single photon Fock states. Detailed discussions of
the linearisation approximation may be found in the theses of Ping Koy Lam [75] and Ben Buchler
[76]. We see that photodetection directly interrogates the time domain amplitude quadrature oper-
ator of the field. However, many frequency dependent noise sources are present in a real situation.
Some examples of these are acoustic noise, laser relaxation oscillation noise, and thermal noise.
These noise sources make it extremely difficult to observe the quantum mechanical behavior of the
light field in the time domain. Taking the Fourier transform of the fluctuating part of the detector
photocurrent, we can restrict our analysis to a frequency band in which no significant noise sources
are present. This Fourier transform yields the frequency domain amplitude quadrature operator

i(ω) = F (δi(t)) = gDα(t)X̂+
Ω+ω(ω). (2.31)

Of course, the current i(t) contains contributions from electromagnetic oscillations at both Ω−ω,
and Ω +ω, each of which generates a current at frequency ω, so that the current we obtain is more
accurately written as

I(ω) = i(ω) + i(−ω) = gDα(t)
(
X̂+

Ω+ω(ω) + X̂+
Ω−ω(−ω)

)
. (2.32)

We see that the detection process performs a joint measurement on electromagnetic oscillations
at frequencies Ω ± ω. This pair of operators can be thought of as sidebands on either side of
the carrier, and henceforth we term this composite system the sideband picture. The sideband
annihilation operator âsidebands(ω) associated to the detection process is given by

âsidebands(ω) =
1√
2

(âΩ−ω(−ω) + âΩ+ω(ω)) , (2.33)

where we have introduced the factor of 1/
√

2 to retain the boson commutation relation.
In the Schrödinger picture, operating with this operator on a joint vacuum state in the modes

at frequencies Ω ± ω (|Ω − ω,Ω + ω〉 = |0, 0〉) would put one photon into the sidebands in an
equal superposition state

âsidebands(ω)|0, 0〉=
1√
2
|1, 0〉+ 1√

2
|0, 1〉. (2.34)

Sideband quadrature operators can be defined in the same manner as the frequency and time do-
main quadrature operators were previously.

2.4 Amplitude and phase modulation

Amplitude and phase modulations perform two functions in the work presented in this thesis. They
provide error signals that allow control of the various interferometers and resonators utilised in the
experiment, and they perform the function of the displacement operator of Eq. (2.11) transforming
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a vacuum sideband state into an arbitrary coherent state. In this Section we discuss how optical
modulations are produced in the laboratory, we provide a description of optical modulation useful
for the discussion of interferometric and resonator control later in this thesis, and perform a simple
quantum optical analysis.
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Figure 2.3: a) Phase and b) amplitude modulation using the electro-optic effect, PBS: polarising beam
splitter.

Phase and amplitude modulations of a beam can be produced through modulations of the
optical path length and attenuation experienced by the beam, respectively. Phase modulation can
be achieved relatively easily by varying the position of a mirror in the beam path. The frequency
of this type of modulation is limited to rather low frequencies (fmod . 200 KHz), however. At
higher frequencies a more effective technique is to electro-optically modulate the refractive index
of a crystal such as LiNbO3 in the beam path. Using this technique it is possible to achieve phase
modulation at frequencies as high as 10 GHz.

In a frame rotating at its carrier frequency (Ω), a phase modulated optical field ãPM (t) can be
represented by the expression

ãPM (t) = ã(t)eiξ cos(ω1t) (2.35)

where here ξ is the depth of modulation4, ω1 is the frequency of modulation, and ã(t) is the
optical field prior to modulation. For the small modulation depths (ξ � 1) used throughout the
work presented in this thesis, the field ãPM (t) can be decomposed into a component at the laser
carrier frequency Ω and sidebands at frequencies ω1 and −ω1 away from the carrier

ãPM (t) ≈ ã(t) (1 + iξ cos(ω1t)) = ã(t)

(
1 + i

ξ

2
eiω1t + i

ξ

2
e−iω1t

)
. (2.36)

4ξ = 1 implies complete modulation, and ξ = 0 no modulation at all.
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Taking the Fourier transform we find

âPM(ω) = F (ãPM (t)) (2.37)

= â(ω) + i
ξ

2
â(ω − ω1) + i

ξ

2
â(ω + ω1) (2.38)

≈ â(ω) + i
ξ

2
δ(ω1)α(t) + i

ξ

2
δ(−ω1)α(t) for ξ � 1, (2.39)

where δ(ω) is the Dirac delta function centered at ω. We see that the phase modulation has
transferred optical power from the carrier into sidebands at frequencies ±ω1. It is then possible
to intuitively represent a phase modulation on a frequency axis with three phasors one each at Ω

and ±ω1, as shown in Fig. 2.4. The upper and lower sideband phasors rotate in clockwise and
anti-clockwise directions, respectively at frequency ω1 relative to the carrier.
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Figure 2.4: Amplitude and phase modulated optical fields represented as phasors at frequencies Ω and
±ω1.

Unlike phase modulation which can be directly achieved via the electro-optic effect, amplitude
modulation typically requires two stages. As shown in Fig. 2.3 b), the optical field is prepared
with circular polarisation and is passed through a birefringent electro-optic crystal. The phase
of the vertically polarised component of the field is modulated, whilst the horizontally polarised
component is unmodulated. The net effect is to modulate the polarisation of the output field.
Selecting only the horizontal component of the output field with a polarising beam splitter results
in a purely amplitude modulated field5. Clearly this process attenuates the original field by 50 %

5Note that in reality amplitude modulators typically consist of two or four electro-optic crystal in a configuration to
minimise polarisation rotation due to thermal drift in the modulator.
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which could critically degrade the results of any quantum optical experiment. It is possible to use
alternative configurations to achieve amplitude modulation with higher efficiency, however issues
then arise such as parasitic phase modulation and thermal instability in the polarisation of the field
exiting the electro-optic crystal. Throughout the work presented in this thesis we prefer to operate
in the stable regime, sacrificing 50 % of the field, and arrange our experimental setup so that the
experimental outcomes are insensitive to this loss.

In a frame rotating at its carrier frequency (Ω), an amplitude modulated optical field ãAM (t)

can be expressed as

ãAM (t) = ã(t) (1 + ξ cos(ω1t)) = ã(t)

(
1 +

ξ

2
eiω1t +

ξ

2
e−iω1t

)
. (2.40)

Again, we can take the Fourier transform

âAM (ω) = F (ãAM (t)) (2.41)

= â(ω) +
ξ

2
â(ω + ω1) +

ξ

2
â(ω − ω1) (2.42)

≈ â(ω) +
ξ

2
δ(ω1)α(t) +

ξ

2
δ(−ω1)α(t) for ξ � 1. (2.43)

Notice that, similar to the phase modulation considered above, amplitude modulation of an optical
field transfers power from the carrier frequency Ω to sidebands at frequencies Ω ± ω1. We can
therefore also represent an amplitude modulation on a frequency axis with phasors at frequencies
Ω and Ω ± ω1, as shown in Fig. 2.4. In this case at times t = 2πm/ω1, where m is an integer,
both sideband phasors are in phase with the carrier. This contrasts the case for phase modulation
where, at those times, both sideband are orientated π/2 out of phase with the carrier.

From Eq. (2.33) the sideband annihilation operators for the amplitude and phase modulated
fields at frequency ω1 are found to be

âPM,sidebands(ω1) = âsidebands(ω1) + i
ξ√
2
α(t) (2.44)

âAM,sidebands(ω1) = âsidebands(ω1) +
ξ√
2
α(t). (2.45)

We see then that, so long as the modulation depth is small (ξ � 1), optical modulation performs
the role of the displacement operator on the sideband annihilation operator (see Eq. (2.11)). Am-
plitude modulation at frequency ω1 of an optical field performs the displacement D[ξα(t)/

√
2],

displacing the sideband annihilation operator at frequency ω1 along the axis of the amplitude
quadrature; and correspondingly phase modulation performs the displacementD[iξα(t)/

√
2], dis-

placing the state along the axis of the phase quadrature. Combinations of amplitude and phase
modulations, when applied to a vacuum sideband state, can generate any arbitrary sideband co-
herent state. Furthermore, these optical modulations allow us to encode an arbitrary signal on the
sideband state without any noise penalty. These properties of optical modulation have resulted
in it becoming one of the core technologies in continuous variable quantum information proto-
cols. It is one of the main building blocks utilised in quantum electro-optic feedforward which
will be utilised in Chapter 5. Henceforth when in the frequency domain we discuss almost solely
operators in the sideband picture, therefore in general we neglect the subscript ‘sidebands’.

At this point it should be clear that the frequency and time domains offer two alternative
descriptions of optical field states. It is natural to use the time domain to describe experimental
apparatus, and to transform to the frequency domain to analyse experimental results. We use this
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convention throughout this thesis. The reader should be aware that a coherent state in the time
domain corresponds to a vacuum state at sideband frequencies ω 6= 0; amplitude/phase squeezed
states in the time domain correspond to vacuum squeezed states at sideband frequencies ω 6= 0;
a coherent state in the frequency domain corresponds to a modulated coherent state in the time
domain; and so on. For more details regarding the quantum optics of optical sidebands I refer you
to Appendix A.

2.5 The humble beam splitter

a1(t)

eiθa2(t)

a4(t)

a3(t)

ε

Figure 2.5: A schematic diagram of a beam splitter. â1(ω) and â2(ω) are the fields incident, â3(ω) and
â4(ω) are the fields exiting, and ε is the beam splitter transmission.

The beam splitter is one of the most powerful and simple tools in quantum optics. It can
be used, among other things, to characterise quantum states, to generate entangled states, and to
enhance squeezed states. Fig. 2.5 shows a schematic diagram of a beam splitter, it has two incident
fields ã1(t) and ã2(t) with a relative phase of θ between them, the beam splitter transmission is
given by ε. On transmission the phase of each field remains unchanged, on reflection from a hard
surface the phase is flipped by π. We therefore obtain the output fields ã3(t) and ã4(t)

ã3(t) =
√

1− ε ã1(t) +
√
ε eiθ ã2(t) (2.46)

ã4(t) =
√
ε ã1(t)−

√
1− ε eiθ ã2(t) (2.47)

We see that the beam splitter couples the incident fields ã1(t) and ã2(t) together, with a coupling
strength dependent on the beam splitter transmission ε.

2.5.1 Modelling optical attenuation using beam splitters

Optical attenuation (or loss) is a very significant effect in experimental quantum optics. Indeed it
is, perhaps, the limiting factor in most squeezing related experiments. Some examples of processes
that introduce losses to an experiment are: imperfections in photodetection, optical coatings, and
spatial mode matching. These inefficiencies attenuate the field we are interested in, and introduce
vacuum fields. It is therefore desirable to minimise inefficiencies in any quantum optical experi-
ment. It is impossible to remove all losses however, and a model to accurately predict the effect
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Figure 2.6: Equivalence of an inefficient linear process to an efficient linear process, with environmental
coupling though a beam splitter.

of losses is essential. All of the examples given above, and indeed most linear processes6, can be
modelled by a 100 % efficient equivalent process that performs the transformation ãin(t)→ ãeff(t)

with coupling to the environment via a beam splitter, as shown in Fig. 2.6. We can define this trans-
formed state ãeff(t) as the beam splitter input ã1(t) in Fig. 2.5; and the other input ã2(t) as the
vacuum state ãν(t) coupled to the original state during the process. The beam splitter transmission
ε governs the efficiency of the process, so that 1 − ε gives the loss experienced by the state, and
ã4(t) then represents the field annihilation operator of the state after loss ãout(t). The assumption
here is that the other beam splitter output ã3(t) is destroyed, so that any information it contained
about the fluctuations of the original state is lost. The annihilation operator of the state after the
effect of loss is then given by

ãout(t) =
√
ε ãeff(t)−

√
1− ε ãν(t) (2.48)

where the concept of ‘phase’ has no meaning for the vacuum state and we have therefore neglected
the term eiθ . If ε = 1, the process is perfectly efficient, and the original state is recovered at the
output, and as ε→ 0 the output state approaches the vacuum state ãν(t) with no connection to the
original state.

To demonstrate the effect of finite levels of loss let us consider the amplitude quadrature of the
output state

X̃+
out(t) =

√
εX̃+

eff(t)−
√

1− εX̃+
ν (t). (2.49)

Remembering that the variance of any quadrature of a vacuum state is unity (∆2X̃+
ν (t) = 1) the

variance of the amplitude quadrature of the output state is given by

∆2X̃+
out(t) = 〈δX̃+

out(t)
2〉 = ε∆2X̃+

eff(t) + 1− ε. (2.50)

The question of most relevance to this thesis is: what effect does this loss have on a squeezed state?
We see that it places a lower bound on the variance of the output state given by 1 − ε. So that,
no matter how strongly the original state is squeezed, the output state cannot have ∆2X̃+

out(t) <

6The exception, although not relevant to this thesis, is processes that couple the system to a thermal reservoir, or
indeed to any environment other than vacuum.



22 Theoretical concepts and experimental techniques

1 − ε. Therefore, minimisation of optical loss is crucial for experiments that require a high level
of squeezing.

2.5.2 Relative phase error signals for beam splitter inputs

We have just seen how optical losses can degrade a quantum optical experiment. Many other non-
ideal effects are also present, perhaps the most significant of these are effects that alter the length of
optical paths throughout the experiment. Such effects include mechanical drift of optical mounts;
thermal drift in lenses, beam splitters, and crystals; and vibrations that arise due to acoustic noise
(people talking for example), and coupling of external mechanical vibrations to the system (people
walking for example). Most quantum optical experiments utilise interferometers and resonators
that require precisely controlled optical beam paths to function properly. It is therefore necessary
to measure and correct for the effects of each of these vibrations. A signal carrying information
about drift of the system is termed an error signal. The ideal error signal is zero when the system is
correctly controlled, and varies linearly with the drift. This Section describes the techniques used
throughout this thesis to obtain error signals to control the relative phase of the inputs of a beam
splitter. A quantum optical treatment of these techniques is unnecessary here, and we therefore
only consider the coherent amplitude of the light fields. For the most part, we follow the treatment
given in [77].

Power difference error signal

Perhaps the simplest method used to control the relative phase of the input fields to a beam
splitter is to balance the power of the beam splitter output fields. Here we restrict ourselves to
the case where the transmissivity of the beam splitter is ε = 1/2, although the more general
case is quite simply modelled it is not relevant to the work presented in this thesis. Neglecting
the fluctuation terms and taking ε = 1/2, detection of the beam splitter output fields given in
Eqs. (2.46) and (2.47) yields the photocurrents

i3(t) = gDα
∗
3(t)α3(t) = gD

(
1

2
α1(t)2 +

1

2
α2(t)2 + α1(t)α2(t) cos θ

)
(2.51)

i4(t) = gDα
∗
4(t)α4(t) = gD

(
1

2
α1(t)2 +

1

2
α2(t)2 − α1(t)α2(t) cos θ

)
, (2.52)

where α1(t) and α2(t) are the coherent amplitudes of the input fields at the laser carrier frequency.
Subtracting one photocurrent from the other provides the power difference error signalEPD

EPD = i3(t)− i4(t) = 2gDα1(t)α2(t) cos θ (2.53)

≈ 2gDα1(t)α2(t)
(π

2
− θ
)

for θ ≈ π

2
(2.54)

≈ 2gDα1(t)α2(t)
(π

2
+ θ
)

for θ ≈ −π
2
. (2.55)

We see that this simple technique provides an error signal that is zeroed at θ = ±π/2, and that is
linear with θ around those points. Notice also that the zero point of the error signal is independent
of the power of the input fields to the beam splitter.

Offset locking error signal

Of course, we may not always have access to both of the fields exiting the beam splitter, and we
may wish to control the relative phase to a value other than θ = ±π/2. It is possible to generate an
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error signal from only one output field (or a fraction of it) by comparing the detected photocurrent
to some pre-defined offset voltage Voffset. The error signal thus obtainedEOL is given by

EOL = i3(t)− Voffset (2.56)

= gD

(
1

2
α1(t)2 +

1

2
α2(t)2 + α1(t)α2(t) cos θ

)
− Voffset (2.57)

This technique has the advantage that the error signal can be zeroed arbitrarily by adjustingVoffset,
although the slope of the error signal goes to zero around θ = 0, so that controlling the relative
phase near θ = 0 is difficult. The error signal zero point for this technique is dependent on the
coherent amplitudes α1(t) and α2(t). This is a significant drawback since in most experimental
situations the laser power is only stable to around 2− 5 %.

Sideband modulation error signal

Alternative techniques are available to generate error signals using sideband modulations. Here we
consider the case where one of the fields input to the beam splitter is phase modulated at frequency
ω. That is αPM,1(t) = α1(t)(1+ iξ sin(ωt)). Rather than consider only the case when ε = 1/2 as
was done above, due to relevance in Chapter 5 we include an arbitrary beam splitter ratio ε. The
detected photocurrent from the beam splitter output α3(t) is then given by

i3(t) = gD
(
(1− ε)α1(t)2 + εα2(t)2 + 2

√
ε(1− ε)α1(t)α2(t) cos θ

+2ξ
√
ε(1− ε)α1(t)α2(t) sin θ sin(ωt)

)
, (2.58)

where we have assumed the modulation depth is small ξ ≈ 0, neglecting the second order term in
ξ.

Eq. (2.58) contains a term fluctuating with frequency ω. The signal contained in this term
can be extracted by multiplying the photocurrent with an electronic local oscillator at frequency
ω. The convolution theorem tells us that this multiplication in the time domain is equivalent
to a convolution in the frequency domain. This process shifts the frequency components of the
photocurrent both up and down by ω. The down shifted component is the component of interest
to us, and the process is thus termed mixing down. The phase of the electronic local oscillator is
critical, and should be in phase with the signal that we wish to extract. In this case, we choose an
electronic local oscillator of the form sin(ωt). The mixed down photocurrent is then given by

i3(t)× sin(ωt) = gD

[
(1− ε)α1(t)2 + εα2(t)2 + 2

√
ε(1− ε)α1(t)α2(t) cos θ

]
sin(ωt)

+2gDξ
√
ε(1− ε)α1(t)α2(t) sin θ sin2(ωt) (2.59)

= gD

[
(1− ε)α1(t)2 + εα2(t)2 + 2

√
ε(1− ε)α1(t)α2(t) cos θ

]
sin(ωt)

+gDξ
√
ε(1− ε)α1(t)α2(t) sin θ (1− cos(2ωt)) . (2.60)

low pass filtering this signal to remove components with frequencies≥ ω, we obtain the sideband
error signalESB

ESB = gDξ
√
ε(1− ε)α1(t)α2(t) sinθ (2.61)

≈ gDξ
√
ε(1− ε)α1(t)α2(t)θ for θ ≈ 0 (2.62)

≈ gDξ
√
ε(1− ε)α1(t)α2(t)(π − θ) for θ ≈ π. (2.63)
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We see that this sideband error signal is zero when θ = {0, π}, and is linear for small phase errors
around those points. Similar to the power difference error signal, the zero crossing is independent
of the coherent amplitudes α1(t) and α2(t), and furthermore it is independent of the beam splitter
reflectivity ε.

The error signal ESB can be understood via the sideband picture as shown in Fig. 2.7. The
original phase sidebands are rotated relative to the carrier field. The resulting sidebands can be
separated into a component of phase modulation and a component of amplitude modulation. It is
the component of amplitude modulation that is detected, and provides an error signal.
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θ

Amplitude modulationPhase modulation
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α(−ω)
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Frequencyα(0)
α(−ω)
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Figure 2.7: The field in the sidebands of a beam splitter output field can be broken into a component of
phase modulation and a component of amplitude modulation. (a) α1(t), (b) eiθα2(t), and (c) eiθ

′
α3(t)

where θ′ depends on α1(t), α2(t), and θ.

Note that linear combinations of the error signals EPD and ESB can produce an error sig-
nal zeroed, and linear around, any arbitrary relative phase θ. In the work presented in this
thesis, however, this technique was unnecessary since error signals were only required for
θ = {−π/2, 0, π/2, π}.

2.6 Measuring the efficiency of optical processes

The main inefficiencies in the experiments presented in this thesis result from the photodetection
process, non-optimal di-electric coatings on optics, and non-optimum spatial mode-matching.

2.6.1 Inefficiencies due to scattering and absorption in optics

The loss associated with scattering and absorption at the di-electric coatings on optics is easily
characterised since the optical beam remains accessible after transmission or reflection through
the element. All that is required is a direct comparison of the optical power before and after the
optical element. Table 2.1 provides a list of the efficiencies of the optical elements commonly used
in the work presented in this thesis.

2.6.2 Inefficiencies in the photodetection process

The loss in photodetection is less easily measured. It may be indirectly characterised by comparing
the current i flowing through the photodiode to the power P in the incident optical beam. If the
photodetection is 100 % efficient, each photons in the optical beam should generate one electron
in the photodetector current. The efficiency of detection is therefore given by

ηdetectors =
Nelectrons

Nphotons
=

(
~Ω

P

)
i

ε
(2.64)
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Optical element Manufacturer Part number Efficiency
1064 nm optical isolator Gsänger FR 1060/5 95 %
532 nm optical isolator Gsänger FR 532/5 95 %
0th order λ/4 and λ/2 @ 1064/532 nm Rimkevicius N/A 99.5 %
0th order λ/2 @ 1064 nm Newport 10RP02-34 99.8 %
0th orderλ/4 @ 1064 nm Newport 10RP04-34 99.8 %
0th orderλ/2 @ 532 nm Newport 10RP02-16 99.8 %
0th orderλ/4 @ 532 nm Newport 10RP04-16 99.8 %
Lenses @ 1064/532 nm Rimkevicius N/A 99.5 %
Lenses @ 1064 nm Newport KPXxxxAR.18 99.8 %
Lenses @ 532 nm Newport KPXxxxAR.14 99.8 %
Polarising beam splitters @ 1064 nm Newport 05BC16PC.9 99 %
Polarising beam splitters @ 532 nm Newport 05BC16PC.3 99 %
50/50 beam splitters @ 1064 nm LASTEK BS1-1064- 99.8 %

50-1037-458
50/50 beam splitters @ 1064 nm Newport 05BC16NP.9 99.8 %
T:1064/R:532 nm dichroic beam splitters LASTEK BSR51-1025 99.8 %
T:532/R:1064 nm dichroic beam splitters LASTEK BSR15-1025 99.8 %
1064 nm dielectric mirrors Rimkevicius N/A 99.5 %
1064 nm dielectric mirrors New Focus 5104 99 %
532 nm dielectric mirrors New Focus 5101 99 %
Phase modulators @ 1064nm Gsänger LM0202-PHAS 95 %
Amplitude modulators @ 1064nm Gsänger LM0202 P 5W IR 50 %

Table 2.1: Summary of the efficiencies of linear optical elements used in the experiments presented in this
thesis.

where Nelectrons and Nphotons are the number of electrons and photons, respectively, ~Ω is the
energy of a single photon, and ε is the charge of a single electron. A very nice analysis of the
efficiency of a number of different photodiodes using this technique is presented in the thesis of
Ping Koy Lam [75]. Epitaxx ETX-500 photodiodes were utilised for detection of the quantum
fluctuations of the optical field throughout this thesis, these diodes were characterised to have an
efficiency of 93 ± 2%.

2.6.3 Inefficiencies in optical mode-matching

Let us now consider the mode-matching efficiency for the interference of two beams on the beam
splitter in Fig. 2.5 with ε = 0.5. In Eqs. (2.46) and (2.47) the modes ã1(t) and ã2(t) were assumed
to be in identical polarisation and spatial modes. In an experimental situation this is never the case.
In general, the modes ã1(t) and ã2(t) will overlap, and therefore interfere, with some efficiency
η. Let us define the spatial mode of ã1(t) as a reference. Both modes incident on the beam splitter
can then be expanded into a part that resides in that spatial mode, and a part in an orthogonal mode
that does not interfere with ã1(t), (ãref(t), ãorth(t)). Considering only the coherent amplitudes
here the fields input to the beam splitter then become

(α1,ref(t), α1,orth(t)) = (α1(t), 0) (2.65)

(α2,ref(t), α2,orth(t)) =
(√

η α2(t),
√

1− η α2(t)
)
, (2.66)
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and the coherent amplitude of the output state α3(t) is given by

(α3,ref(t), α3,orth(t)) =
1√
2

(
α1(t) + eiθ

√
η α2(t), eiθ

√
1− η α2(t)

)
. (2.67)

Calculating the intensity of the reference and orthogonal modes we find

α∗3,ref(t)α3,ref(t) =
1

2

(
α2

1(t) + ηα2
2(t) + 2

√
η cos θα1(t)α2(t)

)
(2.68)

α∗3,orth(t)α3,orth(t) =
1

2

(
(1− η)α2

2(t)
)
. (2.69)

The photocurrent i3 obtained when this total field impinges on a photodetector is given by

i3 = gD
(
α∗3,ref(t)α3,ref(t) + α∗3,orth(t)α3,orth(t)

)

=
gD
2

(
α2

1(t) + α2
2(t) + 2

√
η cos θα1(t)α2(t)

)
, (2.70)

where gD is the gain of the photodetection process. Notice that as the relative phase θ between
the input modes α1(t) and α2(t) changes we observe an interference fringe. The visibility V IS
of this fringe is defined as

V IS =
maxθ{i3} −minθ{i3}
maxθ{i3}+ minθ{i3}

=
2
√
η α1(t)α2(t)

α2
1(t) + α2

2(t)
, (2.71)

We see that given knowledge of α1(t) and α2(t) it is possible to infer the efficiency of mode-
matching ηmode−match

ηmode−match =
V IS2

(
α2

1(t) + α2
2(t)
)2

4α2
1(t)α2

2(t)
. (2.72)

Indeed, if the power in each of the input modes is arranged to be equal (α2
1(t) = α2

2(t)) we obtain
a simple relationship between the visibility and mode-matching efficiency of the interference

ηmode−match = V IS2. (2.73)

In general it is possible to arrange the power of the two beam splitter inputs to be equal. Through-
out almost the entirety of the work presented in this thesis we balanced the power of the two
input beams and characterised the visibility of interference to determine the mode-matching effi-
ciency η. Through careful design of the experimental optical path lengths and lens arrangements,
and using beam steering mirrors and polarising optics, we could typically achieve mode-matching
efficiencies in the range η = 0.92 to 0.99. These efficiencies were usually limited not by the
focussing, alignment, or polarisation of the optical fields, but rather by variations from a perfect
Gaussian transverse modeshape.

2.7 Detecting quantum states of light

In Section 2.3, the process of photodetection was introduced. We showed that the component
of the resulting photocurrent at frequency ω was directly related to the amplitude quadrature of
the sideband annihilation operator at that frequency. This Section describes how this photocurrent
component can be normalised to the quantum noise limit, how the phase quadrature of the sideband
annihilation operator can be determined, and how we convert the detected photocurrent into a
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frequency spectra using a spectrum analyser.

2.7.1 Balanced self homodyne detection

Consider an optical field ã1 split on a 50/50 beam splitter (ε = 1/2), clearly a vacuum field ãν
enters the unused port of the beam splitter. Detecting the two output fields ã3 and ã4 yields the
photocurrents

i3(t) = gDã
†
3(t)ã3(t) =

gD
2

(
α1(t)2 + α1(t)

(
δX̃+

1 (t) + δX̃+
ν (t)

))
(2.74)

i4(t) = gDã
†
4(t)ã4(t) =

gD
2

(
α2

1(t) + α1(t)
(
δX̃+

1 (t)− δX̃+
ν (t)

))
, (2.75)

where gD is the gain of the photodetection process. The sum and difference of these photocurrents
are

isum(t) = i3(t) + i4(t) = gD

(
α2

1(t) + α1(t)X̃+
1 (t)

)
(2.76)

idiff(t) = i3(t)− i4(t) = gDα1(t)X̃+
ν (t), (2.77)

Taking the Fourier transform of the fluctuations of these currents yields the sum and difference
photocurrent fluctuations as a function of frequency

isum(ω) = F (δisum(t)) = gDα1(t)X̂+
1 (ω) (2.78)

idiff(ω) = F (δidiff(t)) = gDα1(t)X̂+
ν (ω). (2.79)

Notice that in the frequency domain the sum and difference photocurrents are directly proportional
to the sideband amplitude quadrature operator of the input field, and vacuum field entering the
unused beam splitter input port, respectively. Remembering that ∆2X̂+

ν (ω) = 1, the variances of
these sum and difference photocurrent components are given by

∆2isum(ω) =
〈

(isum(ω))2 〉 −
〈

(isum(ω))
〉2

= g2
Dα1(t)2∆2X̂+

1 (ω) (2.80)

∆2idiff(ω) =
〈

(isum(ω))2 〉 −
〈

(isum(ω))
〉2

= g2
Dα1(t)2. (2.81)

So that the ratio of the variances of the sum and difference photocurrents gives a measurement of
the amplitude quadrature variance of the input field ∆2X̂+

1 (ω) calibrated to the vacuum noise level

∆2isum(ω)

∆2idiff(ω)
= ∆2X̂+

1 (ω). (2.82)

This technique provides an accurate method to characterise the sideband amplitude quadrature of
a light field.

2.7.2 Balanced homodyne detection

To characterise the phase quadrature we replace the vacuum field ãν(t) input to the beam splitter
for self homodyne with a bright local oscillator ãLO(t). Given that αLO(t)� α1(t), the action of
this local oscillator is to arbitrarily rotate the coherent amplitudes of the two beam splitter outputs,
which, as we will see in the following analysis, allows the homodyne detector to measure an
arbitrary quadrature of the input state.
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In this case detecting the output fields ã3(t) and ã4(t) yields the photocurrents

i3(t) = gDã
†
3(t)ã3(t) =

gD
2

(
α1(t)2 + αLO(t)2 + 2 cos θα1(t)αLO(t) + (2.83)

α1(t)
(
δX̃+

1 (t) + δX̃−θLO(t)
)

+ αLO(t)
(
δX̃+

LO(t) + δX̃θ
1(t)

))

i4(t) = gDã
†
4(t)ã4(t) =

gD
2

(
α1(t)2 + αLO(t)2 − 2 cos θα1(t)αLO(t) + (2.84)

α1(t)
(
δX̃+

1 (t)− δX̃−θLO(t)
)

+ αLO(t)
(
δX̃+

LO(t)− δX̃θ
1(t)

))
,

where θ is the relative phase of the input fields, and the arbitrary quadrature operator X̃θ(t) is
defined in Eq. (2.7). As before, we take the sum and difference of these photocurrents

isum(t) = i3(t) + i4(t) = gD

(
α1(t)2 + αLO(t)2 + αLO(t)δX̃+

LO(t)
)

(2.85)

idiff(t) = i3(t)− i4(t) = gD

(
2 cos θα1(t)αLO(t) + αLO(t)δX̃θ

1(t)
)
, (2.86)

where since αLO(t) � α1(t) we have neglected the fluctuation terms not containing the local
oscillator coherent amplitude αLO(t). We again take the Fourier transform of the fluctuations of
these currents to obtain the sum and difference photocurrent fluctuations in the frequency domain

isum(ω) = F (δisum(t)) = gDαLO(t)X̂+
LO(ω) (2.87)

idiff(ω) = F (δidiff(t)) = gDαLO(t)X̂θ
1(ω). (2.88)

Notice that idiff(ω) measures a quadrature of the input state dependent on the relative phase of the
input fields θ, and that isum(ω) measures the amplitude quadrature of the local oscillator indepen-
dent of θ. Calculated in the same manner as above, the variances of the frequency domain sum
and difference photocurrents are given by

∆2isum(ω) = g2
DαLO(t)2∆2X̂+

LO(ω) (2.89)

∆2idiff(ω) = g2
DαLO(t)2∆2X̂θ

1(ω). (2.90)

Assuming that the sidebands of the local oscillator at frequencies Ω ± ω are in vacuum states so
that ∆2X̂+

LO(ω) = 1, the ratio of the sum and difference variances gives

∆2idiff(ω)

∆2isum(ω)
= ∆2X̂θ

1(ω), (2.91)

which is a calibrated measurement of the arbitrary quadrature of the input state defined by
∆2X̂θ

1(ω). X̂θ=0
1 (ω) = X̂+

1 (ω), and X̂θ=π/2
1 (ω) = X̂−1 (ω), so this balanced homodyne tech-

nique allows calibrated measurements of both the amplitude and phase quadratures.

Of course, we must be careful to ensure that the local oscillator is in a vacuum state at the
frequencies we are interested in. An alternative approach using the same apparatus, and the one
adopted through the majority of this thesis, is to always measure ∆2idiff(ω) and to block the input
state (but not the local oscillator) to provide the normalisation. In this case, since there is no optical
power entering the input port of the beam splitter, we can be sure that the input becomes a vacuum
state, and hence that ∆2X̂θ

1,blocked(ω) = 1, for any θ and ω. The ratio of the difference current
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variances with the input unblocked and blocked is given by

∆2idiff ,unblocked(ω)

∆2idiff ,blocked(ω)
= ∆2X̂θ

1(ω), (2.92)

which also provides a calibrated measurement of ∆2X̂θ
1(ω).

2.7.3 Analysis using a spectrum analyser

In a squeezing related experiment it is usual to analyse the output photocurrents in a spectrum
analyser. Spectrum analysers are by no means simple devices. The detailed operation of a spec-
trum analyser, however, will not be examined in this thesis. An elegant analysis can be found in
the thesis of Ben Buchler [76]. The outcome of this analysis is that when normalised, as discussed
prior in this Section, the spectrum analyser provides the spectral power density V (ω) defined by

V (ω) =

〈(
X̂θ

1(ω)
)2
〉
, (2.93)

where θ is determined by the arrangement of the detection apparatus. Expanding X̂θ
1 in terms of

its coherent amplitude and fluctuations we see that

V (ω) =

〈(
2α1(ω) + δX̂θ

1(ω)
)2
〉

(2.94)

=

〈
4α1(ω)2 + 4α1(ω)δX̂θ

1(ω) +
(
δX̂θ

1(ω)
)2
〉

(2.95)

= 4α1(ω)2 + 4α1(ω)
〈
δX̂θ

1(ω)
〉

+

〈(
δX̂θ

1(ω)
)2
〉

(2.96)

= 4α1(ω)2 + ∆2X̂θ
1(ω). (2.97)

So the spectrum analyser does not measure straight-forwardly the variance spectra of the operator
X̂θ

1(ω). Instead it measures the sum of the coherent amplitude (scaled by four), and the vari-
ance. The systems analysed in the work presented in this thesis had α1(ω) = 0 unless a coherent
amplitude was encoded via optical modulation. An encoded coherent amplitude typically had a
bandwidth of ≈ 20 kHz. On the other hand the variance spectra was typically constant over a
frequency range of ≈ 200 kHz. Therefore, both the variance and coherent amplitude of the oper-
ator X̂θ

1 could be obtained from a frequency spectra with ∆ω/2π > 20 kHz centered around ω.
Fig. 2.8 shows how this technique was applied for a typical spectrum analyser output.

2.8 Optical resonators

Much of the work presented in this thesis involves optical resonators. These resonators fulfilled a
number of purposes in the experiments, including spectral and spatial modecleaning, and power
enhancement to improve the effective non-linearity of non-linear systems. In this Section we
first provide a basic introduction to modelling of open quantum systems. This will allow us to
effectively model all of the systems involving resonators used in the work presented in this thesis.
We then model a passive resonator, demonstrating its spectral and spatial modecleaning properties.
Since a crucial aspect of optical resonators is the interference of the internal and external fields,
precise control of the length of the resonator is important. Our model allows us to describe how
error signals are generated that allow active control of the resonator length.
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2.8.1 Modelling of optical resonators

Modelling open quantum systems

In this thesis the approach taken to modelling systems involving optical resonators is to first de-
fine a Hamiltonian for the system. This Hamiltonian can be used to predict equations of motion
for the time domain operators of relevance, or in other words to determine the quantum Langevin
equations for the system. We separate these equations into pairs of time domain amplitude and
phase quadrature operator equations. Taking the Fourier transform results in the corresponding
frequency domain quadrature operators. Here we will briefly describe the second stage of this
process, transforming the Hamiltonian of the system into an equation of motion, before we con-
sider the specific case of a passive optical resonator.

Within a closed system with Hamiltonian Hrev, the equation of motion of a system operator
ãsys(t) is given simply by

˙̃asys(t) = i

(
Ωãsys(t)−

1

~
[ãsys(t), Hrev]

)
, (2.98)

where we have chosen a frame rotating at frequency Ω. In open systems however, fields from
the environment interact with the system, and the equation of motion becomes more complex.
Gardiner and Collett [78] showed that, assuming the coupling of the system to the environment γ
is independent of frequency7, if the environment interacts irreversibly with the system operator of
interest ãsys(t) its effect on the equation of motion of the operator can be modelled by adding a
correction term to Eq. (2.98). The modified equation of motion is then

˙̃asys(t) = i

(
Ωãsys(t)−

1

~
[ãsys(t), Hrev]

)
(2.99)

−
[
ãsys(t), ã

†(t)
] (
γã(t) +

√
2γ δaenv(t)

)
+
(
γã†(t) +

√
2γ δa†env(t)

)
[ãsys(t), ã(t)]

where ãenv(t) is the time domain annihilation operator describing the environment, and ã(t) is the
system operator coupled to the environment. This equation is known as the quantum Langevin

7This assumption is known as the first Markov approximation
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equation.

Modelling a passive optical resonator

aic,in(t)

aoc,in(t)aic,out(t)

aoc,out(t)

al(t)

a(t)

εl
εic εoc

Figure 2.9: A model of a passive optical resonator, including input fields from the input and output couplers,
input field fluctuations due to loss in the resonator, and output fields exiting the input and output couplers.

The Hamiltonian of a lossless passive optical resonator Hresonator is identical to that of a
simple harmonic oscillator

Hresonator = Ω′~
(
ã†(t)ã(t) +

1

2

)
, (2.100)

where ã is the intra-cavity resonator mode, Ω′ is the frequency of the oscillator, or in other words
the resonance frequency of the resonator, and the 1/2 term is the oscillators ground state energy.
In practice however, an optical resonator is not lossless, and interacts with the environment in a
number of ways. The resonator mirrors, which we term here the input (sub-script ic) and output
(subscript oc) couplers, have some transmission εic and εoc, and the intra-cavity mode experiences
some round trip loss 1− εl, which we denote here by a sub-script l. Each of these properties cou-
ples a mode of the environment into the resonator (denoted here by ãic,in(t), ãoc,in(t), and ãl(t),
respectively), and couples out some of the resonator mode. This coupling is shown schematically
in Fig. 2.9. The equation of motion for the resonator mode ã(t) can then be written as in Eq. (2.99)
with a correction term for each of the environmental modes. After some work we obtain

˙̃a(t) = −(γ + i∆)ã(t)−
√

2γic ãic,in(t)−
√

2γoc ãoc,in(t)−
√

2γl ãl(t), (2.101)

where ∆ = Ω′ − Ω is the detuning between the resonator and the pump field; γic, γoc, and γl
are the resonator decay rates due to the input coupler, output coupler, and loss respectively; and
γ = γic + γoc + γl is the overall resonator decay rate. The decay rates γic, γoc, and γl are given
by the respective mirror transmissivity and the resonator round trip time τ ,

γic = εic/2τ (2.102)

γoc = εoc/2τ (2.103)

γl = (1− εl)/2τ. (2.104)

Assuming ∆ = 0 so that the laser carrier frequency is perfectly resonant, and taking the Fourier
transform gives

F
(

˙̃a(t)
)

= iωâ(ω) (2.105)

= −γâ(ω)−
√

2γic âic,in(ω)−
√

2γoc âoc,in(ω)−
√

2γl âl(ω), (2.106)

where we have used the Fourier transform property F(ġ(t)) = iωF(g(t)). Rearranging
Eqs. (2.105) and (2.106) give the frequency domain annihilation operators of the field inside the
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resonator

â(ω) =
−1

γ + iω

(√
2γic âic,in(ω) +

√
2γoc âoc,in(ω) +

√
2γl âl(ω)

)
. (2.107)

To obtain the measurable fields ãic,out and ãoc,out exiting the resonators input and output couplers
we require the input and output coupler boundary conditions[78]

ãm,out(t) =
√

2γm ã(t) + ãm,in(t), (2.108)

where m ∈ {ic, oc}. Taking the Fourier transform we obtain the frequency domain boundary
conditions

âm,out(ω) =
√

2γm â(ω) + âm,in(ω). (2.109)

Finally, substituting Eq. (2.107) into Eq. (2.109) above, we obtain the frequency domain annihila-
tion operators of the fields exiting the input and output couplers

âm,out(ω) =
(γ + iω − 2γm) âm,in(ω)− 2

√
γmγn ân,in(ω)− 2

√
γmγl âl(ω)

γ + iω
, (2.110)

where {m,n} ∈ {ic, oc}.
Now that we have the annihilation operators of the fields exiting a general passive resonator,

we will consider a specific example of relevance to this thesis. That of a resonator with equal
input and output coupler decay rates γic = γoc, with a bright field impinging on the input coupler,
and the fields entering the resonator through the output coupler and through loss being in vacuum
states. At frequencies much lower than the total resonator decay rate ω � γ the field exiting the
output coupler is given by

âoc,out(ω) =
1

γ

(
(γl − γ) âic,in(ω) + γlâoc,in(ω)− 2

√
(γ − γl)γl âl(ω)

)
. (2.111)

If the resonator decay rate due to loss is low compared to its input coupler decay rate γl � γic,
γic ∼ γoc + γl and the resonator is impedance matched8, with the input field transmitted perfectly
through the output coupler âoc,out(ω) = âic,in(ω). At frequencies much higher than the total
resonator decay rate ω � γ, however, we find that the fields incident on the input and output
couplers do not interact with the resonator, but rather reflect straight off the input and output
couplers. In this case the field exiting the output coupler is given simply by âoc,out(ω) = âoc,in(ω).
Given that the field entering through the output coupler is a vacuum state, we see that the resonator
is acting to filter out the fluctuations on the input state with frequencies ω > γ. In fact, it is acting
as a low pass filter on the input state, with ω = γ defining the 3 dB point. Such a resonator is used
in Section 3.2 to reduce the high frequency spectral noise of our laser.

2.8.2 Error signals to control the length of optical resonators

In the previous Section we derived the annihilation operators for the fields reflected off, and trans-
mitted through, an optical resonator when the the laser carrier frequency is perfectly resonant
(∆ = 0). We showed that on transmission an optical resonator can act as a low pass frequency

8In general a resonator is impedance matched if the input coupler decay rate is equal to the sum of all other resonator
decay rates γic = γoc + γl.
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filter with a cut-off frequency of γ. In this Section we will describe how an error signal can be
derived to hold the laser carrier field on resonance.

Let us first consider the frequency response of the mean power and phase delay of the fields
reflected off and transmitted through the resonator. Using Eq. (2.110) and again assuming that
γic = γoc, and that the fields introduced due to loss and the output coupler are in vacuum states,
we find that the mean intensitiesPic,out(ω) and Poc,out(ω) as a function of frequency are given by

Pic,out(ω) = ~Ω
〈
â†ic,out(ω)âic,out(ω)

〉
= Pic,in(ω)

γ2
l + ω2

γ2 + ω2
(2.112)

Poc,out(ω) = ~Ω
〈
â†oc,out(ω)âoc,out(ω)

〉
= Pic,in(ω)

(γ − γl)2

γ2 + ω2
, (2.113)

where we have assumed that âic,in(ω) is bright (αic,in(ω) � 1) and have therefore neglected any
terms not containingαic,in. In this case, the mean resonator phase delay 〈φm(ω)〉 can be calculated
as

〈φm(ω)〉 = sin−1

(
〈= {âm,out(ω)}〉√

Pm,out(ω)

)
, (2.114)

where again m ∈ {ic, oc}. The mean phase delays for the fields exiting the input and output
couplers are then found to be

〈φic(ω)〉 = sin−1


 ω√

γ2 + ω2
· γ − γl√

γ2
l + ω2


 (2.115)

〈φoc(ω)〉 = sin−1

(
ω√

γ2 + ω2

)
. (2.116)

The intensity and phase responses of an impedance matched resonator and a lossy resonator
are shown in Fig. 2.10. Unsurprisingly, the maximum intensity is transmitted when the field is
resonant (ω = 0), notice, further, that at ω = 0 no phase delay is experienced by the fields
reflected off and transmitted through the resonator, 〈φm(0)〉 = 0. In both cases the phase varies
linearly with ω around ω = 0, but as ω/γ → ±∞ it asymptotes to 〈φm(ω)〉 = 0 for the reflected
field, and 〈φm(ω)〉 = ±π/2 for the transmitted field. As we will see shortly, this behavior allows
the generation of error signals to control the length of the resonator.

Phase modulation error signal: Pound-Drever-Hall technique

The most commonly used method to generate a high precision resonator locking error signal is the
Pound-Drever-Hall (PDH) technique [79]. The input field to the resonator is phase modulated at
frequency ωPDH. We will assume thatωPDH � γ since this is the regime of relevance for the work
later in this thesis9. In this case we see from Fig. 2.10 that when the carrier is near resonance both
the phase and intensity of the sidebands are independent of the resonance condition. The sidebands
are so far from resonance that they simply reflect off the input coupler. As can be seen in Fig. 2.11,
the carrier however, experiences a linear phase delay as the resonance condition varies. This is very
similar to the sideband modulation locking technique described in Section 2.5.2, which was used

9In theory, PDH locking will work for any ωPDH 6= 0, and indeed the optimum error signal is generated when
ωPDH = γ, we avoid this regime for technical reasons.
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Figure 2.10: Phase and intensity response of a passive resonator withγic = γoc. a)Pic,out(ω) b)Poc,out(ω),
c) 〈φic(ω)〉, and d) 〈φoc(ω)〉. The solid curves are for an impedance matched resonator such that γl � γ,
the dashed curves are for a resonator with γl = γ/4.

to generate a relative phase error signal for the input fields to a beam splitter. The carrier rotation
again transforms some component of the input phase modulation into an amplitude modulation
(see Fig. 2.11 e)). An error signal can then be generated by detecting the reflected field10, mixing
down the resulting photocurrent at frequency ωPDH, and low pass filtering to remove terms with
frequency of ωPDH and higher. Neglecting quantum noise, the resulting PDH error signal EPDH

is then given simply by

EPDH = −gDξPic,out(ω) sin 〈φic(ω)〉 (2.117)

≈ −gDξPic,out(ω) 〈φic(ω)〉 for θ ≈ 0, (2.118)

where again gD is the gain of the detection process, and ξ is the modulation depth. This error
signal is zeroed at 〈φic(ω)〉 = 0 and therefore around the resonance frequency, and is linear
around that frequency. Throughout this thesis, an adaption of this technique is used, with the
phase modulation introduced within the resonator via an electro-optic modulation of the refractive
index of a crystal. The resulting error signal is, to within a weighting factor, identical to that given
above. This weighting factor arises because in this case the sidebands do not simply reflect of the
input coupler, they exit the input and output couplers with a ratio governed by the input and output
coupler transmissivities. This technique, therefore, enhances the error signal that can be obtained
by detecting the field transmitted through the resonator.

10or indeed the transmitted field, although in this case with ωPDH � γ the detected error signal is significantly
smaller.
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Figure 2.11: Phase and intensity response of a passive resonator around the resonance frequency with
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Spatial mode error signal: Tilt-locking

An alternative technique that can be used to derive a high precision resonator error signal is tilt
locking[80, 28]. This technique is based on spatial mode interference between the TEM00 and
TEM01 transverse field modes. The input field to the resonator is misaligned via a tilt around
the resonator waist11. To first order, this misaligned field can be approximated by a sum of the
resonator TEM00 and TEM01 modes, with a π/2 phase shift between them [81]. Assuming that the
TEM00 mode is near resonance, the TEM01 mode will typically be far off resonance as a result of
the Gouy phase shift between the modes[82]. The TEM01 mode will then reflect directly from the
resonator in an analogous manner to the sidebands in PDH locking. The reflected TEM00 mode,
however, will experience a phase shift dictated by Eq. (2.115).

The transverse electric field distribution of the TEM00 and TEM01 modes are shown in
Fig. 2.12 a) and b). Notice that the TEM01 mode has two lobes with a π phase shift between
them. This phase shift means that if the TEM00 and TEM01 fields are interfered in phase, The
TEM00 field constructively interferes with one TEM01 lobe, and destructively interferes with the
other. This results in a shift in the transverse position of the power in the combined mode in
favour of the lobe with constructive interference. When the TEM00 mode is on resonance, it is
reflected with no phase shift, and therefore, since when the input field is tilted the TEM00 and
TEM01 components are orthogonal, there is no shift in the transverse position of the power in the
reflected mode. When the TEM00 mode moves off resonance however, the two modes become
non-orthogonal, and the power in the reflected field shifts in favour of one of the TEM01 lobes.
This effect is shown in Fig. 2.12 c) and d). If this reflected field is then detected on a split detector
as shown in Fig. 2.12 e), the difference of the power on the two halves of the detector can be used

11 that is, a tilt around the point within the resonator where the transverse beam size is minimised.
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modes,respectively, showing the π phase shift between the lobes of the TEM01 mode. c) and d) the in-
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The transverse intensity profile of a tilted field reflected from an impedance matched resonator,
on resonance, and with a±π/1500 phase change during one resonator cycle, is shown in Fig. 2.13.
On resonance the TEM00 mode is fully transmitted so that the reflected intensity distribution is just
that of the TEM01 mode. It is therefore symmetric over the split detector so that the difference
between the intensities of the two halves of the detector is zero. Slightly off-resonance, however,
the intensity distribution shifts towards one or the other side of the detector.

This Tilt error signal requires no modulation or demodulation. For this reason it is much
cheaper, and in general, easier to perform than PDH locking. The spectrum of the transmitted
field is also cleaner, with no modulation spikes. This can be a significant advantage, especially
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for applications such as squeezing where minimisation of spectral noise is critical. Tilt locking
requires a system with better mechanical stability than PDH locking, since any drift in the beam
path before the split detector will result in an offset in the observed error signal. As a result of
these mechanical drifts, Tilt locking requires more maintenance than PDH locking. A typical trace
of the power transmitted through a resonator as its length is scanned over a free-spectral range is
shown in Fig. 2.14 a) with corresponding PDH and Tilt locking error signals in Fig. 2.14 b) and c).
We see that both error signals are linear near resonance, and zeroed at resonance. The Tilt locking
technique provides a significantly broader error signal, and also generates a large error signal that
can be used to lock the TEM01 to resonance which can be useful for some applications.
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Figure 2.14: (a) Transmitted power through an optical resonator. The various misalignment and mismatch
modes are indicated by dotted lines. (b) Error signals generated via PDH locking technique and, (c) via tilt
locking technique.

2.9 Feedback control of resonance and interference

PZ
T

HV PID

Error signal

generationOptical

system

D

Figure 2.15: A schematic of a typical control system. PZT: Piezo-electric-crystal, PID: proportional,
integral, differential servo, HV: high voltage amplifier, D: detector.

We now have a variety of methods to generate error signals that monitor the length of a res-
onator and the relative phase between the inputs to a beam splitter. This Section discusses how we
use those error signals to control an experiment. A typical control scheme is shown in Fig. 2.15.
It consists of the experiment we wish to control, stages for detection and generation of an error
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signal, then filters and amplifiers for the error signal, and finally actuation back onto the experi-
ment. We have discussed the detection of optical fields and generation of error signals in previous
Sections. The filters and amplifiers used for the work presented in this thesis will not be treated
here, although schematics of the electronic circuits can be found in Appendix B. In this Section
we treat the actuation stage. The main form of actuation used throughout the work presented here
was via piezo-electric-crystals (PZTs) that lengthen and shrink in response to an applied voltage.
By attaching mirrors to these PZTs we may actively control the length of an optical beam path.
The maximum expansion achievable from a typical PZT is around 10 µm, which is several optical
wavelengths and is therefore sufficient for our purposes. We also use temperature actuation via
resistors and peltier elements. The bandwidth of such actuation depends strongly on the geometry
and thermal conductivity of the object undergoing heating. Typically, however, temperature con-
trol is limited to frequencies below 100 mHz, which is much lower than PZT control and we will
therefore not consider it further here.

2.9.1 Limitations to the control bandwidth

Time delay in control electronics

The ideal control scheme takes an error signal and applies it directly, and without phase delay, to
the system to control the variable that the error signal is monitoring. However, in a real control
system a time delay tcontrol is unavoidable. This delay results in a phase delay φcontrol on the
feedback given by

φcontrol = ωtcontrol, (2.119)

where ω is the frequency of the perturbation that we wish to control. In general, the control
system phase delay depends on the particulars of the filtering and amplifying electronics, and can
be a complex function of frequency. Here, however, we will treat it simply as the time delay
dictated by Eq. (2.119). The total phase delay of the control system is then given by

φtotal = φcontrol + φPZT = ωtcontrol + φPZT, (2.120)

where φPZT is the phase delay related to the PZT actuator. Once the total phase delay reaches
φtotal = π rad control is not possible since a perturbation of the experiment will then be amplified
by the control system rather than deamplified. This will clearly cause the system to become highly
unstable, and is the reason why spectral filtering is required in the control scheme of Fig. 2.15.
We see that the time delay in the control system ultimately limits the frequencies at which the
system can be controlled. As we will see in the following Section, the phase delay related to PZT
actuations has a strong frequency dependence and can also limit the control bandwidth.

Resonance frequency of a PZT

An ideal PZT configuration consists of a PZT with a mirror attached to one side and a large
counterweight attached to the other. This can be modelled as a massmm on a spring the other end
of which is attached to an infinite mass, as shown in fig 2.16 [83]. The equation of motion of the
mirror is then given by

Fm(t) = mmẍm(t)− γPZTẋm(t) + kPZT (xm(t)− xm,0) (2.121)



§2.9 Feedback control of resonance and interference 39

P
Z
T

Universe Universe

x=0 xm(t)

kPZT,
γPZT

mm

Figure 2.16: An ideal PZT modelled in terms of masses connected by springs.

where Fm(t) is a driving force applied to the mirror, xm(t) is the position of the mirror relative to
the infinite mass, xm,0 is the rest position of the mirror, kPZT is the spring constant of the PZT, and
γPZT is the PZT damping co-efficient. This equation can solved for xm(ω) in a similar manner to
the equation for the internal resonator field in Section 2.8.1, by taking the Fourier transform and
using the property that F(ġ(t)) = iωF(g(t)). Doing this we obtain the mirror displacement for a
given driving force xF,m(ω) as a function of frequency

xF,m(ω) =
xm(ω)

Fm(ω)
=
F (xm(t))

F (Fm(t))
=

1

kPZT − iωγPZT − ω2
m

. (2.122)

The amplitudeAPZT and phase φPZT response of the system can then be calculated as

APZT = |xF,m(ω)| (2.123)

φPZT = sin−1

(= (xF,m(ω))

|xF,m(ω)|

)
. (2.124)

These response functions are shown as a function of frequency by the solid lines in Fig. 2.17,
for a PZT and mirror configuration with the properties kPZT = 9 · 108 Kg/s2, mm = 50 g, and
γPZT = 1000 Kg/s. We see that this ideal PZT configuration has a resonance frequency that is
dictated by the PZT spring constant and the mass that the PZT is acting on. Notice that around
the resonance frequency the phase delay increases rapidly. This phase response limits the control
system bandwidth to below the resonance frequency of the PZT, which is typically around 20 kHz.

Counterweighting

The PZT configuration analysed above was ideal in the sense that the PZT was assumed to be
attached to an infinite mass. Clearly this is not the case in a real system. To see what the effect of
a non-infinite counterweight is we model the system as shown in Fig. 2.18. In this case, the mirror
and PZT are connected via a spring to a counterweight of finite mass mc which is then connected
via another spring to an infinite mass. The coupled equations of motion for the two masses in this
configuration are then given by

Fm(t) = mmẍm(t)− γPZTẋm(t) + kPZT ((xm(t)− xm,0)− (xc(t)− xc,0)) (2.125)

Fc(t) = mcẍc(t)− γcẋc(t)− γPZTẋc(t) + kc (xc(t)− xc,0)

−kPZT ((xm(t)− xm,0)− (xc(t)− xc,0)) = 0, (2.126)

where Fc(t) is the driving force exerted on the counterweight which we take here as zero, xc(t)

is the position of the counter weight relative to the infinite mass, xc,0 is the rest position of the
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Figure 2.17: Frequency response of a PZT showing the effects of preloading and imperfect counterweight-
ing. a) displays the amplitude and b) the phase response. The solid lines represent an ideal PZT with
kPZT = 9 · 108 Kg/s2, mm = 50 g, and γPZT = 1000 Kg/s. The dashed lines represent the same PZT but
with non-ideal counterweighting, withmc = 4 Kg, kc = 2.5 ·1010 Kg/s2, and γc = 7000 Kg/s. Finally, the
dotted lines represent the ideal PZT with pre-loading, kpreload = 2.3 ·109 Kg/s2, and γpreload = 2000 Kg/s.
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Figure 2.18: PZT and counterweight interaction modelled by masses connected with springs.

counterweight, and γc and kc are respectively the damping co-efficient and spring constant of the
spring between the counterweight and the infinite mass. This coupled set of equations can be
solved for xm(ω) in a similar manner to that above, and yields the frequency dependent mirror
displacement for a given driving force

xF,m(ω) =

[
−ω2mm − iωγPZT + kPZT

( −ω2mc − iω (γc + γPZT) + kc

−ω2mc − iω (γc + γPZT) + kc + kPZT

)]−1

,

(2.127)

where the amplitude and phase response can be calculated in the same manner as the previous
case. Taking the same parameters for the PZT and mirror as before, and choosing mc = 4 Kg,
kc = 2.5 · 1010 Kg/s2, and γc = 7000 Kg/s, we obtain the phase and amplitude responses shown
by the dashed lines in Fig. 2.17. We see that the response is almost identical to the previous
case where the counterweight was assumed to have infinite mass, and has an identical resonance
frequency. However, a spurious resonance has appeared around 12.5 kHz. Depending on the
magnitude of other control system phase delays, the phase delay corresponding to this resonance
could limit the control bandwidth.
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2.9.2 Using preloading to improve the control bandwidth
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Figure 2.19: PZT preloading modelled in terms of masses connected by springs.

It is possible to show from Eq. (2.122) that the resonance frequency of the PZT goes as
√
kPZT.

Therefore, increasing the PZT spring constant will increase the resonance frequency, enhancing
our control bandwidth. One technique that can be used to increase the PZT resonance frequency is
preloading. The PZT and mirror assembly are clamped to increase the tension over the PZT, with
a rubber O-ring between the clamp and the mirror as shown in Fig. 2.19. This can be modelled
simply by adding a second spring, representing the O-ring, between the mirror and the counter-
weight. Assuming again that we have a counterweight of infinite mass the equation of motion for
the mirror becomes

Fm(t) = mmẍm(t)− (γPZT + γpreload) ẋm(t) + (kPZT + kpreload) (xm(t)− xm,0) , (2.128)

where γpreload and kpreload are respectively the damping co-efficient and spring constant of the
O-ring. We see that the effect of the pre-loading is simply to increase the spring constant and
damping co-efficient of the PZT. Of course, both the damping co-efficient and the spring constant
of the O-ring depend on the tension of the clamping, and so can be varied by tightening the
clamping screws. The dotted lines in Fig. 2.17 show the amplitude and phase response of the ideal
PZT configuration modelled previously with the addition of pre-loading, where the parameters of
the O-ring were set to kpreload = 2.3 · 109 Kg/s2, and γpreload = 2000 Kg/s. Clearly, pre-loading
has the potential to increase the control bandwidth of the system.

2.9.3 Experimental characterisation of control bandwidth

We characterised the amplitude and phase response of various PZT configurations by building
a two mirror optical resonator with one of the mirrors attached to a PZT. In all cases a small
aluminium mount was superglued to the PZT, the mirror sat in that mount and was attached with
three small screws. We modulated the length of the resonator at 29.7 MHz via the electro-optic
effect. This modulation was used to generate a PDH error signal which monitored the length of
the resonator. The resonator length was manually controlled so that an optical field at 1064 nm
was on resonance. The output of a network analyser, which was a sinusoidal signal that swept
between 100 Hz and 50 kHz, was connected to the PZT. This signal caused the PZT to oscillate,
and the amplitude and phase of the oscillation as a function of frequency could be monitored via
the resonator error signal.

In the first PZT configuration analysed the PZT was simply superglued to a small counter-
weight. The amplitude and phase responses for this configuration are shown in Fig. 2.20 a). We
see that both spectra are extremely noisy. The most likely cause for this noise was that with such a
small counterweight many system resonances become significant in the frequency response. These
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Figure 2.20: Experimental determined amplitude and phase response of a PZT a) with small counterweight
b) with large counter weight, c) with large counter weight and low tension pre-loading, and d) with large
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spurious resonances can be caused by any joint between two surfaces. For example there would be
a resonance between the counterweight and the optical mount that it was placed in, and a variety
of resonances between the optical mount and the optical table. With the extreme variability of
both the amplitude and phase response, it would be impossible to actively control the length of the
resonator with this configuration.

Increasing the mass of the counterweight by a factor of twenty we observed the amplitude and
phase responses shown in Fig. 2.20 b). All bar one of the previously observed spurious resonances
disappeared, with the remaining resonance probably the result of one of the joints between the
PZT and the mirror, which would be independent of the counterweight mass. These spectra are in
good qualitative agreement with the calculated spectra shown in Fig. 2.17. We see that the PZT
has a resonance at around 20 kHz. For the sake of comparison, we assume here that the time delay
associated with the control electronics is tcontrol = 5 µs. It is then possible to define a maximum
bandwidth for the control system from the phase response of the PZT. This bandwidth is shown
in Fig. 2.20 b). We see that for this PZT configuration the bandwidth is limited by the remaining
spurious resonance at 13 kHz.

To improve the control bandwidth we implemented a pre-loading scheme similar to that de-
picted in Fig. 2.19. An aluminium plate with a hole for the optical field was connected to the
inside surface of the resonator mirror. Screws with rubber O-ring washers12 were then used to
clamp the plate to the counterweight. Tightening the screws increased the tension on the PZT, and
also reduced the effect of resonances at joints between the aluminium plate and the counterweight.
We analysed the effect of the preloading for two levels of tension, and the results are shown in

12We also tested teflon washers but found that they introduced several spurious resonances and were therefore not
optimum.
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Fig. 2.20 c) and d). We see that the resonance frequency of the PZT is increased, and the spurious
resonance at 13 kHz is damped out. This damping of the spurious resonance supports our earlier
conjecture that it occurs at a joint between the mirror and the PZT. We found that the PZT reso-
nance frequency could be increased up to around 41 kHz, and this combined with the damping of
the 13 kHz resonance resulted in a control bandwidth as high as 38 kHz. This was not necessar-
ily the limit to the bandwidth achievable using preloading. Rather than push the configuration to
its limits we stopped increasing the tension due concerns about possible damage to the resonator
mirror.

2.10 The second order optical nonlinearity

The processes studied throughout the history of optics are almost entirely linear13. Linear pro-
cesses are independent of the intensity of the light, do not affect its frequency, and obey the prin-
ciple of superposition which states that the linear combination of any two solutions of an optics
problem is itself a solution. With the invention of the laser in 1960[40] came light fields with much
greater intensity than was previous available. These fields provide access to highly non-linear pro-
cesses that are not constrained by the properties of linear processes given above. Provided that
the frequency of the light is far detuned from the atomic resonances of the media, the critical
parameter of a di-electric medium with regard to these non-linear processes is its atomic polarisa-
tion P . This atomic polarisation is the overall effect of the dipole moments of each of the atoms
constituting the medium. When an electromagnetic field propagates through the medium it effects
these dipole moments and induces a macro-scopic atomic polarisation. In a linear medium, this
polarisation oscillates at the frequency of the electromagnetic field, and can re-radiate back into
the field. In a non-linear medium it can oscillate at harmonics of the original field frequency. The
relationship between the atomic polarisation and the electromagnetic field can be expressed as the
power series

P = ε0

(
χE + χ(2)E2 + χ(3)E3 + . . .

)
, (2.129)

where ε0 is the permittivity of free space, E is the applied electric field, χ is the linear suscep-
tibility of the medium and χ(i) is the ith order nonlinear susceptibility of the medium. For low
electromagnetic field intensitiesP is purely linear, as the intensity increases the higher order terms
in Eq. (2.129) become more significant and P becomes increasingly non-linear. This non-linearity
gives rise to many interesting phenomena. Here we will focus on the second order (or χ(2)) non-
linearity. In the following Sections we will see how this nonlinearity can be used to facilitate
second harmonic generation, and optical parametric amplification, and to generate squeezed states
of light.

2.10.1 Second order nonlinear optical processes

Second order non-linear optical processes are the optical processes that rely on the second order
nonlinear susceptibility χ(2). They can be broadly described as the non-linear optical processes
that involve the interaction of three photons, or in other words are three-wave mixing processes.
A summary of these processes is given in Fig. 2.21, and an excellent treatment can be found in
the nonlinear optics text by Boyd[84]. There are two kinds of second order non-linear optical pro-
cesses: upconversion processes that take two low energy photons and combine them to form one

13The discussion in this Section follows that given in the thesis of Ping Koy Lam[75]
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Figure 2.21: A summary of second order non-linear optical processes. Left hand side: diagrammatic rep-
resentation of upconversion processes. SHG: second harmonic generation, SFG: sum frequency generation.
Right hand side: diagrammatic representation of downconversion processes. DOPO: degenerate optical
parametric oscillation, NDOPO: non-degenerate optical parametric oscillation. Typically a threshold power
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process is seeded. In this case the processes in the right hand column can occur, where the seed field is
labeled *. DOPA: degenerate optical parametric amplification, NDOPA: non-degenerate optical parametric
amplification. [Diagram adapted from Fig. 4.1 in [75].]

photon of higher energy, and downconversion processes where a single high energy photon is split
into two photons of lower energy. The generic upconversion process is sum frequency generation
(SFG) where two photons with respective frequencies Ω1 and Ω

′
1 are combined to produce one

photon of energy Ω1 + Ω
′
1. If the original photons have equal frequency (Ω1 = Ω

′
1), the process

is termed second harmonic generation (SHG). Downconversion processes are complementary to
upconversion, with the reverse processes to SFG and SHG being non-degenerate (NDOPO) and
degenerate (DOPO) optical parametric oscillation, respectively. Downconversion processes are
differentiated from upconversion however, since typically a threshold power must be exceeded
before they will proceed. Seeding the process with a field at the frequency of one of the output
fields eliminates this threshold, and the corresponding processes are then termed non-degenerate
(NDOPA) and degenerate (DOPA) optical parametric amplification.

2.10.2 Conservation laws and the phase matching condition

Both energy and momentum must be conserved by all physical processes. In the case of second
order nonlinear processes these conservation laws impose restrictions on the regime in which the
processes are effective. The condition for energy conservation can be written in terms of the
frequencies of the lower energy photons Ω1 and Ω

′
1, and that of the higher energy photon Ω2

Ω2 = Ω1 + Ω
′
1. (2.130)
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For momentum to be conserved the photon wavevectors ~ki must satisfy

~k2 = ~k1 + ~k
′
1, (2.131)

where |~ki| = ki = niΩi/c, ni is the refractive index of the nonlinear medium as experienced
by photon i, Ωi is the frequency of photon i, and c is the speed of light in vacuum. Clearly this
condition imposes a restriction on the refractive index of the atomic medium. Henceforth we
restrict our analysis to the case of relevance to this thesis where fields 1 and 1

′
are degenerate, and

therefore Ω1 = Ω
′
1 = Ω2/2 and n1 = n

′
1. We term the fields at Ω1 and Ω2 the fundamental and

second harmonic fields, respectively. Assuming that the fundamental and second harmonic fields
are co-propagating the condition for momentum conservation becomes

n1 = n2. (2.132)

So that the fields must propagate at the same speed through the medium. The result is that the
atomic polarisation modes generated in the nonlinear medium at the fundamental and second har-
monic frequencies remain in phase with the fields at the same frequencies throughout propagation
in the medium. The condition for momentum conservation in second order non-linear optical
processes is therefore commonly termed the phase matching condition. In the absence of atomic
transitions dielectric media have normal dispersion14, meaning that their refractive index increases
with optical frequency. The phase matching condition is therefore not naturally satisfied. Phase
matching can be achieved in a birefringent medium, in which the refractive indices vary depending
on the orientation of the optical polarisation relative to the optical axis. There are two methods
commonly used to achieve phase matching: ‘Type I’ and ‘Type II’ phase matching15. Here we will
consider only ‘Type I’ phase matching. In this case the second harmonic field is polarised along
the fast axis of the birefringent medium, and the fundamental field along its slow axis. It is then be
possible to cancel the dispersion using the media birefringence. This cancellation can be achieved
by either angle or temperature tuning the media. When the polarisation of one field is parallel to
the optical axis (z), and the other field is free to propagate along any direction of the xy-plane
the phase matching is said to be noncritical. The nonlinear media used throughout the exper-
iments presented in this thesis was Magnesium Oxide doped Lithium Niobate (MgO:LiNbO3).
MgO:LiNbO3’s refractive index is strongly depend on temperature, and temperature tuning was
used to achieve noncritical phase matching.

Unlike the condition for energy conservation, momentum conservation between the optical
fields is not required to be exactly satisfied in non-linear optical processes. If it is not satisfied
exactly the efficiency of the non-linear process is degraded and some momentum is imparted
onto the atomic polarisation, so that, of course, the overall momentum is conserved. When the
fundamental and second harmonic fields are co-propagating the magnitude of the momentum (or
phase) mismatch ∆k is given by

∆k = k2 − 2k1. (2.133)

The phase mismatch for MgO:LiNbO3 as a function of temperature and wavelength can be ob-

14Near an atomic transition a media may have anomalous dispersion, where the refractive index decreases with
increasing frequency.

15Note that it is also possible to avoid the phase matching condition entirely by periodically poling the non-linear
medium so that the propagating fields experiences a phase flip when the phases of the atomic polarisation and the optical
fields begin to drift apart. This methods is termed ‘quasi-phase matching’.
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Figure 2.22: The effect of phase mismatch on the efficiency of ideal single-pass second harmonic genera-
tion using MgO:LiNbO3 for a range of interaction lengths. a) z = 0.1 cm, b) z = 1 cm, and c) z = 10 cm.

tained from the corresponding Sellmeier equation[85]

∆k = −8666 cm−1 ×
(

1− λ0

λ

)
+ 7.49 cm−1K−1 × (T − T0) , (2.134)

where λ0 = 1064 nm and T0 = 107◦C. The effect of phase mismatch on the non-linear interaction
strength can be see by considering the conversion efficiency of ideal single-pass second harmonic
generation ηSHG[84]

ηSHG = sinc2

(
∆kz

2

)
, (2.135)

where z is the interaction length within the nonlinear medium. This sinc2 functionality is anal-
ogous to that of Young’s single slit experiment, where a square near-field transverse field distri-
bution is transformed to a sinc2 in the far-field. In our case, the interaction length within the
nonlinear medium can be thought of as the slit. Fig. 2.22 plots ηSHG as a function of temperature
and for several interaction lengths, when the nonlinear medium used is MgO:LiNbO3. We see that
for a fundamental wavelength of λ = 1064 nm, as was the case for our experiments, the optimum
nonlinearity occurs at 107 ◦C, independent of the interaction length z. Since observation of high
levels of nonlinearity requires that the phase matching condition be maintained over the entire
interaction length, we find that as the interaction length increases the temperature range for good
nonlinearity reduces. In a real system however, high conversion efficiencies are hard to achieve
with a short interaction length. In practice the interaction length is chosen to maximise the conver-
sion efficiency, and highly accurate temperature controllers are used to maintain the correct crystal
temperature.

2.10.3 Equations of motion

Let us now consider the equations of motion for the fundamental and second harmonic fields when
coupled through second order non-linear processes. In Chapter 3 we will use the solutions of these
equations to model second harmonic generation and degenerate optical parametric amplification.
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We saw in Section 2.8.1 that the equations of motion of open quantum systems can be determined
from their reversible Hamiltonian. The reversible Hamiltonian describing degenerate second order
nonlinear processesHχ(2) is [69]

Hχ(2) = ~Ω1ã
†
1(t)ã1(t) + ~Ω2ã

†
2(t)ã2(t) +

i~Λ

2

(
ã†1(t)2ã2(t)− ã1(t)2ã†2(t)

)
, (2.136)

where ~Ω1ã
†
1(t)ã1(t) and ~Ω2ã

†
1(t)ã2(t) are the energies of the fundamental and second harmonic

fields respectively, ã†1(t)2ã2(t) − ã1(t)2ã†2(t) describes the interaction between the fields, and Λ

is the interaction strength which is a function of the second order nonlinear susceptibilityχ(2) and
experimental parameters such as the phase mismatch and beam focussing.

High field intensities are required before the effects of optical non-linearities can be observed.
Two methods are commonly used to achieve this high field intensity: the input fields can be
pulsed, or the non-linear medium can be placed within an optical resonator. Here, we place our
MgO:LiNbO3 inside an optical resonator for the fundamental field. When the fundamental field
is on resonance its intra-resonator field intensity is strongly enhanced. The system then interacts
with the environment through intra-resonator losses, and the transmissivities of the input and out-
put couplers in a manner identical to the passive resonator described in Section 2.8.1. Using the
formalism introduced in Section 2.8.1, we can transform the HamiltonianHχ(2) into equations of
motion for the fundamental and second harmonic fields inside the resonator

˙̃a1(t) = −γ1ã1(t)+Λã†1(t)ã2(t)−
√

2γic,1 ãic,in1(t)−
√

2γoc,1 ãoc,in1(t)−
√

2γl,1 ãl,1(t) (2.137)

˙̃a2(t) = −γ2ã2(t)−Λ

2
ã1(t)2−

√
2γic,2 ãic,in2(t)−

√
2γoc,2 ãoc,in2(t)−

√
2γl,2 ãl,2(t), (2.138)

where the subscripts ‘ic’, ‘oc’ and ‘l’ label terms relating to the input coupler, output coupler, and
loss, respectively, and we have assumed that the fundamental field is on resonance. Assuming that
the resonator for the fundamental field has much higher finesse than that for the second harmonic
field (γ1 � γ2), the evolution of the second harmonic field will occur rapidly compared to the
fundamental field. In this case at time scales relevant to ã1(t) we can assume ˙̃a2(t) = 0 [86, 87].
Rearranging Eq. (2.138), we see that the intra-resonator second harmonic field is then given by

ã2(t) =
1

γ2

[
−Λ

2
ã1(t)2+

√
2γic,2 ãic,in2(t)+

√
2γoc,2 ãoc,in2(t)+

√
2γl,2 ãl,2(t)

]
. (2.139)

Substituting this expression into Eq. (2.137) the equation of motion for the intra-resonator funda-
mental field becomes

˙̃a1(t) = −γ1ã1(t)− Λ

γ2
ã†1(t)

[
Λ

2
ã1(t)2 + ãin2(t)

]
− ãin1(t), (2.140)

where ãin,1(t) and ãin,2(t) are

ãin1(t) =
√

2γic,1 ãic,in1(t) +
√

2γoc,1 ãoc,in1(t) +
√

2γl,1 ãl,1(t) (2.141)

ãin2(t) =
√

2γic,2 ãic,in2(t) +
√

2γoc,2 ãoc,in2(t) +
√

2γl,2 ãl,2(t). (2.142)

The classical behavior of this equation of motion can be analysed by replacing each operator
by its expectation value ã(t)→ α(t). We then obtain the expression

α̇1(t) = −γIIα1(t)3 − (2
√
γII αic,in2(t) + γ1)α1(t)− αin1(t), (2.143)



48 Theoretical concepts and experimental techniques

where we have assumed that the second harmonic input field enters through the input coupler
(αoc,in2(t) = 0), and that γ2 = γic,2 which is reasonable for the extremely weak second harmonic
resonators used throughout the work presented here; and

γII =
Λ2

2γ2
(2.144)

is the two-photon decay rate. Setting α̇1(t) = 0 and choosing ãin1(t) to be real and positive,
Eq. (2.143) can be solved to yield the steady state solution for α1(t)

α1(t) =
γ1 + 2

√
γII αic,in2(t)−K2

√
3γIIK

, (2.145)

where K is given by

K = 2−
1
3

[√
33γIIαin1(t)2 + 4 (γ1 + 2

√
γIIαic,in2(t))3 − 3

√
3γIIαin1(t)

] 1
3

. (2.146)

Eq. (2.139) provides α2(t)

α2(t) =
1

γ2

[
−Λ

2
α1(t)2 + αin2(t)

]
, (2.147)

and the classical fundamental and second harmonic steady state output fields can be calculated
using the resonator boundary conditions given in Eq. (2.108).

The quantum mechanical behavior can be obtained via a similar method as that performed for
a passive optical resonator in Section 2.8.1. In this case however, we must expand each of the
operators in Eq. (2.140) in terms of its expectation value and fluctuations, ã(t) = α(t) + δã(t),
assuming that |α1(t)| = α1(t)� {|∆ã1(t)|, |∆ãin2(t)|} we can linearise the equation neglecting
the higher order terms in δã1(t) and δãin2(t). The resulting expression for δ ˙̃a1(t) can be rewritten
as an expression for each of the time domain amplitude and phase quadrature operators using
the relations δ ˙̃

X+(t) = δ ˙̃a
†
1(t) + δ ˙̃a1(t) and δ ˙̃

X−(t) = i(δ ˙̃a
†
1(t) − δ ˙̃a1(t)). Taking the Fourier

transform of these time domain quadrature operator equations of motion provides expressions for
the frequency domain intra-resonator quadrature operators X̂±1 (ω).

X̂±1 (ω)=−
√

2γic,1X̂
±
ic,in1(ω)−

√
2γoc,1X̂

±
oc,in1(ω)−

√
2γl,1X̂

±
l,1(ω)−2

√
γII α1(t)X̂±ic,in2(ω)

iω + γ1 + Υ±
,

(2.148)

where Υ± are defined as

Υ± = 2γIIα1(t)2 ±
(
γIIα1(t)2 + 2

√
γIIαic,in2(t)

)
. (2.149)

The boundary conditions given in Eq. (2.109) can then be used to obtain expressions for the fre-
quency domain quadrature operators of the fields exiting the resonator. Notice that the frequency
domain operators for the intra-resonator fundamental field depend not only on the input fields
at the fundamental wavelength, but also on those at the second harmonic wavelength. This de-
pendence on X̂±ic,in2(ω) varies proportionally with the intra-resonator fundamental field ampli-
tude α1(t). Therefore, the coupling can be eliminated by ensuring this field amplitude is low,
α1(t)� 1/2

√
γII.
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2.11 Summary

This Chapter introduced the quantum optical techniques used throughout the work presented in
this thesis. These techniques include those used to model quantum states, quantum optical experi-
ments, and the detection of quantum states; and those used in the laboratory to monitor and control
our experiments.

To summarise, we introduced the relevant quantum states of light, and discussed how they
could be represented using Wigner functions and Ball and Stick diagrams. We discussed the quan-
tum optical sideband states, and demonstrated that an optical modulation performs the function of
the Displacement operator on such states. We introduced the beam splitter, showing how it can be
used to model inefficient processes, and how error signals can be generated to control the relative
phase of the beam splitter inputs. We demonstrated how the quantum state of the sidebands of an
optical field can be probed using direct detection and homodyne detection. We modelled optical
resonators, and discussed methods used to control their length. The limitations of, and methods
used to improve, the frequency bandwidths of control loops in an experiment were discussed.
Finally, we introduced the second order optical nonlinearity that we make use of to produce the
second harmonic of our laser field and to generate squeezed states of light.
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Chapter 3

Generation of quadrature squeezing

'The origin of quantum noise' - Aska Dolinska 2002` `

In this Chapter we discuss in detail the experimental system that enabled generation of the
squeezed optical fields used throughout the work presented in this thesis. The core components of
this system are a pair of optical parametric amplifiers that rely on the second order non-linearity
of Magnesium Oxide doped Lithium Niobate. The development of these optical parametric am-
plifiers relied on expertise developed over several Ph.D.’s at the A.N.U. quantum optics group
[75, 76]; and their design was based on the pioneering work of Schiller, Mlynek and co-workers at
Universität Konstanz [53, 63] who demonstrated as much as 6.2 dB of squeezing in a stably con-
trolled 1064 nm optical field. We analyse several optical parametric amplifier configurations based
on this design, and discuss some of the significant noise sources that degrade the level of squeez-
ing observed on the output field. We experimentally characterise the level of squeezing exhibited
by the output fields, measuring an optimum 4.4 dB below the quantum noise limit. Finally, we
suppress the relaxation oscillation noise of our laser by placing the OPAs within a Mach-Zehnder
interferometer; demonstrating stably locked vacuum squeezing at frequencies as low as 210 kHz.

Part of the work presented in this Chapter has been published in the journal articles:

• D. A. Shaddock, B. C. Buchler, W. P. Bowen, M. B. Gray, and P. K. Lam. Modulation-free
control of a continuous-wave second-harmonic generator. Journal of Optics A: Pure and
Applied Optics 2, pp. 400 (2000).

• M. J. Lawrence, W. P. Bowen, H.-A. Bachor, R. L. Byer, and M. M. Fejer. Squeezed Singly
Resonant Second Harmonic Generation in Periodically Poled Lithium Niobate. Journal of
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the Optical Society of America B 19, pp.1592 (2002).

• W. P. Bowen, R. Schnabel, N. Treps, H.-A. Bachor, and P. K. Lam. Recovery of continuous
wave squeezing squeezing at low frequencies. Journal of Optics B: Quantum and Semi-
Classical Optics 4, pp. 421 (2002).

• R. Schnabel, W. P. Bowen, N. Treps, B. C. Buchler, T. C. Ralph, P. K. Lam, and H.-A.
Bachor. Optical experiments beyond the quantum limit: squeezing, entanglement, and tele-
portation. Optics and Spectroscopy 94, pp. 711 (2003).

3.1 The laser

The majority of the work present in this thesis utilised an Innolight Mephisto Nd:YAG laser pro-
ducing radiation at 1064 nm. The laser had a nonplanar ring geometry (NPRO), which provided an
output field of extremely stable frequency with a FWHM linewidth in the low kHz (see Fig. 3.1).
Single mode operation of the laser was ensured via the Faraday effect. The laser output field was
a diffraction limited, low noise, single frequency mode 1.5 W beam [88, 89]. The frequency of
the laser field could be controlled at low frequencies via Peltier elements that heated or cooled
the laser crystal and therefore changed the length of the resonator, and at high frequency via a
PZT actuator that mechanically stressed the laser crystal, changing its refractive index. The PZT
tuning range was limited to 80 MHz, which corresponds to 4 % of the free spectral range (FSR)
of the laser. To achieve the desired frequency tuning range and control bandwidth when locking
the laser to an optical resonator, a combination of temperature and PZT actuation was used. The
resonant relaxation oscillation (RRO) of the laser, which couples noise into its power spectrum,
had a peak at around 750 kHz. This can be thought of as the atomic cycling frequency from the
ground state of the Nd:YAG energy level system to the laser level. Measurements of the FSR,
RRO, and linewidth of a typical Innolight Mephisto Nd:YAG laser are shown in Fig. 3.1.
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Figure 3.1: Measurements of the FSR, RRO, and linewidth of a typical Innolight
Mephisto Nd:YAG laser [obtained from the Innolight Mephisto technical data sheet,
http://www.innolight.de/products/mephisto/INNOLIGHT Mephisto.pdf].

The laser output at 1064 nm was passed through an optical isolator to prevent feedback, and
was collimated to a width of 1 mm. The Rayleigh length of the beam was then ∼ 3 m, so that
its width remained at ∼ 1 mm over the length of our optical table. 1.2 W of light at 1064 nm
was then available to perform our experiments. Prior to any optical resonators in the experiment
the field was focussed or mode-matched into a spatial mode identical to the resonator mode. The
output fields were then recollimated at 1 mm width. This recollimation allowed for convenient
mode-matching of the interferometer stages of the experiment.
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3.2 Spectral and spatial mode cleaning resonator

INVAR

θ

π/4−θ/2

ROC=1m

ε<0.00005

ROC=∞

εH=0.018

εV=0.0007

O-ring

194 mm

Figure 3.2: Schematic of the mode cleaner used to improve the spatial and spectral mode quality of the
1064 nm laser beam, θ = 4.41◦, ROC: radius of curvature, ε: transmission of the respective resonator
mirror, sub-scripts H and V label the horizontally and vertically polarised modes, respectively.

Sixty percent of the laser power was used to pump a second harmonic generator, which is the
subject of Section 3.3. The experiments presented in this thesis were very sensitive to spectral
noise and spatial mode-matching inefficiencies. To minimise problems related to these effects the
remaining laser field was passed through a high-finesse optical resonator, or mode cleaner, before
being used to generate squeezed and entangled states; to control optical resonators and interfer-
ometers; and for homodyne local oscillators to characterise optical states. This mode cleaner was
based on a design developed in the Ginzton Labs, Stanford [90], and a schematic diagram is given
in Fig. 3.2. It was a ring resonator consisting of two identical closely spaced flat . 45◦ angled
input/output coupling mirrors, and a 1 m radius of curvature mirror coated for high reflection at
normal incidence (transmissivity: εcurv < 0.00005); and had a total resonator length of 42 cm.
All three mirrors were dielectrically coated by Research-Electro-Optics (REO) with tolerances of
10-100 parts-per-million. In general the reflectivity and phase response of an angled dielectric
mirror depends on the polarisation of the input field. Two mode cleaner operation regimes could
then be accessed. For a vertically polarised input field the input and output mirrors had transmis-
sivity εV = 0.0007. Assuming no intra-resonator loss, these transmissivities lead to a predicted
resonator finesse of 4300. In contrast we observed a finesse of 2000, this provided an estimate
of the round-trip resonator loss of (1 − εl) = 0.0017. The total resonator decay rate was then
γV = (2εV + εcurv + (1 − εl))/2τ = 1.1× 106 rad. In Section 2.8.1 we found that a resonator
with εic = εoc acts as a low pass filter on the fluctuations of the input field, with 3 dB point defined
by the total resonator decay rate γ. Therefore, in this mode cleaner operation regime, the fluctu-
ations of the input field were significantly attenuated at frequencies above γV/2π = 0.18 MHz.
When the mode cleaner input field was horizontally polarised the input and output coupler mir-
ror transmissivities were specified to be εH = 0.018. Assuming a round-trip resonator loss of
(1 − εl) = 0.0017, the finesse was then predicted to be 165, which compared well with the ob-
served finesse of 170. The resulting resonator decay rate was γH = 13.5 × 106 rad. Therefore
in this case the resonator 3 dB point was γH/2π = 2.1 MHz, and fluctuations on the input field
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Figure 3.3: Frequency spectra of the field transmitted through the mode cleaner in low (a) and high (b)
finesse modes, normalised to the quantum noise limit.

above that frequency were attenuated.
Frequency spectra for the intensity noise of a 25 mW laser field after transmission through

the mode cleaner for both its low and high finesse modes are shown in Fig. 3.3. We see that at
frequencies below 5 MHz the intensity noise of the high finesse output was attenuated significantly
more than that of the low finesse output. In the experiments presented in this thesis we utilised the
low finesse mode to maximise the power transmitted through the resonator. The mode cleaner then
acted primarily to ensure that the laser field was in a pure TEM00 mode, and that the alignment
of the 1064 nm beam used in our experiments did not drift. Fig. 3.3 shows that a 25 mW beam
transmitted through the mode cleaner was quantum noise limited at around 6 MHz. The frequency
of our laser source was locked to the mode cleaner using both temperature and PZT control. The
error signal for this control system was generated using the tilt locking technique introduced in
Section 2.8.2 [28, 80].

3.3 Second harmonic generation

Throughout the work presented in this thesis the second harmonic of our 1064 nm laser field was
used as a pump source for a pair of optical parametric amplifiers (OPAs). Our primary objective
was to design a second harmonic generator with high efficiency to provide an intense source of
532 nm light. It is possible to generate squeezed light via second harmonic generation[91], and
these techniques were investigated during the course of my PhD[26]. However, they were found
to be less effective than OPA based techniques, and will not be discussed further here. We limit
our treatment to the classical behaviour of second harmonic generation.

The experimental configuration used to generate an intense second harmonic field is shown
in Fig. 3.4. It consisted of an input/output coupler and a hemilithic MgO:LiNbO3 crystal of di-
mension {x, y, z} = {5 mm, 7.5 mm, 2.5 mm} where z is the crystal optical axis and the field
propagates along y. The MgO:LiNbO3 crystal was polished and coated by PMS Optik GmbH.
One end had a 10 mm radius of curvature and was coated for high reflection at 1064 and 532 nm,
and the other was flat and anti-reflection coated at both 1064 and 532 nm. The temperature of
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Figure 3.4: Second harmonic generator configuration, HV: high voltage amplifier, PID: proportional, inte-
gral, differential servo, DC: dichroic mirror, PZT: piezo-electric crystal, ⊗: RF mixer.

the crystal was controlled so that the phase matching condition was satisfied. It was mounted in
an aluminium oven, a thermistor monitored the temperature of the oven and a home-built temper-
ature servo then controlled it to a setpoint by applying current to resistors within the oven. The
input/output coupling mirror had a radius of curvature of 25 mm, and was anti-reflection coated
for 532 nm, εic,2 = 0.94. The transmissivity if the output coupler for the fundamental field was
chosen to maximise the SHGs conversion efficiency for 700 mW of input 1064 nm field. It was
attached to a PZT so that the length of the resonator could be controlled, and a pre-loading system
as described in Section 2.9.2 was used to enhance the PZT bandwidth to 40 kHz. 23 mm separated
the MgO:LiNbO3 crystal and the output coupler, this created a mode for the resonant 1064 nm
light with a 27 µm waist at the center of the MgO:LiNbO3 crystal. A 29.7 MHz electro-optic
modulation was applied to the MgO:LiNbO3 crystal, this caused a refractive index modulation of
the crystal, and therefore a phase modulation on the intra-resonator field. Detecting the transmit-
ted field and de-modulating (mixing down) at 29.7 MHz provided a Pound-Drever-Hall (PDH)
type error signal [79] (see Section 2.8.2) which was used to control the length of the SHG res-
onator. The second harmonic output field exited the resonator through the output coupler and was
separated from the input fundamental field with a dichroic mirror. A summary of the parameters
characterising our SHG is given in Table 3.1.

The conversion efficiency of external resonator second harmonic generation ηSHG is given as
a function of fundamental input power by

ηSHG =
Pic,out2

Pic,in1
=
~Ω2 |αic,out2|2

Pic,in1
=
~Ω2Λ2α2

1

2γ2Pic,in1
, (3.1)

where we have related the coherent amplitude of the second harmonic output field αic,out2 to
that of the fundamental intra-resonator field α1 via Eq. (2.147) and the boundary conditions in
Eq. (2.108). For second harmonic generation α1 is given by Eq. (2.145) with no second harmonic
input power (αic,in2 = 0). The conversion efficiency can then be predicted given knowledge of
the nonlinear interaction strength Λ. The nonlinear interaction strength depends on experimen-
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SHG OPAs
Fundamental input coupler transmissivity, εic,1 0.08 0.0005
Fundamental output coupler transmissivity, εoc,1 0.0005 0.04
Intra-resonator loss, 1− εl,1 0.0065 0.0065
Second harmonic input coupler transmissivity, εic,2 0.94 0.94
Single pass resonator optical path length, L 4 cm 4 cm
Non-linear interaction strength, Λ 3100 s−

1
2 3100 s−

1
2

Fundamental input power, Pic,in1 700 mW 10-60 mW
Second harmonic input power, Pic,in2 0 mW 135 mW

Table 3.1: Summary of the parameters characterising the SHG and OPAs developed for the work presented
in this thesis. Pi = ~Ωiα†iαi is the intensity of field i, and L is the single-pass optical path length within
the resonator. γic,1 = εic,1/2τ , γoc,1 = εoc,1/2τ , γic,2 = εic,2/2τ , and γl,1 = (1 − εl,1)/2τ , where the
resonator round trip time is given by τ = 2L/c.

tal parameters such as beam focussing, crystal imperfections, and temperature variation over the
interaction region, and is typically quite difficult to characterise. It is related to the threshold sec-
ond harmonic pump power required to generate a bright coherent field in an optical parametric
oscillator (see Eq. 3.2), and one of the most accurate characterisation techniques is to determine
that threshold. However, since second harmonic power is required for this measurement, it was
not possible before the SHG was set up. In a similar system to ours Λ had been determined to be
6000 s−

1
2 [92], and this value was used to estimate the optimum value of input coupling for our

SHG. The predicted conversion efficiency as a function of input fundamental intensity is shown in
Fig. 3.5 a) for a range of input coupler transmissivities. For 700 mW of input power the optimum
conversion efficiency was predicted to occur for εic,1 = 0.08, and a corresponding input coupler
was therefore chosen. With this input coupler the SHG provided 370 mW of 532 nm light with
53 % conversion efficiency.

Using the second harmonic field we could determine the non-linear interaction strength Λ for
our experiment. It is related to the operation threshold of optical parametric oscillation via1

Λ =
γ1γ2√

2γic,2

∣∣∣α◦ic,in2

∣∣∣
, (3.2)

where α◦ic,in2 is the coherent amplitude of the second harmonic input field at threshold. We set
up an optical parametric oscillator in an identical configuration to the SHG, but with fundamental
input coupler transmissivity of εic,1 = 0.04, and determined the optical parametric oscillation
threshold to occur at P ◦ic,in2 = ~Ω2|α◦ic,in2|2 = 270 mW. We therefore predict an interaction

strength of Λ = 3100 s−
1
2 , close to half that measured in [92]. The corresponding SHG conversion

efficiencies are shown as a function of fundamental power in Fig. 3.5 b). We see that although the
second harmonic power available was sufficient for the experiments reported here, in hindsight
a fundamental input coupler transmissivity of εic,1 = 0.04 may have provided higher conversion
efficiency.

1This can be shown quite easily from Eq. (2.140).
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Figure 3.5: Conversion efficiency of second harmonic generator as a function of power and input coupler
reflectivity, a) using the interaction strength Λ = 6000 s−

1
2 as reported in [92], and b) using Λ = 3100 s−

1
2

as measured a posteriori from our experiment. Parameters used: εl,1 = 0.0065, εoc,1 = 0.0005, ε2 = 0.94,
LSHG = 4 cm.

3.4 Optical parametric amplification

The second harmonic field was used to pump a pair of degenerate OPAs which were seeded with a
field at the fundamental frequency. The design of the OPAs was identical to that of the SHG shown
in Fig. 3.4, with the exception that the OPA output coupler transmissivities for the fundamental
field were εoc,1 = 0.04. This output coupler transmissivity was found to provide the optimum
balance between OPA escape efficiency and the threshold for OPO operation which, as we will
see later, dictates the level of squeezing on the OPA output fields. A summary of the experimental
parameters relevant to the OPAs can be found in Table 3.1.

An alternative OPA configuration used in some experiments requiring a pair of squeezed
beams [93] is to utilise a single ring OPA. In this case both directional modes in the OPA can be
squeezed directly, resulting in two squeezed output fields. We chose not to use that approach here.
It requires a more complex resonator design with more intra-resonator surfaces, angled curved mir-
rors, and a longer round trip time. Correspondingly, the round trip loss is higher, the output beam
shape is distorted, and the squeezing bandwidth is reduced. These problems can be overcome,
and highly squeezed fields can be generated from these resonators [93], but with a significantly
higher level of engineering required. Furthermore, both directional modes in a ring resonator must
be pumped, so that for a given level of amplification, a doubling of the intra-resonator second
harmonic pump power is required. This doubling can increase the effect of green-induced infrared
absorption (GRIIRA), a non-linear intra-resonator loss factor proportional to the second harmonic
pump power[94]. GRIIRA is one of the most significant limiting factors in a number of existing
squeezing experiments using ring resonators [93]. On the other hand, we will see in Section 3.7,
that ring resonator configurations could provide an excellent source of low frequency squeezing.
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3.4.1 Classical behaviour

Before analysing the predicted squeezing of the output field from an OPA, let us examine its
classical behaviour. The coherent amplitude of the fundamental field exiting the output cou-
pler of an OPA αoc,out1 may be calculated quite generally from Eq. (2.145) for the steady state
intra-resonator field, using the boundary conditions given in Eqs. (2.108). The resulting expres-
sion, however, is rather complicated. Here, to enable an intuitive understanding we consider an
idealised OPA with negligible decay rates due to intra-resonator losses and the input coupler
({γl,1, γic,1} � γoc,1 ≈ γ1), and no second harmonic pump depletion2. This idealised OPA
can be seeded through either the front (through the output coupler) or the back (through the back
of the MgO:LiNbO3 crystal). In our experiment, we seeded our OPAs through the back, and we
consider that situation here. A detailed comparison of the two seeding methods is given in Sec-
tion 3.5. Using Eqs. (2.108), (2.144), (2.145), and (3.2), the coherent amplitude of the output field
αideal,back

oc,out1 is found to be

αideal,back
oc,out1 = −

√
2γic,1αic,in1

γ1

(
1

1− αic,in2/|α◦ic,in2|

)
, (3.3)

where |αic,in2| < |α◦ic,in2|. We see that the phase relationship between the coherent amplitudes of
the second harmonic pump field and the seed field dictates the amplification of the OPA. If the
pump and seed fields are in phase, the pump coherent amplitude αic,in2 is real and positive, and as
|αic,in2| → |α◦ic,in2|, |αideal,back

oc,out1 | → ∞. Therefore in this regime the OPA acts to amplify the seed
field, transferring power from the pump field. Of course, infinite power is not truly achievable
from an OPA, at some stage the pump field will be depleted and the amplification will clamp, an
analysis including pump depletion is given in Section 3.5. If the seed and pump fields are π out of
phase αic,in2 is real and negative, and as |αic,in2| → |α◦ic,in2|, |αideal,back

oc,out1 | →
√

2γic,1|αic,in1|/2γ1.
So that the OPA then acts to deamplify the seed field, transferring power into the pump field.

Regenerative gain

The amplification of an OPA is characterised by its the regenerative gain GR, which is defined as
the ratio of the fundamental output power with and without the second harmonic pump field

GR =
Poc,out1

P no 532
oc,out1

=

∣∣∣∣∣
αoc,out1

αno 532
oc,out1

∣∣∣∣∣

2

, (3.4)

where the super-script ‘no 532’ labels the fundamental output field obtained when no second har-
monic pump field is used (αic,in2 = 0). Neglecting pump depletion and the resonator decay rates
due to losses and the input coupler this can be calculated simply for our OPA, and is given by

Gideal
R,back =

1∣∣∣1− αic,in2/|α◦ic,in2|
∣∣∣
2
. (3.5)

The curves in Fig. 3.6 show the regenerative gain of our ideal OPA operating in the amplifica-
tion and deamplification regimes. We see that in the amplification regime as the second harmonic
power approaches the threshold for OPO operation the regenerative gain increases towards infinity.

2It can be shown that when the OPA is not operating near threshold there is negligible second harmonic pump
depletion if |αic,in2| � |αin1|.
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On the other hand, in the deamplification regime as the OPO threshold is approached the regen-
erative gain clamps at Gideal

R,back = 1/4. As a consequence, any noise entering the OPA through
the back surface of the MgO:LiNbO3 crystal can be deamplifed by a maximum factor of only
1/4. Of course, since the noise is attenuated by a factor governed by the transmissivity of the
MgO:LiNbO3 crystal back surface while entering the OPA, this does not place a fundamental
limit on the squeezing achievable with optical parametric amplification.
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Figure 3.6: Regenerative gain of an optical parametric amplifier. a) predicted amplification and b) predicted
deamplification of a back seeded OPA with εic,1 = εl,1 = 0, neglecting pump depletion.

3.4.2 Squeezing of the output coupled field

The fluctuations of the output coupled field may be directly obtained from Eq. (2.148) for the intra-
resonator noise properties for a resonator with a second order non-linear element inside. Using the
boundary conditions given in Eq. (2.109), the resulting fluctuations are given quite generally by

X̂±oc,out1(ω) =

(
1− 2γoc,1

iω + γ1 + Υ±

)
X̂±oc,in1(ω) (3.6)

−
√

2γoc,1

iω + γ1 + Υ±

(
2
√
γIIα1(t)X̂±ic,in2(ω) +

√
2γic,1X̂

±
ic,in1(ω) +

√
2γl,1X̂

±
l,1(ω)

)
,

where Υ± are defined in Eq. (2.149). The frequency spectra obtained when the output field is
analysed in a homodyne detector are equal to the variances of these fluctuations ∆2X̂±oc,out1(ω) =

〈δX̂±oc,out1(ω)∗δX̂±oc,out1(ω)〉, which are given by the relatively complicated expression

∆2X̂±oc,out1(ω) =
4γoc1

[
2γIIα1(t)2∆2X̂±ic,in2(ω) + γic,1∆

2X̂±ic,in1(ω) + γl,1

]

ω2 + (γ1 + Υ±)2
(3.7)

+

[
(2γoc,1− γ1 − Υ±)

2
+ ω2

ω2 + (γ1 + Υ±)2

]
∆2X̂±oc,in1(ω),

where we have assumed that the fields entering the resonator as a result of losses are vacuum
(∆2X̂±l1(ω) = 1). We see that at ω = 0, if the resonator is impedance matched (i.e. if γoc,1 =
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γic,1 +γl,1+Υ±) the noise contribution from the field incident on the output coupler is eliminated.
In this regime, so long as the fluctuations coupling in from the pump field and through losses and
the input coupling are small, squeezing will be evident on the output field.

To gain a clearer understanding of the process of squeezing via optical parametric amplifica-
tion let us, for the moment, assume that all of the input fields are in coherent or vacuum states,
and neglect pump depletion. The quadrature variances of the output field are then given by the
simplified expression

∆2X̂±oc,out1(ω) = 1± ηesc

4αic,in2/|α◦ic,in2|

(ω/γ1)2 +
(

1∓ αic,in2/|α◦ic,in2|
)2 , (3.8)

where the OPA escape efficiency is given by ηesc = γoc,1/γ1, and to derive this expression we have
used Eqs. (2.108), (2.144), (3.2), and (3.7). In the deamplification regime the second harmonic
pump field is π out of phase with the fundamental seed, so that the coherent amplitude of the
pump field αic,in2 is real and negative. We see that in this regime for all non-zero pump powers
and all sideband frequencies, the amplitude quadrature of the output field is squeezed. As ω
increases the level of squeezing drops with ∆2X̂+

oc,out1(ω) → 1 as ω → ∞, and as the pump
power approaches the threshold power (|αic,in2| → |α◦ic,in2|) the squeezing improves. At ω = 0,
and at threshold, we reach the optimum squeezing of ∆2X̂+

oc,out1(ω)→ 1− ηesc, so that the level
of squeezing is ultimately limited by the escape efficiency of the OPA. In the amplification regime
(αic,in2 real and positive) equivalent behaviour is observed with the squeezing improving at low
frequencies and near threshold. Here however, the squeezing is observed on the phase quadrature
of the output field, and the amplitude quadrature is anti-squeezed. Again, the optimum squeezing
is ∆2X̂−oc,out1(ω) = 1 − ηesc, limited only by the escape efficiency of the OPA, and occurs at
threshold with ω = 0. Fig. 3.13 show the predicted squeezed quadrature variance as a function of
pump power for both amplification regimes.
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Figure 3.7: Squeezing from an optical parametric amplifier as a function of pump power. The plot shows
the predicted amplitude (phase) quadrature variance of the output field at ω = 0 when the OPA is operating
to deamplify (amplify) the seed field. Pump depletion is neglected, and all input fields are assumed to be in
coherent or vacuum states. The calculation was performed with the experimental parameters in Table 3.1.

Squeezing spectra

In practice, due to low frequency noise sources such as laser relaxation oscillation noise, locking
noise, and acoustic noise, we do not observe squeezing at ω = 0. We are therefore interested
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Figure 3.8: a) Amplitude and b) phase quadrature spectra for the field exiting an optical parametric ampli-
fier operating at half threshold in the deamplification regime. The solid curves show the predicted spectra
for our experimental parameters with vacuum or coherent input fields. The dotted and dashed curved show
the resulting spectra when the fields entering the input and output couplers, respectively, are 10 dB above the
quantum noise limit. Parameters used: εic,1 = 0.0005, εoc,1 = 0.04, εl,1 = 0.0065, ε2 = 0.94, L = 4 cm,
Λ = 3100 s−

1
2 , and Pin1 = 10 mW.

in the predicted frequency spectra of the squeezing, which is contained in Eq. (3.7). Fig. 3.8
shows such spectra for an OPA operating in the deamplification regime, and at half threshold
(Pic,in2 = P ◦ic,in2/2). The effects of non-quantum noise limited fundamental fields entering the
OPA through its input and output couplers are also displayed. We see that so long as the funda-
mental field entering through the output coupler is quantum noise limited, the level of squeezing
on the output field is more-or-less constant at frequencies below the resonator decay rate γ1. For
our OPAs γ1/2π ≈ 14 MHz. Since the dominant noise sources in our experiment all occur at fre-
quencies below 2 MHz, we expect to observe reasonable levels of squeezing between ω/2π = 2

and 14 MHz.

3.4.3 Generation of squeezed fields

Fig. 3.9 shows a detailed schematic of the experimental configuration we used to generate a pair
of squeezed fields. Each of our OPAs was pumped with a second harmonic field through its out-
put coupler, and seeded through the back of its MgO:LiNbO3 crystal. The OPA lengths were
controlled using a similar method to that used for the SHG resonator. An electro-optic modula-
tion at 30.5 MHz was applied to the MgO:LiNbO3 crystal resulting in a phase modulation of the
intra-resonator field. We detected the field exiting the back surface of the MgO:LiNbO3 crystal.
Demodulating (or mixing-down) the resulting photocurrent at 30.5 MHz resulted in an error sig-
nal for the resonator length, after amplification and filtering this error signal was applied to a PZT
mounted between the output coupler mount and the output coupler. As we have just seen, an OPA
acts to either amplify or deamplify its seed field depending on the relative phase between the
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seed and pump fields. Since our SHG was controlled via an intra-resonator phase modulation at
29.7 MHZ the output second harmonic field was phase modulated at that frequency. This resulted
in a modulation of the amplification of each OPA. Demodulating the photocurrent obtained from
the field exiting the back of each OPA at 29.7 MHz resulted in an error signal that could be
used to lock the OPA to amplification or to deamplification. The output field of interest was the
fundamental field exiting the front of the OPA (i.e. through the output coupler). When our OPAs
were locked to amplification we typically observed a regenerative gain for this field of ∼ 20, and
when locked to deamplification the regenerative gain was ∼ 0.3. The ratio of pump power to the
threshold power for OPO operation depended on a number of experimental parameters such as
pump alignment and OPA temperature that varied somewhat from day to day. Usually the pump
power was roughly 50 % of the threshold power.

3.4.4 Characterisation of the squeezed fields
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Figure 3.10: Squeezing trace observed at 6 MHz for the output of one OPA in a homodyne detector with
swept local oscillator phase. RBW: 200 kHz.

We analysed the OPA output fields in a homodyne detector as described in Section 2.7.2. Each
field was interfered with a bright local oscillator field on a 50/50 beam splitter, with interference
visibility measured as described in Section 2.6.3 to be ∼ 96.5 %. The two beam splitter output
fields were detected on a pair of ETX500 photodiodes with quantum efficiencies measured to be
∼ 93 %. The difference of the two resulting photocurrents yielded a quadrature of the OPA output
field, with the specific quadrature controlled by the relative phase between the OPA output field
and the local oscillator. Scanning this phase swept through all quadratures of the OPA output field.
The difference photocurrent generated with the relative phase scanned was analysed in a Hewlett
Packard E4405B spectrum analyser. The quantum noise limit could be determined by blocking
the OPA output field so that only vacuum fluctuations were observed by the homodyne detector.
This allowed normalisation of the spectra observed for the OPA output fields. Setting the spectrum
analyser to zero span at 6 MHz, with a resolution bandwidth of 200 kHz, we observed squeezing
traces of the form shown in Fig. 3.10. This ‘MacDonald sign’ shape is characteristic of squeezing
experiments. The peak of the MacDonald sign give the variance of the anti-squeezed quadrature
of the OPA output field, and the minimum gives the variance of its squeezed quadrature. Since the
OPA was locked to deamplification, and therefore amplitude squeezing; the amplitude and phase
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quadrature variances of the detected field can be determined from Fig. 3.10. We find ∆2X̂+ = 0.36

and ∆2X̂− = 5.5, respectively.
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Figure 3.11: Squeezing spectra observed from the two OPAs, normalised to the quantum noise limit.

The homodyne detector could be locked to observe either the amplitude or phase quadrature of
each OPA output field (see Section 2.5.2). Locking to the amplitude quadrature we observed the
squeezing spectra shown in Fig. 3.11. We see that both OPAs produced almost identical squeezing
spectra, with squeezing at sideband frequencies from ω/2π = 3.5 MHz to 10 MHz. At frequencies
below 6 MHz the squeezing was degraded by the resonant relaxation oscillation noise of our laser.

3.5 Regimes of optical parametric amplification

The experimental results presented in the previous section were obtained with our OPA’s back
seeded and locked to deamplification. In this section we consider other operation regimes3. Four
operation regimes were possible for our OPAs; they could be operated to amplify or deamplify
the seed field, and could be seeded through either the back end of the MgO:LiNbO3 crystal or
through the output coupling mirror. We analyse the coherent amplitude and noise properties of the
fundamental field exiting the output coupler for each of these four regimes.

3.5.1 Classical behaviour of a front seeded optical parametric amplifier

The classical behaviour of a back seeded OPA is discussed in some detail in Section 3.4.1. To
perform a comparison between front and back seeded regimes, we must perform the same analysis
for a front seeded OPA. Again, for clarity, we assume that the resonator decay rates due to intra-
resonator losses and the input coupler are negligible ({γl,1, γic,1} � γoc,1 ≈ γ1), and that no
pump depletion occurs. The coherent amplitude of the output field from a front seeded OPA is
then given by

αideal,front
oc,out1 = −αoc,in1

(
1 + αic,in2/|α◦ic,in2|
1− αic,in2/|α◦ic,in2|

)
, (3.9)

where we have again used Eqs. (2.108), (2.144), (2.145), and (3.2), and |αic,in2| < |α◦ic,in2|.
Similarly to the back seeded case, we see that if the pump and seed fields are in phase (αic,in2

real and positive) the OPA acts to amplify the seed; and if they are π out of phase (αic,in2 real
and negative) it acts to de-amplifies the seed. In the amplification regime |αideal,front

oc,out1 | → ∞ as
|αic,in2| → |α◦ic,in2|, in qualitative agreement with the back seeded case. In the de-amplification

regime, however, the deamplification is not clamped, with |αideal,back
oc,out1 | → 0 as |αic,in2| → |α◦ic,in2|.

3The work presented in this Section was motivated, in part, by detailed discussions with Kirk McKenzie.
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So that, in contrast to the back seeded case, the seed field can be perfectly deamplified. Noise en-
tering the OPA through its output coupler can, therefore, in the ideal case be perfectly de-amplified.

Optical parametric amplification is the result of both the non-linear gain of the system; and
the impedance matching of the resonator, which is a function of the non-linear decay rate. The
impedance matching condition is satisfied when the resonator decay rate due to the input coupler
is equal to the sum of all other resonator decay rates. As a consequence the fields reflected directly
from, and output coupled through, the input coupler are balanced so that no power is reflected
from the resonator. The signature of impedance matching is therefore that the power entering the
resonator is completely transmitted and/or absorbed. We see that this signature is apparent for the
front seeded OPA in the deamplification regime, and occurs at the threshold for OPO operation
(i.e. when αic,in2 = |α◦ic,in2|, α

ideal,front
oc,out1 = 0). Notice that for a conventional linear resonator with

{γl,1, γic,1} � γoc,1 ≈ γ1 impedance matching is not possible. It is achieved for our OPA due
to the non-linear decay rate γII (see Section 2.10) which, in the deamplification regime increases
the decay rate for the fundamental field. The existence of squeezing on the output light field for
both front and back seeded OPA operation can be understood simply in terms of this unusual type
of impedance matching. Normally, to achieve impedance matching losses must be introduced in
the system, these losses couple vacuum fields to the output state that prevent the observation of
squeezing. For an OPA, however, the field incident on the output coupler is, ideally, impedance
matched and is entirely transmitted through, or absorbed inside, the resonator. In this case, since
no additional loss has been introduced to the system no vacuum fields are introduced as a result
of the impedance matching of the incident field, so that in theory perfect squeezing of the OPA
output field may be achieved.

We can calculate the regenerative gain of a front seeded OPA using Eq. (3.4). For our idealised
OPA it is given by

Gideal
R,front =

∣∣∣∣∣
1 + αic,in2/|α◦ic,in2|
1− αic,in2/|α◦ic,in2|

∣∣∣∣∣

2

. (3.10)

A direct comparison of the classical behaviour of the four OPA operation regimes is then possible.
Such a comparison is shown in Fig. 3.12. The dot-dashed curves in Fig. 3.12 a) and c) show the
regenerative gain of an ideal OPA operating as an amplifier and seeded from the back and front,
respectively. We see that in both cases as the pump power approaches the threshold for OPO oper-
ation the regenerative gain increases towards infinity. The dot-dashed curves in Fig. 3.12 b) and d)
show the same calculations but with the OPA acting to deamplify the seed. In this case as the
OPO threshold is approached for the front seeded OPA the regenerative gain approaches zero and
therefore the seed can be completely deamplified. On the other hand, as discussed previously,
when the OPA is back seeded the deamplification clamps at Gideal

R,back = 1/4. This can be shown
to be a direct result of the fact that at the OPO threshold the OPA is impedance matched for a
fundamental field incident on the front of the resonator.

In the previous analysis we have assumed an ideal OPA with all input fields being in coherent
or vacuum states, and without pump depletion. Of course, in an experimental situation these ideal
circumstances cannot always be achieved. The classical behaviour of a non-ideal OPA with our
experimental parameters for all four operation regimes is shown by the solid lines in Fig. 3.12. In
this case depletion of the pump field restrains the amplification possible so that the output power no
longer approaches infinity as the pump power approaches the OPO threshold. Since intra-resonator
losses are now present, the impedance matching point for the front seeded deamplification regime
now occurs before the threshold for OPO action.
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Figure 3.12: Regenerative gain for each optical parametric amplification regime. a) and b) predicted am-
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with Pic,in1 = 0.74 mW so that the intra-resonator power is the same as in the previous case. The solid
curves show the predicted regenerative gain for our experimental parameters, εic,1 = 0.0005, εoc,1 = 0.04,
εl,1 = 0.0065, ε2 = 0.94, L = 4 cm, and Λ = 3100 s−

1
2 . The dot-dashed curves show the ideal case where

the resonator decay rate is dictated solely by the output coupling so that εic,1 = εl,1 = 0.

3.5.2 Noise properties of the output fields

Let us now consider the predicted squeezing from each regime of OPA operation. We saw earlier
that, assuming no pump depletion, the predicted squeezing spectra were equivalent for the am-
plification and de-amplification regimes. We will see here that when pump depletion is included
in the analysis this equivalence is broken. The solid curves in Fig. 3.13 show the predicted level
of squeezing at ω = 0 calculated from Eq. (3.7), assuming that all input fields are in vacuum or
coherent states, and including the effect of pump depletion. Fig. 3.13 a) and c) show the ampli-
tude and phase quadrature variances with the OPA operating in the deamplification regime. In
this case energy is being transferred from the seed field to the pump field. Since the seed is much
less intense than the pump, the total power in the pump field does not change significantly. We
therefore find that pump depletion is an insignificant effect in this regime. On the other hand, in
the amplification regime energy is transferred from the pump to the seed. Since the regenerative
gain of this process becomes very high at |αic,in2| ≈ |α◦ic,in2|, the pump field can be significantly
depleted. Correspondingly, in this process we find that pump fluctuations can be transferred onto
the output fundamental field. As can be seen in Fig. 3.13 b), this effect degrades the level of
squeezing observable in the amplification regime at pump powers near threshold.

In an experimental situation, the OPA input fields often carry classical noise, the effect of
this noise on the output field is shown by the broken curves in Fig. 3.13. We see that in both
amplification and deamplification operation regimes noise entering through the input coupler de-
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grades the squeezing by a level more or less independent of the pump power. The effect of noise
entering through the output coupler, however, has a strong dependence on the pump power. At
the resonator impedance matching point none of this noise is reflected, and it therefore does not
degrade the observed squeezing, but at other pump powers it degrades the squeezing more than
the noise entering through the input coupler. Noise coupling into the output from the pump field
is, in the deamplification regime, entirely insignificant. In contrast, we see from Fig 3.13 b) that
in the amplification regime this noise significantly degrades the level of squeezing on the output
field for pump powers higher than P ◦ic,in2/5.
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Figure 3.13: Predicted squeezing for each optical parametric amplifier regime as a function of pump power.
a) and c) [d) and b)] show the amplitude and phase quadrature variances of the output field at ω = 0 when the
OPA is operating in the deamplification [amplification] regime. Calculations of the effect of various noise
sources, and of neglecting pump depletion are shown. All calculations were performed for our experimental
parameters with εic,1 = 0.0005, εoc,1 = 0.04, εl,1 = 0.0065, ε2 = 0.94, L = 4 cm, Λ = 3100 s−

1
2 , and

Pic,in1 = 10 mW.

The predicted behaviour of our OPAs in each of the four possible regimes of operation is sum-
marised in Table 3.2. The four regimes are: amplification and front seeded; amplification and back
seeded; deamplification and front seeded; and deamplification and back seeded. We have seen that
when the OPA is operating to amplify the seed, noise on the pump field couples significantly into
the output state, furthermore from Fig. 3.8 we see that at sideband frequencies ∼ γ1 when the
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OPA is front seeded, noise on the seed field significantly degrades the level of squeezing on the
output state. For the majority of this thesis we therefore chose to operate both of our OPAs in
the deamplification and back seeded regime. If low frequency squeezing, as investigated in Sec-
tion 3.7, is desired from a single OPA, however, it could be worth considering operating in the
deamplification and front seeded regime. In this case, the resonant relaxation oscillation of the
laser could be suppressed by a level equal to the regenerative gain of the OPA.

Squeezed variance at ω = 0 Squeezed variance at ω = γ1/2
Ampli- Input GR coherent 10 dB 10 dB coherent 10 dB 10 dB
fication regime or vacua noise on noise on or vacua noise on noise on
regime inputs seed pump inputs seed pump

amp front 39.1 0.184 0.184 0.276 0.247 0.949 0.333
amp back 11.2 0.184 0.295 0.276 0.247 0.350 0.333

deamp front ∼ 0 0.174 0.175 0.177 0.239 0.944 0.242
deamp back 0.34 0.174 0.286 0.177 0.239 0.342 0.242

Table 3.2: An analysis of the four regimes of optical parametric amplification. All calculations were
performed at half OPO threshold Pic,in2 = P ◦ic,in2/2. Parameters used: εic,1 = 0.0005, εoc,1 = 0.04,
εl,1 = 0.0065, ε2 = 0.94, L = 4 cm, Λ = 3100 s−

1
2 , and Pin1 = 10 mW.

3.6 Optical parametric amplifiers as unitary squeezers

One further analysis of the output field from our OPAs is useful to our understanding of their be-
haviour. Consider again the situation where the decay rates due to loss and the input coupler trans-
missivity are insignificant compared to the output coupler decay rate (γ1 ≈ γoc,1 � {γic,1, γl,1})
and that depletion of the second harmonic pump field is negligible; and further that the frequency
of interest is well within the OPA bandwidthω � γ1. The amplitude and phase quadratures of the
output field in Eq. (3.7) then reduce to the simple form

X̂+
oc,out1 =

√
Gideal
R,frontX̂

+
oc,in1 (3.11)

X̂−oc,out1 =
1√

Gideal
R,front

X̂−oc,in1, (3.12)

where Gideal
R,front is the front seeded regenerative gain of the OPA given in Eq. (3.10), and we have

used Eqs. (2.144) and (3.2). We see that in this ideal case, the OPA operates as a perfect squeezer
on the input field âoc,in1, with the squeeze factor r (see Eq. (2.15)) directly related to the regener-
ative gain of the OPA. We saw in Section 2.2 that a squeezed vacuum state has pair-wise photon
statistics. In the OPA these pair-wise statistics arise because photons at the second harmonic fre-
quency Ω2 are transformed into pairs of photons at frequencies Ω1 ± ω. So, the photons in the
sideband ω of this idealised OPA output state will always exist in pairs. Any inefficiencies during
the detection process, and in output coupling as a result of non-negligible input coupler or loss
related decay rates, will reduce some of these photon pairs into individual photons or vacuum and
therefore degrade the level of squeezing observed from the OPA.
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3.7 Recovery of low frequency squeezing

Before continuing with the main theme of this thesis, I will briefly discuss a technique developed
during the course of my PhD that can be used to circumvent noise carried by the laser field, and
therefore produce squeezing at low frequencies[27].

3.7.1 Introduction

In almost all experiments to date, and in those presented thus far in this thesis, the squeezing has
been observed at frequencies above 1 MHz, at lower frequencies most laser sources are classically
noisy. Many interesting spatial and interferometric signals occur in the Hz to kHz regime[95,
96], to accurately study these dynamics squeezing should be available at lower frequencies. Two
experiments using pulsed laser light have produced squeezing in the kHz regime[97, 98]. Both
experiments ultimately produced a squeezed vacuum state and therefore avoided the classical noise
evident on their laser sources. The feasibility of these states in real measurement technology is
limited due to both their pulsed nature and their extremely low power. Their pulsed nature severely
limits their application to devices that involve resonators or have peak power limitations (e.g.
optical damage) such as advanced gravitational wave detectors [96]. The utilisation of squeezed
states in measurement technology requires that their phase be accurately controlled. Typically
this is achieved using the techniques described in Section 2.5.2, which utilise either the carrier
power of the squeezed state, or a bright sideband that has a controlled phase relationship with the
squeezed quadrature. Since squeezed vacuum states arise from vacuum noise, neither of these
techniques is usually available. Active control of the phase of squeezed vacuum states is therefore
generally very difficult to achieve[62].

In this Section we describe a experimental technique that allows the production of a squeezed
vacuum exhibiting squeezing in the kHz regime[27]. This technique allowed the production of
bright sidebands on the squeezed vacuum. These sidebands acted as a phase reference that al-
lowed the phase of the vacuum to be stably locked in a downstream homodyne detector. Squeezed
state enhancement of an interferometer configuration compatible with current gravitational wave
detectors has recently been demonstrated[99]. This work was performed in the MHz regime, how-
ever, and therefore cannot be directly applied to existing gravitational wave detectors. In reality
squeezing will not be useful for gravitational wave detection until it reaches frequencies around
10 kHz, the work presented here produced a squeezed vacuum at frequencies as low as 210 kHz,
an order of magnitude lower than was achievable without using the technique. It therefore repre-
sents a significant step in the right direction. Since the squeezed field had a wavelength of 1064 nm
it is directly compatible with present day gravitational wave detection systems. The frequency of
our squeezing was limited from below by noise introduced inside the OPAs. A simple extension
of this technique is possible that should eliminate these technical issues and produce squeezing at
much lower frequencies.

3.7.2 Theoretical Background

Noise cancellation schemes have been proposed to enhance squeezing utilising Kerr non-linearity
in fibers [100] and second harmonic generation [101]. The scheme presented here is similar to
that of [100] but uses optical parametric processes. A single optical field at 1064 nm was split
on a 50/50 beam splitter and used to seed our pair of OPAs, which were locked to deamplify the
seed and therefore produced amplitude squeezed output fields. These output fields were then re-
combined in phase on another 50/50 beam splitter as shown in Fig. 3.14. Since second harmonic
pump depletion is not relevant when our OPAs are locked to deamplification, we neglect it here
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Figure 3.14: Squeezed vacuum production via classical noise cancellation using two OPAs.

for simplicity. From Eq. (3.6) we find that the frequency domain amplitude quadrature operators
for the fields exiting our two OPAs X̂+

sqz,j are given by

X̂+
sqz,j = X̂+

oc,in,j

(
1− 2γoc

iω + Υ+ + γ

)
−

√
2γoc

iω + Υ+ + γ

(√
2γicX̂

+
ic,inj +

√
2γlX̂

+
l,j

)
, (3.13)

where since all of the fields involved are now at the fundamental frequency we have omitted the
subscript ‘1’, and now use the subscripts j ∈ {1, 2} to distinguish the fields related to each of the
OPAs (see Fig. 3.14).

The amplitude quadrature operators for the output fields of a 50/50 beam splitter with one
intense X̂+

in,1 and one vacuum X̂+
in,2 input field can be expressed as X̂+

ic,1 = (X̂+
in,1 +X̂+

in,2)/
√

2

and X̂+
ic,2 =(X̂+

in,1−X̂+
in,2)/

√
2 (see Section 2.5). Substituting these expressions as the seed fields

in Eqs. (3.13) we obtain

X̂+
sqz,j =X̂+

oc,j

(
1− 2γoc

iω + Υ+ + γ

)
−

√
2γoc

iω + Υ+ + γ

(√
γic

(
X̂+

in,1−(-1)jX̂+
in,2

)
+
√

2γlX̂
+
l,j

)
.

(3.14)

The interference of these two fields, each output from one of our OPAs, in phase on a 50/50
beam splitter yields an intense squeezed beam, and a squeezed vacuum, which have amplitude
quadrature operators X̂+

out,1 and X̂+
out,2 respectively, given by

X̂+
out,j =

1√
2

(
1− 2γoc

iω + Υ+ + γ

)(
X̂+

oc,1 − (-1)jX̂+
oc,2

)

−
√
γoc

iω + Υ+ + γ

(
2
√
γicX̂

+
in,j +

√
2γl(X̂

+
l,1 − (-1)jX̂+

l,2)
)
. (3.15)

Note that interfering the beams with a π/2 phase shift would have produced an Einstein-Podolsky-
Rosen entangled pair [102], a detailed analysis of this process is provided in the following Chapter.
Assuming that the fields entering through the output coupler and through loss are in vacuum states
we obtain the amplitude quadrature variances of the output beams ∆2X̂+

out,j

∆2X̂+
out,j =

4γoc(γic∆
2X̂+

in,j + γl) + ω2 + (2γoc −Υ+ − γ)2

ω2 + (Υ+ + γ)2
(3.16)

These spectral noise distributions are identical to those that would be produced from two indepen-
dent OPAs, one seeded with the intense input beam (X̂+

in,1), and the other with the vacuum field
entering at the first beam splitter (X̂+

in,2) (c.f. Eqs. (3.13)). Unlike the case for a single vacuum
seeded OPA [62] however, the resonance frequency of each OPA can be conveniently locked to
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the frequency of the seed beam and the vacuum squeezed output can be produced with bright
sidebands far outside the frequency range for squeezing. These sidebands are produced by ap-
plying anti-correlated phase modulation to the intra-resonator fields of the OPAs, and allow the
quadrature of the squeezed vacuum to be locked in downstream applications.

In theory none of the laser noise is carried through onto ∆2X̂+
out,2. In reality however, the two

OPAs will not have identical non-linearity, bandwidth, or consequently de-amplification. This will
cause classical noise from the intense input beam to couple into the vacuum output. By varying
the input beam splitter ratio it is possible to completely compensate for these differences over
some frequency range. In our experiment we balanced the intensity of the seed beams such that
the intensity of the (ideally) squeezed vacuum output of the system (X̂+

out,2) was minimised. This
suppressed the classical noise from the seed beam (X̂+

in,1) at ω= 0. Since Eqs. (3.15) are slowly
varying with ω while ω�γ+Υ+ the classical noise was also suppressed throughout this frequency
range. The suppression is only limited by inefficiencies in the mode-matching between the OPA
output beams.

3.7.3 Experiment

To experimentally generate a locked squeezed vacuum, we locked our pair of OPAs to de-amplify
their respective seed beams and therefore produced amplitude squeezed output fields. As shown in
Fig. 3.9, a fundamental field was split on a polarising beam splitter, with each beam splitter output
field used to seed one of the OPAs. This process coupled a vacuum field into the system, which was
ultimately the field on which low frequency squeezing was produced. The seed power to the OPAs
was adjusted so that the OPA output fields were of equal intensity. We combined these output fields
on a 50/50 beam splitter as shown in Fig. 3.14 and observed a visibility between them of 98.6 %.
Detecting one output of this second beam splitter, and utilising the sideband locking technique
described in Section 2.5.2, we were able to lock the relative phase of the input beams producing
either an intense (1.2 mW), or a weak (0.9 µW) squeezed beam at the other output. This beam
was analysed in a homodyne detector that was locked so that the phase modulation from the OPAs
was not observed. Since the OPA outputs were amplitude squeezed, this setup naturally provided
a measurement of the maximally squeezed quadrature independent of the relative phase of the
squeezed beams incident on the 50/50 beam splitter. A homodyne visibility of 96 % was observed
for the intense squeezed beam. The majority of the power of the weak squeezed beam came
from the residual non-mode-matched part of the input beams and had a non-Gaussian transverse
modeshape; consequently, the homodyne visibility observed for this beam was only 28 %. The
squeezed vacuum, however, arose from the mode-matched part of this beam and therefore had
the same homodyne visibility as the intense squeezed beam. The low visibility of the residual
power caused the classical noise that it carried to be poorly detected. This effect and the 50/50
beam splitter visibility together led to a predicted optical suppression of approximately 29 dB.
The classical noise from the homodyne local oscillator was electronically suppressed by 64 dB
and was insignificant for our measurements.

Fig. 3.15 shows the observed squeezing traces for intense and vacuum squeezed beams. Both
the OPA resonators and the homodyne detector were phase locked. The intense squeezed beam
was degraded by the resonant relaxation oscillation of the laser and squeezing was only observed
above 1.9 MHz. The squeezed vacuum however was observed to be squeezed from 220 kHz to the
end of our measurement range at 2.1 MHz, excluding frequencies between 640 kHz and 870 kHz
where our optical suppression was not high enough to suppress the laser relaxation oscillation. The
signal at 810 kHz was the beat between the SHG and OPA locking frequencies. The low frequency
degradation observed in our squeezed vacuum was caused by uncorrelated acoustic and locking
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noise introduced within the OPAs. Further improvement to the squeezing spectra could only be
achieved by either reducing this noise, or by classically correlating it. Employing a ring OPA as
shown in Fig. 3.16 accomplishes the second of these alternatives. A squeezed output is produced
by each of the two directional modes in the OPA. In this configuration the noise introduced in the
resonator is common mode and cancels on the vacuum output of a 50/50 beam splitter.
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Figure 3.16: Proposed scheme to cancel classical noise. OC: output coupler, BS: beam splitter, NC: non-
linear crystal.

To summarise, this Section discussed the production of a locked continuous wave squeezed
vacuum at 1064 nm using a pair of OPAs inside a Mach-Zehnder interferometer. By phase modu-
lating the OPAs we produced phase sidebands that act as a phase reference allowing the quadrature
of the squeezing to be locked in downstream applications. We used these sidebands to lock a ho-
modyne detector and measured stably locked vacuum squeezing down to 220 kHz. In an extension
of this work, an alternative OPA configuration could be developed that should allow the produc-
tion of vacuum squeezing at significantly lower frequencies. Furthermore, our noise cancellation
technique is compatible with existing techniques such as spectrally filtering the OPA seeds in a
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high finesse mode cleaner, or using a servo controlled laser intensity noise eater.

3.8 Summary

This Chapter detailed the experimental configuration used to generate the squeezed states used
throughout the work present in this thesis. We described the process of second harmonic gener-
ation, and performed a detailed analysis of both the coherent amplitude and fluctuations of the
output field from an optical parametric amplifier. We demonstrated that for our OPA configu-
ration, the optimum squeezing is produced in the deamplification regime with the OPA seeded
from the back. We experimentally generated and characterised squeezed states using a pair of
MgO:LiNbO3 based optical parametric amplifiers, observing as much as 4.5 dB of squeezing rela-
tive to the vacuum noise level. The frequency spectra over which this squeezing was observed was
limited from below by our laser resonant relation oscillation which peaked at 750 kHz. Combining
the two squeezed beams in phase on a 50/50 beam splitter eliminated this noise on the dim output
field, and squeezing was then observed down to frequencies as low as 210 kHz.
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Overview

Since the birth of quantum mechanics at the beginning of the twentieth century, it has revolu-
tionised not only the way that scientists and philosophers view the universe, but also the tech-
nology utilised in our day-to-day lives. Over the last two decades a new field has emerged from
quantum mechanics - the field of quantum information science. This field has been fuelled by the
realisation that some tasks in information science can be solved faster using quantum computation
techniques, than they could be in a conventional computer. The first indication that this was the
case came from David Deutsch [103] in 1985. His results can be described in terms of a coin
toss, where the coin used is either fair with a head on one side and a tail on the other, or phony
with the same image on both sides. To determine whether the coin is fair or phony a conventional
computer requires a minimum of two operations, whereas a quantum computer requires only one.
Of course, a speed enhancement of a factor of two is in practise insignificant, given the extreme
complexity of quantum computers. In 1994, however, Peter Shor made a remarkable discovery.
He showed that a quantum computer has the power to solve a NP (non-polynomial) problem in
conventional information science in polynomial time [7]. Shors algorithm factorised semi-prime
numbers. It has serious implications to present-day cryptographic schemes which rely on the ex-
tremely long time required to factorise large semi-prime numbers in conventional computers; and
also demonstrated the significance of quantum mechanics to information science.

Experiments then began to demonstrate information protocols in quantum mechanical regimes
[5]. The vast majority of these protocols are facilitated by entanglement, one of the quintessen-
tial properties of quantum mechanics. Entanglement was first discussed by Einstein [16] and
Schrödinger [104] in 1935, and implications of its existence have intrigued philosophers and sci-
entists alike for almost a century. In Chapter 4 we generate and characterise entanglement between
the amplitude and phase quadratures of a pair of optical fields[30, 31, 105]. This entanglement
is directly analogous to that originally discussed by Einstein[16] and Schrödinger[104]. We use
our entanglement to perform a demonstration of the EPR paradox, which caused Einstein to de-
scribe entanglement by ‘spooky interactions at a distance’. The efficacy of quantum information
protocols utilising entanglement depends strongly on the specific properties of the entangled state
utilised. We fully characterise our entangled state, and introduce a new characterisation technique,
the photon number diagram.

One of the primary goals of the present day quantum optics community is to produce a large
scale quantum computer[10]. By utilising Shors protocol [7] and other similar protocols (see
for example [8, 106]) these computers are expected to significantly enhance the speed at which
some computing problems can be solved. To date, experimental realisations of such computers
have been restricted to proof-of-principle demonstrations [5]. An outstanding issue in quantum
computation is whether the resources required to scale these demonstrations up to useful sizes
scale linearly or exponentially with the size of the computer. Recently, Knill, Laflamme, and
Milburn [17] showed that in a discrete variable quantum computer, quantum teleportation within
the quantum gates that make up the computer can allow linear resource scaling. Furthermore,
quantum teleportation can be used as a quantum data-bus, transferring data from one part of a
quantum computer to another, or indeed between the nodes of a network of quantum computers
[9, 10, 107, 108, 109, 110]. Quantum teleportation, which relies on entanglement, can be described
as the transfer of quantum states through classical channels, and is the subject of Chapter 5 of
this thesis. Therein, we demonstrate continuous variable quantum teleportation of the sideband
amplitude and phase quadratures of an optical field[32, 111].

The possible realisation of quantum computers with the potential to break present-day cryp-
tography techniques necessitates the investigation of alternative cryptography techniques that do
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not rely on semi-prime number encoding. One such technique, quantum cryptography[112], relies
on the laws of quantum mechanics to guarantee the security of the transmission. In Chapter 6
we investigate a hierarchical quantum cryptography scheme, quantum secret sharing [113]. This
scheme allows an encoded secret quantum state to be distributed to a set of players each of whom
cannot be fully trusted. To recover the secret state a subset of the players must collaborate. In the
advent that the secret state appears partially lost due to malicious players or faulty communication
channels, the secret can, in the ideal case, still be perfectly recovered. We propose an experimen-
tally viable scheme to perform continuous variable quantum secret sharing using the entanglement
produced in Chapter 4.



Chapter 4

Generation and characterisation of
quadrature entanglement

Entanglement is one of the defining features of quantum mechanics, with Einstein describing it as
‘spooky interactions at a distance’. With the recent advent of quantum information science many
potential applications of entanglement have been discovered. In this Chapter we experimentally
generate a quadrature entangled state using the pair of squeezed beams produced in Chapter 3.
Each of the potential applications of entanglement require that the entanglement is well charac-
terised. We characterise the correlation matrix of our entangled state within a set of reasonable
assumptions, and the strength of the entanglement is gauged based on the inseparability of the
state and the EPR paradox. Introducing controlled decoherence to the state caused qualitative dif-
ferences between these two methods of gauging the entanglement. We introduce a new intuitive
and physically relevant representation of quadrature entanglement in terms of sideband photon
numbers. Our entanglement can then be represented on a three dimensional photon number dia-
gram. The efficacy of quantum information protocols can be directly displayed as contours on this
diagram.

The work presented in this Chapter has been published in the journal articles:

• W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph. An experimental investigation of
criteria for continuous variable entanglement. Physical Review Letters 90, 043601 (2003).

• W. P. Bowen, P. K. Lam, T. C. Ralph. Biased EPR entanglement and its application to
teleportation. Journal of Modern Optics 50, pp. 801, (2003).

• W. P. Bowen, R. Schnabel, P. K. Lam, and T. C. Ralph. A characterization of continuous
variable entanglement. Physical Review A 69, 012304 (2004).

4.1 Introduction

Entanglement is one of the most intriguing features of quantum mechanics. It was first discussed
by Einstein, Podolsky, and Rosen in 1935 [16] who used the concept to propose that either quan-
tum mechanics was incomplete or local realism was false. Shortly thereafter, Schrödinger coined
the term ‘entanglement’, and an intense investigation of this counter-intuitive phenomena began.
The first experimental evidence for entanglement came from an experiment by Bleuler and Bradt in
1948 [114] who examined the fields emitted from a positron annihilation. A conclusive test of the
non-local behaviour of entanglement would wait, however, until in 1964 Bell proposed his famous
inequality distinguishing local hidden variable models from the quantum mechanical model [66].

79
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Shortly thereafter, Kasday et al.[67] demonstrated that positron decay violated Bells inequality,
and in doing so verified the quantum mechanical model. Verifications of the quantum mechanical
model were then performed in various other systems [115, 116, 117, 118], with perhaps the most
rigorous test reported in a series of articles by Aspect et al. [119, 120, 121], who utilised polari-
sation entangled photon pairs. Until recently the study of entanglement was based purely on our
desire to more fully understand the physical world. Entanglement has now been shown to be an
enabling technology in quantum information protocols such as quantum teleportation [122], dense
coding [123, 124] and quantum computation [10], which has stimulated further investigation into
its properties. Through an intense scientific and engineering effort optical fields have proved to be
an exquisite medium for entanglement[125, 102, 126, 127, 128, 129, 105, 31]. Optical field en-
tanglement has been studied both in the discrete variable regime where correlations are observed
between pairs of photons[125], and in the continuous variable regime where the correlations are
between field quadratures[31, 102, 105, 126, 127, 128, 129]. This Chapter describes the meth-
ods we used to generate and characterise Gaussian continuous variable entanglement between the
amplitude and phase quadratures of a pair of light beams[31, 105]; henceforth termed quadra-
ture entanglement. The signature of this type of entanglement is strong correlations between the
amplitude and phase quadratures of a pair of beams.

This Chapter focusses particularly on techniques that can be used to accurately and completely
characterise the entanglement. This is of particular relevance since quantum information proto-
cols vary in their requirements for a good entangled state, so that the specific properties of the
entangled state utilised play a highly significant role in the success of the protocol. It is well
known that Gaussian entanglement can be fully characterised by the coherent amplitudes of the
entangled beams and a matrix containing the correlations between each of the variables of interest
(in our case the amplitude and phase quadratures of both entangled beams), termed the correla-
tion matrix. To our knowledge all previous of experiments on continuous variable entanglement
[102, 126, 127, 128, 129] have not performed this characterisation. Although the coherent ampli-
tudes of the entangled beams and the correlation matrix together provide a complete characterisa-
tion of quadrature entanglement, they do not directly yield a measure for the strength of the entan-
glement. In past experiments the strength of an entangled resource has been characterised in the
spirit of either the Schrödinger [105, 127, 128, 129] or Heisenberg pictures [102, 105, 126, 127],
and the characterisations lead to qualitatively different results. In the Schrödinger picture, a neces-
sary and sufficient criterion for the entanglement of a pair of sub-systems is that the state describing
the entire system is inseparable. That is, it is not possible to factor the wavefunction of the entire
system into a product of separate contributions from each sub-system. Given that an observable
signature of the mathematical criterion for wave-function entanglement can be identified, one can
define the degree of inseparability for the state, and use it to characterise the strength of the en-
tanglement. In the Heisenberg picture, a sufficient criterion for entanglement is that correlations
between conjugate observables of two sub-systems allow the statistical inference of either observ-
able in one sub-system, upon a measurement in the other, to be smaller than the standard quantum
limit. That is, the presence of non-classical correlations. This approach was originally proposed
by Einstein, Podolsky and Rosen [16] and has since been termed the EPR paradox. Similarly to
the Schrödinger picture we can define the degree of EPR paradox for a given entangled state, and
use it to characterise the strength of the entanglement. For pure states the Schrödinger and Heisen-
berg approaches return qualitatively equivalent results suggesting consistency of the two methods.
However, when decoherence is present, causing the state to become impure, differences can occur.
For quadrature entanglement wave-function inseparability may be identified using the insepara-
bility criterion proposed by Duan et al. [130] (see also [131, 132, 133]). We use this criterion
to define the degree of inseparability of our entanglement. To define the degree of EPR paradox
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we use the criterion for demonstration of the EPR paradox as quantified by Reid and Drummond
[134, 135], and refer to this as the EPR paradox criterion. By introducing decoherence in the
form of optical loss to both of our entangled beams we observe qualitative differences between the
degree of inseparability and the degree of EPR paradox.

Finally, we characterise our entanglement in terms of mean sideband photon numbers [105].
We find that the mean number of photons per bandwidth per time in the sidebands of an entangled
state can be broken into four categories: the mean number of photons required to maintain the
entanglement, to produce any bias that exists between the amplitude and phase quadratures of
the beams, to produce the impurity of the state, and to produce any impurity bias between the
amplitude and phase quadratures. For our entanglement, these four mean photon numbers provide
an equivalent but perhaps more intuitive characterisation to the correlation matrix. We attach less
significance to the mean photon numbers resulting from impurity than those required to maintain
and bias the entanglement, and sum them to give the total mean photon number per bandwidth per
time due to impurity. Our entanglement could then be represented on a three dimensional photon
number diagram. On a plane of this diagram, we directly assess the level of success achievable for
quantum teleportation, demonstration of the EPR paradox, and high and low photon number dense
coding when utilising our entanglement. The photon number diagram can also be used to assess the
effect of techniques such as distillation[136, 137, 138] and purification[139, 140, 141], that can be
used to improve the quality of an entangled state. As an example we analyse a simple feedforward
scheme to reduce the number of photons in an entangled state as a result of impurity, whilst
maintaining the entanglement strength. We show that this technique can improve the channel
capacity of dense coding protocols.

4.2 Production of continuous variable entanglement

Several techniques may be used to generate quadrature entanglement. It was first generated by Ou
et al. in 1992 [102, 126] using a non-degenerate optical parametric amplifier, and more recently
using the Kerr non-linearity in fibers [127], and interfering the outputs of two below threshold
optical parametric amplifiers [93, 105, 129]. Ultimately all of these techniques yield Gaussian
continuous variable entanglement of a form that can be modelled simply and, as we will see
in Section 4.3, quite generally, by combining two quadrature squeezed beams with orthogonal
squeezing on a 50/50 beam splitter. Indeed, it is this technique that we adopted to experimentally
generate quadrature entanglement. In general, the two beam splitter outputs ãx(t) and ãy(t) are
of the form

ãx(t) =
eiφx√

2

(
ãsqz,1(t) + eiθ ãsqz,2(t)

)
(4.1)

ãy(t) =
eiφy√

2

(
ãsqz,1(t)− eiθ ãsqz,2(t)

)
, (4.2)

where ãsqz,1(t) and ãsqz,2(t) are the annihilation operators of the input squeezed beams, θ de-
fines the relative phase between them, φx and φy are phase shifts that rotate the operators such
that αx(t) and αy(t) are real, and throughout the remainder of this thesis the sub-scripts x and
y denote the beams being interrogated for entanglement. To avoid frequency dependent noise
sources present on our optical fields we examine our entangled states henceforth in the fre-
quency domain. Throughout this thesis we have take the time domain coherent amplitude of
the our optical fields to be real, but this property does not carry over to the frequency domain.
We denote the real and imaginary parts of the frequency domain coherent amplitude respec-
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tively as α+ = <{α(ω)} = 〈X̂+〉/2 and α− = ={α(ω)} = 〈X̂−〉/2. We take the input
beams to be amplitude squeezed states (∆2X̂+

sqz,1 < 1 and ∆2X̂+
sqz,2 < 1) with equal intensities

(αsqz,1(t) = αsqz,2(t)), and set θ = π/2 so that the squeezed quadratures are orthogonal at the
beam splitter. The frequency domain amplitude and phase quadratures of the output beams x and
y can then be expressed as

X̂±x =
1

2

(
±X̂+

sqz,1 + X̂+
sqz,2 + X̂−sqz,1∓ X̂−sqz,2

)
(4.3)

X̂±y =
1

2

(
X̂+

sqz,1 ± X̂+
sqz,2 ∓ X̂−sqz,1 + X̂−sqz,2

)
. (4.4)

We see that as the squeezing of the input beams approaches perfect ({∆2X̂+
sqz,1,∆

2X̂+
sqz,2} → 0)

the quadrature noise operators of beams x and y approach

δX̂±x → 1

2

(
δX̂−sqz,1∓ δX̂−sqz,2

)
(4.5)

δX̂±y → ∓1

2

(
δX̂−sqz,1 ∓ δX̂−sqz,2

)
, (4.6)

so that
〈(

δX̂+
x + δX̂+

y

)2
〉
→ 0 (4.7)

〈(
δX̂−x − δX̂−y

)2
〉
→ 0. (4.8)

Therefore in this limit an amplitude quadrature measurement on beam x would provide an exact
prediction of the amplitude quadrature of beam y; and similarly a phase quadrature measure-
ment on beam x would provide an exact prediction of the phase quadrature of beam y. This
is a demonstration of the EPR paradox in exactly the manner proposed in the seminal paper
of Einstein et al. [16]. Analysis of the entanglement in the physically realistic regime where
{∆2X̂+

sqz,1,∆
2X̂+

sqz,2} 6= 0 is more complex, and is the topic of the following Section.

4.3 Characterisation of continuous variable entanglement

Characterisation of continuous variable entanglement is, in many ways, a more complex enterprise
than its discrete variable counterpart. Discrete variable entanglement can be fully characterised
by a density matrix of finite dimension (usually 4×4). In contrast, complete characterisation of
continuous variable entanglement requires a density matrix of infinite size. This problem has re-
ceived considerable interest in the quantum optics community with, as of now, no consensus on
the most appropriate characterisation method (see for example [130, 131, 132, 133, 134, 135, 141,
142, 143]). However, experimental realisations of continuous variable entanglement have, to date,
been limited to a sub-class of states - those with Gaussian statistics - for which well defined char-
acterisation techniques do exist. In this Section we introduce the characterisation techniques used
for our entanglement, and discuss a new interpretation separating the mean number of photons
per bandwidth per time in the entangled state into components required to maintain and bias the
entangled state, and to produce and bias the impurity present in the state [30, 105].
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4.3.1 Gaussian entanglement and the correlation matrix

Any Gaussian continuous variable bi-partite state can be fully characterised by its amplitude and
phase quadrature coherent amplitudes α±x , α±y , and the correlation (or covariance) matrix[69]. In
general α±x and α±y are easily characterised, and do not contribute to the strength of entanglement
exhibited by the state. In our experiment the entangled state was produced from two squeezed
vacuum states1, so that the amplitude and phase quadrature coherent amplitudes of beams x and
y were all zero, α±x = α±y = 0. We will therefore focus on the correlation matrix here. The
correlation matrix CM is given by

CM =




C++
xx C+−

xx C++
xy C+−

xy

C−+
xx C−−xx C−+

xy C−−xy
C++
yx C+−

yx C++
yy C+−

yy

C−+
yx C−−yx C−+

yy C−−yy


 . (4.9)

Each term in this matrix is the correlation co-efficient between two of the variables X̂+
x , X̂−x , X̂+

y ,
and X̂−y ; defined as

Cklmn =
1

2

〈
X̂k
mX̂

l
n +X l

nX̂
k
m

〉
−
〈
X̂k
m

〉〈
X̂ l
n

〉
(4.10)

=
1

2

〈
δX̂k

mδX̂
l
n + δX̂ l

nδX̂
k
m

〉
, (4.11)

with {k, l} ∈ {+,−}, {m,n} ∈ {x, y}. The symmetry in the form of Cklmn dictates that in general
Cklmn = Clknm. The correlation matrix is therefore fully specified by ten independent co-efficients.

The entangled beams analysed here and utilised in the following Chapters were generated
in a symmetric manner by interfering two amplitude squeezed beams with π/2 phase shift on a
50/50 beam splitter (as discussed in the previous Section), and encountered identical loss before
detection. Furthermore, the squeezed beams themselves were produced in an identical manner in
identical OPAs, with no cross quadrature correlations present either within each beam individually
or between the beams. When applied to Eqs. (4.3) and (4.4) these symmetries dictate that the
amplitude (phase) quadrature variances of beams x and y are equal, ∆2X̂± = ∆2X̂±x = ∆2X̂±y ,
so that C±±mm = ∆2X̂±; and that the beams exhibit no cross-quadrature correlations. That is, that
C±∓mn = 0. The correlation matrix is then given by

CM =




C++
xx 0 C++

xy 0

0 C−−xx 0 C−−xy
C++
xy 0 C++

xx 0

0 C−−xy 0 C−−xx


 , (4.12)

where complete specification now only requires characterisation of ∆2!X̂+, ∆2X̂−, 〈δX̂+
xδX̂

+
y +

δX̂+
y δX̂

+
x 〉, and 〈δX̂−xδX̂−y + δX̂−y δX̂

−
x 〉. Specification of these four parameters is equivalent

to characterisation of the variance of the squeezed and anti-squeezed quadratures of the pair of
squeezed beams produced by re-combining the entangled beams losslessly and in-phase on a 50/50
beam splitter.

1From a time domain perspective these states were amplitude squeezed, however since our analysis was performed
in the frequency domain, a frequency domain perspective with optical sideband states is more appropriate here. Since
no modulation was present at our analysis frequencies, the sideband states were indeed squeezed vacuum.
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4.3.2 The inseparability criterion

Specification of the correlation matrix, although it does offer a complete description of the entan-
glement, does not immediately provide a measure of whether beams x and y are entangled, or how
strongly they are entangled. We use two criteria, both of which can be inferred from the correlation
matrix, to measure those properties. In this Section we discuss the inseparability criterion recently
proposed by Duan et al. [130] (see also [131, 132, 133]) which provides a necessary and sufficient
condition for Gaussian entanglement; and in the Section following we introduce the EPR para-
dox criterion proposed by Reid and Drummond [134, 135] which has been used to characterise
entanglement in past experiments. It should be noted that strictly speaking, a good measure of
entanglement should satisfy the conditions given in [144, 145], and stated explicitly later in this
Chapter. Neither the inseparability or EPR criteria have been shown to satisfy these conditions,
and indeed, to our knowledge no such measure exists presently for continuous variable entangle-
ment. However, both criteria considered here have strong physical significance, have a straight
forward dependance on the strength of the quantum resources used to generate the entanglement,
and are commonly used to gauge the strength of entanglement in experiments. Throughout this
thesis we, therefore, refer to both criteria as measures of the strength of entanglement.

To derive their criterion, Duan et. al[130] showed that through local linear unitary Bogoliubov
operations any bi-partite Gaussian state can be transformed so that its correlation matrix has the
standard form

CMs =




C++
xx 0 C++

xy 0

0 C−−xx 0 C−−xy
C++
xy 0 C++

yy 0

0 C−−xy 0 C−−yy


 , (4.13)

where the values of C±±nm are restricted by the conditions

C++
xx − 1

C++
yy − 1

=
C−−xx − 1

C−−yy − 1
, (4.14)

and
√

(C++
xx − 1)(C++

yy − 1)− |C++
xy | =

√
(C−−xx − 1)(C−−yy − 1)− |C−−xy |. (4.15)

Given that the state is in this form, they showed, by identifying separability with positivity of the
P-representation2 of the state, that the inseparability criterion

∆2X̂+
I + ∆2X̂−I < 2

(
k2 +

1

k2

)
, (4.16)

is a necessary and sufficient condition for the presence of entanglement, where ∆2X̂±I are the
measurable correlations

∆2X̂±I =

〈(
kδX̂±x −

C±±xy
|C±±xy |

δX̂±y
k

)2〉
, (4.17)

2The P-representation is directly related to the Wigner function of Section 2.2.1 by a Gaussian convolution.
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and k is a parameter that compensates for bias between sub-systems x and y and is given by

k =

(
C++
yy − 1

C++
xx − 1

) 1
4

=

(
C−−yy − 1

C−−xx − 1

) 1
4

. (4.18)

In fact, Duan et. al showed that if the state under interrogation is separable satisfaction of Cri-
terion (4.16) is impossible for any arbitrary k. From an experimental perspective k can then be
thought of as a variable parameter. Satisfaction of the criterion for any k is a sufficient condition
for entanglement.

A comparison of the form of the correlation matrix describing our entanglement (Eq. (4.12))
with Duan et al.’s standard form (Eqs. (4.13), (4.14), and (4.15)) reveals that, in general, we cannot
directly apply the inseparability criterion of Eq. (4.16). Of course, after a complete characterisa-
tion of the correlation matrix it can be taken into the standard form, and the inseparability criterion
can then be applied. However, we will see in the following analysis that if a product form of the
criterion is taken, it becomes valid for a wider range of correlation matrices and indeed is then di-
rectly applicable to our entanglement. Let us consider the effect that Restrictions (4.14) and (4.15)
have on ∆2X̂±I . Expanding ∆2X̂±I we find

∆2X̂±I = k2∆2X±x +
∆2X±y
k2

− 2
C±±xy
|C±±xy |

〈
δX±x δX

±
y

〉
(4.19)

=

√
C±±yy − 1

C±±xx − 1
C±±xx +

√
C±±xx − 1

C±±yy − 1
C±±yy − 2

∣∣C±±xy
∣∣ (4.20)

= 2

[√(
C±±xx − 1

) (
C±±yy − 1

)
−
∣∣C±±xy

∣∣
]

+

√
C±±xx − 1

C±±yy − 1
+

√
C±±yy − 1

C±±xx − 1
.(4.21)

A comparison of Eqs. (4.21) with Restrictions (4.14) and (4.15) reveals that transforming a general
bi-partite Gaussian state into the standard form for which the inseparability criteria of Eq. (4.16)
is valid equates ∆2X̂+

I and ∆2X̂−I (∆2X̂+
I = ∆2X̂−I ). The inseparability criteria can therefore be

equivalently written in the product form

√
∆2X̂+

I ∆2X̂−I <

(
k2 +

1

k2

)
. (4.22)

In this form however, the criterion is insensitive to equal local unitary squeezing operations on
beams x and y. We can see this by making the substitutions δX̂+

x =
√
GδŶ +

x , δX̂+
y =

√
GδŶ +

y ,
δX̂−x = δŶ −x /

√
G, and δX̂−y = δŶ −y /

√
G; where G can be thought of as the gain of a unitary

squeezing operation as discussed in Section 3.6, and the state described by the operators Ŷ ±x and
Ŷ ±y is therefore unitarily related to the original entangled state. We can then see from Eqs. (4.17)
that

∆2X̂+
I ∆2X̂−I = ∆2Ŷ +

I ∆2Ŷ −I . (4.23)

Therefore, if Eq. (4.22) is true for a particular state, then it is identically true for any state achieved
by applying equal unitary squeezing operations to the sub-states x and y. This was not the case
for the sum criterion of Eq. (4.16), where it was necessary that Restrictions (4.14) and (4.15)
forbade such operations. The product form of the inseparability criterion is therefore valid for a
wider set of correlations matrices. This can be seen explicitly by substituting δX̂+

x →
√
GδX̂+

x ,
δX̂+

y →
√
GδX̂+

y , δX̂−x → δX̂−x /
√
G, and δX̂−y → δX̂−y /

√
G in Restrictions (4.14) and (4.15).
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As we have seen, this has no effect on the product inseparability criterion. The gain G of the
unitary squeezing operation can then be arbitrarily chosen so that one of the restrictions is satisfied.
Here we choose the gain so that Restriction (4.15) is true. Although the exact solution for the gain
can be easily calculated, it is rather complicated and, as we will see later3, is not required in our
case. We therefore omit it here. Choosing the correct gain, the product version of the inseparability
criterion only requires the one restriction,

C++
yy C

−−
xx − C++

xx C
−−
yy = G

(
C++
yy − C++

xx

)
+
(
C−−xx − C−−yy

)
/G, (4.24)

to be valid. This restriction is obtained directly from substitution of δX̂+
x →

√
GδX̂+

x , δX̂+
y →√

GδX̂+
y , δX̂−x → δX̂−x /

√
G, and δX̂−y → δX̂−y /

√
G in Restriction (4.14). Since for our entan-

glement C++
xx = C++

yy and C−−xx = C−−yy (see Eq. (4.12)), we see that this less stringent restriction
is satisfied for arbitrary gain G. The correlation matrix given in Eq. (4.12) describing our entan-
glement is of the same form as that in Eq. (4.13), therefore the product form of the inseparability
criterion is directly valid. To provide a direct measure of the strength of the entanglement we
define the degree of inseparability

I =

√
∆2X̂+

I ∆2X̂−I
k2 + 1/k2

, (4.25)

normalised such that beams x and y are entangled if I < 1, where it should be noted that k is now
given by

k =

(
GC++

yy − 1

GC++
xx − 1

) 1
4

=

(
C−−yy /G− 1

C−−xx /G− 1

) 1
4

. (4.26)

For entanglement produced as described in Section 4.2 the expression for I becomes consid-
erably simpler. The entangled beams are produced on a 50/50 beam splitter, furthermore, prior to
detection they encounter only linear optics and incur equal loss. There is, therefore, symmetry be-
tween the quadratures of beams x and y, so that C±±xx = C±±yy . In this case we see from Eq. (4.26)
that k = 1 independent of the gain G. Eq. (4.25) can then be written

I =
√

∆2X̂+
x±y∆2X̂−x±y, (4.27)

where ∆2Ôx±y is the minimum of the variance of the sum or difference of the operator
Ô between beams x and y normalised to the two beam quantum noise limit, ∆2Ôx±y =

min 〈(δÔx ± δÔy)2〉/2. This measure of entanglement in terms of the product of sum and differ-
ence variances between the beams has been used previously in the literature [146, 147].

We are interested in the effect of decoherence in the form of optical loss on the EPR
paradox and inseparability criteria, and the photon number diagram. It can be shown from
Eqs. (4.3), (4.4) and (4.27) that for entanglement generated from a pair of uncorrelated squeezed
beams as detailed in Section 4.2, and with equal optical loss for beams x and y, I can be expressed
as a function of the overall detection efficiency η as

I = η∆2X̂+
sqz,ave + (1− η), (4.28)

3From the omission of G in Eq. 4.27.
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where we define the average of the input beam squeezing as ∆2X̂+
sqz,ave = (∆2X̂+

sqz,1+∆2X̂+
sqz,2)/2.

We see that so long as the average squeezing of the two beams used to generate the entanglement
is below one (∆2X̂+

sqz,ave < 1), then I < 1. So beams x and y are entangled for any level of input
squeezing. Notice that even as η approaches zero, for any level of squeezing I remains below
unity. We see that the entanglement is robust against losses at least in the sense that loss alone
cannot transform an inseparable state to a separable one.

4.3.3 The EPR paradox criterion

The concept of entanglement was first introduced by Einstein, Podolsky, and Rosen in 1935 [16].
They demonstrated than an apparent violation of the Heisenberg uncertainty principle could be
achieved between the position and momentum observables of a pair of particles4. This apparent
violation has since been termed the EPR paradox. Demonstration of the EPR paradox relies on
quantum correlations between a pair of non-commuting observables, so that measurement of either
observable in sub-system x allows the inference of that variable in sub-system y to better than the
quantum noise limit. Between the amplitude and phase quadratures of a pair of optical beams this
is quantified by the product of conditional variances [134, 135], we therefore define the degree of
EPR paradox E

E = ∆2X̂+
x|y∆

2X̂−
x|y, (4.29)

where the EPR paradox is demonstrated for E < 1 and the quadrature conditional variances ∆2X̂±
x|y

are given by

∆2X̂±
x|y = ∆2X̂±x −

∣∣〈δX±x δX±y
〉∣∣2

∆2X̂±y
(4.30)

= C±±xx −
∣∣C±±xy

∣∣2

C±±xx
(4.31)

= min
g±

〈(
δX±x − g±δX±y

)2〉
, (4.32)

where g± are experimentally adjustable variables. Satisfaction of the EPR paradox criterion be-
tween two beams is a sufficient but not necessary condition for their entanglement. This crite-
rion has been used to characterise the strength of entanglement in several previous experiments
[102, 126, 127, 128].

It is relatively easy to show that for pure input squeezed states ({∆2X̂+
sqz,1 ·∆2X̂−sqz,1,∆

2X̂+
sqz,2 ·

∆2X̂−sqz,2} = 1) and equal optical loss for beams x and y, the dependence of E on detection
efficiency is given by

E = 4

(
1− η +

2η − 1

η(∆2X̂+
sqz,ave + 1/∆2X̂+

sqz,ave− 2) + 2

)2

. (4.33)

Notice that when η = 0.5, E = 1, independent of the level of squeezing. This defines a boundary
such that if η > 0.5 the EPR paradox criterion is satisfied for any level of squeezing, and if
η < 0.5 it can never be satisfied. This is a striking contrast to the inseparability criterion which,
as we showed earlier, is satisfied for any level of squeezing and any detection efficiency. The

4Of course, there is no real violation since the position and momentum inferences cannot be made simultaneously.
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reason for this difference is that the inseparability criterion is independent of the purity of the
entanglement (ie. independent of ∆2X̂+

sqz,1 ·∆2X̂−sqz,1 and ∆2X̂+
sqz,2 ·∆2X̂−sqz,2), a property that the

EPR paradox criterion is very sensitive to. Optical loss changes the purity of the entanglement
and therefore effects the EPR paradox and inseparability criteria differently. However, if η = 1

the measured entangled state is pure, and both criteria are monotonically increasing functions of
∆2X̂+

sqz,ave in the range 0 < ∆2X̂+
sqz,ave < 1, with E = I = 1 at ∆2X̂+

sqz,ave = 1. Therefore,
in the limit of pure measured entanglement, the inseparability and EPR paradox criteria become
qualitatively equivalent.

4.3.4 The photon number diagram

Many applications have been proposed for quadrature entanglement in the field of quantum infor-
mation [5, 15]. For almost all of these applications, a pure entangled state is desired5. Due to the
unavoidable losses in any real system however, a perfectly pure entangled state is unachievable.
It is therefore essential to characterise the effect of impurity on the outcome of any application
of entanglement. We have seen already, that impurity has different effects on the degrees of in-
separability and EPR paradox. It may not be such a surprise therefore, that the effect of impurity
varies from application to application. To illustrate the point we consider two well known potential
applications related to quantum information, unity gain quantum teleportation [93, 148, 149, 150]
which will be analysed in more detail in the following Chapter, and dense coding [124, 151]. We
analyse the performance of these applications as a function of the purity of the entanglement and
its strength inferred from the inseparability criterion.

A nice feature of some discrete variable measures of an entanglement resource, such as Von
Neumann entropy[144] and relative entropy[152], is that they vary proportionally with the size of
the resource. That is, if the number of entangled photon pairs doubles the value of the measure
doubles. This is not the case for the inseparability criterion. In fact, as the strength of the entangle-
ment increases, the inseparability criterion approaches zero. Alternatively, in a manner analogous
to discrete variable entanglement measures, we can examine the average number of photons per
bandwidth per time required to generate the entanglement resource [30]. The average number of
photons per bandwidth per time in the sideband ω of an optical field is given by

n̄(ω) =
〈
â†(ω)â(ω)

〉

=
1

4

〈(
X̂+ − iX̂−

)(
X̂+ + iX̂−

)〉

=
1

4

(〈(
X̂+
)2〉

+
〈(
X̂−
)2〉

+i
〈
X̂+X̂−− X̂−X̂+

〉)

=
∣∣α+

∣∣2 +
∣∣α−

∣∣2 +
1

4

(
∆2X̂+ + ∆2X̂− − 2

)
. (4.34)

We see that with only vacuum in the sideband ∆2X̂+ = ∆2X̂− = 1 and α± = 0, so no photons
are present. If the state is squeezed, however, then ∆2X̂+ + ∆2X̂− > 2 always, and therefore
n̄ > 0 (see also Section 2.2). As the squeezing improves the average number of photons in the
state increases. Since entanglement may be generated by interfering a pair of squeezed beams we
can see that to maintain an entangled resource of a given strength (or a given I) will also require
some non-zero average number of photons. The mean number of photons in an entangled state

5The exception is quantum cryptography and related applications, where impurity can be useful to obscure a state
from observation by an eavesdropper [113]. This will be discussed further in Chapter 6
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n̄total is just the sum of the number in beams x and y

n̄total = n̄x + n̄y (4.35)

=
1

4

(
∆2X̂+

x + ∆2X̂−x + ∆2X̂+
y + ∆2X̂−y

)
− 1, (4.36)

where since the coherent amplitudes α±x and α±y have no relevance to the correlation matrix char-
acterising our entanglement, and are easily accounted for, we have neglect contributions from them
settingα±x = α±y = 0. As stated earlier, some fraction of n̄total is required to maintain the strength
of the entanglement. A contribution is also made by the impurity of the squeezed beams used to
generate the entanglement; and by the decoherence experienced by the state after production. Of
course, the photons in a quadrature entangled state are indistinguishable from one another so that
a definite separation of photons into distinct categories is not possible. This separation is possible
however, when only the average number of photons within a quadrature entangled state per band-
width per time is considered. The strength of the entanglement (I) dictates a minimum average
number of photons n̄min per bandwidth per time that are required to maintain the entanglement.
The remaining photons can (on average) be separated into photons that are present due to bias
between the amplitude and phase quadratures of the entangled beams n̄bias, and excess photons
that are the result the impurity of the entanglement n̄excess.

For entanglement that is symmetric between beams x and y such as is relevant to this thesis, the
average number of excess photons per bandwidth per time n̄excess can be found by considering the
lossless interference of the two entangled beams in phase on a 50/50 beam splitter. In this case the
output beams (labelled with the sub-scripts ‘out1’ and ‘out2’ here) would exhibit squeezing with
squeezed quadrature variances of ∆2X̂+

sqz,out1 = ∆2X̂+
x±y and ∆2X̂−sqz,out2 = ∆2X̂−x±y, respectively.

From Eq. (4.27) we see that the strength of our entanglement, I, depends only on the squeezing
of these output beams. Any impurity in the entanglement causes the output beams to be non-
minimum uncertainty ({∆2X̂+

sqz,out1∆
2X̂−sqz,out1,∆

2X̂+
sqz,out2∆

2X̂−sqz,out2} > 1). To determine the
average number of photons in the entangled state due to impurity, n̄excess, we can simply compare
the mean number of photons in the entangled state n̄total to the number that would be in the state
if it was perfectly pure, n̄pure,

n̄excess = n̄total − n̄pure (4.37)

= n̄x + n̄y − n̄pure. (4.38)

n̄pure can be thought of as the average number of photons per bandwidth per time required to
generate two pure squeezed beams with the same level of squeezing as the two output beams.
When I ≥ 1 no entanglement is present between beams x and y, and no squeezing is required.
We therefore find n̄min = 0 and n̄total = n̄excess + n̄bias. For the remainder of this Chapter (and
indeed this thesis) we only consider the more interesting situation when entanglement is present,
restricting ourselves to I < 1. In this case since the two output beams have squeezed quadrature
variances of ∆2X̂+

x±y and ∆2X̂−x±y respectively, n̄pure is given by

n̄pure =
1

4

(
∆2X̂+

x±y +
1

∆2X̂+
x±y

+ ∆2X̂−x±y +
1

∆2X̂−x±y

)
− 1. (4.39)

n̄excess can then be directly obtained from Eq. (4.38).

n̄pure can be separated into a component due to bias in the entanglement n̄bias and a component
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required to maintain the entanglement n̄min

n̄pure = n̄min + n̄bias. (4.40)

n̄min, since it is directly related to the strength of the entanglement I, should be independent
of local reversible operations performed individually on beams x and y. The photons resulting
from bias between the amplitude and phase quadratures of the entangled state, however, may be
completely eliminated by performing equal local squeezing operations on beams x and y [30].
After performing these operations n̄pure becomes

n̄
′
pure =

1

4

(
g2∆2X̂+

x±y +
1

g2∆2X̂+
x±y

+
∆2X̂−x±y
g2

+
g2

∆2X̂−x±y

)
− 1, (4.41)

where g is the gain of the squeezing operations. It is relatively easy to show that n̄
′
pure is min-

imised, and therefore n̄bias is eliminated, when g2 =
√

∆2X̂−x±y/∆2X̂+
x±y, and we find that

n̄min =
1

2



√

∆2X̂+
x±y∆2X̂−x±y +

1√
∆2X̂+

x±y∆2X̂−x±y


− 1

=
1

2

(
I +

1

I

)
− 1, (4.42)

where n̄min is the minimum mean number of photons per bandwidth per time required to generate
entanglement of a given strength I. We see that n̄min is completely determined by I and is
monotonically increasing as I → 0. The average number of photons present in the entanglement
per bandwidth per time as a result of bias can then also be determined n̄bias = n̄pure − n̄min.
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_

Figure 4.1: Axes of the photon number diagram representation of entanglement.

We can now separate the average photon number per bandwidth per time in a quadrature
entangled state into three categories; photons required to maintain the entanglement n̄min, photons
produced by bias between the amplitude and phase quadratures n̄bias, and excess photons resulting
from impurity n̄excess. All three average photon numbers can be calculated from measurements of
∆2X̂±x , ∆2X̂±y , and ∆2X̂±x±y. An entangled state can then be conveniently and intuitively analysed
on a three dimensional diagram as shown in Fig. 4.1, with n̄min, n̄bias, and n̄excess forming each
of the axes. Note that, in a manner analogous to that performed for n̄pure above, n̄excess may be
broken into two parts: the average number of photons required to produce the impurity of the
entanglement, and the average number of photons generated by bias between the amplitude and
phase quadratures caused by the impurity of the state. We do not perform this separation explicitly
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here, since the exact distribution of excess photons is of much less significance than that for the
photons necessary to generate the entanglement. Including this extra parameter, and assuming the
entanglement is of the same form as is discussed earlier, the correlation matrix of Section 4.3.1
can be fully characterised by these photon number parameters.

An analogy can be made between the n̄min-n̄excess plane of the photon number diagram and
the tangle/linear entropy analysis often performed for discrete variable entanglement[153]. In both
cases the entanglement is represented on a plane with one axis representing the strength of the
entanglement (n̄min for continuous variables, and the tangle for discrete variables), and the other
axis representing the purity of the state (n̄excess for continuous variables and the linear entropy
for discrete variables). Unlike the discrete variable case where the region of the tangle-linear
entropy plane occupied by physical states is bounded, the set of continuous variable entangled
states spans the entire n̄min-n̄excess plane. The difference occurs because the discrete quantum
states analysed on the tangle-linear entropy plane involve a finite and fixed number of photons.
This restriction limits both the strength of the entanglement (the tangle) and the purity (the linear
entropy). Continuous variable entangled states have no such limitation.

n̄min as a measure of entanglement

As an aside, it is interesting to consider whether n̄min is a good measure of entanglement. For-
mally, a good measure of the entanglement of the state ρ, E(ρ), must satisfy the following
criteria[144, 145]:

1. E(ρ) = 0 if and only if ρ is separable,

2. E(ρ) is left invariant under local unitary operations,

3. E(ρ) is non-increasing under local general measurements and classical communication,

4. Given two separate entangled states ρ1 and ρ2 such that ρ = ρ1⊗ρ2,E(ρ) = E(ρ1)+E(ρ2).

Duan et al. demonstrated that I = 1 if and only if the state under interrogation is separable. It
is clear then that n̄min = 0 if and only if the state under interrogation is separable, and therefore
Criterion 1. is true for n̄min. Furthermore, since characterisation of I requires that the states
correlation matrix be taken into a standard form, both I and n̄min are invariant under local unitary
operations so that Criterion 2. is true, also. As yet we have no conclusion about the validity
of Criterion 3. for n̄min. It seems likely that it is valid since an increase in n̄min is equivalent
to an increase in the quantum correlation between fields x and y, which should not be possible
through local general measurements and classical communication. Finally, given two separate
entangled states the minimum average number of photons per bandwidth per time required to
generate both states is simply the sum of the minimum average number of photons per bandwidth
per time required to generate each state, n̄min = n̄min,1 + n̄min,2, so that Criterion 4. is valid. We
see therefore that n̄min satisfies three of the four criteria for a good entanglement measure, and
although we have not shown so here, we believe it is likely to satisfy the remaining criterion. n̄min

is a particularly elegant measure of entanglement due to its physical significance.

Entanglement criteria and the photon number diagram

We can represent the degrees of inseparability and EPR paradox on the photon number diagram.
As can be seen from Eq. (4.42), for entanglement symmetric between beams x and y the degree
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inseparability can be expressed solely as a function of n̄min

I = n̄min + 1−
√

(n̄min + 1)2 − 1. (4.43)

The same is not true for the EPR paradox criterion. This result is unsurprising, we have already
found that the EPR paradox is sensitive to the purity of the entangled state which can be expressed
in terms of n̄excess. The degree of EPR paradox can be obtained from the amplitude and phase
quadrature conditional variances between beams x and y (see Eq. (4.29)). We see from Eq. (4.30)
that the amplitude and phase quadrature conditional variances are defined by ∆2X̂±x , ∆2X̂±y , and∣∣〈δX±x δX±y

〉∣∣. For simplicity here we assume the entanglement is symmetric between amplitude
and phase quadratures. This assumption is true for the entanglement analysed in this thesis at
sideband frequencies above around 5 MHz, and has the consequence that there are no photons in
the entangled state due to bias n̄bias = 0. We then find that

∆2X̂ = ∆2X̂+
x = ∆2X̂−x = ∆2X̂+

y = ∆2X̂−y = n̄total + 1, (4.44)

and can express
∣∣〈δX±x δX±y

〉∣∣ in terms of n̄min and n̄excess as

∣∣〈δX±x δX±y
〉∣∣ = n̄excess +

√
(n̄min)2 − 1. (4.45)

The degree of EPR paradox can then also be written in terms of n̄min and n̄excess

E =




2n̄excess

(
n̄min + 1−

√
(n̄min + 1)2 − 1

)
+ 1

n̄excess + n̄min + 1




2

. (4.46)

Since we have assumed that n̄bias = 0, the degree of EPR paradox can be represented as con-
tours on the n̄min-n̄excess plane of the photon number diagram. This representation is shown in
Fig. 4.14 a), the curvature of the contours demonstrates again the sensitivity of the EPR paradox
to impurity.

It is interesting to note that in the extrema of n̄excess → 0 and n̄excess → ∞, the degree
of EPR paradox becomes a function of only n̄min, and can be written in terms of the degree of
inseparability as

En̄excess→0 =
4I2

(I2 + 1)2 (4.47)

En̄excess→∞ = 4I2. (4.48)

We see again that for pure entanglement (n̄excess = 0) I < 1 implies E < 1. In contrast, for
extremely impure entanglement (n̄excess → ∞), we see that to observe the EPR paradox requires
I < 0.5. This result has the consequence that if the squeezed beams used to generate the en-
tanglement have squeezed variances {∆2X̂+

sqz,1,∆
2X̂+

sqz,2} < 0.5, then no matter how large the
anti-squeezed variances, the EPR paradox can be demonstrated.

Quantum teleportation and the photon number diagram

Quantum information protocols are also representable on the photon number diagram. In this
Chapter we consider two well-known examples, quantum teleportation and dense coding.
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Figure 4.2: Schematic of a quantum teleportation experiment, detectors labelled with the symbols + and
- are amplitude and phase detectors respectively, BS: beam splitter, AM: amplitude modulator, PM: phase
modulator, LO: local oscillator.

The uncertainty principle of quantum mechanics fundamentally limits both the ability to mea-
sure and to reconstruct quantum states. Since quantum teleportation requires both measurement of
the original state, and then reconstruction at a distant location, it was therefore thought that tele-
portation was also fundamentally limited by the uncertainty principle. In 1993, however, Bennett
et. al [122] discovered that by using entangled photon pairs in the measurement and reconstruc-
tion processes perfect teleportation could be facilitated. Their proposal has been generalised to
the continuous variable regime [148, 149], and a schematic of the continuous variable scheme is
shown in Fig. 4.2. A detailed analysis of quantum teleportation is given in Chapter 5. Here, we
restrict ourselves to the unity gain regime where the coherent amplitudes of the input and output
states are equal, and characterise the protocol using only the most well known measure, the fidelity
of teleportation. Fidelity measures the state-overlap between the teleporter input |ψin〉 and output
ρ̂out states, and is given by

F = 〈ψin|ρ̂out|ψin〉. (4.49)

F = 1 implies perfect overlap between the input and output states and therefore perfect teleporta-
tion, without entanglement the fidelity is limited to F ≤ 0.5, and F = 0 if the input and output
states are orthogonal. Again assuming that the entanglement is unbiased (n̄bias = 0), the fidelity of
unity gain coherent state teleportation using quadrature entanglement [148, 149] may be expressed
as

F =
1

1 + I . (4.50)

We see that the success of the teleportation protocol depends only on the degree of inseparabil-
ity. This results in vertical efficacy contours for teleportation when represented on the photon
number diagram, as can be seen in Fig. 4.14 b). The shading in Fig. 4.14 b) indicates the area
of the photon number diagram for which the more stringent no cloning teleportation limit is left
unsatisfied [154, 155]. Note that, if the teleportation protocol was operated at non-unity gain,
the protocol would become sensitive to impurity and the teleportation efficacy contours would be
curved. Although the non-unity gain regime is significant for quantum information protocols such
as optimum entanglement swapping and is the focus of much of the discussion in Chapter 5, we
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will not consider it here.

Dense coding and the photon number diagram
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Figure 4.3: Schematic of a dense coding experiment, BS: beam splitter, AM: amplitude modulator, PM:
phase modulator.

Dense coding was first proposed by Bennett et. al [123] in 1992, when they showed that by
utilising shared entanglement between the sending (Alice) and receiving (Bob) stations, a single
communication channel can achieve a higher information transfer rate than is physically possible
using the same resources (i.e. the same number of photons) but without entanglement.

An upper bound to the information transfer rate of a bandwidth limited Gaussian information
channel is given by the Shannon capacity C [156]

C =
log2 (1 + SNR)

2
, (4.51)

where SNR = ∆2Ŝ/∆2N̂ is the signal to noise ratio of the channel, with ∆2Ŝ and ∆2N̂ being the
variance of the signal and noise respectively. Dense coding in the continuous variable regime was
first proposed by Braunstein and Kimble in 2000 [151], and a detailed discussion may be found in
[124]. A schematic diagram of the proposal of Braunstein and Kimble is given in Fig. 4.3.

In this thesis we restrict ourselves to the comparison of the channel capacities achievable using
a squeezed state and using a dense coding protocol based on quadrature entanglement. To obtain a
fair comparison of the two schemes we define the total average number of photons allowed in the
beam encoded with information n̄encoding. In both the squeezed state and entangled state based
schemes some of these photons must be used to generate the quantum state, and the remaining
photons can be used to encode signals. For the squeezed state scheme the number of photons in
the squeezed state is given by

n̄sqz =
1

4

(
∆2X̂sqz +

1

∆2X̂sqz

− 2

)
, (4.52)

where ∆2X̂sqz is the variance of the squeezed quadrature. The remaining n̄encoding− n̄sqz photons
are used to encode signals on the squeezed quadrature of the beam. This results in a channel with
signal variance given by ∆2Ŝsqz = 4(n̄encoding − n̄sqz), and noise variance given by ∆2N̂sqz =

∆2X̂sqz. The squeezed state channel capacity is then

Csqz = log2

(
1 +

4(n̄encoding− n̄sqz)

∆2X̂sqz

)
. (4.53)
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Optimising the ratio of the mean number of photons per bandwidth per time used to generate
squeezing and the mean number of photons per bandwidth per time used to encode the signal we
arrive at the optimum squeezed state channel capacity [124]

Csqz,opt = log2 (1 + 2n̄encoding) . (4.54)

Let us now consider the dense coding scheme. Again, we make the assumption that the en-
tanglement is symmetric between the amplitude and phase quadratures. In this case we can use
the amplitude and phase quadratures as independent channels, and find that the noise variance of
each channel is given by ∆2N̂EPR = I = ∆2X̂+

x±y = ∆2X̂−x±y. n̄total as defined previously is the
average number of photons per bandwidth per time in the entangled state before encoding of any
signals. These photons are split evenly between the two entangled beams, therefore on average
n̄encoding − n̄total/2 photons per bandwidth per time are available for encoding. The amplitude
and phase quadrature signal variances are both then given by ∆2ŜEPR = n̄encoding − n̄total/2,
which is attenuated by a factor of four when compared to the squeezed state signal variance. This
attenuation is the result of two effects, a factor of two arises because the signal photons must be
shared between the amplitude and phase quadratures of the entangled beam, and another factor of
two is due to the 50/50 beam splitter required before measurement. We then obtain the entangled
state channel capacity

CEPR = log2

(
1 +

∆2ŜEPR

I

)
(4.55)

= log2


1 +

n̄encoding− (n̄min + n̄excess) /2

n̄min + 1−
√

(n̄min + 1)2 − 1


 . (4.56)

When the average number of photons available to the dense coding protocol is large
(n̄encoding→∞), the dense coding channel capacity becomes independent of the number of pho-
tons present due to impurity in the entanglement. This is shown in Fig. 4.14 d) which plots con-
tours of the ratioCEPR/Csqz for large n̄encoding. We see that in this limit the dense coding channel
capacity exceeds the optimum achievable squeezed state channel capacity for n̄min > 0.25. When
the average number of photons available to the dense coding protocol is small however, the dense
coding channel capacity can be extremely sensitive to impurity. This is perhaps not a surprise,
since every photon that exists in the entangled state is one less that may be used to encode signals.
Clearly, in the limit that n̄encoding = (n̄min + n̄excess)/2, no photons remain to encode signals, and
therefore CEPR = 0. The ratio CEPR/Csqz for small n̄encoding is shown as a function of n̄min and
n̄excess in Fig. 4.14 c), and indeed the contours are strongly curved.

4.4 Experiment

The previous Section described methods presently available to characterise continuous variable
entangled states. In particular we discussed the correlation matrix which can be used to fully
characterise Gaussian entanglement, the inseparability and EPR paradox criteria, and a new rep-
resentation the photon number diagram. In this Section we describe the methods used in our
experiment to generate a pair of entangled beams. We then present experimental results for each
entanglement characterisation technique over the frequency range from 2.5 to 10 MHz. We ex-
amine the effect of loss on the inseparability and EPR paradox criteria demonstrating qualitative
differences, and use the photon number diagram to predict the efficacy of our entanglement in the
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quantum information protocols introduced earlier.
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Figure 4.4: The apparatus used to generate and characterise quadrature entangled beams. x and y respec-
tively label the entangled beams, BS: beam splitter, PBS: polarising beam splitter, λ/2: half-wave plate, θ:
phase shift between squeezed beams, LOx and LOy homodyne local oscillator beams for homodynes x and
y, θLO: phase of homodyne local oscillator beams.

4.4.1 Generation and measurement of entanglement

We generated quadrature entanglement by combining our two amplitude squeezed beams with rel-
ative phase of π/2 on a 50/50 beam splitter as discussed in Section 4.2 and shown in Fig. 4.4. A
visibility of 98.7±0.3 % was observed for the process, and the relative phase was controlled at π/2
by actively balancing the power in the two entangled beams. Each entangled beam was interro-
gated in a balanced homodyne detector that could be locked to detect either its phase or amplitude
quadrature. The efficiency of the detection process was approximately 86 %, with loss contributed
equally by the homodyne visibility and the photo-detector efficiency. Measured spectra of the
amplitude and phase quadrature variances of the two entangled beams are shown in Fig. 4.5. Both
spectra are greater that the quantum noise limit over the entire range of measurement, a necessary
prerequisite for entanglement. Due to the symmetric arrangement of our experiment the spectra
are identical, so that the assumption of symmetry made in Sections 4.3.4, 4.3.4, and 4.3.4 seem
reasonable.

We analysed the correlations between beams x and y by measuring the amplitude and phase
quadrature sum and difference variances ∆2X̂±x±y. The gain between the two homodyne detec-
tors was verified to be unity by encoding large correlated phase modulations on beams x and
y, throughout the experiment these modulations were suppressed on subtraction by greater than
30 dB. Spectra for ∆2X̂±x±y were then obtained by taking the minimum of the sum and difference
variances between homodynes x and y with both homodynes locked to either the amplitude or
phase quadratures. These spectra were normalised to the vacuum noise scaled by the combined
power of the two homodyne local oscillators and the two entangled beams, and are shown in
Fig. 4.6. At frequencies above 5 MHz both the amplitude and phase quadrature sum and differ-
ence variances are identical and well below the level expected between a pair of coherent states of
the same power. At lower frequencies however, the symmetry between the amplitude and phase
quadratures is broken. This effect is due to the relaxation oscillation of the laser which is common
mode, and therefore correlated, between the entangled beams. As shown in Section 4.2 the am-
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Figure 4.5: Frequency spectra of the average amplitude (∆2X̂+) and phase (∆2X̂−) quadrature variances
of the individual entangled beams normalised to the quantum noise limit. The shaded frequency bands
indicate the frequency ranges over which the correlation matrix is characterised.

plitude quadratures of our entangled beams were anti-correlated, and the phase quadratures were
correlated. ∆2X̂+

x±y was therefore obtained by summing the amplitude quadrature photo-currents
from homodynes x and y, and the contribution from the relaxation oscillation was therefore also
summed. ∆2X̂−x±y on the other hand was obtained by subtracting the phase quadrature photo-
currents from the homodynes, and so the contributions from the relaxation oscillation cancelled.
We see then that with decreasing frequency ∆2X̂+

x±y degrades quickly, whereas ∆2X̂−x±y remains
roughly constant. The slight degradation of ∆2X̂−x±y at frequencies below 4 MHz can be attributed
to small differences in the response of the two homodyne detectors so that the relaxation oscillation
was not quite perfectly cancelled.
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Figure 4.6: Frequency spectra of the amplitude and phase quadrature sum and difference variances between
quadrature entangled beams x and y. (a) ∆2X̂+

x±y and (b) ∆2X̂−x±y.
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4.4.2 Characterisation of the correlation matrix

As discussed in Section 4.3.1, the correlation matrix provides a complete characterisation of Gaus-
sian entanglement. Given the assumptions that entangled beams x and y are interchangeable
and that there are no cross-quadrature correlations the correlation matrix is completely specified
through measurements of C±±xx = ∆2X̂± and C±±xy = 1

2〈δX̂±x δX̂±y + δX̂±y δX̂
±
x 〉. Measurements

of C±±xx for our entanglement are presented in Fig. 4.5. To obtain C±±xy we expand ∆2X̂±x±y

∆2X̂±x±y =

〈(
δX̂±x ± δX̂±y

)2 〉

2
(4.57)

=
∆2X̂±x + ∆2X̂±y

2
±
〈
δX̂±x δX̂

±
y

〉
(4.58)

= ∆2X̂± ± 1

2

〈
δX̂±x δX̂

±
y + δX̂±y δX̂

±
x

〉
(4.59)

= C±±xx ± C±±xy . (4.60)

So C±±xy can be obtained from our measurements of the average amplitude and phase quadra-
ture variances, and the amplitude and phase quadrature sum and difference variances, C±±xy =

±∆2X̂±x±y ∓∆2X̂±. Fig. 4.7 shows the resulting spectra. We see that C++
xy is negative, and C−−xy

is positive, throughout the range of the measurement. This is a characterisation of the correlation
and anti-correlation of the phase and amplitude quadratures, respectively, between beams x and y.
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Figure 4.7: Frequency spectra of the same-quadrature correlation matrix elements between beams x and y.
(a) C++

xy , (b) C−−xy . The shaded frequency bands indicate the frequency ranges over which the correlation
matrix is characterised.

For every sideband frequency, assuming that entangled beams x and y are interchangeable and
that there are no cross-quadrature correlations, a correlation matrix describing our entanglement
can be constructed from the curves in Figs. 4.5 and 4.7. Here, as illustrated by the shaded fre-
quency bands in the figures, we take two examples, the correlation matrices of the sidebands at
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3.5 and 6.5 MHz. Extracting the data directly from the figures we obtain the correlation matrices

CM3.5 MHz =




6.2 (0) 5.3 (0)

(0) 6.1 (0) 5.7

5.3 (0) 6.2 (0)

(0) 5.7 (0) 6.1


 , (4.61)

and

CM6.5 MHz =




3.3 (0) 2.9 (0)

(0) 3.3 (0) 2.9

2.9 (0) 3.3 (0)

(0) 2.9 (0) 3.3


 , (4.62)

where all experimentally determined values have an associated statistical error of ±0.05. The
bracketed values are fixed as a result of the symmetry assumptions made in Section 4.3.1 and
are therefore not experimentally determined. We can now examine whether the inseparability
criterion originally proposed by Duan et al. (Eq. (4.16)), and the product inseparability criterion of
Eq. (4.25) can be used to directly analyse the strength of our entanglement. The correlation matrix
given here is of the form required for both criteria (see Eq. (4.13)). It remains, solely, to determine
whether the restrictions imposed by each criteria are satisfied. For the original criterion to be
valid Eqs. (4.14) and (4.15) must be true. Since our entangled beams x and y are interchangeable
C±±xx = C±±yy , so that Eq. (4.14) is always true. Eq. (4.15) on the other hand, is true at 6.5 MHz, but
not at the lower frequency of 3.5 MHz. The original inseparability criterion can therefore be used
to characterise the strength of our entanglement at 6.5 MHz, but not at 3.5 MHz. For the product
criterion to be valid, Eq. (4.24) must be satisfied. Since C±±xx = C±±yy for our entanglement
at all frequencies, we see that indeed the product criterion is valid for all sideband frequencies.
Of course, once the correlation matrix describing the entanglement is fully characterised, it can
be transformed into Duan et al.’s standard form, and subsequently either inseparability criterion
can be used. This, however, involves many more measurements on the entangled state than are
required to simply determine the product form of the criterion. Therefore, if a characterisation of
the inseparability of the entanglement is all that is required, the product form is preferable.

4.4.3 Characterisation of the inseparability and EPR paradox criteria

We directly determine a spectrum for the degree of inseparability of our entanglement from the
amplitude and phase quadrature sum and difference variance spectra in Fig. 4.6, using the product
measure given in Eq. (4.27). This spectrum is shown in Fig. 4.8. We see that beams x and y were
entangled at frequencies within our measurement range higher than 2.8 MHz. As with the other
spectra presented in this Chapter, the strength of the entanglement is degraded at low frequencies
as a result of the relaxation oscillation of our laser, and at high frequencies due to the bandwidth
of the OPA resonators. The optimum degree of inseparability was achieved at 6.5 MHz, where we
observed ∆2X̂±x±y = 0.44± 0.01 for both the amplitude and phase quadratures. This resulted in a
degree of inseparability of I = 0.44± 0.01.

Characterisation of the EPR paradox criterion requires measurements of the amplitude and
phase quadrature conditional variances between beams x and y. As can be seen from Eq. (4.31),
these variances can be inferred from the correlation matrix elements C±±xx , and C±±xy . However,
since these conditional variances were easily measurable from our experimental setup, we mea-
sured them directly. The conditional variance measures the uncertainty of one variable (X̂+

x say)
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Figure 4.8: Frequency spectrum of the degree of inseparability I between the amplitude and phase quadra-
tures of our quadrature entangled state.

given knowledge of another variable (X̂+
y say). We characterise it here in a similar manner to

that used to characterise the sum and difference variances. This time, however, rather than being
fixed to unity, the gain between the two homodyne photocurrents was optimised to minimise the
measured variances; and the normalisation was performed with respect to vacuum fluctuations
scaled by only one homodyne local oscillator and entangled beam. The resulting amplitude and
phase quadrature conditional variance spectra are shown in Fig. 4.9. We see that both ∆2X̂±
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Figure 4.9: Conditional variance of the amplitude (a) and phase (b) quadratures of beam x given a mea-
surement of that quadrature on beam y.

are below unity for the majority of our measurement range. This implies that a measurement
performed on beam y will prepare beam x in a squeezed state, and therefore that non-classical
correlations exist between the two beams. At 6.5 MHz we obtained the conditional variances
∆2X̂+

x|y = 0.77 ± 0.01 and ∆2X̂−
x|y = 0.76 ± 0.01. Notice that again, the amplitude quadrature

spectrum is strongly degraded at low frequencies due to the relaxation oscillation of our laser,
whereas the phase quadrature is unaffected by it.

Taking the product of the amplitude and phase quadrature conditional variances yields the
degree of EPR paradox. Fig. 4.10 presents the resulting frequency spectrum. We observe an
optimum of E = 0.58 ± 0.02 < 1, which is well within the regime for observation of the EPR
paradox.

We know from the discussion in Section 4.3 that the degree of EPR paradox E is highly sensi-
tive to entanglement impurity, whereas the degree of inseparability I is independent of impurity.
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Figure 4.10: Frequency spectrum of the degree of EPR paradox between the amplitude and phase quadra-
tures of our entangled state.

We interrogate this qualitative difference by introducing equal loss to the two entangled beams.
Each entangled beam was passed through a waveplate and polarising beam splitter before detec-
tion as shown in Fig. 4.4. Rotating the waveplate allowed us to vary the amount of loss introduced.
We characterised both the degree of EPR paradox and the degree of inseparability at 6.5 MHz for
a number of loss settings (waveplate settings). For each measurement the spectrum analyser was
set to zero span and averaged over ten consecutive traces. Fig. 4.11 summarises these measure-
ments. We see that the experimental dependences on loss for both E and I agree very well with
the theoretical curves obtained from Eqs. (4.28) and (4.33). As discussed in [130], no matter what
the loss, the inseparability criterion always holds. We find however, that the EPR paradox criterion
fails for loss greater than 0.48. In fact as observed earlier, it is impossible for the EPR paradox
criterion to hold for loss greater than or equal to 0.5. The error bars on the plots can be attributed
to uncertainty in the loss introduced, small fluctuations in the local oscillator powers and, for the
EPR paradox criterion, error in the optimisation of the electronic gain.

4.4.4 Representation of results on the photon number diagram

The photon number diagram introduced in Section 4.3.4 provides a physically intuitive represen-
tation of continuous variable entanglement. The measured spectra for ∆2X̂± and ∆2X̂±x±y shown
in Figs. 4.5 and 4.6 may be translated into the three axes of this diagram (n̄min, n̄excess, and n̄bias)
using Eqs. (4.38), (4.39), (4.40), and (4.42). The resulting spectra are shown in Fig. 4.12. At low
frequencies there is no entanglement, and from Fig. 4.12 (a) we see that correspondingly no pho-
tons are required to maintain the entanglement (n̄min = 0), with increasing frequency the average
number of photons required increases, peaking at n̄min = 0.35 around 6.5 MHz, before dropping
off as the frequency moves above the bandwidth of our OPAs. From Fig. 4.12 (b) we see that
over the majority of the measured spectrum on average very few photons are present in the entan-
glement as a result of bias between the amplitude and phase quadratures. Photons resulting from
bias only become significant at frequencies below 5 MHz. This bias is a direct consequence of
the differing sensitivity of ∆2X̂+

x±y and ∆2X̂−x±y to our lasers relaxation oscillation. Fig. 4.12 (c)
shows that throughout the spectrum of our measurement the majority of the photons present in our
entanglement are there as a result of impurity. In fact from the fit to the degree of EPR paradox in
Fig. 4.11 we see that at 6.5 MHz the most significant contribution to the impurity of our entangled
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Figure 4.11: Comparison of (a) EPR and (b) inseparability criteria with varied detection efficiency. The
symbols +, 4, and© label three separate experimental runs. For + a systematic error was introduced by
the detection darknoise when optimising the EPR paradox criterion gain. The solid fit in (a) includes this,
the dashed fit is the result expected if the error was eliminated, and agrees well with runs 4 and©. The
solid line in (b) is a theoretical fit, the dashed line is the result predicted by the fit in (a). There were four
sources of unavoidable loss in our system, I: Detection loss, II: Homodyne loss, III: optical loss and IV:
OPA escape loss.

state is optical loss. Therefore even relatively small levels of loss (such as 33%) facilitate a signifi-
cant transfer of mean photons per bandwidth per time from n̄min to n̄excess. If additional sources of
phase noise are present in the process used to generate squeezing, the average number of photons
present due to impurity can become extremely large. The X in Fig. 4.17 shows n̄min and n̄excess

for the entanglement generated by Siliberhorn et. al [127]. Their entanglement was produced
via the Kerr non-linearity in optical fibres, with additional phase noise introduced via guided-
acoustic-wave Brillouin scattering [157, 97]. Consequently, an average of around 100 photon per
bandwidth per time were present due to impurity, compared with an average of 0.45 photons per
bandwidth per time required to maintain the entanglement. The spectra of n̄min, n̄excess, and n̄bias

obtained for our entanglement are mapped onto the photon number diagram in Fig. 4.13.

The photon number diagram can be used to analyse the efficacy of an entangled state in quan-
tum information protocols. As discussed in Section 4.3.4, Fig. 4.14 shows efficacy contours of the
degree of EPR paradox, quantum teleportation, and high and low photon number dense coding, on
the n̄min-n̄excess plane of the photon number diagram assuming that n̄bias = 0. Since n̄bias ≈ 0 for
our entangled state over most of the measured spectrum, we project the curve shown in Fig. 4.13
onto the n̄bias = 0 plane and display it on Fig. 4.14. We can then obtain estimates of the optimum
efficacy that could be achieved with our entangled state in various quantum information protocols,
and estimates of the frequencies at which the optima occur. From Fig. 4.14 (a) we find that the
optimum expected degree of EPR paradox for our entanglement is roughly E = 0.68 and occurs
around 6.6 MHz. In Section 4.4.3 we experimentally obtained a value of E = 0.58± 0.02 which
is significantly lower. This difference is evident because the experiment was operating more ef-
fectively when the measurements of the degree of EPR paradox were made. Indeed this can be
seen in Fig. 4.11, where the degree of inseparability predicted from our the degree of EPR paradox
results is somewhat better than the result we obtained directly. Due to sensitivity of the degree of
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Figure 4.12: Frequency spectra of the axes of the photon number plot. (a) n̄min , (b) n̄bias, and (c) n̄excess

EPR paradox to loss and impurity, this difference explains the discrepancy. From Fig. 4.14 (b)
we see that the optimum teleportation fidelity achievable with our entanglement is approximately
F = 0.695 and would be observed near 6.2 MHz. The entangled state analysed here was used to
perform quantum teleportation in Chapter 5, due to non-ideal effects such as optical loss and de-
tector darknoise an optimum fidelity of F = 0.64±0.02 was observed [111]. Fig. 4.14 (c) and (d)
show dense coding contours on the photon number diagram. The low photon number efficacy con-
tours for dense coding shown in Fig. 4.14(c) have an extremely strong dependence on the average
number of excess photons carried by the entanglement, accordingly the optimum ratio of dense
coding to squeezed state channel capacities would occur at 10 MHz where our entanglement is
most pure, in our case this never exceeds unity. However, as discussed in Section 4.3.4, increasing
the total average number of photons allowed in the sidebands (n̄encoding) causes the dense coding
protocol to become independent of n̄excess. We find that when a large number of photons per band-
width per time are available to encode signals (n̄encoding� n̄excess) the optimum achievable ratio
of channel capacities is CEPR/Csqz ≈ 1.02 and occurs near 6.3 MHz. So that in the large photon
number limit dense coding using the entangled state characterised in this Chapter could yield a
channel capacity marginally better than that achievable with optimal squeezed state encoding.

4.5 A simple scheme to reduce n̄excess with minimum effect on n̄min

The photon number diagram can be a useful tool not only to diagnose the efficacy of a given en-
tanglement resource in quantum information protocols, but also the effect of techniques available
to improve the quality of the entanglement such as entanglement distillation [136, 137, 138] and
purification [139, 140, 141]. As an example we will consider a simple scheme to reduce the av-
erage number of photons in an entangled state as a result of impurity, and will again assume that
the entanglement is interchangeable and symmetric between the amplitude and phase quadratures.
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Figure 4.13: Representation of the quadrature entangled state on the photon number diagram.

This sort of scheme is somewhat analogous to entanglement purification which identifies and re-
moves photons present in an entangled state that do not contribute to the entanglement. Ideally our
scheme when represented on the photon number diagram would eliminate all photons present due
to impurity n̄excess, without affecting the photons required to maintain the entanglement or those
due to bias (n̄min, n̄bias, n̄excess)→ (n̄min, n̄bias, 0). In practice this ideal situation is not possible
and some reduction of entanglement strength during the process is inevitable. Since some quan-
tum information protocols are highly sensitive to impurity (see Fig. 4.14), however, a less strong
but more pure entangled state may still be preferable over a stronger, less pure one.

Let us initially consider the paths mapped out on the photon number diagram when an entan-
gled state is exposed to optical loss. These paths are obtained by considering the effect of loss on
Eqs. (4.3) and (4.4); calculating the individual variances of the quadratures of the entangled beams
∆2X̂±x and ∆2X̂±y ; and their sum and difference variances ∆2X̂±x±y;6 and applying these variances
to Eqs. (4.38), (4.39) and (4.42). Several such paths are shown in Fig. 4.15 a) and b). Notice that
for the relatively pure entangled states shown in Fig. 4.15 b), n̄excess actually increases with in-

6∆2X̂±x , ∆2X̂±y , and ∆2X̂±x±y as a function of detection efficiency ε are given by Eqs. (4.65) and Eqs. (4.66) with
ga = gb = 0.
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plots are (a) the degree of EPR paradox, (b) the fidelity of quantum teleportation, (c) and (d) ratio of dense-
coding channel capacity to optimum squeezed channel capacity for n̄encoding = 3.375 and n̄encoding = 125,
respectively.

creasing loss. It is this relationship between purity and loss that causes the sensitivity of the degree
EPR paradox to loss shown in Fig. 4.11. Clearly however, as the loss approaches 100 % the entan-
gled state approaches an independent pair of vacuum states and (n̄min, n̄bias, n̄excess)→ (0, 0, 0).
So that in most cases n̄excess decreases with increasing loss, and in some sense optical loss achieves
our goal of reducing n̄excess. We can analyse the affect of optical loss on each of the protocols dis-
cussed in this Chapter simply by superimposing the efficacy contours of the protocol over the
optical loss paths in the photon number diagram. Unsurprisingly, we find then that optical loss
always degrades quantum teleportation and the degree of EPR paradox. In a dense coding proto-
col however, if the entangled state is highly impure and very few photons are available to encode
signals the dense coding channel capacity can be worse than the channel capacity achievable using
a vacuum state. Attenuating the entangled state will then enhance its channel capacity and the ef-
ficacy of the dense coding protocol. This attenuation will only improve the dense coding protocol
whilst in the classical regime where CEPR/Csqz < 1, when CEPR/Csqz > 1 attenuation will only
reduce CEPR. So optical loss can not improve the efficacy of a dense coding protocol operating in
the quantum regime.

Clearly, since the degree of inseparability of an entangled state is very sensitive to loss, simply
adding loss is not a particularly effective technique. A much more sensible approach would be to
use the light tapped off from the entangled state when loss is introduced to gain some information
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about the entangled state. A scheme to do this is shown in Fig. 4.16. A part of each entangled
beam (dictated by the beam splitter ratio ε), is tapped off and then split in two. Amplitude and
phase quadrature measurements are performed. The resulting photocurrents are correlated to the
amplitude and phase quadratures of both entangled beams, and can be fed forward and applied to
the entangled beams to reduce the impurity of the entanglement. Assuming that the entanglement
is interchangeable and symmetric between the amplitude and phase quadratures, the variances of
each entangled beam individually after the feedforward are given by

∆2X̂±x,feed = ∆2X̂±y,feed (4.63)

= K2
−
(

∆2X̂+
sqz,1 + ∆2X̂+

sqz,2

)
+K2

+

(
∆2X̂−sqz,1 + ∆2X̂−sqz,2

)
(4.64)

+

(√
1− ε + gb

√
ε

2

)2

+
g2
b

2
+
g2
a

2
(1 + ε) ,

where the constantsK− and K+ are

K± =
1

2

(
√
ε−

√
1− ε

2
(gb ± ga)

)
, (4.65)

ε is the tap-off beam splitter ratio, and ga and gb are the feedforward gains for the signals encoded
across the entangled beams and on the entangled beam they were obtained from, respectively.
Likewise, the sum and difference variances are given by

∆2X̂±x±y,feed = 4K2
−
(

∆2X̂+
sqz,1 + ∆2X̂+

sqz,2

)
+ 2

(√
1− ε+

√
ε

2
(gb − ga)

)2

+ (gb − ga)2 .

(4.66)

The effect of this feedforward technique on n̄min and n̄excess can be obtained, as above, by inserting
∆2X̂±x,feed, ∆2X̂±y,feed and ∆2X̂±x±y,feed into Eqs. (4.38), (4.39) and (4.42). For each level of purity
n̄excess the beam splitter ratio ε and the feedforward gains ga and gb can be used to optimise n̄min,
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this yields optimum paths on the photon number diagram for reducing n̄excess whilst degrading
n̄min as little as possible. Some selected paths are displayed in Fig. 4.17, super-imposed on the
photon number plot are efficacy contours for a dense coding protocol with n̄encoding = 50. We
find again that neither quantum teleportation nor the degree of EPR paradox can be improved
using this technique. In contrast to the optical loss paths discussed earlier however, n̄excess can
be very significantly reduced with very little change in n̄min. We can see from Fig. 4.17 that
applying this feedforward technique before a dense coding protocol can facilitate the transition
from CEPR/Csqz < 1 to CEPR/Csqz > 1. The X on Fig. 4.17 plots the (n̄min, n̄excess) co-
ordinates of the Kerr-fiber soliton entangled pair recently generated by Silberhorn et. al [127].
Due to guided-acoustic-wave Brillouin scattering [157, 97] entanglement generated using Kerr-
fiber soliton technology is inherently highly impure. This places significant limitations on the
usefulness of this entanglement for protocols such as dense coding in which the number of photons
used in the protocol is critical. We see that by using this simple feedforward procedure the purity
of the entanglement of Silberhorn et. al [127] could be significantly improved. For the example
considered here of dense coding with n̄encoding = 50 our feedforward protocol can improve the
efficacy CEPR/Csqz of the protocol from 0.23 to 1.01, and in the process takes (n̄min, n̄excess)

from (0.45, 98) to (0.35, 8).

4.6 Conclusion

In conclusion, we have generated a strongly quadrature entangled state from the amplitude
squeezed beams produced in Chapter 3. The correlation matrix of the state was characterised.
We gauged the strength of the entanglement in the spirit of the Schrödinger picture by measuring
the degree of inseparability, and in the spirit of the Heisenberg picture by measuring the degree of
EPR paradox, with optimum results of I = 0.44±0.01 and E = 0.58±0.02, respectively. Through
the introduction of controlled loss to each entangled beam, qualitative differences between the be-
havior of the degree of inseparability and the degree of EPR paradox were demonstrated. We
proposed a photon number diagram to analyse the entanglement in a physically meaningful man-
ner, and characterised the entanglement using this technique. On this diagram the average number
of photons per bandwidth per time in the entangled state is separated into components required to
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number diagram. The contours represent the efficacy of a dense coding protocol using the entanglement for
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maintain the strength of the entanglement, the bias between the amplitude and phase quadratures
of the state, and the states impurity. We calculated efficacy contours for the degree of EPR para-
dox, quantum teleportation and dense coding protocols on the photon number diagram, and used
them to predict the level of success achievable for each protocol using our entanglement. Finally,
as a demonstration of the usefulness of the photon number diagram we investigated a simple feed-
forward scheme to reduce the mean number of photons per bandwidth per time in the entangled
state present as a result of impurity. We found that this scheme could improve the channel capacity
of a dense coding protocol from well below to above the optimum squeezed state channel capacity.



Chapter 5

Quantum teleportation

'Quack-tum teleportation' - Aska Dolinska 2002` `

This Chapter investigates continuous variable quantum teleportation. Quantum teleportation
can be thought of as the disembodied transportation of a quantum state from one place to another,
and in our case the quantum state considered is the sideband state of an optical field. Some time
is spent discussing methods that can be used to characterise this kind of teleportation. A new
measure is introduced that is optimally designed to judge the success of teleportation when the
output is an amplified or de-amplified version of the original state. This measure has particular
relevance to entanglement swapping, where the teleportation protocol is used to teleport one half
of an entangled state. We use the quadrature entanglement generated in the previous Chapter to
experimentally implement quantum teleportation of a range of optical sideband states. Several
regimes of teleportation are experimentally analysed, and the success of the protocol is charac-
terised with each of the measures discussed.

A number of publications have resulted from the work presented in this Chapter:

• P. K. Lam, W. P. Bowen, and T. C. Ralph. Quantum Teleportation with Einstein-Podolsky-
Rosen Optical Entanglement. The Physicist 39, no. 3, pp. 72 (2002).

• W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, H.-A. Bachor, T. Symul,
and P. K. Lam. Experimental investigation of continuous variable quantum teleportation.
Physical Review A 67, 032302 (2003).
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• W. P. Bowen, P. K. Lam, T. C. Ralph. Biased EPR entanglement and its application to
teleportation. Journal of Modern Optics 50, pp. 801 (2003).

• W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph, T. Symul and P. K. Lam.
Unity and non-unity gain quantum teleportation. IEEE Journal of Selected Topics in Quan-
tum Electronics 9, pp. 1519 (2003).

5.1 Introduction

Quantum teleportation was first proposed by Bennett et al. [122] in the discrete variable regime
of single photon polarisation states. They showed that, by utilising entanglement, it was possible
to perform a perfect quantum reconstruction of a state from classical destructive measurements.
This technique in now of significant relevance to quantum information systems in terms of both
communicating [158] and processing [159] quantum information. The first experimental demon-
strations of quantum teleportation were performed in 1997 on the polarisation state of single pho-
tons [160]. Quantum teleportation has now been generalised to many other regimes, and has been
demonstrated using liquid NMR ensembles [161], and optical field states [93, 111, 162]. Here
we consider teleportation of the quadrature amplitudes of a light field [148, 150, 163]. This con-
tinuous variable optical teleportation has some significant advantages over its discrete variable
counterpart. Much of the technology required is the same as that used in present-day communi-
cation systems, and the states are the encoded sidebands of an optical field. There is, therefore,
a much higher bandwidth associated with the process than is achievable in the discrete variable
regime. Low loss optics, and highly efficient detectors are also available; and the experimentally
challenging Bell state measurements required for efficiencies above 25 % in most discrete variable
teleportation experiments are not necessary.

Since the first demonstration of optical field state teleportation by Furusawa et al. [93], there
has been considerable discussion about how continuous variable quantum teleportation may be
performed using different systems [148, 163, 164, 165, 166]; applied to different input states [18,
167]; generalised to multi-party situations [168]; and comprehensively characterised [154, 169].
Given this intense interest, it is somewhat surprising that further continuous variable teleportation
experiments have only been performed very recently. Zhang et al. [162] performed a detailed
analysis and presented new results from the Furusawa et al. setup; and this Chapter presents results
from a new teleportation experiment[111]. We summarise some of the discussion about how best
to characterise continuous variable teleportation, and divide the process into two regimes: unity
gain, and non-unity gain. We discuss each regime, and introduce a new measure for the non-unity
gain regime, the gain normalised conditional variance product. A necessary and sufficient analysis
of continuous variable entanglement swapping is given to emphasise the importance of the non-
unity gain regime, and to demonstrate the significance of the gain normalised conditional variance
product.

The teleportation protocol demonstrated here was, in many ways, very similar to the one used
by Furusawa et. al [93]. It consisted of three parts: measurement (Alice), reconstruction (Bob),
and generation and verification (Victor). There were some notable differences, however, in both
the methods of input state measurement and of output state verification. In our experiment the
input and output states were both analysed by Victor in the same homodyne detector, and in a
location spatially separated from Alice and Bob. This spatial separation is in line with the original
concept of quantum teleportation, and is important to ensure that Alice and Bob obtain no infor-
mation about how Victor encodes the input state. If they do obtain information about the encoding
they can use it to artificially improve the quality of Bob’s reconstructed state. Our experiment is
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based on a Nd:YAG laser that produces two squeezed beams in two independently pumped optical
parametric amplifiers (OPAs). As discussed in Chapter 3, using independent OPAs reduces the
degradation of squeezing caused by green-induced-infrared-absorption which is presently one of
the limiting factors in the Furusawa et al. teleportation setup. We use a more compact config-
uration for Alice’s measurements which relies on only two detectors and one electronic locking
loop, as opposed to the four detectors, two local oscillators, and two locking loops used in the
Furusawa et al. experiment. The use of two independent modulators each for encoding of Vic-
tor’s input state and Bob’s reconstructed output state allows the phase space of the input state to
be completely spanned, and the amplitude and phase quadrature teleportation gains to be accu-
rately experimentally verified. The fidelity especially, is extremely sensitive to gain, so that in
our experiment a posteriori verification of the applied gain was essential to confirm any fidelity
results.

We analysed the efficacy of our experiment using three measures: fidelityF ; a T-V diagram of
the signal transfer Tq and conditional variance product Vq between the input and output states; and
the gain normalised conditional variance productM. In the unity gain teleportation regime we
used the fidelity, F , between the input and output states to characterise the teleportation protocol,
and observed an optimum of F = 0.64± 0.02 where F ≤ 0.5 when only classical resources are
used. The fidelity degrades quickly as the teleportation gain moves away from unity, however, and
is not an appropriate measure of non-unity gain teleportation. Instead, we use the signal transfer
Tq and conditional variance Vq between the input and output states, in a manner analogous to QND
analysis [148]. This enables a more detailed two dimensional characterisation of the performance
of our teleporter. Tq and Vq both have physical significance. Tq > 1 ensured that Bob’s output
state contains more information about the input state than any other possible reconstruction, and
Tq = 1 therefore defines an ‘information cloning’ limit. Vq < 1 is necessary to enable Bob to
reconstruct non-classical features of the input state such as squeezing. We observe an optimum
signal transfer of Tq = 1.06±0.02 > 1; and observe Vq=0.96±0.10 < 1 and Tq=1.04±0.03> 1

simultaneously, at unity teleportation gain this would imply a fidelity surpassing the no-cloning
limit. We analyse the gain normalised conditional variance product M introduced herein and
demonstrateM < 1 for a gain bandwidth from gmin = 0.58 to gmax = 1.21, with an optimum of
M = 0.22± 0.2. Our teleportation protocol could be used to successfully perform entanglement
swapping throughout this bandwidth.

5.2 Continuous variable teleportation protocol

Quantum teleportation is usually described as the disembodied transportation of a quantum state
from one place (Alice) to another (Bob). Or in other words, it is a process that allows Bob to
reconstruct a quantum state from measurements performed by Alice at time t0, using only clas-
sical communication and local operations after time t0 (see Fig. 5.1). The concept of quantum
teleportation was first proposed [122] and demonstrated [160, 170] in the discrete variable regime
of single, or few, photons. It has since then been generalised to the continuous variable regime
[148, 150, 163], which is the setting of the majority of this thesis. In our work, as in that of
Ref. [93], the teleported states are the sideband amplitude (X̂+) and phase (X̂−) quadratures of
a bright optical beam. The uncertainty relation of Eq. (2.9) between these quadratures forbids the
simultaneous exact knowledge of the amplitude and phase of an optical field and thus prevents
perfect duplication or quantum cloning.

Until the proposal of Bennett et. al [122], uncertainty products were thought to fundamentally
limit the quality of any teleportation protocol. Bennett proved that in the discrete regime this was
not the case, by utilising shared entanglement between Alice and Bob. Since then many other
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Figure 5.1: Time line for a quantum teleportation experiment.

teleportation protocols have been proposed (see for example [148, 149, 164, 171, 108, 172, 173,
174]), all of which rely on shared entanglement. In continuous variable quadrature teleportation
protocols [148, 150, 163], Alice and Bob share a quadrature entangled pair, which in this work
we restrict to be Gaussian. We generate Gaussian quadrature entanglement by combining two
equally amplitude squeezed beams with a π/2 phase shift on a 50/50 beam splitter as discussed
in Chapter 4. The outputs of this beam splitter are quadrature entangled, with the entanglement
evidenced through strong amplitude/amplitude and phase/phase quadrature correlations between
the beams. One of these entangled beams is sent to Alice and the other to Bob, as shown in Fig. 5.2.
Victor provides an unknown input state to Alice who then interferes it with her entangled beam

Alice

AMPM

Bob
50/50 BS

a sq
z,1

ö

asqz,2
ö ainö

50/50
BS

aoutö

+ -

50/50
BS LO

+/-

Victor

entangled
pair

Figure 5.2: A continuous variable quantum teleportation protocol, AM: amplitude modulator, PM: phase
modulator, BS: beam splitter.

and performs an amplitude quadrature measurement on one of the outputs and a phase quadrature
measurement on the other. The measurement results are sent through classical communication
to Bob, who encodes them using amplitude and phase modulators on his entangled beam. The
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frequency domain amplitude and phase quadratures of the output state produced can be written

X̂+
out = g+X̂+

in +
(1 + g+)√

2
X̂+

sqz,1 +
(1− g+)√

2
X̂−sqz,2 (5.1)

X̂−out = g−X̂−in +
(1 + g−)√

2
X̂+

sqz,2 +
(1− g−)√

2
X̂−sqz,1, (5.2)

where the sub-scripts ‘in’ and ‘out’ label the input and output states respectively, g± =

〈X̂±out〉/〈X̂±in〉 = α±out/α
±
in are the amplitude and phase quadrature teleportation gains, and the

sub-scripts ‘sqz,1’ and ‘sqz,2’ label the squeezed beams used to generate our quadrature en-
tanglement. Assuming that the entanglement used in the teleportation protocol is produced
by two equally amplitude squeezed beams with ∆2X̂sqz = ∆2X̂+

sqz,1 = ∆2X̂+
sqz,2 < 1 and

∆2X̂anti = ∆2X̂−sqz,1 = ∆2X̂−sqz,2 > 1, the quadrature variances of the output state are

∆2X̂±out = g±
2
∆2X̂±in +

(1 + g±)2

2
∆2X̂sqz +

(1− g±)2

2
∆2X̂anti. (5.3)

We then see that for unity gain teleportation (g± = 1), as ∆2X̂sqz → 0, the amplitude and phase
quadratures of the output state approach those of the input (X̂±out → X̂±in). So that, at least in
the limit of perfect squeezing, perfect teleportation of the amplitude and phase quadratures of an
optical field can be achieved. Of course, unity gain is not necessarily the only interesting operation
point of a teleporter. In the following Section we discuss methods to characterise the success of
teleportation in both the unity gain regime, and in other regimes.

5.3 Characterisation of teleportation
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Figure 5.3: Approaches to characterisation of quantum teleportation.

There is some debate in the quantum optics community about specifically what constitutes
continuous variable quantum teleportation [148, 154, 155, 169, 175, 176]. One approach is to
restrict quantum teleportation to systems that produce output states identical to their input states
but with noise convolution, i.e. for all operators involved X̂out = X̂in + X̂noise [154, 175]. We
term this unity gain teleportation. The interesting aspect of quantum teleportation is that classical
communication can be used to transmit quantum information. This can also be demonstrated in



114 Quantum teleportation

situations where the unity gain condition is not true, i.e. when X̂out = gX̂in + X̂noise. Indeed
under certain conditions optimum transmission of quantum information occurs for non-unity gain.
We term this class of teleportation protocols non-unity gain teleportation.

A number of methods have been proposed to measure the success of quantum teleportation in
both unity gain, and non-unity gain situations [148, 154, 176, 177]. These measures typically adopt
either a system dependent or state dependent approach, as shown in Fig. 5.3. System dependent
measures such as those introduced by Grangier and Grosshans [155] and Ralph and Lam [148]
characterise the effect of the system on the input state, such as what noise it introduces, in a manner
independent of the form of the input state. While state dependent measures such as the fidelity
[177], quantum interferometry [176], and entanglement swapping [18] formulate relationships
between the input and output states that cannot be satisfied through any classical means, and vary
according to the form of the input state as well as the quality of teleportation. The transfer function
approach of system dependent measures is perhaps more useful for characterisation of quantum
communication networks; and the state dependent approach more relevant when fragile quantum
states are being teleported. Ultimately, however, these two approaches should yield equivalent
results.

5.3.1 Fidelity

The most well known and widely used measure of the success of a teleportation protocol is the fi-
delity of teleportation [177], which is state dependent. Fidelity measures the state-overlap between
the input |ψin〉 and output ρ̂out states, and is given by

F = 〈ψin|ρ̂out|ψin〉. (5.4)

F = 1 indicates that the output state is a perfect reconstruction of the input, and F = 0 if the input
and output states are orthogonal. The maximum fidelity achievable classically lies somewhere
between these bounds and depends strongly on the input state. For pure input states the fidelity
can be written in terms of the overlap of the Wigner functions (see Section 2.2.1) of the input and
output states, which we label Win(X̂+, X̂−) and Wout(X̂

+, X̂−) respectively, here

F = 2π

∫ ∞

−∞

∫ ∞

−∞
Win(X+, X−)Wout(X

+, X−)dX+dX−, (5.5)

If the input state is coherent, and the entanglement resource and all other noise sources are Gaus-
sian, the fidelity is given by

F =
2e−k

+−k−
√

(1 + ∆2X̂+
out)(1 + ∆2X̂−out)

, (5.6)

where k± = α±in
2
(1− g±)2/(1 + ∆2X̂±out). If the input state is selected from a sufficiently broad

Gaussian distribution of coherent states (i.e, a set having a range of coherent amplitudes ∆α±in �
1) in a manner unknown to Bob, the generally accepted classical limit to fidelity is Fclass = 1/2.
This classical limit is determined by considering the optimal teleportation protocol without the
availability of an entanglement resource when a weighted average of the fidelity over the input
state distribution is made. There is some debate however, about whether the no-cloning limit is
more appropriate [154] since in the original teleportation paper of Bennett et. al they state “Of
course Alices original |φ〉 [|ψin〉 here] is destroyed in the process, as it must be to obey the no-
cloning theorem” [122]. For a sufficiently broad distribution of coherent states the no-cloning
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limit occurs at Fno−cloning = 2/3. Achieving F = 2/3 ensures that Bob’s reconstruction of the
input state is better than any other possible reconstruction. There is, therefore, significance in
experimentally surpassing both F = 1/2 and F = 2/3.

Notice that the fidelity of Eq. (5.6) has an exponential dependence on k+ and k−. The condi-
tion ∆α±in � 1 (and therefore for some input statesα±in � 1) for validity ofFclass andFno−cloning,
then results in a very strong dependence of the fidelity on gain. The optimum fidelity occurs at
g± ≈ 1, and for the ideal case of an infinitely broad set of input states (∆α±in → ∞), at g± = 1.
In a physically realistic situation however, there will be some error associated with g±. The effect
of this error on the fidelity as a function of the input coherent amplitude is shown in Fig. 5.4.
No matter how small the gain error, as αin increases the fidelity falls away towards zero. This
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Figure 5.4: Fidelity as a function of coherent amplitude αin for a range of teleportation gain errors ∆g =

g − 1, with 3 dB of squeezing (∆2X̂sqz = 0.5).

puts an upper limit on the breadth of the distribution of states that the teleporter can handle and
causes the values ofFclass andFno−cloning to become somewhat higher than the limits given above
[178, 179]. In experiments to date, these issues have been avoided by strictly defining the fidelity
as valid only when g± = 1. In that case k± = 0, and the fidelity becomes independent of αin.
Given this definition of fidelity, it is critical to experimentally verify g±.

5.3.2 The conditional variance product and signal transfer

From a system dependent perspective, the ideal way to characterise a teleportation protocol is
to identify exactly the transfer function of the protocol between the input and output states. This
approach is relatively easy for protocols utilising Gaussian entanglement, which is the only form of
continuous variable entanglement presently experimentally available. For the continuous variable
quadrature teleportation discussed in this Chapter, only two variables for each quadrature need to
be characterised to completely define the transfer function of the system. They are the teleportation
gain, and the amount of noise (or degradation) introduced during the teleportation process. All that
remains to be done is then to define bounds on the system that are impossible to exceed classically.

The first such approach was the work of Ralph and Lam [148]. They proposed a charac-
terisation in terms of the conditional variance between the input and output states ∆2X̂±

in|out
=

∆2X̂±out − |〈δX̂±inδX̂±out〉|2/∆2X̂±in, and the signal transfer from the input to the output state
T± = SNR±out/SNR±in where SNR± = (2α±)2/∆2X̂± are conventional signal-to-noise ratios1.
The conditional variance measures the noise introduced during the protocol, and the signal transfer
is related to the gain of teleportation.

1The factor of two in the expression for the signal to noise ratio come from the definition â = α+(δX̂+ +iδX̂−)/2
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Ralph and Lam demonstrated limits to both the joint signal transfer, and the joint conditional
variance of the amplitude and phase quadratures that, in a teleportation protocol, can only be
overcome by utilising entanglement. Alice’s measurement is limited by the generalised uncertainty
principle ∆2M̂+∆2M̂− ≥ 1 [180], where ∆2M̂± are the measurement penalties, which holds for
simultaneous measurements of conjugate quadrature amplitudes. In the absence of entanglement
this places a strict limit on Bob’s reconstruction accuracy which, in terms of quadrature signal
transfer coefficients T±, can be expressed as

Tq = T+ + T− − T+T−
(

1− 1

∆2X̂+
in∆2X̂−in

)
≤ 1. (5.7)

For minimum uncertainty input states (∆2X̂+
in∆2X̂−in = 1), this expression reduces to Tq = T+ +

T−. Perfect signal transfer would give Tq = 2.
Bob’s reconstruction must be carried out on an optical field, the fluctuations of which obey

the uncertainty principle. In the absence of entanglement, these intrinsic fluctuations remain
present on any reconstructed field. Therefore, since the amplitude and phase conditional vari-
ances ∆2X̂±

in|out
measure the noise added during the teleportation process, they must satisfy

∆2X̂+
in|out

∆2X̂−
in|out

≥ 1. This can be written in terms of the quadrature variances of the input
and output states and the teleportation gain as

Vq = ∆2X̂+
in|out

∆2X̂−
in|out

=
(

∆2X̂+
out − g+2

∆2X̂+
in

)(
∆2X̂−out− g−

2
∆2X̂−in

)
≥ 1 (5.8)

A teleportation protocol that introduced no reconstruction noise would give Vq = 0. In the original
paper of Ralph and Lam [148] they propose ∆2X̂+

in|out + ∆2X̂−in|out ≥ 2 as the conditional variance
limit. For cases where the quadratures are symmetric, such as those considered by them [148, 18],
both limits are equivalent. The product limit, however, is significantly more immune to asymmetry
in the teleportation gain and provides a more rigorous bound in situations when the entanglement
used in the protocol is asymmetric, we therefore prefer it here.

The criteria of Eqs. (5.7) and (5.8) enable teleportation results to be represented on a T-V
graph similar to those used to characterise quantum non-demolition experiments [181]. The T-V
graph is two dimensional, and therefore conveys more information about the teleportation process
than single dimensional measures such as fidelity. It tracks the quantum correlation and signal
transfer in non-unity gain situations, and identifies two particularly interesting regimes that are
not evident from a fidelity analysis; the situation where the output state has minimum additional
noise (ming{Vq}) which occurs in the regime of g ≤ 1, and the situation when the input signals
are transferred to the output state optimally (maxg{Tq}) which occurs in the regime of g ≥ 1.

Both the Tq and Vq limits have independent physical significance. If a signal has some inherent
signal-to-noise ratio, and the noise is truly an unknown quantity, then even in a classical world,
that signal-to-noise ratio can in no way be a posteriori enhanced. In the case of the teleportation
protocol discussed here, Bob receives two signals, the amplitude and phase quadratures of a light
field, with a total possible signal transfer of Tq,max = 2. If Bob receives Tq,Bob = ξ, then the most
signal any other party can receive is Tq,other = 2 − ξ. Therefore, if Bob surpasses Tq = 1 then
he has received over half of the signal from Alice, and this forbids any others parties from doing
so. This is an ‘information cloning’ limit that is particularly relevant in light of recent proposals
for quantum cryptography [182]. Furthermore, if Bob passes the Tq limit at unity gain (g± = 1),
then Bob has beaten the no-cloning limit and has F ≥ 2/3. Surpassing the Vq limit is a necessary
pre-requisite for reconstruction of non-classical features of the input state such as squeezing. The
T-V measure coincides with the teleportation no-cloning limit when both Tq = Vq = 1. Clearly it
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is desirable that the Tq and Vq limits are simultaneously exceeded.

Information cloning and eavesdropper attacks

Consider that an eavesdropper (Eve) performs an attack on Bob’s entangled beam utilising a beam
splitter tap off, whilst allowing Alice to make full used of her entangled beam. As discussed
above, Bob can guarantee that the signal transfer to his output state is better than to Eve’s if he
finds Tq ≥ 1. Alice then, obliviously, performs her measurements and transmits the results to
Bob - a transmission intercepted by Eve. Bob and Eve both then attempt to reconstruct the input
state from Alice’s measurements and their part of the entanglement. Fig. 5.5 a) shows Bob’s T-
V analysis of the teleportation protocol for various entanglement strengths with Eve tapping off
50 % of his entanglement. In this special case, we find that T q ≤ 1 for all entanglement strengths
(∆2X̂sqz) and all teleportation gains g, with the equality T q = 1 achievable for any entanglement
strength at some gain. In fact, Bob is able to map out the entire physically realistic region of
the T-V diagram with Tq ≤ 1. Since the arrangement is symmetric, Eve obtains the same result.
This special case defines the transition point between Bob successfully surpassing the information
cloning limit, and Eve surpassing it.
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Figure 5.5: T-V diagram representation of teleportation with 50% loss introduced to a) Bob’s or b) Alices
entangled beam. The lines show the results of the protocol utilisingvarious squeezing strengths as a function
of teleportation gain. In a) Bob and Eve have identical accessible regions. In b) Eve can only access a small
portion of the region accessible to Bob, as indicated by the shading.

It is interesting to consider the complimentary situation where Eve taps off a part of Alice’s en-
tanglement. In this case Eve can, again, use Alice’s measurement results to attempt to reconstruct
the input state. This time, however, the situation is not symmetric for Bob and Eve, and we find
that Bob can surpass the information cloning limit. The conditional variance between his output
state and the input is, however, limited to V q ≥ 1. For this situation we see from Fig. 5.5 b) that
Bob can obtain results throughout the physically realistic region of the T-V diagram with V q ≥ 1.
If Eve attempts to reconstruct the input state, however, she is restricted to the classical region of
the T-V diagram.
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5.3.3 A gain normalised conditional variance product

In their paper [155], Grangier and Grosshans discuss in some detail both the fidelity, and signal
transfer and conditional variance, measures for teleportation. They restrict teleportation to occur
only in the unity gain regime. In this case, the signal transfer and conditional variance criteria of
Eqs. (5.7) and (5.8) become equivalent and Grosshans and Grangier propose that both are good
measures of teleportation. One advantage that both their measure and fidelity have over the T-V
diagram is that they provide a single number for the quality of the teleportation protocol. Although
this does provide less information about the operation of the protocol, it allows different telepor-
tation schemes to be directly compared. It is interesting to consider whether a single number can
be used to characterise teleportation in the non-unity gain regime. In the following Section we
will briefly reproduce Grosshans and Grangier’s main results and generalise them to the non-unity
gain regime.

Grosshans and Grangier quite generally denote the joint measurements M± performed by
Alice on the input state as

M± = Λ±X̂±in + N̂±Alice, (5.9)

where Λ± are amplitude and phase quadrature gains related to the detection, and N̂±Alice is the noise
introduced during the measurement. BothM± are detected photocurrents so that [M+,M−] = 0.
Given that the measurement noise is uncorrelated to the input state, one can easily obtain the
Heisenberg uncertainty product

∆2N̂+
Alice∆

2N̂−Alice ≥ |Λ+Λ−|2, (5.10)

and the signal transfer co-efficients from the input state to Alice’s photo-currents are

T±Alice =
Λ±2

∆2X̂±in
Λ±2∆2X̂±in + ∆2N̂±Alice

. (5.11)

Notice thatT±Alice ≤ 1 always, so that as stated earlier, Tq is bounded from above by two. Using the
Heisenberg uncertainty product of Eq. (5.10) it is then possible to derive the same signal transfer
bound as given in Eq. (5.7). Of course, Bob still has to reconstruct the input state on his output
optical field. The output quadrature operators can be expressed quite generally as

X̂±out = Π±M± + N̂±Bob (5.12)

= Π±Λ±X̂±in + Π±N̂±Alice + N̂±Bob (5.13)

= g±X̂±in + N̂±total, (5.14)

where N̂±Bob are quadrature operators describing Bob’s initial optical field, Π± are the ampli-
tude and phase feedforward gains applied to Alice’s measurements, and the teleportation gains
g± = Π±Λ±. N̂±total = Π±N̂±Alice + N̂±Bob describe the total noise added to the amplitude and
phase quadratures during the teleportation process, and for each quadrature the total noise vari-
ance is equal to the condition variance between the input and output states, ∆2N̂±total = ∆2X̂±in|out.
Grosshans and Grangier observe that this output form dictates the Heisenberg uncertainty product

Vq = ∆2X̂+
in|out

∆2X̂−
in|out

≥ (g+g− − 1)2. (5.15)

This implies that unless g+g− = 1 the output state must be degraded by some noise. They then
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restrict their analysis to the unity gain case (g+ = g− = 1) and, like Ralph and Lam [148], derive
Vq < 1 as a classical limit for unity gain teleportation.

In this Section we wish to extend Grosshans and Grangier’s analysis to provide a measure of
non-unity gain teleportation based on Vq. Since [N̂+

Bob, N̂
−
Bob] = 2i,

∆2N̂+
Bob∆2N̂−Bob ≥ 1. (5.16)

In general, the noise introduced by Alice and Bob can be broken down into a part due to clas-
sical sources such as for example electrical pick-up (sub-script c), and a part due to quantum
fluctuations (sub-script q) that are uncorrelated with each other, N̂±Bob = N̂±Bob,c + N̂±Bob,q and

N̂±Alice = N̂±Alice,c + N̂±Alice,q. Since we are interested in the lower bounds of Vq achievable
without entanglement we neglect the classical noise term here, setting N̂±Bob = N̂±Bob,q and

N̂±Alice = N̂±Alice,q. In that case, if the noise introduced by Alice and Bob is separable (i.e. not
entangled)

Vq =
(

Π+2
∆2N̂+

Alice + ∆2N̂+
Bob

)(
Π−2

∆2N̂−Alice + ∆2N̂−Bob

)
(5.17)

= Π+2
Π−

2
∆2N̂Alice

+∆2N̂−Alice + ∆2N̂+
Bob∆2N̂−Bob

+Π+2
∆2N̂+

Alice∆
2N̂−Bob + Π−

2
∆2N̂−Alice∆

2N̂+
Bob (5.18)

≥ |g+g−|+ 1 + Π+2
∆2N̂+

Alice∆
2N̂−Bob +

(Λ+Λ−Π−)2

∆2N̂+
Alice∆

2N̂−Bob

. (5.19)

Some simple calculus shows that the right-hand-side of Inequality (5.19) is minimised when
∆2N̂+

Alice∆
2N̂−Bob = |Λ+Λ−Π−/Π+|, and we find that

Vq ≥
(
|g+g−|+ 1

)2
. (5.20)

For g+ = g− = 0 this classical limit is equivalent to that given in Eq. (5.8), and for non-zero gain
it is stronger. We define the non-unity gain teleportation measureM

M =
Vq

(|g+g−|+ 1)2
, (5.21)

where M < 1 can only be achieved if the noise introduced by Alice and Bob is entangled. It
is relatively easy to show thatM = 1 is achievable in the teleportation protocol discussed here,
using no shared entanglement and for any teleportation gain. For non-unity gain (g+ 6= 1 and/or
g− 6= 1) however, to observeM < 1 Alice and Bob must both utilise local squeezing resources
in their measurement and reconstruction processes.

Eq. (5.15) defines the minimum amount of noise added to the reconstructed state as a function
of teleportation gain. This relationship dictates minimum physically achievable values forM as a
function of gain.

Mmin =
(g+g− − 1)2

(|g+g−|+ 1)2
. (5.22)

Fig. 5.6 showsM as a function of gain for the teleportation protocol discussed in Section 5.2, with
a range of utilised squeezing strengths. The optimum ofM always occurs at g =

√
g+g− = 1,

and improves as the strength of the entanglement used in the protocol increases (as ∆2X̂sqz → 0).
Notice thatM = 0 is only possible at g = 1, so that at g 6= 1 the output state, no matter what
entanglement strength is utilised, will incur some reconstruction noise. It is interesting, however,
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that for all entanglement strengthsM is less than unity for a wide range of gains. Some algebra
shows that the gain extremema gmin and gmax for whichM < 1 are given by

gmax/min =
∆2X̂anti−∆2X̂sqz

∆2X̂anti + ∆2X̂sqz− 2
±

√√√√
(

∆2X̂anti−∆2X̂sqz

∆2X̂anti + ∆2X̂sqz − 2

)2

− 1. (5.23)

Perhaps contrary to intuition, as the entanglement strength increases (as ∆2X̂sqz → 0) the range
of gain over whichM < 1 is satisfied decreases. In fact, if a teleportation protocol is intended to
operate with a specific gain, a generally non-ideal entanglement strength (∆2X̂sqz,opt 6= 0) exists
for maximum efficacy of the protocol. If g = 1 then ∆2X̂sqz,opt = 0, but as g → 0 or g → ∞,
∆2X̂sqz,opt→ 1.
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Figure 5.6: M as a function of teleportation gain for pure teleporter input squeezing (∆2X̂sqz∆2X̂anti = 1)
with a range of strengths. The unphysical region here is defined by Eq. (5.22).

5.3.4 A comparison of fidelity, the T-V diagram, and the gain normalised condi-
tional variance product

It is interesting to compare T-V based measures of teleportation with state dependent measures
such as fidelity. The gain normalised conditional variance productM introduced in the previous
Section can be directly compared to fidelity. It can be seen from Eq. (5.21) thatM, and in particu-
lar its gain bandwidth, is independent of the coherent amplitude α of the input state. This is not the
case for fidelity, and as discussed earlier, it is this dependence that restricts the fidelity to g = 1.
Fig. 5.7 shows the fidelity of teleportation for ∆2X̂sqz = 0.125 and a range of coherent amplitudes.
The gain bandwidth of fidelity clearly depends very strongly on the input coherent amplitude, and
in the limit of α→∞ the gain bandwidth approaches zero, centered around g = 1.

Fig. 5.8 shows a similar result obtained through plotting fidelity contours directly on the T-V
diagram. Here we show the fidelity contours at F = 1/2 and F = 2/3 for a range of input
coherent amplitudes. From Fig. 5.8 a) we see that with no coherent amplitude the fidelity can be
greater than 1/2, or even 2/3, for a large area of the T-V diagram, even in the purely classical
region in the top left corner of the diagram. As the input coherent amplitude increases through
Fig. 5.8 b), c) and d) the area of the T-V diagram in which F > 1/2 or F > 2/3 collapses down
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to the line defining g = 1. We see that for large input coherent amplitudes F > 1/2 can not be
achieved in the classical region of the T-V diagram, and F > 2/3 can only be achieved if both
Vq < 1 and Tq > 1. Of course, if we restrict ourselves to the unity gain line then this is true for all
coherent amplitudes.

The distinction between fidelity and the conditional variance product based approaches is in
some sense unsurprising. The T-V diagram and M are explicitly designed to be state indepen-
dent, whilst fidelity is almost as explicitly state dependent. There are some consequences of this
distinction regarding the experimental verification of the teleportation process. Characterisation
of T-V andM makes use of known test states to determine the transfer function of the teleporter.
Provided the teleporter is not biased towards the test states, their particular form is irrelevant. On
the other hand, characterisation of fidelity uses a set of states representative of the assumed en-
semble of unknown input states. In particular, for validity of the coherent state teleportation limits
Fclass = 1/2 and Fno−cloning = 2/3, the test states must have a sufficiently large range of coher-
ent amplitudes to represent a broad distribution. The fidelity is then highly gain dependent, as we
have seen from Figs. 5.7 and 5.8. In this sense fidelity is a stronger test of quantum teleportation
since it requires both high precision quantum and classical control. On the other hand, it becomes
essential to accurately characterise the teleportation gain.

5.3.5 Entanglement swapping

To illustrate why non-unity gain teleportation is of interest we will consider the example of con-
tinuous variable entanglement swapping. Entanglement swapping utilising a continuous variable
teleportation protocol was first introduced by Polkinghorne and Ralph [18]. They showed that in
a polarisation teleportation protocol, effectively comprising of two quadrature teleporters, if the
input is one of a pair of polarisation entangled photons, then the output and the other polarisation
entangled photon can violate a Clauser-Horne-type Inequality [183]. An interesting result of their
work was that when weak continuous variable entanglement was used in the teleportation protocol,
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entanglement swapping could only be achieved for teleportation gain less than unity (g ± < 1). In
this Section we consider entanglement swapping of quadrature entanglement using a quadrature
teleportation protocol. This type of entanglement swapping has been considered previously by
Tan [146], by van Loock and Braunstein [184], and more recently by Zhang et. al [185].

Tan [146] considered entanglement swapping using a unity gain teleportation protocol (g = 1).
He defined successful entanglement swapping to occur when the inequality 〈(δ X̂+

x − δX̂+
y )2〉 +

〈(δX̂−x +δX̂−y )2〉 ≥ 4 is violated, where the sub-scripts x and y label the two sub-systems that the
entanglement is being interrogated over. This is a sufficient criterion for the inseparability of sub-
systems x and y. Tan then showed that entanglement swapping occurs successfully if the squeezed
beams used to generate the entanglement both used in, and input to, the teleportation protocol have
at least 3 dB of squeezing. van Loock and Braunstein considered a more complex system, where
the output entanglement from the entanglement swapping protocol is used to teleport a coherent
state [184]. They allowed non-unity gain in the entanglement swapping teleporter, but not in the
coherent state teleporter, and characterised the success of entanglement swapping by the fidelity
of the coherent state teleportation as defined in Eq. (5.6). Violation of the criterion F ≤ 0.5 is
however, equivalent to violation of the criterion used by Tan, the significant difference between
the two papers was the use of non-unity gain teleportation by van Loock and Braunstein. With this
extra degree of freedom van Loock and Braunstein showed that entanglement swapping could be
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performed for any non-zero input squeezing. Zhang et. al [185] performed a similar analysis to
that of van Loock and Braunstein but proposed an alternative experimental configuration.

The entanglement swapping protocols discussed above characterised success with sufficient
but not necessary conditions for entanglement. Some situations in which the entanglement swap-
ping was successful were therefore not identified. Here, we will consider entanglement swapping
in more detail, using the inseparability criterion proposed by Duan et al. [130] and introduced
in Chapter 4 to characterise the success of the process. The inseparability criterion relies on the
identification of separability with positivity of the P-function, and is a necessary and sufficient
criterion for the presence of entanglement. Eq. (4.25) defines the degree of inseparability of the
quadrature amplitudes of a pair of beams, where they are entangled if I < 1. Here, we optimise
the gain k in Eq. (4.25) to minimise I. Note that if k is restricted to unity this criterion becomes
equivalent to the entanglement criterion used by Tan [146]. We use the degree of inseparability to
characterise the strength of quadrature entanglement between a pair of optical beams before one
is sent through a teleporter Iinitial, and afterwards Ifinal.

We utilise the teleportation protocol given in Fig. 5.2, with the output defined by
Eqs. (5.1) and (5.2). The second quadrature entangled pair required for entanglement swap-
ping can be produced identically to the one used for teleportation, by combining two amplitude
squeezed beams on a 50/50 beam splitter. The entangled pair can then be described by the quadra-
ture operators Ŷ ±x and Ŷ ±y

Ŷ ±x =
Ŷ ±sqz,1 + Ŷ ∓sqz,2√

2
(5.24)

Ŷ ±y =
Ŷ ±sqz,1 − Ŷ ∓sqz,2√

2
, (5.25)

where Ŷ ±sqz,1 and Ŷ ±sqz,2 are quadrature operators describing the amplitude squeezed beams used
to generate the entanglement. We replace the operators describing the teleporter input state in
Eqs. (5.1) and (5.2) with those from entangled beam x

X̂±in = Ŷ ±x =
Ŷ ±sqz,1 + Ŷ ∓sqz,2√

2
. (5.26)

We then determine Ifinal between the quadratures of the output from the teleportation protocol
X̂±out and those from the second entangled beam Ŷ ±y . For simplicity, here we assume that the input
entangled state is symmetric and pure so that ∆2Ŷsqz = ∆2Ŷ +

sqz,1 = ∆2Ŷ +
sqz,2 < 1 and ∆2Ŷanti =

∆2Ŷ −sqz,1 = ∆2Ŷ −sqz,2 = 1/∆2Ŷsqz > 1. Ifinal as a function of the teleportation gain g = g+ = g−

is shown in Fig. 5.9. Fig. 5.9 a) shows Ifinal for Iinitial = 0.5, (∆2Ŷsqz = 0.5) and for a range of
teleportation efficacies (or in other words, a range of ∆2X̂sqz). The degree of inseparability is, of
course, degraded by the entanglement swapping procedure. We see, however, that the procedure
is successful (Ifinal < 1) over a wide range of teleportation gains, and that, unlike the analysis
of [18], it is always successful for g = 1. This difference is due to the more stringent nature of
Clauser-Horne-type inequalities compared to tests of the presence of entanglement. Interestingly,
optimal entanglement swapping (ming{Ifinal}) occurs at teleportation gain gopt below unity in all
cases except for the unphysical situations when ∆2X̂sqz→ 0 or ∆2Ŷsqz→ 0.

gopt = 1− 2(∆2X̂sqz + ∆2Ŷsqz)

∆2X̂sqz + ∆2X̂−1
sqzo+ ∆2Ŷsqz + ∆2Ŷ −1

sqz

(5.27)



124 Quantum teleportation

It can be shown that at this optimal point k = 1 so that the inseparability criterion of Eq. (4.25)
becomes equivalent to the criteria of Tan [146] and van Loock and Braunstein [184]. Unsurpris-
ingly then, the optimum gain for entanglement swapping derived here is in agreement with that of
van Loock and Braunstein [184]. For g 6= gopt however, it is no longer true that k = 1, so that the
gain bandwidth for successful entanglement swapping we present here is wider than what could
be obtained using the schemes of Tan, or van Loock and Braunstein.

Fig. 5.9 b) shows the same result as Fig. 5.9 a) but with stronger initial entanglement
(Iinitial = 0.1). Unsurprisingly, in this case the optimal final degree of inseparability is bet-
ter than the previous example, and the optimal gain is closer to unity. Notice however that, for
a given ∆2X̂sqz, the gain bandwidth for successful entanglement swapping is the same in both
Fig. 5.9 a) and b). Calculation of this gain bandwidth yields the same bandwidth as is given in
Eq. (5.23) forM < 1. We see that the entanglement swapping gain bandwidth only depends on
the variances of the squeezed beams used in the teleportation protocol, and is independent of the
strength of the input entanglement. The fact that the gain bandwidth for entanglement swapping
corresponds exactly to that for M is a clear indication of the relevance of M as a measure for
non-unity gain teleportation. In fact, if the input entanglement is perfect (∆2Ŷsqz → 0), the degree
of inseparability for the entanglement swapping protocol discussed here becomes equivalent toM

I∆2Ŷsqz→0 =
√
M (5.28)

5.4 Experiment

This Section describes our experimental teleportation protocol. In the following part we describe
the teleportation protocol itself, and in Section 5.4.2 we analyse the protocol in terms of fidelity,
signal transfer and conditional variance, and the gain normalised conditional variance. Finally, in
Section 5.4.3 we discuss some of the experimental loopholes associated with quantum teleporta-
tion.

5.4.1 Teleportation apparatus

Fig. 5.10 illustrates the optical (Fig. 5.10 a)) and electrical (Fig. 5.10 b)) configuration for our tele-
portation protocol. The apparatus consisted of three distinct parts: measurement (Alice), recon-
struction (Bob), and generation and verification (Victor). At the generation stage Victor generated
the input signal by independently amplitude and phase modulating an optical beam at 8.4 MHz.
This produced a coherent state at 8.4 MHz with a coherent amplitude unknown to either Alice
or Bob. He could then measure the Wigner function of this input state in a homodyne detector.
Assuming that the input state is Gaussian however, Victor need only characterise the amplitude
and phase quadratures to completely define the state. We make that assumption here, we lock
Victor’s homodyne to the amplitude quadrature using a PDH-type error signal, and to the phase
quadrature by balancing the power to the two detectors incorporated in the homodyne detector (see
Fig. 5.10 b)). Victor then shared this fully characterised input state with Alice. Alice interfered
it with one of our entangled beams with π/2 phase shift on a 50/50 beam splitter. The absolute
intensities of the entangled beam and the input signal beam were arranged to be identical. Alice
then detected the two beam splitter outputs with identical detectors, the detector darknoise was
10 dB below the quantum noise of the input beam. The sum of the two output photocurrents gave
a measure of the amplitude quadrature of the signal, degraded by the amplitude quadrature of the
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Figure 5.9: Degree of entanglement between a pair of entangled beams after one is teleported as a function
of the teleportation gain. a) ∆2Ŷsqz = 0.5, b) ∆2Ŷsqz = 0.1.

entangled beam; and likewise, the difference photocurrent measured the phase quadrature of the
signal, degraded by the phase quadrature of the entangled beam. Notice that it is this mixing of
the fluctuations from the signal and the entanglement that allows quantum teleportation to be per-
formed successfully. If Alice gains information about the quantum fluctuations of the input state
through her measurements, then the Heisenberg uncertainty principle dictates that Bob’s recon-
struction must be degraded. The stronger the entanglement used in the protocol, the better the
signal quadratures can be shrouded and therefore, the smaller the degradation required of Bob’s
reconstruction.

Alice sent her two photocurrents to Bob. Bob could then, if he wanted, simply encode those
photocurrents using an amplitude and a phase modulator on his entangled beam. Typically how-
ever, the loss introduced by modulators is non-trivial, and would degrade Bob’s reconstruction
of the input state. Instead we applied the photocurrents to a bright coherent optical beam, and
combined this encoding beam and Bob’s entangled beam with controlled phase on a 98/2 beam
splitter. One beam splitter output was Bob’s reconstructed output state. This scheme negates the
loss introduced by the modulators, and the only loss introduced to the entanglement by Bob is then
the 2 % due to the beam splitter ratio. The attenuation of the signals modulated onto the encoding
beam caused by the 98/2 beam splitter was counter-acted by Bob simply increasing the gain of his
encoding by a factor of 50.

Bob then provided Victor with his reconstructed state. Victor used a removable mirror to
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switch his homodyne detector input to the output state. By making amplitude and phase quadrature
measurements, he was then able to fully characterise the output state, and judge how well the
teleportation had been performed. Normally inefficiencies in the teleportation protocol would be
expected to degrade Victor’s judgement of how well the process has been performed. There is
one notable exception to this rule however, that of loss in Victor’s homodyne. This loss appears
erroneously to Victor to enhance the process, and must be accounted for. The combined loss from
Victor’s homodyne mode-matching and detector photodiodes was characterised and found to be
15 %± 2 %. This loss was inferred out of the final results obtained by Victor.
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Figure 5.11: Spectral variance of the amplitude ∆2X̂+
out (dark trace) and the phase ∆2X̂−out (light trace)

quadratures of the teleported signal, normalised to the quantum noise limit of Victor’s homodyne detector.
The teleportation gain and feedforward phase vary over the spectra dependent on the response function of
our detectors and feedforward loops. I: g > 1, II: g ≈ 1, III: g < 1, IV: g ≈ 0.

To characterise the behavior of our detectors and feedforward loop we analysed the ampli-
tude and phase quadrature frequency spectra of the output state received by Victor over a wide
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frequency range, with g8.4 MHz ≈ 1 and no input coherent amplitude. These frequency spectra
are presented in Fig. (5.11). The transfer functions of the detectors and feedforward loop, and the
frequency dependence of our entanglement all have a bearing on the output spectra. A definite
phase relationship must be maintained between the fed-forward signal and the fluctuations of the
second entangled beam to get maximum cancellation of the fluctuations from the entanglement.
The phase response of our electronics, BNC cables, and detectors is not flat, causing cycling of the
relative phase, this results in cycling between maximum and minimum cancellation of the entan-
gled beam fluctuations. We see this in Fig. (5.11) as a sinusoidal modulation of both the amplitude
and phase spectra with 3-4 MHz period. We arranged the feedforward phase so that a maximum
cancellation point occurred at 8.4 MHz for both the amplitude and phase quadratures. The am-
plitude of the sinusoidal modulation depends on both the amplitude response of our electronics
and the size of the quadrature fluctuations of our entangled beams. Over the frequency range of
the measurements presented in Fig. (5.11) both the response of our electronics, and the amplitude
and phase quadrature variances of our entanglement (∆2X̂±x and ∆2X̂±y ) decrease with increasing
frequency. At low frequencies (region I) we then have g > 1 and this, coupled with the large vari-
ances of our entangled beams, results in the sinusoid having a large amplitude. Around 8.4 MHz
(region II) g ≈ 1 and the feedforward phase is optimised, so that ∆2X̂±out are minimised, this is
the region in which we performed our teleportation protocol. At higher frequencies (region III)
g < 1 so that the feedforward has a smaller effect on the output variances, and in region IV there
is effectively no feedforward (g ≈ 0) and the output variances is simply the variance of Bob’s
entangled beam. With careful engineering of the feedforward loop electronics, and smart choice
of Bob’s optical beam path and the length of the feedforward electronic cables, a flat frequency
response could probably have been achieved, this is perhaps a goal for later experiments.

5.4.2 Teleportation results

A sample of the data obtained from our teleporter is shown in Fig. 5.12. Parts (a) and (b) show the
amplitude and phase quadrature noise of the output state at 8.4 MHz measured by Victor, as a func-
tion of time. The complete system maintained lock for long periods. Given the assumption that all
noise sources introduced during the teleportation process, including the entanglement and the input
state, were Gaussian, Fig. 5.12 (c) and (d) contain suffice information to fully characterise the tele-
portation run. Every teleportation run consisted of four spectra such as these, as well as a quantum
noise calibration (not shown). Also drawn in each part of Fig. 5.12 are lines corresponding to the
classical limit (solid line @ 4.8 dB) and the no-cloning limit (dashed line @ 3 dB). The data in (c)
and (d) show Victor’s measurement of the amplitude and phase quadratures over a 100 kHz band-
width centered around 8.4 MHz. Over this range the noise floor of the system was constant, which
could be easily verified by switching the coherent amplitude of the input state off and on. We
obtained ∆2X̂±in(8.4 MHz) and ∆2X̂±out(8.4 MHz) respectively, from the average of ∆2X̂±in(ω) and
∆2X̂±out(ω) at nearby frequencies. Henceforth, if the ω in expressions such as these is neglected it
implies that the measurement is at 8.4 MHz, (for example ∆2X̂±in = ∆2X̂±in(8.4 MHz)).

∆2X̂±in =

∫ 8.37 MHz
8.35 MHz ∆2X̂±in(ω)dω +

∫ 8.45 MHz
8.43 MHz ∆2X̂±in(ω)dω

0.04 MHz

∆2X̂±out =

∫ 8.37 MHz
8.35 MHz ∆2X̂±out(ω)dω +

∫ 8.45 MHz
8.43 MHz ∆2X̂±out(ω)dω

0.04 MHz

Using ∆2X̂±in and ∆2X̂±out it was then possible to extract the input and output coherent ampli-
tudes (α±) from the input ∆2M̂±in and output ∆2M̂±out variance measurements at 8.4 MHz (see
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Figure 5.12: The input and output states of the teleporter, as measured by Victor. (a) and (b) show the
amplitude and phase noise of the output state at 8.4 MHz. (c) and (d) show the input and output of the
teleporter, when probed with a signal at 8.4 MHz. In all cases, the dotted line is the no-cloning limit, while
the solid line is the classical limit. All data has been corrected to account for the detection losses of Victor.
Resolution Bandwidth=10 kHz, Video Bandwidth=30 Hz.

Section 2.7.3).

α±in =

√
∆2M̂±in −∆2X̂±in

2
(5.29)

α±out =

√
∆2M̂±out −∆2X̂±out

2
(5.30)

The amplitude and phase quadrature gains of the teleportation run could then be directly calculated
(g± = α±out/α

±
in), and all of the measures of teleportation discussed in Section 5.3 could be

obtained.

Fidelity analysis

The fidelity results obtained from all of our teleportation runs are displayed in Fig. 5.13. As
discussed in Section 5.3.1, an important parameter of any study of fidelity is the area of phase
space from which the inputs states are produced. Fig. 5.13 (d) shows the area of phase space that
our experiment has probed. All points shown here satisfied F > 0.5. This area was limited in
radius by the increasing sensitivity of fidelity to gain as αin increases (see Fig. 5.4), and small α±in
were avoided so that the teleportation gain of both quadratures could be accurately verified. A
summary of all our fidelity results is shown in Fig. 5.13 (c) as a function of deviation from unity
gain. Fig. 5.13 (a) and (b) each display a subset of our fidelity results for input states with particular
coherent amplitudes. The solid curves show the best possible performance of our system, based on
our entanglement, detection efficiency, dark noise, and assuming equal gain on each quadrature. In
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Figure 5.13: Measured fidelity plotted; versus teleportation gain, g =
√
g+g−, in (a) and (b); versus

coherent amplitude separation between input and output states in (c); and on phase space in (d). In (a) the
input signal size was (α+, α−) ≈ (2.9, 3.5) and in (b) (α+, α−) ≈ (4.5, 5.4). g± were calculated as the
ratio of the input and output coherent amplitudes. The dashed (solid) lines show the classical (no-cloning)
limits of teleportation at unity gain. The solid curves are calculated optima based on the characterisation
of our entanglement in Chapter 4, and the efficiency of the protocol. The dot-dashed curves include the
experimental asymmetric gains: for (a) g− = 0.84g+ and for (b) g− = 0.92g+.

both plots the highest fidelity occurs for gain less than unity. The increased fidelity is less obvious
in (b) where the signal is approximately twice as large as that in (a). In fact, in the limit of a vacuum
input state, the fidelity criterion will be satisfied perfectly by a classical teleporter (i.e. one with
the entangled state replaced by two coherent states) with zero gain. These results demonstrate the
necessity of obtaining and verifying the correct gain settings for any implementation of continuous
variable teleportation. Obtaining the correct gain setting is actually one of the more troublesome
experimental details. To illustrate this point, we have plotted the dashed curves on (a) and (b) for
a teleporter with asymmetric quadrature gains. Such asymmetry was not unusual in our system,
and explains the variability of the results shown in Fig. 5.13 (a).

In our experiment the amplitude and phase quadrature teleportation gains were adjusted to

the desired level by encoding a large coherent modulation on the input state (α±in �
√

∆2X̂±in

and α±out �
√

∆2X̂±out). The modulation transferred to the output state was then measured, since
the noise on the input and output states was negligible compared to the signal the gain could be
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Figure 5.14: Histogram of the fidelity obtained from our teleportation experiment comparing fidelities
obtained a) when the gain is experimentally verified, and b) when unity teleportation gain is assumed.

obtained directly g± ≈
√

∆2M̂±out/∆2M̂±in , and then optimised to the desired level. In some exper-
iments characterisation such as this were used to yield the final teleportation gain used to calculate
fidelity. In the work of Zhang et al. [162] they adjust the gain to unity, and then assume that it re-
mains at unity throughout the teleportation run. In a perfect experimental situation this procedure
will work perfectly well. In our experiment however, we found that no matter how well the gain
was set initially, the teleportation gain would drift slightly during the course of an experimental
run. Since the fidelity is extremely sensitive to gain (see Fig. 5.4) even very small drifts in the
gain can lead to significant degradation. We therefore believe that it is important to experimentally
verify the gain of teleportation during each teleportation run. Fig. 5.14 illustrates this point, dis-
playing a histogram of the complete set of our teleportation fidelity results calculated firstly using
the teleportation gain measured during each run (Fig. 5.14 a)), and secondly by assuming that the
gain was adjust correctly beforehand to unity (Fig. 5.14 b)). We see quite significant differences
in the two distributions. The maximum fidelity we observed with experimentally verified gain was
F = 0.64± 0.02 with g = 1.02± 0.05, without experimentally verifying the gain however, we
thrice observed F > 2/3. For comparison, the quantum teleportation experiments of Furusawa
et al. [93] and Zhang et al. [162] achieved fidelities of F = 0.58± 0.02 and F = 0.61± 0.02,
respectively.

Signal transfer and conditional variance analysis

As discussed in Section 5.3, there are merits to analysing teleportation in a state independent
manner. Here, we present our teleportation results analysed in terms of signal transfer and con-
ditional variances between the input and output states. We display the results on a T-V diagram
as described in Section 5.3.2, and also present them in terms of the gain normalised conditional
variance measureM introduced in Section 5.3.3.

Our T-V results are shown in Fig. 5.15. The classical limit curve shows the ideal achievable
result as a function of gain if the entanglement was replaced with two coherent states, and the
efficiency of the protocol was unity. The unity gain curve shows the locus of points obtained at
unity teleportation gain with increasing entanglement. Finally, a theoretical optimum (as a func-
tion of gain) is shown for our experimental parameters. By varying our experimental conditions,
particularly the gain, we have mapped out some portion of the T-V graph. Perhaps the most strik-
ing feature of these results are the points with T q > 1, the best of which has Tq = 1.06 ± 0.03.
Since only one party may have Tq > 1, this shows that Bob has maximal information about the
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Figure 5.15: T-V graph of the experimental results. The dashed theoretical optimum was calculated based
on the characterisation of entanglement in Chapter 4 and experimental losses. Representative error bars are
shown for some points.

input signal and we have broken the information cloning limit. The lowest observed conditional
variance product was Vq = 0.96± 0.10. This point also had Tq = 1.04± 0.03. This is the first
observation of both Tq > 1 and Vq < 1, as well as the first simultaneous observation of both.
With unity gain simultaneously observing both Tq > 1 and Vq < 1 would imply breaking of the
no-cloning limit for teleportation (i.e F > 2/3). This particular point, however, had a fidelity of
only 0.63±0.03. The main reason for this low fidelity is asymmetric gain, the amplitude gain was
g+ = 0.92± 0.08 while the phase gain was g− = 1.12± 0.08. Such gain errors have a dramatic
impact on the measured fidelity because the output state then has a different classical amplitude
(α±) to the input. On the other hand, they have only a minor effect on Tq and Vq.

Fig. 5.16 showsM as a function of teleportation gain for our experimental results. As dis-
cussed in Sections 5.3.3 and 5.3.5,M has real physical significance. An observation ofM < 1

implies not only that entanglement must have been used in the teleportation protocol, but also that
the protocol could be used to perform entanglement swapping. We have experimentally demon-
stratedM < 1 for a wide range of gains from gmin = 0.58 to gmax = 1.21, and achieved an
optimum ofM = 0.22± 0.02 at g = 1.06± 0.07.

5.4.3 Experimental loopholes

A number of loopholes exist in experimental demonstrations of quantum teleportation, and to
some degree, any demonstration relies on the integrity of Alice, Bob and Victor. We consider
two examples here. The first is shown in Fig. 5.17. Here Victor has encoded no signal on the
phase quadrature of the input state (α−in = 0). Somehow, Bob has discovered this is the case -
perhaps there is an eavesdropper inside Victor’s station, or Victor himself is corrupt. Bob can then
reduce his phase quadrature teleportation gain below unity to minimise the phase reconstruction
noise with no fidelity cost. In the case of a classical teleportation protocol Bob could simply turn
his phase quadrature feedforward off, and it would appear to Victor that the phase quadrature
had been reconstructed perfectly. In this example, however, the teleportation protocol does utilise
entanglement, and the optimum strategy for Bob is to leave the phase quadrature feedforward
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Figure 5.16: Plot of our experimentalM results as a function of teleportation gain. Representative error
bars are shown for some points. The theoretical optimum was calculated based on the characterisation of
entanglement in Chapter 4 and experimental losses; and the unphysical region is arrived at from Eq. (5.22).

on, just with reduced gain. Fig. 5.17 c) shows the strong asymmetry then created between the
reconstruction of the amplitude and phase quadratures. Victor, when analysing the fidelity finds
an artificially enhanced value of F ′ = 0.70. We see that it is essential for Alice and Bob to obtain
no information about the orientation of the input coherent amplitude. In our experiment this was
achieved by spatially isolating Victor’s station from those of Alice and Bob, and by varying the
amplitude and phase quadrature coherent amplitudes α±in independently.

The second example of an experimental teleportation loophole considered here is the effect of
uncharacterised loss µ introduced before Victor’s homodyne detector. Let us for simplicity, take
the case of unity gain teleportation. If the input state is coherent the loss has no effect on ∆2X̂±in,
and the coherent amplitude becomes

α±in
′
=
√

(1− µ)α±in (5.31)
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Figure 5.17: Experimental demonstration of teleportation loophole when no phase signal is applied. a) and
b) show the amplitude and phase noise of the output state at 8.4 MHz; and c) shows the standard deviation
contours of the Wigner functions of the input and output states inferred from the measurements in a) and
b).
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Figure 5.18: Experimental demonstration of teleportation loophole when 50 % of unaccounted for loss is
introduced in Victor’s measurement. Dark traces: input state, light traces: output state. This demonstration
was performed on a purely classical teleporter so that ∆2X̂sqz = 1.

The output state unlike the input is thermal (∆2X̂±out > 1). The loss, then, does have an effect on
∆2X̂±out and we have

α±out
′

=
√

(1− µ)α±in (5.32)

∆2X̂±out

′
= (1− µ)∆2X̂±out + µ (5.33)

We see that for all µ, g′ = α±out
′
/α±in

′
= 1; and in the limit of µ → 1, ∆2X̂±out

′ → 1. Since
∆2X̂±in

′
= ∆2X̂±in = 1 we find that as the loss increases F ′ → 1. In the experimental verification of

this loophole we deliberately introduce µ = 0.5 of unaccounted for loss, and perform a classical
teleportation protocol. This is a special situation, and it can be shown that exactly one quanta
of additional noise should be measured by Victor, rather than the two - one from measurement
and one from reconstruction - that are really added during the protocol. Therefore, according to
Victor, the teleportation process will have been performed at the no cloning limitF ′ = 2/3, rather
than the true performance of F = 1/2. Fig. 5.18 shows our experimental demonstration of this
loophole for the amplitude quadrature. We see that, indeed, withµ = 0.5, only one quanta of noise
is added to the output state. This example demonstrates how essential it is for any teleportation
protocol, to characterise carefully, and account for, the efficiency of Victor’s detection system.

5.5 Conclusion

In this Chapter we reported the demonstration of stably locked quantum teleportation of the am-
plitude and phase quadratures of an optical field. We characterised the teleportation using fidelity,
a T-V diagram, and a measure derived in this Chapter - the gain normalised conditional variance
product. The optimum directly observed fidelity was F = 0.64 ± 0.02. This was limited, not
by the strength of our entanglement resource, or by the efficiency of the teleportation protocol,
but rather by the stability with which control of the teleportation gain was possible. This can be
seen from our T-V analysis, which was much less sensitive to gain. The maximum two quadrature
signal transfer for our apparatus was Tq = 1.06 ± 0.03; and we observed a conditional variance
product of Vq = 0.96 ± 0.10 and signal transfer of Tq = 1.04 ± 0.03, simultaneously. These
results are the first observation of Tq > 1 and Vq < 1, as well as the first simultaneous observation
of both criteria. At unity gain simultaneously observing Tq > 1 and Vq < 1 ensures violation
of the no-cloning limit for teleportation. The asymmetry in our gain, however, prevented a di-
rect measurement of F > 2/3. Based on the work of Grosshans and Grangier [155], and Ralph
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and Lam [148], we have derived a new measure for non-unity gain teleportation, the gain nor-
malised conditional variance productM. We analyse our teleportation results using this measure
and demonstrate teleportation for gains from gmin = 0.58 to gmax = 1.21, achieving an optimum
of M = 0.22 ± 0.02 < 1. We consider entanglement swapping characterised by a necessary
and sufficient condition for entanglement, and demonstrate that the range of gains for which it is
successful is dictated byM, with an optimum, always, at g < 1.



Chapter 6

Quantum secret sharing

In this Chapter we propose a continuous variable quantum secret sharing scheme that is achiev-
able with the resources developed during the course of my PhD. Conventional secret sharing is a
powerful technique in computer science. The goal is to share an encoded secret between multiple
players in a hierarchical fashion so that only through collaboration can some subset of players
(the access structure) obtain the secret. In quantum secret sharing, the secret is replaced with an
unknown quantum state. Thusfar due to experimental complexities, secret sharing of a quantum
state has not yet been experimentally demonstrated. The scheme proposed here has two partic-
ularly attractive attributes: it requires only two squeezers and a feedfoward loop, and it can be
performed in conjunction with a conventional secret sharing protocol providing the scheme with
an arbitrary level of security.

The work presented in this Chapter has been published in the journal article ‘A. Lance, T.
Symul, W. P. Bowen, T. Tyc, B. C. Sanders, and P. K. Lam. Continuous Variable (2,3) Threshold
Quantum Secret Sharing Schemes. New Journal of Physics 5, 4 (2003).’

6.1 Introduction

In conventional cryptography, secret sharing[186] enables a dealer to distribute information to
multiple players (the recipients) who are not all necessarily trustworthy. Secret sharing techniques
have many present-day applications involving the management of cryptographic keys [187]. An
important class of secret sharing protocols is (k, n) threshold secret sharing [187], in which any
subset of k players (the access structure) must collaborate to retrieve the secret information that
the dealer has distributed to n ≥ k players; whilst the remaining recipients outside the subset (the
adversary structure) learn nothing (see Fig. 6.1 a)). Quantum resources allow secret sharing to be
extended in two ways: they can guarantee, through the laws of physics, the security of classical
information sharing in crypto-communication systems[188, 189, 190]; and can extend secret shar-
ing to include the dissemination of quantum states[19, 113, 191, 192] in the context of quantum
information science. This Chapter considers the second class of protocols, which have broad ram-
ifications across quantum information science because they establish a secure method to distribute
fragile quantum states in an environment in which not all parties can be trusted[19]. Teleported
states, quantum computer output states, and quantum keys used for quantum cryptography can
all be securely distributed using quantum secret sharing (QSS) techniques. Furthermore QSS can
be used to distribute entanglement over long distances and through unreliable channels, and is an
enabling step towards quantum error correction [19].

Although quantum secret sharing was originally proposed in the discrete variable regime [19],
all such proposals have so far required qudits (multi-dimensional qubits), the production of which
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Figure 6.1: (2,3) quantum secret sharing protocol. a) shows a schematic diagram of a general quantum
secret sharing protocol. b) shows the apparatus used by the dealer to encode the secret state in our particular
(2,3) protocol, and the reconstruction techniques used by access structures {1,2} and {2,3}, respectively.
1:1, 2:1, and 50:1 label 1/2, 2/3, and 50/51 reflective beam splitters respectively, and HR is a highly reflective
beam splitter. AM: amplitude modulator. [Figure generously provided by Andrew Lance.]

is extremely challenging. Here we consider quantum secret sharing in the continuous variable
regime, which was first proposed by Tyc and Sanders [191] in 2002. They showed that continuous
variable (2, 3) threshold quantum secret sharing could be achieved using a resource equivalent
to four squeezers; and later that (k, n) threshold quantum secret sharing, in general, could be
achieved with those resources[192]. This Chapter builds on the original (2, 3) threshold proposal
of Tyc and Sanders, introducing a more experimentally feasible scheme that requires only two
squeezers and an electro-optic feedforward loop, the same resources that were required to perform
quantum teleportation in the previous Chapter. A diagram of the proposed experiment is given in
Fig. 6.1 b). We demonstrate, also, that by introducing correlated classical noise to the shares the
dealer can arbitrarily enhance the security of the quantum secret sharing protocol. This process is
equivalent to combining quantum and classical secret sharing in conjunction. The classical com-
ponent ensures the security of the protocol, whilst the quantum component ensures that quantum
features of the secret state are faithfully reconstructed.

Similar to quantum teleportation, quantum secret sharing involves the reconstruction of an
original input state at a remote location from transmitted information and available quantum re-
sources. The processes differ in two respects, however. Firstly, in quantum teleportation the input
state is destroyed during the measurement process and the reconstruction of the original state is
performed subsequently (see Fig. 5.1). Only classical information and a pair of entangled beams
are shared between the sender and the receiver. In quantum secret sharing, however, direct opti-
cal links containing the encoded secret are permissible between the dealer and all players. The
dealer does not, therefore, perform destructive measurements on the input secret. Secondly, as a
consequence of the no-cloning theorem, in quantum teleportation an ideal reconstruction of the
input state can be uniquely carried out by only a single party. In quantum secret sharing on the
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other hand, multiple access structures, consisting of a subset of the possible permutations of col-
laborating players, are able to reconstruct the secret. In spite of these differences, the quality of
reconstruction in a quantum secret sharing scheme can be characterised using the same techniques
introduced for quantum teleportation in Section 5.3. We use fidelity and the T-V diagram for our
analysis here. Although our analysis specifically considers the secret to be an unknown coher-
ent state, the scheme is directly applicable to situations where the secret is an arbitrary unknown
quantum state.

6.2 The dealer protocol
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Figure 6.2: Dealer protocol for the production of three shares in a (2,3) quantum secret sharing scheme.
BS: beam splitter, PM: phase modulator, AM: amplitude modulator, N± encoding noise.

Before examining how each access structure can reconstruct the secret state using entangle-
ment and feedforward, we will briefly describe the dealer protocol for (2,3) threshold quantum
secret sharing. As shown in Fig. 6.2, the dealer interferes the secret state with one of a pair of
quadrature entangled beams on a 50/50 beam splitter, with the entanglement being of the form
produced in Chapter 4. The two beam splitter outputs, and the second entangled beam form the
three shares for distribution to the players in the secret sharing scheme. Such a dealer protocol
was first proposed by Tyc and Sanders[191]. Here we extend their protocol, as can be seen from
Fig. 6.2, so that both quantum and a classical secret sharing protocols can be run in conjunction.
The quantum protocol ensures that the quantum mechanical features of the secret state can be re-
constructed, while the classical protocol enhances the security of the scheme against attacks from
individual players. To facilitate the classical protocol, the dealer encodes correlated noise onto
each of the shares. The exact form of the correlation must be carefully chosen to coincide with
the correlation exhibited by the entangled state. Choosing the encoding noise optimally the shares
can be expressed as

â1 =
âψ + âx + N√

2
(6.1)

â2 =
âψ − âx −N√

2
(6.2)

â3 = ây + N∗, (6.3)

where âψ , âx and ây are the annihilation operators corresponding to the secret state and the two
entangled beams, respectively; and N = (N+ + iN−)/2 is the encoding noise with ∗ being the
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complex conjugate. Since the encoding noise is known to the dealer, [N+, N−] = 0.
The quadrature entanglement utilised in the dealer protocol could be generated in a number

of ways, as discussed in Chapter 4. Here, however, to maintain consistency within this thesis, we
consider the entanglement to be generated by interfering a pair of squeezed beams, denoted âsqz,1

and âsqz,2, with π/2 relative phase on a 50/50 beam splitter. In this case, the annihilation operators
describing the entangled beams are given by Eqs. (4.1) and (4.2) in Chapter 4. If the squeezed
beams are generated using intra-resonator optical parametric amplification (OPA) as described in
Chapter 3, the encoding noise can be introduced to each share conveniently by electro-optically
modulating the non-linear crystals within the OPA resonators with white noise in a frequency band
around the sideband frequency of the secret state. This modulation then provides noise of exactly
the form required in Eqs. (6.1), (6.2), and (6.3).

6.3 The {1,2} reconstruction protocol

To reconstruct the secret state, players 1 and 2 (henceforth denoted by {1,2}) need only complete
a Mach-Zehnder interferometer, reversing the process used to encode the secret. Choosing the
correct relative phase, the output fields from the interferometer are

â′1 =
â1 + â2√

2
= âψ (6.4)

â′2 =
â1 − â2√

2
= âx +N, (6.5)

so that the secret state is perfectly reconstructed on the output field â′1 independent of the strength
of the entanglement. In contrast, successful reconstruction of the secret state for {2,3} and {1,3}
requires more complex protocols as a result of the asymmetry of the two shares involved. Hence-
forth, the focus of this Chapter will be on experimental techniques to implement this reconstruction
process, and methods that can then be used to characterise the success of the process. We focus
particularly on the {2,3} reconstruction protocol since a demonstration for either one of {2,3} or
{1,3} is immediately generalisable to the other.

6.4 The {2,3} reconstruction protocol

In their original proposal Tyc and Sanders [191] suggested using a pair of phase sensitive am-
plifiers to perform the {2,3} reconstruct protocol. They demonstrated that in the limit that the
phase sensitive amplifiers worked perfectly, and that the entanglement utilised by the dealer when
sharing the secret was perfect, the secret state could be reconstructed without degradation. This
proposal however, requires significant resources, an entangled pair and two phase sensitive am-
plifiers. Furthermore, the phase sensitive amplifiers must have precisely controlled gain and high
non-linearity. As discussed in Section 2.10 high non-linearity can be achieved by using high
peak power pulsed light sources, either in Q-switched or mode-locked setups, or by enhancing the
optical intensity within optical resonators. However, both of these techniques cause significant
coupling of vacuum fields into the state that they are acting on. The pulsed systems often suffer
distortion of optical wave fronts in the non-linear medium, resulting in poor optical interference
and losses; and resonators, although the wavefront of the output field is typically very good, cou-
ple in vacuum fields via intra-resonator losses, the input coupler, and the second harmonic pump
field (see Section 3.4.2). An experimental demonstration of this reconstruction protocol would
be extremely difficult using existing technology. In this Section we present an alternative {2,3}
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protocol that uses carefully chosen beam splitter ratios and electro-optic feedforward[113], rather
than the phase sensitive amplifiers in [191].
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Figure 6.3: The reconstruction protocol for the {2,3} access structure using an electro-optic feedforward
loop. 2:1 labels a 2/3 reflective beam splitter, HR labels a highly reflective beam splitter, AM labels the
amplitude modulator, and G is the feedforward gain.

Unlike access structure {1,2}; {2,3} cannot simply complete a Mach-Zehnder interferometer
to recover the secret state. The Mach-Zehnder worked for {1,2} because the magnitudes of both
the entangled state and the encoding noise contributions in shares 1 and 2 are equal. If the shares
are interfered on a 50/50 beam splitter with correct relative phase, these contributions cancel on
one output. The magnitudes of both the entangled state and noise contributions in shares 2 and 3

are not equal however. So that if {2,3} attempted to reconstruct the secret state by combining their
shares on a 50/50 beam splitter the entangled field held by player 3 would dominate over all other
terms on both output fields, and the scheme would fail. Varying the beam splitter ratio, however,
the magnitudes of both the entangled state and noise contributions from the two shares, can be
equalised on one of the beam splitter outputs. This occurs for a 2/3 reflective beam splitter1. If
the shares contributed by the players are combined with π relative phase on the beam splitter the
amplitude and phase quadratures of the beam splitter output fields are given by

X̂+
b =

1√
3

(
X̂−sqz,2− X̂−sqz,1 + X̂+

ψ − 2N+
)

(6.6)

X̂−b =
1√
3

(
X̂+

sqz,1− X̂+
sqz,2 + X̂−ψ

)
(6.7)

X̂+
c =

1

2
√

6

[(
X̂−sqz,1 − X̂−sqz,2

)
− 3

(
X̂+

sqz,1 + X̂+
sqz,2

)
+ 2

(
X̂+
ψ +N+

)]
(6.8)

X̂−c =
1

2
√

6

[(
X̂+

sqz,2 − X̂+
sqz,1

)
− 3

(
X̂−sqz,1 + X̂−sqz,2

)
+ 2

(
X̂−ψ − 3N−

)]
, (6.9)

where the sub-scripts b and c label the two output fields. We see that both the anti-squeezed
quadratures of the squeezed beams used to generate our entanglement (X̂−sqz,1 and X̂−sqz,2), and the
encoding noise (N+ and N−), do not appear in the phase quadrature of output b. This is a result
of cancellation achieved though our choice of beam splitter ratio and relative phase. In the limit of
ideal squeezing ({∆2X̂+

sqz,1,∆
2X̂+

sqz,2} → 0) the fluctuations of the squeezed quadratures also be-
come negligible on this output quadrature, and X̂−b → X̂−ψ /

√
3 so that then only the phase quadra-

ture of the secret state appears on the phase quadrature of output field b. Examining the amplitude

1It is also interesting to consider other beam splitter ratios. Choosing a different ratio is the secret sharing equivalent
of moving away from the unity gain regime of quantum teleportation. For simplicity, we do not include an analysis of
this situation here.
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quadrature X̂+
b of output field b, however, we find that the phase quadratures of the squeezed

fields used the generate the entanglement are present. Therefore, as {∆2X̂+
sqz,1,∆

2X̂+
sqz,2} → 0

the amplitude quadrature of the secret state becomes more and more obscured by anti-squeezed
fluctuations. This occurs because, while the phase quadratures of the entangled beams (and the
phase quadrature encoding noise) are directly-correlated, the amplitude quadratures (and the am-
plitude quadrature encoding noise) are anti-correlated. Thus, if the phase quadratures of the en-
tangled beams are arranged to cancel on one beam splitter output, their amplitude quadratures
must be present. If we examine the other beam splitter output field (field c), however, we find
that its amplitude quadrature X̂+

c also contains terms from the anti-squeezed quadratures of the
squeezed beams, and from the amplitude quadrature encoding noise. Detecting X̂+

c , and applying
it via electro-optic feedforward with appropriately chosen gain to X̂+

b , cancels these fluctuations
on X̂+

b . Typically, in feedforward schemes the fluctuations are directly applied to optical fields
using optical modulators (see Section 2.4). This process can be quite inefficient, however, and can
be avoided here by divorcing the modulators from field b as shown in Fig. 6.3. Instead, we use
a similar scheme to that used in the teleportation experiment of Chapter 5. The detected signal
from X̂+

c is applied off-line to a strong local oscillator field. The signal on the local oscillator
can then be encoded on output field b using a highly reflective beam splitter as shown in Fig. 6.3.
The efficiency of the process is then determined simply by the beam splitter reflectivity which can
be very high, rather than the efficiency of the modulators. The resulting output quadratures are
given by X̂±out =

√
1− εX̂±b +

√
εX̂±LO, where X̂±LO are the amplitude and phase quadratures of

the local oscillator. In the limit of high beam splitter reflectivity, ε → 0, the amplitude and phase
quadratures of the output field are given by

X̂+
out ' X̂+

b +K(ω)δi

X̂−out ' X̂−b , (6.10)

where K(ω) is a gain transfer function which takes into account the response of the electro-optic
feedforward circuit and the reflectivity of the HR beam splitter. δi(ω) is the frequency component
at ω of the detected photocurrent from field c, given by

δi =
√
ηαc(t)

[ √
η

2
√

6

[(
X̂−sqz,1−X̂−sqz,2

)
−3
(
X̂+

sqz,1+X̂+
sqz,2

)
+2
(
N+ + X̂+

ψ

)]
+
√

1− ηX̂+
d

]
,

(6.11)

where η is the detection efficiency of the feedforward detector and X̂+
d arises from the correspond-

ing vacuum field. The output quadrature fluctuations can then be re-expressed as

X̂+
out =

(
1√
3

+
G√

6

)
X̂+
ψ +

(
G

2
√

6
− 1√

3

)(
X̂−sqz,1− X̂−sqz,2

)

−G
2

√
3

2

(
X̂+

sqz,1 + X̂+
sqz,2

)
+G

√
1− η
η

X̂+
d +

(
2√
3
− G√

6

)
N+ (6.12)

X̂−out =

√
1

3
X̂−ψ +

√
1

3

(
X̂+

sqz,1 − X̂+
sqz,2

)
, (6.13)

where G = ηK(ω)αc(t) is the total gain of the feedforward loop. If G = 2
√

2, we see that the
anti-squeezed quadratures and encoding noise terms in Eq. (6.12) are eliminated. In the limit of
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perfect detection efficiency and large squeezing, we obtain

X̂+
out =

√
3X̂+

ψ (6.14)

X̂−out =
1√
3
X̂−ψ . (6.15)

Hence this protocol allows players 2 and 3 to co-operate to reconstruct a squeezed version of the
secret, âψ . The quantum statistics of the secret state can therefore, in the ideal case, be perfectly
reconstructed. Of course, in principle the reconstructed state should be of identical form to the
input state. This can be achieved here by using a single unitary squeezer such as those discussed
in Chapter 3. By comparison, the original Tyc and Sanders reconstruction protocol required two
unitary squeezers[191], so that in any case the scheme presented here is significantly less demand-
ing. It should be pointed out, however, that the result of Eqs. (6.14) and (6.15) is only possible if
quantum resources (i.e. entanglement) are shared between the players in the protocol. The uni-
tary squeezer required to transform the reconstructed state into the same form as the input, on the
other hand, requires only local resources and no entanglement. Therefore, it is reasonable to con-
clude that the essence of the quantum secret sharing reconstruction protocol is contained within
the feedforward scheme rather than the unitary transform. For these reasons, we consider that
the feedforward scheme in-and-of-itself constitutes a {2,3} reconstruction protocol for quantum
secret sharing. It should also be noted that the squeezing exhibited on the reconstructed state is
deterministically known. Therefore, if the quantum secret sharing protocol was utilised within a
quantum information network, the squeezing could potentially be taken into account by simply
adjusting the alphabet used by the network in subsequent processes; in this situation a unitary
squeezer becomes unnecessary.

6.5 Characterisation of the reconstructed state

Quantum secret sharing can be characterised in a similar manner to that used to characterise quan-
tum teleportation in Chapter 5. Whilst the secret state can be arbitrary, we simplify the charac-
terisation by assuming that it is a coherent state. We characterise the fidelity achievable by each
access structure, which for a coherent input state and Gaussian entanglement is given by Eq. (5.6),
and calculate the corresponding reconstruction noise, and signal transfer defined respectively in
Eqs. (5.7) and (5.8). Since in quantum secret sharing schemes the secret can be transmitted through
optical (quantum) channels, the classical limits of each of these measures are different to those de-
rived in Chapter 5 for quantum teleportation. Furthermore, three players, and therefore three per-
mutations of access structures are now involved so a true assessment of the success of the scheme
requires an average of the results achieved by each access structure.

It is relatively easy to show that without any entanglement resource the average fidelity achiev-
able for any (k,n) quantum secret sharing scheme is limited by

F (k,n)
ave ≤ k

n
, (6.16)

which for a (2,3) protocol reduces to

F (2,3)
ave =

1

3

(
F{1,2}+ F{1,3}+ F{2,3}

)
≤ 2

3
. (6.17)

where the subscripts i and j in F{i,j} denote the collaborating players. Remember that for our
protocol, the {1,2} access structure can, in theory, achieve a perfect reconstruction independent
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of whether entanglement is available to the dealer so that F{1,2} = 1. Since the {1,3} and {2,3}
access structures are symmetric we find from Eq. (6.17) that when entanglement is not available to
the dealer the optimum fidelity achievable by each of these structures is {F{1,3},F{2,3}} = 1/2.
Therefore, assuming that the {1,2} access structure can perform the Mach-Zehnder interferometer
required for them to reconstruct the secret state perfectly, the quantum secret sharing protocol is
successful if

{F{1,3},F{2,3}} ≥ 1/2. (6.18)

Let us now examine how the availability of entanglement to the dealer affects the reconstruc-
tion fidelity achieveable by the {2,3} and {1,3} access structures. We find that due to the uni-
tary squeezing operation performed on the reconstructed state in our protocol, the directly cal-
culated fidelity is extremely poor[113]. To obtain a fair analysis of the protocol we perform the
reverse unitary squeezing operation, amplifying the phase quadrature of the reconstructed state
by a factor of

√
3,2 before the comparison is made. Assuming that the feedforward detector is

ideal (η = 1), that the feedforward gain is G = 2
√

2, and that the squeezed beams used by
the dealer to generate entanglement have equal squeezing (∆2X̂+

sqz = ∆2X̂+
sqz,1 = ∆2X̂+

sqz,2),
Eqs. (5.6), (6.4), (6.12), and (6.13) provide the reconstruction fidelities then achievable by each
access structure

F{1,2} = 1 (6.19)

F{1,3} = F{2,3} =
1

1 + ∆2X̂+
sqz

. (6.20)

F{1,2} is always unity since in this case secret state reconstruction only requires a simple Mach-
Zehnder interferometer, and in the limit of perfect entanglement (∆2X̂+

sqz → 0) the fidelity achiev-
able by the other two access structures also approaches unity. If any entanglement is available to
the dealer (∆2X̂+

sqz < 1), the {1,2} and {2,3} access structures can achieve F > 0.5, so that
quantum secret sharing can be demonstrated with our protocol for any level of squeezing, and
for ideal squeezing can be performed perfectly. Notice that the anti-squeezed quadratures of the
squeezed beams used by the dealer (X̂−sqz,1 and X̂−sqz,2), and the noise she encodes on the shares
(N+ and N−), have no contribution to Eq. (6.20). This is the result of having chosen the feed-
forward gain G = 2

√
2 and 2/3’s beam splitter reflectivity, so that the quantum secret sharing

protocol is operating in a regime equivalent to the unity gain regime for quantum teleportation
discussed in Section 5.3.1.

Let us now characterise the secret sharing protocol in terms of reconstruction noise on
the output (Vq) and signal transfer from the secret state to the output (Tq), as defined in
Eqs. (5.8) and (5.7), respectively. Perfect reconstruction of the secret state is achieved when no
noise is add on reconstruction (Vq = 0), and any signals on the secret state are completely retained
(Tq = 2). Unlike fidelity, both of these parameters are independent of unitary squeezing opera-
tions, so that the unitary squeezing operation performed on the output state for the fidelity analysis
is not required here. Before analysing our specific reconstruction protocol, we must determine cri-
teria to delineate between classical and quantum secret sharing regimes. Similarly to the fidelity
criterion discussed earlier, such criteria may be constructed from the average reconstruction noise,
and the average signal transfer of the three access structures. It is relatively easy to show that if
no entanglement is available to the dealer, the average reconstruction noise and signal transfer are

2and correspondingly, deamplifying the amplitude quadrature by the same factor
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limited by

√
Vq,ave =

1

3

(√
Vq,{1,2}+

√
Vq,{1,3}+

√
Vq,{2,3}

)
≥ 1

3
(6.21)

Tq,ave =
1

3

(
Tq,{1,2}+ Tq,{1,3}+ Tq,{2,3}

)
≤ 4

3
. (6.22)

Since for our dealer protocol, the {1,2} access structure is able to perfectly reconstruct the se-
cret state independent of whether or not the dealer has access to entanglement, Vq,{1,2} = 0 and
Tq,{1,2} = 2 can always be achieved. Without entanglement the other two access structures, being
symmetric, are therefore limited by

Vq,{1,3} = Vq,{2,3} ≥ 1/4 (6.23)

Tq,{1,3} = Tq,{2,3} ≤ 1. (6.24)

Assuming again that the feedforward detector is ideal (η = 1), and that the magnitudes of the
encoding noise on the amplitude and phase quadratures of the shares are equal (∆2N = ∆2N+ =

∆2N−), the signal transfer and reconstruction noise for the {1,3} and {2,3} access structures are
given as a function of gain by

Tq,{1,3} = Tq,{2,3} =
1

1 + 2∆2X̂+
sqz

(6.25)

+

(
2 +
√

2G
)2

(
2 +
√

2G
)2

+
(
G− 2

√
2
)2 (

∆2X̂−sqz + 2∆2N
)

+ 9G2∆2X̂+
sqz

Vq,{1,3} = Vq,{2,3} =
∆2X̂+

sqz

2

[
G2∆2X̂+

sqz +
1

9

(
G− 2

√
2
)2(

∆2X̂−sqz + 2∆2N
)]
, (6.26)

where to obtain these expressions we have used Eqs. (5.7), (5.8), (6.12), and (6.13). Taking the
specific gain of G = 2

√
2, we see that in the limit of perfect entanglement (∆2X̂+

sqz → 0), the
signal is perfectly transferred to the output state (Tq,{2,3} = 2) and no noise is introduced in the
process (Vq,{2,3} = 0).

Most quantum secret sharing schemes require, not only that the access structure can retrieve
the secret state, but also that individually each player is unable to do so. Let us, therefore, examine
the signal transfer from the secret state to each of the individual shares, and the noise obscuring
the secret on these shares. The signal transfer and reconstruction noise for the individual players
can be shown from Eqs. (5.7), (5.8), (6.1), (6.2), and (6.3) to be given by

Tq,{1} = Tq,{2} =
4

2 + ∆2X̂+
sqz + ∆2X̂−sqz + 2∆2N

(6.27)

Tq,{3} = 0 (6.28)

4Vq,{1} = 4Vq,{2} = Vq,{3} =

(
1

2

(
∆2X̂+

sqz + ∆2X̂−sqz

)
+ ∆2N

)2

. (6.29)

Clearly no signal is transferred to player 3 individually since no part of the secret state is distributed
to him. The signal transfer to players 1 and 2 is maximised at {Tq,{1}, Tq,{2}} = 1 when no
entanglement is available to the dealer (∆2X̂+

sqz = ∆2X̂−sqz = 1) and he encodes no noise onto
the shares (∆2N = 0). As the strength of the dealers entanglement improves (∆2X̂+

sqz → 0, and
consequently ∆2X̂−sqz → ∞), or alternatively, as the level of encoding noise increases (∆2N → 1)
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the signal transfer to players 1 and 2 individually approaches zero. Similarly, players 1 and 2

individually experience minimum reconstruction noise when the dealer has no entanglement and
chooses not to utilise encoding noise. As the squeezing improves, or the level of encoding noise
increases, the reconstruction noise for each player increases. We see that, for large squeezing, or
large encoding noise, the secret state is completely shrouded from all three players individually.
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Figure 6.4: T-V diagrams for the feedforward scheme with squeezing levels of (a) ∆2X̂+
sqz = 1, (b)

∆2X̂+
sqz = 0.6, and (c) ∆2X̂+

sqz = 0.01. The lines represent the reconstruction achieved by the {2,3}
access structure with varying feedforward gain, and the points represent the reconstruction achieved by
players {1} or {2} alone. The dashed lines and stars are the results achieved in the absence of encoding
noise, whilst the solid lines and circles are achieved with an encoding noise level of ∆2N = 100. The
detector efficiency is assumed to be perfect (η = 1) and the squeezing resources pure ∆2X̂+

sqz∆2X̂−sqz = 1.
The coordinates of points lying outside the plotted region are displayed in insets.

Similarly to our analysis of quantum teleportation, we can represent the signal transfer and
reconstruction noise of a quantum secret sharing protocol as a function of the feedforward gain
on a T-V diagram. Fig. 6.4 shows this representation of our protocol for three different levels of
squeezing, in Fig. 6.4 a) no squeezing is used so that ∆2X̂+

sqz = 1, in Fig. 6.4 b) ∆2X̂+
sqz = 0.6 and

in Fig. 6.4 c) ∆2X̂+
sqz = 0.01. In all cases we have assumed that the squeezed states are pure, i.e.

that ∆2X̂+
sqz∆

2X̂−sqz = 1. Let us first consider the case where no noise is encoded onto the shares
so that ∆2N = 0. The dashed curves show the portion of the T-V diagram mapped out by our
protocol with each level of squeezing as the feedforward gain varies. As the level of squeezing
increases the curve, in general, moves towards higher Tq,{2,3} and lower Vq,{2,3}; and as discussed
earlier, in the limit of infinite input squeezing, the collaborating players can reconstruct the secret
perfectly, with Tq,{2,3} → 2 and Vq,{2,3} → 0 at a feedforward gain of G = 2

√
2. When the

squeezing is not perfect, however, the optimum feedforward gain for the collaborating players is
always less than 2

√
2, as shown in Fig. 6.4(a) and (b). The star points in Fig. 6.4 represent the

maximum information retrievable by {1} or {2} individually. When the dealer only has access to
entanglement of moderate strength, and our protocol is analysed on the T-V diagram, the individual
players can reconstruct the secret with reasonable quality (see Fig. 6.4 (a) and (b)), and in the case
of weak entanglement an individual player can even obtain a better reconstruction of the secret
state than is achieved by the access structure. In this situation, the single player has won because
the collaborating players are restricted to use the optical setup shown in Fig. 6.3. By varying the
beam splitter splitter ratio of the 2:1 beam splitter, the collaborating players can do better that
the individual player for any non-zero level of squeezing. In the limit of strong entanglement the
individual players achieve an extremely poor reconstruction of the input state, with Tq,{i} → 0

and Vq,{i} →∞, as shown in Fig. 6.4 c).
The dealer can enhance the security of our protocol against individual attacks by encoding

correlated noise N± onto each share. The effect of 20 dB of this noise is shown in Fig. 6.4 by
the solid lines for the collaborating players, and by circles for the single players. We see that in
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this case, to ensure that the noise is completely cancelled, the optimum feedforward gain for the
collaborating players becomes G = 2

√
2 for all levels of entanglement. The optimum Tq,{2,3}

and Vq,{2,3} for both the collaborating and individual players degrades due to this noise. For the
collaborating players, the degradation occurs because the players are forced to operate atG = 2

√
2

to cancel the encoding noise. For the individual players, however, no means are available to cancel
the encoding noise, so that the degradation is much more severe. If the dealer encodes a high level
of noise, the individual players obtain virtually no information about the secret with Tq,{i} → 0

and Vq,{i} →∞. In this regime, the collaborating players obtain a much better reconstruction than
the single players for all levels of input squeezing.

6.6 The cups and balls magic trick without a trick

Figure 6.5: Wall painting from the tomb of Beni Hassan, Egypt 2500 BC.

If you will permit an editorial, I would like to examine the analogy between {2,3} quantum
secret sharing and the cups and balls magic trick. Cups and balls is commonly believed to be the
oldest of magic tricks. It has been argued that a mural dated to 2500 BC in the crypt of Baqet
III outside the village of Beni Hassan in Egypt captures two men playing the trick. The mural is
depicted in Fig. 6.5. It will probably never be known whether these two men were truly enacting
the cups and balls trick, but still it is an old trick with written records dating back to the first
century AD. The trick begins with three cups and a ball. The magician places the ball under
one cup, shuffles the cups, and then asks the audience to guess which cup the ball is under. Of
course, as the name implies she performs a ‘trick’, and somehow the ball is never under the cup the
audience chooses3. Now imagine you are a quantum magician, or the dealer in a quantum secret
sharing protocol, and you want to perform this trick. You take your quantum ball, the secret state,
and split it into three parts shrouding each with part of an entangled state, or cup. Let’s not worry
about shuffling the states around, but rather simply ask the audience to choose any cup (share)
that holds part of the secret. They, believing they cannot lose, choose one, and you the magician
are then at liberty to use the other two to reconstruct the secret. . . .and voilà, no matter which
share the audience chooses you have the secret state, and they nothing. So using the techniques
of quantum secret sharing a quantum magician can perform this age old magic trick without a
trick! Of course, the conventional magician often extends his trick, putting a ball under one cup,
shuffling the three cups, and then revealing that a ball is now under each of the cups. This, we
know, is impossible for quantum states. So thankfully some things will always remain as they

3I will not spoil the trick for you by explaining how it works here.
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were perhaps intended to be - magic!

6.7 Conclusion

(Tq, Vq) clas,N̄ clas,N quan,N̄ quan,N
Adversary 1 (1,1/4) (0,∞) (0,∞) (0,∞)
Structure 2 (1,1/4) (0,∞) (0,∞) (0,∞)

3 (0,1) (0,∞) (0,∞) (0,∞)
Access {1,2} (2,0) (2,0) (2,0) (2,0)

Structure {1,3} (1,1/4) (2/3,4) (2,0) (2,0)
{2,3} (1,1/4) (2/3,4) (2,0) (2,0)

Table 6.1: Summary of the performances of the quantum secret sharing protocol with (quan) and without
(clas) quadrature entanglement; and with (N ) and without encoding noise (N̄). Parameters listed are the
best achievable (Tq , Vq) values for the protocol utilising a 2:1 beam splitter.

This Chapter presented a new (2,3) threshold quantum secret sharing protocol. This scheme
utilises a pair of quadrature entangled fields of the form produced in Chapter 4 and an electro-optic
feedforward loop. We have shown that the ideal protocol produces output states that are related
by a single unitary squeezing operation to the original secret states. We show that by encoding
Gaussian noise on the shares, it is possible to guarantee security against attacks from individual
players. Table 6.1 summarises the performances of our proposed feedforward quantum secret
sharing scheme when entanglement is, and is not, available to the dealer; and with, and without,
encoding noise on the shares distributed by the dealer.

We have recently implemented this proposal in the laboratory. Although I will not detail those
results here, the optimum average fidelity achieved so far is F (2,3)

ave = (0.73± 0.04) > 2/3[38].
This is, to our knowledge, the first experimental demonstration of secret sharing of a quantum
state.
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Overview

In the previous three Chapters we presented results on the generation of continuous variable en-
tanglement, its application to quantum teleportation, and a potential application to quantum se-
cret sharing. The demonstration of quantum information protocols such as these is essential to
the realisation of a quantum information network. However, it is generally accepted that realis-
tic quantum information networks will consist of atomic nodes, where information is processed,
connected by optical links[9, 10, 107, 108, 109, 110]. To integrate optical protocols into such
a quantum information network methods must be developed to optimise the interaction between
optical and atomic quantum states. The optimum configuration for the atomic nodes is still the
focus of vigorous research, with semi-conductor materials[193], rare earth doped crystals [194],
trapped ions[195, 196], single atoms in high finesse resonators[197, 198, 199], super-conducting
materials[200], and atomic ensembles[20, 21, 201, 202], all holding promise. For the continuous
variable optical states analysed predominantly in this thesis, the most viable option is probably to
use atomic ensembles.

Recently, the transfer of continuous variable polarisation states to the spin state of an atomic
ensemble has been experimentally demonstrated [20]. Furthermore, polarisation states do not re-
quire the universal local oscillator required for other continuous variable quantum information
networks. In the continuous variable regime polarisation states, therefore, appear to be the most
likely candidate for the optical links in a quantum information network. The first two Chapters of
this Part of my thesis examine the breath of continuous variable polarisation states, and discuss
how these states can be generated through transformations of the quadrature squeezed and quadra-
ture entangled states of Chapters 3 and 4. In Chapter 7 we experimentally demonstrate various
forms of polarisation squeezing[36, 203], and show that three of the four Stokes operators that
describe polarisation states can be simultaneously squeezed. Chapter 8 transforms quadrature en-
tanglement to polarisation entanglement[33, 204]. Interacting this polarisation entanglement with
appropriately prepared atomic ensembles at two nodes of a network could produce a macroscopic
spin entangled state between the nodes [202]. Finally, we propose a new form of polarisation
entanglement, created from two quadrature entangled pairs, which displays strong correlations
between three of the Stokes operators.

Effective communication of entanglement over long distances is a prerequisite to the imple-
mentation of a quantum information network. Given that any optical channel is likely to have
inherent inefficiencies, it is expected that quantum state purification and storage techniques[139,
140, 141], and a quantum repeater architecture[205] will be required to perform this commu-
nication successfully. A number of proposals exist for such a system [110, 205] but most re-
main outside the reach of present-day technology. One proposal using the optical manipulation
of atomic ensembles and conditional measurements does, however, appear viable with available
technology[21]. Chapter 9 of this thesis reports the demonstration of the enabling step towards
this system. The experiment was performed in Jeff Kimble’s laboratories at the California Institute
of Technology [206]. The main scientific result of the work was the generation of non-classically
correlated photon pairs from an atomic ensemble. This experiment could have application not
only to quantum information networks [21], but also to quantum state engineering [207], and to
the implementation of a single photon source ‘on demand’.
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Chapter 7

Polarisation squeezing

In this Chapter we analyse the polarisation state of light on a quantum Poincaré sphere. We
investigate several method to produce polarisation squeezed states using the resource described in
Chapter 3. In one case, we demonstrate simultaneous polarisation squeezing of three of the four
Stokes operators characterising the polarisation state of a field.

The work presented here has been published in the journal articles:

• W. P. Bowen, R. Schnabel, H.-A. Bachor, and P. K. Lam. Polarization Squeezing of Contin-
uous Variable Stokes Parameters. Physical Review Letters 88, 093601 (2002).

• R. Schnabel, W. P. Bowen, N. Treps, T. C. Ralph, H.-A. Bachor, and P. K. Lam. Stokes
operator squeezed continuous variable polarization states. Physical Review A 67, 012316
(2003).

7.1 Introduction

In the discrete regime quantum polarisation states have been vigorously studied, both theoretically
and experimentally, with investigations of fundamental problems of quantum mechanics, such as
Bell’s inequality [67, 120, 208, 209], and of potential applications such as quantum cryptography
[112, 210, 211, 212] and quantum computation [17]. By contrast, quantum polarisation states in
the continuous variable regime have received little attention. Recently however, interest in con-
tinuous variable aspects of quantum polarisation states has been growing. This growth in interest
is primarily due to the apparent applicability of continuous variable polarisation states to quan-
tum information networks. It is generally accepted that a realistic quantum information network
must consist of nodes of atoms where quantum information algorithms are processed, linked by
optical channels (see for example [9, 10, 107, 108, 109, 110]). In such a system optical quantum
states must be transferable to the atomic nodes and visa versa. This quantum state transfer has
been demonstrated between continuous variable polarisation states and spin states of an atomic
ensemble[20, 202]. Continuous variable polarisation states can be carried by a bright laser beam,
providing high bandwidth capabilities and therefore faster signal transmission rates than discrete
variable systems; and perhaps surprisingly they retain the discrete variable advantage of not re-
quiring the universal local oscillator necessary for other proposed continuous variable quantum
networks. This advantage, although technical, would result in a significant simplification of the
infrastructure required for the network.

The polarisation state of light has four defining parameters, the Stokes operators, one of which
for a polarised beam, is redundant. This compares to two parameters, the amplitude and phase
quadratures, for the most commonly studied continuous variable system. Polarisation squeezing
can be achieved for each of these four variables, and for some of them simultaneously. Several
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methods for generating continuous variable polarisation squeezed states have been proposed, most
using nonlinearity provided by Kerr-like media and optical solitons [213, 214, 215, 216, 217, 218,
219, 220, 221]. The two experimental demonstrations prior to our work reported here, however,
were achieved by combining a dim quadrature squeezed beam with a bright coherent beam on a
polarising beam splitter [20, 202, 222]. In both cases only the properties of the state relevant to
the experimental outcome were characterised. The full characterisation of a continuous variable
polarisation state requires measurements of the fluctuations in both the orientation, and the length
of the Stokes vector on a Poincaré sphere.

In this Chapter we present the complete experimental characterisation of the Stokes vector
fluctuations for four different quantum polarisation states. We make use of ideas recently pub-
lished by Korolkova et al. [218]. Their concept of squeezing more than one Stokes operator of a
laser beam and a simple scheme to measure the Stokes operator variances are realised. We experi-
mentally compare polarisation squeezed states generated from a single quadrature squeezed beam
to those produced from two quadrature squeezed beams. In the following Section we present
a description of the theory of Stokes operators in the continuous variable regime. Therein, we
decompose the Stokes operators that describe polarisation states into pairs of field annihilation
operators using the Schwinger bosonic representation[223]. This provides a clear description of
optical polarisation states in terms of the formalism introduced in Chapter 2. In the experimental
Section we characterise the polarisation fluctuations of a single amplitude squeezed beam from
one of our OPAs. It can be seen that only the fluctuations of the length of the Stokes vector are be-
low that of a coherent state (ie. squeezed). Grangier et al. [222] and Hald et al. [20] converted this
to squeezing of the Stokes vector orientation by combining the quadrature squeezed beam with a
much brighter coherent beam on a polarising beam splitter. We experimentally investigate this sit-
uation and indeed show that the Stokes vector orientation is then squeezed. This result is compared
with measurements on polarisation states generated by combining both of our quadrature squeezed
beams on a polarising beam splitter[203, 218]. Operating our OPAs in the amplification and deam-
plification regimes, respectively, we observed ‘pancake-like’ and ‘cigar-like’ uncertainty volumes
on the Poincaré sphere. Both the orientation and the length of the Stokes vector were squeezed for
the ‘cigar-like’ uncertainty volume. In the final Section we discuss several schemes for encoding
information on continuous variable polarisation states of light. A conventional fiber-optic commu-
nication protocol is compared with optimised coherent beam and squeezed beam protocols. We
show that the channel capacity of the ‘cigar-like’ polarisation squeezed states exceeds the channel
capacity of coherent states, quadrature squeezed states, and all other polarisation squeezed states.

It should be mentioned that subsequently to the work presented here, polarisation squeezing
has been demonstrated in a pair of exquisite experiments, one utilising the Kerr non-linearity in
optical fibres [224], and the other a cloud of cold Cesium atoms in a high finesse resonator [225].
An number of interesting theoretical proposals for the generation and utilisation of polarisation
squeezing have also since been published [226, 227, 228].

7.2 Theoretical background

In classical optics the polarisation state of a light beam can be described as a Stokes vector on
a Poincaré sphere, as shown in Fig. 7.1 a). It can be fully characterised by the four Stokes
parameters[229]: S0 measures the intensity of the beam; and S1, S2, and S3 characterise its po-
larisation and form a cartesian axis system. If the Stokes vector points in the direction of S1, S2,
or S3, the polarised part of the beam is horizontally, linearly at 45◦, or right-circularly polarised,
respectively. A pair of beams will not interfere if their Stokes vectors point in opposite direc-
tions. The radius of the classical Poincaré sphere is given by S = (S2

1 + S2
2 + S2

3)1/2 which
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Figure 7.1: Diagram of a) classical and b) quantum Stokes vectors mapped on a Poincaré sphere; the ball
at the end of the quantum vector visualises the quantum noise in Ŝ1, Ŝ2, and Ŝ3; and the non-zero quantum
sphere thickness visualises the quantum noise in Ŝ0.

describes the average intensity of the polarised part of the radiation. The degree of polarisation of
a beam is given by the ratio of the intensity of the polarised part, to the total intensity S/S0 . For
quasi-monochromatic laser light which is almost completely polarised S0 is a redundant param-
eter, completely determined by the other three parameters (S0 = S in classical optics). The four
Stokes parameters can be directly obtained from the mean values of the simple experiments shown
in Fig. 7.2.

An equivalent representation of polarisation states of light is given by the 4 elements of the
coherence matrix (Jones matrix). The relations between these elements and the Stokes parameters
can be found in [230]. In contrast to the coherence matrix elements the Stokes parameters are
observables and therefore can be associated with Hermitian operators. The quantum mechanical
Stokes operators are defined in much the same way as their classical counterparts. Following
[231, 232] we expand the Stokes operators in terms of the annihilation â and creation â† operators
of the constituent horizontally (subscript H) and vertically (subscript V) polarised modes

S̃0 = ã†H ãH + ã†V ãV (7.1)

S̃1 = ã†H ãH − ã
†
V ãV (7.2)

S̃2 = ã†H ãV e
iθ + ã†V ãHe

−iθ (7.3)

S̃3 = iã†V ãHe
−iθ − iã†H ãV eiθ, (7.4)

where θ is the phase difference between the H,V-polarisation modes. The commutation relations
of the annihilation and creation operators directly result in Stokes operator commutation relations,

[S̃1, S̃2] = 2iS̃3 , [S̃2, S̃3] = 2iS̃1 , [S̃3, S̃1] = 2iS̃2 . (7.5)

Apart from a normalisation factor, these relations are identical to the commutation relations of the
Pauli spin matrices. In fact the three Stokes operators in Eq. (7.5) and the three Pauli spin matrices
both generate the special unitary group of symmetry transformations SU(2) of Lie algebra[233].
This group obeys the same algebra as the three-dimensional rotation group, so that distances in
three dimensions are invariant. Therefore the operator S̃0 is also rotationally invariant and com-
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mutes with the other three Stokes operators ( [S̃0, S̃j] = 0, with j = 1, 2, 3). The noncommutabil-
ity of the other Stokes operators S̃1, S̃2 and S̃3 precludes the simultaneous exact measurement of
their physical quantities. As a direct consequence of Eq. (7.5) the Stokes operator variances are
restricted by the uncertainty relations [231]

∆2S̃1∆2S̃2 ≥ |〈S̃3〉|2 (7.6)

∆2S̃2∆2S̃3 ≥ |〈S̃1〉|2 (7.7)

∆2S̃3∆2S̃1 ≥ |〈S̃2〉|2. (7.8)

In general this results in non-zero variances in the individual Stokes operators as well as in the
radius of the Poincaré sphere (see Fig. 7.1b)). The quantum noise in the Stokes operators even
effects the definitions of the degree of polarisation [213, 216] and the Poincaré sphere radius. It
can be shown from Eqs. (2.4) and (7.1)-(7.4) that the quantum Poincaré sphere radius is different
from its classical analogue, 〈S̃〉 = 〈S̃2

0 + 2S̃0〉1/2. Furthermore, the noncommutability of the
Stokes operators implies that entanglement of Stokes operators is possible between two beams,
which is the topic of the next Chapter. Three observables are involved, compared to two for
quadrature entanglement, and the entanglement between two of them relies on the mean value of
the third.

The Stokes operators of a light beam can be characterised using the same apparatus as the
classical Stokes parameters (Fig. 7.2), and including an analysis of the fluctuations inherent in the
measurement outcomes[218]. If the variances of the Stokes operators are much smaller than their
coherent amplitudes, the Stokes operator expectation values can be approximated by

〈S̃0〉 = α2
H(t) + α2

V (t) = 〈ñ〉 (7.9)

〈S̃1〉 = α2
H(t)− α2

V (t) (7.10)

〈S̃2〉 = 2αH(t)αV (t) cos θ (7.11)

〈S̃3〉 = 2αH(t)αV (t) sin θ. (7.12)

These expressions are identical to the Stokes parameters in classical optics. Here 〈ñ〉 is the ex-
pectation value of the photon number operator. For a coherent beam the expectation value and
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Figure 7.2: Apparatus required to measure each of the Stokes operators. PBS: polarising beam splitter,
λ/2 and λ/4: half- and quarter-wave plates respectively, the plus and minus signs imply that an electrical
sum or difference has been taken.
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variance of ñ have the same magnitude, this magnitude equals the quantum noise limit. The vari-
ances of the Stokes operators in the frequency domain are given by

∆2Ŝ0 = α2
H(t)∆2X̂+

H + α2
V (t)∆2X̂+

V + 2αH(t)αV (t)
〈
δX̂+

HδX̂
+
V

〉
(7.13)

∆2Ŝ1 = α2
H(t)∆2X̂+

H + α2
V (t)∆2X̂+

V − 2αH(t)αV (t)
〈
δX̂+

HδX̂
+
V

〉
(7.14)

∆2Ŝ2(θ) = α2
H(t)∆2X̂ -θ

V + α2
V (t)∆2X̂θ

H + 2αH(t)αV (t)
〈
δX̂ -θ

V δX̂
θ
H

〉
(7.15)

∆2Ŝ3(θ) = ∆2Ŝ2

(
θ − π

2

)
. (7.16)

where we assume that {∆2X̂θ
H ,∆

2X̂θ
V } � αV (t)2 for all θ, and therefore neglect terms not scaled

by either αH(t) or αV (t). We see that the variances of Stokes operators can be expressed in
terms of the quadrature operator variances of the constituent horizontally and vertically polarised
modes. Polarisation squeezed states can now be defined in a straight forward manner. If the
constituent horizontally and vertically polarised modes are both coherent ∆2X̂θ1

H = ∆2X̂θ1
V =

1, and 〈δX̂θ1
V δX̂

θ2
H 〉 = 0 for all {θ1, θ2}, and the variances of all four Stokes operators are at

the quantum noise limit 〈ñ〉. A Stokes operator is therefore said to be squeezed if its variance
falls below the quantum noise of a coherent beam of equal power. We have chosen arbitrarily to
decompose Eqs. (7.13)-(7.16) in terms of theH, V -polarisation basis here. This decomposition is
independent of the actual procedure of generating a polarisation squeezed beam, but this particular
basis makes it particularly evident that overlapping horizontally and vertically polarised quadrature
squeezed beams produces a single polarisation squeezed beam. Throughout the work presented
here we assume that the horizontally and vertically polarised constituent modes are uncorrelated
so that 〈δX̂θ1

V δX̂
θ2
H 〉 = 0 for all {θ1, θ2}, Eqs. (7.13)-(7.16) then reduce to

∆2Ŝ0 = ∆2Ŝ1 = α2
H(t)∆2X̂+

H + α2
V (t)∆2X̂+

V (7.17)

∆2Ŝ2(θ) = cos2θ
(
α2
V (t)∆2X̂+

H + α2
H(t)∆2X̂+

V

)
+ sin2θ

(
α2
V (t)∆2X̂−H + α2

H(t)∆2X̂−V

)
(7.18)

∆2Ŝ3(θ) = sin2θ
(
α2
V (t)∆2X̂+

H + α2
H(t)∆2X̂+

V

)
+ cos2θ

(
α2
V (t)∆2X̂−H + α2

H(t)∆2X̂−V
)
. (7.19)

It can be seen from Eqs. (7.17), (7.18), and (7.19) that if the relative phase between the horizontally
and vertically polarised constituent modes is set to θ = 0 or θ = π/2 the polarisation squeezed
beam generated from two amplitude squeezed beams ({∆2X̂+

H ,∆
2X̂+

V } < 1) can have Ŝ0 and
two additional Stokes operators, in theory, perfectly squeezed, while the forth is anti-squeezed.
Utilising only one quadrature squeezed beam it is not possible to simultaneously squeeze any two
of Ŝ1, Ŝ2, and Ŝ3 to better than 3 dB below the quantum noise limit (∆2Ŝi + ∆2Ŝj ≥ 〈ñ〉, with
i, j ∈ {1, 2, 3; i 6=j}).

7.3 Experiment

Prior to the work presented here, polarisation squeezed states were generated by combining a
strong coherent beam with a single weak amplitude squeezed beam [20, 222]. In both of those
experiments the variance of only one Stokes operator was determined, and therefore the polari-
sation state was not fully characterised. In this Chapter we experimentally characterise the mean
and variance of all four Stokes operators for these states. We then extend the work to polarisation
squeezed states produced from two amplitude/phase squeezed beams.
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7.3.1 Measuring the Stokes operators

Instantaneous values of the Stokes operators of all polarisation states analysed here were obtained
with the apparatus shown in Fig. 7.2. The uncertainty relations of Eqs. (7.6), (7.7), and (7.8)
dictate that Ŝ1, Ŝ2, and Ŝ3 cannot in general be measured simultaneously. The beam under in-
terrogation was split on a polarising beam splitter and the two outputs were detected on a pair of
high quantum efficiency photodiodes with 30 MHz bandwidth; the resulting photocurrents were
added and subtracted to yield photocurrents containing the instantaneous values of Ŝ0 and Ŝ1, re-
spectively. To measure Ŝ2 the polarisation of the beam was rotated by 45◦ with a half-wave plate
before the polarising beam splitter and the detected photocurrents were subtracted. To measure
Ŝ3 the polarisation of the beam was again rotated by 45◦ with a half-wave plate and a quarter-
wave plate was introduced before the polarising beam splitter such that a horizontally polarised
input beam became right-circularly polarised. Again the detected photocurrents were subtracted.
The expectation value of each Stokes operator was equal to the DC output of the detection device
and the variance was obtained by passing the output photocurrent into a Hewlett-Packard E4405B
spectrum analyser. Every polarisation state interrogated in this work had a total power |〈S̃0〉| of
roughly 2 mW.

An accurate characterisation of the quantum noise limit was required to determine whether any
given Stokes operator was squeezed. This was measured by operating a single OPA without the
second harmonic pump. The seed power was adjusted so that the output power was equal to that
of the beam being interrogated. In this configuration the detection setup for Ŝ2 (see Fig. 7.2c))
functions exactly as a homodyne detector measuring vacuum noise scaled by the OPA output
power, the variance of which is the quantum noise limit. Throughout each experimental run the
power was monitored and was always within 2% of the power of the coherent calibration beam.
This led to a conservative error in our frequency spectra of ±0.05 dB.

The Stokes operator variance spectra reported here were taken over the range from 3 to
10 MHz. The darknoise of the detection apparatus was always more than 4 dB below the mea-
sured traces and was taken into account. Each displayed trace is the average of three measurement
results normalised to the quantum noise limit and smoothed over the resolution bandwidth of the
spectrum analyser which was set to 300 kHz. The video bandwidth of the spectrum analyser was
set to 300 Hz.

As is the case for all continuous variable quantum optical experiments, the efficiency of the
Stokes operator measurements was critical. The overall detection efficiency of the interrogated
beams was 76%. The loss came primarily from three sources: loss in escape from the OPAs (14%),
detector inefficiency (7%), and loss in optics (5%). In the experiment where a squeezed beam was
overlapped with a coherent beam additional loss was incurred due to poor mode-matching between
the beams and the detection efficiency was 71%. Depolarising effects are thought to be another
significant source of loss for some polarisation squeezing proposals [213]. In our scheme the
non-linear processes (OPAs) are divorced from the polarisation manipulation (wave plates and
polarising beam splitters), and depolarising effects are insignificant.

7.3.2 Quantum polarisation states from a single squeezed beam

We first characterise the polarisation state of a single bright amplitude squeezed beam provided by
one of our OPAs, as shown in Fig. 7.3. The squeezed beam was horizontally polarised, resulting
in Stokes operator expectation values of 〈Ŝ0〉 = 〈Ŝ1〉 = |αH(t)|2 and 〈Ŝ2〉 = 〈Ŝ3〉 = 0. The
variance spectra of the operators were measured and are displayed in Fig. 7.4. Both Ŝ0 and Ŝ1

were squeezed, a result that is unsurprising since the laser beam used was amplitude squeezed
and impinged on a single detector in this detector setup. The measurements performed, therefore,



§7.3 Experiment 157

H

amplitude squeezed beam

+/-λ/2

@45o
λ/4

@22.5o

a) b)

Si,x

PBS

measurement

device

Figure 7.3: Apparatus used to produce and analyse a single amplitude squeezed beam. Optics in a) and b)
were included to measure the variance and the expectation value of Ŝ2 and Ŝ3, respectively.
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Figure 7.4: Measured variance spectra of quantum noise on Ŝ0, Ŝ1, Ŝ2, and Ŝ3 for a single bright ampli-
tude squeezed beam; normalised to the quantum noise limit. The shaded region was used to construct the
Poincaré sphere representation in Fig. 7.11 b).

equated to a measurement of the amplitude quadrature variance. For the measurements of Ŝ2 and
Ŝ3 the beam intensity was divided equally between the two detectors. The electronic subtraction
yielded vacuum noise scaled by the beam intensity, thus both variance measurements were at the
quantum noise limit. It is apparent from these measurements that only the length of the Stokes
vector is well determined; the orientation is just as uncertain as it would be for a coherent state.

θ
   polarisation 

squeezed beam
H

V

PBS

+/-λ/2

@45o
λ/4

@22.5o

a) b)

Si,x

PBS

measurement

devicedim amplitude

squeezed beam

bright

coherent beam

Figure 7.5: Apparatus used to produce and analyse the polarisation squeezed beam produced by overlap-
ping a dim quadrature squeezed beam with a bright coherent beam. Optics in a) and b) were included to
measure the variance and the expectation value of Ŝ2 and Ŝ3, respectively.

To obtain squeezing of the orientation of the Stokes vector Grangier et al. [222] and Hald et al.
[20] overlapped a dim quadrature squeezed beam with a bright orthogonally polarised coherent
beam. We consider this situation next (as shown in Fig. 7.6). Since two beams are now involved,
the relative phase θ becomes important. A DC and an RF error-signal, both dependent on θ, were
extracted from the Stokes operator measurement device. Together, these error signals allowed us to
lock θ to either 0 or π/2 rads in all of the following experiments. We mixed a bright horizontally
polarised coherent beam with a dim vertically polarised amplitude squeezed beam. Since the
horizontally polarised beam was much more intense than the vertically polarised beam, the Stokes
operator expectation values became 〈Ŝ0〉 ≈ 〈Ŝ1〉 ≈ |αH(t)|2 and 〈Ŝ2〉 ≈ 〈Ŝ3〉 = 0. The Stokes
operator variances obtained for this polarisation state are shown in Fig. 7.6, with Ŝ2 now anti-
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Figure 7.6: Measured variance spectra of quantum noise on Ŝ0, Ŝ1, Ŝ2, and Ŝ3 for a vacuum amplitude
squeezed and a bright coherent input beams; normalised to the quantum noise limit. The shaded region was
used to construct the Poincaré sphere representation in Fig. 7.11 c).

squeezed and Ŝ3 squeezed, so that the orientation of the Stokes vector on the Ŝ3 axis is determined
to better than the quantum noise limit, and is therefore squeezed. The variances of Ŝ0 and Ŝ1 were
slightly above the quantum noise limit because of residual noise from our laser resonant relaxation
oscillation. The experiment carried out with θ locked to 0 rads is not shown, in this case the
measured variances of Ŝ2 and Ŝ3 were swapped, and in fact the Stokes vector remained pointing
along Ŝ1, so that the quantum noise was rotated on the Poincaré sphere as shown in Fig. 7.10 b).

7.3.3 Quantum polarisation states from two quadrature squeezed beams
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Figure 7.7: Apparatus used to produce and analyse the beam produced by combining two quadrature
squeezed beams. Optics in a) and b) were included to measure the variance and the expectation value of Ŝ2

and Ŝ3, respectively.
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Figure 7.8: Measured variance spectra of quantum noise on Ŝ0, Ŝ1, Ŝ2, and Ŝ3 for two locked phase
squeezed input beams; normalised to the quantum noise limit. The shaded region was used to construct the
Poincaré sphere representation in Fig. 7.11 d).

The two experiments described in Section 7.3.2 demonstrated how it is possible to squeeze the
length and orientation of the Stokes vector. In this Section we demonstrate that it is possible to do



§7.3 Experiment 159

c)

4 5 6 7 8 9
Frequency (MHz)

0

2

4

6

8

10

S2

N
o
is

e 
p
o
w

er
 (
d
B
)

a)

4 5 6 7 8 9
Frequency (MHz)

-4

-3

-2

-1

0

S0

Quantum noise limit

3 dB squeezed

b)

4 5 6 7 8 9
Frequency (MHz)

-4

-3

-2

-1

0

S1

Quantum noise limit

3 dB squeezed

d)

4 5 6 7 8 9
Frequency (MHz)

-4

-3

-2

-1

0

S3

3 dB squeezed

Quantum noise limit
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squeezed input beams; normalised to the quantum noise limit. The shaded region was used to construct the
Poincaré sphere representation in Fig. 7.11 e).

both simultaneously. The two quadrature squeezed beams produced in our OPAs were combined
with orthogonal polarisation on a polarising beam splitter [218] as shown in Fig. 7.7. This pro-
duced an output beam with Stokes operator variances as given by Eqs. (7.17), (7.18), and (7.19).
Both input beams had equal power (αH(t) = αV (t) = α/

√
2) and both were squeezed in the

same quadrature. The Stokes operators and their variances were again determined as shown in
Fig. 7.2. The relative phase between the quadrature squeezed input beams θ was locked to π/2
rads producing a right-circularly polarised beam with Stokes operator means of 〈Ŝ1〉= 〈Ŝ2〉= 0

and 〈Ŝ0〉=〈Ŝ3〉= |α|2.
First both OPA pump beams were phase locked to amplification, this produced two phase

squeezed beams. Fig. 7.8 shows the measurement results obtained; Ŝ0, Ŝ1 and Ŝ3 were all anti-
squeezed and Ŝ2 was squeezed throughout the range of the measurement. The optimum noise
reduction of Ŝ2 was 2.8 dB below the quantum noise limit and was observed at 4.8 MHz. Our
OPAs are particularly sensitive to phase noise coupling in from the MgO:LiNbO3 crystals. We
attribute the structure in the frequency spectra of Ŝ2 to this. The poorer squeezing observed here
was a combined result of this sensitivity to phase noise, and the coupling of green pump noise
onto the squeezed states that occurs when the OPAs operate in the amplification regime (see Sec-
tion 3.5.2). Apart from this structure and the coupling of pump noise into the squeezing, these
results are very similar to those produced by a single squeezed beam and a coherent beam; the
orientation of the Stokes vector is squeezed. However, here the uncertainty in the length of the
Stokes vector is greater than that for a coherent state so the polarisation state, although produced
from two quadrature squeezed beams, is actually less well defined.

Fig. 7.9 shows the measurement results obtained with the OPAs locked to deamplification,
and with both OPAs therefore providing amplitude squeezed beams. Again we interrogated the
combined beam and found Ŝ0, Ŝ1 and Ŝ3 all to be squeezed from 4.5 MHz to the limit of our
measurement, 10 MHz. Ŝ2 was anti-squeezed throughout the range of the measurement. Between
7.2 MHz and 9.6 MHz Ŝ0, Ŝ1 and Ŝ3 were all more than 3 dB below the quantum noise limit.
The squeezing of Ŝ0 and Ŝ3 was degraded at low frequencies due our lasers resonant relaxation
oscillation. Since this noise was correlated it canceled in the variance of Ŝ1. The maximum
squeezing of Ŝ0 and Ŝ2 was 3.8 dB and 3.5 dB respectively and was observed at 9.3 MHz. The
maximum squeezing of Ŝ1 was 4.3 dB at 5.7 MHz. The repetitive structure at 4, 5, 6, 7, 8 and
9 MHz was caused by electrical pick-up in our SHG resonator emitted from a separate experiment
operating in the laboratory. In this case both the orientation and the length of the Stokes vector
were squeezed.

Finally we point out that the variances of Ŝ1 in Figs. 7.6, 7.8 and 7.9 were all squeezed at
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frequencies down to 3 MHz and even below, whereas Fig. 3.11 shows a clear degradation below
4 MHz. This improved performance is due to electrical noise cancellation of our correlated laser
relaxation oscillation noise similar to the optical cancellation demonstrated in Section 3.7.

7.4 Poincaré sphere visualisation of polarisation states

The previous Section provided detailed experimental characterisations for each of the optical po-
larisation states investigated in this Chapter. Fig. 7.11 visualises the fluctuations at 8.5 MHz on
the Poincaré sphere. The standard deviation contour-surfaces shown for each state provide an ac-
curate representation of the states three-dimensional noise distribution, assuming that the noise is
Gaussianly distributed. The quantum polarisation noise of a coherent state forms a sphere of noise
as portrayed in Fig. 7.11 a). The noise volumes b) to e) visualise the polarisation states generated
by a single bright amplitude squeezed beam; and by combining a dim amplitude squeezed beam
and a bright coherent beam, two phase squeezed beams, and two amplitude squeezed beams on
a polarising beam splitter, respectively. In all cases the Poincaré sphere has been rotated so that
the Stokes vector coherent amplitude is vertically orientated. There was no fundamental bias in
the orientation of the quantum Stokes vector in our experiment. By varying the angle of an ad-
ditional half-wave plate in the polarisation squeezed beam or by varying θ any orientation could
be achieved. In fact, as mentioned earlier our experiments were also carried out with θ locked
to 0 rads. This had the effect of rotating the Stokes vector and its quantum noise by π/2 around
Ŝ1. Nearly identical results were obtained but on alternative Stokes operators. Fig. 7.10 shows
Poincaré sphere representations of this rotation for the polarisation states produced by two ampli-
tude squeezed beams (Fig. 7.10 a)), and by one squeezed beam and a coherent state (Fig. 7.10 b)).

b)

S1
S2

S3a) S3

2
S1

Figure 7.10: Visualisation of measured quantum noise and measured Stokes vectors of four polarisation
states mapped onto the Poincaré sphere. The states were generated from a) two bright amplitude squeezed
inputs and b) a bright coherent beam and a amplitude squeezed vacuum. The rotations in a) and b) were
achieved by a θ = π/2 phase shift between the input beams to the polarising beam splitter.
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Figure 7.11: Measured quantum polarisation states at 8.5 MHz from different combinations of polaris-
ing beam splitter input beams. a) single coherent beam, b) bright squeezed beam, c) coherent beam and
squeezed vacuum, d) two phase squeezed beams and e) two amplitude squeezed beams. The surface of the
ellipsoids defines the standard deviation of the noise normalised to the quantum noise limit. Ŝ// denotes the
Stokes operator aligned in the direction of the Stokes vector coherent amplitude.
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7.5 Channel capacity achievable using polarisation squeezed beams

The reduced level of fluctuations in polarisation squeezed light can be used to improve the channel
capacity of communication protocols. Let us consider information encoded on the sidebands of
a bandwidth limited laser beam. We assume that only direct detection is employed, or in other
words, that phase sensitive techniques such as homodyne measurement are not available. This is
not an artificial constraint since phase sensitive techniques are technically difficult to implement
and are rarely utilised in conventional optical communications systems.

An upper bound to the amount of information that can be carried by a bandwidth limited
additive white Gaussian noise channel is given by the Shannon capacity C in Eq. (4.51) [156].
Since quantum mechanics imposes uncertainty relations on non-commuting observables, the op-
tical state used in a communication channel ultimately limits its capacity. For good overviews of
quantum noise limited channel capacities I recommend [234] and [235]. Here, we wish to com-
pare the channel capacities achievable with pure coherent, quadrature squeezed, and polarisation
squeezed states for a given average sideband photon number n̄, which in this case is given by the
sum of the average photon numbers in each of the constituent horizontally and vertically polarised
modes

n̄ =
〈
â†H âH

〉
+
〈
â†V âV

〉
, (7.20)

The mean photon number n̄ takes into account sideband photons present both as a result of squeez-
ing, and of signal encoding. As discussed in Section 4.3.4 without squeezing and signal modula-
tion n̄ = 0.

First let us consider strategies that might be employed in communication channels utilising a
coherent beam. In conventional optical communication systems the polarisation degrees of free-
dom are ignored completely and information is encoded only on Ŝ0 as intensity fluctuations. Tak-
ing αV (t) = 0 the variance of the Stokes operator Ŝ0 is given by ∆2Ŝ0 = αH(t)2(∆2X̂+

H + ∆2Ŝ+
H)

in accordance with Eq. (7.17), where Ŝ+
H is the signal encoded on the amplitude quadrature of the

horizontally polarised beam. For this one-dimensional coherent channel ∆2X̂+
H = 1 so that the

signal to noise ratio is given by SNR = ∆2Ŝ+
H . From Eq. (7.20) we find that for this arrange-

ment the average photon number per bandwidth per time in the field is n̄ = ∆2Ŝ+
H/4, so that the

Shannon capacity of the channel as a function of n̄ is given by

Cicoh =
1

2
log2 (1 + 4n̄) . (7.21)

This is a non-optimal strategy however. Examining Eqs. (7.5) and (7.9)-(7.12) we see that it is
possible to choose an arrangement for which two of the Stokes operators commute and so can be
measured simultaneously. Indeed it is easy to show that such simultaneous measurements can be
made using only linear optics and direct detection. In particular let us assume that αH(t) = αV (t)

such that Ŝ2 and Ŝ3 commute, and use Ŝ2 and Ŝ3 as two independent information channels. Then
Ŝ2 = Ŝ0 and the information in both dimensions can be simultaneously extracted by subtracting
and adding, respectively, the photocurrents from a single pair of detectors. Assuming equal signal
to noise ratios SNR2 = SNR3 we find that ∆2Ŝ2 = ∆2Ŝ3 = 2n̄, and the channel capacity may be
written

Ciicoh =
1

2
log2 (1 + SNR2) +

1

2
log2 (1 + SNR3) (7.22)

= log2 (1 + 2n̄) . (7.23)
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This channel capacity is always greater than that of Eq. (7.21) and for large n̄ is 100 % greater.
For sufficiently high n̄ a further improvement in channel capacity can be achieved. Consider

placing signals on all three Stokes operators. Because of the non-commutation of Ŝ1 with Ŝ2 and
Ŝ3 it is not possible to read out all three signals without a measurement penalty. Suppose the
receiver adopts the following strategy: divide the beam on a beam splitter with transmissivity ε
and then measure Ŝ1 on the reflected output and Ŝ2 and Ŝ3 on the other output. Division of the
beam will reduce the measured signal to noise ratios due to the injection of a vacuum field at the
beam splitter such that SNR1 = (1− ε)∆2Ŝ1, SNR2 = ε∆2Ŝ2 and SNR3 = ε∆2Ŝ3. We find that
for large n̄ an optimum is reached with ε = 2/3 and with the mean signal photon number used in
the encoding on each Stokes operator being n̄1 = n̄2 = n̄3 = n̄/3. Hence the channel capacity is

Ciiicoh =
1

2
log2 (1 + SNR1) +

1

2
log2 (1 + SNR2) +

1

2
log2 (1 + SNR3) (7.24)

=
1

2
log2

(
1 +

4

9
n̄

)
+ log2

(
1 +

8

9
n̄

)
. (7.25)

This capacity beats that of Eq. (7.23) for n̄ > 7.56. In summary the optimum coherent channel
capacity examined here is given by Eq. (7.25) for average photon numbers n̄ > 7.56 and by
Eq. (7.23) for lower values, see Fig. 7.12 traces c) and d).

Now let us examine the effect of polarisation squeezing on the channel capacity. Consider
first the simple case of intensity modulation on a single squeezed beam, which is equivalent to
using a squeezed beam in the first coherent case considered (case i). The channel capacity can
be maximised by optimising the fraction of photons that are introduced through squeezing and
through signal encoding. For large photon numbers we find that the photons should be balanced
equally between these two roles. For an average photon number per bandwidth per time of 1, 1/3 of
the photons per bandwidth per time should be used to generate squeezing. The maximum channel
capacity using an amplitude squeezed beam and encoding only on the amplitude quadrature can
be shown to be [234]

Ci1sqz = log2 (1 + 2n̄) , (7.26)

This capacity beats only the corresponding coherent state communication channel. It is as effective
as the two Stokes operator coherent channel, but is less effective than the three Stokes operator
coherent channel for large photon numbers.

Consider now a polarisation squeezed beam produced by combining a minimum uncertainty
squeezed beam and an orthogonally polarised coherent beam on a polarising beam splitter, as was
experimentally demonstrated in Section 7.3.2. Suppose, as in the two Stokes operator coherent
case, that Ŝ2 and Ŝ3 commute and arrange that Ŝ2 has fluctuations at the quantum noise level while
Ŝ3 is optimally squeezed. Again signals are encoded on Ŝ2 and Ŝ3. The channel capacity can be
maximised by adjusting the relative signal sizes on the two Stokes operators for fixed average
photon number as a function of the squeezing. Here 1/3 of the photons are used to generate
squeezing and 2/3 are split equally to encode signals on Ŝ2 and Ŝ3. The resulting maximum
channel capacity is

Cii1sqz =
3

2
log2

(
1 +

4

3
n̄

)
. (7.27)

This always beats all three coherent state cases considered here, but in the limit of large n̄ the ad-
vantage is minimal since the scaling with photon number is the same as that of Ciiicoh in Eq. (7.25).

If the polarisation squeezed beam is produced from two amplitude squeezed beams as in Sec-
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tion 7.3.3 the enhancement becomes more significant. Suppose again that Ŝ2 and Ŝ3 commute
but now that both are optimally squeezed. Again encoding on Ŝ2 and Ŝ3, and varying the signal
strength as a function of squeezing to maximise the channel capacity for a given n̄. The maximum
is reached when the photons are used equally to generate squeezing and to encode information.
The channel capacity for this arrangement is given by

Cii2sqz = 2 log2 (1 + n̄) , (7.28)

which for large n̄ is 33% greater than both the optimum coherent scheme and the scheme using a
single quadrature squeezed beam. Unlike the coherent state case, no further improvement of the
channel capacity can be obtained by encoding the information on three Stokes operators.

Fig. 7.12 plots the channel capacities as a function of total mean photons per bandwidth per
time itilised, for each of the communication channels analysed in this Section. Finally we assess
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Figure 7.12: Calculated channel capacities for various continuous variable polarisation states. The cross on
the upper curve marks the channel capacity which could be achieved using the polarisation squeezed state
we generated by combining two amplitude squeezed beams on a polarising beam splitter, and the lower
cross marks the equivalent channel capacity achieved by the optimum coherent state scheme.

the channel capacities that could in principle be achieved using the polarisation squeezed state
generated by combining two amplitude squeezed beams on a polarising beam splitter in our exper-
iment. The polarisation squeezing achieved in Fig. 7.9 implies that, assuming the squeezed beams
were pure and operating the communication scheme at sideband frequencies between 8 MHz and
10 MHz, 0.17 sideband photons per bandwidth per time were present in each of the two channels.
This is an optimum quantum resource to transmit signals encoded using an average of 0.68 side-
band photons per bandwidth per time. Signals sufficiently high above detector dark noise would
achieve a channel capacity that is around 21% greater than the ideal channel capacity achievable
from a coherent beam with the same average sideband photon number. This is illustrated by the
crosses in Fig. 7.12.
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7.6 Conclusion

In this Chapter we have generated and characterised polarisation squeezed states, and represented
them on the quantum Poincaré sphere as shown in Fig. 7.11. In particular we analysed the polar-
isation properties of the coherent state and the amplitude squeezed state; and of the polarisation
squeezed states generated by combining a dim amplitude squeezed state with a bright coherent
state; two phase squeezed states; and two amplitude squeezed states; with orthogonal polarisation
on a polarising beam splitter. When combining a pair of amplitude squeezed states we demon-
strated strong squeezing of three of the four Stokes operators. We analysed the channel capacities
of several communication protocols using continuous variable polarisation states. For a given av-
erage photon number n̄, we found that polarisation states produced from two amplitude squeezed
beams can provide a 33% greater channel capacity than both the optimum communication channel
using coherent states and the optimum scheme using a single amplitude squeezed state.
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Chapter 8

Continuous variable polarisation
entanglement

This Chapter investigates continuous variable polarisation entanglement. We generate and char-
acterise this form of entanglement between a pair of Stokes operators on two optical beams. This
is achieved by first producing quadrature entanglement in the manner discussed in Chapter 4, and
by performing local operations to transform it onto a polarisation basis. We extend the insepa-
rability criteria proposed by Duan et al.[130] and the Einstein-Podolsky-Rosen paradox criteria
proposed by Reid and Drummond[134, 135] to Stokes operators; and use them to characterise
the entanglement. By using two quadrature entangled pairs it is possible to extend our polarisa-
tion entanglement scheme to entangle three orthogonal Stokes operators between a pair of beams,
although with a bound

√
3 times more stringent than for the quadrature entanglement.

The work presented in this Chapter has been published in the journal articles:

• W. P. Bowen, N. Treps, R. Schnabel, and P. K. Lam. Experimental demonstration of contin-
uous variable polarization entanglement. Physical Review Letters 89, 253601 (2002).

• W. P. Bowen, N. Treps, R. Schnabel, T. C. Ralph, and P. K. Lam. Continuous variable
polarization entanglement, experiment and analysis. Journal of Optics B: Quantum and
Semi-Classical Optics 5, pp. S467 (2003).

8.1 Introduction

In this Chapter we report the experimental transformation of the quadrature entanglement of Chap-
ter 4 onto a polarisation basis. The transformation is achieved by combining each quadrature en-
tangled beam with an orthogonally polarised bright coherent beam on a polarising beam splitter.
A characterisation of the resulting polarisation entanglement is achieved by generalising standard
techniques for quadrature entanglement. As discussed in Chapter 4, many method have been
proposed to characterise quadrature entanglement. Two commonly used criteria are the insepa-
rability criterion proposed by Duan et al.[130] and the EPR paradox criterion proposed by Reid
and Drummond[134, 135]. Both criteria are based explicitly on the uncertainty relation between
the observables under interrogation. Using the standard uncertainty principle we generalise both
criteria to an arbitrary pair of operators and then to Stokes operators in particular. We show that
the polarisation entanglement we generate strongly satisfies both criteria. Interacting this entan-
glement with a pair of distant atomic ensembles could entangle the atomic spin states.

The concept of continuous variable polarisation entanglement was introduced in the work of
Korolkova et al.[218]. In their paper they proposed that such entanglement could be generated
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by interfering a pair of polarisation squeezed beams, each produced from two amplitude squeezed
beams, on a 50/50 beam splitter; just as quadrature entanglement can be generated with a pair
of quadrature squeezed beams. Such an experiment would require twice the resources necessary
for the implementation presented here. Korolkova et al.[218] also perform the first generalisation
of the inseparability and EPR paradox criteria to Stokes operators. Their Stokes operator EPR
paradox criterion is identical to that derived here. Their inseparability criterion is, however, only
valid when the Stokes operators of interest are aligned orthogonally to the Stokes vector (see Fig.
7.1). This contrasts our expression, which is valid for arbitrary Stokes vector orientation.

The ability to generate and manipulate pairs of photons that, when their polarisation is anal-
ysed, demonstrate entanglement is a key tool of quantum optics. These states have allowed for
many fundamental studies such as tests of Bells inequality[119, 120, 121]; and also perhaps more
technologically minded studies like that of quantum computation[10]. An interesting analogy
may be made between this discrete variable polarisation entanglement and the continuous variable
equivalent investigated in this Chapter. Discrete polarisation entanglement is commonly observed
between all three Stokes operators, and is basis independent. That is, correlations will exist be-
tween measurements on the two photons when any arbitrary Stokes operator is measured. Since
the entanglement discussed here is generated from a single quadrature entangled pair, in which
entanglement is observed between only two quadratures, it is perhaps unsurprising that all three
Stokes operators are not entangled. However, when two quadrature entangled pairs are utilised,
we show that it is possible to simultaneously entangle all three Stokes operators, but only if the
quadrature entanglement is strong enough to beat a bound

√
3 times stronger than that for the

inseparability criterion. In contrast to discrete polarisation entanglement the entanglement is not
basis independent. That is, observation of entanglement between three specific Stokes operators
does not ensure entanglement between any three arbitrary Stokes operators.

Similarly to the case of polarisation squeezing in the previous Chapter, subsequent to the
work presented here experimental demonstrations of polarisation entanglement were performed
utilising both the Kerr non-linearity in optical fibres [236], and a cloud of cold Cesium atoms in
a high finesse resonator [237]. Some interesting new schemes for the generation of polarisation
entanglement have also been published [226, 238].

8.2 Theory

8.2.1 Characterising entanglement

We characterise our polarisation entanglement by transforming the inseparability criterion pro-
posed by Duan et al.[130] and the Einstein-Podolsky-Rosen (EPR) paradox criterion proposed by
Reid and Drummond[134, 135] used in Chapter 4 to polarisation observables. In general, a nec-
essary and sufficient criterion for entanglement should identify entanglement of any observables
between a pair of sub-systems. Clearly however, a realistic criterion must be based on some finite
set of observables. In this thesis the term polarisation entanglement refers to entanglement that
can be verified through measurements of only polarisation properties of the light field, and simi-
larly quadrature entanglement refers to entanglement that can be verified through measurements
performed solely on field quadratures.

Both the EPR and Inseparability criteria rely explicitly on the uncertainty relations between
the observables involved and were initially proposed between the amplitude and phase quadratures
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of light beams. Given the uncertainty principle between an arbitrary pair of observables Â and B̂

∆2Â∆2B̂ ≥
∣∣∣
〈
δÂδB̂

〉∣∣∣
2

(8.1)

≥

∣∣∣[δÂ, δB̂]
∣∣∣
2

4
+

∣∣∣
〈
δÂδB̂ + δB̂δÂ

〉∣∣∣
2

4
, (8.2)

it is possible to generalise both criteria to any pair observables. Within some environment the
commutation relation [δÂ, δB̂] is a general property between the observables involved, and is
independent of the properties of particular states; on the other hand the correlation function
|〈δÂδB̂+δB̂δÂ〉|2 measures correlation between the observables Â and B̂ for the particular state
and is therefore dependent on the state properties. For this reason the correlation function term
is generally neglected in the uncertainty relation. We neglect it here to obtain the standard uncer-
tainty relation

∆2Â∆2B̂ ≥

∣∣∣[δÂ, δB̂]
∣∣∣
2

4
. (8.3)

When using this relation the entanglement criteria discussed herein become sufficient, but not
necessary, for entanglement.

In Section 8.5 we will consider the correlation function for the particular states discussed
explicitly and show that it has an insignificant contribution. Throughout this thesis we label the
two beams to be interrogated for entanglement with the subscripts x and y respectively. In general
these beams will give different values for the correlation function. This leads to an ambiguous
contribution to the uncertainty relation. We assume that beams x and y are interchangeable in
the sense that all experimental outcomes are independent of their exchange. This is the situation
relevant to our experiment and results in equal values of the correlation function for the two beams

∣∣∣
〈
δÂδB̂ + δB̂δÂ

〉∣∣∣
2

=
∣∣∣
〈
δÂxδB̂x + δB̂xδÂx

〉∣∣∣
2

=
∣∣∣
〈
δÂyδB̂y + δB̂yδÂy

〉∣∣∣
2
. (8.4)

The inseparability criterion

The inseparability criterion as originally proposed characterises the separability of the amplitude
X̂+ and phase X̂− quadratures of a pair of optical beams. For states with Gaussian noise statistics
this criterion has been shown to be a necessary and sufficient criterion for entanglement[130]. As
was shown in Chapter 4, when beams x and y are perfectly interchangeable and their fluctuations
are symmetrical between the amplitude and phase quadratures the inseparability criterion can be
written as

∆2
x±yX̂

+ + ∆2
x±yX̂

− < 2. (8.5)

Throughout this thesis ∆2
x±yÔ is the minimum of the variance of the sum or difference of the

operator Ô between beams x and y, ∆2
x±yÔ = min 〈(δÔx±δÔy)2〉/2. Given the Heisenberg

uncertainty relation of equation 8.3 the measure in Eq. (8.5) can be generalised to any pair of
observables Â, B̂

∆2
x±yÂ+ ∆2

x±yB̂ < |[δÂ, δB̂]|. (8.6)
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To allow direct analysis of our experimental results, we define the degree of inseparabilityI(Â, B̂)

in a similar manner to that performed in Chapter 4, normalised such that if I(Â, B̂)< 1 the state
is inseparable, and therefore entangled

I(Â, B̂) =
∆2
x±yÂ+ ∆2

x±yB̂

2|[δÂ, δB̂]|
. (8.7)

It should be noted that this measure may be generalised to a wider set of states by arranging it in
a product form[146, 147], and indeed this was the form used to measure quadrature entanglement
in Chapter 4

Iproduct(Â, B̂) = 2

√
∆2
x±yÂ∆2

x±yB̂

|[δÂ, δB̂]|
. (8.8)

In this form the measure is independent of equal local squeezing operations performed on x and
y. Since the sum and product measures involve the same level of experimental complexity the
product should, in general, be preferred. For the experimental configuration of this Chapter the
measures are equivalent. Since the sum form was the original form proposed by Duan et al.[130]
we use it here.

The EPR paradox criterion

The EPR paradox was first discussed by Einstein et al. as a demonstration of the physically unsat-
isfactory nature of quantum mechanics [16]. The EPR paradox criterion utilised here was proposed
by Reid and Drummond[134, 135] and is based on the observation of non-classical correlations
between two beams. That is, the ability to infer (although not simultaneously) both variables of in-
terest on beam x to better than their Heisenberg uncertainty limit, after measurements on beam y.
The EPR paradox criterion is a sufficient condition for entanglement and was used to characterise
our quadrature entanglement in Chapter 4. Between the amplitude and phase quadratures of a pair
of beams it is given by Eq. (4.29). Utilising the uncertainty relation of Eq. (8.3) this criterion can
also be generalised to arbitrary observables

∆2
x|yÂ∆2

x|yB̂ <
|[δÂ, δB̂]|2

4
, (8.9)

where ∆2
x|yÔ is the variance of operator Ô in sub-system x conditioned on its measurement in

sub-system y and is given by

∆2
x|yÔ = ∆2Ôx − |〈δÔxδÔy〉|2/∆2Ôy (8.10)

= min
g
〈(δÔx + gδÔy)

2〉, (8.11)

and the gain g is an experimentally adjustable parameter. In a manner similar to that in Chap-
ter 4, we express the criterion in terms of the degree of EPR paradox E(Â, B̂) normalised so that
E(Â, B̂) < 1 implies observation of the EPR paradox

E(Â, B̂) = 4
∆2
x|yÂ∆2

x|yB̂

|[δÂ, δB̂]|2
. (8.12)
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8.2.2 Generalisation of entanglement criteria to Stokes operators

PBSaH,x
θx

aV,x

sub-system x
general 

polarization mode x

PBSθy

sub-system y

general 

polarization mode y

aH,y

aV,y

horizontally polarized

horizontally polarized

vertically polarized

vertically polarized

Figure 8.1: Production of a pair of arbitrary polarisation modes. PBS: polarising beam splitter.

From Eqs. (7.5) and (8.1) it is clear that the Stokes operator variances are restricted by the
uncertainty relations[231, 232]

∆2Ŝ1∆2Ŝ2 ≥
∣∣∣
〈
Ŝ3

〉∣∣∣
2

+
1

4

∣∣∣
〈
δŜ1δŜ2 + δŜ2δŜ1

〉∣∣∣
2

∆2Ŝ2∆2Ŝ3 ≥
∣∣∣
〈
Ŝ1

〉∣∣∣
2

+
1

4

∣∣∣
〈
δŜ2δŜ3 + δŜ3δŜ2

〉∣∣∣
2

(8.13)

∆2Ŝ3∆2Ŝ1 ≥
∣∣∣
〈
Ŝ2

〉∣∣∣
2

+
1

4

∣∣∣
〈
δŜ3δŜ1 + δŜ1δŜ3

〉∣∣∣
2
,

where here, in contrast to the analysis in Chapter 7, we have included the contribution from the
correlation function. These uncertainty relations result in, typically, non-zero variances in the
individual Stokes operators (see Fig. 7.1b)), and are ultimately what enables the verification of
polarisation entanglement.

As discussed in Chapter 7, any polarisation mode can be decomposed in terms of constituent
horizontally and vertically polarised modes, with some phase angle θ between them. Here we
consider a pair of arbitrary modes x and y, decomposed in this way as shown in Fig. 8.1. The
inseparability criterion of Eq. (8.7) was arrived at assuming that beams x and y were interchange-
able; i.e. assuming that the outcome of any experiment in which they were involved would be
independent of their exchange. In our experiment this condition is naturally satisfied, since our
horizontally polarised modes are generated symmetrically on a 50/50 beam splitter, and the ver-
tical constituents are identical coherent states. In order to satisfy the interchangeability condition
assumed here, the expectation values and variances of the horizontally (vertically) polarised input
beams must be the same

αH(t) = 〈ãH,x〉 = 〈ãH,y〉 (8.14)

αV (t) = 〈ãV,x〉 = 〈ãV,y〉, (8.15)

∆2X̂±H = ∆2X̂±H,x = ∆2X̂±H,y (8.16)

∆2X̂±V = ∆2X̂±V,x = ∆2X̂±V,y, (8.17)

and the relative phase between horizontally and vertically polarised modes for subsystems x and y
must be related by θ=θx =±θy+mπ wherem is an integer. Given these assumptions it is possible
to calculate I(Ŝi, Ŝj) and E(Ŝi, Ŝj) from Eqs. (7.1)-(7.5), (8.7), and (8.12). From consideration
of our experimental setup, we find some further simplifications possible. We assume that the
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horizontal and vertical inputs are not correlated,

〈δX̂±
H,x/y

δX̂±
V,x/y
〉 = 0 (8.18)

〈δX̂±H,x/yδX̂∓V,x/y〉 = 0, (8.19)

and that each input beam does not exhibit internal amplitude/phase quadrature correlations
〈
δX̂+

H,x/y
δX̂−

H,x/y
+ δX̂−

H,x/y
δX̂+

H,x/y

〉
= 0 (8.20)

〈
δX̂+

V,x/yδX̂
−
V,x/y + δX̂−V,x/yδX̂

+
V,x/y

〉
= 0. (8.21)

Finally we assume that the vertically polarised input modes are bright (αV (t)2�1) so that second
order terms are negligible. Given these assumptions the Stokes operator expectation values for
both beams x and y are given by Eqs. (7.9)-(7.12); Eq. (8.7) then provides the degree of insepara-
bility for each of the three permutations of Stokes operators

I(Ŝ1, Ŝ2) =
∆2
x±yŜ1 + ∆2

x±yŜ2

4 sin θ|αH(t)αV (t)| (8.22)

I(Ŝ1, Ŝ3) =
∆2
x±yŜ1 + ∆2

x±yŜ3

4 cos θ|αH(t)αV (t)| (8.23)

I(Ŝ2, Ŝ3) =
∆2
x±yŜ2 + ∆2

x±yŜ3

2|αH(t)2 − αV (t)2| , (8.24)

and Eq. (8.12) gives the degree of EPR paradox for each permutation

E(Ŝ1, Ŝ2) =
∆2
x|yŜ1∆2

x|yŜ2

|sinθαH(t)αV (t)|2 (8.25)

E(Ŝ1, Ŝ3) =
∆2
x|yŜ1∆2

x|yŜ3

|cosθαH(t)αV (t)|2 (8.26)

E(Ŝ2, Ŝ3) = 4
∆2
x|yŜ2∆2

x|yŜ3

|αH(t)2 − αV (t)2|2 . (8.27)

Notice that when θ=mπ where m is an integer the denominators of Eqs (8.22) and (8.25) become
zero. It is then not possible to verify the presence of entanglement between Ŝ1 and Ŝ2. Since our
measure is only a sufficient criterion for entanglement, this result does not exclude its existence,
only our ability to measure it. In this situation a more detailed entanglement criterion, including
the correlation function, is required. The same is true if αH(t) or αV (t) equal zero; between
Ŝ1 and Ŝ3 when θ = (m+1/2)π; and between Ŝ2 and Ŝ3 when |αH(t)|= |αV (t)|. Section 8.5
includes a discussion of this effect. In our experiment however, we took care to characterise the
entanglement in regimes for which the measures of Eqs. (8.7) and (8.12) are effective.

8.3 Experiment

8.3.1 Transformation to polarisation entanglement

The quadrature entanglement produced in Chapter 4 was transformed onto a polarisation basis by
combining each quadrature entangled beam (horizontally polarised) on a polarising beam splitter
with a much more intense vertically polarised coherent beam (αV (t)2 =30αH(t)2) (see Fig. 8.2).
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Figure 8.2: Experimental production and characterisation of continuous variable polarisationentanglement.
The optics within a) are included to measure Ŝ2, and those within b) to measure Ŝ3. BS: beam splitter, PBS:
polarising beam splitter.

The overlap efficiency between the modes was observed to be 91%, and the relative phase between
the horizontal and vertical input modes θ was controlled to be π/2. In this situation the denomi-
nators of Eqs. (8.23) and (8.26) are equal to zero, so that it is not possible to verify entanglement
between Ŝ1 and Ŝ3. We therefore only characterise the entanglement criteria for the other two
combinations of Stokes operators (Ŝ1 and Ŝ2; and Ŝ2 and Ŝ3).

8.3.2 Individual characteristics of the two polarisation entangled beams
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Figure 8.3: Experimental measurement of the Stokes operator variances of the entangled beams, (a) ∆2Ŝ0,
(b) ∆2Ŝ1, (c) ∆2Ŝ2, (d) ∆2Ŝ3; the black traces are for beam x and the grey traces for beam y.

The Stokes operators of each of the polarisation entangled beams were measured in the same
manner as those in Chapter 7 (see Fig. 7.2). Initially each beam was split on a polarising beam
splitter and the two outputs detected with a pair of Epitaxx ETX500 photodiodes. The sum of the
two photocurrents gave a measurement of Ŝ0, and the difference, Ŝ1. With the inclusion of a half-
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wave plate before the polarising beam splitter, the difference yielded an instantaneous value for
Ŝ2, and with a quarter-wave plate Ŝ3 (see Fig. 8.2). Fig. 8.3 presents variance spectra for all four
Stokes operators of the polarisation entangled beams measured independently. All of the results
presented in this Chapter were taken over the sideband frequency range from 2 to 10 MHz and are
the average of ten consecutive traces. Every trace was more than 4.5 dB above the measurement
dark noise which was taken into account. All four spectra shown here exhibit high levels of noise
at low frequencies. This is primarily due to resonant relaxation oscillation noise from our laser.
The spectra in Fig. 8.3 (a) display Ŝ0 for the two polarisation entangled beams. Each spectra is
equivalent to the total intensity noise of the constituent coherent and quadrature entangled beams.
Since the coherent beam was much brighter than the entangled beam its contribution to the spectra
is dominant. This caused the spectra of Ŝ1 (Fig. 8.3 (a)), being the difference of the intensity noise
of the constituent beams, to be almost identical to those for Ŝ0. Both Ŝ0 and Ŝ1 display laser
relaxation oscillation noise at low frequencies but become quantum noise limited at frequencies
above 5 MHz. The fact that they are quantum noise limited implies that entanglement involving
either is unlikely. Both the spectra for Ŝ2 and Ŝ3 are well above the quantum noise limit throughout
the measurement range. This is because the highly noisy fluctuations of the quadrature entangled
beams have been mapped onto these operators, and suggests that they may be entangled.

8.3.3 Measurement of the degree of inseparability

A clearer signature of entanglement was evident in the form of strong correlations of both Ŝ2 and
Ŝ3 between the two resulting beams. We quantified the inseparability and EPR paradox criteria
for entanglement of these beams. This quantification of I(Ŝi, Ŝj) and E(Ŝi, Ŝj) required mea-
surements of αV (t), αH(t), ∆2

x±yŜi, and ∆2
x|yŜi. We determined αV (t)2 directly by blocking the

horizontally polarised modes and measuring the power spectrum of the subtraction between the
two homodynes, this also gave α2

H since the ratio αV (t)2/αH(t)2 was measured to equal thirty.
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Figure 8.4: Experimental measurement of ∆2
x±yŜi normalised to the two beam quantum noise limit. (a)

∆2
x±yŜ0, (b) ∆2

x±yŜ1, (c) ∆2
x±yŜ2, (d) ∆2

x±yŜ3

The variance of the unity gain electronic sum or subtraction of the Stokes operator measure-
ments between the polarisation entangled beams was obtained in a spectrum analyser at a resolu-
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tion bandwidth of 300 kHz and video bandwidth of 300 Hz. This resulted in spectra for ∆2
x±yŜi.

These spectra are displayed in Fig. 8.4. From Fig. 8.4(a) and (b) we see that any correlation of Ŝ0

or Ŝ1 between the beams is restrained at the quantum noise limit. On the other hand Ŝ2 and Ŝ3

both show correlation to well below the quantum noise limit.
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Figure 8.5: Experimental measurement of a) I(Ŝ1, Ŝ2), and b) I(Ŝ2, Ŝ3); values below unity indicate
entanglement. The dashed line is the corresponding measurement inferred between two coherent beams.

I(Ŝ1, Ŝ2) and I(Ŝ2, Ŝ3) were obtained from Eqs. (8.22) and (8.24), and the measurements of
∆2
x±yŜ1, ∆2

x±yŜ2, ∆2
x±yŜ3, αH(t) and αV (t). The resulting spectra are shown in Fig. 8.5. The

dashed lines indicate the results a pair of coherent beams would produce. Both traces are below
this line throughout almost the entire measurement range, this is an indication that the light is
in a non-classical state. At low frequencies both traces were degraded by noise introduced by
the relaxation oscillation of our laser. I(Ŝ2, Ŝ3) shows polarisation entanglement, however as
expected I(Ŝ2, Ŝ3) is far above unity. The best entanglement was observed at 6.8 MHz with
I(Ŝ2, Ŝ3)=0.49.

8.3.4 Measurement of the degree of EPR paradox

We determined the degree of EPR paradox in a similar manner to that used above for the degree
of inseparability. This time, rather than taking the direct unity gain sum or difference between the
measurements on beams x and y, we took the sum or difference with a gain g chosen to minimise
the resulting variances (see Eq. 8.11). Effectively this is asking the question: given a measurement
on beam y how well can I infer the value of that variable for beam x? Fig. 8.6 shows the measured
conditional variance spectra of beam x for Ŝ2 and Ŝ3.

The conditional variance spectra for Ŝ2 (Fig. 8.6(a)) was obtained from the subtraction of
measurements from the two beams, and therefore the relaxation oscillation of our laser, which is
strongly correlated between the beams, was almost completely removed. The spectra for Ŝ3, how-
ever, was obtained from the sum of measurements from the two beams, in this case the relaxation
oscillation noise is not removed. This is analogous to the results found for quadrature entangle-
ment in Chapter 4, and resulted in very significant degradation of the conditional spectra for Ŝ3

(Fig. 8.6(b)).
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Figure 8.6: Experimental measurement of the Stokes operator conditional variances a) ∆2
x|yŜ2, b) ∆2

x|yŜ3,
normalised to the single beam quantum noise limit.

The EPR paradox criterion is the product of the two spectra and is shown in Fig. 8.7. Even
with the degradation of the conditional variance of Ŝ3, the EPR Paradox criterion was verified at
frequencies above 4 MHz. The optimum value was E(Ŝ2, Ŝ3)=0.72, which was also observed at
6.8 MHz.
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Figure 8.7: Experimental measurement of the degree of EPR paradox E(Ŝ2, Ŝ3) for a polarisation entangled
state..

It is illustrative to consider our knowledge of beam x before any measurement, and after
measurement of Ŝ2 or Ŝ3. This can be visualised similarly to the polarisation squeezing reported
in Chapter 7, in terms of noise balls on a Poincaré sphere and is shown in Fig. 8.8. Fig. 8.8 a)
shows the knowledge of the polarisation of beam x at 6.8 MHz without any measurement on beam
y. Ŝ1 is quantum noise limited, whereas both Ŝ2 and Ŝ3 have variances well above the quantum
noise limit, as can be seen also in Fig. 8.3. Upon measurement of either Ŝ2 or Ŝ3 on beam y, that
Stokes operator on beam x becomes known to an accuracy better than the quantum noise limit (see
Fig. 8.8 b) and Fig. 8.8 c) respectively). The product of the uncertainty of Ŝ2 and Ŝ3 is then below
the uncertainty relation between the two Stokes operators (the dashed circles in Fig. 8.8).
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Figure 8.8: a) Knowledge of the polarisation of beam x before any measurement on beam y; b) conditional
knowledge of beam x after measurement of Ŝ2 on beam y; c) conditional knowledge of beam x after mea-
surement of Ŝ3 on beam y. The dashed circles define the limit of classical correlation. These representations
were generated from results at 6.8 MHz.

8.3.5 An explanation of the transformation between quadrature and polarisation
entanglement

The Schwinger bosonic representation allows the decomposition of any spin-like operator into a
pair of mode operators of the quantum harmonic oscillator [223]. A clearer understanding of the
transformation between quadrature and polarisation entanglement presented here may be gained
by using this representation to decompose the Stokes operators in terms of quadrature operators.
Making assumptions relevant to our experiment discussed earlier (αH(t)2 � αV (t)2, θ = π/2,
and 〈δX̂±HδX̂±V 〉= 0), we find from Eqs. (7.1)-(7.4), that the Stokes operator variances of a beam
expressed in terms of its horizontally and vertically polarised components are given by

∆2Ŝ0 = αV (t)2∆2X̂+
V (8.28)

∆2Ŝ1 = αV (t)2∆2X̂+
V (8.29)

∆2Ŝ2 = αV (t)2∆2X̂−H (8.30)

∆2Ŝ3 = αV (t)2∆2X̂+
H . (8.31)

The amplitude fluctuations of the bright vertically polarised input beam X̂+
V have been mapped

onto Ŝ1 and since αH(t)2� αV (t)2 also onto Ŝ0. The phase and amplitude fluctuations of the
weak horizontally polarised input beam have been mapped onto Ŝ2 and Ŝ3, respectively. It is
interesting to note that the phase fluctuations of the vertically polarised beam play no role in
defining the polarisation of the output. They result in overall phase fluctuations on the output
which have no effect on its polarisation. It is a simple step, then, to derive the sum or difference



178 Continuous variable polarisation entanglement

variances ∆2
x±yŜi between two beams x and y

∆2
x±yŜ1 = αV (t)2∆2

x±yX̂
+
V (8.32)

∆2
x±yŜ2 = αV (t)2∆2

x±yX̂
−
H (8.33)

∆2
x±yŜ3 = αV (t)2∆2

x±yX̂
+
H . (8.34)

It is interesting that any one of these sum or difference variances can become arbitrarily small
without the presence of entanglement. This is achieved simply by squeezing the quadrature of
interest on the input modes of both x and y. For example, if both horizontally polarised inputs
are phase quadrature squeezed then ∆2

x±yŜ2 can become arbitrarily small. This however, has the
natural consequence of ∆2

x±yŜ3 becoming very large. Interestingly, there is no such consequence
for ∆2

x±yŜ1. Amplitude quadrature squeezing of the vertical inputs allows ∆2
x±yŜ1 to become ar-

bitrarily small, and has no effect on ∆3
x±yŜ2 and ∆2

x±yŜ3. It is therefore possible to make both
∆2
x±yŜ1 and (say) ∆2

x±yŜ2 diminishingly small (and therefore their sum also) without any entan-
glement present. This is the essence of why normalisation of the inseparability and EPR paradox
criteria must be performed relative to the uncertainty relation between the operators (Eqs. (7.10-
7.12)) rather than the quantum noise limit (which is a constant independent of the orientation of
the Stokes vector). We see that with αH(t)2�αV (t)2, the uncertainty relation between Ŝ1 and Ŝ2

also becomes diminishingly small, so that I(Ŝ1, Ŝ2) and E(Ŝ1, Ŝ2) (Eqs. (8.22) and (8.25)) remain
greater than unity. In contrast, for quadrature entanglement, the two normalisation procedures are
equivalent.

Using Eqs. (8.22-8.24) and (8.32-8.34) the degrees of inseparability I(Ŝ1, Ŝ2) and I(Ŝ2, Ŝ3),
can now be expressed in terms of quadrature sum or difference variances of the input horizontally
and vertically polarised modes

I(Ŝ1, Ŝ2) =
αV (t)

αH(t)

(
∆2
x±yX̂

+
V + ∆2

x±yX̂
−
H

4

)
(8.35)

I(Ŝ2, Ŝ3) =

(
1 +

αH(t)2

αV (t)2

)(
∆2
x±yX̂

+
H + ∆2

x±yX̂
−
H

2

)
(8.36)

=
1

2

(
1 +

αH(t)2

αV (t)2

)
I(X̂+

H , X̂
−
H). (8.37)

From Eq. (8.35) we see that if the ratio of vertical to horizontal coherent amplitudes αV (t)/αH(t)

doubles, to retain a given degree of inseparability I(Ŝ1, Ŝ2) the level of correlation between X̂+
V,x

and X̂+
V,y, and between X̂−H,x and X̂−H,y must also double. Thus as αV (t)/αH(t) increases the

level of correlation required for I(Ŝ1, Ŝ2) to fall below unity and therefore to demonstrate insep-
arability quickly becomes experimentally unachievable. In the limit of vacuum horizontal input
states (αH(t) = 0), I(Ŝ1, Ŝ2) becomes infinite and verification of entanglement is impossible. In
contrast, Eq. (8.37) shows that in this situation I(Ŝ2, Ŝ3) becomes identical to the criterion for
quadrature entanglement (Eq. (8.5)) between the two horizontally polarised inputs. So we see that
quadrature entanglement between the horizontally polarised inputs is transformed to polarisation
entanglement between Ŝ2 and Ŝ3.

The asymmetry between the results for I(Ŝ1, Ŝ2) and I(Ŝ2, Ŝ3) arises from the the Stokes
vector orientation of the two polarising beam splitter output states. These Stokes vectors are
aligned almost exactly along Ŝ1 (since αH(t)2� αV (t)2). This results in an asymmetry in the
commutation relations of Eq. (7.5) and a corresponding bias in the uncertainty relations that define
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the inseparability criterion.

8.4 Polarisation entanglement of all three Stokes operators

So far, we have demonstrated polarisation entanglement between two Stokes operators. However,
the polarisation of light has three degrees of freedom, and all three can be entangled. This leads to
a much more complex quantum state, somewhat analogous to discrete polarisation entanglement
between pairs of photons where the correlation is independent of the basis of measurement. In the
continuous variable description, however, the Stokes operator orientation imposes a peculiar basis
for the description of polarisation fluctuations which forbids a complete analogy to the discrete
case. Here, we extend the work of [218] to propose a possible configuration for continuous variable
entanglement between all three Stokes operators.

Due to the dependence of the Stokes operator uncertainty relations on their mean fields, sym-
metric three Stokes operator entanglement requires that the Stokes operator mean fields are also
symmetric. We therefore equate the expectation values of all three Stokes operators for both beams
|〈Ŝi〉|=α(t)2. This leads to restrictions on the intensities of the horizontal and vertical states

αV (t)2 =

√
3− 1

2
α(t)2 (8.38)

αH(t)2 =

√
3 + 1

2
α(t)2, (8.39)

and to conditions on the phase relationship between the horizontal and vertical input states

θx =
π

4
+
π

2
mx (8.40)

θy =
π

4
+
π

2
my , (8.41)

where mx and my are integers. The three degrees of inseparability of Eqs. (8.22,8.23,8.24) then
become symmetric

I(Ŝi, Ŝj) =
∆2
x±yŜi + ∆2

x±yŜj
2α(t)2

. (8.42)

We assume that the two horizontally polarised inputs, and the two vertically polarised inputs,
are quadrature entangled with the same degree of correlation such that

∆2
x±yX̂

+
H = ∆2

x±yX̂
−
H = ∆2

x±yX̂
+
V = ∆2

x±yX̂
−
V = ∆2

x±yX̂. (8.43)

To simultaneously minimise each of ∆2
x±yŜi it is necessary that θx = −θy + mπ. After making

this assumption we find that the sum or difference variances between beams x and y of all three
Stokes operators are equal, and can be related directly to ∆2

x±yX̂

∆2
x±yŜ1 = ∆2

x±yŜ2 = ∆2
x±yŜ3 =

√
3α(t)2∆2

x±yX̂. (8.44)

Using this relationship, with the polarisation commutation relations of Eqs. (7.5) and the general
inseparability criteria Eq. (8.7), the polarisation inseparability criteria can also be directly related
to ∆2

x±yX̂

I(Ŝi, Ŝj) =
√

3∆2
x±yX̂, (8.45)
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and the entanglement is equivalent between any two Stokes operators. The condition for entan-
glement can then be expressed as a simple criterion on the quadrature entanglement between the
input beams

I(Ŝi, Ŝj) < 1⇐⇒ I(X̂+, X̂−) <
1√
3
, (8.46)

where I(X̂+, X̂−) =I(X̂+
H , X̂

−
H) =I(X̂+

V , X̂
−
V ). The factor of 1√

3
arises from the projection of

the quadrature properties onto a polarisation basis in which the Stokes vector is pointing at equal
angle (cos−1( 1√

3
)) from all three Stokes operator axes. In principle it is possible to have all three

Stokes operators perfectly entangled. In other word, ideally the measurement of any Stokes oper-
ator of one of the beams could allow the exact prediction of that Stokes operator from the other
beam (see Fig. 8.9). However, contrary to the discrete photon case, here the analysis basis orienta-
tion is fixed by the Stokes vector orientation, and rotating this basis would change the commutation
relations and therefore the uncertainty relations that verification of the entanglement replies upon.
The experimental production of this symmetric polarisation entanglement is a straightforward ex-
tension of the experiment reported here, however a significant step-up in resources is required.
Four squeezed beams rather than two are required, and due to the projection factor 1√

3
a higher

level of squeezing in each beam is necessary. This entanglement resource would, however, enable
the demonstration of maximal continuous variable polarisation teleportation as discussed in [34].
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Figure 8.9: Poincaré sphere representation of the conditional knowledge of one polarisation entangled
beam obtained through measurements on the other, where the entanglement is produced from four quadra-
ture squeezed beams, each with squeezed quadrature variance of 0.1. The top left figure represents the
knowledge of beam y before any measurement of beam x. a), b), and c) represent the conditional knowl-
edge of beam y given measurements of Ŝ1 , Ŝ2, and Ŝ3 respectively on beam x. If the conditional knowledge
is better than the dashed circles the state is entangled.
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8.5 A look at the correlation function

Throughout this Chapter we have neglected the correlation function term in the uncertainty re-
lations, this resulted in sufficient, but not necessary, conditions for entanglement. Unlike the
commutation relation, the correlation function is state dependent. We would like to look at some
of the problems associated with this here, and then examine the values of the correlation functions
for the two states discussed specifically in this Chapter. Again assuming that αV (t)� 1 so that
higher order terms can be neglected, the correlation functions for each of the three permutations
of Stokes operators are found to be

∣∣∣
〈
δŜ1δŜ2 + δŜ2δŜ1

〉∣∣∣
2

= 4 cos2 θαH (t)2αV (t)2
(

∆2X̂+
H −∆2X̂+

V

)2
(8.47)

∣∣∣
〈
δŜ1δŜ3 + δŜ3δŜ1

〉∣∣∣
2

= 4 sin2 θαH (t)2αV (t)2
(

∆2X̂+
H −∆2X̂+

V

)2
(8.48)

∣∣∣
〈
δŜ2δŜ3 + δŜ3δŜ2

〉∣∣∣
2

= 4 sin2 θcos2θ
[
αV (t)2

(
∆2X̂+

H −∆2X̂−H

)
(8.49)

+αH(t)2
(

∆2X̂+
V −∆2X̂−V

) ]2
.

We can, naively, include these correlation functions in the Stokes operator uncertainty relations as
shown in Eqs. (8.13); and it seems, obtain more general expressions for the polarisation insepara-
bility criteria Icorr(Ŝi, Ŝj), of the form

Icorr(Ŝi, Ŝj) =
∆2
x±yŜi + ∆2

x±yŜj√
|[δŜi, δŜj]|2 + |〈δŜiδŜj + δŜjδŜi〉|2

(8.50)

Let us consider, for example, Icorr(Ŝ1, Ŝ3), and take θ = θx = θy = π/2 as in our experiment.
Using Eqs. (7.11), (8.32), (8.34), and (8.48) and under the restrictions previous stated (Eqs. (8.14-
8.21) and αV (t)� 1) we find that

Icorr(Ŝ1, Ŝ3) =
αV (t)

αH(t)

(
∆2
x±yX̂

+
V + ∆2

x±yX̂
+
H

|∆2X̂+
H −∆2X̂+

V |

)
(8.51)

The problem with including the correlation term in the inseparability criterion now becomes ap-
parent. Consider that beams x and y are independent coherent states, and therefore clearly sepa-
rable. Perfectly correlated classical noise can be applied to X̂+

H,x and X+
H,y (or X̂+

V,x and X+
V,y)

using electronics (classical communication) and amplitude modulators (local operations). It is
well know that classical communication and local operations are unable to induce entanglement
so, after introduction of this correlated noise, beams x and y must remain separable. By varying
the amplitude of the noise (via classical amplification) both ∆2X̂+

H,x and ∆2X̂+
H,y can be made

arbitrarily large. The correlation function between Ŝ1 and Ŝ3 (Eq. (8.48)) and hence the gen-
eral uncertainty product (the denominator of Eq. (8.51)) can then also be made arbitrarily large.
Since the noise is perfectly correlated between beams x and y however, it can be arranged to have
no effect on the sum or difference variances ∆2

x±yŜ1 and ∆2
x±yŜ3. Therefore, the numerator of

Eq. (8.51) remains unchanged, whilst the denominator may be made arbitrarily large. So as the
amplitude of the noise increases Icorr(Ŝ1, Ŝ3) → 0, and it appears that beams x and y become
entangled. This problem arises because including the correlation function term in the uncertainty
product implicitly assumes that no information is available about the correlation from an alterna-
tive source. Since, the modulation considered here is correlated between the beams, measurements
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on one beam can provide information about the state of the other, and therefore the uncertainty
relations including the correlation function calculated from a single beam are invalid. In order
to derive a general necessary and sufficient criteria for polarisation entanglement a much more
detailed analysis of the correlation function would be required, we do not present that here.

Let us now consider the two particular states discussed in this Chapter. In the first case, where
entanglement was experimentally observed between Ŝ2 and Ŝ3, the relative phase between the
horizontal and vertical input modes was controlled to be θ = π/2. The correlation functions
between Ŝ1 and Ŝ2, and between Ŝ2 and Ŝ3 (Eqs. (8.47) and (8.49)) were then both equal to zero.
Therefore for our experimental configuration the inseparability criteria in Eqs. (8.22) and (8.24)
are necessary and sufficient, and represent a hard boundary between polarisation entangled and
non-polarisation entangled states. The entanglement between all three pairs of Stokes operators
proposed in Section 8.4 is highly symmetrical, ∆2X̂±H,x = ∆2X̂±H,y = ∆2X̂±V,x = ∆2X̂±V,y. In this
case all three correlation functions can be seen to be zero, and all three inseparability criteria are
therefore necessary and sufficient.

8.6 Summary and conclusion

This Chapter presented the first generation of continuous variable polarisation entanglement. This
entanglement was achieved by transformation of the quadrature entanglement discussed in Chap-
ter 4 onto a polarisation basis. In order to characterise the entanglement we generalised both the
inseparability criterion of Duan et. al [130], and the EPR paradox criteria of Reid and Drummond
[134, 135] to polarisation states. We utilised the standard uncertainty relation in this generali-
sation, which results in sufficient polarisation entanglement criteria. We briefly considered the
generalised uncertainty relation, which includes the correlation function. We demonstrated that
the correlation function is zero for the two situations considered in this Chapter, and therefore the
inseparability and EPR paradox criteria derived are, for these cases, necessary and sufficient. A
form of the criteria that is, in general, necessary and sufficient, is a problem for future analysis. In
our experiment both criteria were observed to be well inside the regime for entanglement between
the Stokes operators Ŝ2 and Ŝ3. Finally, we have shown that with an available resource of four
quadrature squeezed beams it is possible for all three Stokes operators to be perfectly entangled,
although with a bound

√
3 times lower (stronger) than that for quadrature entanglement.



Chapter 9

Non-classical photon pairs from an
atomic ensemble

'The sudden collapse of the wavefunction' - Aska Dolinska 2002` `

In this Chapter we report the generation of non-classical photon pairs from an atomic ensem-
ble. The experiment presented here utilised optical Raman pulses to manipulate an ensemble of
Cesium atoms in a magneto-optic trap. The state of the ensemble was conditioned into a symmetric
entangled state through photon counting measurements on emitted fields. The presence of entan-
glement was verified by demonstrating a violation of the Cauchy-Schwarz inequality. Our scheme
has applications to long-distance quantum communication [21], quantum state engineering [207],
and could provide a single photon source ‘on demand’. The work presented here was performed
in collaboration with Alex Kuzmich in the laboratories of Jeff Kimble at the California Institute
of Technology. The Physics involved is related to that in the other Chapters of this thesis, but has
not been directly introduced previously. Here, only sufficient background is provided to allow a
reasonable understanding of the experiment. For a more comprehensive approach I recommend
the books of Scully and Zubairy [239], and Gardiner and Zoller [240].

The work presented in this Chapter has been published in the journal article ‘A. Kuzmich,
W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble Generation of
Nonclassical Photon Pairs for Scalable Quantum Communication with Atomic Ensembles. Nature
423, pp. 731 (2003)’.

9.1 Introduction

Many applications in quantum information science require extremely high levels of non-linearity.
The quantum logic gates required for universal quantum computation [241], for example, re-
quire non-linearity large enough that the presence of a single photon significantly changes the
system. The previous Chapters of this thesis utilised the second order non-linearity of Lithium

183
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Niobate in a regime where the optical fields were far away from any atomic resonances. This is
a very controllable, low noise source of non-linearity, however with present technology the non-
linearity provided is orders of magnitude away from that necessary to facilitate most of the com-
ponents required for quantum computation and communication. The non-linearity of the atom-
field interaction can be enormously enhanced by moving to optical frequencies near atomic res-
onances. Quantum computation and communication techniques are currently being investigated
within this regime using semi-conductor materials[193], rare earth doped crystals [194], trapped
ions[195, 196], single atoms in high finesse resonators [9, 110, 197, 198, 199, 242], and cold atom
clouds [20, 21, 201, 202]. Each of these systems has its own strengths and weaknesses, and at
present it is unclear which holds the highest potential for the ultimate realisation of universal quan-
tum computation and communication. In this Chapter we present the experimental demonstration
of a new and potentially powerful technique using cold atomic ensembles. Atomic ensembles
have been shown to enable some truly remarkable techniques for the storage, manipulation, and
out-coupling of optical quantum states [20, 201, 202, 243, 244, 245]. In the work presented here
we combine this potential with conditional measurement. The power of conditional measurement
in quantum information protocols has recently become apparent [17, 246, 247], in particular as an
enabling technology for scalable linear quantum computation [17].

The experiment reported here was based on a recent proposal by Duan, Lukin, Cirac, and
Zoller (DLCZ) [21] using atomic ensembles for scalable long distance quantum communication
and distribution of entanglement over quantum networks. In the proposal of DLCZ atomic ensem-
bles throughout the communication system are manipulated using bright optical pulses on appro-
priate Raman transitions. On the interaction of an optical pulse with a given ensemble, the atoms in
the ensemble probabilistically and collectively emit a Raman field. A photon counting event from
this field then conditions the ensemble into a symmetric entangled state, which can be manipulated
via further Raman pulses. By using a quantum repeater architecture [205] the entanglement can be
distributed over long distances. DLCZ incorporated both entanglement purification[139, 140, 141]
and quantum memory[11, 12] into their scheme, in a manner well within the capabilities of present
day technology. Other similar proposals based on alternative technology, on the other hand, are
still well out of reach [110, 205].

Our experiment demonstrates the first enabling step towards the DLCZ protocol. We examined
only a single atomic ensemble, manipulated with Raman pulses, and conditioned through single
photon detection. The ensemble consisted of cold Cesium atoms in a magneto-optic trap (MOT).
A write pulse was focussed into the ensemble, so that with small probability a photon was emitted
in the spatial mode of our detection device. The emission of a photon resulted in an atomic
excitation symmetrically distributed throughout the interacting atoms, which was conditioned by
a detection event. A subsequent read pulse interrogated the ensemble, and resulted in a second
photon, delayed by the separation of the pulses and emitted into the same spatial mode at the
first. We demonstrated the non-classical character of the correlations between the photons by
testing for violation of the Cauchy-Schwarz inequality. We found a strong violation, with [g2

12 =

(5.45± 0.11)]� [g11g22 = (2.97± 0.08)], where gij are normalised correlation functions for the
fields (i, j); 1 and 2 label the fields emitted from the ensemble as a result of the write and read
pulses, respectively. Usefulness in the DLCZ protocol aside, this experiment furthers techniques
in quantum state engineering[207], and demonstrates an important technological advance in the
field of quantum optics. In contrast to prior investigations of nonclassical correlations between
photon pairs produced in atomic cascades [248] and in parametric down conversion [249], in our
experiment the photons were separated by a programmable time interval δt = 405 ns, which was
limited in principle only by the coherence lifetime between the two ground atomic levels. This
coherence lifetime was dictated by the Larmor precession of the atomic spin state in the MOT
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magnetic fields, and could potentially be extended to several seconds using spin-polarised samples
in optical-dipole or magnetic traps[250]. Thus, with some further engineering effort, our system
could be used to provide single photons ‘on demand’, and thus enable previously unrealisable
experiments involving the inference of many photons[22].

Recently, a similar experiment to ours has been performed by van der Wal et. al [251] using
Rubidium atoms in a vapour cell. In their experiment, they demonstrated that the techniques
proposed by DLCZ could be used to produce two mode squeezing between the fields emitted from
their ensemble.

9.2 Proposal for quantum communication with atomic ensembles
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Figure 9.1: Sequence of events used to generate non-classically correlated photon pairs from an ensemble
of Cesium atoms. a) The write pulse facilitates spontaneous Raman scattering from the |6S1/2, F = 4〉
Cesium ground state to the |6S1/2, F = 3〉 ground state, emitting a field with frequency around Ω3,4. b)
Photon detection of that field conditions the ensemble into a symmetric entangled state with a single atomic
excitation to the |6S1/2, F = 3〉 ground state distributed evenly through the participating atoms. c) After a
programmable time delay the read pulse transfers that excitation back into the |6S1/2, F = 4〉 ground state
releasing a single photon with frequency around Ω4,4.

The experiment discussed in this Chapter was facilitated by collectively enhanced Raman
scattering in an ensemble of cold Cesium atoms. The atomic energy level structure relevant to this
process is shown in Fig. 9.1 a). The ensemble of atoms are initially prepared in the |6S1/2, F = 4〉
ground state through optical pumping. A laser pulse which we term the write pulse here, with
frequency Ωwrite tuned near the |6S1/2, F = 4〉 ↔ |6P3/2, F

′ = 4〉 transition then induces spon-
taneous Raman scattering into the initially empty |6S1/2, F = 3〉 ground level, emitting an optical
field of frequency near Ω3,4. If only one atom was involved in the process, the emission would oc-
cur in a purely spontaneous manner, randomly into 4π steradians. When an ensemble is involved,
however, a single spontaneous Raman scattering event causes a chain of stimulated Raman scatter-
ings, in a manner directly analogous to superfluorescence in a medium composed of inverted two-
level atoms[252]. The result is a collective enhancement of the atom-photon interaction between
the ensemble and optical fields within the spatial mode defined by the write pulse. This collective
enhancement couples the |6S1/2, F = 3〉 and |6S1/2, F = 4〉 ground levels in a similar manner
to a bright optical pulse at frequency Ω3,4. Collective enhancement offers an attractive alterna-
tive to other techniques presently available to strengthen the atom-photon interaction. The most
well known method used is cavity quantum electro-dynamics [9, 110] where the enhancement is
achieved by placing the atoms inside an optical resonator of extremely high finesse (∼100,000).
Recently a number of inspiring results have come from this technology [197, 198, 199, 242],
however it still remains extremely challenging.
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The complete Hamiltonian describing the three level system used to facilitate our experi-
ment is quite complex. By making a number of simplifying assumptions however, the under-
lying behaviour of the system becomes evident. Firstly, since the write pulse coupling the lev-
els |6S1/2, F = 4〉 and |6P3/2, F

′ = 4〉 is bright and remains undepleted throughout the pro-
cess, it can be treated in a purely classical manner. Furthermore, in the limit that the detuning
∆ = Ωwrite − Ω4,4 between the write pulse and the atomic transition is large compared to the
Rabi frequency ΩRabi, spontaneous emission from the |6P3/2, F

′ = 4〉 level can be neglected. In
practise, our experiment was not operated with large detuning, and we will present an analysis of
the spontaneous emission from |6P3/2, F

′ = 4〉 later in this Chapter. Here, however, we retain
the assumption to allow an intuitive interpretation of the processes involved in the experiment.
Given these two assumptions the excited state |6P3/2, F

′ = 4〉 can be adiabatically eliminated
from the Hamiltonian describing the system [240]. The exact spatial and temporal structure of the
fields emitted from the ensemble are, in general, a complex function of the geometry of the atomic
sample and the shape and timing of the write pulse[253]. A full treatment of this relationship is
beyond the scope of this thesis. For a sufficiently dense atomic ensemble the fields are emitted
into the spatial mode of the write pulse[253]. Here, we therefore only consider fields emitted into
that mode. The Hamiltonian Hensemble describing collectively enhanced Raman scattering in an
atomic ensemble is then given by [21]

Hensemble = ~Ω4,4ã
†ã + ~

(√
NΩRabigc

∆

)(
S̃†ã† + S̃ã

)
, (9.1)

where gc is the non-linear interaction strength which is analogous to Λ for second order op-
tical non-linear processes (see Section 2.10), ã describes the field coupling the atomic levels
|6S1/2, F = 3〉 and |6P3/2, F

′ = 4〉 in the spatial mode defined by the write pulse, and S̃ is
the collective atomic mode defined by

S̃ =
1√
Na

∑

i

S̃i (9.2)

=
1√
Na

∑

i

∣∣6S1/2, F = 4
〉
i

〈
6S1/2, F = 3

∣∣ , (9.3)

where the summation is taken over allN atoms within the mode of the optical field. The quantum
Langevin equation (Eq. (2.99)) can then be used to yield equations of motion for the optical field
mode ã and the collective atomic mode S̃. Solving these equations and using boundary conditions
similar to Eq. (2.108) Duan et al. found that the collectively enhanced Raman scattered field,
termed ‘field 1’ here, and the collective atomic mode were in a two mode squeezed state (see
[21] and the attached supplementary information). Assuming that the interaction is weak so that
most of the atoms remain in the |6S1/2, F = 4〉 ground level, this state can be expressed in the
Schrödinger picture as [21]

|ΨS,1〉 = |ψS , ψ1〉 =
√

1− p
∑

n

(
S̃†ã†√p

)n
|0〉F=3 |0〉field 1 (9.4)

=
√

1− p
∑

n

p
n
2 |n〉F=3|n〉field 1 , (9.5)

where p is the probability that field 1 contains a non-zero number of photons. p is related to the
two-mode squeeze factor r relevant to this atom-light system, p = tanh2 r (see Section 2.2 for a
definition of the squeeze factor), and is a complex function of the optical pulse width, the Rabi
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frequency, the detuning, the non-linear interaction strength, and the atomic cross-section (N/L),
where L is the length of the atomic ensemble [21].

Collective enhancement of the atom-photon interaction has been investigated previously in
the context of spin squeezing [11, 254, 255, 256, 257], which has recently been experimentally
demonstrated [20, 201, 202]. Unlike spin squeezing experiments which rely on homodyne detec-
tion, the DLCZ scheme implemented here involves photon counting techniques, which facilitate a
different and potentially powerful type of atomic ensemble conditioning. Assuming that the prob-
ability of excitation is low (p � 1) and ideal conditions, detection of a photon, termed ‘photon
1’ throughout, from field 1 collapses the state of our atomic mode to |ψS〉 = |1〉F=3, so that a
single atomic excitation is present in the |6S1/2, F = 3〉 hyperfine ground state (see Fig. 9.1 b)
). This single excitation is distributed in a symmetrised, coherent manner throughout the atomic
ensemble. In the ideal case the conditioned state of the ensemble is then [21]

|Φ〉 =
1√
N

N∑

j=1

∣∣6S1/2, F = 4
〉

1
. . .
∣∣6S1/2, F = 3

〉
j
. . .
∣∣6S1/2, F = 4

〉
N
. (9.6)

The excitation can be stored in the atomic ensemble for periods on order the lifetime of the coher-
ence between the ground levels |6S1/2, F = 3〉 and |6S1/2, F = 4〉.

The atomic excitation can be converted into a field excitation, ‘field 2’, on demand and
with high probability, with a specified emission direction and a programmable pulse shape
[21, 110, 207, 258]. This conversion is achieved with a laser pulse, the read pulse, with fre-
quency tuned near the frequency Ω3,4 of the |6S1/2, F = 3〉 → |6P3/2, F

′ = 4〉 transition,
as shown in Fig. 9.1 c). Illuminating the atomic ensemble with this pulse affects the transfer
|6S1/2, F = 3〉 → |6S1/2, F = 4〉, with the accompanying emission of a second Raman photon,
‘photon 2’, on the |6P3/2, F

′ = 4〉 → |6S1/2, F = 4〉 transition. For an optically thick atomic
ensemble, field 2 is emitted with high probability into the spatial mode defined by field 1, offset
in time by δt [253]. So that, using an appropriate series of laser pulses, a pair of temporally and
spatially correlated photons, with tunable temporal separation, can be generated from an atomic
ensemble.

9.3 Verification of the non-classical nature of the fields

In this Section we derive an experimentally verifiable criterion for the non-classicality of the cor-
relations between fields 1 and 2. The analysis given here is based on the work of Clauser [248],
and the supplementary information attached to [206].

9.3.1 A Cauchy-Schwarz inequality based on coincidence rates

In our experiment we are interested in the rate of photon counting coincidences between the fields
1 and 2 emitted by the atomic ensemble as a result of the write and read pulses, respectively. Let
us take the mean arrival times for fields 1 and 2 at their respective photodetectors to be t1 and t2,
and gate the photodetectors ON for an interval T around their respective mean arrival time (see
Fig. 9.3). The average coincidence rate Cij for photon counting events between the fields i and j
then given by [248]

Cij = ηiηj

∫ +T
2

−T
2

∫ +T
2

−T
2

〈
ã†i (ti + t′)ãi(ti+t

′)ã†j(tj+t
′′)ãj(tj+t

′′)
〉
dt′dt′′, (9.7)
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where i ∈ {1, 2}, and ηi is the effective efficiency of detector i which can include properties
characteristic to the detectors such as electronic gain factors.

In order to clearly delineate between classical and quantum mechanical correlations we
will now couch our analysis in terms of a quasi-probability distribution, the P-representation
[259, 260]. The P-representation is closely related to the Wigner function described in Sec-
tion 2.2.1, indeed, the Wigner function is obtained by convoluting the P-representation with a
symmetric Gaussian of unit radius. The P-representation describes a given state as a weighted en-
semble of coherent states. Unlike a classical probability distribution however, when representing
some quantum states the weighting factors can become negative or highly singular. Indeed, it is
this manifestly quantum mechanical behaviour that we use to distinguish between classical and
quantum mechanical correlations. The Optical Equivalence Theorem allows us to relate a general
form of the expectation value in Eq. (9.7) to the P-representation [230]

〈
ã†i ãiã

†
j ãj

〉
=

∫
P (αi, αj)α

∗
iαiα

∗
jαjdαidαj , (9.8)

where {i, j} ∈ {1, 2}, and dαi,j = d<{αi,j}d={αi,j}. Here αi and αj represent the coherent am-
plitudes of the ensemble of coherent state pairs used to construct fields i and j, and the weighting
of each pair is given by the parameter P (αi, αj). P (αi, αj) has the property that

∫
P (αi, αj)dαidαj = 1, (9.9)

and strongly resembles a classical probability function. As discussed above, however, it is not
always a well-behaved function and can be negatively or singularly valued. If P (α1, α2) is well
behaved, however, it is entirely analogous to a classical probability distribution. This implies both
that the state may be modelled perfectly using a hidden-variable model of quantum mechanics,
and that it satisfies the Cauchy-Schwarz inequality

[∫
P (α1, α2) [α∗1α1α

∗
2α2] dα1dα2

]2

(9.10)

≤
∫
P (α1, α

′
1)
[
α∗1α1α

′
1
∗
α′1
]
dα1dα

′
1 ×

∫
P (α2, α

′
2)
[
α∗2α2α

′
2
∗
α′2
]
dα2dα

′
2,

where P (αi, α
′
i) =

∫
P (α1, α2)dαj

∫
P (α′1, α

′
2)dα′j, i 6= j. Violation of this Cauchy-Schwarz

inequality necessarily implies that the P-representation of the state is not well-behaved and there-
fore, in our case, that non-classical correlations exist between the fields emitted from the atomic
ensemble. By comparison with Eqs. (9.7), and (9.8) we find that this inequality can be directly
translated into one between the observed mean coincidence rates between and within fields 1 and
2

C2
12 ≤ C11C22. (9.11)

For a given level of correlation, these coincidence rates are directly proportional to the rate of
singles counts on the two detectors S1 and S2. It is convenient then to normalise inequality (9.11)
with respect to these singles rates

[
C12

S1S2

]2

≤
[
C11

S2
1

]
×
[
C22

S2
2

]
, (9.12)
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with

Si = ηi

∫ +T
2

−T
2

〈
ã†i(t+t

′)ãi(t+t
′)
〉
dt′, (9.13)

where i ∈ {1, 2}. Assuming that each trial of the experiment is independent from all other trials,
the singles rates can be written in terms of the coincidence rates C ′ij where here the ′ signifies that
the coincidence rates are measured between different trials of the experiment,

SiSj = C ′ij . (9.14)

Inequality (9.12) can then be written compactly in terms of the normalised correlations functions
gij = Cij/C

′
ij

g2
12 ≤ g11g22. (9.15)

This inequality presents an experimentally verifiable criterion for the non-classicality of the cor-
relations displayed by the fields emitted from our atomic ensemble.

The coincidence rates C12 and C ′12 between the fields 1 and 2 emitted in our experiment could
be directly measured. The single field coincidence rates Cii and C ′ii however, are more difficult
to determine. For each emitted field i we characterised the relevant single field coincidence rates
by splitting the field on a 50/50 beam splitter, and measuring cross-correlations between the two
output fields (denoted with subscripts a and b here). Assuming that, after tracing over all other
fields, field i is well-behaved and has a positive definite P-representation1, it is relatively easy to
show from Eqs. (9.7), (9.8), and (9.9) that the measured coincidence rates C(i)

ab and C(i)
ab

′
between

the beam splitter outputs are related to the desired single field coincidence rates by C(i)
ab = Cii/4,

and C(i)
ab

′
= C ′ii/4. We see then that gii = g

(i)
ab , so that the correlation function obtained from

these measurements is exactly the auto-correlation function for field i.
Note that a similar analysis to that presented above can be performed using the Wigner func-

tion, and a similar result is obtained, however for the situation considered here the desired delin-
eation between classical and quantum mechanical correlations appears more naturally using the
P-representation. Note also that, strictly speaking, our experimental protocol measured the detec-
tion rate of photon 2, conditional on the detection of photon 1. These conditional rates are directly
proportional to the coincidence rates discussed in the analysis above, and since inequality (9.15)
takes the ratio of coincidence rates, it is equally valid to conditional rates. For a more detailed
analysis of this point I direct you to the supplementary notes attached to [206].

9.3.2 Expected violations of the Cauchy-Schwarz inequality

Now that we have a criterion for non-classicality of the correlation between a pair of fields, let
us examine the level of non-classicality of the fields emitted from an atomic ensemble during the
protocol given in Section 9.2. This is determined by six coincidence rate measurements: those
between fields 1 and 2, and within each of the fields; both within a single experimental trial and
between two independent trials. First let us determine the state that each of these measurements is
performed on. From Eq. (9.5) we find that in the ideal case after both the write and read pulses,

1Individually both fields 1 and 2 emitted from our atomic ensemble are in thermal states, so that this assumption is
valid for our experimental situation.
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but before detection, fields 1 and 2 emitted from our ensemble are in the correlated state

|Ψ12〉 = |ψ1, ψ2〉 =
√

1− p
∞∑

n=0

p
n
2 |n〉field 1 |n〉field 2 , (9.16)

where |ψi〉 is the wave-packet of field i. Coincidence rate measurements on this state correspond
to measurements of C12, the between field coincidence rate within a single experimental trial. On
the other hand, when the coincidence rate measurements between fields 1 and 2 are performed on
independent trials so that C ′12 is obtained, fields 1 and 2 are uncorrelated, and the overall state is

|Ψ1⊗2〉 = |ψ1〉 ⊗ |ψ2〉 . (9.17)

The coincidence rates within field i can be determined by splitting the field on a 50/50 beam
splitter and measuring coincidence rates between the two output fields ψ(i)

a and ψ(i)
b . Neglecting

phase factors, since we are photon counting, the beam splitter output state is given by

|Ψ(i)
ab 〉 = |ψ(i)

a , ψ
(i)
b 〉 =

√
1− p

∞∑

n=0

(p
2

)n
2

n∑

m=0

√
n!

m!(n−m)!
|m〉field 1 |n−m〉field 2 . (9.18)

Coincidence rate measurements on this state correspond to a measurement of C(i)
ab = Cii/4. Sim-

ilarly to the above case, when the coincidence rate measurements are performed on independent
experimental trials yieldingC(i)

ab

′
= C ′ii/4, fields a and b are uncorrelated, and the overall state is

|Ψ(i)
a⊗b〉 = |ψ(i)

a 〉 ⊗ |ψ(i)
b 〉 (9.19)

In this Schrödinger picture, the coincidence rate between a pair of fields x and y, in the state
|Ψ〉 = |ψx, ψy〉 is given by

CΨ =
1

∆t

∞∑

i=1

∞∑

j=1

ij
∣∣〈ij

∣∣Ψ
〉∣∣2 (9.20)

where ∆t is the time interval between consecutive trials, and we have assumed perfect detection ef-
ficiency. The coincidence rates for each of the states given in Eqs. (9.16), (9.17), (9.18), and (9.19)
can then be calculated. After a bit of work we find

C12 =
1

∆t

[
p (1 + p)

(1− p)3

]
, (9.21)

and

C ′12 = C ′11 = C ′22 =
C11

2
=
C22

2
=

1

∆t

[
p

1− p

]2

. (9.22)

The correlation functions g12, g11, and g22 can then be directly determined from Eq. (9.15), and
we find

g12 =
C12

C ′12

=
1 + p

p (1− p) , (9.23)
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and

g11 = g22 =
Cii
C ′ii

= 2, (9.24)

where i ∈ {1, 2}. The simple relation g11 = g22 = 2 is the expected result if fields 1 and 2 are
both individually in thermal states. We then find that the Cauchy-Schwarz inequality should be
violated with the ratio between [g12]2 and g11 × g22 being

R ≡ [g12]
2

g11 × g22
(9.25)

=
1

4

[
1 + p

p(1− p)

]2

(9.26)

� 1 ∀ p. (9.27)

We see that for all transition probabilities p the Cauchy-Schwarz inequality is predicted to be
strongly violated by the fields emitted from the atomic ensemble system of Section 9.2, with
R→ ∞ as p→ {0, 1}. Of course, as p→ 1 the photon number variance of state |Ψ12〉 becomes
extremely large. In this regime detectors with the ability to distinguish the number of photons
in the state are required. Such detectors are not presently available. When p → 0 however, the
probability of detecting more than one photon in fields 1 and 2 becomes vanishingly small, so that
the detectors utilised are only required to distinguish between the situations ‘no photons present’
and ‘photons present’. Such detectors are readily available. In our experiment p ∼ 0.01, so that
we were well within this regime. In ideal circumstances our experiment could then violate the
Cauchy-Schwarz inequality by as much as R ∼ 2600. Of course, in an experimental situation
imperfections arise, such as photodetector counts from sources unrelated to the Raman process,
and detection inefficiencies. These imperfections can seriously degrade the observed violation;
however, as we have shown above, so long asR > 1 the state of fields 1 and 2 cannot be described
by a well-behaved P-distribution, so that by definition, they are non-classically correlated.

9.4 Experimental realisation

9.4.1 Experimental configuration

Fig. 9.2 shows the experimental apparatus utilised in our demonstration of non-classically corre-
lated photon generation from an atomic ensemble. The ensemble of Cesium atoms used in our
experiment was confined by a magneto-optical trap (MOT) inside a vacuum chamber. As the
name suggests the MOT consisted of two components: magnetic fields which provided a potential
to confine the atoms, and optical fields to cool the atoms. The arrangement of the optical fields
is shown in Fig. 9.2 c) and was as follows. Three orthogonal sets of counter-propagating opti-
cal fields detuned from the |6S1/2, F = 4〉 ↔ |6P3/2, F

′ = 4〉 transition utilised the Doppler
effect to cool and trap the atoms in the atomic energy level |6S1/2, F = 4〉, and an optical
field on the |6S1/2, F = 3〉 ↔ |6P3/2, F

′ = 4〉 transition repumped any atoms excited into
the |6S1/2, F = 3〉 level, back into the trapped |6S1/2, F = 4〉 level. Further details regard-
ing magneto-optic trapping will not be presented here, a good analysis can be found in [250].
The cooling and trapping fields were produced by injection seeding a semi-conductor diode laser
with the output of an external grating diode laser (see Fig. 9.2 a)) which was itself locked to the
|6S1/2, F = 4〉 ↔ |6P3/2, F

′ = 4〉 transition. Throughout the work presented here the opti-
cal fields were locked to atomic transitions using the configuration shown in Fig. 9.2 b). The
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Figure 9.2: Apparatus to generate single photons from an atomic ensemble. Inset a) shows the setup used
to generate and switch the MOT fields and the write and read pulses. Inset b) shows the technique used
to lock each EGDL to the relevant atomic transition. Inset c) shows the MOT configuration. Fields with
frequency near the frequency Ω4,4 of the |6S1/2, F = 4〉 ↔ |6P3/2, F

′ = 4〉 transition are colored red
(dark), and those near the frequency Ω3,4 of the |6S1/2, F = 3〉 ↔ |6P3/2, F

′ = 4〉 transition, blue (light).
The shaded interval in the timing diagram for each AOM defines the interval in which the experimental
trial is performed. DL: diode laser, EGDL: External grating diode laser, ILDL: injection locked diode laser,
D1, D2: single photon detectors, SMF: single mode fibre, CVC: Cesium vapour cells used as a frequency
reference and to spectrally filter the MOT outputs, ISO: Optical isolator, AOM: acousto-optic modulator,
DG: diffraction grating.

diode current is modulated, resulting in a phase modulation on the output field from the diode
laser. A proportion of the output field is passed through a Cesium vapour cell in a Doppler-
free spectroscopy configuration. Demodulating the transmitted field at the modulation frequency
provides an error signal that is applied to the diode current to lock the laser to the transition.
This locking technique is analogous to the sideband locking technique described in Section 2.5.2.
The repumping field was produced directly from an external grating diode laser, locked to the
|6S1/2, F = 3〉 ↔ |6P3/2, F

′ = 4〉 transition. We chopped the cooling and trapping, and repump-
ing fields from ON to OFF with a period of ∆t = 4 µs using acousto-optic modulators (AOMs).
For both fields a pair of AOMs were used in the configuration shown in Fig. 9.2 a), this ensured
that during the OFF intervals minimal light from the cooling and trapping, and repumping fields
was present. The MOT was therefore also switched ON and OFF with period ∆t = 4 µs, as
shown in Fig. 9.3. Within each period, the MOT fields were gated OFF for an interval of 1 µs
and ON for an interval of 3 µs. During the OFF times less than 0.1% of the atoms were measured
to be present in the |6S1/2, F = 3〉 level. The experimental trials were performed within each
consecutive OFF time.

The write and read fields used to condition the atomic ensemble were provided by the same
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external cavity diode lasers as the MOT cooling and trapping, and repumping fields. They were
shaped into pulses with pairs of AOMs as shown in Fig. 9.2 a). In both cases the pulse width was
∼ 45 ns (FWHM), and the separation between the pulses was δt ∼ 405 ns. A write, read pulse
pair was generated within each MOT OFF interval, with the write pulse arriving at the atomic
ensemble ∼ 450 ns after the MOT was switched. This relatively long separation between MOT
switching and the first pulse was required to ensure that the MOT field intensity had decayed to
a negligible level prior to the experiment, and that any atoms in the |6P3/2, F

′ = 4〉 level when
the MOT was switched OFF had spontaneously decayed away prior to the write pulse. Similarly,
since the write pulse was near-resonant, the minimum interval between the write and read pulses
was determined by spontaneous decay events |6P3/2, F

′ = 4〉 → |6S1/2, F = 4〉 caused by the
write pulse. Note that, since the lifetime of the |6P3/2, F

′ = 4〉 level is much shorter than the
coherence time between the two ground levels, direct observation of spontaneous emission could
always be avoided by choosing a sufficiently large interval between the write and read pulses.
This spontaneous decay process does however transfer some atoms into the |6S1/2, F = 3〉 level.
In our case, several hundred atoms were transferred in this manner per trial. Since spontaneous
decay is a random process no coherence was present between these atoms, and therefore when the
read pulse affected the transfer |6S1/2, F = 3〉 → |6S1/2, F = 4〉, their emission was randomly
distributed over 4π steradians. Correspondingly, detection events of this nature were suppressed by
the fractional solid angle of our detection apparatus, δθ/4π ' 2×10−5. The model of Section 9.2
which neglects spontaneous emission can therefore be applied to our experiment.

The write and read pulses were coupled into single mode fibres and combined on a polarising
beam splitter, with observed visibility of greater than 95 %. The output field was focussed to a
waist of∼ 30 µm within the atomic ensemble. The write pulse generated a co-propagating collec-
tively enhanced Raman scattered field, field 1 at frequency near Ω3,4, and the read pulse converted
the resulting atomic excitation into a co-propagating field excitation, field 2, at frequency near
Ω4,4.

To ensure that fields 1 and 2 were emitted into identical spatial modes it was important that
the resonant optical thickness γ4,4 of the atomic sample at the frequency of the write pulse was
greater than unity [253]. We measured γ4,4 = 4.5± 0.5 for a continuous field at frequency Ωwrite ,
corresponding to an intensity attenuation on propagation through the MOT of e−γ4,4 . Taking into
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account the MOT field and trap geometry, this attenuation provides a rough estimate of the atomic
density in the trap of ρ ∼ 3.6 × 1010 atoms/cm3. This allows us to estimate another important
parameter in the experiment, the number of atomsN contained within the overlap volume V of the
read and write pulses and the atomic ensemble. The geometry of the trap, and focussing of the read
and write pulses dictates an overlap volume of V ∼ 2.8×10−6 cm3, so thatN ∼ 1.0×105 atoms.

At this point we would like to begin coincidence counting between the fields. However, each
field was co-propagating and time-overlapped with a bright pulse (the write or read pulse) and
prior to any photon counting measurements, this pulse had to be filtered out. The frequency
separation between field and pulse in both cases was Ω3,4 − Ω4,4 = 9 GHz which is too small
for dielectric filters or even resonators to be effective. We achieved this filtering in two stages,
as shown in Fig. 9.2. Firstly, we separated the write pulse and field 2 from the read pulse and
field 1 using a polarising beam splitter. This separation attenuated the write and read pulses by a
factor of > 102 relative to fields 1 and 2, respectively. The polarisation of fields 1 and 2 depends
on the particulars of the hyperfine manifolds forming the atomic energy levels |6S1/2, F = 3〉
and |6S1/2, F = 4〉. A reasonable assumption is that given the complexity of each manifold,
both fields average out to be circularly polarised. This polarisation filtering, therefore, reduces the
efficiency of the protocol by ∼ 50 %2.

The second stage of filtering was provided using Cesium vapour cells. Field 1 and the residual
component of the write pulse propagated through a cell, ‘cell 1’ in which the Cesium atoms were
optically pumped into the |6S1/2, F = 4〉 ground level[261]. The residual component of the write
pulse, which was at frequency Ω4,4, was then strongly attenuated by an additional factor > 106.
Field 1, on the other hand, was transmitted with efficiency of ∼ 80 %. Similarly, field 2 and the
residual component of the read pulse propagated through another cell, ‘cell 2’. The atoms in this
cell were pumped into the |6S1/2, F = 3〉 ground level, and therefore the read pulse was strongly
attenuated whilst field 2 was transmitted. The optical pumping of the Cesium vapour cells was
achieved with bright optical fields with frequency near that of the transmitted light (see Fig. 9.2).
These pumping fields were generated by external grating diode lasers, and to optimise the optical
pumping their frequencies were scanned over the Doppler width of the relevant transition at a rate
fast compared to the atomic time scales. The optical pumps were switched OFF for the interval
over which the experimental trial was performed to minimise their contribution to the background
photon counts. These cells effectively blocked the original (write, read) pulses, while transmitting
the associated (1, 2) photons.

The field transmitted through cell 1 consisted of the desired field (field 1), and after a tunable
delay of δt, the read pulse. Since these two fields were time resolved, it was a relatively easy task
to remove the read pulse. This was achieved by passing the field through an AOM which was
switched ON for a short period around field 1 as shown in Fig. 9.3. The intensity of the read pulse
was then sufficiently attenuated so as not to damage our photodetectors. After detection electronic
gating could be implemented to remove any counts outside the window shown in Fig. 9.3. A
similar technique was applied to the field transmitted through cell 1 to remove the write pulse
which was time advanced by δt from field 2. Fields 1 and 2 were then each coupled into a single
mode fibre and directed to a photodetector. The temporal profiles and timing of the read and
write pulses could be analysed by interchanging the frequencies for optical pumping of the filter
cells. Fig. 9.4 shows typical pulse profiles accumulated over many trials, where the time origin
is set to coincide with the approximate center of the write pulse. As well as providing temporal
profiles for the write and read pulses, this configuration allowed us to optimise the efficiency of

2This efficiency reduction is not fundamental, and could be eliminated for example by used a spin polarised atomic
ensemble.
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Figure 9.4: Normalised temporal profiles of the write and read pulses, and fields 1 and 2. The pulses
around t = 0 are from photodetector 1 for the write pulse nw(t) (solid trace) and for field 1, n1(t) (points).
The pulses around t = 405 ns are from photodetector 2 for the read pulse nr(t) (solid trace) and for photon
2, n2(t) (points).

transmission from the MOT to the detectors, ensuring that the imaging system efficiently collected
the collectively enhanced Raman scattered light from the atomic ensemble in a field mode with
the same structure as that of the write and read pulses [253]. The total transmission efficiency for
fields 1 and 2 from the MOT to the relevant detector was measured to be ηtrans ' 0.3, and the
overall quantum efficiency of the photodetectors was approximately ηdet ' 0.5 (photon in to TTL
pulse out).

9.4.2 Observed singles rates and their implications

With the filter cells in their standard configuration; that is, set so that fields 1 and 2 are transmitted
to detectors 1 and 2; respectively, we were able to analyse the singles rate observed by each
detector. An unexpected and serious limitation of using diode lasers to produce the read and
write pulses was discovered at this point, which was that they spontaneously emit over a broad
spectrum. In our case approximately 2 % of the output power of each diode laser was contained
in this spectrum. This background light is efficiently transmitted through our MOT and the optical
filtering cells, and without attenuation, made a much larger contribution to the singles counts at
detectors 1 and 2 than the fields emitted from the atomic ensemble. We attenuated this background
light by placing a pair of diffraction gratings into each of the write and read fields before they were
coupled into their respective single mode fibres and passed through the MOT (see Fig. 9.2). These
gratings reduced the spectrum of this broad spectrum spontaneous emission to∼ 10 GHz. Further
attenuation by a factor of between 102 and 103 was achieved by the crossed-polariser arrangement
of the polarising beam splitters on either side of the MOT. Diode laser spontaneous emission was
one of the limiting features of our experiment. In future experiments further attenuation could be
achieved using Fabry-Perot étalons, or an alternative laser source.

With this spurious diode laser emission attenuated, we characterised the rate of singles emitted
from our atomic ensemble and observed by each detector. For comparison with the profiles of the
write and read pulses, normalised temporal profiles for these rates are displayed in Fig. 9.4. The
intensity of the write pulse was kept low in our experiment, with only ∼ 103 photons per pulse.
This resulted in a time lag for the onset of the singles counts observed by detector 1. We see from
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Fig. 9.4 that, apart from this time lag, the temporal profile of field 1 corresponded closely to that of
the write pulse. The mean singles rate observed at detector 1 was S1 ' 400 s−1. The probability
p1 that detector 1 provides a photon counting event in any given trial of the experiment can be
related to this singles rate by

p1 =
S1

δt
' 1.6× 10−3. (9.28)

By taking into account the transmission efficiency from the atomic ensemble to the detector ηtrans,
and the detection efficiency ηdet, we can then infer the probability p of a photon, photon 1, being
emitted into the mode of our detection apparatus from the atomic ensemble

p ' p1

ηtransηdet
' 1.1× 10−2, (9.29)

which is much smaller than unity, as required for our protocol.

A photon counting event at detector 1 caused by field 1 dictates that at least one of the atoms
in the ensemble has been transferred into the |6S1/2, F = 3〉 atomic energy level. Since the
interaction of the pulse with the atoms is to a large degree symmetric with respect to permutation
of atoms, this excitation should be distributed evenly over all of the atoms involved, resulting in
the entangled atomic state |ΨS,1〉. The read pulse then transfers the atomic excitation into field 2,
with the resulting photon arriving at detector 2. We therefore expect to observe photon counting
events at detector 2 conditioned on both the write and read pulses. Indeed, this was observed, and
the resulting temporal profile for photon arrivals at detector 2 is shown in Fig. 9.4. The intensity of
the read pulse was about 100 times greater than that of the write pulse, so that, in contrast to field
1, field 2 was generated promptly, and with a temporal profile corresponding to the read pulse. The
observed singles rate at detector 2 was S2 ' 250 s−1. The efficiency η3→4 of the transfer from
atomic to field excitation can be estimated from the ratio of this rate to that observed at detector 1

η3→4 '
S2

S1
= 0.63. (9.30)

The DLCZ protocol has potential in quantum communication systems both because of its pow-
erful nature, and due to its insensitivity to a variety of loss mechanisms, including inefficiencies
in transmission and detection of fields 1 and 2. However, in an actual experiment, various non-
ideal factors do lead to deterioration of correlation between fields 1 and 2. In our case, one of the
most significant of such factors was uncorrelated background counts observed by our detectors.
Background photon counting events from various sources were observed by detectors 1 and 2.
The random nature of these counts reduced the coincidence rate between fields 1 and 2. The rate
of background counts from various sources was analysed in the following way. Firstly, remov-
ing the atomic ensemble, we observed 100 background counts per second from optical fields. A
proportion of these counts could be attributed to each relevant field by systematically blocking
fields and examining how the background counts varied. We found that almost all of the 100 opti-
cal background counts arose from the broad spectrum emission from our diode lasers, with small
contributions from the optical pumping fields and the write and read pulses. Background counts
were also present due to fluorescence of the atomic ensemble. These counts could be isolated by
blocking the write and read pulses, with the atomic ensemble present. 10 (20) background counts
per second were observed from the atomic ensemble at detector 1 (2). Dark counts with the inputs
to the fibres blocked were less than 5/s. The total background counting rates were therefore more
than a factor of two smaller than the counting rates for fields 1 and 2.
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9.4.3 Conditional photon statistics of the output field

To examine the non-classical nature of the correlation between fields 1 and 2 we counted coin-
cidences, firstly between fields 1 and 2, and then within each field individually. The between-
field coincidences were obtained by directing fields 1 and 2 to detectors 1 and 2 respectively and
straight-forwardly analysing the coincidences between the detectors. Within-field coincidences
were analysed by splitting the relevant field on a 50/50 beam splitter and analysing coincidences
between the two output fields, as discussed in Section 9.3. In all cases, the detectors were gated ON
for a duration of T = 60 ns around the peak of the interrogated field. The resulting photocurrents
were then directed to a time-interval analyser (TIA) configured in a standard fashion for measure-
ment of photocurrent correlations [230]. A photon count within the gating window of detector
1 acted as a start event for the TIA. The TIA then recorded the time separation τ between this
start event, and a corresponding stop event - the detection of a photon by detector 2. Over many
experimental trials, we thereby acquired time-resolved coincidences ni,j(τ) between the fields i
and j interrogated by detectors 1 and 2, respectively. In Section 9.3 we saw that to demonstrate
violation of the Cauchy-Schwarz inequality, the coincidences both within a single experimental
trial k, and between independent trials {k, l} must be determined. Setting the maximum interval
between start and stop events recorded by the TIA to be much larger than the duration of a single
trial, recorded information about both coincidence types into ni,j(τ).

Typical examples of the accumulated coincidences nij(τ) between fields {1, 2}, {1, 1}, and
{2, 2} are shown in the left hand column of Fig. 9.5. All three traces are strongly peaked with
successive peaks separated by the time between trials ∆t = 4 µs. Notice that in all cases the
number of coincidences from a single trial (τ > ∆t) is enhanced compared to those from different
trials (τ < ∆t). Between the fields, this enhancement is due to the photon pairing occurring
in our atomic ensemble, and within each individual field it is due to the thermal and therefore
super-Poissonian nature of the field. The enhancement is shown more clearly in the plots in the
right hand column of Fig. 9.5, which expand the time axis from the left hand column. In this
case, the coincidence counts between independent trials {k, l}, where l = k + 1, . . .k + 10, have
been offset by (l − k)∆t, so as to coincide with the single trial data, and then averaged with
mij(τ) = 1

10

∑k+10
l=k+1 nij(τ + (l− k)∆t).

To obtain a quantitative assessment of our accumulated coincidences nij(τ), we separate τ
into the time interval over which single trial coincidences are observed, and that over which differ-
ent trial coincidences are observed. We then sum the total number of coincidences in each of those
time periods, and normalise appropriately for comparison. The total number of coincidences be-
tween trials {k, l} of the detected fields {i, j} can be extracted by summing ni,j(τ) over the time
interval ∆τ = τ̄

{k,l}
ij ± T ,

N
{k,l}
ij =

τ̄
{k,l}
ij +T∑

τ=τ̄
{k,l}
ij −T

ni,j(τ), (9.31)

with τ̄{k,l}ij being the mean separation of fields {i, j} between the trials {k, l}, given by τ̄{k,l}ij =

(l−k)∆t+τ̄
{k,k}
ij , where τ̄{k,k}12 = δt and τ̄{k,k}ii = 0. The total number of single trial coincidences

Nij is then given directly by N{k,k}ij . For improved statistical accuracy, we compare these total
single trial coincidences with the mean of the total coincidences from each of the different trial
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Figure 9.5: Left column - time-resolved coincidences nij(τ ) between the {1, 1}, {2, 2}, and {1, 2} fields
are displayed as a function of the time separation between the events τ . Right column - the time axis is
expanded to a time interval of 250 ns with τ = 0 set to the center of the gating windows for n11(τ ), n22(τ ),
and n12(τ ), respectively. The larger peak nij(τ ) corresponds to coincidences from the same trial k, while
the smaller peak mij(τ ) corresponds to coincidences from different trials as defined in the text.

data sets N ′ij .

Nij = N
{k,k}
ij (9.32)

N ′ij =
1

10

k+10∑

l=k+1

N
{k,l}
ij . (9.33)

The number of single trial and different trial coincidences between fields i and j can be re-
lated directly to the respective coincidence rates, and therefore also to the normalised correlations
function gij

gij =
Cij
C ′ij

=
Nij

N ′ij
, (9.34)

and so, determining Nij and N ′ij ∀ {i, j} ∈ {1, 2}, provides g11, g22, and g12, allowing a direct
test of the Cauchy-Schwarz inequality.
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9.4.4 Observed violations of the Cauchy-Schwarz inequality

From the data in Fig. 9.5 we find that the individual beam normalised correlations functions are

g11 = 1.739± 0.020 (9.35)

g22 = 1.710± 0.015, (9.36)

which corresponds to our prediction from Section 9.3.2 that fields 1 and 2 should both individually
exhibit thermal statistics with g̃1,1 = g̃2,2 = 2. The experimentally determined values of g11 and
g22 are moderately degraded here due to various sources of background counts. By contrast, for
cross-correlations between fields 1 and 2, we find

g12(δt) = 2.335± 0.014, (9.37)

with δt = 405 ns, so that the correlations exhibited between the fields are stronger than those
exhibited by a thermal state. The inequality of Eq. (9.15) is then given by

[g2
12(δt) = 5.45± 0.11] � [g11g22 = 2.97± 0.08], (9.38)

where all errors indicate the statistical uncertainties. Clearly, this is observation is in strong con-
tradiction with the Cauchy-Schwarz inequality. We can, therefore, conclude that fields 1 and 2

emitted from our atomic ensemble exhibit non-classical correlations.

As discussed previously, a number of non-ideal factors exist in any experimental implementa-
tion of this sort of protocol. These include inefficiencies in the detection of the light fields, random
background counts, and fluorescence from uncorrelated atoms. These imperfections degrade the
observed coincidences and thus the strength of violation of the Cauchy-Schwarz inequality. In Sec-
tion 9.3.2 we predicted that for an excitation probability per write pulse of p = 0.01, and in ideal
circumstances, the ratio of cross- to auto- correlations could be as high asR = g2

12/g11g22 = 2600.
In our experimental demonstration we observed only R = 1.84± 0.08. This discrepancy can be
fully explained from a detailed analysis of the imperfections in our experiment. Rather than per-
form that analysis here, I refer you to the supplementary notes attached to [206]. The conclusion
of that analysis is that, excluding detection efficiency, in our experiment the strength of Cauchy-
Schwarz violation was limited mostly by uncorrelated fluorescence from individual atoms in the
atomic ensemble. In future experiments this uncorrelated fluorescence could be reduced, or elim-
inated entirely, by moving to off-resonant excitation. A higher optical density would then be
required which could be achieved in several ways, for example by increasing the intensity of the
MOT cooling and trapping fields and therefore enhancing the density of atoms in the ensemble3.

An important assumption in our derivation of a Cauchy-Schwarz inequality in Section 9.3 was
the statistical independence of subsequent trials of the experiment. In our experiment we ensure
the independence of these trials by reapplying the MOT after every trial. The repumper field then
incoherently transfers any atomic population remaining in the |6S1/2, F = 3〉 level back to the
|6S1/2, F = 4〉 level. An examination of the data in Fig. 9.5 supports our claim of statistical
independence, with no statistically significant difference between of the number of coincidences
observed between trials {k, l}with l = k + 1, k+ 2, . . . , k+ 10.

3Some of these improvements have now been implemented, resulting in an enhanced ratio of cross- to auto- corre-
lations of R = 53 ± 2[262]
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9.5 Conclusion

In this Chapter we reported the generation of non-classically correlated photon pairs from an
atomic ensemble. This experiment represents the first enabling step towards the realisation of
the DLCZ protocol [21] for scalable quantum communication with atomic ensembles. Although
the complete DLCZ protocol was not demonstrated, the collective enhancement observed and
optical filtering techniques developed are of critically importance to its realisation. Furthermore,
our experiment provides a source of single photons in a well defined spatial mode ‘on demand’
[263], and has applications regarding the implementation of quantum memory [258, 264]. These
intrinsic merits suggest that further investigations in the same line could significantly enhance the
feasibility of universal quantum computation [17].



Chapter 10

Conclusions

10.1 Summary

This thesis investigated quantum optical techniques applicable to a quantum information network.
A pair of optical parametric amplifiers producing highly squeezed output fields were developed.
The field quadrature on which squeezing was observed could be stably controlled, and an optimum
of 4.4 dB of squeezing below the quantum noise limit was observed. We utilised this squeezing
in a number of experiments, and a summary of each is given below. The final experiment dis-
cussed in this thesis investigated quantum optical techniques related to cold atomic ensembles and
conditional measurements. A summary of this experiment is also given below.

10.1.1 Quantum information protocols

Entanglement is one of the most intriguing and powerful aspects of quantum mechanics. Indeed, it
is one of the core resources utilised in the field of quantum information science. We experimentally
generated entanglement between the amplitude and phase quadratures of a pair of fields by inter-
fering the outputs of our optical parametric amplifiers on a 50/50 beam splitter. The resulting state
was shown to exhibit non-classical correlations through verifications of a wavefunction insepara-
bility criterion, and the original EPR paradox gedanken experiment. We thoroughly characterised
the entanglement by specifying its correlation matrix, and proposed a new characterisation tech-
nique, the photon number diagram. This technique represents the entanglement in terms of mean
sideband photon numbers, and allows the efficacy of quantum information protocols using the en-
tanglement to be directly assessed. The entanglement was used to implement a quantum telepor-
tation protocol which was operated both in unity and non-unity gain regimes. The performance of
the protocol was analysed in terms of the fidelity between the input and output states, and through
a study of the signal transfer to; and reconstruction noise on; the output state. A new measure
of teleportation was proposed for protocols operating in the non-unity gain regime. This measure
was shown to have direct relevance to entanglement swapping protocols. We considered an appli-
cation of our entanglement to quantum secret sharing. Quantum secret sharing has the potential to
facilitate error correction in a quantum computer or communication system, and allows the secure
transmission of information even in the presence of malicious parties and faulty communication
channels. We demonstrated that quantum secret sharing can be successfully implemented using
our entanglement and quantum electro-optic feedforward. Furthermore, we showed that the secu-
rity of the scheme can be conveniently and arbitrarily enhanced by implementing a conventional
secret sharing scheme in conjunction to the quantum mechanical scheme.
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10.1.2 Interaction of optical fields with atomic ensembles

Techniques to utilise the interaction between optical fields and atomic media are essential to any
feasible quantum information network. In the continuous variable regime, quantum polarisation
states are of particular relevance since they have been shown to interact favourably with the col-
lective spin state of atomic ensembles, and do not require the universal local oscillator necessary
to implement a quantum information network using other continuous variable states. The polar-
isation state of an optical field can be characterised by its four Stokes operators. We used our
pair of quadrature squeezed fields to demonstrate various forms of polarisation squeezing, and
in one case demonstrated simultaneous squeezing of three of the four Stokes operators. We then
extended our analysis to polarisation entangled states, demonstrating the transformation of our
quadrature entanglement onto a polarisation basis. The entanglement was then evidenced by non-
classical correlations between two Stokes operators. Interacting this entanglement with a pair of
atomic ensembles could produce a spatially separated, macroscopic, atomic entangled state. We
proposed an extension of our scheme, utilising two quadrature entangled states, that would provide
entanglement between all four Stokes operators. Finally, we considered the interaction of optical
Raman pulses with a Cesium atomic ensemble. Such a system has been shown to have all of the
essential characteristics necessary to implement an effective quantum information network. We
demonstrated the first primitive of this network by observing non-classical correlations between
pairs of photons emitted from the ensemble. The non-classicality of these correlations was verified
thorough a violation of the Cauchy-Schwarz inequality. Furthermore, the time interval separating
the photons could be controlled experimentally, and the photons were emitted into a well defined
spatial mode.

10.1.3 Progress towards quantum enhancement of measurement devices

Optical measurements are ultimately limited by the quantum noise of the optical fields involved.
Squeezed fields can be used to reduce this noise and therefore improve the sensitivity of the mea-
surement. However, most signals of interest occur in the Hz to kHz regime, and squeezing is
usually limited to frequencies in the MHz. It is therefore essential to develop methods to produce
squeezing at lower frequencies. In our case, as a result of classical noise on our laser source no
squeezing was observed on our optical parametric amplifier outputs at frequencies below 2 MHz.
Placing each optical parametric amplifier within one arm of a Mach-Zehnder interferometer, we
demonstrated 29 dB of suppression of this noise, producing a stably locked squeezed vacuum with
squeezing at frequencies as low as 210 kHz. Furthermore, although not discussed explicitly in
this thesis, we performed the first demonstration of a two dimensional displacement measurement
with accuracy better than the quantum noise limit.

10.2 Outlook

10.2.1 Potential technological improvements

The level of squeezing observed on the output fields from our optical parametric amplifiers was
limited primarily by their escape efficiency. This efficiency is determined by the ratio of the output
coupling to the intra-resonator losses, and could be improved by increasing the transmissivity of
the output couplers. More intense second harmonic pumps would then be required for a given level
of deamplification. Our modelling indicates that this could be achieved by decreasing the output
coupling of the second harmonic generator. The intra-resonator losses are contributed by linear
absorption in our MgO:LiNbO3 crystal, imperfect optical coatings, and green induced infrared



§10.2 Outlook 203

absorption. As it stands, it is difficult to see how the losses due to linear absorption and optical
coatings could be reduced, and the significance of green induced infrared absorption is yet to
be determined. In future optical parametric amplifier configurations, the second harmonic pump
power will certainly be increased, so that at some stage green induced infrared absorption, which
scales with the second harmonic power, will have an effect on the observed level of squeezing.
It has been demonstrated recently that increasing the MgO doping level in MgO:LiNbO3 can
eliminate this form of absorption. Future investigations should therefore implement this higher
level of doping. The stability of our system is currently limited due to temperature fluctuations
in the optical parametric amplifiers. Implementation of a ‘push-pull’ temperature control system
using peltier elements, with the temperature sensor closer to the MgO:LiNbO3 crystal, should
provide much faster and more stable control. An examination of techniques to derive optical error
signals for the phase matching condition of MgO:LiNbO3 is also worthwhile.

10.2.2 Future direction for the entanglement resource

The entanglement resource developed during the course of my Ph.D. has potential for many quan-
tum information protocols. Chapter 6 describes quantum secret sharing which is one such protocol,
and a scheme to produce polarisation entanglement between all four Stokes operators using a pair
of these resources is given in Chapter 4. Other potential applications include quantum cryptog-
raphy, where the security of communication is enforced by quantum mechanics; the creation of
entanglement between a pair of spatially separated atomic ensembles; dense coding, as discussed
in Chapter 4; and entanglement swapping, as discussed in Chapter 5.

Our entanglement resource could also enable further studies into the nature of quantum me-
chanics. A causal test of the EPR paradox is yet to be performed. Such a test would require the
development of fast switching technology to switch homodyne detection between the amplitude
and phase quadratures of a field, and that the entangled beams be 10-100 times further spatially
separated than in our present configuration. Several proposals have also been made for tests of
Bells inequality with continuous variable entanglement. Such a test is relevant since continuous
variable entangled states can be thought of as more macroscopic than the microscopic particles
that these tests have been performed with thus far. At present, no experimentally feasible scheme
to test Bells inequality exists for our entanglement. However, with continuing experimental and
theoretical development such an experiment could be feasible in the near future.

Further investigation of techniques to characterise continuous variable entanglement is also
worthwhile. The photon number diagram introduced in Chapter 4 could be extended to explain
all ten independent elements of the correlation matrix. The question of whether n̄min is strictly a
good measure of entanglement also requires further investigation.

10.2.3 The status of quantum information networks

A truly feasible quantum information network is still far from reality. Implementation of such
a system will require significant advances in our ability to store and manipulate quantum states,
transfer them efficiently between atomic and optical media, and correct errors introduced during
the above processes. A number of systems offer potential, and perhaps one of the most promis-
ing is atomic ensembles manipulated using optical pulses and conditionally prepared using single
photon detection. In Chapter 9 we demonstrated symmetric atomic entanglement in such a system,
and generated non-classically correlated photon pairs. This is the first step towards implementa-
tion of a quantum information network. The next logical step is to perform the same manipulations
on a pair of atomic ensembles. A joint conditional measurement on the fields emitted from the
ensembles would then prepare them in an entangled state. Further such manipulations could be
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performed to distribute entanglement across a network of atomic ensembles. It has been theoret-
ically demonstrated that entanglement purification, error correction and quantum memory can be
facilitated using atomic ensembles. Experimental demonstrations of these techniques are required
before the feasibility of atomic ensemble quantum information networks can be accurately judged.
Investigations of the limiting factors for the coherence time between the ground energy levels of
the ensemble are also required.

The techniques developed in Chapter 9 for manipulating atomic ensembles to produce non-
classically correlated photon pairs should in-and-of themselves be extended. We demonstrated
that the spatial mode of the emitted photons was well defined, and that the arrival time for each
photon was controlled by the timing of the optical pulses manipulating the ensemble. The system,
therefore, has potential as a source of single photons ‘on demand’. The effective implementation
of this single photon source, however, requires further investigations of the spatial and temporal
characteristics of the emitted photons; as well as improvements in the efficiency of the protocol,
and a reduction in the level of background photon counting events.

10.2.4 Potential enhancement of measurement devices

By placing our optical parametric amplifiers within the arms of a Mach-Zehnder interferometer,
we observed squeezing at frequencies as low as 210 kHz. Effective enhancement of most measure-
ment devices, however, requires squeezing at significantly lower frequencies. The frequency of
our squeezing was ultimately limited from below by uncorrelated noise introduced in the optical
parametric amplifiers. As discussed in Chapter 3, this noise should become common mode if a
ring resonator is used to generate the two squeezed fields instead of two independent resonators.
The noise would then cancel at the dim output of our interferometer, and squeezing should be
observed down to much lower frequencies. Other factors such as noise in the control system are
then expect to limit the achievable frequencies, these noise sources require investigation.

One measurement system that does not require squeezing at low frequencies is the atomic force
microscope. This microscope presently provides higher resolution when imaging alive cells that
any alternative. Atomic force microscopes consist of a minute cantilever which can have resonance
frequencies in the high MHz. Small forces due to the presence of the sample under investigation
cause the amplitude and frequency of the cantilever resonance to change. These changes can be
observed by reflecting an optical field from the cantilever and measuring displacements of the
field. A specially configured optical field squeezed at the cantilever resonance frequency could be
used to enhance the sensitivity of this measurement.



Appendix A

A more detailed analysis of quantum
optical sidebands

A.1 The time domain annihilation operator

The time domain annihilation operator a(t) is given by the sum of the frequency domain annihila-
tion operators at all frequencies with appropriate phase relationships,

a(t) =

∫ ∞

0
â(ω)eiωtdω (A.1)

=

∫ ∞

−∞
H (ω) â(ω)eiωtdω = F−1 (H(ω)â(ω)) (A.2)

where H(ω) is the Heaviside step function. Each measurement performed can be thought of as a
combined measurement on all of the infinite electromagnetic oscillators defining each frequency
component of the electromagnetic field being detected.

The time domain annihilation operator a(t) has properties similar to its frequency domain
counterpart. It satisfies the Boson commutation relation

[a†(t), a(t)] = 1, (A.3)

and analogous amplitude and phase quadrature operators can be defined

X+(t) = a†(t) + a(t) =

∫ ∞

0

â†(ω)e−iωtdω +

∫ ∞

0

â(ω)eiωtdω (A.4)

X−(t) = i
(
a†(t)− a(t)

)
= i

∫ ∞

0
â†(ω)e−iωtdω − i

∫ ∞

0
â(ω)eiωtdω. (A.5)

It is then relatively easy to show that for ω > 0

F
(
X±(t)

)
= X̂±(ω), (A.6)

so that the frequency domain quadrature operators can be obtained from measurements in the time
domain.

A.1.1 Annihilation operators in a rotating frame

In an experimental situation we usually have an intense laser beam at frequency Ω ≈ 1014 Hz.
The fastest detectors presently available can resolve frequencies as high as 1010 Hz; but this is still
four orders of magnitude smaller than our laser frequency. We therefore cannot distinguish time
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domain fluctuations in the frequency regime of interest, and require other less direct methods to
measure the properties of the electromagnetic oscillators in this system. One such method, and
the one used throughout this thesis, is to detect the laser field on a photodiode and analyse the
Fourier components of the resulting photocurrent. This mixes the fluctuations of the field down by
the laser frequency, shifting fluctuations at frequencies close to the laser carrier frequency into an
observable frequency range.

A typical laser field has a very narrow linewidth δν, with the power within that linewidth of
its peak frequency Ω being much larger than the power in the same linewidth around any other
frequency

∫ Ω+δν

Ω−δν

〈
â†(ω)â(ω)

〉
dω �

∫ Ω′+δν

Ω′−δν

〈
a†(ω)â(ω)

〉
dω (A.7)

for all Ω′ < Ω−δν and Ω′ > Ω+δν. Therefore only the field amplitude inside the laser linewidth
and fluctuations that beat with it will be observed on detection. Let us, therefore, transform our
analysis to the rotating frame of the light field, ãrotate(t) = a(t)e−iΩt, ω → ω + Ω, Eq. (A.2) can
then be written

ãrotate(t) =

∫ ∞

−∞
H(Ω + ω)âΩ+ω(ω)eiωtdω, (A.8)

where âΩ+ω(ω) is the annihilation operator for the electromagnetic oscillator at frequency Ω + ω,
which in this frame rotating at Ω appears at frequency ω. ãrotate(t) satisfies the Boson com-
mutation relation, and results in rotating time domain quadrature operators defined in an identical
manner to those in Eqs. (A.4) and (A.5). We can obtain the rotating frequency domain annihilation
operator by taking the Fourier transform of ãrotate(t)

ârotate(ω) = F
(
δãrotate(t)

)
= H(Ω + ω)âΩ+ω(ω). (A.9)

The rotating frequency domain quadrature operators at frequency ω > −Ω can then be directly
related to the quadrature operators of the electromagnetic oscillator at frequency Ω + ω, and can
be obtained from the Fourier transform of the relevant rotating time domain quadrature operator

X̂±rotate(ω) = F
(
X̃±rotate(t)

)
= X̂±Ω+ω(ω). (A.10)

A.2 Detection of an optical field

We have just seen how the quadrature operators of individual electromagnetic oscillators can be
extracted from the respective time domain quadrature operators. We will now look at how these
operators can be observed in an experiment.

The linewidth of a typical laser is usually much smaller than its oscillation frequency δν �
Ω. In our case δν ≈ Ω/1011, and is approximately 5000 times smaller than the frequencies
where measurements were taken for this thesis. The large coherent amplitude of the laser typically
obscures the quantum fluctuations of electromagnetic oscillators within its linewidth. We therefore
concentrate on the quantum fluctuations at ω > δν. In this case it is reasonable to neglect the
quantum fluctuations within the laser linewidth; and to approximate the laser as a mono-chromatic



§A.2 Detection of an optical field 207

field at frequency Ω with coherent amplitude α(t). Eq. (A.8) then becomes

ãrotate(t) =

∫ δν

−δν
âΩ+ω(ω)eiωtdω (A.11)

+

∫ ∞

−∞
[H(−ω − δν) +H(ω − δν)]H(Ω + ω)âΩ+ω(ω)eiωtdω

= α(t) +

∫ ∞

−∞
[H(−ω − δν) + H(ω − δν)]H(Ω + ω)âΩ+ω(ω)eiωtdω. (A.12)

We define the coherent amplitude of the laser α(t) to be real and positive here, without loss of
generality.

Let us now consider the result of photodetection of ãrotate(t). The photodetection process
is described by the photoelectric effect, with electrons being liberated from a material when it is
subjected to a radiant field. Within the bandwidth B of the detectors, the photocurrent produced
is directly proportional to the number of photons in the field

i(t) = gDñ(t) = gDã
†(t)ã(t), (A.13)

where gD is the gain of the detection process. Given that B < Ω, detection of the field given in
Eq. (A.12) would therefore result in the photocurrent

i(t) = gDã
†
rotate(t)ãrotate(t) (A.14)

= gD

(
α(t) +

∫ B

−B
[H(−ω − δν) + H(ω − δν)] âΩ+ω(ω)eiωtdω

)†
×

(
α(t) +

∫ B

−B
[H(−ω − δν) +H(ω − δν)] âΩ+ω(ω)eiωtdω

)
(A.15)

= gDα(t)2 + (A.16)

gDα(t)

∫ B

−B
[H(−ω − δν) + H(ω − δν)]

(
âΩ+ω(ω)eiωt + â†Ω+ω(ω)e−iωt

)
dω.

Here, since the power within the laser linewidth of its peak frequency Ω is much larger than the
power in the same linewidth around any other frequency (see Eq. (A.7)), we have neglected all
terms that do not contain α(t). This process is termed the linearisation approximation. Since the
optical beams used for the majority of the work presented in this thesis were bright, it is valid
throughout, with the exception of Chapter 9 where experiments were performed involving single
photon Fock states. Detailed discussions of the linearisation approximation may be found in the
theses of Ping Koy Lam [75] and Ben Buchler [76].

Let us now take the Fourier transform of the detected photocurrent given in Eq. (A.16), at
frequencies above the laser linewidth and below the bandwidth of our detectors it is given by

i(ω) = F(δi(t)) (A.17)

= gDα(t)

[
F
(∫ B

−B
âΩ+ω(ω)eiωtdω

)
+ F

(∫ B

−B
â†Ω+ω(ω)e−iωtdω

)]
(A.18)

= gDα(t)
[
â
†
Ω−ω(ω) + âΩ+ω(ω)

]
(A.19)

= gDα(t)X̂+
Ω+ω(ω), (A.20)

So we see that the component of the Fourier transform of the detected photocurrent at frequency
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ω yields the amplitude quadrature of the electromagnetic oscillator at frequency ω. Of course, the
current i(ω) contains components at both positive and negative frequencies. In practise we do not
distinguish between the components at frequencies ±ω and rather analyse the current

I(ω) = i(ω) + i(−ω) = gDα(t)
(
X̂+

Ω+ω(ω) + X̂+
Ω−ω(−ω)

)
. (A.21)

It is then clear that we are performing a joint measurement on electromagnetic oscillators at fre-
quencies ±ω. The annihilation operator associated to this measurement âsideband(ω), which we
term the sideband annihilation operator, is given by

âsideband(ω) =
1√
2

(âΩ−ω(−ω) + âΩ+ω(ω)) , (A.22)

where we have introduced the factor of 1/
√

2 to retain the Boson commutation relation.

A.3 System time delays and the sideband operator

In the previous analysis we showed that the sideband annihilation operator under interrogation
in our experiments is given by the sum of the annihilation operators at frequencies Ω ± ω, and
can be obtained from the Fourier transform of the rotating time domain annihilation operator. To
analyse a typical system we propagate the rotating time domain field annihilation operator through
the system, using the linearisation approximation where necessary, and after detection perform a
Fourier transform to yield the relevant frequency domain operator. However, in this case, we do
not have access to ãrotate(t), but rather ãrotate(t+δt(ω)), where δt(ω) is the time delay associated
with propagation through the system and is, in general, a function of ω. This time delay rotates
the phase of each of the electromagnetic oscillators comprising the field by φ(ω) = ωδt(ω). This
phase shift must be taken into account when calculating âsideband(ω)1. It is relatively easy to show
that

ârotate(ω) = e−iφ(ω)F (δãrotate(t+ δt(ω))) . (A.23)

Assuming that φ(−ω) = −φ(ω), which is valid for the situations considered in this thesis, we
then see that

âsideband(ω) = e−iφ(ω)F (δãsideband(t+ δt(ω))) , (A.24)

where the phase delay φ(ω) is given by

e−iφ(ω) =

√√√√F†
(
ãrotate(t+ δt(ω))

)

F
(
ã†rotate(t+ δt(ω))

) . (A.25)

Note that we are ultimately only interested in the variances of the appropriate sideband quadrature
operators. These variances are independent of φ(ω), so that an explicit calculation or measurement
of φ(ω) is not required. Throughout this thesis we have, as is convention, neglected to explicitly
include the φ(ω) term.

1If it is not taken into account the rotating frequency domain quadrature operators become complex. Since they are
defined as X̂+

sideband(ω) = âsideband(ω) + â†sideband(ω) and X̂−sideband(ω) = i(â†sideband(ω) − âsideband(ω)) which
are necessarily real, this poses a contradiction.
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In the above we have shown that even though our detectors have a bandwidth smaller than
the frequency of the electromagnetic oscillators we are interrogating, our detection technique can
provide measurements on the amplitude quadrature of a valid annihilation operator âsideband(ω).
This operator can be related to the annihilation operators of a pair of electromagnetic oscillators at
frequencies ω away from the laser frequency. This pair of operators can be thought of as sidebands
on either side of the carrier, and henceforth we term this composite system the sideband picture.
We have shown also that âsideband(ω) can be obtained from the Fourier transform of the rotating
time domain annihilation operator.
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Appendix B

Electronic circuits

B.1 Detector circuits
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Figure B.1: Typical low noise, high quantum efficiency RF detector circuit. Original design: Malcolm
Gray, Artwork: Russell Koehne. Note that this schematic is only an example of the detectors we used to
detect quadrature fluctuations. Each circuit was typically modified to be optimised for the level of power
available, the frequency of interest, and the sensitivity of the application to detector darknoise.
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Figure B.2: Tilt detector circuit. Original design: Malcolm Gray, Artwork: Russell Koehne.
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B.2 High voltage amplifier circuit
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B.3 Servo circuits

V
R
2

1
K

R
1

2
0
K

V
R
1

1
K

R
2

2
0
K R
1
4

2
0
0
K

R
1
3

2
0
0
K

V
R
3

1
K

R
1
6

1
0
K

R
1
9

1
0
0
K

C
2
7

1
0
n
F

S
1

S
P
S
T

50 mV nominal

 input signal

1
0
0
 H
z 
C

o
rn
er

 F
re
q
.

R
2
4

1
8
K

R
2

5

1
8
K

C
2
8

4
7
0

p
F

C
2
9

4
7
0

p
F

R
2
6

9
.1
K

C
3
0

1
n
F

R
3
1

5
K

R
3
0

1
3
K

R
3
2

4
3
K

C
3
1

1
n
F

+
1
5

-1
5

C
1
8

1
0
0
n
F

C
6

1
u
F

R
7

1
0
R

C
1
9

1
0
0
n
F

C
7

1
u
F

R
8

1
0
R

C
2
6

6
.8
n
F

-1
5

C
1
6

1
0
0
n
F

C
4 1
u
F

R
6

1
0
R

-1
5

C
1
3

1
0
0
n
F

C
2

1
u
F

R
4

1
0
R

+
1
5

C
1

5

1
0
0
n
F

C
3 1
u
F

R
5

1
0
R

+
1
5

C
1
2

1
0
0
n
F

C
1 1
u
F

R
3
1
0
R

R
1

5

1
M

C
2
4

1
0
u
F

 B
P

V
R
4

1
0
K

 T
ri

m

R
3
6

2
2
0
K

R
4
1

2
2
0
K

+
1
5

C
2
0

1
0
0
n
F

C
8

1
u
F

R
9

1
0
R

-1
5

C
2
1

1
0
0
n
F

C
9

1
u
F

R
1
0

1
0
RC
3
3

7
n
F

-5
V

+
5
V

C
2

5

1
6

p
F

32
6

7 4

U
8

O
P
-0
7

32
6

7 4

U
9
O
P
-0
7

32
6

7 4

U
5

O
P
-2
7

R
2
7

5
.1
K

R
2
8

5
.1
K

R
2
3

1
0
0
K

R
3
4

5
1
0
K

R
3

5

5
1
K

R
2
1

1
0
0
K

R
2
2

1
0
0
K

R
3
9

2
2
0
K

R
4
0

2
2
0
K

R
3
3

3
9
0
K

R
2
0

1
0
0
K

R
3
8

2
2
0
K

R
4
2

2
2
0
K

R
4
3

1
1
0
K

R
3
7

2
2
0
K

V
R

5

1
0
K

 P
re
c

+
5
V

-5
V

C
3
2

2
2
n
F

-1
5

+
1
5

-1
5

+
1
5

-1
5

+
1
5

C
2
2

1
0
0
n
F

C
1
0

1
u
F

R
1
1

1
0
R

R
1
2

1
0
RC
2
3

1
0
0
n
F

C
1
1

1
u
F

32
6

7 4

U
4

O
P
-2
7

32

6

7 4

U
2

O
P
-2
7

32

6

7 4

U
3

O
P
-2
7

32

6

7 4

U
1

O
P
-2
7

32

6

7 4

U
7

O
P
-0
7

2 4

6
V

in
V

o

G
N
D

U
6
R
E
F
0
2

R
1
8

1
0
K R
2
9

5
.1
K

R
1
7

1
0
K

C
1
4

1
0
0
n
F

C
1
7

1
0
0
n
F

C
5

1
u
F

-1
5

+
1
5

+
1
5

B
N
C
1

+
I/
P

B
N
C
2

-I
/P

B
N
C
3

-O
/P

B
N
C
4

+
O
/P

Figure B.4: Typical Piezo servo circuit. Original design: Malcolm Gray, Artwork: Russell Koehne. Note
that the exact design of the Piezo servos used in the experiments reported in this thesis, although all based
on the design reporduced here, varied from servo to servo.
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Figure B.5: Laser controlling servo circuit. Original design: Malcolm Gray, Artwork: Russell Koehne.
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B.4 Temperature controller circuits
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Figure B.6: Front end interface of home built milli-Kelvin temperature controller. Original design:
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Appendix C

Sundry equipment and mechanical
components

Component Manufacturer Part number Notes

Sundry
Optical table Newport RS2000-410-12 1.2×3×0.3 m
Optical table isolation legs Newport I-2000-N19.5 N/A
Spectrum analyser Hewlett Packard E4405B N/A
Power meter Newport 840-C N/A
Hemilithic MgO:LiNbO3 crystal N/A PMS Optik 5×7.5×2.5 mm
Crystal ovens ANU Physics N/A N/A
Opto-electronic devices
532 nm optical isolator Linos photonics 501013202 40 dB iso.
1064 nm optical isolator Gsänger FR 1060/5 40 dB iso.
Phase modulators Gsänger LM0202-PHAS N/A
Amplitude modulators Gsänger LM0202 P 5W IR N/A
Optical mounts
Flipper mirror mounts New Focus 9891M 1 inch
Flip-up mirror mounts New Focus 9897M 1 inch
Corner mounts New Focus 9809M 1 inch
Optics mounts New Focus 9807M 1 inch
Kinematic Stages New Focus 9081M N/A
Optics mounts Radiant Dyes RD2-L-3025 1 inch
Lees Optics mounts Linos LM2 1 inch
XY mounts OWIS GmbH 14.202.0025 25 mm
XYZ mounts Newport M-LP-1-XYZ 1 inch
Misc. optical stands ANU Physics N/A height 7.5 mm
Basic mounts Thorlabs FMP100 1 inch
Kinematic Platforms Thorlabs KM1-B/M N/A
Prism mounts Thorlabs PM1/M N/A
Rotation mounts Thorlabs RSP1/M 1 inch
Detectors
High efficiency photodiodes Epitaxx ETX500 N/A
Quadrant detectors ANU Physics N/A InGaAs
RF detectors ANU Physics CLC420/430 InGaAs
Monitor detectors ANU Physics N/A Silicon

219



220 Sundry equipment and mechanical components

Electronic items
2 MHz HP filters Dunestar 400-HPF N/A
Variable attenuators RLC electronics LAV-50-B N/A
Low-pass filters Mini-circuits BLP-1.9,5, . . . N/A
High-pass filters Mini-circuits BHP-25,50, . . . N/A
Fixed attenuators Mini-circuits CAT-1,3, . . . N/A
Low noise amplifiers Mini-circuits ZFL-500 N/A
High power amplifiers Mini-circuits ZHL-1A N/A
Biased tees Mini-circuits ZFBT-4R2GW 25 dB iso.
Power splitters Mini-circuits ZSC-2-1 N/A
Mixers Mini-circuits ZP-1 N/A
Hybrid junctions M/A-COM HH-106 2-200 MHz
PZTs Piezomechanik 500/10-5/5 80 kHz res. freq.
PZTs Piezomechanik 500/15-8/5 80 kHz res. freq.
Power Supplies Hewlett-Packard E3612A 120 V/0.25 A
Signal generators Hewlett-Packard HP 8656A N/A
Signal generators SRS DS345 N/A
HV amps ANU Physics N/A MK III
Servos ANU Physics N/A MK III
Biased tees ANU Physics N/A f3dB ∼ 500 kHz

Table C.1: Sundry equipment used for the experiments of this the-
sis.
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