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Abstract

This thesis discusses optical homodyne tomography (OHT), a powerful new technique
for quantum state reconstruction (QSR). In contrast to conventional quantum-optical
measurement, such as direct intensity measurement and standard homodyne detection,
OHT can provide complete information of the quantum state, in terms of the recon-
structed Wigner function.

A semiclassical theory, developed to model the OHT system, is presented. No ap-
proximation was made for the quantum state itself so this model can preserve any non-
Gaussian feature of the state being measured. An asynchronous demodulation scheme
was included in the modeling and phase quadrature diffusion in phase space was pre-
dicted in this case.

Numerical methods were implemented for data acquisition/binning and the inverse
Radon transform, the latter is for Wigner function reconstruction. Combining this with a
sophisticated hardware configuration, and precise optical phase extraction, it was possi-
ble to investigate some classical and quantum states. As an alternative method for doing
the inverse Radon transform, an integral was developed using the degenerate hypergeo-
metric function.

We used OHT to measure the amplitude and phase noise of a diode pumped Nd:YAG
laser. This phase sensitive technique together with a high finesse optical cavity config-
uration, gave us the full noise spectra for both the amplitude and phase noise. Elliptic
super-Poissonian Wigner functions were reconstructed and the phase noise was found to
dominate in most radio frequency (RF) regimes. An unknown signal embedded in the
laser system was found to cause phase quadrature diffusion.

By means of modulation-switching and phase-unlocking, classical non-Gaussian states
were produced and their Wigner functions reconstructed. Two-peak and phase quadra-
ture diffused Wigner functions were observed. The ability of OHT to simultaneously
measure the signal and noise of an unknown state was demonstrated. It is shown to be
an effective technique for measuring the signal to noise ratio (SNR) in any quadrature.

OHT was used to measure a squeezed vacuum state and visualise the squeezing ef-
fect in phase space. Detailed analyses of the reconstructed Wigner function and the mea-
sured probability density functions (PDF’s) were made and compared. Some extra noise
sources were identified and their effects discussed. Higher order moments were calcu-
lated and the ability and limitations of realistic OHT assessed.

An overview of possible techniques for producing quantum non-Gaussian states was
made and a method to generally calculate the Wigner functions of the output states of
self-phase modulation and cross-phase modulation presented.
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The Tao (Way) that can be told of is not the eternal Tao;
The name that can be named is not the eternal name.
The Nameless is the origin of Heaven and Earth;
The Named is the mother of all things.
Therefore let there always be non-being so we may see their subtlety,
And let there always be being so we may see their outcome.
The two are the same,
But after they are produced, they have different names.
They both may be called deep and profound (hsüan).
Deeper and more profound,
The door of all subtleties!

Tao-te ching1, Lao Tzu

1English translation by Wing-Tsit Chan, in A source book in Chinese philosophy, Princeton university press,
New Jersey, 1963.





Chapter 1

Introduction

1.1 Overview of quantum state reconstruction

Classical physics was a beautiful dream of our universe. In the era of classical physics,
everything seemed predictable and deterministic. As long as you knew the initial con-
dition of an isolated system, using Newton’s law, you could precisely predict all future
behaviour of that system. Indeed, classical physics works incredibly well in the macro-
scopic world. However, at the beginning of the twentieth century, this dream was ter-
minated by quantum mechanics. This new theory was discovered when people tried to
explain some microscopic phenomena. Planck discovered a new law of black body radi-
ation and explained this law by a new concept — quanta [2, 3]. Einstein used the concept
of a photon to explain the photoelectric effect [4]. Later on modern quantum mechan-
ics emerged and is now the standard theory of all microscopic phenomena. Classical
physics turns out to be the good enough approximation of quantum mechanics for the
macroscopic world. According to quantum mechanics, we can not know the initial con-
dition precisely. For example, when we know the position of a particle precisely, we lose
all the information about its momentum. There is always a certain amount of uncertainty
in characterising an object. This is the famous Heisenberg uncertainty principle. This uncer-
tainty is of great importance in quantum optics, especially in squeezing experiments.

In the classical description of an object, if we simultaneously measure the position
and momentum of this object, we characterise the state of this object completely. Now,
according to quantum mechanics, this is no longer possible. An object is fully described
by its wave function. If we want to fully describe a quantum object, we have to know its
wave function, or some other equivalent information. This is the idea of quantum state
reconstruction (QSR). However, the wave function itself is normally not measurable. As
we will discuss in chapter 2, QSR is done by reconstructing the quasiprobability distri-
butions (QPD’s) or density matrices of quantum states. QPD’s and density matrices are
equivalent information to the quantum wave functions.

Bertrand and Bertrand [5] introduced tomography into quantum mechanics and
pointed out a way to reconstruct the Wigner functions (an important QPD, see chapter 2)
from marginals. However, the many works of QSR in quantum optics have been inspired
by another pioneering paper of Vogel and Risken [6]. They described a way to reconstruct
QPD’s from the measured quadrature amplitude distributions by optical homodyne mea-
surement. The first experiment of QSR was carried out by Smithey, et al. [7–9] in M. G.
Raymer’s group. The Wigner functions of a vacuum and a quadrature-squeezed state
were measured. In their implementation of balanced homodyne detection, a pulsed sig-
nal field ¥ x was superposed at a 50:50 beam splitter with a pulsed coherent-state field¥@OU¦ and they called this new technique optical homodyne tomography (OHT). Later on,
OHT was proposed and initiated by U. Leonhardt [10] and carried out for a continuous
wave light field by Breitenbach et al. [11, 12]. The Wigner functions of a continuous-wave,
strongly squeezed vacuum state and the squeezed coherent states were reconstructed in

1
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their experiment. From then on, OHT has been carried out in several experiments [13–
17] and also used to measure the phase noise of a diode pumped Nd:YAG laser [18, 19].
Besides optical state reconstruction, there are also reports of QSR for other quantum sys-
tems. The quantum state of a molecular vibrational mode was reconstructed using fluo-
rescence tomography by Dunn et al. [20]; the motional quantum state of a single ion in
an RF Paul’s trap was reconstructed by Leibfried et al. [21]; and the Wigner function of
an ensemble of helium atoms was reconstructed by Kurtsiefer et al. [22].

An alternative method to the Wigner function reconstruction is to reconstruct the den-
sity matrix of the quantum state in Fock representation [12, 21, 23–25]. This directly pro-
vides the density matrix elements § �¨hp©«ª$¬ �L
§g�  � of the state. This method is regarded
as a more direct way for calculating expectation values of variables. However in optics,
we find that if we want to visualise non-classical light, such as the squeezing ellipse, it is
better to reconstruct the Wigner function itself1.

A second alternative proposal for reconstructing the quantum states of light is the so-
called direct probing method [26–28] which uses a beam splitter to mix the signal beam
and a strong local oscillator. By choosing the transmittance of the signal beam close to
unity and varying the amplitude and phase of the local oscillator, the Wigner function of
the signal beam can be reconstructed in phase space point by point without the use of in-
tegration (please refer to Appendix B for a description of this method). This elegant and
simple method was also experimentally demonstrated by Banaszek et al. [29]. However,
the quantum efficiency of photon counters is normally much lower than that of photodi-
odes used in homodyne measurement, and the extra noise of the local oscillator can not
be canceled out as in a balanced homodyne scheme. These are clear drawbacks of the
direct probing scheme. However, it has been experimentally demonstrated by Munroe et
al. [30] that photon statistics can be retrieved from the phase-averaged quadrature-field
distribution. This can solve the problem of low quantum efficiency of photon counting.
Inspired by this method, another proposal, i. e., the so-called cascaded optical homodyn-
ing [31] was developed. This cascaded method combines the simplicity of local sampling
and the high quantum efficiency of balanced homodyning. It has not been experimen-
tally demonstrated yet.

In the area of QSR, there are many excellent theoretical developments. A good sum-
mary can be found in the book by U. Leonhardt [32]. Here we want to mention some
of them. It was found that the density matrix can be reconstructed via pattern func-
tions [33–42]. Leonhardt and Raymer proposed a way to infer the quantum state of a
wave packet from its position probability distributions [43]. Twin-beam [44] and multi-
mode [45–48] QSR schemes were also proposed. Finally, in the field of cavity QED, where
highly non-classical microwave fields can be generated (see section 9.1), beautiful theoret-
ical schemes have been proposed using magnetic tomography [49] or microwave seeding
[50, 51]. We note that the microwave seeding method is analogous to the direct probing
method [26–28] for optical state reconstruction. The relatively higher detection efficiency
of atoms in cavity QED makes this method very attractive. Reconstruction of an entan-
gled state in cavity QED was also proposed [52].

In conclusion, QSR is still a fast growing area of quantum optics and we should be
able to see some more exciting experimental and theoretical progress in the near future.

1Note that this statement is true for continuous variables. For discrete variables, such as polarisation of
photons, we need to reconstruct the density matrix in the appropriate basis.
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1.2 Motivation

The phase noise of a laser is of concern when we want to apply phase or frequency mod-
ulation and carry out measurements of these properties. However, most investigations
have been limited to the measurements of the linewidths of lasers. As a phase sensitive
technique, how can OHT help us in determining the full phase noise of a laser? We used
OHT and a high finesse cavity configuration to measure the phase noise spectrum as well
as the intensity noise spectrum of a diode pumped Nd:YAG laser.

The real strength of OHT is to reveal the non-Gaussian features of quantum and clas-
sical states and several fundamental and technical questions have to be addressed: To
what extent OHT reveals the non-Gaussian features of unknown states? What will be
the requirements for the electronic configuration as well as the numerical reconstruction?
How will modulation signals be represented in phase space? How will an asynchronous
demodulation scheme affect the result of OHT? This leads to our systematic investigation
of modulated coherent states where we used OHT to reconstruct their Wigner functions.
Different modulation and demodulation schemes were demonstrated.

Besides the measurements of classical states, questions arise on how OHT can help to
determine a quantum state. Will there be any difference between a classical state OHT
and a quantum state OHT? What are the capability and limitations of OHT for a quantum
state measurement? These points are answered through our experiments with squeezed
light where we used OHT to measure non-classical Wigner functions. As an example, we
used OHT to measure a squeezed vacuum state. Comparison between the result of OHT
and the conventional homodyne measurement was made and some extra noise sources
were identified and their effect discussed.

1.3 Thesis structure

An introduction to the basic phase space theory of quantum mechanics is given in chap-
ter 2. Some theoretical concepts for characterising quantum mechanical states will be ex-
plained. In particular, we introduce the Wigner function, an important quasiprobability
distribution of quantum states. We summarise different quantum-optical measurements
in chapter 3. OHT will be introduced in this chapter and a semiclassical model of the
OHT system will be provided. In chapter 4, we focus on the numerical implementation
of OHT. Data acquisition, binning and numerical realisation of the inverse Radon trans-
form will be discussed in detail. We also present our numerical simulation of quantum
state reconstruction in this chapter. Experimental details of the optics and electronics
used as well as the electronic configuration of OHT are discussed in chapter 5. In partic-
ular, we outline the formulas for optical cavity calculations, because optical cavities were
used in our laser noise measurement experiment. Chapter 6 is devoted to laser phase
noise measurement. We will discuss the difficulty of measuring the phase noise of a laser
and present our high finesse cavity configuration. We demonstrate the ability of OHT for
revealing the non-Gaussian features of unknown input states in chapter 7. Classical non-
Gaussian states were generated and reconstructed. Chapter 8 is about the application of
OHT to quantum state measurement. The state that will be investigated is a squeezed
vacuum state. In chapter 9 we will overview the progress and difficulty of producing
quantum non-Gaussian states and present our calculation for self-phase modulation and
cross-phase modulation. Finally in chapter 10 we will conclude this thesis and discuss
the future of OHT. The Appendices include the C programs for data binning and the
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inverse Radon transform.



Chapter 2

Basic phase space theory of quantum
mechanics

2.1 Introduction

In this chapter, we will discuss some basic concepts of quantum mechanics for character-
ising quantum states in the context of quantum optics. The focus will be the phase space
method because optical homodyne tomography (OHT) of quantum states is a phase
space reconstruction. First we will introduce some states of light and their quantum
features. Then we will introduce the concept of density operator in section 2.3. This leads
to the definition of quasiprobability distributions (QPD’s) and s-parameterisation in sec-
tion 2.4. Finally we will outline the properties of the Wigner function, an important QPD
of quantum states.

2.2 States of light

In quantum mechanics, we can fully describe a quantum state by a wave function (also
called state vector). There are some common quantum states of light in quantum optics
which we want to summarise here. First we note that there are two kinds of light field,
one is confined in an optical cavity ( i. e., standing waves), the other one is a traveling
wave light field. We don’t want to distinguish them in our general discussion.

(a) Fock state �  � .
These are the eigenstates of the photon number operator 
o�]
�2¯ 
� ,


¨�  � �°e�  � ^ (2.1)

Here 
� is the annihilation operator of the optical field and  is the eigenvalue (photon
number) of the photon number operator. Fock states correspond to the eigenstates of
harmonic oscillators. As we will discuss in section 2.4 and section 2.5, there are negative
values in their Wigner functions, which is obviously a non-classical feature. Fock state of
the motion of a trapped atom was generated experimentally [21, 53]. Recently Fock states
of the micromaser field were generated in microwave cavity QED experiment [54].

(b) Coherent state � �N± � .
The concept of coherent state was first introduced by Glauber [55]. It’s the eigenstate of
the annihilation operator 
� , 
� � �>± � �	�E±²� �E± � . (2.2)

where � ± is simply a parameter in the complex plane. This concept turns out to be a
very useful tool in quantum physics. The light field emitted by an ideal laser is normally

5



6 Basic phase space theory of quantum mechanics

regarded as a coherent state. In practice only the high RF modulated sidebands of a laser
are treated as coherent states, because the amplitude and phase noise of a laser approach
quantum noise limit in this RF regime. Coherent state � �¨± � can be expanded in Fock
representation as

� �>± � � } �)³ ´aµ!³ ¶f· 1�¸¹h(º5± �
h ±» N¼ �  � ^ (2.3)

(c) Vacuum state � ' � .
The vacuum state can be regarded as a special case of the coherent state where the co-
herent amplitude �G±���' 1. It is everywhere in our universe and forms a continuous
spectrum. There is an energy -1 �½ Q associated with the vacuum state at a frequency of Q .
This is the so-called zero point energy.

(d) Squeezed coherent state 
¾ ���>±3� 
¿ �ÁÀ���� ' � .
This state can be regarded as the squeezed and displaced vacuum state.


¿ �ÁÀ�� ©°Â!ÃYÄpÅ 7� À�Æ�
� 1 J 7� À6�Ç
� ¯ � 1�È (2.4)

is the squeezing operator where ÀÉ�&Ê } =ÌË is the squeezing parameter. This operator has
the effect of squeezing one quadrature and makes this quadrature quieter while the or-
thogonal quadrature noisier.


¾ ��� ± � © Â!ÃYÄ ��� ± 
� ¯ J��EÆ± 
� �� } �)³ ´aµ!³ ¶ · 1 } ´aµ3ÍÎIÏ } �Ð´²Ñµ ÍÎ (2.5)

is the displacement operator. It can shift the quantum state away from the origin of
phase space and induce a coherent amplitude �C± 2. The experimentally quoted degree of
squeezing , [dB] can be evaluated as

,Ò� � '(Ê �EÓ�Ô �f7�'²�I^ (2.6)

A squeezed coherent state is also called a bright squeezed state because of the coherent
amplitude � ± .
(e) Squeezed vacuum state 
¿ �ÁÀ���� ' � .
This is a special case of (d) where �C±��v' , i. e. , there is no displacement operation
after the squeezing operation. A squeezed vacuum state can be generated by an optical
parametric oscillator. This was first achieved by Wu et al. [56].

(f) Chaotic state 
§Õ���f7ÖJ } �Ø×[�[Ù ¸haº5± �  � ª e� } � h × .
A chaotic state is also called a thermal state. It’s a mixture state so we can only write
down its density operator (as we will discuss in the next section). For a system in thermal

1It can also be regarded as a special case of the Fock state Ú Û�Ü , where Û;ÝÒÞ .
2Squeezed coherent state can also be defined as ßà5á�â�ã ßä áÌå µ ã Ú Þ!Ü which corresponds to what happens phys-

ically, i. e. a bright coherent state ßä áÌå µ ã Ú Þ�Ü is squeezed. It can be proved that ßà5á�â�ã ßä áÌå µ ã Ú Þ�ÜgÝ�ßä áiæ[ã ßà5á�â�ã Ú Þ!Ü
where

æ Ý å µ�çfèIéÁê áÌë!ã�ìÕå ÑµVíVî`ï éÁð`ñ#ê áÌë�ã .
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equilibrium, ª�ò � � 7} × Jó7 (2.7)

is the average photon number. Here ôp� �½ Q �(õ X < and < is the temperature of the system.

(g) “Schrödinger’s cat” state.
These kinds of states are named after Schrödinger’s famous Gedanken experiment where
the quantum superposition is transferred to a macroscopic level so that a “quantum cat”
can be alive and dead at the same time [57]. A “Schrödinger’s cat” state can be defined
as the coherent superposition of distinguishable macroscopic states3. For optical fields, a
“Schrödinger’s cat” state can be the superposition of distinguishable coherent states such
as [6, 58] � � � � � �¢ö H � � ö � � J÷H � �ø �Öù 7 ö �! �"3� � � � � Â!ÃUÄ �lJ � � 1 �PúÁû - · 1 ^ (2.8)

The even and odd “Schrödinger’s cat” states are superpositions of coherent states with
opposite phase

� � � � � 7� } ³ ´[³ ¶ · 1 ���! �"Çü>�V� �Ö� 1 �0� � - · 1 �V� � � ö �#J÷� � �I. (2.9)

� � � j � 7� } ³ ´[³ ¶ · 1 ��"Çý Ô ü��V� �Ö� 1 �0� � - · 1 �V� � � J°�#J÷� � �I^ (2.10)

They are eigenstates of the squared annihilation operator 
� 1 [59], i. e.


� 1 � � � � � � 1 � � � � .
� 1 � � � j � � 1 � � � j ^ (2.11)

Experimentally these kinds of states are extremely hard to generate because of quantum
decoherence [60]. Nevertheless, there are experimental investigations along this line.
Monroe et al. [61] generated a “Schrödinger’s cat” superposition state of an atom. A
trapped þ!ÿ }�� ion was laser-cooled to the zero point energy and then prepared in a su-
perposition of spatially separated coherent harmonic oscillator states. Brune et al. created
a mesoscopic superposition of quantum states involving radiation fields with classically
distinct phases and observed its progressive decoherence [62].

2.3 Density operator

It’s not always possible for us to write down a wave function for a system. Suppose there
is an ensemble of particles, each of the particles can be in either state � � � or � � � (but only
one of them). We only know that the classical probability of finding it in state � � � or � � �
are both 9('²: . In this case, the system is in a classical mixture state of � � � and � � � . This
is very different from the coherent superposition of � � � and � � � . In order to describe this
particle, we need the density operator


§ � 7� � � � ª � � ö 7� � � � ª � � ^ (2.12)

3In Schrödinger’s Gedanken experiment there was entanglement between one microscopic superposition
and another macroscopic superposition. It is this entanglement that is utilised to create the ”cat” state.
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The density operator is more general than the wave function. For a pure state, we can
write down a wave function � � � , and the corresponding density operator is


§q�&� � � ª �;� ^ (2.13)

We can easily distinguish between a pure state and a mixture state using the density
operator. For a pure state, 
§ 1 �|
§ (2.14)

and the trace of the squared density operator is 1,

<�ÊØ��
§ 1 �C� <�ÊØ�(
§U�¨��7(^ (2.15)

Whilst for a mixture state 
§ 1 ��|
§ (2.16)

and <@Ê[�(
§ 1 �S{�7(^ (2.17)

In this sense <�ÊØ��
§ 1 � is a measure of the purity of a system. (We note that <@Ê[�(
§Y�C��7 is true
for both a pure state and a mixture state.)

The complete information of a state is contained by a density operator. If we can
somehow reconstruct the density operator in a representation, we know everything of
the quantum state already. In Fock representation, we need to reconstruct the matrix
elements §U�¨h ©&ª$¬ �L
§g�  � . This is one way of quantum state reconstruction [12, 21, 23–25].

2.4 Quasiprobability distributions and s-parameterisation

As discussed in the previous section, the density operator 
§ contains the full information
about a quantum state. On the other hand, the only information we can ask about a
quantum state are the expectation values of observables. Given any observable 
� of a
quantum state, the expectation value of 
� is the trace of the product of the operators 
§
and 
� ª 
� � � <�ÊØ�(
§ 
� �I^ (2.18)

To simplify the evaluation of this trace of product, a number of procedures have been
introduced. ª 
� � can be written as an integral of the product of a weight function � ���G�
which refers to the quantum state, and a function �N���N� which refers to the operator 
�

ª 
� � � � � ���G���N���N� � 1 �¨^ (2.19)

This is the so-called phase space method, in the sense the integration is carried out over
the complex � plane. Eq. (2.19) is a simple and elegant realisation of Eq (2.18). It is
analogous to the classical phase space method, where � ���G� is the classical probability
distribution function. However, for a quantum state, �%���N� is in general not interpretable
as a probability distribution function. Rather, �%���N� can take on negative values. We call
it quasiprobability distribution (QPD).

QPD’s such as the Glauber-Sudarshan P function [55, 63], the Wigner function [64]
and the Q function [55, 63] are very important QPD’s in quantum optics. We can calculate
the expectation value of any product of creation operators 
� ¯ and annihilation operators
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� by using these functions.

(a) P function.
The P function is a diagonal representation4 of the density operator 
§


§Õ� � Bn���G��� � � ª ��� � 1 �¨^ (2.20)

If we define the normally ordered characteristic function �	� ��
²� as the expectation value

��� ��
²�C�°<�Ê ù 
§ Â!ÃYÄ ��
6
� ¯ � Â!ÃYÄ �lJ
 Æ 
� �Pú£. (2.21)

then we can verify that the weight function Bc���N� is the complex Fourier transform of��� ��
²� , Bn���G�e� � � 1 � Â!ÃYÄ ����
aÆÖJK�EÆ�
²�����%��
²� � 1 
Y^ (2.22)

The expectation value of the normally ordered product �Ç
�6¯ � h 
� � can be written as

ª �Ç
� ¯ � h 
� � � � � ��� Æ � h � � Bc���N� � 1 �e^ (2.23)

(b) Wigner function.
Similarly, we can define the symmetrically ordered characteristic function

����
�� � <�Ê ù 
§ 
¾ ú� <�Ê ù 
§ Â!ÃYÄ ��
6
� ¯ J�
�Æ²
� �Pú£. (2.24)

then the Wigner function � ���G� is again the complex Fourier transform of �S��
²� ,
� ���N�C� � � 1 � Â!ÃUÄ ����
 Æ J÷� Æ 
²���S��
²� � 1 
Y^ (2.25)

The Wigner function � ���N� is a well-behaved function and exists for any quantum state.
It is a bounded function ���d���N����� ����� ^ (2.26)

The expectation value of the symmetrically ordered product
ø �Ç
�2¯ � h 
� � û ± is given by the

integral ª ø �Ç
� ¯ � h 
� � û3± � � � � ���N�!��� Æ � h � � � 1 �¨^ (2.27)

(c) Q function.
We can also define the antinormally ordered characteristic function

� W ��
²�C�°<�Ê ù 
§ Â!ÃYÄ �lJ
�Æ�
� � Â!ÃYÄ ��
6
� ¯ �Pú£. (2.28)

4If the density operator ß� is expanded into Ú å Ü�� å�� Ú , where
å

and
å��

are two independent parameters, then
we get the non-diagonal representation of ß� .



10 Basic phase space theory of quantum mechanics

then the Q function is the complex Fourier transform of � W ��
�� ,
� ���N�¨� � � 1 � Â!ÃUÄ ����
�Æ�J÷�GÆ�
²��� W ��
�� � 1 
Y^ (2.29)

The Q function is also a well-behaved function and exists for any quantum state. The
expectation value of the antinormally ordered product 
� � �Ç
�Y¯ � h can be written as

ª 
� � �Ç
� ¯ � h � � � ��� Æ � h � � � ���G� � 1 �¨^ (2.30)

� ���N� is non-negative and bounded between ' and 7 ���
'�� � ���N�	��7 ��� ^ (2.31)

In Table 2.1 we list the P, Wigner and Q functions of some common quantum and
classical states. Notice the definitions of the complex parameters

� © �>D ö HP�>=L.�>±fD © �E±fD ö HP�E±f=f.ô © ôÐD ö H£ôØ=f^ (2.32)

For Fock state �  � , the Wigner function is proportional to the Laguerre polynomial �$+6� �Ö� 1 � . Here are some examples of the Laguerre polynomials,

 ±a�$,g� � 7(. -3�$,g� � 7�JK,>. 1 �$,g� � 7�J � , ö , 1� ^ (2.33)

Cahill and Glauber [65] introduced s-parameterised QPD’s. They defined the s-
ordered characteristic function

�S��
Y."!(�N� <�Ê ù 
§ 
¾ ��
Y."!��Pú£. (2.34)

where


¾ ��
Y."!�� � 
¾ ��
²� } x ³ #�³ ¶f· 1� Â!ÃUÄ ��
6
� ¯ J�
�Æ²
�;ö !U� 
Ð� 1 �(� � (2.35)

is the s-ordered displacement operator. The s-parameterised QPD is the complex Fourier
transform of �S��
Y."!(� (we note the deviation by a factor of 7 ��� from the definitions of
Ref. [65]), � ���¨."!(�C� � � 1 � �S��
Y."!(� Â!ÃUÄ ����
�Æ�JK�GÆ�
�� � 1 
Y^ (2.36)

In this format, � ���¨./73� is the Glauber-Sudarshan P function, � ���¨.V'²� is the Wigner func-
tion, and � ���e.�J 73� is the Q function. Any single-time expectation value of the s-ordered
products ª ù �Ç
�[¯ � h 
� � ú x � can be obtained by proper integration with weight � ���¨."!(� in the
complex � plane.



®
2.4 Quasiprobability distributions and s-parameterisation 11

There is a convolution law between the s-parameterised QPD’s

� ���¨."!(�C� �$ J%!
� Â!ÃYÄ �lJ � � �sJKôS� 1$ J%! �&� �$ôC. $ � � 1 ô� . (2.37)

where !�{ $
. Here we give some special cases. The Wigner function is the Gaussian

convolution of the P function,

� ���G�C� �� � Bc�$ôG� Â!ÃUÄ �lJ � � ô J÷�Ö� 1 � � 1 ô¨^ (2.38)

The Q function is the Gaussian convolution of the Wigner function or the P function,

� ���N�¨� �� � � �$ôE� Â!ÃUÄ �lJ � � ôoJK�Ö� 1 � � 1 ôC. (2.39)

� ���N�C� 7� � Bc�$ôE� Â!ÃYÄ �lJ � ô J÷�Ö� 1 � � 1 ôC^ (2.40)

Due to the convolution law, lower-ordered QPD’s are smoother than higher-ordered
QPD’s.

It can be seen from the theory that there is a one-to-one correspondence between the
QPD and the density operator. If we can measure the QPD of a quantum state, this quan-
tum state is completely characterised. Vogel and Risken [6] pointed out that one can
obtain the Wigner distribution by tomographic inversion of a set of measured probabil-
ity distributions, B Ë �$, Ë � , of the quadrature amplitudes. Their pioneering work inspired
the fast development in this area. We show in Fig. 2.1 the link between some concepts
discussed in this chapter for characterising quantum states.

density operator

Wigner function

probability density
function (PDF)

Pθ(xθ) W(x1,x2) ρ <F>=Tr(ρF)

expectation value
of an observable

OHT
experiment

Figure 2.1: From experimental data to the complete characterisation of a quantum state. OHT:
optical homodyne tomography.
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2.5 Wigner function

First discovered by Wigner in 1932 [64] when he tried to make quantum correction for
thermodynamic equilibrium, the Wigner function is now an useful tool in many fields of
physics. It can be a classical joint-distribution as well as a quantum QPD. It turns out to
be an elegant and simple method of overlap calculation. In quantum optics, as pointed
out by Ulf Leonhardt[32], the Wigner function is of particular importance. It is the closest
analogue to classical probability distributions. This can be seen from many situations,
some of which we will discuss below. Theoretically, all of the QPD’s are equivalent.
However, lower-ordered QPD’s such as the Q function are too smooth and have hidden
many details which can be displayed by the Wigner function. Practically it’s not realistic
to retrieve higher-ordered QPD’s from lower-ordered QPD’s, because deconvolution is
very sensitive to errors.

Here we summarise some properties of the Wigner function. The Wigner function is
real, ��Æ(���G�¨�'� ���G�I^ (2.41)

The integration of the Wigner function in phase space is 1,� �d���N� � 1 �K��7(^ (2.42)

The Wigner function is bounded,

��� ���N���(� ����� ^ (2.43)

There are elegant overlap formulas for the Wigner function. The expectation value of the
product of two operators is the overlap of their Wigner functions,

<�Ê ø 
� - 
� 1�û¢� � � � ¸� ¸
� � ¸� ¸ �*)E-/���G�&�*)g1����N� � 1 �¨^ (2.44)

The expectation value of an operator is the overlap of its Wigner function and the Wigner
function of the quantum state,

<�Ê ø 
§ 
� û�� � � � ¸� ¸
� � ¸� ¸ �d���N�&�*)Ö���N� � 1 �e^ (2.45)

The square of the inner product of two quantum states is the overlap of their Wigner
functions, � ª �S-(� �N1 � � 1 � � � � ¸� ¸

� � ¸� ¸ �u-/���N�&�s1����N� � 1 �e^ (2.46)

The trace of the squared density operator is the self-overlap of its Wigner function,

<�Ê ø 
§ 1 û;� � � � ¸� ¸
� � ¸� ¸ � ���G� 1 � 1 �¨^ (2.47)

Here we have used the definition of the Wigner function of an arbitrary operator 
� [65,
66] � ) ���N�¨� 7� <�Ê ù 
� 
<%���¨.V'²�Pú£. (2.48)

where 
< ���e."!�� (in Eq. (2.48), ! ��' ) are defined as the complex Fourier transforms of the
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s-parameterised displacement operators 
¾ ���e."!�� [65, 66],


< ���e."!��e� � 
¾ ��
Y."!�� Â!ÃYÄ ����
�Æ�J÷�GÆ�
�� � 1 
� ^ (2.49)

The only pure quantum states that don’t have negative Wigner functions are those states
having Gaussian wave functions [67–69]. We call these pure Gaussian states. Examples of
Gaussian states are the coherent states and the squeezed coherent states (see section 2.2).
By this definition, all non-Gaussian states have negative value for their Wigner functions.
We show in Fig. 2.2 and Fig. 2.3 the Wigner functions of some quantum states.

2.6 Summary

In this chapter we introduced the basic phase space theory of quantum mechanics in
the context of quantum optics. We explained some common quantum states of light
field and discussed their properties. The density operator was introduced and the way
to distinguish between a pure state and a mixture state presented. s-parameterisation of
QPD’s discussed and the P, Wigner and Q functions of some quantum states summarised.
Finally we focused on the Wigner function and discussed its importance in quantum state
reconstruction.
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Coherent state Bc���N� +-, 1/. ���rJ÷�E±/�� �E± � � ���N� � Â!ÃUÄ �lJ � � �oJ��>±²� 1 � ���� ���G� Â!ÃUÄ �lJ%� �rJ÷�E±²� 1 � ���
Vacuum state Bc���N� +-, 1/. ���N�� ' � � ���N� � Â!ÃUÄ ù J � � ��� 1 ú ���� ���G� } �)³ ´[³ ¶ ���
Squeezed coherent Bc���G� —
state 
¾ ��� ± � 
¿ �ÁÀ���� ' � � ���N� � Â!ÃUÄ ø J �[ù ��� D JK� ±fD � 1 �(} � 1fD ö ��� = JK� ±f= � 1 �(} 1fD úÁû ���
( À%�°Ê is real)

� ���N� Â!ÃUÄ ø J �[ù , ´10!�Ð´ µ 0 . ¶�/2 ¶ 0 � - ö , ´ î �Ð´ µ î . ¶� ¶ 0 � - úÁû � � � �! �"VüÖÊ²�
Squeezed vacuum Bc���N� —
state 
¿ �ÁÀ���� ' � � ���N� � Â!ÃUÄ ø J �[ù � 1D �(} � 1fD ö � 1= �(} 1fD úÁû ���
( À%�°Ê is real)

� ���N� Â!ÃUÄ ø J �[ù ´ ¶0�/2 ¶ 0 � - ö ´ ¶î� ¶ 0 � - úÁû � � � �! �"VüÖÊ²�Fock state Bn���G� —�  � � ���N� � �lJ 73� h } � 1 ³ ´[³ ¶  h6�$+6� �Ö� 1 � ���� ���G� � ��� 1fh } �)³ ´[³ ¶ � � � N¼ �
Chaotic state Bc���N� -3-4 �65 Â!ÃUÄ ù J%� ��� 1 � ª�ò � ú
§Õ���f7ÖJ } �Ø× � � ���N� -3 , 4 �	5 � - · 1/. Â!ÃUÄ ù J ³ ´[³ ¶4 �	5 � - · 1 úÙ ¸haº5± �  � ª e� } � h × � -4 �	5 � - Ù ¸h(º5± �sh6���G�!� 4 �	54 �	5 � - � h� ���G� -3 , 4 �	5 � -�. Â!ÃUÄ ù J%� ��� 1 � � ª�ò � ö 73�Pú
“Schrödinger’s cat” Bn���G� —

state � ���G� 798�: ù � 1 , ´10!� Î . ¶ ú3 ù - �<;>=&? , 1 Î�@ . 798�: , � 1 @ ¶ . úBA ø Â!ÃUÄ ù J � ��� = J � � 1 úö Â!ÃUÄ ù J � ��� = ö � � 1 ú ö � Â!ÃYÄ ù J � � 1= ú3�! �"��$+ � � D J � � � �Çû³ Î � = @ 5 � ³ Î � = @ 5ø 1 ù - �<;>=&? , 1 Î"@ . 7>8�: , � 1 @ ¶ . úÁûDCFE ¶
� ���G� 798�: ù � , ´ 0 � Î . ¶ ú1 3 ù - �<;>=&? , 1 Î"@ . 798�: , � 1 @ ¶ . ú A ø Â!ÃUÄ ù J ��� = J � � 1 úö Â!ÃUÄ ù J ���)= ö � � 1 ú ö � Â!ÃYÄ ù J � 1 J÷� 1= ú#�! �"3� � � �>D/�Çû

Even “Schrödinger’s Bn���G� —
cat” state � ô � � � ���N� ù } � 1 ³ ×��Ð´[³ ¶ ö } � 1 ³ × � ´[³ ¶ ö �a} � 1 ³ ´[³ ¶ �! �"Ð+Ð��� D ô = JK� = ô D �Pú� � � �f7 ö } � 1 ³ ×Y³ ¶��0�� ���G� Â!ÃUÄ �lJ%� �Ö� 1 ��� } ×�´ Ñ ö } �Ø×(´ Ñ � 1 � �$+ � �! �"VüE�V� ôS� 1 �0�
Odd “Schrödinger’s Bn���G� —
cat” state � ô � j � ���N� ù } � 1 ³ ×��Ð´[³ ¶ ö } � 1 ³ × � ´[³ ¶¨J �a} � 1 ³ ´[³ ¶2�! �"Ð+Ð���)D!ôØ=2JK�)=$ôØD3�Pú� � � �f7ÖJ } � 1 ³ ×Y³ ¶ �0�� ���G� Â!ÃUÄ �lJ%� �Ö� 1 ��� } ×�´²ÑÖJ } �Ø×(´²Ñ�� 1 � �$+ � "Vý Ô ü5�V� ô�� 1 �0�

Table 2.1: The P, Wigner and Q functions of some common quantum and classical states in quan-
tum optics. (Those P functions that are not provided in this table don’t exist.)
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Figure 2.2: The Wigner functions of a vacuum state (a) and a squeezed vacuum state with 6 dB
phase quadrature squeezing (b). They are both Gaussian distributions with non-negative value.
The maximum possible value of these Wigner functions is GIHKJ .
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Figure 2.3: The Wigner functions of the Fock state L G�M (a) and the even “Schrödinger’s cat” state
defined in Eq. (2.9) with NPO�G (b). They are both non-classical distributions with negative value.



Chapter 3

Quantum optical measurements

3.1 Introduction

In this chapter we want to compare different quantum-optical measurements, i. e., direct
intensity measurement, standard homodyne detection and optical homodyne tomogra-
phy (OHT). Based on this comparison, we point out the ability and importance of OHT.
We will also present a semiclassical theory to model the OHT system, which will be useful
for us to explain some experimental results in chapter 6-8.

The focus of this chapter will be OHT and the inverse Radon transform, the latter is
the essential mathematical tool for tomographic method. Tomography is a mature tech-
nology in many areas of science and technology. For example, the CAT-scan (computer
assisted tomography) is widely used in medical science in order to diagnose the illness of
human organs. In 1979, the Nobel prize in physiology or medicine was awarded to Allan
M. Cormack and Godfrey N. Hounsfield for their contributions toward the development
of computer assisted tomography, a revolutionary radiological method. Shown in Fig. 3.1
is an illustration of tomography.

object

projections

Figure 3.1: Tomography, a technology widely used in medical science (i.e., the CAT scan). Two
dimensional objects (the shaded area) can be reconstructed from their projections. Projections are
integrals along certain directions.

We will also present a simplification of the inverse Radon transform in section 3.5
using an integral method. This may be useful in the numerical implementation of tomo-
graphic reconstruction.

17
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3.2 Direct intensity measurement

A realistic light beam always has some amount of intensity and frequency noise. These
are fluctuations of its intensity and frequency. Shown in Fig. 3.2 is a schematic diagram
of direct intensity measurement of a light beam. This is the simplest optical measure-
ment. The DC component of the photodetector output is monitored by an oscilloscope
or a multimeter. This output voltage is proportional to the optical power of the light,
which can also be measured by a power meter. The AC component is measured by a
spectrum analyser (SA). This is a measurement of the noise power at RF sidebands as
well as deliberately imposed modulation sidebands, if any.

CRO

SA

light PD

Figure 3.2: Schematic of direct intensity measurement. PD: photodetector; CRO: oscilloscope; SA:
spectrum analyser.

Suppose the quantum efficiency of the photodiode is z . The detected photocurrent is
proportional to the number of photons incident on the surface of the photodiode,


HE�°z } 
ò �°z } 
� ¯ 
� . (3.1)

where
}

is the charge of an electron. A spectrum analyser can measure the variance of the
photocurrent M Í = which is proportional to the variance of the photon number M Í�M Í= �°z 1 } 1 M Í� ^ (3.2)

Direct intensity measurement is simple and efficient. However, it’s a phase insensitive
measurement and can only measure the intensity noise of the light. In order to carry out
a phase sensitive measurement, we have to employ homodyne detection, which will be
discussed in the next section.

3.3 Standard homodyne detection

The schematic of homodyne detection [70–72] is shown in Fig. 3.3. A signal wave is mixed
with a local oscillator wave at a 50:50 beam splitter. The signal and the local oscillator
have a relative phase � which is normally adjusted by controlling the path length of the
local oscillator beam. The two output beams are detected by a pair of matched, high
efficiency detectors PD1 and PD2, respectively. The difference current, 
H � � $ �Õ� 
HV-#� $ �SJ
H 1 � $ � , is monitored with a spectrum analyser,


H � � $ �N� 
HV-#� $ �EJ 
HP1a� $ �C�	z } � 
� ¯ 
� J�
 ¯ 
 �I^ (3.3)
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PD2

PD1
Signal

Local 
Oscillator

a

b

d

c

Subtractor

SA
i-(t)

i1(t)

i2(t)

BS

Figure 3.3: Schematic of homodyne detection. QR , QS , QT and QU are the annihilation operators of the
corresponding ports. PD1, PD2: photodetectors; BS: beam splitter; SA: spectrum analyser.

If we use the annihilation operator relationship between the four ports,


 � �Ç
� J 
� � � » � .
� � �Ç
�¢ö 
� � � » � . (3.4)

it’s easy to find that 
H � � $ �C�°z } �Ç
� ¯ 
� ö 
� ¯ 
� �I^ (3.5)

For a homodyne detection to be valid, we have to make the local oscillator wave much
stronger than the signal wave1, so that we can treat the local oscillator wave classically,
the operator 
� is replaced by a complex number,


�V ÿ } =iË ^ (3.6)

Substituting Eq. (3.6) into Eq. (3.5) we find


H � � $ � � z } ÿÒ�Ç
� } � =ÌË ö 
� ¯ } =ÌË �� � z } ÿ 
m������I. (3.7)

where 
m������Ö� �Ç
� } � =ÌË ö 
�Y¯ } =iË � �(� is the rotated quadrature operator. Eq. (3.7) simply tells
us that the measurement of the difference current 
H � � $ � is equivalent to the measurement

1Normally the local oscillator intensity should be at least ten times that of the signal wave.
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of the � quadrature amplitude. If we change the local oscillator phase � , we can measure
any quadrature we want. This is a phase sensitive measurement.

What a spectrum analyser can measure is the noise equivalent power of the photocur-
rent H � � $ � , i. e., the variance WÕH � 1 � $ � . A spectrum analyser collects the time series H � � $ � ,
mixes it with an RF local oscillator, and detects the envelope of the mixer output. This
is sufficient for variance measurement. However, it loses the information of photocur-
rent value itself. Variance is the second order moment of a probability density function
(PDF). If higher order moments exist in the PDF, they can not be detected by a spectrum
analyser.

3.4 Inverse Radon transform and optical homodyne tomography

Although homodyne detection is a phase sensitive measurement, it only gives the vari-
ance for each quadrature. This is sufficient for Gaussian states (see discussion of Gaussian
states in section 2.5), because the average value and the variance can determine a Gaus-
sian distribution completely. In general, measurements of variances are not sufficient to
fully characterise quantum states. It is essential to measure all the quadrature amplitude
distributions �%�$,>.V��� if one wishes to preserve the complete information and extract the
density matrix or the Wigner function of an arbitrary state. Here , is the quadrature
amplitude value.

Tomography was first introduced into quantum mechanics by Bertrand and Bertrand
[5]. They pointed out that the Wigner function can be reconstructed from marginals (pro-
jections). However, it’s Vogel and Risken’s pioneering paper [6] that brought a direct
link between experiment and theory and inspired many works in this area of quantum
optics. They pointed out that s-parameterised QPD’s can be reconstructed from the mea-
sured PDF’s � �$,).V��� ,
� ���)D�.V�>=L."!(�C� 7+ � 1

� � ¸� ¸
� � ¸� ¸

� 3
± � �$,).V��� Â!ÃYÄ ù !3z 1 �YX ö H£zg�$,;J��>Dg�! �"Ð�eJÒ�)=("Vý Ô ���Púl� z�� � , � z � �[^

(3.8)
The measurement of � �$,).V��� is done by optical homodyning in the � quadrature, and � can
be scanned by a PZT. z is an integrating parameter. Eq. (3.8) is a three-fold integration. It
results from a complex inverse Fourier transform. The first experiment to reconstruct the
Wigner function was carried out by Smithey, et al. [7–9]. The Wigner functions of a vac-
uum state and a quadrature-squeezed state were measured. This method was referred to
as optical homodyne tomography (OHT) [7] because it’s similar to the tomographic in-
version from projections of two dimensional objects [73, 74]. Eq. (3.8) is called an inverse
Radon transform [75].

3.5 Integral of the inverse Radon transform

Generally, for s-parameterised QPD, we have the inverse Radon transform Eq. (3.8). It’s
a three-fold integral. For the numerical implementation of Eq. (3.8), we have to calculate
the Wigner function point by point. This is quite a time-consuming task. It would be
nice if we can simplify Eq. (3.8) to save the computing time. For the Wigner function� ��� D .V� = ."!;�	'²� , the variable z in Eq. (3.8) can not be integrated out. However, for ! {ó' ,
we can integrate out the parameter z .



®
3.6 Semiclassical theory of optical homodyne tomography 21

By re-arranging the variables, we can re-write Eq. (3.8) as

� ���>D#.V�>=f."!��¨� 7+ � 1
� � ¸� ¸

� 3
± � �$,).V��� � , � � Å 7/�JZ!

� � ¸± } �\[ ¶ z��! �"#�$z�¡Ø� � z È . (3.9)

where we have defined ¡ ©^] _� x �$,ÉJ�� D �! �"Ð�%J�� = "Vý Ô ��� . On the RHS we have such an
integral [76]

� � ¸± � z�z } �\[ ¶ �! �"#�$zU¡Ø�C� 7�a` �f7(./7 �(�(b J�¡ 1 � +��C� 7� ö 7� ¸¹haº5± 7� �  ö 73�I¼Ì¼ �lJ�¡ 1 �(� � h � - . (3.10)

where ` ���e.�c b/d � is the degenerate hypergeometric function

` ���e.�c b/d �S��7 ö � c
d
7(¼ ö ����� ö 73�cG�Fc ö 73�

d 1� ¼ ö �S��� ö 73�!��� ö � �cG�Fc ö 73�!�Fc ö � �
d �* ¼ ö ^�^�^/^ (3.11)

Now we can substitute Eq. (3.10) into Eq. (3.9) and obtain a two-fold integral

� ���>D#.V�>=f."!�� � J �� 1 � � ¸� ¸
� , � 3± � �1�%�$, ö �)D5�! �"Ð� ö �)=a"Vý Ô �Ø.V��� 7! ` �f7(. 7� b

� , 1! � (3.12)

� �� 1 � � ¸� ¸
� , � 3± � �D�%� » JZ!/, ö �>Dg�! �"Ø� ö �>=("Vý Ô �[.V��� 7» Je!

` �f7(. 7� b J � , 1 �I^ (3.13)

For the Q function ( !¢��J 7 ),
� ���N� � � ���e.�J 73�

� �� 1 � � ¸� ¸
� , � 3± � �1� �$, ö �>Dg�! �"Ø� ö �>=�"Çý Ô �[.V��� ` �f7(. 7� b J � , 1 �I^ (3.14)

We note that Eq. (3.12) and Eq. (3.13) only hold for !u{�' . There is no convergent
integral in the case of the Wigner function ( !���' ). However, we can always choose! V 'U� so that ! is close enough to ' , and �d���e."!(� is close enough to the Wigner function� ���e.V'²� . For a practical reconstruction algorithm, Eq. (3.12) is easier to handle because
we can always choose the range of , to be an area in the phase space where �d���e."!(� is of
significance (i.e., not too close to zero). For this range of , , we can calculate the function` �f7(./7 �(�(bÇ� , 1 � !(� beforehand. When the data for the PDF’s �%�$,>.V��� is ready, we only need
to do a two-fold integration as shown in Eq. (3.12) for the reconstruction of the Wigner
function. This can save time in the algorithm. We note that another way of simplification
was developed by Janicke and Wilkens [77]. Their method used the Dawson integral
which can be numerically evaluated [78]. Both their method and ours presented above
should have comparable effect for the reconstruction, because they all simplify the three-
fold integral to a two-fold one.

3.6 Semiclassical theory of optical homodyne tomography

In this section we will model the optical homodyne tomography system with a semiclas-
sical theory. We will include phase modulation in our model, and show how this signal
can be retrieved in phase space together with the quantum noise.
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3.6.1 Modeling of the OHT system
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Figure 3.4: Experimental setup of OHT with a general demodulation scheme. EOM: electro-optic
modulator; ND: neutral-density filter; PZT: piezo-electric transducer; PD: photodetector; LPF:
low-pass filter; SA: spectrum analyser. There are two modes of operation. For a synchronous
mode, the signal generator with frequency fhg is not used; while for an asynchronous mode, the
signal with frequency f�i is not applied to the mixer, but the signal with frequency f gIj&kO%f�iml is.

In practical applications, such as sensing or communication, a laser beam is modu-
lated in order to carry information. This can occur at different modulation frequencies or
channels �Ö� . Each modulation frequency has its own Wigner function �onØ�%�$,�-/.0,21/� , and
can vary dramatically from channel to channel [15, 79]. Hence, a realistic laser beam with
signal modulations is a propagating multi-mode quantum state, which is quite different
to the single mode intra-cavity description of an optical state. Such a realistic light beam
can only be described by a spectrum of Wigner functions �on , one for each frequency� . Experimentally we can measure the time traces of different quadrature amplitudes
m n ������� by scanning quadrature phase � from ' to

�
. An experimental setup of OHT with

a general demodulation scheme is shown in Fig. 3.4. Please refer to section 7.3.1 for a de-
tailed explanation of the setup. After binning these traces we get � n ���$,>.V��� , the PDF’s of
different quadrature amplitudes at one detection frequency. The corresponding Wigner
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function can be reconstructed from these PDF’s [6, 32] using

� n ���$,�-/.0,613� � 7+ � 1
� � ¸� ¸

� � ¸� ¸
� 3
± � n ���$,>.V��� Â!ÃUÄ ù H£z5�$,�JK,)-Ø�! �"#�����>JK,21g"Vý Ô �����0�Pú

� zg� � , � z � �[. (3.15)

which is the inverse Radon transform for � n ���$,).V��� . Eq. (3.15) is obtained from Eq. (3.8)
by setting ! to zero. Here �$,E-�.0,613� denotes a point in the complex phase space, � is the
quadrature angle and , is the quadrature amplitude value. z is a parameter that origi-
nates from an inverse Fourier transform (see Eq. (2.25)). From section 3.5 we know that
Eq. (3.15) is in a critical point of convergence. Oscillation can easily occur. In order to
smooth out the high spatial frequency oscillation in the transform, we sometimes also
use a filtered version

� n �²�$,�-�.0,613� � 7+ � 1
� � ¸� ¸

� � ¸� ¸
� 3
± � n �²�$,>.V��� Â!ÃYÄ ù H£zg�$,nJK,)-Ð�! �"#�����>J÷,615"Vý Ô �����0�Púl� z��

Â!ÃUÄ ù Jpc6z 1 ú � , � z � �[^ (3.16)

For roll-off parameter c V ' , Eq. (3.16) is the same as Eq. (3.15). The purpose of adding
a Gaussian filtering factor Â!ÃYÄ ù Jpc2z 1 ú is to filter out the high spatial frequency noise [74].c is always chosen to be very small so that the reconstructed Wigner function is precise
enough to represent the original one.

Now we will model the OHT detection system using a semiclassical theory. In this
model we include phase modulation, and show how it will represent itself in phase space.
The traditional picture of a single Wigner function of a laser is shown to be not sufficient
in an experimental case. The reason is that we can only reconstruct the Wigner function at
RF frequencies, which is the sideband of the carrier frequency, while the strong coherent
component of a laser is at the carrier frequency ( �	��' ). A similar result was reported in
[12], where only synchronous demodulation was used. However, in order to explain our
experimental results, we have to consider a more general demodulation scheme. This is
achieved by using different frequencies for modulation and demodulation respectively.

The output of phase modulator is given by

¥ jlk F ��¥�±g�! �" ù Q $ ö +q�N� $ �Pú£. (3.17)

where + is the modulation index, and

�N� $ �N�	"Vý Ô �Á��� $ � (3.18)

is the modulation signal. Phase modulation of optical field generates sideband pairs atQsr�)� � . We can rewrite the phase modulated signal wave as a decomposition into
harmonics of the modulation frequency �@� . The first order approximation, assuming+ut 7 , gives

¥ jLk F � ¥�±5�! �"��RQ $ � ö ô)¥�± ù �! �"#�RQ ö ����� $ J÷�! �"#�RQKJu����� $ ú
� ¥�±� ù } � =wv F �f7 ö ô } � =xnzy F J÷ô } ={n\y F � ö } =|v F �f7 ö ô } ={n\y F JKô } � ={n\y F �Pú£. (3.19)

where ô	�~}Ø-#�9+�� is the first order Bessel function. Using the correspondence principle,
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we can assume 
� � $ �h�t¥@±��f7 ö ô } � =xnzy F JKô } ={n\y F � (3.20)

as the annihilation operator of the field (in the rotating frame). In order to include the
quantum fluctuation, we express 
� � $ � as


� � $ � � ù ¥�± ö +Ø
� � $ �PúL�f7 ö ô } � ={n yEF JKô } ={n yEF �w ¥�± ö ô)¥�±�� } � =xn y>F J } ={n yEF � ö +Ø
� � $ �� ¥ ± J � H£ô)¥ ± "Vý Ô �Á� � $ � ö +Ø
� � $ �I^ (3.21)

We assume the term +Ø
� � $ �Lôe� } � ={n\y F J } ={n\y F � is much smaller and omit it. This is true
when � ôS�ut 7 (weak modulation). Because +Ø
� � $ � is still in the equation and we will
not make any further approximation, any non-Gaussian feature of the quantum states
will be preserved in our calculation. In this sense, we have not used the linearisation
approximation [80–82]. We treat the strong local oscillator beam classically,


� � $ � w ÿ } =ÌË . (3.22)

where � is the local oscillator phase relative to the signal field and is scanned by a PZT
(see Fig. 3.4). For a balanced homodyne detection, the difference current can be expressed
by the field operators, 
H � ���[. $ �N�]
� ¯ 
� ö 
� ¯ 
� ^ (3.23)

We have omitted the proportional coefficient which depends on the efficiencies of the
detectors, losses and the electronic gain. With the following definitions:


� � $ � © 
m�� $ � ö H 
� � $ �I.
mu� $ � � A }�ù 
� � $ �Pú£.
� � $ � � � ¬ ù 
� � $ �Pú£.
mu���[. $ � © 
m�� $ �U�! �"������ ö 
� � $ �U"Çý Ô �����I.+ 
m����[. $ � © + 
m�� $ �U�! �"������ ö + 
� � $ �U"Vý Ô ���U�I. (3.24)

we get 
m����[. $ �N�	¥ ± �! �"#�����>J � ô)¥ ± "Vý Ô �Á� � $ �U"Vý Ô ����� ö + 
m����[. $ �I. (3.25)

H � ���[. $ �N� � ÿ ù ¥�±g�! �"#���U�>J � ô)¥�±g"Çý Ô �Á��� $ �U"Vý Ô ����� ö + 
m����[. $ �Pú£^ (3.26)

+ 
m����[. $ � describes the quantum fluctuation in the � quadrature. In conventional experi-
ments, the analysis of a particular Fourier component of the photocurrent is done by an
RF spectrum analyser with the phase � of the local oscillator kept constant. As a conse-
quence the phase variance M<n[� ��� � �)�(� � increases proportional to the modulation depth
while all other parts of the spectrum M�ne���Õ� �)�(� � with �d������ remain unchanged. The
local oscillator current of the mixer is a sinusoidal signal

H��l� $ ���	"Çý Ô �Á�Ö� $ ö ���I. (3.27)

where � is the electronic phase delay angle. Now we have the output current of the
mixer

H��p���Ø. $ � � H � ���[. $ �LH��P� $ �
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� "Vý Ô �Á��� $ �U�! �"��$���l¥ ± �! �"#�����>J÷"Çý Ô �Á�Ö� $ �U�! �"#�$��� � ô>¥ ± "Vý Ô �Á� � $ �U"Vý Ô �����ö "Vý Ô �Á��� $ �U�! �"��$����+ 
m����[. $ � ö �! �"3�Á�Ö� $ �U"Vý Ô �$�Ö�l¥�±��! �"#�����J �! �"��Á�Ö� $ �U"Çý Ô �$��� � ô)¥@±)"Vý Ô �Á�Ö� $ �U"Vý Ô ����� ö �! �"#�Á�Ö� $ �U"Vý Ô �$����+ 
m����[. $ �I^ (3.28)

We define the Fourier transforms

� H��p���[.Ç� 4 � � � ù H��r���Ø. $ �Pú5� � � ¸� ¸ H��s���[. $ � } � ={n � F � $ .
+ �m��Á� 4 � � � ù + 
m�� $ �Pú£.+ �� �Á� 4 � � � ù + 
� � $ �Pú£.+ �m����[.Ç� 4 � � � ù + 
m����[. $ �Pú£. (3.29)

and obtain + �m����Ø.Ç� 4 �C�'+ �m��Á� 4 �U�! �"#����� ö + �� �Á� 4 �U"Vý Ô �����I^ (3.30)

Now the output current of the low-pass filter can be expressed as

H n �²���[. $ � �  B � ù H��s���[. $ �Pú5� 7�(� ��� nz�� � nz�
� H��p���[.Ç� 4 � } =xn � F � � 4

� J�ô)¥ ± "Vý Ô ������+U�Á�Ö�a.Ç� � �ö H� �! �"��$��� 7�(� � � nz�� � n � ù +
�m����[.Ç� 4 ö �Ö�3�EJ�+ �m����[.Ç� 4 J��Ö�3�Pú } ={n � F � � 4

ö 7� "Vý Ô �$��� 7�(� ��� n �� � n�� ù +
�m����[.Ç� 4 J��Ö�3� ö + �m����[.Ç� 4 ö �Ö�3�Pú } ={n � F � � 4 . (3.31)

where Wq��� is the bandwidth of the low-pass filter. It is about 50 kHz in our experiment2.
Here we have defined a function +��Á�@�a.Ç�Ö�¢� ,

+U�Á�Ö�a.Ç�Ö�¢�C�	�! �" ù � ö �Á���ÖJ������ $ ú (3.32)

when � ����J����%�Y{sWq�� and +��Á���a.Ç���¢�N��' (3.33)

when � ����J����%���sWq�� . If we define these finite-bandwidth time domain functions

+ 
m � �Á��� b $ � © 7�(� ��� n �� � nz� +
�m��Á� 4 ö �Ö�3� } ={n � F � � 4 .

+ 
� � �Á��� b $ � © 7�(� � � nz�� � n � +
�� �Á� 4 ö �Ö�3� } ={n � F � � 4 .

+ 
m � ���[.Ç��� b $ � © + 
m � �Á��� b $ �U�! �"������ ö + 
� � �Á��� b $ �U"Çý Ô �����I. (3.34)

we find

+ 
m ¯� �Á�Ö� b $ � � + 
m � �lJ��Ö� b $ �I.+ 
� ¯� �Á�Ö� b $ � � + 
� � �lJ@�Ö� b $ �I.+ 
m ¯� ���[.Ç��� b $ � � + 
m � ���Ø.�J@�Ö� b $ �I^ (3.35)

2The low-pass filter is used to select a slice of the noise spectrum. To study the single mode ��� , we have
to make sure that �	� �B� ��� .
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Thus we have two Hermitian operators

+ 
m � Da���[.Ç�Ö� b $ � � �9+ 
m � ���[.Ç��� b $ � ö + 
m � ���Ø.�J@�Ö� b $ �0� �(� .+ 
m � =V���[.Ç�Ö� b $ � � �9+ 
m � ���[.Ç��� b $ �EJo+ 
m � ���Ø.�J@�Ö� b $ �0� �(� HÇ^ (3.36)

We can roughly think of these operators as the real ( + 
m � D ���[.Ç�Ö� b $ � ) and imaginary
( + 
m � =V���[.Ç�Ö� b $ � ) parts of + 
m � ���[.Ç�Ö� b $ � . Here + 
m � ���[.Ç�Ö� b $ � can be understood as the to-
tal quantum fluctuation centered around r;��� . Now we can substitute these finite-
bandwidth time domain functions into Eq. (3.31) to give

H n �²���[. $ �N��J�ô>¥�±�+U�Á�Ö�a.Ç���;�U"Vý Ô �����>J÷�! �"��$����+ 
m � =Ç���[.Ç�Ö� b $ � ö "Vý Ô �$����+ 
m � D²���[.Ç�Ö� b $ �I^ (3.37)

H�n � ���Ø. $ � is the final electronic signal which is measured in the experiment. For syn-
chronous detection, ���K�t��� and +U�Á�Ö�a.Ç�Ö�¢��� �! �"#�$�Ö� . Now if we further set �«��'
in the experiment H n � ���[. $ �C��J�ô)¥ ± "Vý Ô �����>J%+ 
m � = ���[.Ç�Ö� b $ �I^ (3.38)

In this case H��P� $ �¨�	"Vý Ô �Á�Ö� $ � is in phase with the modulation signal of Eq. (3.18).
The first term in Eq. (3.38) is due to the phase modulation. In phase space, it gives us

a displacement from the origin (coherent amplitude, see, e. g., Ref. [83]). When ��� �)�(� ,H��P� $ �¨���! �"#�Á�Ö� $ � is out of phase with the modulation signal, and H/n � ���[. $ �¨�'+3m � D����[.Ç�Ö� b $ � .
The displacement frequently drawn in phase space diagrams no longer exists. Only+3m � D(���Ø.Ç�Ö� b $ � is the signal measured and used as the quadrature amplitude value at the
detection frequency chosen.

In order to visualise the different angles discussed in this modeling, we show in
Fig. 3.5 an illustration of the three angles � (optical local oscillator quadrature angle),� (electronic local oscillator phase delay angle) and � (quadrature phase angle).

3.6.2 Reconstruction procedures

In order to obtain the Wigner function of a light beam, only small modifications to the
balanced homodyne apparatus are required [11]. Phase synchronous detection is intro-
duced by replacing the spectrum analyser with a mixer demodulator (see Fig. 3.4). The
mixer is gated by an electronic local oscillator signal derived from the same generator
that drives the EOM. This electronic signal is shifted by a phase � giving a mixed down
difference current H�n[�%���Ø.0� b $ � . Let �Ö� �]�Ö� in Eq. (3.37) we can write down the output
current from the mixer as :

H�n[� ���[.0� b $ �C��J�ô>¥�±g�! �"#�$�Ö�U"Vý Ô ���U�>J÷�! �"3�$����+3m � =Ç���[.Ç�Ö� b $ � ö "Vý Ô �$�Ö��+/m � D²���Ø.Ç��� b $ �I. (3.39)

where +3m � ���Ø.Ç��� b $ � can be understood as the total quantum fluctuations centered aroundr;��� . +3m � =0���[.Ç��� b $ � and +3m � Da���[.Ç��� b $ � are the imaginary and real parts of +3m � ���[.Ç�Ö� b $ �
respectively. For ���	' , we obtain

H�n[�%���Ø.V' b $ �C��J�ô)¥�±5"Vý Ô �����>J%+3m � =V���[.Ç��� b $ �I^ (3.40)

The first term contains all the modulation and the second term all the quantum fluctua-
tions. Note that for synchronous detection, the phase of the modulation has to be known
to the observers. In practice, this is not always possible.

If the demodulation phase � is unavailable to the detection system, as would be the
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Figure 3.5: Different angles in a quantum state measurement. � : optical local oscillator quadrature
angle; � : electronic local oscillator phase delay angle; � : quadrature phase angle corresponding to
maximum fluctuation. The length of the displacement is proportional to �/�q� j ��l for synchronous
detection ( f g O�f�i ). In most experiments described in this thesis � is optimised, that means��O�� , in order to measure the modulation at f i with maximum sensitivity.

case for the monitoring of remotely generated signals, then either a phase recovery tech-
nique or asynchronous demodulation is required. Asynchronous demodulation can be
simulated by Eq. (3.39) where the demodulation phase � is a linear function of time.
This corresponds to an uncorrelated demodulation generator operating at �\� as shown
in Fig. 3.4.

A typical synchronously demodulated photocurrent plot is shown in Fig. 3.6, where
the phase angle � is repetitively scanned. By selecting data that correspond to the same
value inside the vertical intervals +3� , we obtain measurements of � n �²���[. $ � for any given
quadrature interval ���[.V� ö +#��� . Next a histogram of this current is formed by binning the
data in intervals +#� for a coherent state. This results in the PDF � n ���$,).V��� of the quadrature
amplitude for various projection angle � . Fig. 3.7 shows a series of such PDF’s for a full
scan of � .

The width of a Gaussian PDF corresponds to the variance Mn����� of the given quadra-
ture. For any state we are able to generate, and thus linearisable state with photon num-
ber ò¡  7 , the shape of the PDF is a Gaussian. For a coherent state the width of the Gaus-
sian is equal to the photon number, thus identical to a Poissonian distribution. Squeezed
states have sub-Poissonian PDF’s at one particular angle � x , the squeezing quadrature.
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Figure 3.6: One segment of the measured time trace of quadrature amplitude value by scanning
the PZT in a typical OHT experiment. 5 dBm of phase modulation at 7 MHz was applied to a
laser beam. The detection bandwidth is 50 kHz. a.u.: arbitrary unit.

3.7 Summary

We summarised some quantum-optical measurements, i. e., direct intensity measure-
ment, standard homodyne detection and OHT. From the comparison we see that it’s es-
sential to carry out OHT in order to completely characterise a quantum state. The inverse
Radon transform is the mathematical tool of OHT. We provided an integral of the inverse
Radon transform, and this may save computing time in a real reconstruction procedure
of the Wigner function. A semiclassical theory was developed to model the OHT system.
Phase modulation and asynchronous demodulation were included in this theory and the
results in terms of detected photocurrent were discussed.
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Chapter 4

Data acquisition, binning and
numerical methods

4.1 Introduction

Unlike the direct probing of phase space [26–28], optical homodyne tomography involves
more sophisticated numerical methods. In order to get the quadrature distributions, we
have to scan the local oscillator phase from ' to

�
(see Section 3.6.2). The resulting long

trace of data points must be binned into different quadratures and different quadrature
values for each quadrature.

In this chapter we will first show the details of data acquisition and binning. Then we
will present the numerical implementation of the inverse Radon transform. Simulation
of quantum state reconstruction follows to verify the validity of this implementation.
Numerical filtering will also be presented to deal with noisy data.

4.2 Data acquisition and binning

Shown in Fig. 3.6 is a segment of the raw data from OHT of a modulated coherent state.
It consists of 1,000 data points. The whole time series consists of 200,000 data points. This
trace is first binned into different quadratures. There is a second binning procedure for
each quadrature in order to get the probability density functions (PDF’s). The number
of quadratures needed depends on the quantum state we want to measure. It’s often
chosen to be 120 in our experiments. Too few quadratures will result in poor resolution
of the Wigner function. In the case of a squeezed vacuum state, this is a phase averaging
effect which will artificially degrade the degree of squeezing. Too many quadratures is
not necessary as long as we can have good enough resolution for the Wigner function. In
practical cases, too many quadratures impose a heavier numerical task.

In order to bin the quadrature value trace into different quadratures, we have to si-
multaneously acquire another trace which contains the optical phase information. The
first idea is to use the scanning voltage which drives the piezo-electric transducer (PZT).
However, this is not reliable. Due to hysteresis in the response of the PZT, the scan-
ning voltage does not give an accurate measurement of the optical phase. We show in
Fig. 4.1 and Fig. 4.2 the probability density functions (PDF’s) resulting from such phase
reference. The traces corresponding to the increasing and decreasing stages of the scan-
ning cross over each other. For larger modulation signal, this effect is more severe. The
hysteresis of the PZT response is clearly displayed by the PDF’s. The phase response is
advanced in the increasing stage of the scanning while delayed in the decreasing stage.
These PDF’s can not be used for the reconstruction of the Wigner function. From this we
also know that OHT is a very sensitive measurement technique.

In our experiments, an additional signal is acquired which allows the optical phase
difference to be determined from the first-order interference of the beams in the arms
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of the interferometer. This interference trace is a sine or cosine of the optical phase � .
We found that this trace is normally smooth enough for determining � . However, with
increased sampling rate, it can become rugged and we have to do a running average.
The quadrature amplitude value trace together with the interference trace are sufficient
for binning the experimental data into quadratures. There are some technical problems in
the binning of data. In some sense these problems make binning more difficult than the
implementation of the inverse Radon transform, which will be discussed in Section 4.3.
Here we will discuss the most prominent problems.

Due to the DC offset of the operational amplifiers (op amp’s), the acquired data has
to be processed so that DC offset can be deducted. In the case of phase modulation, this
is more difficult. First we need to determine the amount of modulation. This was done
by calculating the average of the amplitude quadrature value and the phase quadrature
value. After the modulation was determined, we deducted the original data from this
amount of modulation. This is equivalent to shifting the displaced Wigner function back
to the origin of phase space (see Section 3.6.2). We found it much easier to do it this way
rather than do the inverse Radon transform directly for the displaced Wigner function.
This is mainly a concern of grids needed for the algorithm. In doing so we can con-
siderably reduce the computing time and improve the reconstruction accuracy. We call
this the center-seeking algorithm. Because the correction of DC offset can not be perfect, a
procedure is normally taken to adjust this minor imperfection. We calculate the average
value of each quadrature and shift it to zero. Finally, for systematic consideration, we
have another procedure to normalise the PDF’s so that the integral of each PDF is 1. This
is performed just to make sure we have reasonable PDF’s. However, for all our PDF’s,
the deviations of their integrals from 1 are well within 0.1 percent. For the C program
of data binning please refer to Appendix A.1. We show in Fig. 4.4 the flow chart of this
binning program.

4.3 Numerical implementation of the inverse Radon transform

In the actual reconstruction of the Wigner function, we use the discrete version of the
inverse Radon transform1

� �w¢Ð=l./£"¤(.V'²� � 7�(� 1 �¦¥ � -¹§ º � , � ¥ � -�.
�¦¨ � -¹
� º5±

� ï � -¹haº5± � �$, § .V�#hY�LzD�3�! �" ù zD�L�$, § J©¢Ð=(�! �"#���#hY�>J%£"¤g"Vý Ô ���#hY�0�PúW z�WÕ,<WÕ�[. (4.1)

where �%�$, § .V�#hY� are the PDF’s. We have chosen the range ,«ª ù J�,g�\.0,Ð��ú , zoª ù 'Y.0za��ú so
that the divisions WÕ,�� ,2� � � ò¬ J�73� and W z�� z�� � � ò [ J�73� . � ò¬ J�7 and ò [ are the
grid numbers of the quadrature values and the integrating parameter z respectively. , �
is determined by the range of measured quadrature amplitude values. We note that z
originates from inverse Fourier transform. W , and W z�WÕ� form the pair of integration
parameters with the same dimension. The choosing of zY� is tricky. Too small value ofza� results in poor resolution of the Wigner function. Too large value of z[� brings about
oscillation effect. The value of z � has to be adjusted in the reconstruction process. It has
a filtering effect on the reconstructed Wigner function.

1Please refer to section 3.4 for the continuous version of the inverse Radon transform.
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Please refer to Appendix A.2 for the C program of the inverse Radon transform. There
are totally five loops of iteration in the reconstruction algorithm. In our program, some
techniques are employed to reduce the computing time. For example, some common
parameters are calculated beforehand and stored in arrays. We show in Fig. 4.5 and
Fig. 4.6 the flow chart of the program for the inverse Radon transform.

4.4 Simulation of quantum state reconstruction

To verify the validity of our numerical implementation of the inverse Radon transform,
we carry out some simulation of quantum state reconstruction. From quasiprobability
distributions (QPD’s) we can calculate the probability distributions of the rotated quadra-
ture phase amplitude 
,E����� [6],

�%�$,>.V��� � 7�(� �®�¯� �d��°��! �"#�����>J�±e"Vý Ô ���U�I.&°@"Vý Ô ���U� ö ±e�! �"������I."!��
Â!ÃUÄ ù Je!/z 1 �YX ö HI��°�JK,5�Lz�ú � ° � ± � z2^ (4.2)

The rotated quadrature phase amplitude 
,E����� is the linear combination of the creation
and annihilation operators, 
,G�����N���Ç
� ¯ } =ÌË ö 
� } � =ÌË � �(� ^ (4.3)

In the case of the Wigner function, we have the discrete version of Eq. (4.2),

� �$,Ð=f.V�²¤#� � �a³ � -¹haº5± W´± ù � �$,Ð=(�! �"#���²¤3�EJK�W´±S"Vý Ô ���²¤#�I.0,Ð=a"Vý Ô ���²¤#� ö �W´±e�! �"�����¤3�I.V'²� ö
� �$,6=��! �"�����¤3� ö �W´±e"Çý Ô ����¤��I.0,Ð=a"Vý Ô ���²¤3�EJK�W�±¨�! �"#���²¤#�I.V'²�Pú£^ (4.4)

In this simulation, we use 60 quadratures and 81 bins of quadrature amplitude value
for each quadrature. The quantum state to be simulated is the Fock state �87 � . It’s a non-
Gaussian state and has negative value for the Wigner function. The reconstructed Wigner
function is shown in Fig. 4.7. It’s almost the same as the ideal one. However, the exper-
imental data can be noisy, and this will of course affect the reconstruction. In order to
simulate experimental fluctuations, we estimate typically 9�: of fluctuation and add this
amount of fluctuation to the PDF’s,

�%�$,>.V���hµ¶� 4 �$,>.V���N�·� �$,).V����� õ . (4.5)

where �%�$,).V�U� are the precise PDF’s and �;4��$,>.V��� are the noisy PDF’s. 'Y^`_a9¸� õ {�7(^�'�9 is a
random number. The result is shown in Fig. 4.8. We can see the resulting Wigner function
is not as smooth as the one shown in Fig. 4.7. However, the shape and the negativity of
the Wigner function are maintained. From this simulation we see that our numerical
reconstruction is valid.

4.5 Numerical filtering

As discussed in Section 4.3, we limit z to a cutoff value zY� , rather than ¹ . This is a
filtering of the Wigner function as discussed in Ref. [32]. Because the integral of the
inverse Radon transform of the Wigner function is at a critical point of convergence (see



34 Data acquisition, binning and numerical methods

section 3.5), it is not a stable one. We can easily get oscillating features in the numerical
implementation. In our implementation, we sometimes use a Gaussian filter for some
really noisy data. We add a Gaussian roll-off factor to the inverse Radon transform,

�d�$,)-�.0,613� � 7+ � 1
� � ¸� ¸

� � ¸� ¸
� 3
± �%�$,).V�U� Â!ÃUÄ ù H£z5�$,�JK,)-Ð�! �"3�����>JK,21g"Vý Ô �����0�Púl� z��

Â!ÃYÄ ù Jpc2z 1 ú � , � z � �[. (4.6)

where Â!ÃYÄ ù Jpc2z 1 ú is the Gaussian filter. Comparing with Eq. (3.8) we note that this is
equivalent to reconstructing the J X c -ordered QPD’s.

In practice, we always choose c small enough so that the accuracy is maintained while
the filtering effect is achieved. For an example of quantum state reconstruction utilising
numerical filtering, please refer to section 7.3.5. Due to asynchronous detection, the data
is relatively noisy in this example.

4.6 Accuracy, sensitivity and validity

The inverse Radon transform is very sensitive to noise in the PDF’s. Any error in the
PDF’s will propagate through the inverse Radon transform and shows up in the result-
ing Wigner function. The most important thing is to get accurate data for the PDF’s.
In practical cases, this means higher sampling rate, more stable optical phase reference,
higher sampling accuracy and lower electronic noise. For the classical state tomogra-
phy, we used a sampling I/O board with a sampling rate of 20 kSa/s. For the quantum
state tomography, we used an oscilloscope which has a sampling rate of 2 GSa/s. This
is mainly a concern of the long term phase stability of the optical system. Negativity is
a common problem in the inverse Radon transform. Although we know there should
be no negative value for our Wigner functions (negativity is a feature of non-classical
states), small amount of negativity will normally occur in our results. The absolute value
of the minimum (which is negative) is typically below 9�: of the maximum of the Wigner
function. This shouldn’t be confused with the non-classical states. It’s simply due to the
imperfection of the data and the oscillating feature of the integral.

The accuracy and validity of the reconstructed Wigner function mainly rely on the
accuracy of the PDF’s. The effort should be devoted to the making of accurate PDF’s.
Then we are sure the reconstructed Wigner function will be accurate. For example, we
should properly set the gain of the sampling I/O board, and electronically amplify the
photocurrent from the experiment, so that the acquired data is accurate.

4.7 Summary

We presented in this chapter the numerical aspect of quantum state reconstruction (QSR).
This includes the data acquisition, binning and the inverse Radon transform. We ad-
dressed the problem of hysteresis in the response of a PZT. This problem was solved by
extracting precise optical phase from the interference trace. C programs were developed
to fulfill all the numerical tasks involved in QSR. We also discussed noise and numeri-
cal filtering in the reconstruction algorithm. The validity of our numerical method was
verified by a simulation of QSR of the Fock state �87 � , a highly non-Gaussian quantum
state.
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Figure 4.1: Probability density function (PDF) (a) and its contour plot (b) of a phase modulated
coherent state (10 dBm RF driving). Scanning voltage of the PZT (from -0.34 V to 0.26 V) was
used as phase reference. The left branch of the PDF corresponds to the decreasing stage of the
scanning and the right branch corresponds to the increasing stage of the scanning. 200,000 data
points were acquired. The quadrature amplitude is normalised by quantum noise limit; unit of
the L. O. angle: radian.
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Figure 4.2: Probability density function (PDF) (a) and its contour plot (b) of a phase modulated
coherent state (15 dBm RF driving). Scanning voltage of the PZT (from -0.34 V to 0.26 V) was
used as phase reference. The left branch of the PDF (between GKJ�HKº and »�J�HKº ) corresponds to the
decreasing stage of the scanning and the right branch corresponds to the increasing stage of the
scanning. 200,000 data points were acquired. Because of larger modulation (comparing with the
one in Fig. 4.1), the crossing of the two stages is obvious. The quadrature amplitude is normalised
by quantum noise limit; unit of the L. O. angle: radian.
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Figure 4.3: Center-seeking algorithm. Originally the Wigner function is evaluated in the j½¼�¾K¿�¼ÁÀ l
coordinate system and has a displacement from the origin. We deduct this amount of displace-
ment from the data and effectively the Wigner function is shifted to the j½¼�Â¾ ¿�¼ÁÂÀ l coordinate system
where there is no displacement for the Wigner function. Numerical task of reconstruction is con-
siderably reduced by this algorithm.
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Start

Definition of variables and arrays

Read control parameter data file

Initialise variables and arrays to zero

Read experimental data file

Calculate the minimum and maximum of the interference trace

Deduct quadrature amplitude from the 
estimated DC offset and do multiplication

Read in quadrature amplitude counting of previous data set (if any)

Accumulate the quadrature amplitude counting using new data

Write data file for control parameters

Write new quadrature amplitude counting data file

Calculate total countings for each quadrature

Calculate quadrature amplitude probability density functions 
(PDF’s) from quadrature amplitude counting data

Write quadrature total counting data file

Write quadrature amplitude PDF data file

End

Figure 4.4: Flow chart of the binning program.
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Start

Definition of variables and arrays

Read control parameter data file

Check control parameters

Calculate divisions for parameters

Prepare quadrature amplitude and phase space position arrays

Read in quadrature amplitude probability density function (PDF) data file

Dump bad quadratures on the edges of the scanning

Write new quadrature amplitude PDF data file

Calculate DC offset of the quadrature amplitude data

Remove DC offset from the quadrature amplitude PDF and 
calculate the displacement of the state in phase space

Write data file for parameters

...
Figure 4.5: Flow chart of the program for the inverse Radon transform (part I).
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...
Prepare intensively used intermediate data for the inverse Radon transform

Calculate centered (in phase space) quadrature amplitude PDF

Write centered quadrature amplitude PDF

Further adjust the centered quadrature amplitude PDF for imperfection of data

Calculate sum of probability for each quadrature

Renormalise the PDF to make the sum of probabilities 1

Write sum of probability data file

Write renormalised PDF data file

Perform 5 loops of calculation for the inverse Radon transform

Write reconstructed Wigner function data file

End

Figure 4.6: Flow chart of the program for the inverse Radon transform (part II).
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Figure 4.7: The reconstructed Wigner function of the Fock state LÄÃ�M (numerical simulation). There
is no added noise.
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Figure 4.8: The reconstructed Wigner function of the Fock state LÅÃ²M (numerical simulation). ÆBÇ of
random fluctuation is added to the PDF’s (please see the text part in section 4.4).



Chapter 5

Optics and electronics for optical
homodyne tomography

5.1 Overview

There are some commonly used optics and electronics in a typical optical homodyne to-
mography (OHT) experiment. In this chapter we want to summarise the use of these
elements. We first introduce the photodetector, which is customised for our experiments.
Then we outline the technical details of the diode pumped Nd:YAG laser. The third el-
ement we want to explain is the optical cavity. High finesse optical cavities were used
in our laser noise measurement experiment, which will be discussed in Chapter 6. Fi-
nally we present the electronic configuration of OHT system. The use of an I/O board
will be explained. Some technical problems and solutions in the data acquisition will be
discussed.

5.2 Photodetector

A very important element in our experiment is photodetector. We used Epitaxx ETX500
InGaAs photodiodes for the detection of radiation at 1064 nm. The obtainable quantum
efficiency of these photodiodes can be as high as 94%. Customised low noise amplifi-
cation circuits were built into the photodetectors. (These circuits were designed by M.
B. Gray [84]. Please refer to Fig. C.1 for the circuit diagram.) Two stages of operational
amplifiers were used. The front end stage is a transimpedance operational amplifier (op-
amp) uses a Comlinear CLC420 op-amp. The second stage provides a gain of +3.5 using
a CLC430 in a non-inverting op-amp circuit. The overall 3 dB bandwidth of our photode-
tector circuit is 20 MHz. The noise equivalent power (NEP) is estimated to be 6 pW/

» ÈZÉ
[84]. There is also arrangement for isolating the 50 Hz power supply signal in the design
of our photodetectors. This is necessary for the sensitive low noise detection of light in
our experiment. We show in Fig. 5.1 a trace of the laser intensity noise directly measured
by one of our photodetectors and recorded by a spectrum analyser (SA).

5.3 Diode pumped Nd:YAG laser

All the lasers used in our experiments are diode pumped Neodymium doped Yttrium
Aluminum Garnet (Nd:YAG) lasers. The laser crystal is a monolithic non-planar ring
oscillator (NPRO) [85, 86]. The pump laser diode emits in a single discrete output at
808 nm. It can be temperature tuned to a strong absorption band of the gain media.
The output wavelength of the Nd:YAG gain media is 1064 nm. The frequency tuning of
the diode pumped Nd:YAG laser can be achieved by two ways. Temperature tuning is
relatively slow with a time constant of approximately 1-10 seconds. The tuning range can
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Figure 5.1: Laser intensity noise directly measured by a photodetector (Epitaxx ETX500 InGaAs)
and recorded by a spectrum analyser. The intensity fluctuation of a laser beam is expanded into
an RF spectrum, and the amplitude of this spectrum is called noise power. The frequency for
signal roll-off is beyond 30 MHz for this particular photodetector. power: 2 mW; wavelength:
1064 nm; RBW: 100 kHz; VBW: 3 kHz. (The dip at 17.5 MHz is due to the amplification circuit
built into the photodetector.)

be tens of GHz. Fast tuning is achieved by applying a voltage to a piezoelectric element
bonded onto the crystal. This tuning range can be tens of MHz at modulation rates up to
100 kHz. This piezoelectric element is often used for frequency locking purpose in our
experiment.

Three different lasers were used in our experiments. They are Lightwave 120, Light-
wave 122 from Lightwave Electronics Inc. and Mephisto 700 from Laser Zentrum Han-
nover/InnoLight Inc. The output powers are 40 mW, 200 mW and 700 mW respectively.

5.4 Optical cavity

Three high finesse cavities were constructed in our experiments. In general they can be
used as mode cleaners. The transmitted beam of a high finesse optical cavity has im-
proved high RF noise performance (above the cavity linewidth). Comparing with the
elliptic spatial mode of a diode pumped Nd:YAG laser, the spatial profile of the trans-
mitted beam of an optical cavity is also very much improved because it’s the transmitted
TEM00 mode. In our laser phase noise measurement experiment, which will be discussed
in chapter 6, a high finesse cavity was deliberately used to separate the high RF noise of
the laser from the transmitted beam of the cavity1.

Now let’s discuss the calculation of a general optical cavity. (Note that we only dis-
cuss the on-resonance situation.) In Fig. 5.2 we show a ring cavity.

We denote <5= , ?@= and A�= as the power transmittance, loss and reflectance of the mir-
rors. ?@= can be the absorption and scattering of the mirrors. Suppose M1 is the input

1In this case the cavity was not used as a spatial mode cleaner.
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T3, A3, R3

Figure 5.2: A ring cavity. M1, M2 and M3 are mirrors. ÊzË , Ì6Ë and Í	Ë denote the power transmit-
tance, loss and reflectance of the mirrors. Î�Ë : incident power; Î�Ï : reflected power; Î<Ð : transmitted
power.

coupler and M2 is the output coupler. ¥�= , ¥�D and ¥ F are the incident, reflected and trans-
mitted amplitude of the fields while BN= , B)D and B F are the corresponding powers. For
each mirror, < = ö ? = ö A = ��7(. (5.1)

and

$ = � Ñ <2=f.� =t� Ñ ?�=f.Ê/=t� Ñ A@=f^ (5.2)

are the amplitude transmittance, loss and reflectance of the mirrors respectively. We have
these formulas for the transmitted and reflected amplitudes [87],

¥ F¥�= ��J
$ - $ 1» Êa-VÊ#1

» Ò
7�J Ò . (5.3)

¥�D¥�= �°Ê�-GJ
$ 1 -Êa-

Ò
7�J Ò . (5.4)

where
Ò �dÊa-0Ê31 » 7�J  = is the round-trip amplitude gain and

 =�� ? � ö < � is the intra-
cavity loss. For the transmitted and reflected powers we have

B FB)= w +(<E-0<51�R<E- ö <g1 ö  � 1 . (5.5)
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B>DB = wÔÓ <51�Jp<E- ö  < - ö < 1 ö  ÖÕ 1 . (5.6)

where
 �t? - ö ? 1 ö  = is the total cavity loss. Here in Eq. (5.5) and (5.6) we have

assumed very good mirrors, i.e., ?¢=at 7 , <5=�t 7 . The finesse of the cavity is given by

× � � » Ò
7ÖJ Ò ^ (5.7)

For the circulating field amplitude inside the cavity we have

¥ � =iD �¥�= � Ø $ -7�J Ò ^ (5.8)

The circulating power can be expressed by the Finesse,

B � =8D �B>= � × 1 <E-� 1 ^ (5.9)

The free spectral range (FSR) is determined by the cavity optical length,

ÙhÚ�Û � �¢ . (5.10)

where ¢ is the round-trip length of the cavity and  is the refractive index of the intra-
cavity media (for air,  �|7 ). In the case of a linear cavity ¢�� �YÜ

is the doubled cavity
length. The full-width-half-maximum (FWHM) of a cavity is given by

Ù�Ý ÈeÞ � Ù�Ú�Û � × ^ (5.11)

FWHM tells us the corner frequency of the cavity when used to transmit a “clean” mode.
From Eq. (5.4) we can work out the condition for the reflected amplitude to be zero and
the result is A -¨�&�f7ÖJ÷? -�� 1 A�1a�f7ÖJ  =£�I^ (5.12)

This is the impedance matched case. If the input coupler has no loss, i. e., ?c-S�	' , Eq. (5.12)
can be simplified as A -S�	A¢1a�f7ÖJ  =Á�I^ (5.13)

When A -ß� A¢1a�f7\J  =Á� , the cavity is under-coupled; on the other hand, if Aq-�{�A�1a�f7;J =£� , the cavity is over-coupled. The phase change experienced by the reflected fields are
different in these two cases. For an under-coupled cavity, the phase moves up and down
less than

�)�(�
radians; for an over-coupled cavity, the phase of the reflected field shifts

-180 degree when the cavity goes through resonance.

impedance matched: A -S�	A¢1a�f7ÖJ  =Á�
under-coupled: A%-�óA¢1a�f7ÖJ  =Á�
over-coupled: A - {óA 1 �f7ÖJ  = �

Table 5.1: Impedance matching of an optical cavity with lossless input coupler.

Now, in the case of a linear cavity (see Fig. 5.3), we provide a method for characteris-
ing the mirrors. For high reflectance mirrors, according to Eq. (5.5) and Eq. (5.6),
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Pr1 Pt

Figure 5.3: A linear cavity. M1 and M2 are mirrors. ÊzË , ÌBË and Í	Ë denote the power transmittance,
loss and reflectance of the mirrors. Î�Ï ¾ : reflected power; Î�Ð : transmitted power.

B>D�-B\H w Ó <g1�Jp<>- ö ?< - ö < 1 ö ? Õ 1 . (5.14)B>D01B\H w Ó <E-CJp<51 ö ?<E- ö <51 ö ? Õ 1 . (5.15)B F -B;H w Ó +(<>-0<g1< - ö < 1 ö ? Õ 1 . (5.16)

where BE= is the incident power, BGD�- is the reflected power from M1 when M1 is the input
coupler and B>D01 is the reflected power from M2 when M2 is the input coupler. B F is the
transmitted power, which should be the same no matter which mirror (M1 or M2) is the
input coupler. BED�-/.VB>D01(.VB F .VB>= can be easily measured in the experiment. Here we give an
experimental example. For a linear cavity (cavity No. 1 in Table 5.2), we measured

B>DI- � B>=t� 'Y^ � '��U.B>Df1 � B>=t� 'Y^ + � 7(.B)F � B = � 'Y^`9Y7!+[. (5.17)

and the Finesse of the cavity was measured to be

× �	+[.V'a'a'Y^ (5.18)

Combining Eq. (5.14)-(5.18) we can readily obtain the parameters (ignoring unphysical
solutions)

<E- � 'Y^�7a73:�.? - � à1àh¢D¢ ¬ .A - � _a_U^ X1X :�.<g1 � � à(�B¢D¢ ¬ .?�1 � à1àh¢D¢ ¬ .A¢1 � _a_U^`_a��:�. (5.19)

where we have assumed the same amount of loss for the two mirrors, i. e., ? - �d? 1 �? �(� 2 (Note that 1 ppm=0.0001%).

2In order to avoid contamination of the high quality mirrors as much as possible, we did not make sepa-
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Listed in Table 5.2 are three high finesse cavities used in our experiments. Cavity No. 1

Cavity No. 1 No. 2 No. 3
Type Linear Linear Ring

Parameters <E-S�	'Y^�7a73: <>-&á 1���7�à#+	¢D¢ ¬ <E-&á 1���� X '6¢D¢ ¬<g1�� � à(�B¢D¢ ¬ A � ��_a_U^`_a_a_�:? - �'à1àh¢D¢ ¬ ? -&á 1 ��7�'a'6¢D¢ ¬ ? -&á 1 ��7�'a'B¢-¢ ¬?�1��'à1àh¢D¢ ¬A -e��_a_U^ X1X : A -&á 1���_a_U^`_Dàa: A -&á 1���_a_U^`_ � :A�1���_a_U^`_a��:¢�� �YÜ * +  ¬ *a�  ¬ + �  ¬
FSR 882 MHz 938 MHz 714 MHz

FWHM 220 kHz 67 kHz 179 kHz×
4,000 14,000 4,000

Table 5.2: High finesse cavities used in the experiments.

was used in the squeezed vacuum experiment which will be discussed in chapter 8. It
was used as a mode cleaner for the local oscillator. Cavity No. 2 and No. 3 were used
in the laser phase noise measurement experiment (see chapter 6). No. 2 has a very small
FWHM and enabled us to measure the lower RF sidebands. No. 1 and No. 2 were con-
structed by SuperMirrors from Newport Inc.. These mirrors have ultra-low loss. No. 3
was constructed by low loss mirrors from Research Electro-Optics Inc. and can handle as
high as 1 Watt of input optical power due to their excellent coatings [88].

5.5 Devices, elements and electronic configuration

The electronic configuration of OHT is shown in Fig. 5.4. It is basically an RF demodula-
tion scheme. There are a few elements added in order to solve some technical problems.

There are two channels acquired by the I/O board, one is the quadrature amplitude
and the other one is the optical phase. We acquire the DC component of either H/- or HP1 as
the optical phase. HÇ- and HL1 are the photocurrents detected by a pair of photodetectors.
Ideally the input impedance of the I/O board is large enough to prevent loading of the
monitored photocurrent, say, H 1 . However, there may be capacitive loading due to the
cables. This will affect the balanced subtraction of H!- and HL1 . So we add a buffer amplifier
Amp. 2. to the optical phase channel. This buffer amplifier has a unity gain and a very
high input impedance. The circuit diagram of this buffer amplifier is shown in Fig. C.2.

In the quadrature amplitude channel, we have a low pass filter (LPF1) immediately
after the subtractor. LPF1 is a Mini-Circuits BLP-10 low pass filter with a bandwidth of
10 MHz. This is to filter out the locking signal of the system. Depending on the RF lock-
ing sideband, the corner frequency of this low pass filter should be adjusted. Isolation
transformers (IT’s) were used to eliminate 50 Hz signal entering the measurement sys-
tem. This 50 Hz residual signal is due to the power supply for the r 7/9qâ bias voltage
of the op-amp’s (this is the case for the experiments described in chapter 7). Should the
filtering of bias voltages be good enough, we don’t need these isolation transformers,

rate single-pass measurements for the two mirrors.
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IT

Mixer
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1 µF

Subtractor
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Signal 
Generator

IT

LPF2

Amp.1

I/O 
board

Amp.2
X1

Figure 5.4: The electronic configuration of optical homodyne tomography. The arm with Amp.2
is the optical phase channel and the arm with Amp.1 is the quadrature amplitude channel. The
mixer is used for demodulation of the difference photocurrent ( ã�¾häåã9À ). Please refer to the text
part for a detailed description of the circuit. LPF: low pass filter; IT: isolation transformer; Amp.:
amplifier.

and this is the case for the experiments described in chapter 6 and chapter 8. We used the
Mini-Circuits FTB-1-1 as the IT’s. The working bandwidth of this IT is 0.2-500 MHz. LPF2
is a simple homemade low pass filter with a corner frequency of 50 kHz (see Fig. 5.5). Be-
fore the signal was acquired by the I/O board, we employed an amplifier (Amp. 1) with
a gain of 100. The circuit diagram of Amp. 1 is shown in Fig. C.3

50 Ω
In Out

R
C 68 nF

Figure 5.5: Low pass filter with a corner frequency of 50 kHz.

The I/O board we used is a 16 bits E Series multifunction I/O board for PCI (PCI-
MIO-16XE-50, National Instruments Inc.). We can have multi-channel data acquisition
using this board. Technical details of this board are listed in Table 5.3. Please refer to
Appendix D for the details of channel connection. This board served very well for clas-
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sical state tomography. However, due to its normal sampling rate, we could not use
this board in the tomography of a squeezed vacuum state. The phase instability of our
squeezed vacuum prevented us from carrying out long term (90 seconds) data acquisi-
tion, otherwise the squeezing could have been averaged out by the fluctuating optical
phase.

Analog input 16 single-ended, 8 differential channels
16-bit resolution (1 in 65,536)
20 kSa/s sampling rate
DC coupled

Amplifier characteristics input impedance: 7 G � in parallel with 100 pF
(normal, powered on)
input bias current: rÕ7�' Ô\æ
input offset current: r � ' Ô\æ

Dynamic characteristics 63 kHz (Gain=1, 2)
(bandwidth) 57 kHz (Gain=10)

33 kHz (Gain=100)

Table 5.3: Specifications of the PCI-MIO-16XE-50 I/O board.

In the case of a squeezed vacuum tomography, we used a high sampling rate
HP54820A Infiniium oscilloscope. It has 2 channels, 500 MHz bandwidth, and 2 GSa/s of
sampling rate. The memory depth of this oscilloscope is 32,768 points/channel. Details
of data processing in this case will be discussed in chapter 8.

A device that was frequently used in the data acquisition of optical phase channel is
a low noise pre-amplifier (Model SR560) from the Stanford Research Systems Inc.. It has
full range of gain and filter corner frequency for flexible adjustment in different experi-
mental cases.

Another electronic element that’s used in the classical state tomography is the voltage-
controlled attenuator (VCA). We used a Mini-Circuits ZAS-3 in the switching of phase
modulation signal (see chapter 7). As shown in Fig. 5.6, modulation signal is applied

IN OUT

CON

VCA

Figure 5.6: Voltage controlled attenuator (VCA).

to “IN”, a much lower frequency (e. g. 200 Hz) gating signal is applied to “CON”, a
switched modulation signal is produced in the “OUT” channel. The suppression ratio of
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this VCA is at least 48 dB.

5.6 Summary

In this chapter we summarised some optics and electronics which are necessary in a typ-
ical OHT experiment. We presented the technical aspects of the photodetector, the diode
pumped Nd:YAG laser and the high finesse optical cavity. Details were given for the
characterisation of a high finesse optical cavity, which will be used in our laser phase
noise measurement experiment. The electronic configuration of OHT experiment was
discussed and some practical problems addressed. We also explained the use of an I/O
board, which is a key device in the data acquisition. We will refer to these technical
details from chapter 6-8, where we will demonstrate OHT for different quantum and
classical states.
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Chapter 6

Laser phase noise measurement

6.1 Introduction

As a powerful tool in physics (actually, science), the laser is now widely used in many
different applications. There are many different kinds of lasers and they have very differ-
ent features. In this chapter we concentrate on the noise measurement of a diode pumped
Nd:YAG laser, but we believe our method is quite general and can be applied to the study
of other laser systems. Although a laser beam can be approximated as monochromatic
radiation, with a very well defined frequency, this is not true in the precise sense. In
quantum optics, we use RF sidebands to describe the fluctuations of a laser. A realistic
laser always has intensity and frequency fluctuations, and these can be described as RF
sidebands. We can use an RF spectrum analyser to measure the amplitude sidebands of
a laser and get the noise equivalent power of the fluctuations.

Here we are particularly interested in the phase noise measurement of a laser. The
phase noise of a laser is of concern when we want to apply phase or frequency modu-
lation and carry out measurements of these properties. However, it is much harder to
determine the phase noise than the intensity noise of a laser. The intensity noise can be
measured directly by a photodiode and then analysed by an RF spectrum analyser. This
is not true for the phase noise. There have been many reports of laser frequency sta-
bilisation, and the reduction of laser phase noise [89–94]. Similarly there are reports on
measuring the linewidths of lasers [95–98]. However, to the best of our knowledge, there
is no investigation yet for the full RF phase noise spectrum.

In this chapter we present an alternative method for characterising the phase noise
of a diode pumped Nd:YAG laser. It is based on the optical homodyne tomography
(OHT). In contrast to conventional homodyne measurement, which normally gives us
the variance of a particular quadrature, OHT can give us the probability density func-
tions (PDF’s) for all quadratures. In particular, we can measure the PDF of the phase
quadrature, and thus determine the phase noise of the laser.

6.2 Can we measure the phase noise with a Mach-Zehnder inter-
ferometer?

In order to do OHT, we need a strong local oscillator which is phase coherent with the
laser beam which we want to measure. One way is to phase lock two lasers together
and use the output of the laser with high power as the local oscillator [99, 100]. This is
very complicated technology. A simpler idea is to use a Mach-Zehnder interferometer as
shown in Fig. 6.1. We can use the unbalanced beam splitter M1 to split the power of a
laser beam, and use the strong arm as a local oscillator. If this would work, it could be
a really simple method. Here we provide a calculation. Unfortunately the result shows
that it’s impossible to measure the laser noise by this configuration.

53
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Figure 6.1: Mach-Zehnder interferometer and the measurement of laser noise. ç ¾>è¦j½é l , ç À�è¦j{é l :
amplitude and phase quadrature variances of the laser; QR è , QS , QRYê , QRYê�ê , QRYë , QRYì : annihilation oper-
ators of the corresponding fields; í ¾ Oî�Dï ðIÆ : power reflectance of the beam splitter M1; í�ñZOò�-ï Æ :
power reflectance of the beam splitter M4; PDA, PDB: photodetectors.

As shown in Fig. 6.1, 
� O and 
� are the annihilation operators of the laser field and the
vacuum port respectively. 
�[T .(
�UTVT .�
� W and 
� X are also annihilation operators of the corre-
sponding fields. Suppose we can vary the phase of arm II by a piezo-mounted mirror M3.Za- �  � Z3b are the power reflectance of the beam splitters M1 and M4 respectively. SupposeZa-S��'Y^`_a9 and Z3b��°'Y^`9 . Most of the laser power is reflected into arm II as a local oscillator,
and arm I has a weaker beam. We have two photodetectors PDA and PDB for a balanced
homodyne measurement. For M1, we can write down the relationship of the operators
[101],

Ó 
� T
�UTVT Õ �óÓ » 7ÖJ÷Z�- } ={ô�õ C » Za- } ={ôIö CJ » Z - } � ={ô�ö C » 7ÖJ÷Z - } ={ô�õ C Õ Ó 

� O
� Õ ^ (6.1)

For M4, we choose a fixed matrix (note that Z(b@�	'Y^`9 ),
Ó 
��W
�YX Õ � » �� Ó 7 7J 7 7 Õ Ó 
� TVT

} =xôI÷>÷
� T Õ ^ (6.2)

From Eq. (6.1) and Eq. (6.2) we can express the output operators by the input operators,

Ó 
�UW
�UX Õ � » �� Ó 7 7J 7 7 Õ Ó
} ={ô�÷�÷ '' 7 Õ Ó J » Z�- } � ={ô�ö C » 7�J÷Za- } ={ô�õ C» 7�J÷Z�- } ={ô�õ C » Za- } ={ôIö C Õ Ó 
� O
� Õ

� » �� Ó J » Za- } =xôI÷>÷ � ={ô�ö C ö » 7ÖJ÷Z�- } ={ô�õ C » 7ÖJ÷Za- } ={ô�÷>÷ � ={ô�õ C ö » Za- } ={ô�ö C» Za- } =xôI÷>÷ � ={ô�ö C ö » 7�J÷Za- } ={ô�õ C J » 7�J÷Za- } ={ô�÷>÷ � ={ôIõ C ö » Za- } ={ôIö C Õ
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Ó 
� O
� Õ ^ (6.3)

We note that `<ø -/. `�ù - and ` TVT can be chosen independently. We can rewrite this relation-
ship as


�UW � ?\-0-(
� O ö ? -P1 
� .
�UX � ?@1�-(
� O ö ?�101 
� . (6.4)

where we have defined these four coefficients

? -0- � » �� �lJ » Za- } =xô ÷>÷ � ={ô�ö C ö » 7ÖJ÷Z�- } ={ô�õ C �I.
? -P1 � » �� � » 7ÖJKZa- } ={ô�÷>÷ � ={ôIõ C ö » Za- } ={ôIö C �I.
? 1�- � » �� � » Z - } =xôI÷>÷ � ={ô�ö C ö » 7�J÷Z - } ={ô�õ C �I.
?�101 � » �� �lJ » 7�J÷Z�- } ={ô�÷>÷ � =xôIõ C ö » Za- } =xôIö C �I^ (6.5)

Now let’s first look at the photon number variance of a single detector, say, PDA. The
photon number operator is defined as


ò W �d
� ¯W 
�UW ^ (6.6)

From Eq. (6.3) we can straightforwardly evaluate the photon number variance

M � W � ª 
ò 1W � J ª 
ò W � 1
� 7+ ù 7�J � ] Za-3�f7ÖJ÷Z�-��U�! �"#� ` TVT J `zø -CJ `�ù -I�Lú 1 M��¨Oö 7+ ù 7ÖJK+�Z�-#�f7ÖJ÷Za-��U�! �" 1 � ` TÇT J `�ø -CJ `�ù -I�Pú ò O). (6.7)

where ò O�� ª 
� ¯O 
� O � is the average photon number of the laser field and

Mz�eO�� ª �I
� ¯O 
� O5� 1 � J ª 
� ¯O 
� O � 1 (6.8)

is the variance of the photon number of the laser field. When Z - V 7 ,
Mz� W � 7+ �£Mz�eO ö ò O5�I^ (6.9)

From Eq. (6.7) and Eq. (6.9) we know that the direct noise measurement of a single de-
tector can not provide any information about the laser phase noise. Instead, it provides
information about the intensity noise, which is not surprising. Now let’s look at the
difference-current measurement of the two detectors. First let’s introduce the linearisa-
tion procedure. For a general annihilation operator 
� ,


ò �]
� ¯ 
� (6.10)
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is the photon number operator. We can also define the rotated-quadrature operator


mu�����N�&�I
� } � =ÌË ö 
� ¯ } =ÌË � �(� . (6.11)

so that 
m - � 
m���'²�C���I
�\ö 
� ¯ � �(� (6.12)

and 
mq1�� 
m�� �)�(� �¨���I
� J	
� ¯ � �(� H (6.13)

are the amplitude and phase quadrature operators respectively. If we write


� ��� ö +Ø
� . (6.14)

where �K� ª 
� � is the average value of 
� , we can focus on +Ø
� and omit some higher orders
of +Ø
� in our calculation. This is the basic idea of the linearisation approximation [80–83].
Now let’s assume 
� O���� ö +Ø
� O). (6.15)

where � �|� ��� } ={ô is the average value. We can evaluate the photon number variance of
the laser,

M��eO � M � Ê[�I
� ¯O 
� Og�� M � Ê ù ��� Æ ö +Ø
� ¯O �!��� ö +Ø
� Og�Púw M � Ê[��� Æ +Ø
� O ö ��+Ø
� ¯O �� M � Ê ù � � �Ö� + 
mqOC� ` �Pú� +6� �Ö� 1 M � Ê ù + 
m O � ` �PúP^ (6.16)

For the average photon number,

ò O�� ª 
� ¯O 
� O � �&� ��� 1 ^ (6.17)

For the vacuum state � ' � , 
m y ����� © 7� � 
� } � =ÌË ö 
� ¯ } =ÌË �I. (6.18)

+ 
m y �����N� 
m y ���U�I. (6.19)

ª 
m 1y ����� � ��7 � +[. (6.20)

ª 
m y ����� � ��'Y. (6.21)

M � Ê ù + 
m y �����Pú2��M � Ê ù 
m y �����Pú2��7 � +[^ (6.22)

From Eq. (6.22) we know that the quadrature amplitude variance of the vacuum state is
independent of the quadrature angle, � , so we can generally define

M � Ê ù + 
m y ú © M � Ê ù + 
m y �����Pú2��7 � +[^ (6.23)

Eq. (6.9) can now be expressed as

M � W �]� ��� 1 M � Ê ù + 
m O � ` �Pú ö � ��� 1 M � Ê ù + 
m y ú£^ (6.24)

This simply indicates the photon number variance detected by PDA consists of two parts,
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one originates from the laser itself and the other one is from the vacuum. What if we make
a difference-current measurement? From Eq. (6.4) and Eq. (6.5), using the linearisation
approximation, we can calculate the difference-current operator


 H � © 
H W J 
H X �d
� ¯W 
� W J	
� ¯X 
� Xw J@Za-3� } � ={ôI÷>÷ � 1f={ô ö C 
� ¯O 
� ö } =xôI÷>÷ � 1f={ô ö C 
� ¯ 
� O2�!^ (6.25)

If we treat 
� O classically and replace 
� O by �ó� � ��� } ={ô , define `2� © ` TVT J � `�ø - and ` b ©`2� ö ` � ` TVT J � `�ø - ö ` , the value of the difference-current operator 
H � can be further
simplified to give


H � � J�Z - � �Ö� ù } � ={ôIú 
� ö } ={ô�ú 
� ¯ ú� J � Za-�� �Ö� 
m y � ` b#�I^ (6.26)

From Eq. (6.26) we know that the difference-current is a measurement of the vacuum
noise. No information of the laser phase noise can be extracted this way. We have to in-
clude a component into the interferometer which separates off the laser noise (including
the phase noise), which we wish to study and allows us to observe this in our experiment.

6.3 Optical cavity as a low pass filter

From the RF sideband point of view, an optical cavity is a low pass filter. According to
the input-output theory developed by Collett and Gardiner [79], we can easily verify this
statement.

T1
ain

a
out

b
out

b
in

a
T2

Figure 6.2: Input-output relation of a two-sided cavity. Ê<¾ ¿ Ê�À : the power transmittance of mirrors;QR Ë|û ¿ QS Ëwû ¿ QRYü�ý Ð ¿ QS ü�ý Ð : the annihilation operators of the input and output fields; QR : the annihilation
operator of the intra-cavity field.

Shown in Fig. 6.2 is a two-sided optical cavity. <¨- and <g1 are the power transmittance
of the cavity mirrors. 
� =8h6. 
� =8h6.(
� jlk F . 
� jlk F are the annihilation operators of the input and
output fields, while 
� is the annihilation operator of the intra-cavity field. We can write
down the input-output relation for these operators [79, 83, 102] as


� jLk F �RQS�C� ùFþ C � þ ¶1 ö HI�RQKJpQE±/�PúV
� =ih2�RQS� ö » cÐ-&cU1 
� =ih2�RQS�þ C � þ ¶1 J÷HI�RQKJpQE±/� . (6.27)

where c = �|< =  � ¢ are the round-trip loss rates of the mirrors, ¢�� �YÜ
is the round-trip

length of the cavity and  is the speed of light. Q �(�(� denotes the optical frequency. In the
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case of symmetric mirrors, < - � < 1�© < , c - �sc 1�© c , so Eq. (6.27) can be simplified as


� jLk F �RQS�C� HI�RQKJpQG±/�/
� =ihg�RQS� ö c 
� =ih5�RQS�cnJ÷HI�RQ÷JpQG±�� ^ (6.28)

For the close to resonance cases, � Q÷JKQ ± �1tÿc ,


�UjLk FÇ�RQS� w c 
� =ih2�RQS�cnJ÷HI�RQ÷JpQG±�� . (6.29)

the cavity is a through-pass Lorentzian filter. However, for large frequencies, � Q�J�QÖ±(�   c ,


� jlk F �RQS�C��JÕ
� =ih6�RQS�I. (6.30)

they are directly reflected off the cavity. Eq. (6.29) and Eq. (6.30) show that the optical
cavity transmits the low frequency RF noise and reflects the high frequency RF noise.
This property of optical cavities is perfect for our purpose of measuring the noise of a
laser beam. We can build an optical cavity which has a very high finesse

×
(so as to

reduce the FWHM) and make the transmission efficiency high enough1 (see section 5.4
for discussion). When we pass a laser beam through this cavity, most of the power is
transmitted and a weak beam is reflected. According to the discussion above, for the
frequencies above the linewidth of the cavity, the transmitted beam is quantum noise
limited (vacuum noise reflected), while the reflected beam has the same noise properties
as the incident laser beam (laser noise reflected). On one hand, we separated the laser
noise and get a strong quantum noise limited local oscillator. On the other hand, these
two beams are still coherent with each other. This is a perfect configuration for OHT of
the laser noise. We note that in the Mach-Zehnder setup, a strong local oscillator was ob-
tained, but the laser noise is not separated. Instead, it’s mixed up with the vacuum noise
by the first beam splitter M1 (see section 6.2) and can not be measured. The additional
requirement here is that we have to keep the cavity on resonance, otherwise the reflected
quadrature will be rotated and we will start to mix intensity and phase noise.

6.4 Experimental setup

The experimental arrangement for measuring the laser noise is shown in Fig. 6.3. We
used a three mirror ring cavity as discussed in section 5.4 (No. 3 cavity). A diode pumped
Nd:YAG laser (Lightwave 122) was used and its noise properties studied. Because of the
ellipticity (1.3:1) of its spatial TEM00 mode, we used a pair of cylindrical lenses for cor-
rection. These lenses have focal lengths of 150 mm and 200 mm respectively (CKX150
AR.33 and CKX200 AR.33, Newport Inc.). The reflected beam from the cavity is very
weak ( _;: of the incident power2) and the transmitted beam is close to a perfect circular
TEM00 mode. If the incident beam isn’t corrected to a circular beam, the mode match-
ing between the reflected and transmitted beams will be very poor and severely affect
the homodyne efficiency. The incident power was reduced to 3 mW to avoid photode-

1We require a transmission efficiency of at least �ÇÞ�� . The one we obtained in the experiment was ����� .
2According to the formula in section 5.4 and the specification in table 5.2, the reflection efficiency � 0 � � îshould be 	�
 ��� . We think this discrepancy is due to the assumption that � C Ý� ¶ in the specification.
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Figure 6.3: Experimental arrangement for the laser noise measurement. CL: cylindrical lens;
MML: mode matching lens; EOM: electro-optic modulator; PBS: polarising beam splitter; NPBS:
non-polarising beam splitter; PZT: piezo-electric transducer; PD: photodetector; LPF: low-pass
filter.

tector saturation3. The electro-optic modulator (Lasermetric 1039DFW-1000) was used to
modulate the laser beam. This is done either for locking the laser to the cavity (or vice
versa) or simply for calibration purposes. The laser beam was carefully mode matched to
the cavity mode to ensure high transmission of power through the cavity. We achieved
a mode matching efficiency of z��¨����_a��: 4. The ring cavity has a different finesse for
s- and p- polarisations due to the polarisation dependent reflectance of the cavity mir-
rors. In the case of p-polarisation, the finesse is low (

× � � � 'a' ), but the transmission
efficiency is very high ( < � ���Ø�w¢g�@�d_a_�: ). We used s-polarisation in the experiment in or-
der to measure lower RF sidebands. Here the finesse

× x is 4,000 and the cavity FWHM
is 179 kHz. This means we can measure the noise sidebands from � 200 kHZ onwards.
The transmission efficiency < � ���[�9!�� is à � : . This is very close to the calculated value à(9�: .
(Please refer to the theory in section 5.4.) For the s-polarised incident beam, because of
the much higher circulating power inside the cavity, the lost power due to the rear mir-
ror (PZT mounted) is much larger (25 times as that of p-polarisation). This reduced the
transmission efficiency. Part of the reflected beam was split off and detected by PD3 for
frequency locking, and the rest was the signal beam to be measured. The transmitted

3This is due to the saturation of our amplification circuit, rather than the photodiode itself.
4We scanned the cavity and measured the power spectrum of the reflected light with a high speed os-

cilloscope (HA54820A Infiniium). � y�y was determined by the relative amplitude of the TEM00 mode with
respect to the whole spectrum.
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beam was mixed with the signal beam by a 50:50 non-polarising beam splitter (NPBS)
and its phase scanned by a PZT. We used a matched pair of Epitaxx ETX500 InGaAs pho-
todiodes in combination with transimpedance RF amplifiers (CLC 420, CLC 430) with
a 3 ��� bandwidth of 20

ÞåÈ�É
to detect the light from the NPBS. These customised low

noise amplification circuits were built into the photodetectors [84]. The rest of the mea-
surement system is the typical OHT setup as discussed in section 5.5. We scanned the
PZT with a function generator at 5

È�É
. For every continuous scan of the local oscillator

phase, we collected 200,000 data points. This takes about 90 seconds. For these scans we
collected data into 120 different bins, for the corresponding phase ��= and for each value ��=
one PDF is recorded. In this experiment we acquired two channels of data, one channel
is the quadrature amplitude, the other channel is the optical local oscillator phase, which
is obtained from one of the photodetectors. The interference trace (DC) is a sine of the
optical phase � .
6.5 Results

6.5.1 Amplitude and phase noise spectra

The first kind of measurement we made was conventional homodyne detection. We used
an RF spectrum analyser to measure the difference current directly. By manually adjust-
ing the voltage driving the PZT, we were able to minimise or maximise the calibration
phase modulation signal, and thus determine the quadrature we were measuring. We
show in Fig. 6.4 one of these results. The calibration peak at 12 MHz is a -13 dBm phase
modulation signal. When this peak was maximised, we obtained the phase quadrature
noise spectrum. On the other hand, when this peak was minimised, we obtained the
amplitude quadrature noise spectrum.
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Figure 6.4: Amplitude and phase quadrature noise of the laser. A 12 MHz phase signal was used
for calibration. RBW: 100 kHz; VBW: 10 kHz.

We note that phase noise dominates for most of the RF regime. Above 10.5 MHz, both
the amplitude and phase noise approach the quantum noise limit. In this measurement,
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we turned on the built in noise eater of the laser, so we don’t see any resonant relaxation
oscillation (RRO) in the amplitude noise spectrum. We think the dominating phase noise
below 10.5 MHz comes from the technical sources in the laser, e.g., the mechanical and
thermal instability of the NPRO.

Shown in Fig. 6.5 is a second set of measurements when we turned off the noise eater
of the laser and zoomed into lower frequencies. We see clearly the RRO at 0.53 MHz in
the amplitude noise spectrum. This is the only region where the amplitude noise is larger
than the phase noise. We recorded the error signal spectrum from the locking loop, which
is also a measure of the phase noise5. The features of the error signal are similar to that of
the phase noise below 0.8 MHz. However, for frequencies higher than 0.8 MHz, the error
signal is almost flat. This tells us that the homodyne measurement is more sensitive in
detecting the laser noise.
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Figure 6.5: Amplitude and phase quadrature noise with the noise eater turned off. Resonant
relaxation oscillation (RRO) was at 0.53 MHz in the amplitude noise spectrum. The error signal
spectrum was recorded for comparison. RBW: 30 kHz; VBW: 1 kHz.

6.5.2 Pre-stabilisation of the laser

In the previous section, we locked the optical cavity to the laser. In this sense we stud-
ied the free-running noise of the laser. The frequency servo we used in that case had
a bandwidth of 10 kHz, which was limited by the natural vibrational frequency of the
piezo-mirror system. Now we want to do it the other way around. We used another
frequency servo to lock the laser to the cavity. Instead of actuating the piezo-mounted
mirror of the cavity, we actuated the PZT that was bonded to the laser crystal. This in-
creased the locking bandwidth to 50 kHz [103]. Because the cavity was housed in an
aluminum spacer sitting on the optical table, it didn’t suffer from severe temperature

5The locking loop has an RF signal at 27.7 MHz for modulation and demodulation. If the laser phase
fluctuation is small at one sideband, the demodulated signal after the mixer (the error signal) is also small at
that sideband.
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drift and hopefully this will improve the noise performance of the laser. In this sense we
pre-stabilised the laser frequency.

We show in Fig. 6.6 the result of this locking scheme. One trace is the phase noise
spectrum of the free-running laser (notice the peak at 5 MHz is not from the laser itself,
but for calibration purposes). The other trace is the phase noise spectrum of the pre-
stabilised laser (there is no calibration signal in this case). We see a 10 dB reduction of
phase noise below 4 MHz. For higher frequencies, the two traces are much the same. We
also retrieved the spectra for amplitude noise, and found the same performance for the
two locking arrangements. We conclude that pre-stabilisation by frequency servo only
improves the frequency stability6 of the laser, not the intensity stability.
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Figure 6.6: Phase quadrature noise of the pre-stabilised and the free-running laser. A 5 MHz
phase signal was used for calibration on the free-running trace. RBW: 100 kHz; VBW: 10 kHz.

6.5.3 Tomographic measurements

In this section we want to demonstrate the tomographic measurement of the laser noise.
Instead of setting the local oscillator phase to a particular quadrature as discussed above,
we scanned it with the PZT and performed an optical homodyne tomographic measure-
ment of the laser noise. We show in Fig. 6.7 a segment of the raw data that was acquired
by the I/O board. The anti-nodes correspond to the phase quadrature and the nodes cor-
respond to the amplitude quadrature. These already suggest that the phase quadrature
is much noisier than the amplitude quadrature. Shown in Fig. 6.8 is the reconstructed
Wigner function at 0.6 MHz. mÉ- is the amplitude quadrature and m�1 is the phase quadra-
ture (this stays the same for all discussions in this thesis). The variance of the phase
quadrature is larger than the variance of the amplitude quadrature, and this is consistent
with our previous result of conventional homodyne detection (see Fig. 6.5). We note that
the reconstructed elliptic Gaussian Wigner function represents a super-Poissonian state

6Frequency is the differentiation of phase with respect to time. Frequency and phase stability are directly
related although different.
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of the light and is different from a squeezed state Wigner function, which is also elliptic
(see chapter 8).
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Figure 6.7: A segment of the raw data that was acquired by the I/O board. The anti-nodes cor-
respond to the phase quadrature and the nodes correspond to the amplitude quadrature. a. u.:
arbitrary unit.

Another result is shown in Fig. 6.9 for the reconstruction at 4.0 MHz. We see clearly a
phase quadrature diffused blob. This is due to the phase signal close to, but not exactly at,
4.0 MHz (within the detection bandwidth of 50 KHz). This can be explained by the theory
developed in section 3.6.1 (see Eq. (3.37)). Essentially the phase signal is asynchronously
demodulated by the 4.0 MHz demodulation signal and caused an oscillating coherent
amplitude in phase space. We note that the phase signal close to 4.0 MHz is generated
within the laser system, we did not put it on from the outside. In chapter 7 we will show
the effect of deliberately modulating the laser beam and see how the modulation signal
can be retrieved by different demodulation techniques.

OHT system has a frequency dependent response. In order to demonstrate this we
applied phase modulation to the laser beam at different sideband frequencies. Shown
in Fig. 6.10 are contours of Wigner functions reconstructed at different frequencies. One
thing we can verify from this result is that the direction of the phase signal (displacement
from the origin) is consistent with the phase quadrature noise which is elongated along
the same direction. Above 10.5 MHz, both the amplitude and phase noise approach the
quantum noise limit (see Fig. 6.4), and the contours of the Wigner functions should have
about the same size, but this is not the result we actually got (see the contours for 11-
14 MHz in Fig. 6.10). This is clearly a demonstration of the frequency dependence of
OHT system for noise sidebands. This also suggests that the quantum noise limit can not
be calibrated by the current electronic demodulation system of OHT. Some improvement
of the electronic system has to be done in order to match the quality of the sophisticated
electronic demodulation system of a commercial spectrum analyser. For example, the fre-
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quency response of LPF2 and Amp.1 (see Fig. 5.4) can be calibrated. Another thing is that
a different displacement from the origin occurred for different frequencies, even though
we applied the same amount of modulation (see contours at 7.7, 8, 13 and 14 MHz). This
is due to the frequency dependence of the response of the phase modulator as well as
OHT system. However, we note that the electronic demodulation phase in our exper-
iment ( � in Fig. 3.4) has not been adjusted to optimise the demodulated phase signal,
and this should account for most of the frequency dependence of the response. This also
caused the changed polarities of the retrieved modulations in phase space.

6.5.4 Interference problem of separated beams

In a normal homodyning we can get very high interference visibility (say, 98%). The
interference trace is a smooth sine of the optical phase. However, in the laser noise mea-
surement experiment discussed in this chapter, homodyne interference of the reflected
and the transmitted beams of the ring cavity has a different feature. We found that the in-
terference trace is not as smooth as it is in a normal homodyning. There is certain amount
of fluctuation on the interference trace. For identical optical power of the two beams (ad-
justed by inserting a neutral density filter), we did get very high visibility (97.5%) calcu-
lated by the minimum and maximum of the interference trace. But, in order to get a rea-
sonably smooth interference trace, which can be acquired as the optical phase, we had to
low pass filter the original interference trace. We actually used a low noise pre-amplifier
(Model SR560, Stanford Research Systems Inc.) with adjustable filtering corner frequency
to smooth the trace. After the filtering, the visibility dropped up to 60% (depending on
the filtering corner frequency). We think this decrease in visibility is due to the way we
separated the beams. In a Mach-Zehnder interferometer, the two beams are separated by
a beam splitter and have the same noise properties, thus they can have very high inter-
ference visibility. However, in our current experiment, the reflected beam is much noisier
than the transmitted beam, because the former carries the laser noise. These two beams
have very different (if not opposite) noise properties. We actually monitored the power
of the reflected beam and found that it is far from a flat DC trace7.

We show in Fig. 6.11 and Fig. 6.12 the amplitude noise spectra of the reflected and
transmitted beams. They were directly measured with one photodetector while the cavity
was locked. (Please notice that the amplitude noise in Fig. 6.4 and Fig. 6.5 were measured
by homodyning.) Since the reflected and transmitted beams have different power, we
normalise the reflected trace with respect to the transmitted trace. The amplitude noise
of the laser is quantum noise limited at 10 MHz (see section 6.5.1), and this should also be
true for both the reflected and transmitted beams. We therefore shift the reflected traces
by 6.9 dB and get the normalised reflected traces. It can be seen that the reflected beam is
much noisier than the transmitted beam below 3 MHz.

We note that we have carefully mode matched the laser to the cavity and this ruled
out the possibility of poor spatial mode overlapping. The interference problem can only
originate from the temporal properties of the two beams.

7One may argue that since the incident and transmitted power are constant, why should the reflected
power be fluctuating? Isn’t this violating the conservation of energy? We note that in that sense the reflected
power is also constant (we can use the same scale on an oscilloscope to ”make” the reflected power ”flat”).
The real situation is that the reflected power is much lower (9 % of the incident power). The power fluc-
tuation is in this smaller scale. If we look at the incident power in this smaller scale, we can see the same
amount of fluctuation as well.
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6.6 Conclusions

We used a high finesse cavity as a frequency dependent beam splitter for the light of a
diode-pumped Nd:YAG laser. The cavity behaves like an optical low pass filter. The
transmitted beam is quantum noise limited for detection frequencies above the cavity
linewidth. The reflected beam carries the laser noise and modulation at these frequen-
cies. Conventional homodyne measurement of these two beams gave us the amplitude
and phase noise spectra of the laser. The quadrature was adjusted by the driving volt-
age of the PZT. The error signal spectrum was also recorded to verify the phase noise
measurement. We found that the homodyne method is more sensitive than the error sig-
nal method. By locking the laser to the cavity, we pre-stabilised the laser frequency and
the phase noise was reduced by 10 dB below 4 MHz. We also employed OHT to recon-
struct the Wigner functions at different frequencies, and found larger phase quadrature
variance than the amplitude quadrature variance, which is consistent with the results
of the conventional homodyne detection. We conclude that OHT is a sensitive method
in determining the embedded signals in the laser beam. Signals close to demodulation
frequency caused the phase quadrature diffusion in phase space. We encountered inter-
ference problem which doesn’t occur in a normal Mach-Zehnder interferometer. This is
due to the different temporal properties of the reflected and the transmitted beams. An
optical cavity separates the incident beam very differently compared to a simple beam
splitter.
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Figure 6.8: The reconstructed Wigner function (a) and its contour plot (b) at 0.6 MHz. The
phase quadrature ( � À ) is noisier than the amplitude quadrature ( � ¾ ). incident power: 2 mW.
The Wigner function and its contour are normalised by quantum noise limit. This remains to be
true for all the experimentally reconstructed Wigner functions in this thesis.
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Figure 6.9: The reconstructed Wigner function (a) and its contour plot (b) at 4.0 MHz. The phase
quadrature ( � À ) is diffused due to a phase signal within the detection bandwidth but not exactly
at 4.0 MHz. incident power: 2 mW.
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Figure 6.11: Amplitude noise spectra of the reflected and transmitted beams of a ring cavity
directly measured with one photodetector. The noise eater of the laser was switched off and there
is relaxation oscillation. We shift the reflected trace by 6.9 dB to give the normalised reflected
trace with respect to the transmitted trace. It can be seen that the reflected beam is noisier than
the transmitted beam below 3 MHz. incident power: 2 mW; RBW: 30 kHz; VBW:1 kHz.
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Figure 6.12: Amplitude noise spectra of the reflected and transmitted beams of a ring cavity
directly measured with a photodetector. The noise eater of the laser was switched on and there
is no relaxation oscillation. We shift the reflected trace by 6.9 dB to give the normalised reflected
trace with respect to the transmitted trace. It can be seen that the reflected beam is noisier than
the transmitted beam below 3 MHz. incident power: 2 mW; RBW: 30 kHz; VBW:1 kHz.
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Chapter 7

Measuring the classical
non-Gaussian states

7.1 Introduction

In the previous chapter we discussed measurements of the noise properties of the laser
itself. Now we will use optical homodyne tomography (OHT) to measure information
carried in the laser beam. In practical applications, such as sensing or communication,
a laser beam is modulated in order to carry information. This can occur at different
modulation frequencies or channels �@� . Each modulation frequency has its own Wigner
function � n[� �$,)-/.0,613� , and can vary dramatically from channel to channel [15, 79]. Hence,
a realistic laser beam with signal modulations is a propagating multi-mode quantum
state, which is quite different to the single mode intra-cavity description of an optical
state. Such a realistic light beam can only be described by a spectrum of Wigner functions� n , one for each frequency � .

In the early experiments [7–9] of pulsed laser OHT, only one single Wigner func-
tion was reconstructed. This Wigner function contains all statistical moments of the
photon number in the pulses and individual Fourier components of a pulse could not
be separated. In more recent experiments with cw lasers, Wigner functions � n � for
squeezed and classical states were reported for specific detection frequencies �\� . In the
case of squeezed light, Wigner functions with elliptical two-dimensional Gaussian quasi-
probability distributions were demonstrated [11–14].

In this chapter, we use the Wigner function representation to describe coherent states
with different forms of classical sinusoidal phase modulation (PM). At the modulation
frequency we observe that the Wigner functions are displaced away from the origin of the
phase space and the results allow us to directly determine the signal to noise ratio (SNR)
for both amplitude and phase signals1. At all other frequencies, the Wigner functions are
centred at the origin. We demonstrate how the Wigner functions are controlled by the
quadrature and depth of modulation.

One of the advantages of OHT over conventional homodyne measurements [70–72] is
that OHT can show any non-Gaussian features in the Wigner functions of more complex
optical states. Such features are contained in the higher order moments of the noise statis-
tics with the result that a simple measurement of the noise variance (2nd order moment)
alone is an insufficient description. The additional complexity means Wigner function
reconstruction demands more sophisticated statistical analysis. Unfortunately, unlike ex-
periments in atom optics [21, 22], complex optical states are extremely difficult to gener-
ate [104]. They require highly nonlinear processes which have fluctuations comparable to
the average steady state amplitude. To date most of the work in this area are theoretical

1In this case we had the optimal demodulation phase ( � in Fig. 3.4), in contrast to the case discussed in
section 6.5.3.
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proposals for the generation of such non-classical states2 (see section 9.1 for a summary).
We test the ability of OHT to reconstruct highly non-Gaussian Wigner functions by using
laser beams with time varying modulation to produce classical superpositions of optical
states. We discuss the accuracy of the OHT technique and some of the practical limita-
tions.

This work demonstrates the capability of OHT for the diagnosis of realistic laser
beams and establishes techniques that will be important once highly non-Gaussian, e.
g. “Schrödinger’s cat”, optical states can be experimentally realised.

7.2 Phase and amplitude modulation

The electric field of a phase modulated laser beam can be written as

¥ � �	�	¥@±g�! �" ù Q $ ö +E"Vý Ô �Á��� $ �Pú£. (7.1)

where + is the modulation index (maximum phase change), ��� is the modulation fre-
quency and Q is the carrier frequency. Eq. (7.1) can be expanded into harmonics of the
modulation frequency ��� [1],

¥ � � � ¥�± ù }²±a�9+(�U�! �"6Q $ ö }[-#�9+(�U�! �"(�RQ ö ���¢� $ Jò}[-#�9+(�U�! �"��RQ�J÷���¢� $ö }²1a�9+(�U�! �"(�RQ ö � ���¢� $ ö }²1��9+(�U�! �"��RQKJ � �Ö�¢� $ ö ^�^�^ ú². (7.2)

where }�� �9+�� are Bessel functions. For small modulation index + t 7 , we can approximate
Eq. (7.2) to the first order sidebands and simplify ¥ � � as

¥ � ���	¥�± ù �! �"ØQ $ ö ô �! �"#�RQ ö �Ö��� $ J÷ô �! �"#�RQ÷J÷�Ö�¢� $ ú£. (7.3)

where ôs�®}Ø-#�9+(� is the modulation depth and ôåt 7 .
Amplitude modulated optical field has the form

¥ Î � �	¥ ± �f7 ö +E"Vý Ô � � $ �U�! �"[Q $ . (7.4)

where +ut 7 is small and causes the amplitude of the electric field to vary. Please refer to
Appendix E for a detailed discussion of modulation.

In practice, we use electro-optic modulators to modulate the laser beam. The Pockel’s
effect of electro-optic crystals such as lithium niobate are used. The refractive index of
the crystal can be changed by an externally applied voltage, which in turn causes a phase
change of the laser beam passed through the crystal. There are technical limitations to
electro-optic modulators (EOM’s). Normally there is residual amplitude modulation as-
sociated with a phase modulator3. On the other hand, residual phase modulation is
much smaller in an amplitude modulator. In our experiments, we use modulators from
Lasermetric Inc.. The polarisation of the incident beam should be adjusted so that it’s
s-polarised (i. e. vertically polarised) to minimise the beam walkoff due to the birefrin-
gence of the crystal.

2Conditional Fock states are routinely generated in entangled-photon experiments [25, 105–110]. Recently
quantum tomography was applied to such single photon Fock state [111].

3To achieve purer phase modulation, one should carefully align the beam to the crystal’s propagation
axis and align the laser’s polarisation to the crystal’s electro-optically active axis.
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7.3 Experimental setup and results for the classical states tomog-
raphy

7.3.1 The experimental arrangement

The aim of our experiment was two fold: we wished to demonstrate OHT for the case
of modulated light fields and we wished to explore the applications and limitations of
OHT for signal to noise ratio measurements. As a light source we used a diode pumped
Nd:YAG laser (Lightwave 120) with a wavelength of 1064 nm. The power was reduced
from 40 mW to 3 mW to avoid photodetector saturation. The setup (see Fig. 7.1) was
a Mach-Zehnder interferometer, the commonly used balanced homodyne detector [70–
72]. We used two 50:50 non-polarising beam splitters M1 and M4 in the interferometer.
By carefully matching the two arms (identical EOM’s were inserted, one in each arm to
improve the mode matching), we achieved an interference visibility of 99%. Then we
inserted a neutral density filter of OD 2 ( _a_�: absorption) in one arm and drove the phase
electro-optic modulator by an RF signal at �@�	� à�^�' Þ�ÈZÉ to produce a low optical power
test beam. In the other arm, we used a piezo-mounted reflecting mirror M3, in order to
scan the local oscillator phase � . The power of the RF signals determines the modulation
depth ô 4 ! . We achieved values of '°{|ô { à�^�7n�°7�' � � . The modulation signals were
conveniently changed by an inserted adjustable RF attenuator. The measurement system
was the same as discussed in section 6.4. We used a matched pair of Epitaxx ETX500
InGaAs photodiodes to detect the light from the second beam splitter. We mixed down
the difference photocurrent of the two photodetectors at the modulation frequency. This
was then low-pass filtered and recorded by an I/O board connected with a computer
sampling at 20 kHz. These time traces of H n �²���[. $ � were mentioned in section 3.6.1. We
scanned the PZT with a function generator at 5 Hz. For every continuous scan of the
local oscillator phase, we collected 200,000 data points. For this data we recorded 120
probability density functions (PDF’s) for equally spaced quadratures. These PDF’s were
used as the input into Eq. (3.15) for Wigner function reconstruction.

7.3.2 Wigner function reconstruction for modulated coherent state

As discussed in section 3.6, phase modulation can be retrieved via the tomographic re-
construction of Wigner functions. The resulting Wigner function � n ���$,�-/.0,613� of a phase
modulated coherent state is shown in Fig. 7.2. Here we want to discuss the meaning of
this phase space diagram. For a coherent state the Wigner function is symmetric - with
concentric contour lines. For a squeezed state the Wigner function is asymmetric, with
elliptical contour lines. For all coherent or squeezed states, without modulation ( ôu��' ),
the Wigner function is centered at the origin. This can be seen from Eq. (3.38) where only
the second term contributes in this case. The orientation of the ellipse gives the squeezing
quadrature. Since the Wigner function is normalized to the standard quantum limit, its
position and size is independent of the optical power. Thus, a squeezed vacuum state has
the same Wigner function as a bright squeezed state, provided that BSOY¦   B F � x F . Here
we want to mention the widely used picture of a “ball on a stick” [83, 102] which tries to
describe several properties of an optical state simultaneously. The “stick” indicates the
average, DC optical power while the “ball” represents high frequency, AC fluctuations.
The two types of data have to be measured with different instruments, a power meter
and an RF photodetector. Experimentally they are completely different, but for conve-
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Figure 7.1: Experimental arrangement for optical homodyne tomography of classical states.
EOM: electro-optic modulator; ND: neutral-density filter; PZT: piezo-electric transducer; PD: pho-
todetector; LPF: low-pass filter; VCA: voltage controlled attenuator; SA: spectrum analyser. For
conventional OHT with synchronous detection only one frequency f�i is used. In order to gen-
erate classical non-Gaussian states two components are added: the modulation is switched and
a different demodulation frequency is used (dashed boxes). [Signal generators with frequenciesf�i and f g are not used together.]

nience they are shown together in theoretical diagrams. However, the Wigner function� n � which can be measured at a particular frequency ��� depends only on the noise and
signals at that frequency. Hence, Wigner functions for realistic light beams can only be
displaced from the origin by introducing a modulation.

The distance of the centre of the Wigner function from the origin is a direct measure-
ment of the modulation depth. Amplitude modulation causes displacement along them - axis whilst phase modulation along the m 1 axis. The Wigner function gives us si-
multaneous information about the signal quadrature, strength and noise. It provides the
conventional signal to noise ratio (SNR), where both signal and noise are measured in
the same quadrature, as well as the relative size of the noise in the orthogonal quadra-
ture. The later is of interest in applications where some degree of crosstalk between the
quadratures is unavoidable. For example, in resonantly locked cavities a small imperfec-
tion of the locking can introduce a cavity detuning and thus a mixing of the quadratures.
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Figure 7.2: The reconstructed Wigner function of a modulated coherent state. � ¾ and � À are
amplitude and phase quadratures respectively. �¾¸O��uÀ O �Dï�Æ represent vacuum noise. The
transition from ripples to flat at � À�� G is an artifact. (The flat area is added for better visual
effect.)

7.3.3 Varying the depth of phase modulation

As discussed above, for a coherent beam without modulation ( ô���' ), the Wigner func-
tion � n � is centered at the origin of the m - , mq1 space. Now we should vary the depth
of modulation and see what will happen. We used phase modulation and synchronous
detection for four different modulation depths. The result is shown in Fig. 7.3. For ôs�	'
(no modulation, i.e., a vacuum state) the Wigner function is circular and centred at the
origin. As the frequency modulation depth is increased, the Wigner function is displaced
along the “ mc1 ” (phase variance) axis. For large modulation, it is apparent that the phase
modulation process has introduced some additional amplitude modulation, resulting in
the Wigner function being displaced vertically from the mr- axis (amplitude variance).
This is due to the imperfections of the phase modulator, a common problem with most
EOM modulators.

It is important to note that synchronous demodulation requires the optimisation of
the demodulation phase � . This, by maximising the detected signal amplitude, ensures
that the modulation component is detected with maximum efficiency and results in the
optimum SNR being recorded on the Wigner function. We also noticed the elongated
contours for larger modulations, this is due to the increased phase uncertainty of modu-
lated states produced by larger modulation signals.
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Figure 7.3: Phase modulation with variable depth of modulation. The four Wigner function con-
tours shown in one figure. The contours change from symmetric to non-symmetric when the
modulation is increased. �Ö¾ and �uÀ are amplitude and phase quadratures respectively. incident
laser power (on M1, see Fig. 7.1): 3 mW (we note that the result is independent of the incident
laser power); modulation frequency: 7 MHz; RF power driving the modulator: 0 dBm, 5 dBm,
10 dBm and 15 dBm respectively (from right to left).

7.3.4 Switched phase modulation

In order to demonstrate the ability of our OHT system to record the details of a highly
non-Gaussian distribution, we added a low frequency modulation to gate the phase mod-
ulation on and off. This was done by a voltage controlled attenuator (discussed in sec-
tion 5.5). The selected gating frequency was 200 Hz, which was within the detection
bandwidth (50 kHz) of our detectors (low pass filter followed by I/O board). For this
modulation arrangement, we had PM for half of the measurement time and had no PM
for the other half of the measurement time. The resulting PDF is shown in Fig. 7.4. The
straight trace corresponds to the vacuum state and the curved trace corresponds to the
coherent state which was produced by phase modulation. These two traces form two
independent Gaussian components for each quadrature. In the amplitude quadrature,
they are totally overlapped. In the phase quadrature, they are maximally separated. The
corresponding Wigner function is plotted in Fig. 7.5. As can be seen, the gating process
(square wave signal generator in Fig. 7.1) produced a Wigner function with two peaks:
one peak corresponds to zero modulation and is located at the origin, whilst the other
corresponds to phase modulation.

We note that such produced non-Gaussian two-peak Wigner function represents a
purely classical mixture state. There is no coherence between the two Gaussian compo-
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Figure 7.4: The probability density function resulting from switched phase modulation. unit of
the L. O. angle: radian.

nents. In contrast, the subtlety of a “Schrödinger’s cat” state is that the two Gaussian
components therein are coherently superposed and interference occurs in between [61].

7.3.5 Asynchronous detection

In practical applications, we may not be able to locate the modulation frequency exactly.
(We need to match both the frequency and the phase in order to do so.) In this section we
demonstrate the results of asynchronous detection. This was achieved experimentally
by using a separate frequency �@� as the demodulation signal, which was different from
the modulation frequency ��� used to drive the EOM. It is necessary to ensure that ���
and �Ö� differ in frequency by an amount small compared with the detection bandwidth
(50 kHz). Otherwise they belong to different channels and the modulation signal cannot
be detected. We note that this asynchronous scheme is equivalent to randomised demod-
ulation, the detected Wigner function represents the weighted average of all possible
demodulation phase values � . The recorded PDF is shown in Fig. 7.6. The distribution
for phase quadrature is extremely wide. This is due to the phase quadrature diffusion
caused by the random demodulation phase � . The resulting Wigner function, for phase
modulation, is shown in Fig. 7.7. The distribution is centred at the origin and is spread
symmetrically along the phase quadrature axis. The peaks at the extreme of the mod-
ulation correspond to the turning points where the dwell time of the modulation, as a
function of phase, is greatest. This result is consistent with Eq. (3.37) where +U�Á�\�a.Ç�Ö�¢�
representing an oscillating term for asynchronous demodulation. We call this a phase
quadrature diffused state. It’s analogous to a classical harmonic oscillator, although the
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oscillation is now in phase space. This result shows that OHT is extremely sensitive in
discriminating signals.

In section 7.3.4, we switched the intensity of the phase modulation on/off and cre-
ated a two-peak Wigner function which is an overlap of two different Gaussian compo-
nents. In the asynchronous detection scheme, by continuously changing the demodu-
lation phase � , we effectively overlapped many Gaussian components corresponding to
different coherent amplitudes. This can be regarded as an extension of the two-peak case.
However, the techniques used in these two experiments are very different.

7.4 Conclusions

In this chapter, we have demonstrated the reconstruction of Wigner functions of infor-
mation carrying laser beams. Phase modulation was used to shift the Wigner function
away from the origin of phase space. OHT turned out to be a very good method for the
simultaneous determination of signal and noise of a given state. The displacement of the
Wigner function � n � provides information on the quadrature and strength of the mod-
ulation and the width of � n � describes the noise. The two dimensional signal to noise
ratio at any given quadrature can be read directly. At a given RF sideband, we varied
the modulation depth and obtained a series of Wigner functions with different displace-
ment from the origin. For larger phase modulation, we observed residual amplitude
modulation which was caused by the imperfections of the phase modulator (a common
problem with electro-optic phase modulators). This confirmed the sensitivity of OHT in
distinguishing signals from noise.

In general, most optical states which can be generated can be described by a linearised
theory and thus has a two dimensional Gaussian Wigner function � n ���$,)-/.0,613� . In order
to demonstrate the ability of measuring highly non-Gaussian Wigner functions, we first
switched the modulation on and off, giving a classical mixture of a vacuum state and
a coherent state. The resulted Wigner function has two peaks. In another scheme, we
used asynchronous demodulation scheme to detect the optical state, the phase quadra-
ture was diffused and another highly non-Gaussian Wigner function was reconstructed.
This diffusion in phase space is analogous to a classical harmonic oscillation.
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Figure 7.5: The reconstructed Wigner function and its contour plot of a classical mixture state. (a)
Wigner function; (b) contour plot.
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Chapter 8

Measuring the squeezed vacuum
state

8.1 Introduction

After discussing classical state measurement via optical homodyne tomography (OHT)
in chapter 7, we will discuss its application in quantum state measurement in this chapter.
Quantum state OHT is more difficult than classical state OHT, because quantum features
are normally fragile and sensitive to noise. Quantum features can easily be embedded in
noise from the measurement system or smeared out by low detection efficiency.

To date most OHT experiments have been devoted to quadrature squeezed state mea-
surement. The quantum feature for this kind of state is the reduction of the noise level
below quantum noise limit in some quadratures. However, this doesn’t exclude the pos-
sible applications of OHT for other quantum optical states, such as intensity correlated
twin beams [112–114] generated from nondegenerate optical parametric oscillators (OPO)
above threshold, or strongly correlated photon pairs from sub-threshold OPO. The latter
is often used [25, 105–110] to test Bell’s theorem [115, 116] or even used in quantum tele-
portation [117, 118].

In our quantum state OHT, we used the quadrature squeezed vacuum state. Ever
since the pioneering experiments in the eighties [56, 119–121], quadrature squeezed states
have been successfully generated in many experiments. In the sub-catalog of � , 1/. non-
linear process, squeezed states have been generated from optical parametric oscilla-
tors/amplifiers (OPO/OPA) [13, 56, 121–127] and second harmonic generators (SHG)
[128–132]. The �6, 1/. nonlinear process is very reliable for the two-mode quadrature
squeezed state generation. To date all OHT experiments for the quadrature squeezed
vacuum states have been limited to the fundamental mode of OPO/OPA, because of dif-
ficulty in obtaining optical local oscillators for the second harmonic mode.

In the rest of this chapter, we will discuss our squeezed vacuum OHT experiment and
present our result, with calibration by the corresponding vacuum state. Some experimen-
tal limits will be addressed. In order to compare with traditional variance measurements
performed with spectrum analysers (SA’s), we will directly analyse the probability den-
sity functions (PDF’s) of the states and calculate the higher order moments. We will also
analyse the effect of electronic noise on Wigner function reconstruction.

8.2 Experimental setup and results

8.2.1 Setup

The experimental setup for measuring the squeezed vacuum state is shown in Fig. 8.1.
The squeezed vacuum was generated from a degenerate type I phase matched sub-
threshold OPO (please refer to the paper by Lam et al. [127]). The OPO consisted of

83
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a monolithic lithium-niobate crystal. The OPO was pumped by a second harmonic wave
(532 nm) produced by a hemilithic second harmonic generator (SHG). The pump for the
SHG was a cw diode pumped Nd:YAG laser (1064 nm, Mephisto700, InnoLight Inc.).
Part of the Nd:YAG laser power was split off and passed through a mode cleaner (cavity
No. 1 discussed in section 5.4). This beam was used as local oscillator and the power was
2 mW (after the mode cleaner). The OPO was operated below threshold with a green
pump power of 300 mW to produce a squeezed vacuum state. For optimum squeezing,
the green pump power was 145 mW. We carried out all our measurements at an RF side-
band of 3 MHz, which had an optimum degree of squeezing of 7 dB as measured from
a spectrum analyser (RBW = 50 kHz, VBW = 1 kHz). The detection system for tomog-
raphy was the same as that in the classical state experiment except that we used a high
speed digital oscilloscope to collect the photocurrent data instead of the I/O board since
the phase of the generated squeezed vacuum state was not stable enough for long term
data acquisition (about 90 seconds). For every run of the data acquisition, we obtained
32,768 data points. This long trace is divided into 120 quadratures. In such a trace there
is not enough data for the reconstruction of a Wigner function, because the PDF’s result-
ing from a single trace are not accurate enough to represent the actual quadrature value
distributions. We have to combine 11 such traces with identical quadrature angle range
( '��ó� { � ) to get the PDF’s of the squeezed vacuum state.

8.2.2 Phase instability and data acquisition

As mentioned above, we could not use our I/O board to acquire the data in this experi-
ment, because a sampling time of 90 seconds can totally wash out the squeezing feature.
With a much higher sampling rate, this would not be a problem. This problem doesn’t
exist for a spectrum analyser measurement, because it just requires a single scan of data
acquisition. For example, the measured squeezing was 7 dB in such measurement; how-
ever, this 7 dB of squeezing can not last for 90 seconds consistently. The long optical path
length of the setup, the temperature stability of the OPO cavity and the stability of the
laser all affect the phase stability of the generated squeezed vacuum. The 90 seconds of
averaging of this 7 dB squeezing can easily be 0 dB and we have no way to extract any of
the squeezing feature. As a compromise, we used our HP54820A Infiniium oscilloscope
to acquire data. This oscilloscope has two channels, and the sampling rate was 2 GSa/s.
The resolution was 12 bits with averaging. The only drawback of this oscilloscope for
OHT is its memory depth (32,768 points/channel). We had to carry out multiple scans to
produce our PDF’s. On one hand, we can choose our best scans for producing the PDF’s
by looking at the phase quadrature noise. On the other hand, this manual handling of
data is not as accurate as a single scan by high speed I/O board. What’s more, the nu-
merical combination of many scans is very tricky. It can easily degrade the squeezing
feature if the phase is not exactly correct. Considering how fragile the quantum features
are, we suggest the use of high sampling rate I/O board for this kind of quantum state
reconstruction, so that enough data can be acquired in short enough time (comparable
with the lifetime of the quantum feature, e.g., squeezing).

8.2.3 Efficiency, filtering and squeezing

For quantum state reconstruction, high detection efficiency is necessary. The homodyne
visibility of our measurement was 98% and the photodetector had a quantum efficiency
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Figure 8.1: Experimental setup for measuring the squeezed vacuum state. SHG: second har-
monic generator; OPO: optical parametric oscillator; MC: mode cleaner; PBS: polarising beam
splitter; NPBS: non-polarising beam splitter; DM: dichroic mirror; PZT: piezo-electric transducer;
PD: photodetector; LPF: low-pass filter.

of 94%. This finite detection efficiency can be modeled [133] by a beam splitter as shown
in Fig. 8.2. The power transmittance of the beam splitter is z . The detected output wave is
the signal wave convoluted by the vacuum port. This is a Gaussian convolution. Besides
these, we found that the electronic configuration of our OHT system had certain amount
of electronic noise. It was 7.2 dB below the shot noise limit. By blocking both the signal
wave and the optical local oscillator (see Fig. 8.1), we acquired the electronic noise data.
By analysing this data, we found that the electronic noise had a Gaussian distribution. As
we will show in section 8.3, this Gaussian electronic noise also has a convolution effect on
the PDF’s. Besides the finite detection efficiency and the Gaussian electronic noise, which
gave smoothed (Gaussian-convoluted) PDF’s, there was another filtering effect in the
reconstruction algorithm of Wigner function (please refer to section 4.5). This combined
convolution effect degraded the observed degree of squeezing. The reconstructed Wigner
function is a smoothed version of the original one.

There are very good proposals to compensate for the imperfect efficiency of measure-
ment system and for quantum state estimation [134–138]. Physical constraints such as
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Figure 8.2: A beam splitter model of finite detection efficiency. QR�� , QR�� , QR ü�ý Ð : annihilation operators
of the signal port, the vacuum port and the output port respectively; BS: beam splitter; � j�� Ã�l :
power transmittance of the beam splitter, to account for the finite detection efficiency.

non-negativity of probability and unity of sum of probability were used in order to en-
hance the accuracy of state reconstruction. However, as indicated by Breitenbach [139],
no additional quantum features besides the ones detected by standard reconstruction
methods were revealed in his experiments. Once convoluted by noise, the quantum fea-
ture is lost forever. In practice, deconvolution is rather difficult to implement due to
the noisy nature of experimental data and the error-propagation in the reconstruction
procedure. On the experimental side, the quantum efficiency of the photodetector is at
the limit of available technology. However, in our experiment it was possible to reduce
the electronic noise by carefully arranging the electronic elements. To further reduce the
electronic noise, we recommend to increase the optical local oscillator power as well as to
increase the saturation power of the photodetectors, so that the electronic noise has less
severe effect1.

8.2.4 Vacuum versus squeezed vacuum

The reconstructed Wigner function of a squeezed vacuum state is shown in Fig. 8.3(a).
Clearly the phase quadrature ,g1 is squeezed and the amplitude quadrature ,G- is anti-
squeezed. As we know in the conventional variance measurement by spectrum anal-
yser that measuring the asymmetry alone is not sufficient. Squeezing should always be
measured together with the quantum noise limit to calibrate the recorded noise traces.
In order to get quantitative information about the squeezed state, we calibrated it with
the corresponding vacuum state. This was done by blocking the squeezed vacuum port
and repeating the measurement. The Wigner function of the vacuum state is shown in
Fig. 8.3(b). While acquiring data for the squeezed vacuum, we couldn’t extract an optical
phase reference from the interference trace as we do in the classical OHT, because there is
no such trace while the local oscillator is mixing with a vacuum (squeezed). Fortunately
we have a compromise. We can locate the maximum and minimum of the quadrature

1To achieve these we can choose photodiodes that can handle more optical power and modify the ampli-
fication circuits.
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amplitude variance for each scan and determine the section of data we should use for
producing PDF’s. This is a working, although time-consuming, method.

We show the contour plot of the Wigner function of the squeezed vacuum in Fig. 8.4.
For an ideal Gaussian Wigner function, we could measure the degree of squeezing from
any one of the contour lines and get the same result. However, we found that the degree
of squeezing and anti-squeezing measured at different heights of the Wigner function
are different. These results are shown in Fig. 8.5(a). Here the size of the contour, nor-
malised to the same contour of the vacuum state, is evaluated in [dB] as a function of
the height ( ' to 7 ) of the contour2. We got larger squeezing and anti-squeezing from
lower heights on the Wigner function. Conventionally for one type of Wigner function
squeezing is measured at 7 �(} 1 of the peak height and we obtained a squeezing of -4.1 dB
and an anti-squeezing of +8.7 dB. The degradation of squeezing (from -7 dB to -4.1 dB)
was mainly due to the electronic noise. Please refer to section 8.3 for a discussion. We
also show in Fig. 8.5(b) the calibrated uncertainty area as a function of the height (0 to
1) of the contour. Only at around 0.7 of the peak height does the uncertainty area reach
a minimum of 1.2. This plot does not support the assumption that the reconstructed
state is a minimum uncertainty state, in contrast to the data obtained with conventional
variance measurements. From all these results we know that the reconstructed Wigner
function is not a perfect Gaussian function. However, considering the lower accuracy
of Wigner functions reconstruction in comparison with the conventional variance mea-
surement, we think the generated squeezed vacuum state is still a minimum uncertainty
Gaussian state. The problem is with our experimental data acquisition/combination and
numerical reconstruction, and we will discuss the data analysis in greater detail below.

8.2.5 Higher order moments

In our experiments the PDF’s actually carry the same information as the Wigner func-
tions. Although the information is more conveniently displayed in the Wigner function,
the PDF’s can be more accurate than the Wigner functions due to the less complicated
data processing.

We calculate the moments of different orders from the PDF’s directly and the results
are shown in Fig. 8.6. The 1st order moment �¨- is the average of the quadrature ampli-
tude. It is reasonably close to zero. The 2nd order moment, or variance ( � 1 ), is used to
characterise the noise property of the light field (Fig. 8.6(b)). We get 6.8 dB of squeezing
and 14.6 dB of anti-squeezing. �C��� ��� � � � is defined as the skewness [140] of the PDF’s,
where � � is the 3rd order moment. For a perfect Gaussian function, � � �	' . We also have
the kurtosis �Eb��!�gb � � b [140], where ��b is the 4th order moment. �Gb�� *

for a perfect
Gaussian function. It’s a characterisation of the “peakness” of the distribution. We know
from Fig. 8.6(a) that our measured PDF’s are not perfect Gaussian functions. This in turn
gives the non-Gaussian feature of the reconstructed Wigner function. We have also anal-
ysed the PDF’s of the vacuum state for calibration purpose. They have a much smaller
skewness � � ��J�'Y^�'�9 and a comparable kurtosis �Gb@��� .

For a sub-threshold OPO, the pump mode may be treated classically. The interaction
Hamiltonian can be written as [83]


" T � H �½� ��ZY
� ¯ 1 JKZ Æ 
� 1 � (8.1)

2The Wigner functions have been normalised by � �$# .
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where Z is proportional to the amplitude of the pump and the � , 1/. nonlinear susceptibility
of the medium. The squeezed vacuum state thus generated should have a Gaussian
Wigner function. (Notice that the symmetrical Gaussian Wigner function of a vacuum
state is transformed into an asymmetrical Gaussian Wigner function.) This means that
the odd order moments � � .%�'&(.�^�^�^ should all be zero.

However, the optical system doesn’t have a stable enough phase reference. (The
phase jitter over 90 seconds is estimated to be 7(^`9)( - * ( from the PDF’s.) As visualisa-
tion we plot the standard deviations � of the PDF’s as a function of quadrature angle in
the polar coordinate system in Fig. 8.7. The result differs from a smooth lemniscate [11]
and suggests the stability of the phase should be improved in order to do more accu-
rate OHT measurement. Because of this phase instability, we have to combine about ten
traces of raw data together in order to get the PDF’s. This process adds extra noise to
the measured PDF’s. We think the inaccuracy of this trace combination is the reason that
we measured the higher order moments. We illustrate in Fig. 8.8 the effect that imperfect
(non-centered) combination of Gaussian distributions gives a non-Gaussian distribution.
In practice, for different scans of data acquisition, we always have slightly different de-
grees of squeezing. When we try to combine these scans together, due to the limited
number of data points on each trace (32,768), we inevitably introduce inaccuracies. The
combination can not be exactly centered. It’s not surprising that this non-centered com-
bination of different Gaussian distributions gives a non-Gaussian distribution. For bet-
ter reconstruction, we suggest a shorter data acquisition time by using a high sampling
rate I/O board, so that the inaccuracy due to the trace combination can be eliminated.
In Fig. 8.9 we summarise the different technical steps which affect the Wigner function
and show how an ideal Gaussian state evolves into a non-Gaussian state in the measure-
ment/reconstruction process. (The Gaussian convolutions were discussed in section 8.2.3
and their mathematical details will be provided in the next section.) We conclude that the
measured non-Gaussian features are due to the imperfect data combination.

8.3 The effect of electronic noise on the Wigner function of a
squeezed vacuum state

In a realistic experiment of OHT, electronic noise is unavoidable. We want to discuss
in this section how the electronic noise will affect the Wigner function of a squeezed
vacuum state. We limit ourselves to the case of Gaussian electronic noise which agrees
with measurements of the actual electronic noise in our experiments.

First of all let’s study how two Gaussian distributions mix. Suppose we have two
Gaussian distributions for two independent variables , - and , 1 ,

��-3�$,�-��C� 7» �(� �g- Â!ÃUÄ Ó#J , 1 -� � 1- Õ . (8.2)

� 1 �$, 1 �C� 7» �(� �Ð1 Â!ÃUÄ Ó#J , 11� � 11 Õ . (8.3)

where � 1- .V� 11 are the variances for each distribution. Experimentally if we measure the
sum variable ,��°,>- ö ,61 , the distribution function of , will be

�N�$,5� � � � ,)-���-3�$,�-����(1a�$,nJp,213�
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� 7» �(� �6± Â!ÃYÄ Ó#J , 1� � 1± Õ . (8.4)

where � 1± ��� 1- ö � 11 . Eq. (8.4) tells us the distribution �N�$,5� is the convolution of the indi-
vidual distributions �Y-3�$,)-�� and �(1a�$,213� . We note that �N�$,5� is still a Gaussian distribution,
however, with a larger variance which is the sum of the two individual variances � 1- and� 11 . Now let’s come back to the question of electronic noise in the measurement system.
For a normalised coherent state, we have the PDF

� � �$,).V���N� 7» �(� � � Â!ÃYÄ	Ó J , 1� � 1� Õ2. (8.5)

where � � ��7 �(� . For a squeezed vacuum state, the corresponding PDF is

� x �$,>.V���N� 7» �(� � x ����� Â!ÃYÄ Ó J , 1� � 1x ���U� Õ . (8.6)

where the standard deviation

� x ���U�N� ] "Çý Ô 1 ����� } � 1fD¨ö �! �" 1 ���U� } 1fD �(� (8.7)

is quadrature dependent. Ê is the squeezing parameter. For 6 dB of squeezing, Ê ^�	'Y^`�a_Y7 .� � �$,>.V��� and � x �$,).V�U� are the PDF’s that will be measured in an ideal measurement system
without electronic noise.

The Wigner function of a squeezed vacuum state is

� x �w¢)./£��C� 7�(� � 1� Â!ÃYÄ ù J �w¢ 1 } � 1fD ö £ 1 } 1fD � � � � � 1� �PúP^ (8.8)

Suppose we have a Gaussian electronic noise in our measurement system with the vari-
ance � 1� �°� 1� � � � ^ * 1 J�73� (as estimated from our experimental data). In an OHT system, we
measure the quadrature amplitude , which is the sum of the true quadrature amplitude,64 and the electronic noise value , � . According to Eq. (8.4) the measured PDF will be

� x � �$,).V���¨� 7» �(� � x � ����� Â!ÃUÄ * J�, 1� � 1x � ���U�,+ . (8.9)

where � x � ������� Ñ � 1x ���U� ö � 1� is the increased standard deviation. From � x � �$,>.V��� we can
predict the reconstructed Wigner function to be

� x � �w¢>./£a�¨� 7�(� � 1�£� Â!ÃUÄ ù J �w¢ 1 } � 1fD ö £ 1 } 1fD � � � � � 1�£� �PúP^ (8.10)

We show in Fig. 8.10 the standard variance �C����� as a function of quadrature angle � (from
0 to

�)�(�
) with and without electronic noise.

From the discussion above we know that Gaussian electronic noise has a convolu-
tion effect on the Wigner function of a squeezed vacuum state, and the resulting Wigner
function is a broadened Gaussian. This is the reason why we measured less squeezing
(-4.1 dB) than in the conventional homodyne measurement (-7.0 dB). Due to the more
complicated electronic configuration, the electronic noise of the OHT system is larger
than that of the conventional homodyne measurement system.
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8.4 Conclusions

In this chapter we studied OHT of a squeezed vacuum state which was generated from
a degenerate sub-threshold optical parametric oscillator. The Wigner function of the
squeezed vacuum state was reconstructed and calibrated by the corresponding vacuum
state. We discussed the problem of phase instability and its effect on the reconstructed
Wigner function. An alternative data acquisition/combination method was employed to
avoid long term phase instability problem. Various sources of noise were discussed, such
as the detection efficiency, electronic noise and numerical filtering. We provided a de-
tailed analysis of the electronic noise. The noise sources have a convolution effect on the
quantum state. In contrast to theoretical prediction, the reconstructed Wigner function
was not a Gaussian. We analysed the resulting PDF’s directly in detail and evaluated
the higher order moments. (To the best of our knowledge, this is the first quantitative
analysis of this kind.) Apart from the ability of OHT to visualise the squeezing feature
in phase space qualitatively, there are limitations of realistic OHT. In particular it has
not yet provided quantitatively satisfactory results. This shows that the accuracy of this
technique must be improved in order to match the conventional homodyne detection.
We addressed some possible reason for this imperfection and recommended improve-
ments, specifically improved phase stability of the optical system, an increased optical
local oscillator power for homodyning and a higher sampling rate I/O board for faster
and more consistent data acquisition.
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Figure 8.3: The reconstructed Wigner functions. (a) a squeezed vacuum state; (b) the correspond-
ing vacuum state. green pump power: 145 mW; local oscillator power: 2 mW; detection fre-
quency: 3 MHz; data points: 200,000.
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X2

Figure 8.4: Contour plot of the Wigner function of the squeezed vacuum state. squeezing: -4.1 dB;
anti-squeezing: +8.7 dB (normalised to the vacuum state).
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Figure 8.5: Measured squeezing and anti-squeezing (a) and calibrated uncertainty area (b) at dif-
ferent height. This figure shows the evaluation of the Wigner function in Fig. 8.4 at different
contours ranging from 0.1 to 0.9 of the peak value. x: anti-squeezing; +: squeezing. The dot-
ted horizontal lines represent +8.7 dB (anti-squeezing), 0 dB (quantum noise limit) and -4.1 dB
(squeezing) respectively. The anti-squeezing (+8.7 dB) and squeezing (-4.1 dB) values are calcu-
lated at Ã²H.- À of the peak height.



94 Measuring the squeezed vacuum state

va
lu

e 
of

 m
om

en
t

(radian)

(radian)
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or variance) calibrated by the vacuum state. (Please refer to the text part for detailed explanation.)
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Figure 8.7: Standard deviations of the probability density functions of a squeezed vacuum state
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corresponding position.
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Figure 8.8: The imperfect combination of two Gaussian distributions gives a non-Gaussian dis-
tribution. dotted: Gaussian distribution, 3 OÔ�-ï 4 (standard deviation), 5¼ O äh�Dï �IÆ (average);
dashdotted: Gaussian distribution, 3�O �Dï 4IG , 5¼ O®�Dï �IÆ ; solid: average of the two Gaussian dis-
tributions results, which is a non-Gaussian distribution with non-zero higher order moments.
( 3 � �-ï 4-Ã , 5¼ O·� , N10 � 4Dï º62�Ã��87 0 , N ñ � GDï ð .) The different value of 3 accounts for different de-
gree of squeezing of each scan, and the different value of 5¼ accounts for imperfect (non-centered)
combination.
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Figure 8.9: The Gaussian Wigner function of the squeezed vacuum state is convoluted by the
Gaussian electronic noise and the Gaussian vacuum noise (due to the finite detection efficiency).
Because of an imperfect (non-centered) trace combination, non-Gaussian features are introduced
into the reconstructed Wigner function.
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Chapter 9

Producing quantum non-Gaussian
states

9.1 Background and overview

The real strength of optical homodyne tomography is to reconstruct the non-Gaussian
features of quantum states. In principle, standard homodyne measurement is good
enough for measuring any quantum state which has Gaussian Wigner function [16], even
if it’s not a symmetric Gaussian state, such as a squeezed state. However, it’s extremely
difficult to generate a non-Gaussian optical state because a nonlinearity of order of at
least �B, � . is needed ( �B, 1/. nonlinear process can only create Gaussian optical states1, see
discussion in section 8.2.5). k-photon (

õ=<�*
) down-conversion has been extensively

studied [141–147] and highly non-Gaussian Wigner functions were predicted. Three-
photon down-conversion is the lowest-order process of this kind. The Wigner functions
of three-photon down-conversion exhibit 3-fold symmetry and negativity. Other kinds
of �h, � . processes are the Kerr effect and cross-Kerr effect, they are also called self-phase
modulation [148, 149] and cross-phase modulation respectively. The Kerr effect has been
studied theoretically [150–152] and “banana-shaped” Wigner functions have been pre-
dicted. This is due to the intensity dependent phase modulation effect [150]. It was also
pointed out [151, 152] that “Schrödinger’s cat” states can be produced by Kerr effects.
With the current technology of Kerr effect, it is impossible to achieve high enough non-
linearity in order to demonstrate the “Schrödinger’s cat” states by the Kerr effect. On the
other hand, the squeezing effect of Kerr media has been experimentally demonstrated
[14, 153–162]. These correspond to the “banana-shape” stage of the Kerr effect. In the
case of small � , � . nonlinearity, Kerr squeezing is similar to quadrature squeezing, which
is due to �B, 1/. nonlinearity. The squeezing in �	, � . is due to the reduction of photon number
uncertainty. As a penalty, the phase noise is enhanced2.

Coudreau et. al. have demonstrated Kerr effect with cold atoms from a magneto-
optical trap [14]. They even reconstructed the Wigner function of the laser beam which
passed through the cold atoms. In principle, if the � , � . Kerr nonlinearity is large enough,
they could have obtained a “banana-shaped” Wigner function. But this didn’t happen
in their experiment. They reconstructed an elliptic Wigner function, which is similar to
the Wigner function of a quadrature squeezed state. This indicates the � , � . nonlinearity
produced by their cold atoms was still very small.

It was proposed by Schmidt et al. [165] that a Giant Kerr nonlinearity can be obtained

1Spontaneous parametric down-conversion is a >1? ¶A@ nonlinear process, and it creates conditional Fock
states [25, 105–110], which are highly non-Gaussian. But with conditional measurement, it is consequently
not a conventional > ? ¶A@ process.

2Due to guided-acoustic-wave Brillouin scattering (GAWBS) [163, 164], which introduces noise from for-
ward scattering of thermally excited guided acoustic modes, the phase noise can be much greater than what’s
imposed by the minimum uncertainty relationship.
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by electromagnetically induced transparency (EIT), a quantum effect that permits the
propagation of light pulses through an otherwise opaque medium. In a recent astonish-
ing experiment utilising EIT, Hau et al. [166] have reduced the speed of light to 17 metres
per second in an ultracold atomic gas. The giant Kerr nonlinearity was measured in their
experiment and they obtained a nonlinear refractive index of 'Y^�7 X �.B 1 Ý � - , which is� 7�'8C times greater than that measured in cold Cs atoms [167]. In the future this may
lead to the experimental demonstration of “banana-shaped” or even “Schrödinger’s cat”
quantum states.

Cross-phase modulation is a less investigated area. Nevertheless squeezing has been
observed by cross-phase modulation in semiconductors [168].

Cavity QED experiments have greater chance to produce non-Gaussian (or non-
classical) states. In this kind of experiment, the coupling between atoms and cavity
modes or applied laser beams can be large and well-controlled. “Schrödinger’s cat” states
[61, 62] and Fock states [21, 53, 54] have already been produced (see section 2.2).

In the rest of this chapter we focus on the optical field and present our methods of
expressing the Wigner functions of the output states of self-phase modulation and cross-
phase modulation. To the best of our knowledge, this work has not been included in any
publication prior to this thesis.

9.2 Self-phase modulation

The interaction Hamiltonian of self-phase modulation is [169]


" T � �½ �S�Ç
� ¯ � 1 
� 1 . (9.1)

where � is the interaction parameter proportional to the third-order nonlinear suscepti-
bility � , � . [170]. Suppose the input field is a coherent state

� ����'²� � �&� � � ^ (9.2)

After traveling in the Kerr medium of length L, the output state of the field can be written
as � ��� $ � � � 
D �  ��� � � . (9.3)

where 
D �  � is the unitary evolution operator. Suppose the field propagates at a velocity± , we can write down the evolution operator asD �  �N� Â!ÃUÄ ùVH� �e
¨�/
ÒJ 73�Pú£. (9.4)

where ��� � �  ± � � � $ ^ (9.5)

We can expand the output state in the Fock representation,

� �¢� $ � � � ¸¹h(º5± Â!ÃYÄ ùVH� �Ø¨�$ÒJó73�Pú Â!ÃYÄ �lJ%� �Ö� 1 �(� � �
h» N¼ �  � ^ (9.6)

The Q function of this output state was calculated by Kitagawa et al. [150] and the
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result is � �$ôE�¨� 7� } � , ³ ×U³ ¶ � ³ ´[³ ¶ ..EEE ¸¹h(º5± �$ô Æ �G� hN¼ } , = · 1/.GF�h , h � -�.HEEE 1 ^ (9.7)

When �n� �(�)� ¬ (9.8)

and ¬ is an integer, the Wigner functions were shown by Tara et al. [151]. Now we
want to calculate the Wigner function of � ��� $ � � generally. Let’s define s-parameterised
displacement operators 
¾ �$ôC."!(� [65]


¾ �$ôC."!(� © 
¾ �$ôE� } x ³ ×Y³ ¶ · 1 (9.9)

and the complex Fourier transforms of the operators 
¾ �$ôC."!(� ,

<%�$ôC."!(�C� � 
¾ ��
Y."!(� Â!ÃUÄ �$ôa
 Æ JKô Æ 
²� � 1 
� ^ (9.10)

s-parameterised quasiprobability distribution (QPD) �d�$ô¨."!�� is proportional to the ex-
pectation value of the operator 
<%�$ôC."!(� [65],

�d�$ô¨."!��N� 7� <@Ê ù 
§ 
< �$ôC."!(�Pú£^ (9.11)

When !��	' , we get the Wigner function

� �$ôC.V'²� � 7� <�Ê ù 
§ 
<%�$ô¨.V'²�Pú
� 7� ¸¹hÁá �Sº5± Â!ÃYÄ ù0H� �[¨�$ÒJ 73�EJ H� � ¬ � ¬ Jó73�EJ°� �Ö� 1 ú � h» N¼ � Æ

�» ¬ ¼ª$¬ � 
< �$ôC.V'²���  � ^ (9.12)

The Fock representation matrix element ª$¬ � 
<%�$ôC.V'²���  � can be expressed as [66]

ª$¬ � 
<%�$ô¨.V'²���  � ��� ¬ ¼ � N¼ � - · 1 � h � � � - �lJ 73� � �$ô Æ � h � � Â!ÃYÄ �lJ � � ôS� 1 �  , h � �	.� �$+6� ôS� 1 �I. (9.13)

where
 , h � �m.� �$,g� are the associated Laguerre polynomials. For  < ¬

 , h � �	.� �$,5�C� �¹
� º5± �lJ 73� � Ó ¬ J Ü Õ , �Ü ¼ . (9.14)

while for *� ¬ ,  , h � �	.� �$,5�C� h¹
� º5± Ó ÒJ Ü Õ �lJ�,5� � � �� ¬ J Ü �I¼ ^ (9.15)

Substituting Eq. (9.13) into Eq. (9.12), we can express the Wigner function by a serial sum

� �$ôC.V'²� � 7� ¸¹h-á ��º5± Â!ÃUÄ ù H� �[¨�$ÒJ�73�EJ H� � ¬ � ¬ J 73�EJ°� �Ö� 1 ú � h � Æ �N¼ � h � � � - �lJ 73� �
�$ô Æ � h � � Â!ÃUÄ �lJ � � ôS� 1 �  , h � �m.� �$+6� ô�� 1 �I^ (9.16)

These output states are highly non-Gaussian and in general have negative values.
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We show in Fig. 9.1 and Fig. 9.2 the contours of four Wigner functions with increasing� from 0 to 0.15, the output state evolves from coherent state to “banana-shaped” state
and “curved” state. With even larger � �&J �(�)� 7(^`9 (i. e., ¬ �d7(^`9 in Eq. (9.8)), we have a
3-component “Schrödinger’s cat” state [152] which is shown in Fig. 9.3.

9.3 Cross-phase modulation

The interaction Hamiltonian of cross-phase modulation is [147]


" T � �½JI 
� ¯ - 
� -(
� ¯� 
� � . (9.17)

where 
� - and 
� � are the annihilation operators of the fundamental wave ( Q - ) and the
third harmonic wave ( Q � � * Q¨- ) respectively.

I
is the interaction parameter proportional

to the third-order nonlinear susceptibility.
Suppose the input states of Q�- and Q � waves are coherent,

� ����'²� � �&� �¨-/.V� � � ^ (9.18)

The unitary evolution operator of this process is


D � $ �C� Â!ÃYÄ �lJ�H 
" �½ $ �N� Â!ÃUÄ �lJ�Hl�G
� ¯ - 
� -(
� ¯� 
� � �I. (9.19)

where � © I $ . We can expand the wave function of the output state in the Fock represen-
tation,

� ��� $ � � � 
D � $ ��� ����'²� �� Â!ÃUÄ �lJ�Hl�G
� ¯ - 
� - 
� ¯� 
� ����� � - .V�E� �� Â!ÃUÄ �lJ�Hl�e
G-�
 � ��� �¨- � -�� � � � �
� Â!ÃUÄ �lJ�Hl�e
G-�
 � � ¸¹haº5± Â!ÃUÄ �lJ%� �C-�� 1 �(� � �

h -» N¼ �  � -�� � � � �
� ¸¹h(º5± Â!ÃYÄ �lJ%� �¨-�� 1 �(� � 7» N¼ ¸¹�Sº5± ���C- } � =KF ÍhML � h �  � - } �)³ ´ L ³ ¶f· 1 � � �» ¬ ¼ � ¬ � �
� ¸¹�Sº5± Â!ÃYÄ �lJ%� �E�²� 1 �(� � 7» ¬ ¼ � � � � ¬ � �²� � - } � =NF�� � - ^ (9.20)

In order to calculate the Wigner function of the fundamental wave Q�- , we take a trace
over the third harmonic wave Q � and obtain the reduced density operator


§ - � $ � � <�Ê3� ù 
§2� $ �Pú
� ¸¹ � º5± � ª Ü � ��� $ � � ª ��� $ ��� Ü£� �
� ¸¹ � º5± Â!ÃUÄ �lJ � � � � 1 � � �E�²�

1 �Ü ¼ � �¨- } � =NF � � -S- ª �C- } � =NF � � ^ (9.21)

Using this operator identity,


<%�$ôC.V'²� � � 
¾ �$ôG�!�lJ 73� ÍÎ Ï ÍÎ 
¾ � - �$ôE�
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� �PO Â!ÃUÄ ù J � �Ç
� ¯ J÷ô Æ �!�Ç
� JKôE�Pú O . (9.22)

we can write down the Wigner function of the output fundamental wave as

� �$ôC.V'²� � <@Ê ù 
§Ð-3� $ � 
<%�$ô¨.V'²�Pú
� } �)³ ´ L ³ ¶ � � � � 1 �Ü ¼ - ª �C- } � =KF � � �QO Â!ÃYÄ ù J � �Ç
� ¯ - JKô Æ �!�Ç
� -CJKôE�Pú O � �C- } � =KF � � -
� � Â!ÃYÄ �lJ%� � � � 1 J � � ôS� 1 J � � �C-�� 1 � ¸¹ � º5± � �E�²�

1 �Ü ¼ } 1 , ×(´ Ñ C � îSR$T � × Ñ ´ C � 2 îURVT . ^ (9.23)

These output states are highly non-Gaussian but do not have negative values. We
show in Fig. 9.4 and Fig. 9.5 the contours of four Wigner functions with increasing � from
0 to 0.15. The input states are � � - � � �87(^�' � (fundamental wave Q - ) and � �E� � � �87�'Y^�' �
(third harmonic wave Q � ). With the increasing of � , more non-Gaussian features can be
produced.

9.4 Summary

In this chapter we addressed the practical difficulties that exist in producing non-
Gaussian states of an optical field. We start with an overview of the various options that
exist in quantum optics as well as cavity QED. While optical non-Gaussian states are ex-
tremely difficult to produce, there have been reports on the generation of non-Gaussian
motional states of trapped ions and non-Gaussian states of a micromaser field. In the
optical field the possible nonlinearities are those ones with higher order, at least � , � . non-
linearity. Using our Fock representation method we analyse one particular nonlinearity,
namely self-phase modulation and cross-phase modulation. Given a sufficiently high
nonlinearity these effects could produce quantum non-Gaussian features. The nonlin-
earities are orders of magnitudes larger than those obtained in present quantum noise
experiment. However, in the light of the giant Kerr nonlinearity measured by Hau et al.
[166] using a Bose-Einstein condensate (BEC) as the nonlinear medium one can predict
that an experiment which produces non-Gaussian features is in principle feasible but ex-
tremely challenging. It would require the combination of squeezed state detection and
BEC technology.
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Figure 9.1: The Wigner function contours of the output states of self-phase modulation. The
amplitude of the input coherent state is N�Oo»Áï � . (a) W�O � , coherent state; (b) W´Oò�Dï �IÆ , “banana-
shaped” state.
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Figure 9.2: The Wigner function contours of the output states of self-phase modulation. The
amplitude of the input coherent state is N O »Áï � . (a) WsO �Dï|Ã�� , “curved” state; (b) WîOó�Dï|Ã�Æ ,
“curved” state.
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Figure 9.3: The Wigner function (a) and its contour plot (b) of a 3-component “Schrödinger’s cat”
state produced by self-phase modulation; N O%G1ï � , WOòäBGKJ�H1Ã�ï�Æ .
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Figure 9.4: The Wigner function contours of the output states of cross-phase modulation. The
amplitudes of the input coherent states are Na¾pO ÃIï � and N10pO Ã��-ï � . (a) W Oò� , coherent state; (b)W O �-ï �qÆ .
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Figure 9.5: The Wigner function contours of the output states of cross-phase modulation. The
amplitudes of the input coherent states are N ¾ OîÃ�ï � and N 0 OîÃ��-ï � . (a) WO��Dï|Ã�� ; (b) WÖO��Dï|Ã�Æ .



Chapter 10

Conclusions

10.1 List of main results

The main results presented in this thesis can be summarised as follows:

(1) A semiclassical theory without linearisation of the quantum state was developed to
model the optical homodyne tomography (OHT) system. This model explains the phase
space correspondence of signal as well as noise. Asynchronous demodulation and such
introduced phase quadrature diffusion can also be explained by the result of this general
model. (see section 3.6.1)

(2) A way of simplifying the inverse Radon transform was given by means of the degener-
ated hypergeometric function. This method may save computing time for reconstructing
Wigner functions from measured probability density functions (PDF’s). (see section 3.5)

(3) OHT was implemented and used to measure the amplitude and phase noise of a diode
pumped Nd:YAG laser. A high finesse optical cavity was constructed and employed
to separate the laser noise from the quantum noise limited transmitted beam. These
two beams were mixed when performing OHT. The amplitude and phase noise spectra
were measured by conventional homodyning and phase noise was found to dominate in
most of the RF regime. Pre-stabilisation of the laser was carried out and improvement in
phase noise performance was recorded. Tomographic measurement was used and super-
Poissonian elliptic Gaussian Wigner functions were reconstructed. In addition, phase
quadrature diffusion was visualised in phase space. The interference problem of sepa-
rated beams was explained. This problem was not encountered in normal homodyning.
(see chapter 6)

(4) We investigated phase modulated coherent states. OHT turned out to be very useful
in simultaneously determining the signal to noise ratio (SNR) in both the amplitude and
the phase quadrature. By means of electronic techniques such as modulation-switching
and phase-unlocking, we prepared classical non-Gaussian states and reconstructed their
Wigner functions from experimental data. The successful reconstruction of non-Gaussian
features through the measurement system assures the capability of OHT in the recon-
struction of non-classical states such as “Schrödinger’s cat” states. (see chapter 7)

(5) We measured the squeezed vacuum state and calibrated it with the corresponding
vacuum state. Squeezing and anti-squeezing were calculated. Here the technical lim-
itations of OHT began to play an important role. Both conventional homodyne detec-
tion and tomography are very susceptible to additional noise combinations. These can
be non-Gaussian, as seen from our measured PDF’s. Simply using a spectrum analyser
these terms would have been ignored. The reconstructed Wigner function can have non-
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Gaussian components which are not directly linked to the properties of the optical state.
From the higher order moments analysis of the PDF’s, we brought a link to the traditional
method and assessed the abilities and limitations of realistic OHT. (see chapter 8)

(6) A problem with hysteresis of the PZT response was found and visualised by the mea-
sured PDF’s. This drawback can also be regarded as an application of OHT for precise
sensing. Based on this result, we implemented our OHT system by using precise optical
phase from an interference trace. We believe this method wasn’t used in other similar
OHT experiments. (see section 4.2)

(7) A method based on Fock representation was developed to generally express the
Wigner functions of the output states resulting from self-phase modulation and cross-
phase modulation. (see chapter 9)

10.2 Outlook of optical homodyne tomography

As a powerful technique in quantum optics, OHT is still well worth experimental inves-
tigation. It has the ability to visualise the non-classical features of quantum states, such
as the squeezing ellipse and negative value of the Wigner function. These are beyond
the ability of the conventional homodyne measurements. Here we outline three possible
future experiments.

The first one is the idea of producing a Fock state by means of conditionally detecting
the signal wave in an optical parametric down-converter [171, 172]. We can first measure
the presence of photons in one of the down-converted beams, and then use this signal to
trigger the measurement of the other beam. Highly non-classical states may be produced
and their Wigner functions reconstructed this way1.

The second experiment is cascaded optical homodyning [31]. The simplicity of direct
probing of phase space [26–28] together with the high quantum efficiency of optical ho-
modyning make it quite attractive to do quantum state reconstruction using this method.

The third idea is to extend OHT to the multi-mode case, e. g., two-mode case. As
pointed out by Tan et al. [173] and Banaszek et al. [174], beam splitting of a single photon
can produce a two-mode state that can reveal non-locality. This is related to the two-
mode Wigner function of the output state. In the case of single mode OHT, its strength
relies on the visualisation of non-Gaussian features. However, in the two-mode case, it
can also reveal entanglement, as was already shown by White et al. [25] by means of
density matrix reconstruction.

In conclusion, we are of the firm belief that OHT will bring very interesting results in
future experiments in quantum optics.

1During the revision process of this thesis, the quantum tomography of such conditional Fock state has
been performed [111].



Appendix A

Programs for the reconstruction of
the Wigner function

A.1 Program for data binning: mp125.c

/*Project: Quantum State Tomography.*/
/*Part No.: 1*/
/*Function: make probabilities (mp) from experimental data*/
/*Input data files: (from experiment)
quadrature noise value trace and photodetector DC trace
mt.dd
ctOriCrt.d (previous traces result, if any)
ctOriDrawCrt.d (previous traces result, if any)*/
/*Output data files:
param.d
ctOri.d
ctOriDraw.d
ctAng.d
wOri.d
wOriDraw.d*/
/*Author: Jinwei Wu; Email:jinwei_wu@yahoo.com*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/*general purpose*/
#define Pi (float) 3.14159
#define D1 (int) 230000 /*assuming data length*/

/*!!!when change these constants, please keep them the same as
in Part2!!!*/
#define xm (float) 1.0 /*maximum of x, for distribution*/
#define Nx (int) 41 /*number of bins of x*/
#define thetam (float) Pi /*maximum of theta*/
#define Ntheta (int) 120 /*number of angles*/
#define Nxx (int) 41 /*for pdf graph; number of bins of x*/
/*!!!when change these constants, please keep them the same as
in Part2!!!*/

main (int argc, char *argv[])

111
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{

/*variables definitions*/
float wOri[2*Nx-1][Ntheta]; /*original probability distribution

function, Nx-1 is the center*/
int ctOri[2*Nx-1][Ntheta]; /*original counts for distribution,

Nx-1 is the center*/
int ctAng[Ntheta];/*counts for data belong to individual angles*/

float dtheta, dx; /*divisions*/

int D1m; /*real data length in the data file*/

float volt[D1]; /*DC trace voltage*/
float sx[D1]; /*signal x value, finally it will be multiplied
by multi*/
float amplitude; /*DC trace amplitude*/
float average; /*DC trace average*/
float theta; /*for storing the angle value from DC trace*/

float multi; /*multiplier for weak signal data (e.g.: 100)*/
float preDCoffset; /*estimated DC offset when making pdf’s*/
float DCMin; /*DC trace minimum*/
float DCMax; /*DC trace maximum*/

/*for pdf graph*/
float wOriDraw[2*Nxx-1][Ntheta];/*probability distribution

function for drawing, Nxx-1 is the center*/
int ctOriDraw[2*Nxx-1][Ntheta];/*counts for distribution for

drawing, Nxx-1 is the center*/
float dxx;/*divisions*/

int i, j, k, l, n;
float r, s, t;
char ch;
FILE *fp1, *fp2;

/*Command help*/
if(argc !=2 )
{
printf("Please enter one input data file name after the

command!\n");
printf("Please try again!\n");
exit(0);
};

/*read data file*/
if((fp1=fopen("mt.dd","r"))==NULL){
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printf("Cannot open file. Please make sure you have mt.dd in the
directory.\n");

printf("Format of mt.dd:\n");
printf("<multi value>\n");
printf("<preDCoffset value>\n");

exit(1);};

fscanf(fp1, "%f\n", &multi);
fscanf(fp1, "%f\n", &preDCoffset);

fclose(fp1);

if(multi<=0){
printf("Error: multi<=0. Please check mt.dd\n");
exit(1);};

printf("multi=%f\n",multi);
printf("preDCoffset=%f\n",preDCoffset);

/*set the initial values to zero*/

D1m=(int)0;

for(i=0;i<=D1-1;i++)
{
volt[i]=(float)0;
sx[i]=(float)0;
};

/*read data file*/
if((fp1=fopen(argv[1],"r"))==NULL){
printf("Cannot open file.\n");
exit(1);};

i=0;
while(!feof(fp1)) {
fscanf(fp1, "%f\t%f\n", &sx[i], &volt[i]);
i++;
};
fclose(fp1);

D1m=i;
printf("D1m=%d\n",D1m);

/*calculate DCMin, DCMax*/
DCMin=volt[0];
DCMax=volt[0];
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for(i=1;i<=D1m-1;i++)
{
if(DCMin>volt[i]) DCMin=volt[i];
if(DCMax<volt[i]) DCMax=volt[i];
};
printf("DCMin=%g\n",DCMin);
printf("DCMax=%g\n",DCMax);

amplitude=(float)(DCMax-DCMin)/2;
average=(float)(DCMax+DCMin)/2;

/*deduce and multiply sx*/
for(i=0;i<=D1m-1;i++)
{
sx[i]=(sx[i]-preDCoffset)*multi;
};

/*read ctOri[2*Nx-1][Ntheta] data file*/

if((fp1=fopen("ctOri.d","r"))==NULL){
for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nx-2;i++)
{
ctOri[i][j]=0;
};
};
fclose(fp1);
} else {
for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nx-2;i++)
{
fscanf(fp1, "%d\n", &ctOri[i][j]);
};
};
fclose(fp1);
};
/*test*/
/*printf("Please enter a character, (period to exit, c to
continue):");
for(;;)
{
ch=getchar();
if(ch==’.’) exit(0);
if(ch==’c’) break;
};*/
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/*read ctOriDraw[2*Nxx-1][Ntheta] data file*/

if((fp1=fopen("ctOriDraw.d","r"))==NULL){
for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nxx-2;i++)
{
ctOriDraw[i][j]=0;
};
};
fclose(fp1);
} else {
for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nxx-2;i++)
{
fscanf(fp1, "%d\n", &ctOriDraw[i][j]);
};
};
fclose(fp1);
};

/*update ctOri[2*Nx-1][Ntheta] from volt[i], sx[i]*/
dtheta=(float)thetam/Ntheta;
printf("dtheta=%g\n",dtheta);
dx=(float)xm/(Nx-1);
printf("dx=%g\n",dx);

for(i=0;i<=D1m-1;i++)
{
r=(volt[i]-average)/amplitude;
if(fabs(r)>1) {continue;
} else {
theta=acos(-r);
j=(int)floor(theta/dtheta);
k=(int)floor((sx[i]+xm)/dx);
}

if((k>=0)&&(k<=2*Nx-2)&&(j<=Ntheta-1))/*Now j will be
0:Ntheta-1*/

{
ctOri[k][j]++;
};
};

/*update ctOriDraw[2*Nxx-1][Ntheta] from volt[i], sx[i]*/
dxx=(float)xm/(Nxx-1);
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printf("dxx=%g\n",dxx);

for(i=0;i<=D1m-1;i++)
{
r=(volt[i]-average)/amplitude;
if(fabs(r)>1) {continue;
} else {
theta=acos(-r);
j=(int)floor(theta/dtheta);
k=(int)floor((sx[i]+xm)/dxx);
}

if((k>=0)&&(k<=2*Nxx-2)&&(j<=Ntheta-1))/*Now j will be
0:Ntheta-1*/

{
ctOriDraw[k][j]++;
};
};

/*write data file for parameters*/

if((fp1=fopen("param.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

fprintf(fp1, "DCMin=%f\n",DCMin);
fprintf(fp1, "DCMax=%f\n\n",DCMax);

fprintf(fp1, "D1m=%d\n",D1m);
fprintf(fp1, "dtheta=%g\n",dtheta);
fprintf(fp1, "dx=%g\n",dx);
fprintf(fp1, "dxx=%g\n\n",dxx);

fprintf(fp1, "multi=%f\n",multi);
fprintf(fp1, "preDCoffset=%f\n\n",preDCoffset);

fprintf(fp1, "==============\n\n");

fclose(fp1);

/*update ctOri[2*Nx-1][Ntheta] data file*/

if((fp1=fopen("ctOri.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=Ntheta-1;j++)
{
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for(i=0;i<=2*Nx-2;i++)
{
fprintf(fp1, "%d\n", ctOri[i][j]);
};
};
fclose(fp1);

/*update ctOriDraw[2*Nxx-1][Ntheta] data file*/

if((fp1=fopen("ctOriDraw.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nxx-2;i++)
{
fprintf(fp1, "%d\n", ctOriDraw[i][j]);
};
};
fclose(fp1);

/*calculate wOri[2*Nx-1][Ntheta] from ctOri[2*Nx-1][Ntheta]*/
for(i=0;i<=Ntheta-1;i++)
{
ctAng[i]=0;
for(j=0;j<=2*Nx-2;j++)
{
ctAng[i]=ctAng[i]+ctOri[j][i];
};

if(ctAng[i]==0) {
for(j=0;j<=2*Nx-2;j++)
{
wOri[j][i]=0;
};
}
else {
for(j=0;j<=2*Nx-2;j++)
{
wOri[j][i]=(float)ctOri[j][i]/ctAng[i];
};
};
};

/*calculate wOriDraw[2*Nxx-1][Ntheta] from
ctOriDraw[2*Nxx-1][Ntheta]*/
for(i=0;i<=Ntheta-1;i++)
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{
if(ctAng[i]==0) {
for(j=0;j<=2*Nxx-2;j++)
{
wOriDraw[j][i]=0;
};
}
else {
for(j=0;j<=2*Nxx-2;j++)
{
wOriDraw[j][i]=(float)ctOriDraw[j][i]/ctAng[i];
};
};
};

/*write data file*/

if((fp1=fopen("ctAng.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=Ntheta-1;j++)
{
fprintf(fp1, "%d\n", ctAng[j]);
};
fclose(fp1);

/*write data file*/

if((fp1=fopen("wOri.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nx-2;i++)
{
fprintf(fp1, "%f\n", wOri[i][j]);
};
};
fclose(fp1);

/*write data file*/

if((fp1=fopen("wOriDraw.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};
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for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nxx-2;i++)
{
fprintf(fp1, "%f\n", wOriDraw[i][j]);
};
};
fclose(fp1);

}/*End main*/
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A.2 Program for the inverse Radon transform: tom125.c

/*Project: Quantum State Tomography.*/
/*Part No.: 2*/
/*Function: Inverse Radon Transform (NB: tom -> tomography)*/
/*Input data files: (from mp.c output)
wOri.d
wOriDraw.d
nn.d
/*Output data files:
error.d (if any)
wOriNew.d
wOriDrawNew.d
param.d: parameters
wCenterOri.d
wCenterAng.d
wCenterFin.d
wr.d:reconstructed Wigner function*/
/*Author: Jinwei Wu; Email:jinwei_wu@yahoo.com*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/*general purpose*/
#define Pi (float) 3.14159
#define etam (float) 40 /*maximum of eta, should be very big

theoretically*/
#define Neta (int) 101 /*number of bins of eta*/
#define beta (float) 0.1 /*0.1*/ /*roll-off parameter*/
#define gama (float) beta*beta/(4*Pi) /*roll-off parameter*/

/*!!!when change these constants, please keep them the same as
in Part1!!!*/
#define xm (float) 1.0 /*maximum of x, for distribution*/
#define Nx (int) 41 /*number of bins of x*/
#define thetam (float) Pi /*maximum of theta*/
#define Ntheta (int) 120 /*number of angles*/
#define Nxx (int) 41 /*for pdf graph; number of bins of x*/
/*!!!when change these constants, please keep them the same as
in Part1!!!*/

/*for centered Wigner function*/
#define Npp (int) 41 /*number of bins of pp*/
#define Nqp (int) 41 /*number of bins of qp*/
#define ppm (float) 1.0 /*maximum of pp, for Wigner function*/
#define qpm (float) 1.0 /*maximum of qp, for Wigner function*/
#define xpm (float) 1.0 /*maximum of xp, for distribution*/
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#define Nxp (int) 41 /*!!! Nxp-1=(Nx-1)*xpm/xm !!!, number of
bins of xp*/

main ()

{
/*variables definitions*/
float theta[Ntheta];
float x[2*Nx-1];/*Nx-1 is the center*/
float eta[Neta];
float wOri[2*Nx-1][Ntheta];/*original probability distribution

function, Nx-1 is the center*/
float wOriNew[2*Nx-1][Ntheta];/*new original probability

distribution function, Nx-1 is the center*/
float dtheta, dx, deta;/*divisions*/
float f_eta[Neta];/*function of eta in IRT*/
float f_cos[Ntheta],f_sin[Ntheta];/*cosine and sine functions*/
float eta_cos[Neta][Ntheta];/*eta[]*cos[]*/
float eta_sin[Neta][Ntheta];/*eta[]*sin[]*/

float factor;/*factor used for normalization of W*/
int n1;/*start index of pdf quadrature*/
int n2;/*end index of pdf quadrature*/
int NthetaNew;/*new number of angles*/

/*for centered Wigner function*/
float p0; /*pp center of Wigner*/
float q0; /*qp center of Wigner*/
float wCenter[2*Nxp-1][Ntheta];/*centered probability

distribution function, Nxp-1 is the center*/
float wCenterp[2*Nxp-1][Ntheta];/*probability distribution

function, Nxp-1 is the center, for wCenter center seeking*/
float WCenter[2*Npp-1][2*Nqp-1];/*reconstructed Wigner function,

Npp-1:Nqp-1 is the center*/
float xp[2*Nxp-1]; /*Nxp-1 is the center*/
float pp[2*Npp-1]; /*Npp-1 is the center*/
float qp[2*Nqp-1]; /*Nqp-1 is the center*/

float dxp, dpp, dqp; /*divisions*/

float eta_xp[Neta][2*Nxp-1]; /*eta[]*xp[]*/

float wCenterAng[Ntheta]; /*total probability before
renormalization*/

float dcoffset; /*for correction of mixer trace DC offset due to
amplifier noise or imperfect photodetector matching*/

float aveStart,aveEnd; /*average quadrature values for
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theta=0 and theta=thetam-dtheta*/

/*for pdf graph*/
float wOriDraw[2*Nxx-1][Ntheta];/*probability distribution

function for drawing, Nxx-1 is the center*/
float wOriDrawNew[2*Nxx-1][Ntheta];/*new probability

distribution function for drawing, Nxx-1 is the center*/
float dxx;/*divisions*/

int i, j, k, l, n;
float r, s, t;
char ch;
FILE *fp1, *fp2;

/*read data file*/
if((fp1=fopen("nn.d","r"))==NULL){
if((fp1=fopen("error.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};
fprintf(fp1,"Cannot open file. Please make sure you have
nn.d in the directory.\n");
fprintf(fp1,"Format of nn.d:\n");
fprintf(fp1,"<n1 value>\n");
fprintf(fp1,"<n2 value>\n");
fclose(fp1);
exit(1);
};

fscanf(fp1, "%d\n", &n1);
fscanf(fp1, "%d\n", &n2);

fclose(fp1);

if(n1>Ntheta || n1<1 || n2>Ntheta || n2<1 || n1>=n2){
if((fp1=fopen("error.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};
fprintf(fp1, "Error: n1 or n2 not appropriate. Please
check nn.d\n");
fclose(fp1);
exit(1);
};

/*calculate divisions*/
NthetaNew=n2-n1+1;
dtheta=(float)thetam/NthetaNew;/*not NthetaNew-1 because we

don’t want Pi*/
dx=(float)xm/(Nx-1);
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dxx=(float)xm/(Nxx-1);
dpp=(float)ppm/(Npp-1);
dqp=(float)qpm/(Nqp-1);
deta=(float)etam/(Neta-1);
dxp=dx;

/*preparing variables arrays*/

for(i=0;i<=NthetaNew-1;i++)
{
theta[i]=i*dtheta;
};

for(i=0;i<=2*Nx-2;i++)
{
x[i]=-xm+i*dx;
};

for(i=0;i<=2*Npp-2;i++)
{
pp[i]=-ppm+i*dpp;
};

for(i=0;i<=2*Nqp-2;i++)
{
qp[i]=-qpm+i*dqp;
};

for(i=0;i<=Neta-1;i++)
{
eta[i]=i*deta;
};

for(i=0;i<=2*Nxp-2;i++)
{
xp[i]=-xpm+i*dxp;
};

/*read data file for wOri*/
if((fp1=fopen("wOri.d","r"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=Ntheta-1;j++)
{



124 Programs for the reconstruction of the Wigner function

for(i=0;i<=2*Nx-2;i++)
{
fscanf(fp1, "%f\n", &wOri[i][j]);
};
};
fclose(fp1);

/*calculate wOriNew from wOri*/
for(j=0;j<=NthetaNew-1;j++)
{
for(i=0;i<=2*Nx-2;i++)
{
wOriNew[i][j]=wOri[i][j+n1-1];
};
};

/*write data file*/
if((fp1=fopen("wOriNew.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=NthetaNew-1;j++)
{
for(i=0;i<=2*Nx-2;i++)
{
fprintf(fp1, "%f\n", wOriNew[i][j]);
};
};
fclose(fp1);

/*read data file for wOriDraw*/
if((fp1=fopen("wOriDraw.d","r"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=Ntheta-1;j++)
{
for(i=0;i<=2*Nxx-2;i++)
{
fscanf(fp1, "%f\n", &wOriDraw[i][j]);
};
};
fclose(fp1);

/*calculate wOriDrawNew from wOriDraw*/
for(j=0;j<=NthetaNew-1;j++)
{
for(i=0;i<=2*Nxx-2;i++)
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{
wOriDrawNew[i][j]=wOriDraw[i][j+n1-1];
};
};

/*write data file*/
if((fp1=fopen("wOriDrawNew.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=NthetaNew-1;j++)
{
for(i=0;i<=2*Nxx-2;i++)
{
fprintf(fp1, "%f\n", wOriDrawNew[i][j]);
};
};
fclose(fp1);

/*calculate aveStart,aveEnd*/
aveStart=0;
aveEnd=0;
for(i=0;i<=2*Nx-2;i++) {
aveStart=(float)aveStart+i*wOriNew[i][0];
aveEnd=(float)aveEnd+i*wOriNew[i][NthetaNew-1];
};
aveStart=aveStart*dx-xm;
aveEnd=aveEnd*dx-xm;
dcoffset=(aveStart+aveEnd)/2;

k=floor(dcoffset/dx);
/*printf("k=%d\n",k);*/

/*calculate p0,q0 while deducting dcoffset*/
p0=0;
q0=0;
r=(float)NthetaNew/2;
j=floor(r);
for(i=0;i<=2*Nx-2;i++) {
p0=(float)p0+i*wOriNew[i][0];
q0=(float)q0+i*wOriNew[i][j];
};
p0=p0-k;
q0=q0-k;
p0=p0*dx-xm;
q0=q0*dx-xm;

/*write data file for parameters*/
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if((fp1=fopen("param.d","a"))==NULL){
printf("Cannot open file.\n");
exit(1);};

fprintf(fp1, "p0= %g\n", p0);
fprintf(fp1, "q0= %g\n", q0);
fprintf(fp1, "dcoffset= %g\n\n",dcoffset);

fprintf(fp1, "etam= %f\n", etam);
fprintf(fp1, "Neta= %d\n", Neta);
fprintf(fp1, "beta= %f\n\n", beta);

fprintf(fp1, "xm= %f\n", xm);
fprintf(fp1, "Nx= %d\n", Nx);
fprintf(fp1, "thetam= %f\n", thetam);
fprintf(fp1, "Ntheta= %d\n", Ntheta);
fprintf(fp1, "NthetaNew= %d\n", NthetaNew);
fprintf(fp1, "Nxx= %d\n", Nxx);
fprintf(fp1, "n1= %d\n", n1);
fprintf(fp1, "n2= %d\n\n", n2);

fprintf(fp1, "Npp= %d\n", Npp);
fprintf(fp1, "Nqp= %d\n", Nqp);
fprintf(fp1, "ppm= %f\n", ppm);
fprintf(fp1, "qpm= %f\n", qpm);
fprintf(fp1, "xpm= %f\n", xpm);
fprintf(fp1, "Nxp= %d\n", Nxp);

fprintf(fp1, "==============\n\n");

fclose(fp1);

/*preparing intermediate data for IRT*/
for(l=0;l<=Neta-1;l++) {
f_eta[l]=eta[l]*exp(-gama*eta[l]*eta[l]);
};

for(n=0;n<=NthetaNew-1;n++) {
f_cos[n]=cos(theta[n]);
f_sin[n]=sin(theta[n]);
};

for(l=0;l<=Neta-1;l++) {
for(k=0;k<=2*Nxp-2;k++) {
eta_xp[l][k]=eta[l]*xp[k];
};
};
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for(l=0;l<=Neta-1;l++) {
for(n=0;n<=NthetaNew-1;n++) {
eta_cos[l][n]=eta[l]*f_cos[n];
eta_sin[l][n]=eta[l]*f_sin[n];
};
};

/*calculate wCenter from wOriNew*/
for(j=0;j<=NthetaNew-1;j++)
{
r=p0*f_cos[j]+q0*f_sin[j]-xpm;/*correspondent x[k] of -xpm*/
k=floor((r+dcoffset+xm)/dx);

for(i=0;i<=2*Nxp-2;i++)
{
if((k>=0)&&(k<=2*Nx-2)) {
wCenter[i][j]=wOriNew[k][j];
} else {
wCenter[i][j]=0.0;/*out of the range, set to 0.0*/
};
k++;
};

};

/*write data file for wCenter*/
if((fp1=fopen("wCenterOri.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=NthetaNew-1;j++)
{
for(i=0;i<=2*Nxp-2;i++)
{
fprintf(fp1, "%f\n", wCenter[i][j]);
};
};
fclose(fp1);

/*center-seeking pdf wCenter, for unbalance problem*/
for(i=0;i<=NthetaNew-1;i++)
{
r=0;
for(j=0;j<=2*Nxp-2;j++)
{
r=(float)r+wCenter[j][i]*j;/*center of wCenter[][]*/
};
k=floor(r-(Nxp-1));
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for(j=0;j<=2*Nxp-2;j++)
{
if((j+k>=0)&&(j+k<=2*Nxp-2)) {
wCenterp[j][i]=wCenter[j+k][i];
} else {
wCenterp[j][i]=0;
};
};

};

/*transfer wCenterp back to wCenter*/
for(i=0;i<=NthetaNew-1;i++)
{
for(j=0;j<=2*Nxp-2;j++)
{
wCenter[j][i]=wCenterp[j][i];
};
};

/*renormalize the pdf wCenter*/
for(i=0;i<=NthetaNew-1;i++)
{
wCenterAng[i]=0;
for(j=0;j<=2*Nxp-2;j++)
{
wCenterAng[i]=wCenterAng[i]+wCenter[j][i];
};

if(wCenterAng[i]==0) {
continue;
}
else {
for(j=0;j<=2*Nxp-2;j++)
{
wCenter[j][i]=(float)wCenter[j][i]/wCenterAng[i];
};
};

};

/*write data file for wCenterAng*/
if((fp1=fopen("wCenterAng.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};
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for(j=0;j<=NthetaNew-1;j++)
{
fprintf(fp1, "%f\n", wCenterAng[j]);
};
fclose(fp1);

/*write data file for wCenter*/
if((fp1=fopen("wCenterFin.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(j=0;j<=NthetaNew-1;j++)
{
for(i=0;i<=2*Nxp-2;i++)
{
fprintf(fp1, "%f\n", wCenter[i][j]);
};
};
fclose(fp1);

/*calculate WCenter from wCenter*/
factor=deta*dxp*dtheta/(2*Pi*Pi);
for(i=0;i<=2*Npp-2;i++)
{
for(j=0;j<=2*Nqp-2;j++)
{

WCenter[i][j]=(float)0;
for(k=0;k<=2*Nxp-2;k++)
{
for(l=0;l<=Neta-1;l++)
{
for(n=0;n<=NthetaNew-1;n++)
{
WCenter[i][j]=WCenter[i][j]+

wCenter[k][n]*f_eta[l]*cos(eta_xp[l][k]-pp[i]*eta_cos[l][n]
-qp[j]*eta_sin[l][n]);

};
};
};
WCenter[i][j]=WCenter[i][j]*factor;

};
};

/*write data file for reconstructed Wigner function*/
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if((fp1=fopen("wr.d","w"))==NULL){
printf("Cannot open file.\n");
exit(1);};

for(i=0;i<=2*Npp-2;i++)
{
for(j=0;j<=2*Nqp-2;j++)
{
fprintf(fp1, "%f\n", WCenter[i][j]);
};
};
fclose(fp1);

}/*End main*/



Appendix B

Direct probing of quantum phase
space

As an alternative of optical homodyne tomography (OHT) for quantum state reconstruc-
tion (QSR), direct probing of quantum phase space is numerically much simpler [26–29].
It doesn’t require any integration for the reconstruction of Wigner function.

In this Appendix we will summarise the basic theory of this method. For details
please refer to Ref. [27]. As discussed in section 9.2, the s-parameterised quasiprobabil-
ity distribution (QPD) � ���e."!�� is proportional to the expectation value of the operator
< ���¨."!(� [65],

� ���¨."!(�C� 7� <@Ê ù 
§ 
< ���¨."!(�Pú£^ (B.1)

The operator 
<%���e."!�� is the complex Fourier transform of the operator 
¾ ���¨."!(� ,

< ���e."!��e� � 
¾ ��
Y."!�� Â!ÃYÄ ����
�Æ�J÷�GÆ�
�� � 1 
� . (B.2)

and 
¾ ���e."!(� is the s-parameterised displacement operator,


¾ ���e."!(� © } x ³ ´[³ ¶f· 1� Â!ÃYÄ ����
� ¯ J��EÆ²
� � } x ³ ´[³ ¶ · 1 ^ (B.3)

Here 
� and 
� ¯ are the annihilation and creation operators of the optical field respectively.
< ���¨."!(� can be expressed as a normally ordered operator,


<%���e."!(�C� �
7ÖJ%! O Â!ÃYÄ �lJ �

7ÖJ�! ��� Æ J	
� ¯ �!���rJ�
� �0� O (B.4)

where : : denotes the normal ordering of operators. When !Õ�]' , from Eq. (B.4) we can
calculate 
< ��'Y.V'²� ,


<%��'Y.V'²� � �XO Â!ÃUÄ �lJ � 
� ¯ 
� � O
� � ¸¹h(º5± �lJ 73� h O�} �>ÍÎ Ï ÍÎ �Ç
� ¯ 
� � hN¼ O
� � ¸¹h(º5± �lJ 73� h �  � ª e� ^ (B.5)

We know that �d���e.V'²� © �d���N� is the Wigner function. From Eq. (B.5) we can obtain the
value of the Wigner function at the origin of phase space,

� ��'²�C� 7� ª 
< ��'Y.V'²� � � �� ¸¹haº5± �lJ 73� h ¢ h . (B.6)
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where ¢ h is the probability of counting  photons by an ideal photon counter. If we
can somehow scan the phase space and shift the origin of phase space around, Eq. (B.6)
provides a way to fully reconstruct the Wigner function.

as aout

ap

PC

BS

Figure B.1: Experimental setup for the direct probing of quantum phase space. QRY� , QR,Z , QR ü�ý Ð : anni-
hilation operators of the signal wave, the probe wave and the output wave respectively; BS: beam
splitter; PC: photon counter.

Shown in Fig. B.1 is a realisation of this idea. This scheme is named as direct prob-
ing of quantum phase space. 
�Øx , 
��� and 
� jlk F are the annihilation operators of the signal
wave, the probe wave and the output wave respectively. 
� jLk F can be written as a linear
combination of 
� x and 
� � , 
� jlk F � » <q
�Ux J » 7�Jp<q
��� (B.7)

where < is the power transmittance of the beam splitter. Using Eq. (B.4) and Eq. (B.7), we
can evaluate 
< jlk F ��' b '²� of the output wave in terms of the incoming waves,


< jLk F ��' b '²� � �QO Â!ÃYÄ �lJ � 
� ¯jlk F 
� jlk F � O� �QO Â!ÃYÄ\[ J � < ù 
� ¯x J ] �f7ÖJp<¢� � <q
� ¯� ú ù 
�Yx J ] �f7ÖJp<¢� � <c
�#� ú^] O ^ (B.8)

Suppose the probe wave is a coherent state � � � , from Eq. (B.1), Eq. (B.4) and Eq. (B.8) we
can readily obtain a relationship between the QPD’s of the output wave and the signal
wave,

� jLk F ��'²�C� 7< � x ÓH_ 7ÖJK<< � b J 7�Jp<< Õ . (B.9)

where � jlk F ��'²� is the Wigner function of the output wave at the origin of phase space and� x � ] - �a`` � b J - �a`` � is the !Ò�«7¢J�7 � < ordered QPD of the signal wave at ] - �a`` � . Ac-
cording to Eq. (B.6), � jlk FÇ��'²� can be determined by photon counting of the output wave.
Based on this, Eq. (B.9) tells us that the QPD of the signal wave can be fully determined
by scanning the probe wave amplitude and phase, i. e., the complex value � and measur-
ing the photon counting statistics of the output wave. When the power transmittance <
approaches unity, Eq. (B.9) provides a measurement of the Wigner function of the signal
wave.

This method is numerically very simple, no integration is needed. However, it re-
quires two-fold scanning (the amplitude and the phase of the probe wave). In OHT only
the phase of the local oscillator needs to be scanned. One drawback of the direct probing
method is that the quantum efficiency of photon counters (70% for avalanche photodi-
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odes operated in the Geiger mode) is normally much lower than that of photodiodes (94%
for InGaAS photodiodes operated at 1064 nm). Another drawback of the direct probing
method is that the extra noise in the probe wave can not be canceled out as in a balanced
homodyne scheme.
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Appendix C

Circuit diagrams
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Figure C.1: Circuit diagram of a low noise photodetector. [Courtesy of M. B. Gray, the Australian
national university.]
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R1: 200 Ω; R1: 50 Ω;
L1, L2: 10 µH;

C1, C3: 33 µF;
C2, C4, C5, C6, C7, C8: 100 nF
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Figure C.2: Circuit diagram of a buffer amplifier.
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R1, R3: 1 kΩ; R2: 20 kΩ; Ρ4: 10 Ω;
L1, L2: 10 µH;

C1, C3: 33 µF;
C2, C4, C5, C6, C7, C8: 100 nF
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Figure C.3: Circuit diagram of a signal amplifier.
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Appendix D

PCI-MIO-16XE-50 I/O Connector

Shown in Fig. D.1 is the I/O connector of the PCI-MIO-16XE-50 multifunction I/O board
for PCI. Please refer to Table D.1 for a description of the signal inputs. In our optical
homodyne tomography (OHT) experiment, we normally need to acquire two channels
of data, one for the quadrature amplitude and the other for the optical phase signal.
In this case, we use (34, 68) as one analog channel (ACH0) and (31, 65) as the other
channel (ACH2). If three analog channels are needed, we can also use (26, 60) as another
channel (ACH5). These are all bipolar differential channels. Care should be taken when
connecting these channels. Make sure all the acquired signal share the same common
ground with the I/O board, otherwise nasty oscillation may occur.

Signal Names Signal Description
ACH { � Analog input channels
DIO { � , PA { � , PB { � Digital input/output lines
PFI { � Programmable inputs for trigger, conversion, and clock signals
AISENSE Common signal input for NRSE analog inputs
DAC0OUT, DAC1OUT Analog output channels
EXTREF Analog output external reference voltage input
SCANCLK Multiplexer scan clock for driving SCXI and AMUX-64T
EXTSTROBE* External multiplexer strobe for driving SCXI and AMUX-64T
GPCTR GATE General purpose counter/timer gate input
GPCTR OUT General purpose counter/timer output
GPCTR SOURCE General purpose counter/timer input
FREQ OUT Programmable frequency output

Table D.1: I/O signal connection description (from National Instruments Inc. catalog).
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Figure D.1: PCI-MIO-16XE-50 I/O Connector (from National Instruments Inc. catalog).



Appendix E

Produce phase and amplitude
modulations simultaneously

In this chapter we want to discuss how to produce phase and amplitude modulations
simultaneously by an electro-optic modulator. The optical configuration is shown in
Fig. E.1 and the different axes of the KDP crystal are illustrated in Fig. E.2.
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beam

x1

V

y1

L

Electro-optic
crystal (KDP)

x’

y’

z

Output
beam

Output
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(|| to x’)

“Slow”
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(|| to y’)

“Quarter wave”

(Γ=π/2)
retardation plate

Figure E.1: An electro-optic modulator which can produce phase and amplitude modulations
simultaneously. The angle between ¼(Â and ¼ is adjusted by rotating the crystal. (Slightly modified
from Fig. 14.4 in Ref. [1].)

As shown in Fig. E.2, 
,54$.Y
¡U4 are the electrically induced birefringent axes of the KDP
crystal, �3
,64$.Y
¡U4�� and ( 
, - .[
¡ - ) are fixed together and the angle between 
¡Ø4 and 
¡ - is

�)� + .
The output polariser is in the direction of 
¡6- . The input beam is linearly polarised in the
direction of 
, , so the input electric fieldb¥�=8hq� » � ¥@±g�! �"3�RQ $ ��
,>^ (E.1)

From Fig. E.2 we know 
,����! �"#���N��
, 4 ö "Vý Ô ���N��
¡ 4 . (E.2)

so
b¥ =ih can be written as b¥�=ihÕ� » � ¥�±����! �"#���N��
, 4 ö "Çý Ô ���G�²
¡ 4 �U�! �"#�RQ $ �I^ (E.3)

Equivalently we have the projections of
b¥�=ih along the 
,64 and 
¡U4 directions,

¥ ¬ � ��'²� � » � ¥ ± �! �"3���G�I.¥dc � ��'²� � » � ¥@±g"Vý Ô ���G�I^ (E.4)
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x

y

x1

y1

y’

x’

α

Figure E.2: Different axes of a KDP crystal. ( ¼z¾$egfq¾ ) are the natural optical axes, ( ¼(ÂNegf1Â ) are the
electrically induced birefringent axes and the angle between ¼�Â and ¼ ¾ is fixed to J�HK» . The input
and output polarisers are in the directions of ¼<jhegf l and fY¾ respectively and i is the direction of
the laser beam.

On the output surface of the crystal, the electric fields along the 
,)4 and 
¡U4 directions are
(note that we have ignored a common phase factor which is of no importance.)

¥�¬ � � Ü � � » � ¥�±g�! �"#���N�I.¥jc � � Ü � � » � ¥�±g"Vý Ô ���N� } � =Kk ^ (E.5)

From Eq. (E.5) we can write down the output field of the output polariser as

��¥ c -�� j � ù ¥dc � � Ü � � » � J÷¥ ¬ � � Ü � � » � ú } =|v F ^ (E.6)

Here lp� �)�(� ö l��o"Vý Ô �Á��� $ � . l)� t 7 is the modulation index and ��� is the modulation
frequency. From Eq. (E.6) we know the output intensity

� j � ��¥ c -�� j ��¥ c -�� Æj� ¥ 1± �f7ÖJ÷"Vý Ô � � �N�U�! �"(�mlE�0�I^ (E.7)

When l w �)�(� , which is the case we are discussing, � j �	¥ 1± is independent of � .
Let’s denote the real part of the output field as

¥ c - � A } ø ��¥ c -�� j û� ¥@±K� ¬ ø ù J�ô "Çý Ô ���G�!� } ={n\y F J } � ={n\y F �>J÷�! �"����G� } = 3 · 1 ö "Vý Ô ���N�Pú } =|v F û�^ (E.8)

We can write down the corresponding annihilation operator of this electric field


� � $ � � ¥ ± ø J�ô "Çý Ô ���G� ù } =xn yNF J } � ={n yEF úØJ÷�! �"����G� } = 3 · 1 ö "Çý Ô ���G�Çû� ¥�± ø } � = , 3 · 1 �Ð´ . ö ô "Vý Ô ���G� ù } � =xnzy F J } ={n\y F úÁû�. (E.9)
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where ô © } - �ml � � and ô�t 7 . } - �$,g� is the first order Bessel function. In order to include
the quantum fluctuations of the input field, we replace ¥ ± by ¥@± ö +Ø
� � $ � and rewrite the
annihilation operator 
� � $ � as


� � $ � � ù ¥ ± ö +Ø
� � $ �Pú ø } = , ´U� 3 · 1/. ö ô "Vý Ô ���G� ù } � =xn yGF J } ={n yEF úÁûw J�H ø ¥�± } = ´ ö � ô>¥�±g"Vý Ô ���N�U"Vý Ô �Á��� $ � ö } = ´ +Ø
� � $ �Çû²^ (E.10)

Here we have assumed ô)¥�± and +Ø
� � $ � to be very small comparing with ¥;± and omitted
the term containing ô)¥�±�+Ø
� � $ � . We treat the strong local oscillator beam classically and
approximate its annihilation operator by a c-number


� � $ � w ÿ } =ÌË . (E.11)

where � is the local oscillator phase, which is scanned by a PZT. For a balanced homodyne
detection, the difference current can be expressed by the field operators,


H � ���[. $ �N� 
� ¯ 
� ö 
� ¯ 
� ^ (E.12)

The amplitude and phase quadrature operators can be defined as


m � A } ø 
� û����Ç
�\ö 
� ¯ � �(� .
� � � ¬ ø 
� û¢���Ç
� J	
� ¯ � � � � Hl�I^ (E.13)

We can further define the rotated quadrature operator


m������N� 
m��! �"3����� ö 
� "Vý Ô �����I^ (E.14)

Substituting Eq. (E.10), Eq. (E.13) and Eq. (E.14) into Eq. (E.12) we have


H � ���[. $ � � � ÿ 
m����Ø. $ �� � ÿ ù ¥�±g"Vý Ô ���oJ����)J � ô)¥�±)"Vý Ô ���G�U"Çý Ô �����U"Vý Ô �Á��� $ �ö + 
m�� �)�(� J÷� ö �[. $ �Pú£^ (E.15)

The local oscillator current of the mixer is

H��P� $ � w "Vý Ô �Á�Ö� $ ö �Ö�I. (E.16)

where � is the electronic phase delay angle. The output current of the mixer is the product
of its two input signals, H��s���[. $ �N�°H � ���Ø. $ �LH��L� $ �I^ (E.17)

Let’s define the Fourier transform as

�¡g�Á� 4 � © � ù ¡g� $ �Pú
� �å� ¸� ¸ ¡5� $ � } � ={n � F � $ ^ (E.18)

The Fourier amplitude
� H��p���[.Ç� 4 � at sideband � 4 is the convolution of the Fourier trans-

forms of the input signals,� H��p���[.Ç� 4 � � � H � ���[.Ç� 4 �an � H��L�Á� 4 �
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� � � ¸� ¸
� H � ���[.I�2� � H��P�Á� 4 Ju�2� � ��^ (E.19)

Now the output current of the low-pass filter can be expressed as

H n �����[. $ � �  B � ù H��p���[. $ �Pú2� 7�(� � � n �� � nz�
� H��s���[.Ç� 4 � } ¤"n � F � � 4

� J Ø � } ¤Vo [ �(� Ø ô)¥@±�"Vý Ô ���N�U"Vý Ô ����� * J ��� nz�� � n � +��Á� 4 Ju�Ö� ö ����� } ¤"n
� F � � 4 + ]ö Ø � } � ¤Vo [ �(� Ø ô)¥@±�"Vý Ô ���N�U"Vý Ô ����� * � � n �� � nz� +��Á� 4 ö ����J������ } ¤"n
� F � � 4 + ]

J Ø � } ¤Vo ��� nz�� � n � +
�m�� �)�(� J÷� ö �Ø.Ç� 4 Ju�Ö�3� } ¤�n � F � � 4

ö Ø � } � ¤Vo ��� n �� � nz� +
�m�� �)�(� J÷� ö �Ø.Ç� 4 ö �Ö�3� } ¤�n � F � � 4 . (E.20)

where Wq��� is the bandwidth of the low-pass filter, which is about 50 kHz in our experi-
ment. Note that we have assumed �@�   Wq�� and �Ö�   Wq�� , which is always true in
the experimental case. If we define this finite-bandwidth time domain function

+ 
m � � �)�(� J÷� ö �[.�J@�Ö� b $ �N� 7�(� � � nz�� � n � +
�m�� �)�(� J÷� ö �[.Ç� 4 J��Ö�3� } ¤"n � F � � 4 . (E.21)

we can prove that

+ 
m ¯� � �)�(� J÷� ö �[.�J��Ö� b $ �¨� + 
m � � �)�(� J÷� ö �[.Ç�Ö� b $ �I^ (E.22)

Thus we have two Hermitian operators

+ 
m � D�� �)�(� J÷� ö �[.Ç�Ö� b $ � © �9+ 
m � � �)�(� JK� ö �[.Ç� b $ � ö + 
m � � �)�(� J÷� ö �[.�J@��� b $ �0� �(� .+ 
m � =V� �)�(� J÷� ö �[.Ç�Ö� b $ � © �9+ 
m � � �)�(� JK� ö �[.Ç� b $ �Je+ 
m � � �)�(� J÷� ö �[.�J@�Ö� b $ �0� � � � Ø �I^ (E.23)

Substituting Eq. (E.21) and Eq. (E.23) into Eq. (E.20), we find

H n �²���[. $ � � J �(� ô)¥�±g"Vý Ô ���G�U"Vý Ô ������+U�Á�Ö�a.Ç����� ö �(� "Vý Ô �$�Ö��+ 
m � D²� �)�(� J÷� ö �[.Ç�Ö� b $ �J �(� �! �"#�$����+ 
m � =Ç� �)�(� JK� ö �[.Ç�Ö� b $ �I. (E.24)

where +U�Á�Ö�a.Ç���;� © ��� nz�
� � nz� +��Á� 4 J÷�Ö� ö ���¢�U�! �"#�Á� 4 $ ö ��� � � 4 ^ (E.25)

is a function defined for convenience.

+U�Á�Ö�a.Ç���;�N�	�! �" ù � ö �Á�Ö��J��Ö�¢� $ ú (E.26)

when � ����J����%�Y{sWq�� and +U�Á�Ö��.Ç� � �C�	' (E.27)

when � ����J����Õ�Á�·Wq�� . + 
m � � �)�(� J÷� ö �[.Ç�Ö� b $ � can be understood as the total quantum
fluctuation centered around r;�@� . H n �²���[. $ � is the final electronic signal we measure in the
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experiment. For a synchronous detection, ������� � and +��Á���a.Ç� � �C�	�! �"3�$�Ö� . For in phase
detection, ���°' , H��L� $ �h�°"Vý Ô �Á��� $ �N��"Vý Ô �Á��� $ � ,

H n �²���[. $ �N��J �(� ô)¥@±�"Vý Ô ���N�U"Vý Ô ���U�>J �(� + 
m � =Ç� �)�(� J÷� ö �[.Ç�Ö� b $ �I^ (E.28)

The first term in Eq. (E.28) is due to the modulation. In the phase space, it gives us a
displacement from the origin. For in quadrature detection, ��� �)�(�

, H"�P� $ � �d�! �"#�Á��� $ �¢��! �"��Á��� $ � , H n �²���Ø. $ �N� �(� + 
m � D²� �)�(� J�� ö �[.Ç�Ö� b $ �I^ (E.29)

There is no displacement in the phase space and the Wigner function is centered around
the origin.

Generally, from Eq. (E.6),

��¥ c -�� j � ¥@± ù "Vý Ô ���N� } � ¤$k J÷�! �"3���N�Pú } ¤/v Fw J@¥ ± �f7 ö ô%"Vý Ô � � �G�U"Çý Ô �Á� � $ �0� } ¤&v F � ¤ , ´U� 1 × ?qpsr ¶ , ´ . ?hpsr , n yEF . . ^ (E.30)

There are both phase and amplitude modulations.
For synchronous and in-phase detection, we list some examples of the output field��¥ c -�� j , output current H n �����[. $ � and the corresponding phase-space contours. Notice that

the JZ+3, � =f� �)�(� � quadrature corresponds to � �	� .

(i) �K�	' : ��¥ c -�� j ��J�¥�± } ¤&v F . (E.31)

H n �����[. $ �C��J �(� + 
m � =V� �)�(� ö �[.Ç�Ö� b $ �I^ (E.32)

AM (amplitude modulation): none
PM (phase modulation): none

-δxci(π/2) (θ=0)

-δxci(0)

Figure E.3: Phase space contour plot.

(ii) �K� �)� + : ��¥ c -�� j ��J�¥@±(�f7 ö ô "Vý Ô �Á�Ö� $ �0� } ¤/v F � ¤ , 3 · b �Ø× ?qpsr , n\y F .F. . (E.33)
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H n �����Ø. $ �C��J » �a� ô)¥ ± "Vý Ô �����>J �(� + 
m � = � �)� + ö �Ø.Ç�Ö� b $ �I^ (E.34)

AM: maximal
PM: medium

-δxci(π/2) (θ=π/4)

-δxci(0)

2 πβE0

π/4

Figure E.4: Phase space contour plot.

(iii) �K� �)�(� : ��¥ c - � j ��J�¥ ± } ¤/v F � ¤ , 3 · 1 � 1 × ?hpsr , n yEF . . . (E.35)

H n �²���[. $ �N��J �(� ô)¥ ± "Vý Ô �����>J �(� + 
m � = ���[.Ç��� b $ �I^ (E.36)

(iv) �s� *(�)� + : ��¥ c - � j ��J�¥ ± �f7�JKô "Vý Ô �Á� � $ �0� } ¤/v F � ¤ , � 3 · b �Ø× ?qpsr , n y>F .F. . (E.37)

H n �����Ø. $ �C��J » �a� ô)¥@±g"Vý Ô �����>J �(� + 
m � =Ç���;J �)� +[.Ç��� b $ �I^ (E.38)

(v) �K� � : ��¥ c - � j ��J@¥ ± } ¤/v F � ¤ 3 . (E.39)

H n �²���[. $ �N��J �(� + 
m � =V���;J �)�(� .Ç�Ö� b $ �I^ (E.40)
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AM: none
PM: maximal

-δxci(π/2) (θ=π/2)

-δxci(0)

2πβE0

Figure E.5: Phase space contour plot.

2πβE0

π/4

AM: maximal
PM:  medium

-δxci(0)

-δxci(π/2)  (θ=3π/4)

Figure E.6: Phase space contour plot.
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AM: none
PM: none

-δxci(π/2) (θ=π)

-δxci(0)

Figure E.7: Phase space contour plot.
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Wissenschaften zu Leipzig, Mathematisch-Physische Klasse 69, 262 (1917).

[76] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, page 495,
Academic, New York, 4 edition, 1965, Formula 3.952.8.

[77] U. Janicke and M. Wilkens, Tomography of atom beams, J. Mod. Opt. 42, 2183 (1995).

[78] W. H. Press, B. P. Flannery, S. A. Teukdsky, and W. T. Vetterling, Numerical recipes,
Cambridge University Press, Cambridge, 1989.

[79] M. J. Collett and C. W. Gardiner, Squeezing of intracavity and traveling-wave light
fields produced in parametric amplification, Phys. Rev. A 30, 1386 (1984).

[80] H. Haken, ”Laser theory”, in encyclopedia of physics, Vol. XXV/2c, Light and matter 1c,
Springer-Verlag, Berlin, 1st edition, 1970.

[81] C. Fabre, Squeezed states of light, Phys. Rep. 219, 215 (1992).

[82] T. C. Ralph, C. C. Harb, and H.-A. Bachor, Intensity noise of injection-locked lasers:
quantum theory using a linearized input-output method, Phys. Rev. A 54, 4359 (1996).

[83] D. F. Walls and G. J. Milburn, Quantum optics, Springer-Verlag, Berlin, 1st edition,
1994.

[84] Malcolm B. Gray, Daniel A. Shaddock, Charles C. Harb, and Hans-A. Bachor, Pho-
todetector designs for low-noise, broadband, and high-power applications, Rev. Sci. In-
strum. 69, 3755 (1998).

[85] T. J. Kane and Robert L. Byer, Monolithic, unidirectional single-mode Nd:YAG ring
laser, Opt. Lett. 10, 65 (1985).

[86] T. J. Kane, A. C. Nilsson, and R. L. Byer, Frequency stability and offset locking of
a laser-diode-pumped Nd:YAG monolithic nonplanar ring oscillator, Opt. Lett. 12, 175
(1987).



154 Chapter E bibliography

[87] A. E. Siegman, Lasers, University Science Books, California, 1st edition, 1986.

[88] Noboru Uehara, Ring mode cleaner for the initial LIGO 10 Watt laser, 1997, Inter-
nal report, Ginzton Laboratory, Stanford University.

[89] A. D. White, Frequency stabilization of gas lasers, IEEE J. Quant. Elec. QE-1, 349
(1965).

[90] R. L. Barger, M. S. Sorem, and J. L. Hall, Frequency stabilization of a cw dye laser,
Appl. Phys. Lett. 22, 573 (1973).

[91] T. W. Hansch and B. Couillaud, Laser frequency stabilization by polarization spec-
troscopy of a reflecting reference cavity, Opt. Commun. 35, 441 (1980).

[92] R. W. P. Drever, J. L. Hall, F. W. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and
H. Ward, Laser phase and frequency stabilization using an optical resonator, Appl. Phys.
B 31, 97 (1983).

[93] K. C. Peng, Ling-An Wu, and H. J. Kimble, Frequency-stabilized Nd:YAG laser with
high output power, Appl. Opt. 24, 938 (1985).

[94] Peter Kürz and Takaaki Mukai, Frequency stabilization of a semiconductor laser by
external phase-conjugate feedback, Opt. Lett. 21, 1369 (1996).

[95] K. Kikuchi T. Okoshi and A. Nakayama, Novel method for high resolution measure-
ment of laser output spectrum, Electron. Lett. 16, 630 (1980).

[96] T. Takakura, K. IGA, and T. Tako, Measurement of spectral width of a single longitudinal
mode semiconductor laser, Japan. J. Appl. Phys. 19, 725 (1980).

[97] S. Saito and Y. Yamamoto, Direct observation of Lorentzian lineshape of semiconduc-
tor laser and linewidth reduction with external grating feedback, Electron. Lett. 17, 325
(1981).

[98] Y. Yamamoto, T. Mukai, and S. Saito, Quantum phase noise and linewidth of a semicon-
ductor laser, Electron. Lett. 17, 327 (1981).

[99] T. J. Kane and E. A. P. Cheng, Fast frequency tuning and phase locking of diode-pumped
Nd:YAG ring lasers, Opt. Lett. 13, 970 (1988).

[100] J. Feinberg and G. D. Bacher, Phase-locking lasers with phase conjugation, Appl. Phys.
Lett. 48, 570 (1986).

[101] Richard A. Campos, Bahaa E. A. Saleh, and Malvin C. Teich, Quantum-mechanical
lossless beam splitter:SU(2) symmetry and photon statistics, Phys. Rev. A 40, 1371
(1989).

[102] H.-A. Bachor, A guide to experiments in quantum optics, VCH Publishers, New York,
1st edition, 1998.

[103] M. B. Gray, 1999, Private communication.

[104] H.-A. Bachor, M. B. Taubman, A. G. White T. C. Ralph, and D. E. McClelland, Ex-
periments with lasers and frequency doublers, Proceedings of the Fourth International
Conference on Squeezed States and Uncertainty Relations, NASA, Goddard Space
Flight Center, Greenbelt, Maryland , 381 (1996).



Chapter E bibliography 155

[105] Alain Aspect, Philippe Grangier, and Gerard Roger, Experimental realization of
Einstein-Podolsky-Rosen-Bohm Gedankenexperiment:a new violation of Bell’s inequalities,
Phys. Rev. Lett. 49, 91 (1982).

[106] Alain Aspect, Jean Dalibard, and Gerard Roger, Experimental test of Bell’s inequalities
using time-varying analyzers, Phys. Rev. Lett. 49, 1804 (1982).

[107] Jian-Wei Pan, Dik Bouwmeester, H. Weinfurter, and A. Zeilinger, Experimental en-
tanglement swapping: entangling photons that never interacted, Phys. Rev. Lett. 80, 3891
(1998).

[108] Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and An-
ton Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions,
Phys. Rev. Lett. 81, 5039 (1998).

[109] Anton Zeilinger, Experiment and the foundations of quantum physics, Rev. Mod. Phys.
71, S288 (1999).

[110] P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Ultrabright
source of polarization-entangled photons, Phys. Rev. A 60, R773 (1999).

[111] H. Hansen, T. Aichele, A. I. Lvovsky, P. Lodahl, O. Benson, S. Schiller, and
J. Mlynek, Quantum tomography of a single photon Fock state, 2000, in IQEC.

[112] A. Heidmann, R. J. Horowics, S. Reynaud, E. Giacobino, C. Fabre, and G. Camy,
Observation of quantum noise reduction on twin laser beams, Phys. Rev. Lett. 59, 2555
(1987).

[113] J. Mertz, T. Debuisschert, A. Heidmann, C. Fabre, and E. Giacobino, Improvements
in the observed intensity correlation of optical parametric oscillator twin beams, Opt. Lett.
16, 1234 (1991).

[114] J. Gao, F. Cui, C. Xue, C. Xie, and K. Peng, Generation and application of twin beams
from an optical parametric oscillator including an � -cut KTP crystal, Opt. Lett. 23, 870
(1998).

[115] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics 1, 195 (1965).

[116] J. S. Bell, Foundations of quantum mechanism, page 171, Academic, New York, 1971.

[117] Dik Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger,
Experimental quantum teleportation, Nature 390, 575 (1997).

[118] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S.
Polzik, Unconditional quantum teleportation, Science 282, 706 (1998).

[119] R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, Observation of
squeezed states generated by four-wave mixing in an optical cavity, Phys. Rev. Lett. 55,
2409 (1985).

[120] M. D. Levenson, R. M. Shelby, and S. H. Perlmutte, Squeezing of classical noise by
non degenerate four-wave mixing in an optical fiber, Opt. Lett. 10, 514 (1985).

[121] L. A. Wu, M. Xiao, and H. J. Kimble, Squeezed states of light from an optical parametric
oscillator, J. Opt. Soc. Am. B 4, 1465 (1987).



156 Chapter E bibliography

[122] C. D. Nabors and R. M. Shelby, Two-color squeezing and sub-shot-noise signal recovery
in doubly resonant optical parametric oscillators, Phys. Rev. A 42, 556 (1990).

[123] E. S. Polzik, J. Carri, and H. J. Kimble, Atomic Spectroscopy with squeezed light for
sensitivity beyond the vacuum-state limit, Appl. Phys. B 55, 279 (1992).

[124] Z. Y. Ou, S. F. Pereira, and H. J. Kimble, Realization of the Einstein-Podolsky-Rosen
paradox for continuous variables in nondegenerate parametric amplification, Appl. Phys.
B 55, 265 (1992).

[125] K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek, Bright squeezed-
light generation by a continuous-wave semimonolithic parametric amplifier, Opt. Lett. 21,
1396 (1996).

[126] K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Generation of strongly squeezed
continuous-wave light at 1064 nm, Opt. Ex. 2, 59 (1998).

[127] P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao,
Optimization and transfer of vacuum squeezing from an optical parametric oscillator, J.
Opt. B: Quantum Semiclass. Opt. 1, 469 (1999).

[128] P. Kürz, R. Paschotta, K. Fiedler, A. Sizmann, G. Leuchs, and J. Mlynek, Squeezing
by second-harmonic generation in a monolithic resonator, Europhys. Lett. 24, 449 (1993).

[129] R. Paschotta, M. Collett, P. Kürz, K. Fiedler, H.-A. Bachor, and J. Mlynek, Bright
squeezed light from a singly sesonant srequency doubler, Phys. Rev. Lett. 72, 3807 (1994).

[130] T. C. Ralph, M. S. Taubman, A. G. White, D. E. McClelland, and H.-A. Bachor,
Squeezed light from second-harmonic generation: experiment versus theory, Opt. Lett.
20, 1316 (1995).

[131] H. Tsuchida, Generation of amplitude-squeezed light at 431 nm from a singly resonant
frequency doubler, Opt. Lett. 20, 2240 (1995).

[132] A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A.
Bachor, Experimental test of modular noise propagation theory for quantum optics, Phys.
Rev. A 54, 3400 (1996).

[133] H. P. Yuen and J. H. Shapiro, Optical coherence and quantum optics, page 719,
Plenum, New York, iv edition, 1978.

[134] T. Kiss, U. Herzog, and U. Leonhardt, Compensation of losses in photodetection and in
quantum-state measurements, Phys. Rev. A 52, 2433 (1995).

[135] Sze M. Tan, An inverse problem approach to optical homodyne tomography, J. Mod. Opt.
44, 2233 (1997).

[136] T. Opatrny, D-G. Welsch, and W. Vogel, Least-squares inversion for density-matrix
reconstruction, Phys. Rev. A 56, 1788 (1997).

[137] Z. Hradil, Quantum-state estimation, Phys. Rev. A 55, R1561 (1997).

[138] Konrad Banaszek, Maximum-likelihood estimation of photon-number distribution from
homodyne statistics, Phys. Rev. A 57, 5013 (1998).



Chapter E bibliography 157

[139] G. Breitenbach, Quantum state reconstruction of classical and nonclassical light and a
cryogenic opto-mechanical sensor for high-precision interferometry, PhD thesis, Fakultät
für Physik, Universität Konstanz, Konstanz, Germany, 1998, pp.52.

[140] B. E. Cooper, Statistics for experimentists, Pergamon Press, London, 1st edition,
1969.

[141] Samuel L. Braunstein and Robert I. McLachlan, Generalized squeezing, Phys. Rev. A
35, 1659 (1987).

[142] Mark Hillery, Photon number divergence in the quantum theory of n-photon down con-
version, Phys. Rev. A 42, 498 (1990).

[143] Gabriel Drobny and Igor Jex, Statistics of field modes in the process of k-photon down-
conversion with a quantized pump, Phys. Rev. A 45, 4897 (1992).

[144] R. Tanas and Ts. Gantsog, Phase properties of fields generated in a multiphoton down-
converter, Phys. Rev. A 45, 5031 (1992).

[145] Konrad Banaszek and Peter L. Knight, Quantum interference in three-photon down-
conversion, Phys. Rev. A 55, 2368 (1997).

[146] G. Drobny, A. Bandilla, and I. Jex, Quantum description of nonlinearly interacting
oscillators via classical trajectories, Phys. Rev. A 55, 78 (1997).

[147] T. Felbinger, S. Schiller, and J. Mlynek, Oscillation and Generation of Nonclassical
States in Three-Photon Down-Conversion, Phys. Rev. Lett. 80, 492 (1998).

[148] F. Shimizu, Frequency broadening in liquids by a short light pulse, Phys. Rev. Lett. 19,
1097 (1967).

[149] R. H. Stolen and Chinlon Lin, Self-phase-modulation in silica optical fibers, Phys. Rev.
A 17, 1448 (1978).

[150] M. Kitagawa and Y. Yamamoto, Number-phase minimum-uncertainty state with re-
duced number uncertainty in a Kerr nonlinear interferometer, Phys. Rev. A 34, 3974
(1986).

[151] K. Tara, G. S. Agarwal, and S. Chaturvedi, Production of Schrödinger macroscopic
quantum-superposition states in a Kerr medium, Phys. Rev. A 47, 5024 (1993).

[152] Jinwei Wu and Guangcan Guo, Superposition of coherent states in Kerr medium, Acta
Physica Sinica (Overseas Edition) 5, 764 (1996).

[153] R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. Devoe, and D. F. Walls, Broad-
band parametric deamplification of quantum noise in an optical fiber, Phys. Rev. Lett. 57,
691 (1986).

[154] R. E. Slusher, B. Yurke, P. Grangier, A. Laporta, D. F. Walls, and M. Reid, Squeezed-
light generation by four-wave mixing near an atomic resonance, J. Opt. Soc. Am. B 4,
1453 (1987).

[155] K. Bergman and H. A. Haus, Squeezing in fibers with optical pulses, Opt. Lett. 16, 663
(1991).



158 Chapter E bibliography

[156] K. Bergman, H. A. Haus, E. P. Ippen, and M. Shirasaki, Squeezing in a fiber interfer-
ometer with a gigahertz pump, Opt. Lett. 19, 290 (1994).

[157] A. Lambrecht, T. Coudreau, A. M. Steinberg, and E. Giacobino, Squeezing with cold
atoms, Europhys. Lett. 36, 93 (1996).

[158] S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, Observation of
optical soliton photon-number squeezing, Phys. Rev. lett. 77, 3775 (1996).

[159] S. Spaelter, M. Burk, U. Stroessner, M. Boehm, A. Sizmann, and G. Leuchs, Photon
number squeezing of spectrally filtered sub-picosecond optical solitons, Europhys. Lett.
38, 335 (1997).

[160] S. Spalter, M. Burk, U. Stroessner, A. Sizmann, and G. Leuchs, Propagation of quan-
tum properties of sub-picosecond solitons in a fiber, Opt. Ex. 2, 77 (1998).

[161] D. Krylov and K.Bergman, Amplitude-squeezed solitons from an asymmetric fiber inter-
ferometer, Opt. Lett. 23, 1390 (1998).

[162] D. Krylov, K.Bergman, and Yinchieh Lai, Photon-number squeezing in the normal-
dispersion regime, Opt. Lett. 24, 774 (1999).

[163] R. M. Shelby, M. D. Levenson, and P. W. Bayer, Resolved forward Brillouin scattering
in optical fibers, Phys. Rev. Lett. 54, 939 (1985).

[164] R. M. Shelby, M. D. Levenson, and P. W. Bayer, Guided acoustic-wave Brillouin scat-
tering, Phys. Rev. B 31, 5244 (1985).

[165] H. Schmidt and A. Imamoglu, Giant Kerr nonlinearities obtained by electromagnetically
induced transparency, Opt. Lett. 21, 1936 (1996).

[166] Lene Vestergaard Hau, S. E. Harris, Zachary Dutton, and Cyrus H. Behroozi, Light
speed reduction to 17 metres per second in an ultracold atomic gas, Nature 397, 594
(1999).

[167] A. Lambrecht, J. M. Courty, S. Reynaud, and E. Giacobino, Cold atoms: A new
medium for quantum optics, Appl. Phys. B 60, 129 (1995).

[168] A. M. Fox, M. Dabbicco, G. von Plessen, and J. F. Ryan, Quadrature squeezed light
generation by cross-phase modulation in semiconductors, Opt. Lett. 20, 2523 (1995).

[169] P. Tombesi and H. P. Yuen, Optical coherence and quantum optics, page 751, Plenum,
New York, iv edition, 1984.

[170] N. Imoto, H. A. Haus, and Y. Yamamoto, Quantum nondemolition measurement of the
photon number via the optical Kerr effect, Phys. Rev. A 32, 2287 (1985).

[171] B. Yurke and D. Stoler, Measurement of amplitude probability distributions for photon-
number-operator eigenstates, Phys. Rev. A 36, 1955 (1987).

[172] H. Hansen, P. Lodahl, and S. Schiller, Quantum tomography of highly nonclassical
states of the light field, 1998, Quantum optics annual report, Universität Konstanz.

[173] S. M. Tan, D. F. walls, and M. J. Collett, Nonlocality of a single photon, Phys. Rev.
Lett. 66, 252 (1991).



Chapter E bibliography 159

[174] Konrad Banaszek and Kryzysztof Wodkiewicz, Testing quantum nonlocality in phase
space, Phys. Rev. Lett. 82, 2009 (1999).


