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Abstract

In this thesis, we report the observations of optical squeezing from second harmonic gen-
eration (SHG), optical parametric oscillation (OPO) and optical parametric amplification
(OPA). Demonstrations and proposals of applications involving the squeezed light and
electro-optic control loops are presented.

In our SHG setup, we report the observation of 2.1 dB of intensity squeezing on the
second harmonic (SH) output. Investigations into the system show that the squeezing
performance of a SHG system is critically affected by the pump noise and a modular
theory of noise propagation is developed to describe and quantify this effect. Our exper-
imental data has also shown that in a low-loss SHG system, intra-cavity nondegenerate
OPO modes can simultaneously occur. This competition of nonlinear processes leads to
the optical clamping of the SH output power and in general can degrade the SH squeez-
ing. We model this competition and show that it imposes a limit to the observable SH
squeezing. Proposals for minimizing the effect of competition are presented.

In our OPO setup, we report the observation of 7.1 dB of vacuum squeezing and more
than 4 dB of intensity squeezing when the OPO is operating as a parametric amplifier. We
present the design criteria and discuss the limits to the observable squeezing from the
OPO. We attribute the large amount of squeezing obtained in our experiment to the high
escape efficiency of the OPO. The effect of phase jitter on the squeezing of the vacuum
state is modeled.

The quantum noise performance of an electro-optic feedforward control loop is in-
vestigated. With classical coherent inputs, we demonstrate that vacuum fluctuations in-
troduced at the beam splitter of the control loop can be completely cancelled by an opti-
mum amount of positive feedforward. The cancellation of vacuum fluctuations leads to
the possibility of noiseless signal amplification with the feedforward loop. Comparison
shows that the feedforward amplifier is superior or at least comparable in performance
with other noiseless amplification schemes. When combined with an injection-locked
non-planar ring Nd:YAG laser, we demonstrate that signal and power amplifications can
both be noiseless and independently variable.

Using squeezed inputs to the feedforward control loop, we demonstrate that infor-
mation carrying squeezed states can be made robust to large downstream transmission
losses via a noiseless signal amplification. We show that the combination of a squeezed
vacuum meter input and a feedforward loop is a quantum nondemolition (QND) device,
with the feedforward loop providing an additional improvement on the transfer of signal.
In general, the use of a squeezed vacuum meter input and an electro-optic feedforward
loop can provide pre- and post- enhancements to many existing QND schemes.

Finally, we proposed that the quantum teleportation of a continuous-wave optical
state can be achieved using a pair of phase and amplitude electro-optic feedforward loops
with two orthogonal quadrature squeezed inputs. The signal transfer and quantum cor-
relation of the teleported optical state are analysed. We show that a two dimensional
diagram, similar to the QND figures of merits, can be used to quantify the performance
of a teleporter.
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Chapter 1

Introduction

But certainly, for us who understand life, figures are a matter of indifference. I should have liked to begin
this story in the fashion of the fairy-tales. . .

The Little Prince, Antoine de Saint-Exupéry

1.1 Overview

Squeezing was first demonstrated by Slusher et al. via four wave mixing in an optical
cavity [1] more than a decade ago. Since then many excellent theoretical developments
and experimental demonstrations of the quantum optics of squeezed states have been
carried out by many scientists of the field. The experimental achievements in the gen-
eration of squeezing field is summarized in Figure 1.1. From the figure1 , we see that
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Figure 1.1: Historical results of squeezing experiments.

the magnitudes of the best squeezing results over a period of more than ten years have
been steadily increased. However, what is not reflected in the figure is that the increase
in the reported squeezing also comes with a corresponding increase in the stability of
the generated squeezing: From the observation of a few milliseconds of fluctuations in

1By courtesy of H.-A. Bachor from the book “A guide to experiments in quantum optics”
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light intensity lower than the standard quantum limit to the many “daylight” squeez-
ing experiments of recent years where the sub-quantum noise behaviour of light were
continuously and stably observed for many hours.

Both of these trends were brought about by advances in the many requisite technolo-
gies for a squeezing experiment: The availability of ultra-stable pump lasers (eg. Nd:YAG
non-planar ring oscillator); The improvements in quantum efficiencies of photodiode
semiconductor materials (eg. ETX-500 from Epitaxx); The invention and refinement of
new stable locking techniques for optical experiments; The discovery of new nonlinear
crystal materials (eg. PPLN) and the refinements and innovations in crystal growing,
polishing and coating techniques. However, technological breakthroughs alone does not
suffice. The design of a good quantum optics experiment also requires in-depth under-
standings of the physics of the involved nonlinear optical processes. This is one of the
themes of this thesis.

With the availability of stable sources of strongly squeezed light, applications of the
quantum state can then be successfully realized from the many proposed ideas. The ap-
plications of squeezed light proposed or demonstrated includes: The possibility of quan-
tum non-demolition measurements; The improvements in sensitivities of spectroscopic,
interferometric and anemometric measurements; and the facilitation of quantum effects
investigation in optics. The search for new applications of squeezed light form the second
theme of this thesis.

This thesis thus has two aims:

� Generations of squeezed light
The first aim of this thesis is to investigate into the possible improvements on the
methods of squeezed state generation. The system we have adopted is based on
the continuous-wave (CW) nonlinear ���� interaction processes. In this thesis, we
report on squeezing results obtained from an optical second harmonic generator
and an optical parametric oscillator (OPO). In the pursuit of larger and more sta-
ble quantum noise reductions, we were at times faced with the challenge of having
to reconcile the discrepancies between theoretical predictions and experimental ob-
servations. However, it was through these incidences that new physics and under-
standings were found. One such example is the observation of competing nonlin-
earities in monolithic second harmonic generators. Whenever necessary detailed
accounts of theoretical modeling of the experiments will be presented.

� Applications of squeezed light
The second aim of this thesis is to investigate potential applications of the squeezed
states of light. The focus of our effort in this regard is based on the use of electro-
optic control loops. The limitations and potentials of a simple electro-optic feedfor-
ward loop is investigated experimentally. Results of the noiseless amplification of
light is discussed. We also demonstrate that the combination of squeezed light and
this form of light control lends itself to the possible implementations of quantum
nondemolition measurements and quantum teleportations of optical states.

1.2 Publications

Most of the contents of this thesis have been published, or accepted for publication, in
international journals or conference proceedings. Below is a list of publications resulting
from work in this thesis:
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1. M. S. Taubman, T. C. Ralph, A. G. White, P. K. Lam, H. W. Wiseman, D. E. McClel-
land and H.-A. Bachor,
“A Reliable Source of Squeezed Light, and an Accurate Theoretical Model”,
Lasers in research & engineering: Proceedings of the 12th international congress,
Springer-Verlag (1995).

2. A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-A.
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3. A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland,
and H.-A. Bachor,
“Classical and quantum signature of competing ���� nonlinearities”,
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(1997).
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“Optical engineering with squeezed light: laser noise spectra and noiseless amplifiers”,
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“Noiseless electro-optic processing of optical signals generated with squeezed light”,
Opt. Ex. 2, 100 (1998).

9. E. H. Huntington, P. K. Lam, T. C. Ralph, D. E. McClelland, and H.-A. Bachor,
“Noiseless independent signal and power amplification”,
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“High average power Q-switched second harmonic generation with diode pumped Nd:YAG
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11. M. Bode, P. K. Lam, I. Freitag, A. Tünnermann, H.-A. Bachor, and H. Welling,
“Continuously-tunable doubly resonant optical parametric oscillator”,
Opt. Commun. 148, 117 (1998).
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12. M. Bode, I. Freitag, A. Tünnermann, H. Welling, P. K. Lam and H.-A. Bachor,
“High power operation of a continuously-tunable doubly resonant optical parametric oscil-
lator”,
OSA Trends in Optics and Photonics 19, Advanced Solid State Lasers, 136, (1998).

13. J. W. Wu, P. K. Lam, M. B. Gray and H.-A. Bachor,
“Optical homodyne tomography of information carrying laser beams”,
Opt. Ex. 3, 154 (1998).

14. T. C. Ralph and P. K. Lam,
“Teleportation with bright squeezed lights”,
Phys. Rev. Lett. 81, 5668 (1998).

15. T. C. Ralph, P. K. Lam, E. H. Huntington, B. C. Buchler, D. E. McClelland, and H.-A.
Bachor,
“Quantum electro-optic control”,
Optics & Photonics News 9, 44 (1998).

16. T. C. Ralph, E. H. Huntington, C. C. Harb, B. C. Buchler, P. K. Lam, D. E. McClelland,
and H.-A. Bachor,
“Understanding and controlling laser intensity noise”,
Optical and Quantum Electronics, Accepted for (1999).

17. P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor and J. Gao,
“Optimization and transfer of vacuum squeezing from an optical parametric oscillator”,
J. Opt. B: Quantum and Semiclassical Optics, Accepted for (1999).
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“Characterizing teleportation in optics”,
J. Opt. B: Quantum and Semiclassical Optics, Accepted for (1999).

Other published papers by the author which are not included in this thesis are:

1. P. K. Lam and C. M. Savage,
“Complete atomic population inversion using correlated sidebands”,
Phys. Rev. A 50, 3500 (1994).

2. P. K. Lam, A. J. Stevenson and J. D. Love,
“Control and suppression of power transfer in couplers by periodic index modulation”,
Electron. Lett. 31, 1233 (1995).

3. P. K. Lam, A. J. Stevenson, J. D. Love,
“Coupling suppression by periodic index modulation in single-mode couplers”,
Proceedings of the 19th Australian conferences on optical fibre technology (1995).

1.3 Thesis plan

This thesis is divided into three parts and the structure of this thesis is shown in Fig-
ure 1.2. In the first part of the thesis, we present the basic theoretical models and ex-
perimental techniques required as background knowledge for the study of CW quantum
optical system. Since there are many textbooks in the field of quantum optics, the author
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has chosen to emphasis only more relevant fragments in details. The reading of this part
can be omitted for readers who are familiar with current research work in CW quantum
optical system.

Electro-Optic Control of Light

QND Measurement

Quantum Teleportation

Conclusions

The Second Order Optical Nonlinearity

Squeezed Vacuum Generation

Squeezing in SHG

Interacting Nonlinearities

Optical Parametric Oscillator

Introduction

Experimental TechniquesTheoretical Models

Figure 1.2: Structure of the thesis

In Chap. 2, we present theoretical models used in the analysis of the experimental
results of this thesis. Although a rigorous quantum mechanical formalism is always suf-
ficient in solving quantum optics problems, we have adopted the simpler but more intu-
itive approach of the linearized formalism. The sideband picture and ball-on-stick picture
consequential to the linearized formalism is also discussed. Finally, the last section of
the chapter derives, using the linearized formalism, measurement expressions of several
photodetection schemes.

In Chap. 3, we outline experimental techniques and design criteria general to the
setup of the experiments. We proceed along the beam path of an experiment to describe
the beam manipulation, mode cleaning, nonlinear cavity design, servo control and detec-
tion of the light beam. Listings of optical components are also presented.

The second part of this thesis is concerned with the generations of squeezed states of
light and the associated findings. We report squeezing from both the upconversion and
downconversion processes of the second order ���� nonlinear interaction.

In Chap. 4, we present an overview of second order nonlinear processes. Conditions
necessary for the optimization of the ���� effect as well as the general Hamiltonian of the
���� nonlinear interaction are discussed. A simple mechanical analogy is also presented
for the explanations of some nonlinear optics phenomena.
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In Chap. 5, we examine the second harmonic amplitude squeezing of a frequency
doubler. A modular theory for noise propagation is developed to explain the influence
of pump noise in the squeezing performance of the second harmonic output.

In Chap. 6, the phenomena of interacting nonlinearities are discussed. We show that
competing nonlinearities which facilitate the occurrence of intra-cavity nondegenerate
optical parametric oscillation in frequency doublers lead to the optical clamping of the
second harmonic output power. The study of the noise behaviour shows that the output
squeezing of the system is degraded by the onset of competition.

In Chap. 7, a strongly pumped OPO is used for the study of the classical proper-
ties of parametric downconversion. The coarse and continuous frequency tuning ranges,
threshold power, output power and pump depletion percentage of the OPO is character-
ized. This chapter serves as a preliminary study for the generation of squeezed vacuum
using OPO.

In Chap. 8, an OPO with large escape efficiency is used to produce the squeezed
vacuum state. We discuss the individual limits to the squeezing of the vacuum state and
report more than 7 dB of vacuum squeezing and 4 dB of optical parametric amplifier
(OPA) amplitude squeezing from the same system.

The last part of this thesis is concerned with the applications of electro-optic feedfor-
ward control loops and squeezed light.

In Chap. 9, an introduction to classical and quantum control theory is presented. We
show that the electro-optic feedforward loop is a noiseless signal amplifier of the optical
input and explain the results in terms of the cancellation of vacuum fluctuations. When
used in conjunction with an injection-locked laser, we demonstrate that independently
variable noiseless signal and power amplification is possible. With intensity squeezed
light as input to the feedforward loop, we showed that the signal amplification can make
an optical state robust to transmission losses.

In Chap. 10, the application of the electro-optic feedforward loop is extended to quan-
tum nondemolition measurements. This is done with the injection of squeezed vacuum
into the beam splitter of the electro-optic feedforward loop.

In Chap. 11, application of the electro-optic feedforward loop is pushed to its limit.
With the use of two input squeezed sources and two feedforward loops, we show that
the quantum teleportation of a CW optical state is possible. Experimental measures are
proposed for quantifying the performance of a quantum teleporter.

Finally, Chap. 12 summarizes the main results of this thesis and present a brief outlook
for future experimental work.
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Theoretical Models and
Experimental Techniques
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Chapter 2

Models in Quantum Optics

Great mathematical ideas do not blossom in workshops, as a rule, but on the other hand the theorist should
not divorce himself from a healthy and intimate connection with practical questions.

J. L. Synge, Geometric optics: an introduction to Hamilton’s method (1937).

Overview

This chapter is concerned with the theoretical models and methods of analysis required
for the experimental work of this thesis. The method of linearization of operators in
quantum optics is presented. Two physical pictures, the sideband picture and the ball-
on-stick picture, associated with the linearization of operators are described.

2.1 Heisenberg uncertainty principle and quantum noise

Quantum mechanics is known to be probabilistic since the formulation of the statistical
interpretation by Born in 1926 [2]. This intrinsic statistical aspect of quantum mechanics
coupled with our inability to specify each and every one of the continuum of modes in
the electromagnetic field [3] give rise to “quantum noise” in optics [4].

In practice, the existence of quantum noise means that measurements of a physical
quantity even from an ensemble of identically prepared states will still not be perfectly
deterministic. The magnitude of this indeterminacy or fluctuations in measurements is
succinctly summarized by the Heisenberg uncertainty principle (HUP). The HUP states
that it is impossible to attain simultaneous precise knowledge of two noncommuting
observables. If two observables are related to each other via the commutation relation,

� ���� ���� � Æ (2.1)

then we have the following uncertainty relation

� ��� � ��� � �

	
�Æ� (2.2)

where � �� is the standard deviation of the operator, given by

� �� �
�
� ���� � � ���� (2.3)

The standard example of this uncertainty relation is that of the momentum and position
of a particle. Simultaneous determination of both quantities cannot be more precise than

9
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the given limit as explained in the gedanken experiment of the “Heisenberg microscope”
[5]. We can translate the uncertainty relation to optics via the boson commutation relation
and obtain

���� ���� � � (2.4)

������� � �

	
(2.5)

Since the annihilation and the creation operators, �� and ���, are not Hermitian and there-
fore do not correspond to any physically measurable quantity, it is more relevant to re-
express them in terms of the quadrature amplitudes

�	� � ��
 ��� (2.6)
�	� � 
���� ���� (2.7)

where �	� and �	� correspond to the amplitude and phase quadratures of the electric
field, respectively. The Heisenberg uncertainty relation now becomes

� �	�� �	�� � 	
 (2.8)

� �	� � �	� � � (2.9)

That is to say, if precise measurements were to be made on both the amplitude and phase
quadratures an electric field, the results will be indeterministic to some extent. The fluc-
tuations in both the quadrature amplitudes are referred to as the “quantum noise” of the
electromagnetic field. The limit as predicted by HUP assuming that both quadrature am-
plitudes have the same uncertainty � �	� � � �	� � �. This is known as the “standard
quantum limit”.

2.2 Squeezing of the quadrature variances

The quantum state closest in resemblance to that of a laser output state is the coherent
state ��� [6]. A coherent state can be expressed in terms of the number or Fock states as

��� � �����
���

��
���

��

�

�� (2.10)

where �� is the Fock state representing an optical field with exactly  photons but with
completely indeterminate phase. Coherent states have the following properties

����� � ���� (2.11)
������ � ��� (2.12)

Thus, coherent states are the eigenstates of the annihilation operator and can be obtained
by having a displacement operator, ���, acting on the vacuum state, where

��� � ����
������ (2.13)
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A more physical description of the coherent state can be found in the equations below

� �� �
�����������


(2.14)

��� � ���� (2.15)

�� � ��� (2.16)

� �	� 
 
 �	�� � 	� (2.17)

� �	� � � (2.18)

� �	� � � (2.19)

We note, firstly, that a coherent state has a Poissonian photon number distribution (see
Figure 2.1). The average number of photons present in a coherent state ��� is ���� and the
standard error of the photon number is the square-root of the average photon number.
We also note that the uncertainty of the amplitude quadrature and the phase quadrature
are both equal to unity. This suggests that the phase and amplitude quadrature fluctua-
tions of a coherent state are both at the standard quantum limit.
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Figure 2.1: Photon number distributions of squeezed and coherent states. (a) coherent state with
� � �, (b) squeezed state with � � � and � � � (-4.3 dB).

Squeezed states of light can be obtained from a vacuum state using the displacement
operator ���, and the squeezing operator ��� given by

��� � �	����
����������� (2.20)

where ��� is called the squeezing factor. The squeezed state of light obtained from a vacuum
state is represented by 1

��� �� � ���
������ (2.21)

1Quadrature amplitude squeezing can also be obtained by ��� ������, this is known as the two photon
coherent state [7]. The relationship between the two photon coherent state and squeezed state is given in
Walls and Milburn [8].
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and has the following properties

� �� �
�

	� �������
����� ��������	�
����

�������

�
����

�����	��

������
�

(2.22)

��� � ���� 
 ����� � (2.23)

����� � �� ���� � � �� ���� ��� 
 	 ����� � ����� � (2.24)

� �	� 
 
 �	�� � 	� (2.25)

� �	� � ��� (2.26)

� �	� � �� (2.27)

where � is assumed real and ����� are the 
 ordered Hermite polynomials. The photon
number distribution of squeezed state is no longer a simple Poissonian as shown in Fig-
ure 2.1. We note that with squeezed states, an asymmetry exist between the uncertainties
of the orthogonal quadrature amplitudes.

In spite of the simplicity and elegance of the theoretical representation of the squeezed
state presented in this section, many questions still remain. For example we have not yet
acquired any physical understanding of the meaning of the displacement operator ��

and of the squeezing operator ��. Do they correspond to any physical processes? What
kind of system (Hamiltonian) is required for the generation of the squeezed state? These
are some of the questions which the author attempts to answer in the course of the thesis.

2.3 Rigorous solution and the linearized formalism

The rigorous approaches adopted for the analysis and solution of quantum optical prob-
lems are described in many standard textbooks [4, 6, 8–10] and therefore shall not be dis-
cussed in this thesis. Instead the flowchart of one such approach is presented in Fig-
ure 2.2. Although the techniques of Fokker-Planck equation and quantum Langevin
equation are very powerful, they normally do not provide an analytic solution nor a
physically intuitive understanding. Most of the physics, unfortunately, is lost in the
mathematics.

However, in situations where the quantum noise or fluctuations are small relative to
the steady state optical amplitude, there is a much simpler method to a solution involv-
ing the linearization of operators. This method was first used in the context of quantum
optics by Yurke [11] and Reynaud et al. [12]. As a consequence of this linearized formal-
ism, we are able to use two complementary pictures: The quantum sideband picture and
the ball-on-stick picture to aid our visualization of situations in quantum optics. These
models will be presented in subsequent sections.

2.3.1 Linearization of the annihilation operator

When the steady state electromagnetic field has amplitude much larger than its fluctua-
tions, we can write the annihilation operator of the given field as,

����� 	 �
 Æ����� (2.28)

where � is a c-number representing the classical steady state component and Æ����� is
the time-varying fluctuations of the annihilation operator. By writing the annihilation
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Hamiltonian of the system

Von Neumann equation for density operator

Master equation (reduced density operator)

Quasi-probability density P

Fokker-Planck equation

Ito stochastic differential equation

Steady state solution

Linearized Ito stochastic differential equation

Squeezing spectrum of external field

Born-Markov approximation

c-number representation

2nd order truncation

Transform

Set time derivative to zero

Linearize about the steady state

Construct drift and diffusion matrix

Figure 2.2: Flow chart for modeling quantum optical systems

operator in the given form, it is assumed that

�Æ������ � � (2.29)

�Æ������ 
 ��� (2.30)

That is, on average the fluctuation term Æ�� has no net contribution to the field ampli-
tude and the fluctuations are perfectly centred at zero. The second condition states that
the fluctuations is much smaller than the classical steady state component of the field.
This allows us to make a first order approximation on an expression by neglecting higher
order product terms of the quantum fluctuations Æ�. Because of the first order approx-
imation of this operator, we find that the commutation relations are no longer of any
consequence. We are thus left with a completely semi-classical c-number expression of a
physical quantity.

As an example, let us apply the linearization procedure to the intensity (number)
operator of an electromagnetic field. We find

� � �����������

� ��� 
 Æ���������
 Æ������

� ���� 
 � Æ������ 
 ��Æ����� 
 Æ������Æ����� (2.31)
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Assuming that � is real, the first order approximation gives,

� 	 ���� 
 � Æ �	�
� (2.32)

where Æ������Æ����� is neglected and Æ �	�
� is the amplitude quadrature fluctuations of field

�.
Throughout this thesis, we will use the described procedure of operator linearization

for the modeling of experimental work. Because of its simplicity, we find that in most
situations, analytic solutions in the form of transfer functions can be obtained. Thus
giving more insights to the physics.

2.3.2 The quantum sideband picture
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Figure 2.3: Quantum and classical sideband correspondence. Left: Conceptual schematic of the
quantum-classical correspondence. Because of the canonical quantization of the electromagnetic
field, most classical quantities have a quantum mechanical counterpart. Fourier transform can
be performed to these quantities. In the Fourier domain, we find that the positive and negative
classical sidebands of the electromagnetic field corresponds to the annihilation and creation oper-
ators, respectively. Right: Sideband diagram for an electromagnetic field. � represents a particular
detection frequency; Æ� and Æ�� are the upper and lower sidebands of a classical field; Æ�� and Æ���

are the annihilation and creation operators of the quantum field.

The linearization of quantum mechanical operators described in the previous section
enables the explanation of quantum optical problems with a direct analogue to situations
in classical electromagnetics. We can therefore take advantage of this analogy and use
the sideband picture of the electromagnetic field for visualizing quantum noise.

Figure 2.3 shows the conceptual schematic of the quantum sideband picture. Dis-
cussions of the correspondence between quantum mechanical operators and c-numbers
in classical mechanics are available in many standard textbooks [8, 10]. Except for the
quantum phase operator [8], most of the classical quantities have a unique quantum me-
chanical counterpart. The main difference between them are that in quantum mechanics,
these physical quantities are operators and their orderings are important.

These correspondences are commonly made in the time domain, for example the
quantum mechanical electric field vector is

������ � 

�
�

�
����

	��

�	��
��������

�	
� � � ������
��	
��� (2.33)
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� ��� ��������� (2.34)

where � is the continuum of modes containing frequency and polarization information;
�� is the Planck constant; �� is the permittivity of free space; and �� is the optical angular
frequency of the field. The classical and quantum correspondences are

������ � ����� (2.35)
�	�
� ��� � 	�

� ��� (2.36)
�	�
� ��� � 	�

� ��� (2.37)

������ � ����� (2.38)

������� � ������ (2.39)

We note that unlike the amplitude quadrature and phase quadrature operators the clas-
sical counterparts for the annihilation and creation operators, ����� and ������, do not cor-
responds to any familiar physical quantities. However, their meanings will become more
apparent in the Fourier domain.

The Fourier transform of the electric field is given by

������ �
	

�������	
��� (2.40)

In the Fourier domain, we find that the time domain correspondences are still preserved.

������� � ������ (2.41)
��	
�

� ��� � �	�
� ��� (2.42)

��	
�

� ��� � �	�
� ��� (2.43)

������� � ������ (2.44)
���
�
���� � ������� (2.45)

Furthermore ������ and ������� now have the meaning of being the upper and lower side-
bands of the electric field. The Fourier transformations thus reveal that the annihilation
and creation operators in quantum mechanics, are analogous to the upper and lower
sidebands of a classical electromagnetic field

Æ���� � Æ����� (2.46)

Æ����� � Æ������ (2.47)

as depicted by Figure 2.3.
With these correspondences established, we can now explain quantum noise and

squeezing in terms of sidebands2. Classically, any form of modulation on an electric
field can be decomposed into amplitude and phase modulation. An amplitude modula-
tion has its upper and lower sidebands correlated with each other all the time. To first
order, a phase modulation has a pair of sidebands (proportional to the first order Bessel

2Unless necessary to avoid confusion, all operators will not have explicit operator symbols from this
point onwards in the thesis.
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Figure 2.4: Sideband pictures of amplitude, phase modulations and quantum noise.

function �	) which are anti-correlated with respect to each other. We can think of the
quantum noise as a continuum of sidebands spanning all frequencies. These sidebands
are uncorrelated with each other and on average, have a field strength equivalent to the
square root of half a quantum,

�
����	 (see Figure 2.4).

Linear processes such as absorption, optical mixing and resonator transmission, may
affect the carrier and the sideband fields differently. However, they do not introduce any
form of inter-sideband correlation. For example, in linear absorption all sidebands as
well as the carrier field vectors experience the same amount of attenuation.

Nonlinear processes, on the other hand, differ in that they are capable of introducing
correlations between the sidebands. For example, degenerate four-wave mixing corre-
lates the �� sidebands so that their field vectors are parallel to each other and the carrier.
The equal likelihoods of quantum fluctuations in any given quadrature therefore prefer-
entially become amplitude modulation, thus causing a reduction in phase fluctuations.
The squeezing of an electric field can therefore be thought of as the establishment of some
form of correlation between this randomly fluctuating lower and upper sideband pairs.
We have thus converted the quantum fluctuations into amplitude modulation for a phase
squeezed field and vice versa.

2.3.3 The ball-on-stick picture

A common pictorial representation of quantum noise in many textbooks is the ball-on-
stick picture of the electromagnetic field. In spite of its common usage in many situations,
there is no formal definition to this pictorial representation. A common understanding
is that this pictorial representation is an extension of the familiar phasor diagram of an
electro-magnetic field in classical physics. The subtle difference is that the “ball” rep-
resents noise that is classical as well as quantum mechanical in origin. Because of this
difference, we can regard the ball as a representation of a particular contour height (say
��	 or 1/2 of the full height) of a quasi-probability distribution function like the Q- or the
Wigner function of a light state as shown in Figure 2.5. The “stick” length on the other
hand is simply the classical steady state amplitude of the field. Hence the ball-on-stick
picture is actually a superimposed picture of two separate representations: A contour
circle of the quantum mechanical quasi-probability at a detection frequency � and a clas-
sical steady state field phasor.

Figure 2.6 depicts several useful examples of explanations for the squeezing of a co-
herent state via nonlinear optical processes. In Figure 2.6(a), we have a fundamental
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Figure 2.5: Correspondence between Wigner representation and the ball-on-stick representation

mode coherent input state with a certain optical field amplitude denoted by the stick
length of the grey circle. This input minimum uncertainty state is subjected to a second
order nonlinearity for the purpose of second harmonic generation. When the field am-
plitude of the fundamental mode fluctuates toward a larger value, the second harmonic
generation will be more efficient and the fundamental mode will experience a bigger loss
(55%, say). On the other hand, a fluctuation of field amplitude toward a smaller value
will result in a less efficient second harmonic generation (smaller loss, say 45%). The
net effect of this is a shrinking ball width along the length of the stick due to the inten-
sity dependent loss nature of the process. However, since the initial state is a minimum
uncertainty state, HUP requires that the orthogonal direction to the stick, be stretched
by a corresponding amount to preserve the uncertainty product relation. The output of
the fundamental field after second harmonic generation is thus represented by the black
ellipse. This explains the output fundamental mode squeezing of a second harmonic
generator.

Similarly Figure 2.6(b) shows that the intensity dependent phase shift from a ���� Kerr
medium can be squeezed at certain quadrature amplitude. In Figure 2.6(c) the vacuum
fluctuations entering an optical parametric oscillator (OPO) is shown to be squeezed due
to the phase dependence amplification or de-amplification by the parametric process.
Finally in Figure 2.6(d) a coherent input to an optical parametric amplifier (OPA) is shown
to be able to produce different quadrature squeezing depending on the relative phase of
the coherent input field to the second harmonic pump field of the amplifier. In both
Figure 2.6(c) and (d) we note that the effect of the parametric downconversion is similar
to the existence of a stretching force along the 	� axis and a compressing force along the
	� axis.
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Figure 2.6: Explanations of squeezed state generations using ball-on-stick pictures. Grey circles
denote input coherent and vacuum states and black ellipses represent squeezed output states.
(a) Squeezing of the fundamental mode via second harmonic generation; (b) Kerr squeezing;
(c) Vacuum squeezing via optical parametric oscillation; (d) Quadrature squeezing via optical
parametric amplification.

2.4 Theory of the measurement processes

In this section, we use the linearized formalism to derive analytic expression for the basic
measurement schemes used in this thesis.

2.4.1 Direct detection

One of the simplest continuous-wave (CW) optical measurements is the direct detection
using a semiconductor photodiode. The photocurrent of the direct detection is propor-
tional to the number of photons in the optical field,

��� � ��������� (2.48)

by linearizing the annihilation and creation operator and by the first order approximation
of the quantum fluctuations, we find


���  ���� 
 � �Æ����� 
 Æ�����



�2.4 Theory of the measurement processes 19

a
η

c

d

+
- i±

b

v1

v2

a

v1

b

ε
a

+
-

c

d

i±
(a) (b)

(c)

ε
as, ap

+
-

c

d

i±

bs, bp

λ/2

(d)

b

Figure 2.7: Schematics of a homodyning detection systems. (a) Mixing of two optical fields via
a beam splitter. The detected photocurrents are added and subtracted with each other. (b) A
model for inefficient detection. (c) Spatial mode mismatch: The mixing of the two input fields
only occurs for the centre of the 3 arrows arriving at the final detectors. Part of the field � and �

are left unmixed due to their spatial separation. (d) Polarization mismatch: The input signal � is
polarization shifted by a half-wave plate, causing a lack of mixing with field �.

� ���� 
 � Æ	�
� ��� (2.49)

We note that this expression contains a DC term (first term) which is proportional to the
optical intensity as well as a fluctuation term of the amplitude quadrature (second term)
that is proportionally scaled by the DC field amplitude. We can re-write this expression
in Fourier representation using the Fourier transformed linearization equation of ���� 	
� Æ��� 
 Æ����, where Æ��� is a delta function centred at 0. This gives

��� � ��������� (2.50)

	 ����Æ��� 
 � Æ	�
� ��� (2.51)

For quantum optics experiments, the analysis of the DC term is normally measured using
a digital multimeter or an oscilloscope (CRO) and the radio-frequency (RF) spectrum is
separately analyzed by the use of a spectrum analyser.
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2.4.2 Self-homodyning

Figure 2.7(a) shows the general measurement scheme via optical mixing. A signal field �

is injected into one of the input ports of the beam splitter. When the other input port is
unused, the setup is known as self-homodyning. The output fields of the beam splitter are
given by

� �
�
�� � �
 


�
� Æ� (2.52)

� � 

�
� �


�
�� � Æ� (2.53)

where � is the reflectivity of the beam splitter and Æ� is the vacuum field fluctuations
entering the unused input port. We note that the reflection of an optical field experiences
a ��Æ phase shift. The addition of the two input fields shown in Eqs. (2.52) and (2.53) are
only valid with the following assumptions. Firstly, the two input fields must be of the
same optical frequency (optical mode) and be coherently related to each other. Moreover,
the inputs must occupy the same spatial extension (spatial mode). Finally, the inputs
must be of the same polarization (polarization mode). Partial fulfilment of any of these
conditions will lead to a decrease in detection efficiency as will be discussed in the last
part of this section.

It is more convenient to express the two output fields of the beam splitter using
only real numbers. This simplification can be done by making the substitutions of
Æ� � Æ� �����
 �	� and �� � ����

 �	� into Eqs. (2.52) and (2.53) giving

� �
�
�� � �


�
� Æ� (2.54)

� �
�
� � ���� � Æ� (2.55)

If we assume that the beam splitter has a 50% reflectivity and � � �!�, the setup is called
balanced self-homodyning. Linearization of the measured photocurrents gives

��� 	 �

	



���� 
 � �Æ	�

� 
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where we have assumed that the vacuum input has no coherent field amplitude. This
leads us to the following conclusions. When the photocurrents of the detectors are added
together, we retrieve back completely the same direct detection statistics of the input
signal field �,


�  ���
 ��� (2.58)

 ���� 
 � Æ	�
� (2.59)

When the photocurrents are subtracted, we notice that the left over terms are that of the
vacuum fluctuations scaled by the signal field amplitude.


�  ���� ��� (2.60)

 � Æ	�
 (2.61)

This means that in a balanced self-homodyne system, the sum and difference photocur-
rents can provide a calibration of the signal beam relative to the quantum noise limit of
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the input vacuum fluctuations. Balanced self-homodyning is hence useful for the mea-
surement of amplitude quadrature squeezed light.

2.4.3 Homodyning with a local oscillator

Another interesting measurement scheme via optical mixing is when the second input
field ", of Figure 2.7(a), is an intense optical field much stronger than that of the signal.
This scheme is known as the standard homodyne measurement and we refer to the input
state " as the optical local oscillator (LO). Again using the linearized formalism, we obtain
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 (2.62)
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where $ denotes the relative phase difference between the coherently related LO and
signal field and " 	 # 
 Æ". We now instead assume that the coherent magnitude of the
signal field is weak relative to the LO, ��� 
 �#�, and neglect all terms without the strong
LO coherent amplitude �#�, the first order approximation yields

��� 	 �

	

�
�#�� 
 	�# ��� $ 
 #�Æ	�������

� 
 Æ	�
� �


(2.65)

��� 	 �

	

�
�#�� � 	�# ��� $ 
 #�Æ	�

� � Æ	�������
� �


(2.66)

Where Æ	�
� � Æ���	� 
 Æ���	� is the general quadrature amplitude of field �. The addi-

tional  �	 phase shift arises from the phase substitutions made earlier in this section. The
sum and difference photocurrents are


�  �#�� 
 # Æ	�
� (2.67)


�  	�# ��� $ 
 # Æ	�������
� (2.68)

That is the sum photocurrent is to first order approximately that of the direct detection of
the LO field. Because of the large coherent amplitude of the LO field, we are now able to
make amplitude quadrature measurements of the input signal field from 0 to 360 degrees
continuously by the scanning of the relative phase angle between the two fields. This
continuous measurement of the signal quadrature amplitude is given by the difference
photocurrent. The standard homodyning is hence a useful measurement in situation
where the maximum squeezing quadrature is not the amplitude quadrature.

2.4.4 Inefficient measurements

The quantum efficiency of a photodetector, %��
, can be modeled as shown in Figure 2.7(b)
where a beam splitter with transmittivity of %��
 is placed in front of an ideal detector with
unity efficiency. This suggests that any loss or inefficiency experienced by a measurement
scheme is similar to the interference of the signal field with an uncorrelated vacuum field.
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An inefficient photodetector thus measures,

"�" � �
�
%��
 �

� 

�
�� %��
 Æ�

���
�
%��
 �


�
�� %��
 Æ�� (2.69)

	 %��
����� 
 � Æ	�
� � 


�
%��
��� %��
� � Æ	�

 (2.70)

This analysis can then be extended to inefficient homodyne systems.

2.4.5 Mode mismatch in homodyne measurements

When the two input optical fields to the beam splitter of a homodyne system are not
perfectly mode matched, inefficiency in the homodyne measurement results. The mode
mismatch of the fields can have several causes. Nonidentical polarization or partial non-
polarization, difference in spatial modes, lack of optical coherence, all have the same
detrimental effect to the homodyning. The schematic models of spatial mode mismatch
and polarization mismatch are as shown in the Figure 2.7(c) and (d), respectively.

Since all the mentioned causes have a similar effect in the homodyne measurement,
we shall only provide the analysis of polarization mismatch as shown in Figure 2.7 (d).
An input signal � is homodyned with a LO "which has a slightly different polarization to
that of the input field. Since orthogonally polarized fields do not interfere with each other,
we need to decompose the LO state into the polarization of interest and its orthogonal
state [13]
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% "


�
�� % Æ�� (2.71)

"� �
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�� � � (2.73)

�� � Æ�� (2.74)

where " is expressed as two components and �� % represents the fraction of polarization
mismatch. Æ�� represents the orthogonally polarized input vacuum from the input port
of ". Supposed that the input state of interest is &-polarized. The input '-polarization
state is again simply a vacuum field Æ��. The beam splitter output state is then given by
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where we now need to consider both polarizations explicitly. Since the detection of the
light field using a photodetector is independent of polarization, the respective registered
photocurrents on the detectors are given by the sum of both polarizations
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where we have again made the first order approximation by neglecting the second order
terms, like Æ�	Æ�� , of the vacua. The second terms of Eqs. (2.77) and (2.78) are due to
interference of the bright fields. We note that a variation of the relative phase between
the LO with the input signal field will produce a fluctuation in intensity proportional to�
%. Hence the visibility of the interference is given by
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The difference photocurrent of the homodyning is given by
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Again linearization and first order approximation of both the LO and signal field gives
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A comparison of this expression with that of the ideal homodyning (Eq. (2.68)) suggests
that the field efficiency of the setup is decreased by a factor

�
% which when translated to

noise variance measurement, ) �Æ	�
�� � ��	�

��
� � ��Æ	�

��
��, has an efficiency of %. We

thus conclude that the homodyne efficiency of the system is given by

%�� � % � ������ (2.84)

Which means that the homodyne efficiency is dependent on the square of the interference
visibility of the setup. This result is important in the detection of squeezed vacuum in
Chap. 8.
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Chapter 3

Experimental Techniques

In theory, there is no difference between theory and practice. But in practice, there is.

Anon

Overview

This chapter contains descriptions of the apparatus and techniques used in the experi-
ments of this thesis. We discuss some generic design and equipment specifications re-
quired in quantum optics experiments. The first section starts with the laser source used.
We then proceed along the beam path of the experiment to describe the beam manipula-
tion, mode cleaning, nonlinear interaction, servo-control, and detection of the light beam.
The final section ends with a description of the retrieval of experimental data.

3.1 The lasers

The lasers used in the work of this thesis are based on the diode pumped nonplanar
ring oscillator (NPRO) Nd:YAG technology. This type of lasers was chosen because of its
high beam quality (diffraction limited Gaussian) and its relatively low noise single-mode
output [14, 15]. Semiconductor diode lasers are used as pump sources at the wavelength
of 808 nm to the Nd:YAG crystal which lases via a 4-level transition giving 1064 nm light.
A brief discussion of the NPRO laser geometry is given in Appendix F. The Nd:YAG
laser crystal is sandwiched between a peltier element and a piezo-electric actuator. This
assembly is then placed in a strong magnetic field which when combined with the NPRO
geometry provides the Faraday effect necessary for single-mode operation [14].

Slow tuning of the laser frequency is achieved via control of the peltier temperature.
Heating and cooling of the crystal changes the optical path length of the laser light and
thus shifts the resonance frequency of the laser. With temperature control, tuning of
many FSR of the laser cavity is easily achieved. However, the time constant of the tem-
perature control is very large and can only be used to track the slow drifting (�10’s of
Hz) of the laser frequency. In addition, the heating of the Nd:YAG crystal can reduce the
efficiency of the laser because the atomic levels population of the lasing medium is gov-
erned by the Maxwell-Boltzmann distribution. The operating temperature range of the
laser is therefore restricted from � ÆC and !�ÆC to avoid condensation and overheating,
respectively.

Fast tuning of the laser can be achieved via supplying a voltage across the piezo-
electric actuator. The mechanical stress experienced by the crystal has the same effect of

25
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slightly changing the optical cavity pathlength through a change in the crystal refractive
index. However, this method normally only allows for small tuning ranges. Typically,
the laser FSR are of the order of GHz and the fast tuning range achievable is only a small
fraction of the FSR (� 100’s MHz). The locking bandwidth achieved via fast tuning, how-
ever, is better than temperature tuning at around 50 kHz. When a laser is used to lock to
some external optical cavity as in Chap. 5, both tuning methods are used simultaneously
to ensure good locking stability. Circuit diagrams of the laser controller is presented in
Appendix E.

In this thesis, three NPRO Nd:YAG lasers were used in the experiments. The
Lightwave-122 from Lightwave Inc. is used in the second harmonic generation and
squeezing work. It has a maximum output power of around 200 mW and has a built-
in noise-eater for the suppression of the laser resonant relaxation oscillation. Two lasers,
Mephisto 350 and Mephisto 700, both from Laser Zentrum Hannover / InnoLight Inc.
were used in most of the other experiments of this thesis. As stated by the model num-
bers, they have maximum output powers of 350 mW and 700 mW, respectively. The
Mephisto 350, is specially designed with an optical input port and thus can be used as a
slave laser in the injection locking setup used in Chap. 9. The Mephisto 700 is pumped
by two separately controlled diode laser arrays, hence has a higher output power which
is ideal for the simultaneous pumping of a SHG and the seeding an OPA. Further discus-
sions on the NPRO laser and laser development work on a Q-switched laser is presented
in Appendix F.

3.2 Propagation of light beams

Losses in optical elements are important considerations in quantum optics experiments.
In the parts of the experiment before the nonlinear interaction, loss of the pump beam
will result in a reduction of the available power for the ensuing frequency conversion
process. This is particularly critical to some of the nonlinear interaction processes which
require pump power higher than a given threshold, eg. the OPO. Because of the fragility
of the quantum states of light, extreme care also has to be taken in the manipulation of the
light beam after the nonlinear interaction process. Any loss of the output beam will result
in a reduction in the observable quantum effect, eg. the amplitude quadrature squeezing
of the light beam. Consequently, most of the components used in the experiments have
to first satisfy a stringent low-loss requirement. A listings of the optical component used
is shown in Table 3.1.

The steering of light beams in the experiment is done via dielectric mirrors specifically
coated for high reflectance at the wavelength of interest. Typically, most of the deflector
mirrors chosen have * � ��" when used at angles between 90Æ and 45Æ. These deflector
mirrors are used on various high performance 2-axis mounts from Newport, Newfocus,
Thorlabs and Lees. The precise alignment of the optical beam into a nonlinear optical
cavity is achieved with the construction of a “Z-bend” by a pair of deflectors. In our
experiment, these two deflectors were mounted on a home built common platform which
provided 4-degrees (�� +� $� and $�) of uncoupled alignment.

3.2.1 Mode-matching

Once the alignment of the optical beam into a cavity is completed, the job is only half done
since the size and shape of the beam must also be considered. A good mode matching of
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Part Wavelength Manufacturer Model Comments
Description [nm] number

Dielectric deflector 1064 nm Newfocus 5104 � � ��� @ �� ��
Æ

mirror 1” round
Dielectric deflector 1064 nm Rimkevicius NA � � ��� @ �� ��

Æ

mirror 1” square
Dielectric deflector 1064 nm Rimkevicius NA � � ��� @ �� ��

Æ

mirror 1” square
Lenses 1064 nm Newport KPXxxxAR.18 AR coat � � ���%

Lenses 532 nm Newport KPXxxxAR.14 AR coat � � ���%

Nonpolarizing 1064 nm Newport 05BC16NP.9 50/50� 2%
beam splitter 1/2” cube

Nonpolarizing 1064 nm CVI BS1-1064-50-1025-45S 50/50 angle tune
beam splitter 1”round

Nonpolarizing 532 nm Newport 05BC16NP.3 50/50� 2%
beam splitter 10mm cube

Nonpolarizing 532 nm CVI BS1-532-50-1025-45S 50/50 angle tune
beam splitter 1”round
��	 plate 1064 nm Newport 10RP02-34 loss � ��	�

�
�� order 1” round
��	 plate 1064 nm Rimkevicius NA loss � ����
��� order 1” round
��	 plate 532 nm Newport 10RP02-16 loss � ��	�

�
�� order 1” round
��	 plate 532 nm Rimkevicius NA loss � ����

�
�� order 1” round
��� plate 1064 nm Newport 10RP04-34 loss � ��	�

�
�� order 1” round
��� plate 1064 nm Rimkevicius NA loss � ����

�
�� order 1” round
��� plate 532 nm Newport 10RP04-16 loss � ��	�
��� order 1” round
��� plate 532 nm Rimkevicius NA loss � ����

�
�� order 1” round

Polarizing 1064 nm Newport 05BC16PC.9 1000:1 extinction
beam splitter 1/2” cube

Polarizing 532 nm Newport 05BC16PC.3 1000:1 extinction
beam splitter 10mm cube
Supermirror 1064 nm Newport 10CV00SR.50T � � �����%

(high transmission) 1” round
Supermirror 1064 nm REO Special user defined �

1” round
Long wave pass 	 
 1064 nm Melles Griot 03BDL001 loss � ��	�

dichroic filter � 
 532 nm 1” round
Short wave pass 	 
 1064 nm CVI BSR-15-1025 loss � ��	�

dichroic filter � 
 532 nm 1” round
Short wave pass 	 
 1064 nm CVI SWP-45-RS1064- loss � ��	�

dichroic filter � 
 532 nm TP532-PW-1025 1” round
Neutral density All Melles Griot 03FSG013 1”: OD = 0.04,0.1,

filters 0.3,0.5,1.0,2.0,3.0.

Table 3.1: Optics list
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L1 L2 L3 NL
Cavity

Input

Figure 3.1: Precise mode matching of a Gaussian beam via telescopic lens arrangement. �� is
used to achieve the desired beam waist. The �� and �� combination is used to translate the
desired beam waist to the location of the nonlinear optical cavity.

a Gaussian beam into the cavity can increase the efficiency of the nonlinear interaction.
This is because any unmatched part of an incident beam is simply reflected at the front
surface of the cavity and does not take part in the nonlinear optical interaction. More-
over, because nonlinear optical processes are dependent on the optical intensity, the beam
waist of the cavity is normally designed to be very narrow (of the order of 10 ,m) for the
strong focusing of optical field. The mode matching of a freely propagating Gaussian
beam into nonlinear optical cavity thus requires high mechanical precision.

Figure 3.1 shows the use of a telescopic lens arrangement to achieve the approximate
de-coupling of the waist size and waist position of a Gaussian beam. A lens #	 is ini-
tially used to form the desired beam waist a distance away from the optical cavity. Any
adjustment of the position of the lens always results in a simultaneously change of the
waist size and the waist position. By using a combination of two lenses, #� and #� of the
same focal length, we can de-couple the waist parameters. We first collimate the beam by
placing lens #� a focal length away from the beam waist and then use #� to re-focus the
beam back to its original waist size. Since the beam after #� is collimated, the position of
#� is uncritical to the waist size of the final beam. Thus, by moving only lens #�, we can
adjust the position of the final beam waist without changing its size. The size of the waist
can then be separately adjusted by moving both #	 and #�.

Obviously, the mode matching of an optical beam is an iterative process. The de-
coupling of the waist size and position only simplifies the mode-matching procedure.
The best mode-matching achieved using this technique was around 98%. We believe that
the remaining 2% is due to the astigmatism of the input Gaussian beam from the source
laser which can be compensated with the use of cylindrical lenses or anamorphic prisms.

3.2.2 Polarization optics and dichroics

As far as possible, zeroth order half-wave and quarter-wave plates are used in our experi-
ments to ensure high beam quality. The polarization optics are used for several purposes.
At the output of the laser, we used a combination of half-wave and quarter-wave plate to
compensate the ellipticity in polarization of the NPRO output. A half-wave plate is also
used in conjunction with a Faraday rotator to form a Faraday isolator which is essential
in preventing optical feedback to the laser. When used in combination with a polarizing
beam splitter, a half-wave plate can provide continuous variation of its transmitted and
reflected beam power.

Dichroic mirrors or harmonically coated mirrors are used in our experiments to sep-
arate the fundamental from the second harmonic light. Table 3.1 shows the three dif-
ferent dichroics used. In general, the reflection of a beam from the dichroic experiences
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less loss compare to the transmission and the reflection of s-polarized light is also more
efficient than the p-polarized light. Hence, the dichroic mirrors used in the second har-
monic generation experiment, where the optical mode of interest is the second harmonic
output, has high reflectivity for the s-polarized 532 nm light but high transmittivity for
the p-polarized 1064 nm light. Conversely, in the OPO experiment high reflectivity for
s-polarized 1064 nm is used, since the optical mode of interest is the low intensity or
vacuum sub-harmonic output.

3.3 Mode Cleaners

Mode cleaners play important roles in most quantum optics experiments and measure-
ments. In this section, we discuss the two different types of mode cleaners: Intensity
noise cleaner and spatial mode cleaner. Both types of mode cleaners used are empty op-
tical resonators either in a Fabry-Perot or ring configuration. However, there are subtle
differences in their design criteria.

3.3.1 Intensity noise cleaner

An intensity noise cleaner is a device which is used for the filtering of high frequency
intensity noise from a light source1. When light is incident on a locked optical cavity,
intensity noise with frequencies higher than the cavity linewidth is reflected off the cavity
while noise with frequency lower than the cavity linewidth is transmitted through. Thus
an optical resonator can be thought of as a high-pass filter (optical capacitance) for the
reflected light and a low pass filter (optical inductance) for the transmitted.

Suppose we have constructed a Fabry-Perot cavity using mirrors with reflectivities
*	 and *�, and the cavity round trip pathlength and power loss is ' and -, we can define
the following parameters as given in [16]
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where .�
 and � are the loss parameter and the cavity round trip time; � and $�% are the
finesse and free spectral range; /
�
 and $&'( are the total decay rate and the linewidth
of the cavity; and  is the refractive index of the cavity spacer. Our aim of filtering as
much high frequency intensity noise as possible from the transmitted beam without ex-

1Even though feedback control to the laser source (noise eater) can to some extent reduce the resonant
relaxation oscillation as well as technical noise of a laser, this method does not produce quantum noise
limited results. For a 50/50 beam splitter feedback system, the best performance of a laser noise eater is a
noise suppression to 3 dB above the standard quantum limit from a noisy input. Since the generation of
squeezed light relies on a quantum noise limited source, feedback control is, in general, inadequate.
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Mode Cleaner No. 1 No. 2 No. 3 No. 4
Type Intensity Both Both Both

Geometry Ring Linear Linear Ring
Path length 2.45m 160mm 170mm 400mm

Mirror �� 
 �� 
 ��% �� 
 �� 
 �����% �� 
 �����% �� 
 �����%
Parameters �� 
 ����% 
� 
 
� 
 	���ppm 
� 
 ����ppm 	� 
 ���% for �-pol

	� 
 	� 
 ���ppm 	� 
 �����% 	� 
 ��ppm for �-pol
�� 
 �����% AR @ 1064� ����

� 
 	���ppm
	� 
 ������%

Finesse 138 14,000 5000 4000 s-pol
400 p-pol

FSR 122 MHz 940 MHz 880 MHz 750 MHz
FWHM 800 kHz 70 KHz 176 kHz 180 kHz s-pol

1.8 MHz p-pol
Powers ��� � ��% ��	
� 
 �% ��	
� � �� % 80% s-pol

��� 
 � % 95% p-pol

Table 3.2: Mode cleaners

periencing significant reduction in the transmitted optical intensity translate into the fol-
lowing two requirements on the mode cleaners:

� Narrow cavity linewidth
Obviously, narrower linewidth is a desirable characteristic, since this leads to an
extended filtering range (larger optical inductance). Narrow cavity linewidth can
be achieved either by increasing the cavity length or by increasing the cavity finesse
(increasing *	� *� and reducing -). A length increase obviously is at the expense
of mechanical stability. However, this may be necessary in situations where high
reflectivity mirrors are not available. Furthermore, an increase in the cavity finesse
increases the intra-cavity power which may sometimes exceed the damage thresh-
old of the mirror coating [17].

� High impedance matching
The reflected, circulating and transmitted power of an optical cavity locked on res-
onance are given by [16]

���� �
�
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We note that improvement in the transmission can be achieved when we have
���� � � assuming a fixed amount of loss present. This corresponds to the
impedance matching condition of

�
*	 � ���-�

�
*� (3.9)
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3.3.2 Spatial mode cleaner

The purpose of the spatial mode cleaner in quantum optics experiments is to produce
a spatially clean beam that has a Gaussian profile with diffraction limited beam quality.
In Chap. 2 we have already seen that nonideal homodyning due to mode mismatch can
degrade the efficiency of the homodyne measurement. The use of a spatial mode cleaner
before the homodyning of optical beams can therefore improve the homodyne efficiency.
Both narrow linewidth and high-impedance matching are still necessary for the construc-
tion of a good spatial mode cleaner. In addition, we also need to consider the eigenmode
degeneracy of the optical cavity.

The difference in resonance frequencies of the 0
 order to the �0
 ��
 order eigen-
mode for a symmetric cavity with mirror radius * is given by

Æ1 �
�

 

�

'
�)������� '

	*
� (3.10)

where Æ1 is the resonance frequency difference, ' is the cavity perimeter and � is the speed
of light. We note that for a confocal cavity ' � 	*. This leads to Æ1 � ��	' � $�%�	.
That is, all of the odd order confocal modes is degenerate at half of the FSR and all of
the even order confocal modes is degenerate with the fundamental *+(�� spatial mode.
When situation like this arises, the locking of a cavity at the fundamental resonance does
not guarantee any rejection of the even order modes, since they are themselves resonant
with the optical cavity. Thus, a good spatial mode cleaner requires

Æ1 �� �

&
$�% (3.11)

for all small integer numbers of � and &. This is the condition which guarantees the
nondegeneracy of high order spatial modes.

For the experiments of this thesis, four mode cleaners have been constructed. Table 3.2
shows their respective cavity parameters. The first intensity noise cleaner (No. 1) is used
for the experiments on squeezed state generation via frequency doubling. Mode cleaners
No. 2 and No. 3 are the second generation of mode cleaners which have significantly
higher finesses and can be used as both spatial mode as well as intensity noise cleaners.
In the experiments of squeezed vacuum generation, mode cleaner No. 3 is mainly used.
The maximum incident power on mode cleaner No. 2 and No. 3 is 10 mW. Finally, mode
cleaner No. 4 is based on a compact ring configuration similar to that described in [18].
This third generation of mode cleaner can also serve as both intensity noise and spatial
mode cleaner. Furthermore, it has an extremely high damage threshold due to the special
dielectric coating from Research Electro-Optics Inc. As much as 1 W of incident power
can be incident on this cavity without any observable damage. Since the mode cleaner is
in a ring cavity configuration, a change in the polarization state of the incident light can
change the cavity finesse from 4000 to 400 due to the differences in mirror reflectivities.

3.4 The nonlinear medium

Bulk (,- . #�/0-� was chosen as the nonlinear medium for the study of second har-
monic generation and optical parametric oscillation. The reason is its relatively high non-
linearity and its compatibility with the Nd:YAG laser wavelength. The Magnesium oxide
doping was introduced into bulk Lithium Niobate for the prevention of photorefractive
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damage. This doping sometimes introduces inhomogeneities and scattering to the non-
linear medium but the problems have been significantly reduced by improvements on
the crystal growing and doping techniques. There are many other alternative nonlinear
media, for example KTP is a commonly used ���� nonlinear medium. However, for the
frequency doubling and degenerate parametric downconversion with Nd:YAG wave-
length, KTP crystal experiences beam “walk-off” and can only be used in a type II phase
matched condition. Even though beam walk-off can be compensated by using a pair of
oppositely oriented crystals in a single cavity, this complicates the setup and introduces
additional losses. An alternative solution to this is to use KTP crystal for Nd:YAP laser
wavelength (1.08 ,m) as demonstrated in [19, 20]. Details on second harmonic generation
with KTP crystals using Q-switched Nd:YAG laser are presented in Appendix F.

In recent years, periodically poled lithium niobate (PPLN) has shown great promise
as a medium with many times higher nonlinearity to the bulk materials [21–23]. An
attempt was made to use PPLN in the SHG setup2. We found that even though the
available nonlinearity is higher, the periodic poling of the material can introduce higher
losses. Since the factor of interest is in the ratio of nonlinearity to loss, the gain in using
PPLN is not significant. Moreover, PPLN was demonstrated to have an anomalous self-
focusing effect at the wavelength of 532 nm making the squeezed state generation via
frequency doubling of Nd:YAG unsuitable. It is the author’s opinion that in spite of the
modest nonlinearity of bulk (,- . #�/0-� , this material still remains to be one of the
most suitable nonlinear material for the study of ���� quantum effects.

3.5 Design considerations of the nonlinear resonators

Since the strength of optical nonlinearity is dependent on the intensity of the pump beam,
methods have to be devised to attain the desired high optical field intensity. There are
many possible methods of increasing the available intensity for nonlinear optical inter-
actions. In some cases, the operation of lasers can be pulsed to produce short but very
intense output light. Many experiments have utilized the Q-switching and mode-locking
of lasers to generate squeezed states of light [24–27]. The technique used mostly in this
thesis is that of the continuous-wave (CW) optical resonator method in which resonators
were used to set up high intra-cavity field. By placing the nonlinear medium within the
resonator, the intensity dependent nonlinear interaction is enhanced. Some of the more
common optical resonators are shown in Figure 3.2. We can generally divide them into
the following categories:

3.5.1 Standing wave and traveling wave cavities

Optical resonators can be formed either by a standing wave or a traveling wave between
mirrors. Figure 3.2 (a, b and c) are examples of standing wave cavities. The advantage of a
standing wave cavity is that it has lower loss due to fewer reflecting surfaces. However, in
most setups a Faraday isolator is required to isolate the reflected light from the standing
wave cavity to avoid feedback to the pump laser. In addition, standing wave cavity
produces nodes and antinodes within the optical resonator. In some situation, this is
undesirable as it may give rise to spatial hole burning effects.

2In collaboration with R. Batchko, C. C. Harb and R. L. Byer of Ginzton Laboratory, Stanford University
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: Nonlinear optical resonators: (a) Monolithic linear, (b) Hemilithic linear, (c) Straight
cut linear, (d) Bow-tie, (e) Rectangular ring, (f) Triangular ring, (g) Brewster ring, (h) and (i) Mono-
lithic TIR/FTIR cavities with outcoupling prisms.

The alternative to standing wave cavities are the ring or traveling wave cavities as
shown in Figure 3.2 (d, e, f, g, h and i). The reflected light of a ring cavity is spatially
separated from the incident light and thus does not require Faraday isolation. However,
a ring cavity is in general less compact than a standing wave cavity. In situations where
spatial mode quality is critical, an even number of reflections are necessary to avoid the
inversion of any spatial inhomogeneity within the cavity. Thus, the most common config-
urations of rings, eg. “bow-tie” cavities, have 4 reflecting surfaces. The triangular cavity
shown in Figure 3.2 (f) is generally not an ideal setup. Another rule for designing a ring
cavity is to make each reflection as near to normal incidence as possible, particularly
on mirrors with considerable curvature. This is to avoid spatial as well as polarization
distortions.

Due to loss consideration, all of the squeezing experiments performed in this thesis
uses linear standing wave cavities in favor of the ring cavities.

3.5.2 Monolithic, hemilithic and external mirror cavities

A monolithic cavity is one in which a single bulk crystal is used to form the spacer as well
as the reflecting surfaces, (see Figure 3.2 a, h and i). The biggest advantage of a monolithic
cavity is in its operational stability. Since the reflecting surfaces of the cavity are mechan-
ically coupled with each other, the optical locking is usually robust. Furthermore, if the
medium is clear, this geometry is very low loss due to the absence of media (crystal/air)
interface within the cavity. Unfortunately, the stability of monolithic cavities comes with
some inflexibility in the operation. For example, the finesse of the cavity is fixed by the
dielectric coatings onto the monolith. It is only through repolishing and recoating that the
cavity finesse can be altered. The optical length and most of the other cavity parameters
of a monolithic are fixed as well. It is therefore normally difficult to scan the optical cav-
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ity more than a fraction of an FSR without exerting considerable amount of stress to the
monolithic crystal. The monolithic cavity thus has less operational degrees of freedom
but is mechanically very stable.

External mirror cavities with flat crystal as shown in Figure 3.2 (c, d, e, f and g), on
the other hand, offer a lot of flexibility in the scanning and design optimization. Slight
misalignment of the nonlinear crystal can even be used to find regions of varying finesses
and nonlinearities arising from inhomogeneity in the end mirrors or nonlinear medium.
However, because of the presence of two air/crystal interfaces, losses as well as dis-
persion in the external mirror cavities are normally higher than that of the monolithic
cavities.

A compromise of the two geometries is the hemilithic (or semi-monolithic) cavity
shown in Figure 3.2 (b). This system offers lower loss because of the single air/crystal
interface but has good operational flexibility. Scanning the optical resonator by several
FSR is easily achieved by using piezo-electric actuator mounted on the output coupling
mirror. Because the output coupling surface is detached from the nonlinear medium,
changes required in the cavity design are easily implemented with the swapping of the
external mirrors.

For nonlinear optics experiment where there are more than one optical mode in a
cavity, it is possible to construct a resonator which is monolithic for one mode but (say)
hemilithic for the other. Once the advantages and limitations of the individual configu-
rations are well understood, we can tailor a cavity design to suit the specifications of the
experiment.

3.5.3 Dielectric and evanescent coupling

There are three methods of light reflection in an optical resonator. They are total-internal-
reflection (TIR), frustrated total-internal-reflection (FTIR) and dielectric coating reflec-
tion. FTIR is achieved by placing a medium with matching refractive index close to the
evanescent wave of a TIR light field. By minute adjustment of the separation, different
amounts of light field can be coupled out of the evanescent light field. In both TIR and
FTIR, the losses involved in the reflection and transmission are very small, limited only
by the surface quality of the crystal. However, since TIR of light within a cavity can only
be achieved at reflection angles larger than the critical angle of the air/crystal interface,
both FTIR and TIR are not suitable for the construction of a linear cavity. It is also well
known that the control of the transmittivity via FTIR is extremely sensitive to mechanical
positioning due to the exponential decay of the evanescent wave amplitude. These are
reasons why in recent years, quantum optics experiments are steering away from FTIR
coupling setups as shown in Figure 3.2 (h and i).

The used of dielectric stacks as a reflection surface is now a matured technology. With
losses as small as the parts-per-million (ppm) level, it is possible to construct an optical
resonator with finesse of more than 100,000 from a linear standing wave cavity with di-
electrically coated mirror pair. Reflectivity of the dielectric coating can be specified to
� ��!	" accuracy even for harmonically defined reflectivities (eg. 96% @ 1064 nm and
10% @ 532 nm). In addition, phase shifting of the light field due to dielectric reflection
can also be specified. All of the crystals used in this thesis had their dielectric coatings
done at the Laser Zentrum Hannover (LZH).
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Photodiode Measurement Material Quantum Maximum
model wavelength efficiency power

Hamamatsu 532 nm Silicon 90% 50 mW
S1721

Hamamatsu 532 nm Silicon 90% 50 mW
S1722

Hamamatsu 532 nm Silicon 88% 100 mW
S3590-04
EG&G 532 nm Silicon 65% 30 mW

FND-100
EG&G 1064 nm InGaAs 80% 10 mW

C30641G
EG&G 1064 nm InGaAs 80% 25 mW

C30642G
Epitaxx 1064 nm InGaAs 94% 25 mW
ETX-200
Epitaxx 1064 nm InGaAs 94% 2 20 mW
ETX-500

Table 3.3: Photodiodes

3.6 The servo-control systems

In most of the experiments done in this thesis, the Pound-Drever-Hall method [28] is used
as the method of locking optical cavities on resonance. We used home built proportional-
integral-differential (PID) or servo units to provide the electronic feedback control to the
experiment. Two different systems of PID3 with comparable performance are shown in
Appendix C.

The temperature control of nonlinear crystal is also achieved using a home built PID
controlling unit as shown in Appendix D. The accuracy achieved in the temperature
stability was inferred through the error signal of the feedback circuit and corresponds
to a temperature fluctuation of �	mK. This is much better than most of the commercial
temperature controller units.

3.7 Detection of light field

Table 3.3 shows the list of photodiodes used in the many experiments of this thesis. The
steps taken to ensure high quantum efficiency performance from the photodiodes are:
Initially the glass window of the photodiode was removed to eliminate reflection loss;
The photodiodes are then aligned at or near Brewster angle to further reduce reflection
off the semiconductor surface; Finally retro-reflecting mirrors were used to recapture the
remaining reflected light from the first incidence.

The quantum efficiency of the photodiode was calculated by measuring the DC pho-
tocurrent of the photodiode and comparing it with the optical power of a given light

3By courtesy of Dr. M. S. Taubman for UniPID 5.O and Dr. M. B. Gray for M1
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beam using the following expression
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where 3� and 3�� are the number of electrons and photons, respectively, inferred from
macroscopic measurements of the current ( , and the optical power � . � is the electronic
charge and �1 is the energy of the photon quantum. Using the above methods, two pho-
todiodes were found to be best suited for our purpose. The first is the ETX-500 InGaAs
diodes from Epitaxx. Quantum efficiency of up to 94% is attainable for measurement of
Nd:YAG wavelength (1064 nm). The detection of the second harmonic of Nd:YAG (532
nm) however, is much less efficient. The use of silicon diodes S-1721 from Hamamatsu
has achieved the best quantum efficiency of around 90%. Naturally, the accuracy of the
quantum efficiency measurement is very much limited by the accuracy of the power me-
ter used in the measurements which has a � �" NIST traceable standard error.

The circuit diagrams used for the RF amplification of the photocurrents are given in
Appendix B. A more detailed discussion on the design of theses photodetectors is given
in the paper of Gray et al. [29].

3.8 Data retrieval

A RF spectrum analyser (SA) was frequently used for taking measurements of noise spec-
tra in this thesis. An understanding of the operation of the instrument is thus fundamen-
tal to the analysis of the noise spectra and signal-to-noise ratio (SNR) measurements.

The SA used in the work of this thesis was a Hewlett Packard model 8568B with a
frequency range from 100 Hz to 1.5 GHz. When necessary, a tracking generator model
8444A-OPT059 (500 kHz - 1.5 GHz) was set up for synchronous operation with this
SA. For the simultaneous analysis of phase and amplitude transfer functions, a Hewlett
Packard 3589A network analyser was used.

Most of the technical information of the SA is contained in the manual and the appli-
cation notes of the equipment [30]. However, it is worthwhile to highlight one important
detail that is often overlooked in the measurement of signal-to-noise using a SA.

For a deterministic signal, the peak signal voltage of ) ����
� measured by the envelope

detector within the SA is converted to a root-mean-square (RMS) value with a scaling
factor of ��

�
	 (-3 dB). A logarithmic amplifier is then used to convert this RMS value to

dBm (log scale). The calibrated and converted reading is then filtered and displayed on
screen.

In most commercially available spectrum analysers, it is assumed that the measure-
ments are on deterministic modulation signals. The measurement of Gaussian noise
hence poses a problem with the system calibration. Figure 3.3 shows the probability den-
sity functions of a deterministic modulation signal and a Gaussian noise source. Clearly,
if inferences made on the peak noise voltage ) ����

� were similar to that of a deterministic
modulation, a different value for the noise RMS will be obtained. The systematic errors
can be summarized into three main factors:

� Sinusoidal assumption error
This error arises from the incorrect inference of the Gaussian noise source as being
deterministic and sinusoidal in nature. When the input Gaussian noise is band-
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Figure 3.3: Probability distribution functions of (a) a deterministic sinusoidally modulated signal
and (b) Gaussian noise. The �-axis is the probability density ���� and the �-axis the variable value
�.

width limited, it changes into a Rayleigh distributed noise. A mean error of 1.05 dB
will occur when Gaussian noise measurement is assumed to be sinusoidal.

� Logarithmic amplifier error
Since the calibration of the logarithmic amplifier is only done for deterministic sig-
nals, the feeding of Rayleigh distributed noise through it will produce a skewed
Rayleigh distribution causing a further mean error of 1.45 dB.

� Resolution bandwidth error
The resolution bandwidth filter of the SA is typically the 3 dB width of the signal.
With Gaussian noise, the equivalent bandwidth is typically 1.05 (0.21 dB) to 1.13
(0.53 dB) times greater than the signal bandwidth. Hence, this results in an error of
around -0.5 dB.

The combined systematic error for noise measurement is hence approximately 2 dB
(1.05 + 1.45 - 0.5). The reader is advised to peruse the equipment application notes [30] for
a more technical discussion. A working numerical example of a typical signal-to-noise
measurement is given in Appendix A.

Apart from the spectrum analyser, high speed digital CRO’s (Hewlett Packard In-
finium 500 MHz 2Gsa/s and Hewlett Packard 5460B 150 MHz) were also used in the
retrieval of experimental data. In particular, work done on the reconstruction of Wigner
function from measured quadrature phase amplitudes given in Appendix G requires the
unprocessed photocurrent fluctuations of the detected light beam. In this case, we in-
terfaced the digital CRO’s with a Macintosh computer via an I/O card or a National
Instruments LabVIEW program.
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Chapter 4

The Second Order Optical
Nonlinearity

And now here is my secret, a very simple secret: It is only with the heart that one can see rightly; what is
essential is invisible to the eye.

The Little Prince, Antoine de Saint-Exupéry (1940).

Overview

In this chapter we describe the general characteristics of second order ���� nonlinear opti-
cal processes. Conditions required for the ���� interactions are discussed and the general
Hamiltonian of interactions presented.

4.1 Introduction

Until this century, the history of optics has always assumed that optical media were lin-
ear. The consequence of this assumption has led to many simple rules in optics: The
principle of superposition in classical optics states the linear combination of any two solu-
tions of an optics problem is also itself a solution; Propagation of light through an optical
medium does not change the frequency of the light; Optical properties of a medium, such
as refractive index and absorption coefficient, are independent of the intensity of light.
With the invention of the laser in the 1960’s, high optical intensities previously unattain-
able have revealed observations deviating from all of the simple rules stated above.

For light with frequencies far detuned from all of the atomic resonances, the most im-
portant optical parameter of a dielectric medium is the atomic polarization� . The macro-
scopic polarization of a medium arises from the sum effect of minute displacements of
the valence electrons from their normal orbit about the constituent atoms or molecules,
that is the atomic dipole moments. When an electro-magnetic field traverses through a
dielectric medium, a macroscopic polarization is induced. The induced polarization is
capable of re-radiating its energy as an electro-magnetic field, thus changing the charac-
teristics of the original incident field. For weak fields, the dielectric polarization mimics
the traversing wave by oscillating at the same frequency with slight phase shift. This
give rise to a change in the refractive index. For intense incident fields, the relationship
between the polarization and applied field the can be expressed in a converging power
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series as
� � ����� 
 ������ 
 ������ 
 ! ! !� (4.1)

where �� is the permittivity of free space, � is the applied electric field, � is the linear
susceptibility and ��	� are the 

 order nonlinear susceptibilities of the medium.

In spite of the very rapidly decreasing magnitudes of ��	� with increasing order, it is
these nonlinear susceptibilities that give rise to a host of nonlinear optical phenomena.
At high optical intensity where � is large, the principle of superposition no longer holds.
Optical properties such as refractive index and absorption are now intensity dependent.
Furthermore, the passage of light through a dielectric medium can produce new optical
frequencies.

The focus of this part of the thesis is on the processes involving the ���� nonlinear-
ity and how such processes can produce squeezed light. We find that the second order
nonlinearity ���� alone, is sufficient to produce a host of interesting optical phenomena
such as nonlinear absorption and gain, second harmonic generation (SHG), optical power
clamping, optical parametric oscillation (OPO) and amplification (OPA). In the next sec-
tion, we present a general description of the individual processes.

4.2 Optical ��	� processes

The basic optical processes involving the ���� nonlinearity are illustrated in Figure 4.1.
We note that a common feature of these processes is that it involves the interaction of 3
photons, ���� processes are therefore also known as three-wave mixing processes. The
processes can be divided into two complementary categories: The up-conversions, where
two photons of lower energy combine to form a more energetic photon and the down-
conversions where a single photon is converted into two photons of lower energies.

Upconversion processes include second harmonic generation where 2 photons of fre-
quency � are combined to form a photon of frequency 	�. When the pair of incoming
photons have different frequencies, ��� and �
�, their combination is known as sum
frequency generation.

Unlike the upconversion processes, some downconversion processes have associated
threshold powers below which the dissociation of a 	� photon into the sub-harmonic
photons does not occur. These processes are called degenerate and non-degenerate op-
tical parametric oscillation (DOPO and NDOPO). The threshold condition can be lifted
when a seed field is introduced into the nonlinear medium. Thus, degenerate and non-
degenerate parametric amplifications do not have a threshold power. We can also think
of the DOPO and NDOPO as being vacuum seeded, that is to say it is the fluctuations of
the vacuum field which trigger the dissociation of the 	� photons.

4.3 Conditions for ��	� interactions

In this section, we examine the conditions necessary for the nonlinear interaction, specif-
ically in the context of a CW pumped nonlinear medium in an optical resonator.
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Figure 4.1: Overview of the basic 	��� nonlinear interactions. Left: The upconversion processes of
second harmonic generation and sum-frequency generation. The Feynman-like diagram repre-
sent the destruction of two lower energy photons and the production of a higher energy (second
harmonic) photon. The nonlinear atomic medium necessary for the photon-photon interaction is
not shown for simplicity. Right: The downconversion processes. Degenerate and non-degenerate
optical parametric oscillations are shown in the left column. Unlike the upconversion processes,
the downconversions via 	��� are normally associated with a threshold power. By the introduc-
tion of a seed field, the right most column shows the process of degenerate and non-degenerate
optical parametric amplifications. � denotes the seed photons.

4.3.1 Conservation of energy

Like all physical processes, the conservation of energy must be satisfied during the ����

interaction. For three photons with frequencies �	� �� and ��, we thus require

�	 � �� 
 �� (4.2)

This condition must be satisfied precisely for all nonlinear interactions.

4.3.2 Conservation of momentum: Phase matching

The conservation of momentum in a nonlinear optical process is often referred to as the
phase matching condition. For the momentum of the three photons to be conserved, we
require their optical wavevectors to fulfill the following equation.

�	 
 �� � �� (4.3)

where the wavevectors are given by �	 � 	�	���, 	 is the refractive index of the non-
linear medium experienced by the 

 field and �� is the speed of light in vacuum. When
this equation holds exactly, the system is said to be phase matched. However, unlike the
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condition imposed by the conservation of energy, a small amount of phase mismatch is
allowed at the expense of a reduction in the efficiency of the nonlinear process. To deal
with situations where this occurs, we define the phase mismatch term �� � ��	
������.
The simultaneous fulfilment of the conservation of energy and the phase matching condi-
tion thus imposes a relationship on the refractive indices. From here onwards we restrict
our explanation to that of SHG or degenerate OPO where �	 � ��. Treatment of the non-
degenerate processes is only a straight forward extension of the argument. The phase
matching condition for the refractive indices is simply

��	� � ���� (4.4)

Since in most dielectrics the refractive index is a function of the optical frequency (ie.
dispersive), the above condition is seldom fulfilled. However, there are three methods of
achieving phase matching in crystalline material where birefringence is present:

� Type I phase matching
In type I phase matched material, the refractive index condition is satisfied when
the polarizations of the two lower energy modes are the same but orthogonal to the
polarization of the high energy mode (�
� 
 �
� ��
� ). Since the crystal is bire-
fringent, a change in polarization angle with respect to the crystal axis can change
the refractive index of the light beam. Angle tuning and temperature tuning can
therefore be used to find the phase matched regime. Noncritical phase matching oc-
curs when one of the polarizations is parallel with the optical axis (4), and the beam
is free to propagate along any direction of the �+-plane. An example of type I non-
critically phase matched system is the use of MgO:LiNbO� at Nd:YAG wavelength
for second harmonic generation.

� Type II phase matching
In type II phase matching, the refractive index condition is satisfied when the two
lower energy modes are orthogonal with each other and the high energy mode has
its polarization the same as one of the lower energy modes (�
� 
 �
� � �
�).
Phase matching can be similarly achieved via angle or temperature tuning. It is
worth while to note that in many systems, type II phase matching gives rise to
beam walk-off on one of the low frequency modes. Hence, such systems are not
ideal for use in an optical cavity. However, with some effort the walk-off effect
can be compensated by using a pair of oppositely oriented crystals. An example of
type II phase matched system without beam walk-off is the use of KTP at Nd:YAP
wavelength for second harmonic generation.

� Quasi-phase matching
In a quasi-phase matched material, the phase matching is done via a periodic ma-
nipulation of the cumulated relative optical phase. By the short periodic inversion
of the crystal domain, the phase mismatch is governed by

����� � ��	 
 ���� �� � 	 

1
(4.5)

where 1 is the crystal inversion period. Hence, the condition imposed on the re-
fractive indices is no longer required due to an additional periodic poling term.
The advantage of periodic poling is that it can provide a means to access dielectric



�4.3 Conditions for ���� interactions 45

polarization with high nonlinearity which are otherwise unreachable with angle
and temperature tuning. An example of quasi-phase matching is the use of peri-
odically poled lithium niobate (PPLN) at Nd:YAG wavelength for the purpose of
frequency doubling. In this situation, the polarization of all three modes are the
same (�
� 
 �
� � �
�).

For the most of this thesis, the type I noncritical phase matched MgO:LiNbO� crystal
is used with a Nd:YAG laser pump. The phase matching condition of this system, is
succinctly summarized by the phase mismatch expression obtained from the Sellmeier
equation [31]

�� � �2   ��� 5�
5�

���3�	 
 4!!��� � ����3
�	5�	 (4.6)

where 5� � �� ! nm and �� � ��4ÆC. The strength of a nonlinear interaction is given by
a nonlinear coupling function, which we state without proof to be

.��� 4� � ����

�
�� 4

	

�
�	�� ��� (4.7)

where z is the length of the interaction region. Figure 4.2 shows a plot of this function. We
note that the peak of the nonlinear interaction strength is a U-shaped curve as a function
of temperature with its degeneracy point at around 107 ÆC. An increase in temperature
above this point hence introduces frequency nondegeneracy of the subharmonic modes.
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Figure 4.2: Phase matching function for MgO:LiNbO�. Left: nonlinear coupling strength �
�
����
is plotted against the crystal temperature and the subharmonic wavelength (z = 1). Right: Similar
plot for ���
�
����, unlike the strength of the nonlinear interaction, the nonlinear coupling phase
varies rapidly across both temperature and wavelength.

More insight into the phase matching condition can be gained by looking at the cross-
sectional views of the nonlinear coupling function. If a cross-section is taken along the
temperature axis, we find that �.���4�� takes the shape of a sinc function. This describes
the effect of temperature tuning. If a cross-section at the point of degeneracy were taken
along the wavelength axis, we find a gain profile of the nonlinear crystal as shown in
Figure 4.3. It is interesting to note that even at the point of degeneracy, the gain band-
width of the medium is still quite broad. The magnified inset of the figure shows that a
1% decrease in the nonlinear coupling corresponds to a 12 nm gain width.
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Figure 4.3: Nonlinear coupling �
�
���� for �� � ������ at the degeneracy temperature of 107
ÆC as a function of wavelength.

4.3.3 Cavity resonance

The last set of conditions required for efficient nonlinear interaction within an optical
cavity are the resonance conditions of the three interacting modes

�	 � '
 ��
	6

(4.8)

�� � 7
 ��
�6

(4.9)

�� � �
 ��
�6

(4.10)

where '� 7 and � are positive integers, 	 is the refractive index of the i
 mode and 6

is the length of the cavity. These resonance conditions ensure that the nonlinear cavity
maintains a high circulating power of the interacting modes, thereby enhancing the effi-
ciency of the nonlinear process. Again, unlike the condition imposed by the conservation
of energy, the cavity resonance conditions are not necessities, and nonlinear optical pro-
cesses are even possible in a single-pass situation. However for the CW pump power
used in most parts of this thesis, cavity resonance conditions play an important role in
the nonlinear interaction. As discussed in Chap. 3, the designs of a nonlinear cavity can
be diversely different. At times, it is more advantageous to have a cavity where one of
the interacting modes is resonant while the other modes merely single or double pass
through the nonlinear medium. In such situations, the nonresonant modes are not aware
of the existence of any optical cavity conditions. Let us examine these situations with
specific application to SHG and OPO in more detail.

� Second harmonic generation
There are two different methods of SHG using a CW pump field on an optical cavity.
The first method is to form an optical cavity of the fundamental pump field. This
method is called singly (pump) resonant SHG. This enables the optical intensity
of the fundamental field to build up within the cavity thus making the conversion
to the second harmonic efficient. However, the second harmonic does not form a
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cavity within the crystal and escapes after a single or double traversal of the cavity.

The second method of SHG is to provide optical resonances for both the fundamen-
tal and the second harmonic fields in the nonlinear cavity. Both modes then have
to be locked on resonance. This is in general not guaranteed by only locking one
of the modes as differential phase shifts may exist at the cavity reflection surfaces.
However, it is apparent that there are advantages in making both cavities resonant
since the effective nonlinearity of the system is further enhanced.

� Optical parametric oscillation
An OPO is said to be triply resonant (TROPO) when all three of the interacting
modes satisfy the cavity resonance conditions of Eqs. (4.8-4.10) (see Figure 4.4a).
The TROPO is therefore the most efficient. However, such a system requires rel-
atively complex locking in order to keep all three optical modes in simultaneous
resonance.

On the other hand singly resonant OPO (SRO), as shown in Figure 4.4(d), is the sim-
plest in its operation. However, the threshold of such devices are orders of magni-
tude larger than the TROPO or the doubly resonant OPOs (DROs) (see Figure 4.4(b)
and (c)). Note that a SRO where only the pump is resonant and both signal and idler
are non-resonant is not a practical device due to the extremely large threshold.
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Figure 4.4: Resonance conditions of parametric oscillators. (a) Triply resonant OPO (TROPO);
(b)Doubly resonant (pump and signal) OPO; (c) Doubly resonant (signal and idler) OPO and (d)
Singly resonant OPO (SRO).  � 
 is commonly referred to as the signal output and  � 
 the
idler output of the OPO.

For the MgO:LiNbO� material used in this thesis, the loss experienced by the second
harmonic (532 nm) of the Nd:YAG wavelength is 4% cm�	. This is comparatively larger
than the 0.1% cm�	 loss experienced by the Nd:YAG wavelength (1064 nm). For this
reason, the gain in making the second harmonic of the Nd:YAG resonant is minimal. We
therefore decided on the simpler, singly (pump) resonant SHG and doubly (signal and
idler) resonant OPO schemes for the generation of squeezed states.
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4.4 The ��	� Hamiltonian

Let us depart from the descriptive nature of this chapter and turn to a more quantitative
discussion of the ���� processes. We start with the general Hamiltonian for 3-wave mixing
[8, 32]
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where ��	 and �	 (
 � �� 	� 7), denote the annihilation operators and angular frequencies
for the signal, idler and second harmonic modes. 8 is the ���� second order nonlinearity
of interest. �	 are the pump field amplitude of the respective modes. The last six terms
of the Hamiltonian correspond to the Liouvillians describing the coupling between the
discrete intra-cavity modes with the extra-cavity reservoir continuum. Terms from the
first line of the Hamiltonian represent the rest energy of the system. The second line of
the Hamiltonian are the interaction terms and the third line provides a description of the
pumping of respective modes.

In its complete generality, this Hamiltonian contains both the classical and quantum
dynamics of all of the ���� interaction processes. Although this Hamiltonian can be solved
rigorously using the master equation method, we shall only concern ourselves for the
moment with the semi-classical solution of the system. The semi-classical equations of
motion of the system are obtained by replacing the quantum mechanical operators ��	
with the corresponding c-number field amplitudes �	. Moreover, we can assume that
the Liouvillian terms originating from the output coupling to an external reservoir cause
exponential decays of the intra-cavity fields with total decay rates of /	. This leads us to
a simpler system of equations
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where �	 represent the cavity detunings of the respective modes. We have used
�
	/�	-

��
	

to replace the pumping terms of Eq. (4.11) and /�	 is the input coupling rate of the pump
field -��

	 . In the case of SHG and DOPO where the two fundamental modes are degener-
ate, ie. �	 � ��, we can rederive the equation of motion to obtain
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Where �	 now represents the total field amplitude of the degenerate modes. Since in
both our SHG and OPO systems the 532 nm mode is not resonant with the optical cavity,
this results in much faster dynamics of the second harmonic (��) mode. On the time
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scale of the evolution of the fundamental (�	) mode, the second harmonic appears to be
constant. We can thus proceed by adiabatically eliminating the time derivative of the
second harmonic mode by setting 8�� � �. This gives us a steady state solution for the
second harmonic

���� �
�8����
	/�
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/�
(4.14)

where we have assumed �� � �. Substituting Eq. (4.14) into Eq. (4.13), we obtain
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where the nonlinear interaction , is defined as

, �
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We note that the first term of Eq. (4.15) represents the linear loss of the fundamental mode.
The second term of the equation can be regarded as an intensity dependent nonlinear loss
or gain (depending on the pump conditions) by a simple redefinition of

/�� � ,����	 �� (4.17)

Equation (4.15) derived in this section, is the most useful equation for this part of
the thesis since it is capable of describing both second harmonic generation by setting
-��
� � � and optical parametric oscillation by setting -��

	 � �. In the next few chapters,
many results are obtained using Eq. (4.15) without explicit reference.

4.5 A mechanical analogy

For people who are more mechanically inclined, it is sometimes useful to translate the
problem of nonlinear optics to a mechanical system involving springs and pendula. Fig-
ure 4.5 shows the translated paradigm. We can think of the atoms of a dielectric medium
as particles that have both ends tied to two springs. The passage of electric field through
an atom is equivalent to the mechanical perturbation of the particle. Obviously, the re-
sponse of the system as shown in Figure 4.5(a) will produce an oscillation at the frequency
of perturbation. This is the mechanical model for a linear optical medium. Figure 4.5(b)
however, shows instead a particle that is held with two nonidentical springs. Moreover,
one of the spring is stretched beyond the limit of Hooke’s law. Mechanical perturbations
of this system will result in anharmonic oscillations. A Fourier decomposition of the an-
harmonic oscillations will reveal new harmonic components of the mechanical oscillator
analogous to optical second harmonic generation with a nonlinear dielectric.

The condition for phase matching discussed in this chapter also has a simple me-
chanical analogue. Figure 4.5(c) shows a particle hanging off a pendulum made from a
piece of spring. From standard textbooks on classical mechanics, we found the angular
frequency of the pendulum (��) and the spring (��) to be [33]

�� �
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�0
 ,�7�6
(4.18)
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Figure 4.5: Mechanical analogy of nonlinear optics
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where . is the gravitational acceleration, 0 and , are the masses of the particle and the
spring, 8 is the spring constant and 6 is the load free rest length of the pendulum. The
pendulum motion of the system is clearly coupled to the spring motion. For the system
to have periodic solution, we require that the frequency of the spring oscillation be twice
of that of the pendulum 	�� � ��. This is the exact condition heuristically realized by all
children on swings. The phase matching condition of this mechanical system is

6 �
!.�0
 ,�	�

8
(4.20)

Let us now investigate driving the system with the fundamental pendulum mode. The
first thing we note is that even with very small amount of pendulum displacement, we
observe that the system will eventually couple some of the energy to the second har-
monic spring mode. However, two solutions exist depending on the starting condition
of the mechanical excitation: The smiley mode 9 and the frowny mode :. In nonlinear
optics, we find that 2 solutions with 180Æ phase difference exist for an OPO driven above
threshold [32], suggesting a close correspondence between the two phenomena.

If on the other hand, the system is initially driven with the spring displacement, like a
child trying to start the swing from rest, coupling to the pendulum mode is not as easily
observed. The child on the swing needs an initial push to set the swing in motion. This
corresponds to the threshold of the OPO in nonlinear optics. Naturally, like all analogies,
there is a limit to the correspondence between the two systems. Nevertheless, the me-
chanical analogy still provides interesting perspectives to the phenomena in nonlinear
optics.



Chapter 5

Squeezing in Second Harmonic
Generation

Brick: “Well, they say nature hates a vacuum, Big Daddy.”
Big Daddy: ‘’ That’s what they say, but sometimes I think that a vacuum is a hell of a lot better than some of
the stuff that nature replaces it with.”

Cat on a hot tin roof, Tennessee Williams

Overview

In this chapter, we discuss the generation of bright stable amplitude squeezed light using
the second harmonic generation (SHG) process. We show that second harmonic squeez-
ing is sensitive to the fundamental pump noise. A mode cleaner is used to make the
pump field quantum noise limited and the SHG squeezing is subsequently improved.
A transfer function approach to noise propagation without assuming a quantum noise
limited pump source is presented. This approach is used to interpret the experimental
results and to provide design improvements for future experiments. The relevant pub-
lished paper to this chapter is

� “Experimental test of modular noise propagation theory for quantum optics”,
A. G. White, M. S. Taubman, T. C. Ralph, P. K. Lam, D. E. McClelland, and H.-
A. Bachor, Phys. Rev. A 54, 3400 (1996).

5.1 Introduction

The first demonstration of squeezing by second harmonic generation (SHG) was made
by Pereira et al. in 1988 [34]. In their experiment with a doubly resonant system, 0.6 dB
of amplitude squeezing was observed for several milliseconds. The apparent instability
of their experiment was chiefly due to dispersion which causes the fundamental and the
second harmonic fields to drift in and out of phase with each other. This problem was
overcome by Sizmann et al. [35] with the use of a monolithic doubly resonant cavity
producing an improved results of 0.9 dB. Using the same technology, Kürz et al. [36, 37]
observed 3.2 dB of amplitude squeezing on the fundamental beam for up to 10 s at a time.
In all of these experiments, the observed squeezing was much less than that predicted
by theory even when all experimental parameters were taken into consideration. This
degradation or discrepancy was attributed to the difficulty in the fulfillment of the doubly

51
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resonant conditions. Technical difficulties have limited both the achievable nonlinearity
as well as the stability of the observed squeezing.

Prompted by these difficulties, Paschotta et al. [38] pointed out that double reso-
nance was not a necessary condition for the production of squeezing in an SHG system.
In their work, they succeeded in obtaining 0.94 dB of stable second harmonic squeez-
ing. Laser noise and thermal effects were the suspects in the limits to the amount of
observed squeezing. In 1995 the ANU group observed that the second harmonic squeez-
ing is severely degraded by the laser noise. An accurate theoretical model was developed
by Ralph et al. [39] to explain the phenomenon. In the same year Tsuchida [40] observed
2.4 dB of squeezing from a singly resonant SHG which is the largest stable second har-
monic squeezing reported to date. However, agreement between theory and experiment
was again poor.

In this chapter, we examine the squeezing produced by a singly resonant SHG with
the aim of developing an understanding of the apparent discrepancy between the ob-
served and predicted amount of squeezing. One of the subjects of investigation is the
effect of pump noise on the second harmonic squeezing.

The pump noise of a squeezed state generator is an important and often neglected
factor in many analyses of experimental results. In some cases, eg. in the generation
of squeezed vacuum state via a below threshold OPO, the pump noise to the squeezer
is unimportant to first order [41]. However, this is not the case for squeezer relying on
bright beams, such as the optical parametric amplifiers, second harmonic generators,
Kerr media and rate-matched lasers. In these experiments with bright beams, the pump
noise is propagated through the different stages of the experiment and will eventually
“bury” or degrade the produced squeezing.

5.2 Modular theory of noise propagation

The cascaded approach to the noise propagation in quantum optics developed by Gar-
diner and Carmichael [42, 43] allows us to analyse and fully model the situation with
a master equation approach. Unfortunately, this approach is not analytical, making the
physical interpretation very difficult. In contrast, with the linearized formalism intro-
duced in Chap. 2 we can simplify this cascaded approach to a more engineering like
transfer function approach which is useful for describing optical systems of cascaded
modules. In this section, we develop an analytical and simple modular theory for noise
propagation for analysing the squeezed state generation in a SHG system.
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Figure 5.1: Block diagram of the modular propagation of source noise in SHG. The origin of
the noise source is from the diode laser. ���� � and 	� are the 808, 1064 and 532 nm modes,
respectively.

The conceptual layout of the experiment we are modeling is as shown in Figure 5.1.
A SHG with output at 	�	 (532 nm) is driven by the output field of a mode cleaner at



�5.2 Modular theory of noise propagation 53

frequency �	 (1064 nm). The mode cleaner is resonant with an incident field from the
Nd:YAG laser output and the Nd:YAG laser in turn is pumped by a diode laser array at
frequency ���� (808 nm).

In order to model the noise propagation through each element of the experiment, the
quantum-mechanical equations of motion of the field amplitudes for each element are
derived, including the zero-point (vacuum) fluctuations terms. The equations of motion
are then linearized with respect to the fluctuations, transformed to the frequency domain,
and solved simultaneously for a solution of the cavity mode. An analytical expression
of the noise variance spectrum of the output field is then found in terms of the cavity
mode using the input-output formalism [44]. Explicit predictions can be made by solving
the equations of motion and substituting the subsequent semi-classical values into the
expression for the noise variance spectrum ) ���.

The SHG under investigation in this chapter is a singly resonant system. That is, it
is only resonant for the fundamental and not the generated second harmonic field. The
intra-cavity field equation and the output spectrum for such a system are given by [38]
as,

8�	 � �8	�	 � ,��	���	 
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where �	 is the fundamental field amplitude; , is the strength of the ���� nonlinearity;
8	 is the total linear decay rate of the fundamental cavity; 8� is the decay rate of the
output coupling mirror; 8� is the decay rate due to absorption and other losses; -	 is the
fundamental pump field; � is the angular detection frequency and ) ��!"# is the amplitude
spectrum of the incident pump field. The term ,���� is also commonly referred to as the
nonlinear or two-photon decay rate. We note that for a coherent pump field of ) ��

!"#��� �

�, optimum squeezing occurs at zero frequency in the limit of very large field amplitude:
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giving predicted maximum second harmonic amplitude squeezing of 9.5 dB. Obviously
a noisy, ) ��

!"# � �, incident pump field to the SHG will bury the squeezing of the output
field.

An intensity noise cleaner formed by a Fabry-Perot cavity is a way of reducing high
frequency intensity noise in a light beam. The intra-cavity field equation and intensity
noise spectrum transfer function is given by
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where ��� is the field amplitude of the mode cleaner; 8�� is the total decay rate; -�� is
the incident driving rate; 8���� and 8� 
�� are the decay rate of the input and output mirror
of the mode cleaner. ) ��

����� is again the amplitude spectrum of the incident field.

The laser in this experiment is modeled as a three-level system using the equations of
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motion from [45], we obtain
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where ; � <�=�
� is the stimulated emission rate; <� is the stimulated emission cross

section for the Nd:YAG; = is the density of Nd atoms in the laser medium; �� is the speed
of light in the laser medium; /� and / are the spontaneous emission rates for level 7� 	,
and 	 � � transitions, respectively. 6 is the rate of incoherent pumping of the lasing
transition; 8���� and 8���� are the cavity decay rates for the output mirror and all other losses.
8��� � 8���� 
 8���� is the total decay rate; ���� and �	 are the laser field amplitude and the
atomic population of the Nd atoms. Finally, ) ��

��� is the amplitude quadrature spectrum of
the diode laser pump field to the Nd:YAG laser. We note that Eq. (5.11) predicts a strong
resonance at a frequency of �� � 	;��8����. This is the resonant relaxation oscillation of
the laser.

All the equations for the noise variance in this section, can be concatenated together
to give the output squeezing spectrum of the full system. Hence, the output squeezing
spectrum can be analytically expressed in terms of all of the experimental parameters.

5.3 The experiment

Figure 5.2 shows the layout of the experiment. The laser used in this chapter is a Light-
wave 122 diode pumped Nd:YAG NPRO capable of producing 200 mW of 1064 nm light.
The output of the laser is passed through a ring mode cleaner (Mode cleaner No.1 of Ta-
ble 3.2) formed by three mirrors. The total perimeter of the cavity is 2.45m and it has a
cavity linewidth of 800 kHz. Supermirrors were not used in this experiment because the
technology was not available to us at that time. Nevertheless, sufficient intensity noise re-
duction is achieved with this ring cavity mode cleaner since the detection frequencies for
the SHG squeezing were at � � MHz, more than 6 cavity linewidths away. The locking
of the mode cleaner is via two Pound-Drever-Hall configurations. The necessary phase
modulation is achieved by modulating the fast frequency control port of the pump laser.
Low frequency locking of the mode cleaner is achieved by feeding the resultant error sig-
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Figure 5.2: Setup of the second harmonic generation experiment.

nal from the beam reflected by the cavity to the piezo on one of the mirror of the mode
cleaner. Due to the narrow linewidth and the physical extension of the cavity, this control
alone is inadequate for a stable lock. An additional high-frequency locking is achieved
by filtering the error signal and again feeding back to the fast control port of the laser.
When locked the mode cleaner cavity transmits about 60% of the incident power, which
is adequate for the pumping of the SHG crystal.

The SHG crystal is a standing-wave monolithic cavity made from bulk (,- . #�/0-� .
It has the dimensions of ������	!��+����4�mm, where 4 is the optical axis of the crystal.
Both end faces of the monolith have radii of curvature %-9 � �!!	! mm which produce
a cavity eigenmode waist of 32.8 ,m for the *+(�� mode of 1064 nm light. The front
face of the crystal has dielectric coating with reflectivities ��! �� 0.03% at 1064 nm and
	 4% at 532 nm. The dielectric coating of the back face is ��!� � 0.03% for both 1064 nm
and 532 nm fields. The internal round trip loss of the fundamental light was estimated to
be �!��� 0.02% cm�	 whereas the loss at 532 nm is much higher at 	 4% cm�	. The �+
faces of the crystal is coated with a layer of gold to allow for good electrical contact with
the electrodes used for electro-optic tuning and modulation of the nonlinear cavity. The
crystal along with the electrodes are housed within a macor case and the entire assembly
is then placed within a copper oven that is temperature stabilized at around ��4ÆC with
a stability of �2 mK.

The nonlinear crystal was electro-optically modulated to produce a Pound-Drever-
Hall error signal necessary for the locking. The reflected beam from the nonlinear cavity
was measured and fed back to both the fast and slow controller of the Nd:YAG laser.
The SHG crystal was pumped with 81 mW of mode matched fundamental light and
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produced 34 mW of second harmonic light. We note that at higher pump power, the
second harmonic generation did not increase due to the onset of parasitic intra-cavity
NDOPO. This will be the subject of discussion in the ensuing chapter.

The second harmonic light produced by the crystal was retrieved from the reflection
of a dichroic plate immediately in front of the SHG crystal. A self-homodyne detection
system was set up to analyse the amplitude noise of the second harmonic beam. Initially,
a pair of EG&G FND-100 photodetectors were used for the measurement of the squeezed
second harmonic beam. The external glass windows of the photodetectors were removed
and both photodetectors were positioned close to the Brewster’s angle to reduce reflec-
tion off the face of the photodiodes. Furthermore, any residual reflected lights from the
photodetectors were retro-reflected back onto themselves to increase the quantum effi-
ciency of the self-homodyning. We obtained a best quantum efficiency of  �� 5% for the
second harmonic light at 532 nm.

The best squeezing result measured with this pair of photodetectors is 1.7 dB, cor-
responding to an inferred squeezing of 	 3 dB. In the later stages of the experiment, a
new pair of Hamamatsu S1721 photodetectors were used. The best quantum efficiency
obtained was 90%, this increased the amount of observed squeezing to around 2.1 dB
whilst the inferred value was unchanged. Because of the simplicity in the locking of a
singly resonant SHG system, the observed amplitude squeezing of the second harmonic
has been shown to be stable for more than 5 hours [46, 47].

5.4 Comparison between experiment and theory

In this section, we compare the experimental results obtained from the SHG setup with
the modular noise propagation theory developed in Sec. 5.2. As far as possible, the num-
ber of free parameters required for the modeling are minimized. This is done by first
establishing several physical parameters of the laser. The values of the laser parameters
for Nd:YAG listed in Table 5.1 was obtained from the book of “Solid-State Laser Engineer-
ing” by Koechner [48].

<�  !�� �����3�

= �!72� ���$ atoms.3�

�� �! !�� ��%3��	

/� !!7� �����	

/ 7!7� ��&��	

; �!!4� ��	���	

Table 5.1: Parameters of the Nd:YAG laser

The Lightwave-122 laser has a cavity perimeter of ' � 	2!� mm, an input coupler re-
flectivity of * � 96.8%, and a total internal round trip loss of 1.6%, and we thus obtained

8���� � �!	2� ��& (5.12)

8��� � �!7�� ��% (5.13)

where the above quantities are in units of [s�	]. The remaining parameter 6 can be de-
termined by the fitting of the resonant relaxation oscillation (RRO) frequency of the laser.
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For the pump power of the experiment, we find 6 � 2!4�7 ��	.
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Figure 5.3: A comparison of the mode cleaner and laser output intensity noise spectra. Traces (a)
and (b) are the experimental and theoretical traces for the output spectra of the laser, respectively.
The intensity is not quantum noise limited at detection frequencies up to 40 MHz. Traces (c) and
(d) are the equivalent for the mode cleaner output spectra. The output of the mode cleaner is
quantum noise limited at detection frequencies higher than 7 MHz. The large peak at 27.6 MHz
is the modulation signal for the Pound-Drever-Hall locking of the mode cleaner cavity.

We modelled the diode laser array as a white noise source which is 52 dB above the
standard quantum limit, ie. ) ��

��� � � �� ���. This is consistent with the directly measured
noise power of the diode arrays at detection frequencies of � 2 �� MHz. Figure 5.3
shows, at the same optical power, the output spectra of the Lightwave laser (a) and the
locked mode cleaner (c). We observed that the mode cleaner has indeed reduced the
intensity noise of the laser considerably. The output of the laser is not quantum noise
limited ( 2 0.25 dB) until beyond 45 MHz. However, with the noise filtering of the mode
cleaner, the spectrum is quantum noise limited at above 7 MHz. Traces (b) and (d) are the
theoretical predictions of traces (a) and (c), respectively, as obtained from Eqs. (5.5) and
(5.11). The agreement between the theory and the experimental data is excellent.

Figure 5.4 shows the amplitude squeezing spectra of the second harmonic output.
Traces (a) and (c) are the experimental results obtained without and with a mode cleaner.
Again, we note significant noise reduction at low frequencies due to the noise filtering of
the mode cleaner. Traces (b) and (d) are the corresponding theoretical predictions. The
agreement between theory and experiment is again excellent. In Figure 5.4, the maximum
squeezing shows an improvement from -0.5 dB at 23 MHz in (a) to -1.7 dB at 7.5 MHz
in (c) with the application of a mode cleaner. Finally trace (e) is the calculated squeezing
spectrum of the second harmonic output pumped by a coherent input (quantum noise
limited at all frequencies). The figure clearly shows the necessity of the modular noise
propagation theory since the naive prediction of a coherent state pump, which is quan-
tum noise limited at all detection frequencies, is very different from the experimental
results.
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Figure 5.4: Theoretical and experimental spectra of the SHG. Traces (a) and (c) are the spectra
obtained for the experiment run without and with the mode cleaner, respectively, after correction
for electronic noise. The maximum squeezing in each case are 0.47 dB (0.75 dB inferred) at 23 MHz
for trace (a) and 1.7 dB (3.0 dB inferred) at 7.5 MHz for trace (c). The small noise peak at 10 MHz on
both traces is the residual noise from the locking system. Traces (b) and (d) are the theoretical plots
corresponding to the experimental traces. Trace (e) is the theoretical prediction for the second
harmonic squeezing with a coherent pump (quantum noise limited at all frequencies).

5.5 Summary

We have shown that the modular theory of noise propagation in SHG system is in ex-
cellent agreement with the experimental data of our singly resonant SHG. The analytic
approach to the problem brings to light the contribution of the pump noise to the degra-
dation of observed amplitude squeezing of the second harmonic field. Using a narrow
linewidth mode cleaner, we were able to improve the observed second harmonic squeez-
ing from 0.5 dB to 1.7 dB. Further improvement on the quantum efficiency of the photode-
tectors yield the best squeezing results of 2.1 dB for this setup. The inferred squeezing
levels, however, are consistently limited at the 3 dB level. This is still significantly smaller
than the theoretically predicted maximum squeezing of 1/9 (9.5 dB) for a singly resonant
system. Even when realistic estimations of experimental imperfections (such as detec-
tor efficiency (85%), losses and finite cavity linewidth considerations) were made, the
theory still predicts about 5.5 dB of observable squeezing. The largest observed second
harmonic squeezing reported to date is only 2.4 dB [40].

The answer to the puzzle is the onset of parasitic intra-cavity NDOPO mode in SHG
systems. This phenomenon will be discussed in detail in the next chapter. We can how-
ever, provide a list of requisites for the design of future experiments for the generation of
large second harmonic amplitude squeezing:

� Good mode cleaning
As discussed in Chap. 3, the use of supermirrors can improve significantly the per-
formance of a mode cleaner. With reasonable cavity length of 	 ��� mm, mode
cleaner linewidth of 2 ��� kHz is nowadays easily achievable. This will make
the fundamental pump for the SHG quantum noise limited from frequencies above
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1 MHz. Thus enable the detection frequency to be lowered to regions of larger
squeezing.

� Large cavity linewidth
The nonlinear resonator must have large cavity linewidth. This is achievable by
constructing a shorter nonlinear cavity. With the improvement of the ���� nonlin-
earity in many new crystals, eg. PPLN, PPLT or BLIRA-free 5/0-�, strong nonlin-
ear interaction is possible with a crystal length of 5 mm or shorter. The large cavity
linewidth of the nonlinear crystal can extend the range of large squeezing to higher
detection frequencies.

� Large intra-cavity dispersion
In the next chapter, we will show that the parasitic intra-cavity NDOPO modes de-
grade the second harmonic squeezing to a maximum of around 3 dB. Since the
amount of second harmonic squeezing is dependent on the fundamental pump
power, large cavity dispersion can be used to control or delay the onset of these
parasitic modes, thus allowing larger amplitude squeezing of the second harmonic
output.
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Chapter 6

Interacting Second Order
Nonlinearities

Government and cooperation are in all things the laws of life; anarchy and competition the laws of death

Unto this last, John Ruskin (1862).

Overview

In Chap. 5, we found that optical SHG can be used to produce stable bright amplitude
squeezed light. However, in spite of the large amount of squeezing predicted by theory
the largest inferred squeezing is less than 3 dB. In this chapter, we examine situations
where two or more second order ���� optical nonlinearities are interacting with each other
or cascaded one after another. We have found that the onset of competing nonlinearities
can lead to the optical clamping of the second harmonic generation and, in general, the
degradation of the second harmonic squeezing. The relevant published paper to this
chapter is

� “Classical and quantum signatures of competing ���� nonlinearities”,
A. G. White, P. K. Lam, M. S. Taubman, M. A. M. Marte, S. Schiller, D. E. McClelland,
and H.-A. Bachor, Phys. Rev. A 55, 4511 (1997).

6.1 Cooperating and competing nonlinearities

Cascaded nonlinearities or interacting nonlinearities can be categorized as cooperating or
competing. By cooperating nonlinearities we refer to those where all nonlinear interac-
tions, both upconversions and down conversions share the same modes. For example,
the process of � � 	� � �, as shown in Figure 6.1(a), is a cascade of cooperating nonlin-
earities.

Competing nonlinearities, on the other hand, refer to a cascade of nonlinear inter-
actions where new modes additional to the original fundamental and second harmonic
modes are formed. One such example is the case of � � 	� � � � � as shown in
Figure 6.1(b) or � ��	 � 	� � � ���, where �	 �� ��.

In as early as 1962, Siegman [49] predicted an interesting phenomenon resulting from
cooperating nonlinearities. It was shown that the pump light transmitted through a
DOPO system will experience optical power clamping. The transmitted pump light does
not increase its intensity with increasing incident pump field to the DOPO. More recently,

61



62 Interacting Second Order Nonlinearities

Cooperating Nonlinearities

ω

ω

DOPOSHG
2ω

ω

ω ω+∆

ω−∆

NDOPOSHG
2ω

ω

ω

Competing Nonlinearities

Figure 6.1: Simple examples of cooperating and competing nonlinearities.

large third order nonlinear effects have been observed via the cascade of two ���� coop-
erating interactions [50, 51]. Extensive research was also carried out in CW system using
a cavity [52, 53]. Optical Kerr effect and optical bistability are two of the physical phe-
nomena observed in cooperating nonlinearity. It therefore holds promise for applications
including optical switching, nonlinear optical amplification [54], squeezing and quantum
nondemolition (QND) measurements.

In contrast, systems of competing nonlinearities have been mainly investigated for
their potential as frequency tunable sources of light. Systems considered include: intra-
cavity SFG and NDOPO [55, 56]; intra-cavity DFG and NDOPO [57]; and intra-cavity
SHG and NDOPO [58–60] [61–63]. Intra-cavity NDOPO was first observed in an SHG
system by Schiller et al. [58]. Quantum mechanical properties of the systems with com-
peting nonlinearities are modeled in numerous papers by Marte [59, 64–66] in which non-
classical features including enhancement of squeezing via competition was studied for
quadruply resonant configurations.

We have experimentally observed both the cooperating and competing ���� nonlin-
earities from the same monolithic SHG system described in Chap. 5. The purpose of this
chapter is to present the quantum and classical signatures of competing nonlinearities. A
simple theory is presented to explain their occurrences.

6.2 Competing nonlinearities: intra-cavity SHG and NDOPO

From Chap. 4 we note that by controlling the temperature of the crystal, the phase
matching condition of the second order nonlinear system can be tuned from degeneracy
(SHG/DOPO) to non-degeneracy (SFG/NDOPO). This seems to suggest that it is im-
possible to simultaneously observe intra-cavity NDOPO while the system is efficiently
frequency doubling. The usual phase matching plot (see Figure 7.4) seems to support
the same conclusion. However, a more detailed analysis reveals that even at the point of
degeneracy, ���� gain decreases very gradually with increasing nondegeneracy as shown
in Figure 4.3.

Although the following analysis can be generalized to account for situations with
more than one SFG/NDOPO mode pairs, we choose to model the situation using a set
of 4-mode equations as in [59] by assuming that only one SFG/NDOPO mode pair is
present,

8�	 � ��/	 
 
�	��	 
 8	���
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8���	 � ��/��	 
 
���	����	 
 8����
�
	�� (6.1)

where �	� ��� �� and �	 are the field amplitudes for the fundamental, second harmonic,
and the non-degenerate signal and idler modes, respectively. Their respective optical
angular frequencies are �� 	�� �� 
 Æ� and �� � Æ�. 8	 is the original nonlinearity for
the SHG and 8� is the new nonlinearity responsible for the SFG/NDOPO process. -��	 ��
�	��1	 is the fundamental pump field amplitude and /�	 its output coupling decay rate.

Finally, the detuning for the 
-mode is given by �	.
The system used in this study is the same setup as the SHG squeezing experiment of

Chap. 5. The nonlinear crystal is only singly resonant where the fundamental mode sees
an optical cavity formed by the monolith but the generated second harmonic is immedi-
ately coupled out of the monolith after double passing through the crystal. Before exiting
the crystal, the second harmonic mode can still either downconvert back to the pump
mode or initiate new pairs of NDOPO modes that also happen to meet the same cavity
resonance condition as the fundamental pump. We again use the adiabatic elimination
to neglect the fast dynamics of the second harmonic 1 by setting 8�� � �. This gives
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where we have assumed that 8	�� are real numbers and the following substitutions for
the nonlinear interaction rates ,	 and ,� were made,
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To simplify the subsequent analysis, we define
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Where these scaled quantities are: The average decay rate for the NDOPO signal and
idler pair, �/; scaled nonlinear interaction rate, �; and the scaled fundamental pump
power, 3 , defined with reference to the threshold power � 
�

	 of the NDOPO.

6.2.1 Power clamping

For zero detunings, the threshold power for the onset of competing nonlinearities is given
by
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(6.8)

1A more detailed solution of Eq. (6.1) without using adiabatic elimination is given in [59, 64–66] where
several nonclassical features of the system are predicted.
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Thus the threshold of the competing nonlinearities is dependent on a number of factors.
Firstly, the nonlinearity ,� can be experimentally varied by a change in the phase matching
temperature. At the point of degeneracy, we expect that ,	 � ,�, since this corresponds
to the optimum phase matching temperature for the SHG/NDOPO process. For temper-
ature lower than this point, ,� decreases much more rapidly than ,	, making the thresh-
old of competing nonlinearities higher. However, there is a limit to this control since the
increase of the threshold is at the expense of lowering the efficiency of the SHG process.
At temperature higher than the point of degeneracy, it is even possible to increase ,� to a
value larger than ,	. These three regimes of operation are summarized in Figure 6.2.
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Figure 6.2: Effect of temperature tuning on nonlinearities. Figure shows plots of nonlinearity
versus frequency. The phase matching temperature for SHG/DOPO is at ���Æ. We assume that
the NDOPO modes are those shown by the dotted lines with nonlinearity ��, and the solid line
is the DOPO with nonlinearity ��. (a) When � � ���Æ we have �� � ��. (b) � � �����Æ, we find
�� � ��, operating at this temperature will give a low competing nonlinearities threshold. (c)
� � �����Æ, at lower temperature, �� decreases much more rapidly than ��.

The coatings on the monolithic crystal and the total dispersion of the cavity also affect
the threshold of competing nonlinearities through the change in the decay rates of the
NDOPO signal and idler modes. For broadband coatings [67], the threshold of competing
nonlinearities can be very small. The existence of dispersion however will increase the
threshold of competing nonlinearities. Since conservation of energy requires that the
nondegenerate modes to be symmetrically detuned from degeneracy, the dispersion of
the cavity will force either the signal or idler mode to be slightly detuned away from
resonance. This will cause the NDOPO to become singly resonant resulting in an increase
of threshold power.

At the point of degeneracy, SHG and DOPO processes are at their maximum effi-
ciency. We can thus assume the following

/�� /	 � /	 (6.9)

,� � ,	 (6.10)

that is, the phase matching as well as the resonance conditions of the monolith favors the
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SHG/DOPO to SFG/NDOPO. The minimum threshold for the competing nonlinearities
is therefore given by

����
	 �

	�1/�	
%,	

� (6.11)

where % � /	��/	 is the cavity escape efficiency of the fundamental field.
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Figure 6.3: Optical spectrum analyser outputs of the intra-cavity NDOPO modes. Optical inten-
sity is plotted against frequency (detuning of the OSA) in arbitrary units. (a) shows a single FSR
scan of the OSA with only the 1064 nm input, the small peak in the middle of the FSR is due
to imperfect alignment of the cavity. (b) the onset of intra-cavity NDOPO at � � � 14 mW gives
rise to an additional pairs of fundamental modes at frequency  � 
 . (c) At even higher fun-
damental pump power, �� � 49 mW, two pairs of nondegenerate fundamental modes emerged.
Finally using another OSA for the second harmonic modes (d) shows that at �� � 155 mW, the
intra-cavity NDOPO is strong enough to generate their own optical harmonic. The intensity scale
is logarithmic for (d).

Above this threshold pump power (3 � �), the amplitudes of the signal and idler
modes, ���	 become large. This is the first signature of competition. Figure 6.3 shows
the modal analysis of the fundamental and second harmonics of the system. Two sepa-
rate scanning high finesse Fabry-Perot cavities were set up as optical spectrum analysers
(OSA) for the reflected fundamental and second harmonic outputs of the monolith.

The output modes are analysed with respect to the detuning of the OSA cavity. For the
scan of a single FSR, the odd order misalignment of the OSA shows up mid way between
the resonant peak because of the confocal nature of the OSA. All higher even order modes
of the OSA are degenerate with the resonant *+(�� mode. Thus, any other peaks shown
in Figure 6.3 corresponds to new NDOPO modes. It is observed that increasing pump
power can lead to more than a single pair of NDOPO modes as shown in Figure 6.3(c).
When the pump power is further increased these NDOPO mode can themselves be strong
enough to generate their own second harmonics. With a calibrated OSA, signal and idler
modes from similar monolithic system were found to be as far detuned as up to 31 nm



66 Interacting Second Order Nonlinearities

from degeneracy (1	�� �1033 nm, 1095 nm) [68].
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Figure 6.4: Second harmonic power is plotted against the fundamental pump power. (a) The
second harmonic power is clamped at �� � 23 mW. By slightly changing the detuning of the
monolithic cavity (b) shows that the clamping level can be shifted to higher power �� � 40 mW.
The single error bar shown is the typical uncertainty of the measurements.

It is found from Eq. (6.1) that at pump power larger than the competition threshold,
the second harmonic power is clamped at

�� � �	1
�/�

,�
(6.12)

A phenomenon analogous to the optical limiter proposed by Siegman [49] and also pre-
dicted by the quadruply resonant system in reference [59]. In the presence of competi-
tion, the second harmonic mode can have the choice of backconversions via DOPO and
NDOPO.

6.2.2 Limit to squeezing

Naturally, the presence of competition also has its effect on the intensity noise of the sec-
ond harmonic mode. For the quadruply resonant system, the predicted signature for
competition is near-perfect squeezing on both the fundamental or the second harmonic
mode in power regimes that are inaccessible in the absence of competition [64, 66]. How-
ever our system is not resonant at the second harmonics. The observed outcome of com-
petition in this case is a degradation of second harmonic squeezing, in contrast to the
enhancement provided in quadruply resonant competition.

From Chap. 5, we find that the squeezing spectrum for the second harmonic mode is
given by

)���� � �� 2/���� 2/��/�	�)
��
	 ���� ��

�7/���
 /	� 
 ��
(6.13)

where /�� � ,	��	�� is the nonlinear loss rate of the system and ) ��
	 is the amplitude
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quadrature noise variance spectrum of the fundamental pump field. For a quantum
noise limited input pump field ) ��

	 and a nonlinear loss dominated system /�� � /	,
the maximum observable squeezing is )���

� ��� � ��� (-9.5 dB) at frequencies close to
DC. The largest amount of squeezing inferred from the experimental data in Chap. 5 is
only around )� � ��	 or -3 dB, in poor agreement with the prediction even when all
nonideal conditions were taken into account. This discrepancy can now be understood
as a consequence of the onset of competition. With competing nonlinearities, the mod-
ified noise spectrum for the second harmonic mode for pump power satisfying 3 � �

becomes

)���� � �

	�3 � ��>���� 	3-���

�3 � ���>��� 
 ���� � ��'�
� 




'��
�(�

��




'�

�(�

�� (6.14)

where we have assumed the ideal conditions of ) ��
	 � � and /�	 � /	. The substitutions

made were

/ � /	 
 ��/ (6.15)

-��� � ���� (6.16)

>��� � /� 
�� (6.17)

?�3� � / ��/ 
 ��3 
 �� 
 	�3 � �� (6.18)

If we assume the condition of minimum competition threshold, Eq. (6.14) simplifies to

)���� � � 

	�3 � �� ���

!3��� 
 �3 � �� �����
(6.19)

where �� � ���	/	�. This gives a maximum squeezing of )� � ��	 (-3 dB) at DC. When
the threshold for competition is higher, the maximum squeezing is still at DC but has a
larger value.
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Figure 6.5: Theoretical plots of second harmonic squeezing in the presence of competition where
we have assumed the minimum threshold condition � 	
�

� � ���
� . (a) � � �����, (b) � � ��	�

and (c) � � �.

Figure 6.5 shows the theoretically calculated plots of the second harmonic squeezing
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spectra. At just above threshold, as in (a) of Figure 6.5, we note that the second harmonic
is squeezed to an amount similar to that predicted by Eq. (6.13) for the same pump power.
This shows that Eq. (6.13), which is valid only for 3 � �, is continuous in its transition
to Eq. (6.14) (or Eq. (6.19)) which is valid for 3 � �. At power above the threshold,
two effects come into play. Firstly, the increase in 3 pulls the second harmonic noise at
all frequencies toward the noise level of the input field. Since the input is assumed to
be quantum noise limited (or worse), the effect is to degrade the squeezing towards the
quantum noise limit of )� � �. This effect thus causes broadband degradation of the
second harmonic squeezing as can be seen in (b) of Figure 6.5.

The second effect of competition is evident in (c) of Figure 6.5. We note that as the
pump power is further increased to several times above threshold value, the low fre-
quency end of the squeezing spectrum is severely degraded. In conventional OPO, the
signal and idler amplitude quadratures are very noisy above threshold [69]. For a DOPO,
the amplitude quadrature noise variance is quantum noise limited for �	 � !� 
�

	 and
50% squeezed only for �	 � 	�� 
�

	 . Similarly, the noise from the many NDOPO pairs
is transmitted to the amplitude of the second harmonic and hence causes squeezing to
degrade.
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Figure 6.6: Experimental plots of the second harmonic squeezing spectra in the presence of com-
petition. (a) In the absence of competition the second harmonic is squeezed, �� � 74 mW and (b)
With competition,�� � 60 mW, lower frequency and broadband degradations completely destroy
the second harmonic squeezing.

Figure 6.6 shows the experimentally observed squeezing spectra for the second har-
monic mode. In plot (a) the competition is suppressed via a slight detuning of the funda-
mental mode. At below 6 MHz, the squeezing is degraded due to the laser pump noise.
The maximum observed squeezing is 2.1 dB at around the 6 MHz region. The spikes
at 17 MHz and 27 MHz are signals used for the locking of the monolithic cavity and
the mode cleaner. When the threshold of the competing nonlinearities is surpassed, we
observed the predicted broadband as well as low-frequency degradations of squeezing.
This spectrum is much noisier in comparison with the plot of Figure 6.5(c). This is caused
by the presence of more than one pair of NDOPO modes. Furthermore, the presence of
the NDOPO modes causes instabilities in the locking system which further increases the
noise in the system.
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6.3 Summary

We have reported the observation of SHG and NDOPO in a monolithic cavity intended
for the generation of second harmonic squeezing. Scanning optical spectrum analysers
show the generation of new frequencies around both the fundamental and the second
harmonic fields. One classical signature of competition is the clamping of the second
harmonic output power. By slight changes in the cavity detuning, the clamping level of
the second harmonic can be altered. This feature of competition may have applications
as an optical limiter.

From the point of view of squeezed state generation, competition imposes a previ-
ously unsuspected limit to squeezing in the single resonant SHG setup. Even though
enhancement of noise reduction was reported in theoretical work for the quadruply res-
onant SHG system, the onset of competition in our singly resonant SHG experiment de-
grades the amount of squeezing in the second harmonic output. These reported signa-
tures are expected to be ubiquitous in efficient, low dispersion SHG systems. Unless
explicit steps are taken to avoid competition, the maximum observable second harmonic
squeezing will likely be limited to 3 dB.
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Chapter 7

Classical Properties of a Doubly
Resonant Optical Parametric
Oscillator

Sing it: ’tis no matter how it be in tune, so it make noise enough.

As you like it, William Shakespeare

Overview

This chapter is concerned with the classical properties of an all solid-state source of
broadly tunable doubly resonant OPO pumped by a frequency doubled Nd:YAG NPRO
laser. We observed a tuning range of 1007 nm to 1128 nm and a combined signal and
idler output power of nearly 400 mW. Continuous tuning of over 8 GHz through the
precise control of pump laser frequency is also achieved and stable operation on a single
axial mode pair is obtained for several hours without mode hops. The relevant published
paper to this chapter is

� “ Continuously-tunable doubly resonant optical parametric oscillator”,
M. Bode, P. K. Lam, I. Freitag, A. Tünnermann, H. -A. Bachor, and H. Welling, Opt.
Commun. 148, 117 (1998).

7.1 Introduction

Continuous-wave (CW) OPOs have regained attention in the last decade as broadly tun-
able light sources due to significant improvements in laser technology [14, 70], nonlinear
materials [71] and new cavity designs [58, 72]. First demonstrated nearly 30 years ago
[73], their development lagged far behind that of pulsed devices, which are now well es-
tablished and commercially available. Because of threshold constraints, CW systems had
to be operated as doubly resonant oscillators (DROs), resonating both the signal and idler
waves, with stringent tolerances of the pump frequency and cavity length fluctuations.
Such requirements were hardly compatible with lamp pumped solid state or argon ion
(Ar+) lasers. DROs are thus known to be highly unstable and difficult to tune. Singly res-
onant optical parametric oscillators (SRO‘s) on the other hand have two or three orders
of magnitude higher thresholds [74].

The advent of frequency and amplitude stable diode pumped solid state lasers with
high single frequency output powers [14, 70] together with monolithic nonlinear OPO
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cavities [71] created an ideal combination for low threshold single frequency devices with
high efficiency [75]. The high spectral purity of such DROs makes them especially useful
for high resolution spectroscopy, injection locking and optical frequency division [76].
Because of the strong quantum correlation of the signal and idler waves, it also facilitates
the investigation into fundamental studies of quantum optics [77].

Until recently, the output powers of monolithic single frequency OPOs have been lim-
ited to levels around 100 mW and continuous tuning without mode hops were confined
by the cluster condition [31] to significantly less than 1 GHz. One approach to expand
this tuning range is to resort to a proposed dual cavity design [78]. However, this method
is only applicable to type II phase matched OPOs and requires carefully selected low loss
intra-cavity components. Another interesting solution to achieve large continuous tun-
ing is the recently published subharmonic pumped OPO which combines a frequency
doubler and an OPO in a single cavity. This method reduces the number of tuning con-
straints [62, 63]. Continuous tuning is only limited by the triply resonant conditions of
the cavity which can significantly decrease the doubling efficiency for wavelengths far
from degeneracy. 4.5 GHz of tuning has been demonstrated with a discrete two mirror
cavity through the tuning of the pump source [79, 80]. However, mode hop free oscilla-
tion for longer periods is difficult to achieve and requires maximum acoustic isolation of
the entire assembly.

If higher pump powers were applied, the inherent stability properties of monolithic
cavities turn into a disadvantage, since thermal effects like lensing or induced absorp-
tion reduce the mode matching quality. In this chapter, we report on an approach to
overcome these constraints using a hemilithic single cavity design [79, 80]. A continuous
tuning range of 8 GHz, the highest value reported so far to the best of our knowledge is
obtained. We also demonstrate that Watt level pump powers is not necessarily deterio-
rated by optical degradation due to thermal or photorefractive effects.

7.2 Experimental setup

A schematic of the OPO setup is shown in Figure 7.1. A Mephisto 1800 monolithic
Nd:YAG ring laser crystal [14] is pumped by four diode lasers (Siemens SFH 487401),
each delivering 1 W of optical power at 808 nm. Stable single frequency emission of
1.8 W CW at 1064 nm with diffraction limited beam quality and a 1 kHz linewidth is
achieved. The output frequency is continuously tunable over a range of 8 to 10 GHz
without mode hops by precise control of the crystal temperature, while fast tuning is
possible by applying mechanical stress to the crystal with a piezoelectric actuator (PZT).
A Faraday isolator (30 dB extinction) is used to avoid optical feedback from the SHG
crystal to the laser crystal.

SHG of the 1064 nm light is achieved by non-critical type I phase matching of a
(,- . #�/0-� crystal in an external hemilithic cavity [81]. Maximum single frequency
output power of 1.2 W CW at 532 nm is obtained. With respect to the power matched
to the fundamental transverse mode (*+(��) of the cavity, this corresponds to inter-
nal conversion efficiencies of as much as 90%. Mode hop free operation of more than
10 hours with high intensity stability in combination with frequency drifts of less than
30 MHz per hour has been demonstrated [81]. Hence, the frequency and amplitude sta-
bility of the pump laser is directly transferred to the harmonic wave 	�. No signs of
optical degradation or photorefractive effects in the (,- . #�/0-� crystal are observed
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after operation for several months. The hemilithic cavity design can also be used for the
second harmonic generation of a Nd:YAG miniature ring laser operating on the 946 nm
transition, resulting in 500 mW CW single frequency radiation at 473 nm [82].
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Figure 7.1: Schematic of the above threshold classical OPO experiment. The SHG and OPO crys-
tals are both located in temperature stabilized ovens (not shown) for non-critical phase matching.
Mirrors M1, M2 and M5 are highly reflecting at , � and �, and highly transmitting at 	. Mir-
rors M3 and M4 are highly reflecting at 	. BS: Beam splitter.

We used an identical cavity design to that of the SHG system for the setup of the OPO
cavity. The cavity consists of a 7.5 mm long (,- . #�/0-� crystal and an external 25 mm
radius of curvature mirror separated by approximately 23 mm. The back endface of the
(,- . #�/0-� crystal is polished with a 25 mm radius of curvature and dielectrically
coated as a high reflector (HR) for both 1064 nm and 532 nm. The front endface is flat
and antireflection (AR) coated for both wavelengths. The external mirror, mounted on
a PZT for cavity length adjustment, has transmittivities of 4% and � 94% for 1064 nm
and 532 nm, respectively. The nonlinear crystal for the OPO was initially tested in the
frequency doubling setup to ensure nearly identical performance to the crystal finally
used for the SHG. Its effective nonlinearity obtained from power measurements is

%�� �
��
� �
	

	 ! :&�	 (7.1)

The optical parametric oscillation is also achieved by non-critical type I phase matching
in the (,- . #�/0-� crystal, temperature stabilized in an aluminium oven with better
than 4 mK stability. The OPO cavity, which is of the single-cavity type, can be made
doubly resonant for the infrared signal �� and idler �	 waves, while the harmonic pump
wave 	� just double passes the resonator. Consequently, the spatial overlap between
the harmonic pump wave and the fundamental transverse cavity modes (*+(��) of the
signal and idler waves is difficult to quantify, but crucial for efficient nonlinear coupling.

Our approach to simplify the normally time consuming mode matching of the non-
resonant second harmonic wave is to make the beam path of the harmonic wave starting
at the endface of the SHG crystal to the endface of the OPO crystal symmetrical about a
beam waist centered between the mirrors M3 and M4 (see Figure 7.1). As the two cav-
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ities have identical design, symmetry is the main factor to ensure efficient spatial mode
matching.

Frequency stabilization of the DRO output while maintaining the possibility to tune
the signal and idler frequencies via the control of the pump laser frequency can be
achieved in two ways: Since the electro-optical modulation used to stabilize the doubler
cavity is present on the harmonic pump wave, it is again transmitted to the OPO signal
and idler waves and can be detected on the leakage field through the HR coated endface
of the OPO. Mixing with the modulation source of the doubler and low pass filtering the
mixer output results in a dispersion type error signal. This error signal is then fed back to
the piezoelectric actuator by a servo loop for locking. Alternatively, the OPO crystal can
be electro-optically modulated analogous to the doubler crystal. Two copper electrodes
in contact with the OPO crystal faces perpendicular to the optical axis are used to gen-
erate a different modulation frequency (10 MHz) and frequency stabilization is achieved
with similar Pound-Drever-Hall technique.

Both methods were investigated and the latter proved to yield better stability. Al-
though the signal and idler waves each generate a respective error signal, the employed
detector does not discriminate between them. Instead a sum error signal corresponding
to the average deviation of the signal and idler frequencies from the cavity resonances is
generated. By locking to the zero point of this error signal, the sum of the signal and idler
detunings is kept to a zero, which is equivalent to the fulfillment of the cluster condition
discussed in reference [31]. Therefore it was not necessary to attempt to separate the two
error signals.

7.3 Output power and pump depletion
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Figure 7.2: Combined signal and idler output power as a function of the harmonic pump power
at 532 nm. The experimental data are obtained in front of the beam splitter (BS, see Figure 7.1). A
threshold of 150 mW and a linear slope efficiency of 44% are measured.
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The combined signal and idler output power in CW single frequency operation gen-
erated by the DRO as a function of the harmonic pump power at 532 nm is shown in
Figure 7.2. For the maximum harmonic pump power of 1 W CW a combined signal and
idler output power of 385 mW is obtained behind the dichroic mirror M5 (see Figure 7.1).
This represents the highest value reported so far for single frequency DRO‘s, to the best
of our knowledge. In this context, single frequency operation refers to a single signal
and a single idler axial mode, or two unique frequencies. The input-output character-
istics were measured by changing the polarization of the harmonic pump wave with a
half-wave plate in front of the 532 nm Faraday isolator. A linear slope efficiency of 44%
and an oscillation threshold of approximately 150 mW are obtained. No signs of optical
degradation due to thermal or photorefractive effects are observed up to the maximum
harmonic pump power of 1 W CW. Similar to the pump and harmonic waves, the signal
and idler waves of the OPO have diffraction limited beam quality.

A theoretical value for the minimum oscillation threshold of a DRO can be calculated
using the well known expression

� 
� �
�� 
-��

!%!"#
(7.2)

where %!"# [&�	] is the effective nonlinearity for SHG. � is the input transmission of the
cavity mirror and - the total cavity losses [83]. Using the values obtained from operating
the (,- . #�/0-� crystal as a frequency doubler, a calculated minimum threshold for
zero detunings and optimum mode matching of approximately 110 mW is obtained. As
explained in the preceding section, an accurate value for the quality of the overlap be-
tween the harmonic pump wave and the cavity modes is difficult to attain as the pump
wave is not resonating in the OPO cavity. Hence, the difference between the theoretical
and experimental values can be attributed to imperfect mode matching. For the same
reason no attempt was made to calculate the conversion efficiency with respect to the
harmonic pump power coupled into the fundamental cavity mode (TEM00).

A way to characterize the performance of an OPO independent of the spatial mode
matching is to measure the depletion of the reflected pump wave. In our setup, this is
easily done at the exit port of the 532 nm Faraday isolator (see Figure 7.1). The relative
pump depletion as a function of the harmonic pump power is shown in Figure 7.3. For
the maximum pump power of 1 W CW a value of more than 70% is reached, indicating
that the internal conversion efficiency with respect to the mode matched pump power is
significantly above 50%.

7.4 Coarse and fine tuning capabilities

The tuning characteristics of a doubly resonant OPO are determined by the conservation
of energy condition , the phase matching condition and the cluster condition [31].

�� � �� 
 �	 (7.3)

�� � �� 
 �	 (7.4)

Æ�� 
 Æ�	 � Æ��
� 
 Æ��

	 (7.5)

Of these conditions, phase matching ensures high parametric gain while the other two
conditions determine the actual signal and idler oscillation frequencies. Coarse wave-
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Figure 7.3: Depletion of the harmonic power above the parametric oscillation threshold. The
experimental data are obtained by measuring the reflected harmonic power at the exit port of
the 532 nm Faraday isolator. For the maximum pump power a depletion of more than 70% is
obtained.

length tuning of the non-critically type I phase matched (,- . #�/0-� crystal is achieved
by the control of temperature. The discrete tuning range for a fixed pump frequency and
stabilized single frequency operation is shown in Figure 7.4. The solid curve indicates the
phase matching condition �� � � calculated from published Sellmeier equations [58, 72]
with a fitted reference temperature. Although useful parametric gain exists for numer-
ous cluster curves of which ���� �  �@, where @ is the length of the nonlinear crystal
[31]. In locked operation, a course tuning range from 1007 nm to 1128 nm for signal and
idler is achieved. In transient mode with the scanning of the external mirror, parametric
oscillation is detected from 980 nm to 1164 nm. These coarse tuning ranges are lim-
ited only by the bandwidth of the dielectric coatings on the output coupling mirror and
the OPO crystal. With improved mirror bandwidth, it was recently demonstrated that
bulk (,- . #�/0-� in a CW doubly resonant setup can achieve a coarse tuning range of
788 nm to 1640 nm [67].

The wavelengths of signal and idler are measured with a spectrometer with 0.2 nm
resolution, while single frequency operation on a single axial mode pair is confirmed with
a confocal scanning Fabry-Perot interferometer with a free spectral range of 3.8 GHz as
shown in Figure 7.1. A typical scanning interferometer trace confirming single frequency
operation for both signal and idler waves is shown in Figure 7.5. The higher peaks are
signal and the lower peaks are idler. The slight difference between the powers is due to
the wavelength dependent sensitivity of the detector and the coating bandwidth of the
interferometer. Stable operation on a single axial mode pair is obtained for several hours
without mode hops, owing to the high frequency and amplitude stability of the pump
source as well as the stable locking scheme.

Continuous frequency tuning of doubly resonant OPOs through tuning of the pump
source has provided the largest tuning ranges so far [79, 80]. Our setup, using resonant
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Figure 7.4: Phase matching versus temperature. Signal and idler wavelengths generated by the
DRO in single frequency operation as a function of the phase matching temperature. The solid
curve indicates the phase matching condition 
� � � calculated from published Sellmeier [72]
equations with a fitted reference temperature.

hemilithic cavities locked to the laser frequency for both frequency doubling and optical
parametric oscillation, is ideally suited for this approach. Consequently, a continuous
tuning range for a signal and idler mode pair of 8 GHz without mode hops is achieved,
limited only by the mode hops of the Nd:YAG ring laser. Tuning of the laser frequency
via precise control of the Nd:YAG crystal temperature with tuning rates of up to 3 GHz/s
resulted in a modulation of the OPO output power of less then 4% over the whole range,
demonstrating the stability of the system. As the DRO is pumped by a single frequency
laser with a linewidth of 1 kHz, the linewidth of both signal and idler waves is also
linewidth limited in the kHz range.

7.5 Summary

We have demonstrated an all solid-state source of broadly tunable single frequency radi-
ation from a CW, doubly resonant optical parametric oscillator with remarkable spectral
properties. Based on non-critically phase matched magnesium oxide doped lithium nio-
bate ((,- . #�/0-�) and pumped by a frequency doubled Nd:YAG miniature ring laser
at 532 nm, the OPO has a combined signal and idler output powers of nearly 400 mW
CW with a linear slope efficiency of 44%. The overall efficiency with respect to the diode
pump power reaches 10%. Identical nonlinear crystal assemblies were used for the SHG
and the OPO resulting in an experimental setup with symmetrical beam path. This is
demonstrated to be a convenient setup as it simplifies the normally time consuming spa-
tial mode matching of the harmonic pump wave. Owing to the high frequency and am-
plitude stability of the single frequency pump laser, stable OPO operation on a single ax-
ial mode pair is achieved for several hours without mode hop using a standard Pound-
Drever-Hall locking technique. Continuous tuning of the signal and idler frequencies
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Figure 7.5: Scanning interferometer trace of the DRO output ensuring operation on a single axial
mode pair. The higher peaks are signal, the lower peaks are idler. The difference is attributed to
the wavelength dependent detector sensitivity and the coating bandwidth of the interferometer.
FSR: Free spectral range of the confocal Fabry-Perot interferometer.

over a range of 8 GHz is achieved via precise control of the pump laser frequency with
kHz linewidths. The OPO output tuning range of 1007 nm to 1128 nm is achieved.

The study of the classical properties of the above threshold doubly resonant OPO
is an important prelude to the study of its quantum noise properties which will be the
discussion of the next chapter.



Chapter 8

Squeezed Vacuum Generation

It is contrary to reason to say that there is a vacuum or space in which there is absolutely nothing.

Principia Philosophiae, René Descartes (1644).

Overview

In the previous chapter the classical properties of an above threshold OPO was discussed.
This chapter describes the generation of optical squeezed vacuum states using a degener-
ate below threshold optical parametric oscillator. We report the observation of more than
7 dB of vacuum squeezing and discuss design criteria and experimental considerations
for its optimization. We also report 4 dB of bright intensity squeezing by running the
OPO as a parametric de-amplifier.

8.1 Introduction

In Chap. 5, we found that second harmonic generation can produce bright amplitude
squeezed light. For singly resonant systems, however, the largest observed squeezing
reported to date was very much smaller than that predicted by theory. This is due to two
main reasons: The onset of parasitic intra-cavity NDOPO and pump noise degradation
at low frequencies. The latter effect can be alleviated by using high finesse mode cleaner.
In order to combat the former, intra-cavity dispersion has to be introduced to the SHG.
This is a technically very challenging task, since losses cannot be introduced along with
dispersion for the generation of large squeezing.

In this chapter, we investigate the various limits to squeezing from the reverse process
of SHG. Compared to SHG, vacuum state squeezing via OPO has many advantages. Due
to the existence of a threshold, the maximum squeezing from the OPO is not limited to
1/9 as in the case of the singly resonant SHG. Ideally, the zero frequency squeezing at
the OPO threshold is perfect. Since the generation of the squeezed vacuum state occurs
below threshold, we find that to first order, the noise from the OPO pump source does
not degrade the squeezed vacuum. Furthermore, competing nonlinearities cannot occur
in a parametric downconversion system due to the existence of a threshold.

The first demonstration of vacuum squeezing from a below threshold OPO was done
by Wu et al. [84, 85] in 1986 where more than 3 dB of squeezing was observed. Polzik
et al. [86] reported 6 dB of squeezed vacuum from 5/0-� at 856 nm with a Ti:Sapphire
pump laser. The squeezed light obtained was later applied in spectroscopic measure-
ments. In the same year Ou et al. [19] also reported 4 dB of vacuum squeezing at
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1.08,m from a Type-II KTP crystal pumped by Nd:YAP laser. Improved performance
in both the magnitude and the stability of squeezing were achieved with the use of
monolithic and hemilithic OPO crystals where 5.5 dB of stable vacuum squeezing was
reported by Breitenbach et al. [83] from the quantum optics group of Universität Kon-
stanz. The Wigner function, photon number distribution as well as the density matrix
of the squeezed vacuum were carefully characterized through optical homodyne tomog-
raphy (see Appendix G for details). With similar setup, Schneider et al. [87] observed
4.3 dB of amplitude squeezing by running the OPO as an amplifier with an input seed
wave. Subsequent work [88] improved the magnitude to an observed amount of 6.5 dB
after electronic noise floor correction.

Apart from vacuum squeezing from the OPO and bright intensity squeezing from
an OPA, the parametric downconversion process can also produce twin beam intensity
squeezing [89–92]. Recently, Gao et. al. at Shanxi University [93] reported 9 dB of twin
beam sub-quantum correlation from an �-cut KTP crystal. An improvement of 7 dB with
respect to the standard quantum limit [20] was achieved in a weak absorption measure-
ments using the strongly correlated twin beam.

Our aim of this chapter is to describe the production and optimization of vacuum
squeezing from an OPO. With the hindsight gained from previous experiments, we set
out to design an OPO solely for the purpose of obtaining large vacuum squeezing. We
show that an important requisite for large vacuum squeezing is to have an OPO with
high escape efficiency. However, the threshold power of such OPO is large, making above
threshold operation difficult. Nevertheless, characterization of the OPO can still be done
by running the OPO as an amplifier and by measurements of the magnitudes of output
squeezing and anti-squeezing.

8.2 Experimental setup

The experimental setup for the generation of squeezed vacuum is as shown in Figure 8.1.
A Nd:YAG NPRO laser (Mephisto 700) with a maximum output power of 700 mW at
1064 nm is used to pump a SHG crystal. The second harmonic output from the crystal is
retrieved via a dichroic and directed to the front face of an OPO crystal. When necessary
the OPO can be seeded with an input signal from the back face with some of the light
tapped off from the laser before the SHG stage. A local oscillator beam is set up after
passing some of the light from the laser output (	 8 mW) through a high finesse mode
cleaner. This local oscillator beam is mixed with the output of the OPO via a 50/50
beam splitter and measured in a homodyne configuration. The individual elements of
the experiment will be described in more detail in the following sections.

8.2.1 The second harmonic generator

The second harmonic generator is constructed from bulk (,- . #�/0-� in a hemilithic
configuration and second harmonic generation is achieved via Type-I non-critical tem-
perature phase matching. The dimensions of the crystal are �!����� 4!��+�� 	!��4� mm,
where 4 denotes the optical axis. These dimensions are chosen for several reasons. Firstly
a thin (2.5 mm) crystal along the optical axis provides a more efficient modulation of the
crystal cavity via the electro-optic effect for a fixed applied voltage. This is because the
change in refractive index of the material is proportional to the applied electric field gra-
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Figure 8.1: The experimental setup of the squeezed vacuum generator. ��	� ���: half, and quarter
wave plates; FI: Faraday isolator; BS: 50/50 beam splitter; PBS: Polarizing beam splitter; DC:
Dichroic; PZT: Piezo-electric actuator.

dient
� � �!�74� ���	�� (8.1)

where � is in units of �3�	. Consequently, a smaller voltage is required for a thinner
crystal. However, when the front and back faces of the crystal are too small, dielec-
tric coatings may not be able to adhere to the crystal under thermal and electro-optic
stresses [94]. A compromise to this is to make the �-dimension of the crystal larger.
Hence dielectric layers are instead coated on the 	!�� �!� mm surfaces. For the detection
of squeezed light, a shorter crystal with larger cavity linewidth is desirable. However,
a Boyd-Kleinman factor calculation [95] suggests that longer crystals have higher total
nonlinearities , assuming all else unchanged. In order to improve the nonlinearity of a
shorter crystal, the cavity has to be made nearer to concentric. We require that the waist
of the cavity mode and the radius of curvature of the end faces to be smaller. This lead us
to use a length of 7.5 mm along the +-axis with a comfortable 10 mm radius of curvature
on the back face of the crystal. The coating on the curved back face of the crystal has * �

99.96% for both 1064 nm and 532 nm and anti-reflection coating with * 2 0.1% for both
modes is used for the front flat face of the hemilith.

A cavity is formed by placing an external output coupling mirror 	 	7 mm in front of
the crystal. The reflectivities of the mirror are 96% and 10% for 1064 nm and 532 nm,
respectively. The radius of curvature of the output coupling mirror is 25 mm. The
hemilithic cavity thus has a finesse of � � �! , a free spectral range of FSR = 3.8 GHz
and a cavity linewidth of FWHM = 25.8 MHz. The crystal is sandwiched between two



82 Squeezed Vacuum Generation

electrodes along the optical axis and surrounded with a layer of macor. The entire as-
sembly is finally housed in an aluminium casing which is temperature controlled to a
stability of within �	 mK using a home built temperature controller (see Figs. D.1, D.2
and D.3 in Appendix D). The locking of the SHG is achieved by feedback control of
the Pound-Drever-Hall error signal on a PZT mounted behind the output coupling mir-
ror. Although higher second harmonic conversion efficiency is possible at lower power,
300 mW of 532 nm light is obtained with a maximum pump power of 600 mW .

8.2.2 The optical parametric oscillator

The optical parametric oscillator is based on the same technology as the second harmonic
generator but with some minor differences. In order to minimize the intra-cavity losses,
the OPO is formed by a monolithic cavity with the similar dimensions of �!�����4!��+��
	!��4� mm to the SHG. Both of the end faces of the OPO have radius of curvatures of
10 mm. The front face is coated with * � 95.6% for 1064 nm and * � 4% for 532 nm.
The end face is again high reflectivity coating with * � 99.96% for both 1064 nm and
532 nm. The measured intra-cavity losses for the monolith is	 0.1% cm�	 for 1064 and	
4% cm�	 for 532 nm. The other cavity parameters are � � �7 , FSR = 9 GHz and FWHM
= 66 MHz.

Since the cavity has no movable parts, tuning of the OPO cavity is difficult. The use
of electro-optic effect can only produce tuning of small fractions of the cavity FSR even
with very high applied voltage 1. Although large tuning can be achieved by temperature
control, this degree of freedom was not used due to the slow time response. Furthermore,
temperature tuning of the nonlinear crystal also affects the strength of the nonlinear in-
teraction, thus creating further operational complications. Although this is an apparent
disadvantage of the monolithic system compare with hemilithic, the significantly smaller
intra-cavity loss of the monolith remains an attractive attribute.

8.2.3 The mode cleaner

A standing wave mode cleaner is constructed for the purpose of both providing spatial as
well as high frequency intensity noise filtering for the local oscillator beam. The advan-
tages of frequency noise filtering has already been discussed in Chap. 5 and a quantum
noise limited local oscillator is likewise essential for the homodyning of the squeezed
vacuum states. Moreover, the output of an NPRO laser usually possesses some degree of
astigmatism [96]. Since the squeezed vacuum beam is produced from a monolithic stand-
ing wave cavity, it has a very well defined diffraction limited Gaussian profile, which is
non-astigmatic. The direct homodyne mixing of these two beams will hence yield in-
terference with low visibility. In our experiment, we found that without spatial mode
cleaning, the best visibility of the interference is ��� � 90%. Because the homodyne effi-
ciency of the detection system is dependent on the square of visibility %��!  ����, this
alone is a significant limit to the maximum observable squeezing. We used two super-
mirrors from Newport (part number:10CV005R50T) to construct a standing wave cavity
with a length of 170 mm. The radii of curvature of the mirrors are 1 m. Using Eq. (3.10),
we found that the non-degeneracy of the higher order spatial modes for this cavity to be

11000V has been applied to the crystal while it was pumped with 300 mW of 532 nm light. No apparent
photo-refractive damage was observed.
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excellent. The mirrors have the following parameters:

*	 � ��!2�"� *� � ��!�2" (8.2)

-	 � 7�����3� -� � 	2����3 (8.3)

�	 � �!��7"� �� � �!��� " (8.4)

This gives a cavity finesse of � � ����, a free spectral range of FSR = 880 MHz and a
cavity linewidth of 176 kHz. Impedance matching of �
��������� 	  �" was obtained.

8.2.4 The homodyne system

The homodyning of the OPO output is done by combining the local oscillator and the
OPO output via a 50/50 beam splitter. Since an imbalance in the power of the beam
splitter outputs leads to a lower homodyning efficiency, care was taken in angle tuning
the beam splitter to ensure that the 50/50 splitting ratio was accurate to less than � 2%.
The photodetectors used in the final detection are as shown in Figure B.1. An Epitaxx
ETX-500 photodiode is used in a two stage transimpedance amplification circuit using
two Comlinear operational amplifiers (CLC420 and CLC430). This type of photodetector
can take up to 10 mW of optical power without any observable saturation effect [29]. The
frequency range of this photodetector is from DC to around 20 MHz, which is more than
suffices for the detection of squeezed vacuum which is normally performed at frequen-
cies lower than 5 MHz. The quantum efficiency of the photodiodes were measured to be
�!� 2%.

The homodyne efficiency of the system is determined by a measurement of the in-
terference visibility form by two optical beams with equal intensity. We inject a small
amount of laser light into the back face of the OPO and interfere this output with the spa-
tially filtered local oscillator beam. The visibility of the interference fringes were found
to be ��2!�� �!��% give a homodyne efficiency of %��! � �!�4� �!�	.

8.3 A simple theory for OPO

We model the parametric process with the following simple approach. The Hamiltonian
of the parametric downconversion process can be written as

� � ����� ���� (8.5)

where � is, in general, a complex constant that is dependent on the nonlinearity and the
pump intensity. � and �� are the annihilation and creation operators of the degenerate
OPO output mode. The equations of motion of the OPO can then be written as
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where /�� /� and /� are the decay rates due to the back and front reflectivities and the
intra-cavity losses of the OPO. / � /�
/�
/� is the total cavity decay rate. -� is the seed
wave injected at the back face of the OPO and Æ-� and Æ-� are the vacuum fluctuations
terms associated with the respective losses. The steady state solution of the expectation
of �, ��� � �, can be found by setting the above derivatives to zero and ignoring quantum
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fluctuations. This gives
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where we have again used the linearization convention of � � �
 Æ�. By assuming that
�-�� � -� is a real number, we obtained a simple expression for the intra-cavity field,

� �
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We note that in the absence of a pump amplitude, -� � �, the intra-cavity field has no
coherent amplitude � � �. Using the input-output formalism, we can then work out the
extra-cavity transmitted and reflected fields, -
���� �

�
	/�� and -��� �

�
	/���-�. The

reflected and transmitted photon number expressions are
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The quantum noise behaviour of the OPO can be obtained from Eqs. (8.6) and (8.7).
By taking the Fourier transform of the linearized equations, we obtained expressions for
the fluctuations Æ	� � � 
 �� of the amplitude quadrature and Æ	� � 
�� � ��� of the
phase quadrature of the field
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where all Æ		 � Æ		��� are now operators as a function of the detection angular fre-
quency, and ���� and ���� denote the real and imaginary part of the complex num-
ber �. The internal and external fields are again linked by the input-output formalism,
Æ	�

	 ��� �
�
	/�Æ	� � Æ	�

� ���, where the subscript 1 is used to denote the measurable
output mode of the OPO. The noise spectrum ) ���� of the output is then obtained using,

) ���� � �Æ	�
	
�
��� Æ	�

	 ���� (8.15)

This spectrum contains information about the amplitude quadrature of the OPO which
is measured in our experiment. The expression for the phase quadrature variance of the
OPO, ) ����, can be similarly obtained.

8.4 Classical regenerative gain

Because of the large escape efficiency of our OPO, the available second harmonic power
is insufficient to pump the OPO above threshold. The initial investigation into the char-
acteristic of the OPO is therefore performed by running the OPO as an amplifier with
an input seed wave. Assuming that the pump power not significantly depleted, Fig-
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Figure 8.2: Calculated classical gain of the OPO operating as an amplifier. The gain is calculated
by considering the ratio of transmitted powers with OPO pump power on and off, � �� � � and
��� � �.

ure 8.2 shows the calculated results of the OPA gain using Eq. (8.11). We note that at close
to the threshold, the OPA gain obtained from the transmitted beam can be very large
(; � ��� ��� or 50 dB). This is due in part to the parametric amplification and in part to
the improvement of the cavity impedance matching.

The impedance matching condition of a cavity is given by [16]

�A �
�
*� �

�
*���� 6� � � (8.16)

where *� and *� are the reflectivities of the back and front surfaces, and 6 is the to-
tal intra-cavity loss. We note that without any incident pump field, the coupling and
transmission of the seed wave from the back of the OPO is very small, due to the poor
impedance matching (large �A due to*� � *����6�) of the OPO cavity. When the OPO
is pumped by an incident wave, parametric gain is experienced by the sub-harmonic
mode. This corresponds to having a negative loss 6 2 �, thus making the cavity better
impedance matched. Thus, more of the seed wave is coupled into the OPO, resulting in
even more gain. Figure 8.3 shows a regenerative OPO gain of 	 ��� ��� when all of the
available pump power from the SHG is incident on the OPO. We note that according to
the theoretical calculation, this corresponds to within 2% of the threshold. However, in
spite of attempts to increase the second harmonic output, above threshold oscillation of
the OPO was not observed.

8.5 Limits to vacuum squeezing

In most publications squeezing is analysed as a function of pump power. This is because
the pump level normally determines the amount of squeezing. In the case of a below
threshold OPO, 100% squeezing is predicted at the threshold in an ideal set-up. However,
while the OPO is experimentally running below threshold, this is not the easiest quantity
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Figure 8.3: Classical gain of the OPO operating as an amplifier. The OPO is electro-optically
modulated by application of a ramp voltage with a period of 55 ms as shown in trace (a). Trace
(b) shows the small input signal beam injected at the back face of the OPO, the peak power of
the input beam corresponds to 1.5 �W of optical power. With the pump field of the OPO turned
to the maximum of 300 mW, trace (c) shows the transmitted output. We note that the presence
of the pump field slightly shifted the resonance of the OPO due to the thermal effect caused by
pump absorption. The pump field is modulated at a much shorter period of 3 ms. Parametric
amplification or de-amplification is observed when the pump field is in-phase or in-quadrature
with the signal field. The maximum classical gain achieved with this setup is � ��� ��� (15 mW).

to measure since many other experimental conditions may vary. For example, the phase
matching of the OPO crystal may have drifted due to the variation of pump light, thus
causing a change in the OPO threshold.

A more systematic way of analysing the situation is a plot of the anti-squeezing
quadrature versus the squeezing quadrature. As reported by Wu et al. [85], the out-
put of a below threshold OPO can be inferred to be a minimum uncertainty state. This
piece of information can then be used to determine the efficiencies of the system and the
amount of parametric action occurring at the below threshold condition.

The quantum noise analysis of the OPO gives us the following analytic expressions
of the squeezing and anti-squeezing quadrature noise variance,

) ���� � �� %��� %��
 %��
!
�
���
�
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���
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Where %���� %��
� %�� are the escape, detection and homodyne efficiencies of the OPO sys-
tem; � and �
� are the pump and threshold powers. Unlike in the case of SHG squeezing,
the pump noise of the OPO does not contribute significantly to the squeezing spectrum
of the OPO below threshold. We now examine each limiting factor in detail.

� Escape efficiency
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Figure 8.4: Limits of the OPO squeezing. The anti-squeezing quadrature � � is plotted against the
orthogonal squeezing quadrature � � of the OPO vacuum output. Trace (a) shows the theoretical
prediction for an ideal squeezed vacuum state, where � �� � � �; Trace (b) is the calculated
squeezed vacuum state based on the experimental efficiencies; In traces (c) and (d), phase jitter of

� � ���� rad (�Æ) and ���� rad (�Æ) are added onto the vacuum output, respectively. The results
shows that there is an optimum value below threshold where the vacuum squeezing is maximum.

The escape efficiency of the OPO is the ratio of output coupling decay rate to the
total cavity decay rate given by

%��� �
/�
/

(8.19)

From the parameter values of the OPO crystal, we obtained %��� � �!� � �!��. Ob-
viously, the escape efficiency can be further increased by reducing the reflectivity of
the OPO front face. However, this is at the expense of a much larger OPO threshold.
From the previous section, we have already acknowledged that insufficient pump
power is available to bring the OPO to above threshold. Thus a further increase
in the escape efficiency is only feasible with a more efficient SHG source or a more
powerful pump laser.

� Detection efficiency
The Epitaxx 500 InGaAs photodiodes were used in the RF amplification circuit
given in Figure B.1. The quantum efficiency of these photodetectors is %��
 �

�!�!� �!�	 and the detectors are capable of detecting 10 mW of optical power with-
out saturation. In our experiment, the squeezed vacuum is measured in a homo-
dyne setup with a 6 mW optical local oscillator. More than 10 dB of quantum noise
floor clearance from the dark noise of the photodetector was present and hence the
squeezed vacuum measurement does not require any electronic noise floor correc-
tion.

� Homodyne efficiency
A detailed discussion of the homodyne efficiency is presented in Chap. 2. With the
use of the spatial mode cleaner described in Sec. 8.2.3, the homodyne efficiency of
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Figure 8.5: Plot of � � for 25, 50, 75, 100% of threshold pump power for (a), (b), (c) and (d) respec-
tively. The total efficiency used is �	�	 � �������	�
�� � ����. The quadrature angles which have
sub-quantum noise variance become narrower as shown by the arrows for trace (a) and (d).

our OPO system is %�� � �!�4� �!�	.

� Cavity linewidth
Another advantage of lowering the reflectivity of the OPO front face, or increasing
the escape efficiency is the broadening of the OPO cavity linewidth. Since squeez-
ing is only observable within the cavity linewidth due to the input-output coupling,
a larger linewidth is desirable. The linewidth of our OPO system is 67 MHz. At
the detection frequency of this experiment (3 MHz), linewidth considerations are
unimportant.

� Threshold power
Investigation into the regenerative gain of the OPO has revealed that the available
second harmonic power of the system is sufficient to get within 2% of the threshold
power. From Eq. (8.17) and (8.18), we note that the amount of vacuum squeezing
has only a square-root dependence on the pump power of the OPO. Hence, this
factor is not crucial. In fact, most of the best vacuum squeezing results from OPO
were obtained at a level significantly lower than the OPO threshold due to the phase
stability of the system.

� Phase jitters
Phase angle resolution becomes more and more acute with larger squeezing. The
vibration of the reflecting surfaces causes jitter in the relative phase of the local os-
cillator and the squeezed beam. If these vibrations are faster than the time required
for the spectrum analyser to gather a single pixel of information, then that point will
not be a pure measurement of the noise at quadrature phase angle $. Instead it will
be a measurement of the noise integrated over some range of angles $ � Æ$. If this
happens, then some of the noise from the anti-squeezed quadrature is coupled into
what was intended to be a measurement of the squeezed quadrature. This will re-
duce the amount of squeezing which can be observed. Figure 8.4 shows theoretical
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predictions of the observable squeezing of ) � as a function of the anti-squeezing
quadrature ) �. With a perfectly efficient system, trace (a) shows the reduction of
noise in the squeezed quadrature )� and the corresponding increase of noise in the
anti-squeezed quadrature ) � predicted by Eqs. (8.17) and (8.18). When experimen-
tal efficiencies are included, trace (b) shows that as the OPO approaches threshold,
the observable squeezing is limited by the experimental efficiencies to a maximum
of 8.5 dB close to threshold, while the anti-squeezing noise still increases. The addi-
tion of phase jitter, shown in traces (c) and (d), means that as the OPO approaches
threshold, increasingly large amounts of noise are coupled into the measurement
of ) � and the amount of squeezing observed actually decreases.

From Figure 8.5, we note that when the OPO is operating close to threshold, the
increase of the anti-squeezing quadrature noise is large. This effectively reduces the
quadrature angles that will exhibit sub-quantum noise variance. Any small phase
jitters about the squeezing quadrature therefore couple large amount of noise from
the anti-squeezing quadrature.
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Figure 8.6: Noise variance of the squeezed vacuum. Trace (a) shows experimental results of
the noise variance measurement of the squeezed vacuum state. The scan measurement of the
quadrature phase shows a variation of noise variance from 10 dB above the standard quantum
limit to more than 7 dB of quadrature squeezing. The smooth line are fitted values of a 7.1 dB
squeezed vacuum assuming the given experimental efficiencies. The standard quantum noise
level is at -90 dBm as shown by trace (b). ResBW = 50 kHz and VBW = 1 kHz.

8.6 Squeezing results

Figure 8.6 shows the end results of our optimization of all experimental parameters. At
a pump power of around 60%�10%, we observed our best vacuum squeezing results
of more than 7.0 � 0.2 dB at the detection frequency of 3 MHz. Since the linewidth of
the OPO was 67 MHz, the vacuum squeezing produced by our system should exhibit
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Figure 8.7: Noise variance of the OPA output. Trace (a) shows the noise variance scan of the OPA
output. The noise variance varies from 5.5 dB above the standard quantum limit to close to 4 dB
of quadrature squeezing. (b) shows the quantum noise limit at -86.6 dBm. The measurement
obtained by the OPA are not as reliable as the OPO vacuum squeezing due to problems with the
locking system.

broadband squeezing from DC to 10’s of MHz. We obtained more than 4 dB of vacuum
squeezing with detection frequencies from 1 MHz to 20 MHz. The limit of spectral in-
vestigation was set by the frequency response of the photodetectors. The local oscillator
power used in this measurement was 6 mW.

Figure 8.7 shows the bright intensity squeezing observed with a small seed wave
is injected from the back face of the OPO. The relative phase of the pump with the in-
jected seed were locked by observing the minimum DC level of the sum photocurrents of
the homodyne detectors. This corresponds to the de-amplification condition of the OPA
which is predicted to produce amplitude quadrature (intensity) squeezing. More than
4 dB of intensity squeezing is observed. However, the intensity squeezing obtained from
the parametric de-amplification process provides a squeezed beam of relatively low in-
tensity. When higher input seed powers are used, the intensity noise of the input beam
becomes dominant. Unless the seed is quantum noise limited, squeezing obtained from
the parametric process will be buried by the residual intensity noise of the seed wave.

8.7 Summary

In this chapter, we have reported the observation of 7.0 � 0.2 dB of vacuum squeezing
from the OPO. To date, this is the one of the best results of vacuum squeezing reported
worldwide. We found that the observed squeezing was limited by the phase stability
of our system. Without phase jitter, the predicted value for the best observable vacuum
squeezing with the current system should be at around 8.5 dB. We have also shown that
bright intensity squeezed light can be obtained by operating the OPO as an intensity
de-amplifier. The best results obtained was 4 dB.
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Chapter 9

Quantum Electro-Optic Control of
Light

The control of a large force is the same principle as the control of a few men: it is merely a question of
dividing up their numbers.

The Art of War, Sun Tzu

Overview

This chapter introduces the electro-optic feedforward scheme and shows that it can be
used to produce, in principle, perfect noiseless signal amplification (signal transfer co-
efficient1 of �� � �). Experimental demonstrations of the scheme are presented. The
scheme is subsequently used to amplify a small signal carried by amplitude squeezed
light. We demonstrate that, unlike the fragile squeezed input, the signal amplified output
is robust to propagation losses. Finally, when used in combination with an injection lock-
ing scheme, we demonstrate that an independently variable noiseless signal and power
optical amplifier can be constructed. The relevant published papers to this chapter are

� “Noiseless signal amplification using positive electro-optic feedforward”,
P. K. Lam, T. C. Ralph, E. H. Huntington, and H.-A. Bachor, Phys. Rev. Lett. 79, 1471
(1997).

� “ Noiseless electro-optic processing of optical signals generated with squeezed light”,
P. K. Lam, T. C. Ralph, E. H. Huntington, D. E. McClelland, and H.-A. Bachor, Opt.
Ex. 2, 100 (1998).

� “Noiseless independent signal and power amplification”,
E. H. Huntington, P. K. Lam, T. C. Ralph, D. E. McClelland, and H.-A. Bachor, Opt.
Lett. 23, 540 (1998).

9.1 Introduction

The classical control theory of a feedback or feedforward loop is a very well researched
topic for many scientists and engineers. With many of the modern appliances relying on
automation and robotics, an understanding of the classical control theory is a common

1see section 10.2 for a definition of signal 	� and meter 	� transfer coefficients.
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requisite for many technologists. In the field of optical physics, control theory is also
commonly used in many situations. From temperature controlling of nonlinear crystals,
auto-alignment of optical elements to the locking of optical resonators and suppression
of laser intensity noise, all make use of electronics control theory in their operations.
In optical communication systems, the electro-optic effect is also widely used for the
encoding and decoding of modulation signals on a light beam.

An obvious question to a quantum optician in relation to control theory is this: Can
classical control theory be utilized in quantum optics to control observables beyond the
standard quantum limit? The answer to this question seems to have changed several
times in the past decade. At first thought, it is apparent that the quantum counterpart
to the classical control theory will not be as simple. In electronic systems where con-
trol theory are most frequently used, a tap off point of information (a circuit junction) in
general partitions the flow of current to both the readout arm and the transmitted arm al-
most identically. Electrons, being fermions, only exhibit quantum noise at extremely low-
current low-noise situations. Optical quantum noise however, easily manifests itself at
every junction point (beam splitter) of an optical system. This is one of the consequences
of photons being bosons. An optical beam splitter hence does not behave similarly to an
electronic circuit junction. The photon statistics in the readout arm of an optical junction
in general have rather different photon statistics to the transmitted arm. However, there
is still no reason to discount the possibility that controlling of photon statistics can be
achieved by some novel optical control scheme.

The size of amplitude fluctuations on a light beam limits its ability to detect or carry
small amplitude signals [97]. In principle, coherent light with fluctuations at the quan-
tum noise limit (QNL), or even squeezed light with fluctuations below the QNL, would
be ideal for the detection and transmission of small signals. However, such signals are
very fragile to losses, which introduce fluctuations at the QNL that rapidly reduce the
signal to noise ratio. A solution to this problem is to amplify the signal until it is much
larger than the QNL and hence robust to losses [98]. However, this too has problems as
phase insensitive amplifiers (PIA’s), such as laser amplifiers, inevitably introduce excess
quantum noise. In the case of coherent light, this excess noise halves (reduces by 3 dB)
the signal to noise ratio in the high gain limit [99]. This is often referred to as the 3 dB
penalty for PIA’s.

In this chapter, we propose and demonstrate a simple, electro-optic, signal amplifica-
tion scheme which retains optical coherence while not requiring any non-linear optical
process. Our scheme is based on partial detection of the light with a standard beam split-
ter and detector (Figure 9.3). The light reflected from the beam splitter is detected and
the resultant photo-current is amplified and fedforward to an amplitude modulator in
the transmitted beam. By correct choice of the electronic gain and phase, we show that
intensity signals carried by the input light are amplified, whilst the vacuum fluctuations
which enter through the empty port of the beam splitter are cancelled. Since not all of the
input light is destroyed, the output is still coherent with the input beam.

9.2 Classical and quantum control theory

9.2.1 Classical feedback and feedforward

Before proceeding to the quantum optical control schemes, it is worthwhile to review
the fundamentals of classical control theory. For an electronic feedback loop as shown in
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Figure 9.1(a), the transfer function of the loop is given by [100]

)� 
��� �
�;�����

�� 
 ;���������)������ (9.1)

where )����� and )� 
��� are the input and output noise variance spectra of the system,
respectively; � is the RF frequency of interest, ;��� and ���� are the gains at different
stages of the feedback loop as indicated in Figure 9.1(a). The derivation of Eq. (9.1),
known as Mason’s gain formula, is based on the simple junction partition assumption
mentioned in the previous section. In the high gain limit where ;��� � �, the output
noise variance exactly equals that of the input noise variance.
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Figure 9.1: Two simple classical control loops: (a) Feedback loop and (b) Feedforward loop.

The effect of time delay � in a feedback loop gives rise to a bandwidth limit of the
control loop which can be modelled by a simple substitution of ����� ��	'"����. For
signal frequencies much higher than a given maximum bandwidth of �!�� 	  �� , this
simple feedback loop experiences significant phase delay and is unable to achieve any
form of useful control.

Stability of the feedback loop can be determined by mapping out the complex value
function of the open loop gain of the system. The Nyquist stability theorem states that the
closed loop feedback system is stable if and only if the locus of the open loop gain from
� � ������ does not enclose the ���� �� point in the complex plane. For the purpose
of this thesis, it is suffice to say that the feedback loop can be unstable if precautions
are not taken during the designing of the feedback control gain ����. A more rigorous
discussion of the feedback loop is available in reference [100].

We now examine a feedforward loop as shown in Figure 9.1(b). The transfer function
is given by

)� 
��� � �;����������)�����! (9.2)

In spite of the diagrammatic similarity between the two control loops, feedforward con-
trol is a much simpler system. The open loop gain of a feedforward loop is identical to the
closed loop gain and we can have the output equal the input by letting �;���������� �.
In principle, a feedforward loop can have no time delay at all. This is done by simply
making sure that there is no time difference in the arrival of the in-loop and the transmit-
ted signal at the summing stage. This is a condition that cannot be satisfied by a feedback
loop. Thus, a feedforward loop can in principle work at any given frequency without
any bandwidth constraint. Another simplicity of the feedforward loop is in its inherent
stability. Since the transfer function of the feedforward loop contains no poles, stability
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of the system is always guaranteed.
Because of these advantages of the feedforward loop over the feedback loop, the

quantum optical study of electro-optic control done in this chapter is exclusively done
with the electro-optic feedforward scheme.

9.2.2 Quantum limit of control theory

In electronic control circuits, signals carried by electrons can be split into in-loop and
out-of-loop signals with almost no noise added. The quantum nature of electrons does
not easily manifest itself because of several reasons. Since electrons are fermions and
they obey the Pauli’s exclusion principle, they have the tendency to partition themselves
evenly between the in-loop and the out-of-loop. We can also choose to think that the
repulsion between electrons will mean that their partition will be ‘anti-bunched’. This
resembles intensity squeezing and is in fact the reason why a diode laser with a quiet
pump would be squeezed [101].

When control loops are employed to control light, the situation becomes more tricky.
Since photons are bosons, they have the tendency to bunch up amongst themselves. At a
beam splitter ‘junction’, we will find that the quantum nature of photons is easily observ-
able due to this underlying difference. In order to correct for this effect, the analysis of
any optical control loop requires that quantum noise or vacuum partition noise be added
at every tap-off junction of the control loop. An immediate consequence of the added vac-
uum partition noise is that the in-loop and the out-of-loop light beams no longer share
identical photon statistics. Thus rendering the control imperfect.

A detailed quantum mechanical analysis of feedback control theory is given in refer-
ence [46] and reference [102]. For the remainder of this chapter we will focus our discus-
sions on quantum electro-optic feedforward control of light. We will show that in spite
of the presence of vacuum partition noise in the feedforward control loop it is still pos-
sible to gain control of the transmitted beam beyond the quantum limit. This enable the
noiseless amplification of light using only electro-optic feedforward.

9.3 Noiseless optical amplification

In 1982, Caves [103] showed that optical amplification which is phase insensitive will
suffer some amount of signal to noise degradation. This is again due to the bosonic
nature of photons. In the limit of large gain, this degradation can be as large as 50% or
3 dB. This noise penalty is commonly known as the “3 dB noise penalty”.

In order to overcome the 3 dB noise penalty, a phase sensitive amplifiers must be used.
Phase sensitivity of an optical amplifier is defined as follows. If an optical device ampli-
fies an input signal equally independent of any relative phase (or whether the signal is
encoded in any quadrature amplitude), then the amplifier is called a phase insensitive am-
plifier. In a phase space representation, a phase insensitive amplifier will isotropically
enlarge a given input state as shown in Figure 9.2(a). A very well known example of
a phase insensitive amplifier is the laser amplifier. For a laser amplifier, the input sig-
nal field determines completely the phase of the output field. The amplifier itself has
no internal mechanism for phase discrimination since atomic inversions to a metastable
level are used as the gain mechanism. In contrast, a phase sensitive amplifier amplifies an
input state by a variable amount depending on the relative phase or the quadrature am-
plitude of the signal. Thus in phase space representation, the phase sensitive amplifier is
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anisotropic in gain. Figure 9.2(b) shows the optical parametric amplifier response which
is a phase sensitive amplifier. In this case, the pump phase of the OPA provide the phase
reference to the input signal. When the input signal is in phase with the pump, it is am-
plified. The amplification factor decreases gradually to de-amplification when the input
signal phase changes from in-phase to in-quadrature (��Æ) with the input pump.
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Figure 9.2: A phase space representation of (a) a phase insensitive amplifier. The input signal is
amplified in both the �� and �� quadratures. However, noise indicated by grey shade were
added on the amplified output. (b) a phase sensitive OPA amplifier. The input signal is amplified
along the �� quadrature whilst de-amplified along the �� quadrature. Grey arrows denote
noise and black arrows, signals.

In the following we use a simplified argument similar to that given in reference [103]
to show that the 3 dB noise penalty for a linear phase insensitive amplifier is a direct
consequence of the bosonic nature of photons. Let � and �� be the boson annihilation
and creation operators of the input light field and their amplitude and phase quadrature
amplitudes as defined in the usual way are 	�

� and	�
� , respectively. A phase-insensitive

linear amplifier with gain ; would give an output field of

	�
� �

�
;	#

� 
3	� (9.3)

	�
� �

�
;	#��

� 
3�� (9.4)

where " is the output state of the amplifier and 3	 are the noise of the amplifier for the
corresponding quadrature. Since the output field is also optical and must thus obey the
same boson commutation relation as the input field �, we can write
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or equivalently, we can re-write this relation in terms of the quadrature amplitudes as,
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Substituting Eq. (9.4) into the commutation relation equation for " and "�, we obtain

�3	� 3�� �
�

	

��� ;� (9.9)

Equation (9.9) thus is the first condition for the noise terms required by the boson com-
mutation relation. Using the Heisenberg uncertainty relation on Eq. (9.9), we obtain

��3�
	 ���3�

�� �
�

� 
��� ;��! (9.10)

We can further conclude that

��3	��
	 � � �

!
���� ;�� (9.11)

because of the symmetry implied by phase insensitivity. We now make the following
assumptions to proceed. Firstly, we can assume that the noise terms on average have
no net contribution to the output field. Furthermore, we do not anticipate any form of
correlations between the noise terms and the input field. These conditions give us

�3	� � � (9.12)

�3�� � � (9.13)

��	� 3�� � � (9.14)

���� 3	� � �! (9.15)

The variance of the output field becomes

��"�	� � ;����	�
 ��3�
	 � (9.16)

��"��� � ;������
 ��3�
� �! (9.17)

The output signal to noise ratio is defined by

�/%� 
 �
�	���
��	���

� (9.18)

where $ is the quadrature angle. Finally, solving for the SNR expression gives the follow-
ing inequality

�/%� 
 � �/%��

�
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��� ��;�
!���	����

��	
(9.19)

This is the fundamental theorem of phase-insensitive linear amplifiers. In the limit of large gain
;��, an input signal encoded on a coherent state gives

�/%� 
 � �

	
�/%�� (9.20)
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It is interesting to note that the derivation given above assumes very little: the canonical
boson commutation relations for the input and the output field. As long as the output
field of the amplifier is still bosonic, the consequence of amplification is a ‘3 dB’ noise
penalty. We can think of this 3 dB penalty as arising from the fact that a PIA amplifies the
two conjugate observables, intensity and phase, simultaneously. If additional noise was
not added in this process, the uncertainty relation for the variables would be violated.

To avoid this penalty, amplification must be phase sensitive. In which case Eqs. (9.14)
and (9.15) no longer hold, in general. This will eventually lead to an asymmetry in the
quadrature amplitudes which can be exploited to avoid the noise penalty for one quadra-
ture at the expense of worsening the amplifier performance of the conjugate observable.

9.3.1 Examples of noiseless amplification

Many different schemes of noiseless amplification have been proposed and demon-
strated. Since phase sensitivity is intrinsic to many of the non-linear interactions, one
method of phase sensitive amplification is to make use of a non-linear optical process.
For example, optical parametric amplification has been used to amplify intensity signals
with almost no noise penalty. Levenson et al. [104] in 1993 demonstrated noiseless ampli-
fication using a type-II pulsed OPA. They reported a best performance of ��
�! � �!7	.
The advantage of using the OPA is that the output state of the amplifier is a minimum
uncertainty state that is optically coherent with the input field. Unfortunately such ex-
periments are complex and difficult to setup and control.

In the same year, Goober et al. [105] and Roch et al. [106] independently demon-
strated noiseless amplification using another phase sensitive amplification method. In
both of their schemes, they used the electronically amplified photocurrent from a directly
detected input signal to drive an LED. Because electronic amplification has very little or
no noise penalty, the re-emitted output LED light is a noiseless amplified version of the
input. This method is phase sensitive as only the intensity is measured and amplified
after the direct detection. They reported a performance of �� 
 �! � �!44. However, the
drawback of this method is that all phase information is destroyed by the direct detection
process. Because the output field is from an LED source, it also has no temporal or spatial
optical coherence with the input light.

9.4 Experimental setup

The experimental setup for electro-optic feedforward is shown schematically in Fig-
ure 9.3. A polarizing beam splitter taps off part of the input beam to the in-loop detector.
The transmittivity of the beam splitter, �, is controlled by a half-wave plate. A balanced
detector pair denoted by ;�� is set up to enable self-homodyne measurements on the in-
loop beam. This in-loop balanced detector pair has a total efficiency of %! � �!�	� �!�	.
The photon statistics of the beam can then be determined relative to the QNL and will be
used to measure the noise variance of the input light. The detected photo-currents of the
balanced detector pair are summed and passed through stages of RF amplification and
filtering.

The purpose of the in-loop RF amplification and filtering is to provide high gain at a
well define region of the RF spectrum around the input signal. This is needed because
unlike optical feedback control, optical feedforward is less efficient in the electro-optic
transfer of modulation signals. An example of a completed in-loop electronics is shown
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Figure 9.3: Schematic of the experimental setup. ���: in-loop balanced detector pair; ���	: Out-
of-loop detector; PBS: Polarizing beam splitter; ��	: Half-wave plate; AM: Amplitude modulator.
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Figure 9.4: Schematic of in-loop electronics circuit. A total of three signal amplifiers (MITEQ 1,
MITEQ 2 and Trontek) and one power amplifier (Power) are used. The filters are 5 BW: �	
 order
Butterworth filter; LP70: Low pass filter @ 70 MHz; LC: Bandpass filter; LP100: Low-pass filter @
100 MHz. Hatfield: Variable attenuator and RF: RF tracking generator.

in Figure 9.4. The transfer function plots of the in-loop circuit at various stages of the
loop are shown in Figure 9.5. These transfer function plots were obtained by replacing
the photodiodes with a tracking generator. Broadband RF signals at around -50 dBm are
used as input to the in-loop as shown in Figure 9.5(a). Without any form of amplification
or filtering, the spectrum is a flat line. At the end of the amplification and filtering stages,
the final output of the in-loop signal is shown in plot (f) of Figure 9.5. For this partic-
ular setup, a maximum RF power of +15 dBm is deliverable without any sign of elec-
tronic saturation. An amplitude modulator is formed by using the EOM in conjunction
with a polarizer to electro-optically convert the in-loop signal to the transmitted light.
The availability of high RF power means that strong amplitude modulation of light is
possible while maintaining relatively high transmittivity at the electro-optic modulator.
Finally a spectrum analyser is used to measure the noise and signal power spectrum of
the output photo-current of detector ;� 
. The out-of-loop detection efficiency, including
the modulator losses, is %� � �!2�� �!��.

9.5 Theoretical modelling

We model the electro-optic feedforward scheme as follows. Suppose the beam splitter
has a transmittivity � and negligible losses. The reflected beam is directed to a detector
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Figure 9.5: The in-loop electronics transfer function at various points. (a) A tracking generator
produces -50 dBm of broadband RF power (b) after the �	
 order Butterworth filter; (c), (d), (e)
are transfer functions taken at points indicated in the in-loop circuit. (f) Output of the in-loop
signal. The peak of the transfer function is at 70 MHz with a -3 dB full width of � 	 MHz. The
suppression of frequencies outside the region of interest is � �� dB. This in-loop circuit is thus
ideally suited for signal amplification at 70 MHz.

of efficiency %!. We can write the input laser beam in the linearized form

�-����� � -�� 
 Æ�-������ (9.21)

where �-�� is the field annihilation operator; -�� is the classical steady state value of the
field; and Æ�-�� is a zero-mean operator which carries all the classical and quantum fluc-
tuations. The detected output field is given by

�-� 
 �
�
%�
��

� -�� 

�
� Æ�-�� 


�
�� � Æ��	 
 Æ��




�
�� %� Æ���� (9.22)

where %� is the combined efficiency due to the transmittivity of the modulator and the
quantum efficiency of the out-of-loop detector. As usual, vacuum fluctuations from the
unused port of the beam splitter, Æ��	, and due to out-of-loop losses , Æ���, appear on the
transmitted beam. We have assumed that the feedforward does not affect the steady
state value of the field but just adds a small fluctuating term Æ�� which can be written as a



102 Quantum Electro-Optic Control of Light

convolution over time [107],

Æ�� �

�	
�

����
�
��� ��%! -��

��
��� ��%! Æ �	���� ��

���%! Æ �		��� �� 

�
��� %!� Æ �	���� ��

�
��! (9.23)

Æ�� expresses the changes in the phase and amplitude of the feedforward signal due to the
electronics by a function ����. This convolution embodies the storage effect of the feedfor-
ward process [108]. However, unlike the feedback loop where time delay is unavoidable,
the feedforward loop can in principle have zero time delay. In this situation, the above
convolution is unnecessary.

The amplitude fluctuations of the input field and its accompanying vacuum fluctu-
ations from the beam splitter Æ�	, and the non-unity detector efficiency Æ��, are defined
by Æ�	��� � Æ�-�� 
 Æ�-�

�� and Æ �		 � Æ��	 
 Æ���	 . Note that energy conservation requires
that the vacuum fluctuations introduced on the reflected beam are anti-correlated with
those on the transmitted beam. The amplitude fluctuation spectrum of the output field
is the expectation value of the Fourier transform of the absolute squared amplitude fluc-
tuations, ie. )� 
��� � ��Æ �	�� 
���. Experimentally )� 
 is obtained by normalizing the
power spectrum from the spectrum analyser to the QNL for the same optical power. We
find

)� 
��� � %��
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�
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�
��� ��%!��)�����


%��
�
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�
�%!��)	


%��5
�
��� %!��� )�


��� %�� )�� (9.24)

where various parameters have been rolled into the electronic gain 5���, which is in gen-
eral a complex number. )����� � ��Æ �	������ � )������� 
 )������� is the amplitude fluc-
tuation spectrum of the input field. The vacuum noise spectra originate from the empty
port of the beam splitter )	, the in-loop detector efficiency )� and the out-of-loop losses
)�, are shown explicitly to emphasise their origins. All vacuum inputs are quantum noise
limited, ie., )	 � )� � )� � �. We define the signal and meter transfer coefficients of the
optical amplifier as follow [104]

�� �
�/%� 
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(9.25)
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Where �/%	 � )��	�)��	 are signal to noise ratio of the 
 port. An ideal noiseless amplifier
should therefore have �� � � and a phase insensitive linear amplifier has �� � �!� in the
limit of large gain.

Due to the opposite signs accompanying the feedback parameter 5 in the signal and
vacuum fluctuations terms of Eq. (9.24), it is possible to amplify the input signal (first
term), while cancelling the vacuum noise from the feedforward beam splitter (second
term). The third and fourth terms of Eq. (9.24) represent unavoidable experimental losses.
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Figure 9.6: Plots of signal transfer coefficient for varying electronics gain �. Left: Ideal lossless
electro-optic feedforward for � = 50% and 90% (plot 1 and 2, respectively). The plots show that
there is always a positive feedforward gain which yields �� � � corresponding to noiseless ampli-
fication. Right: Realistic system with in-loop detector efficiency �� � ��� and total down stream
efficiency �� � ���.

In particular if we choose

5 �

�
�� ��
�%!

� (9.27)

the vacuum fluctuations from the beam splitter )	 are exactly cancelled, thus allowing
noiseless amplification. Under the optimum condition of unit detection efficiency and
negligible out-of-loop losses (%! � %� � �), we find
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��� �
�

�
)����� �

�

�
�)������� 
 )��������! (9.28)

That is, the fluctuations are noiselessly amplified by the inverse of the beam splitter trans-
mittivity. The signal and quantum noise are amplified by the same amount and there is
no noise added, hence there is no degradation of the signal to noise ratio. Thus our sys-
tem ideally can attain a transfer coefficient of �� � � for a signal gain of ; � ���. It is
also worth noting that if the feedforward is chosen to be negative with

5 � �
�
��

��� ��%!
� (9.29)

the output variance becomes,

)� 
 �
�

��� ��
)	! (9.30)

The output of the feedforward loop is now completely independent of the input noise
variance. This is the principle of laser intensity noise eater which is used for the sup-
pression of the resonant relaxation oscillation of a laser (contained in )��). However, we
observed that the resulting output field is always noisier than the quantum noise limit.
This is the result obtained by Taubman et al. [102], where it is shown that electro-optic
control of light is insufficient to generate squeezing.

Figure 9.6(a), and Figure 9.7(a) and (b) show the ideal case results of varying the feed-
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Figure 9.7: Contour plots of the signal transfer coefficient �� . The 2-dimensional space represent
the magnitude and phase of the electronic gain �. Points along the x-axis corresponds to in-phase
gain where � is real. Points along the y-axis corresponds to in-quadrature gain where � is purely
imaginary. (a) and (b): Ideal feedforward with � � ��� and � � ���, respectively. (c) and (d): The
corresponding feedforward with realistic experimental parameters �� � ��� and �� � ���, � � ���
and � � ���.

forward gain for different in-loop beam splitter reflectivities. Each plot in Figure 9.6(a)
shows that noiseless amplification of �� � � occurs at some positive gain whilst �� � � at
some negative gain corresponding to ideal noise eater operation2.

The effect of non-unity in-loop detector efficiency and total downstream efficiencies is
to limit the optimum signal transfer coefficient to ����

� � %! in the limit of large in-loop
reflection � � �. Extra losses downstream from the feedforward affect the output in the
same way as losses due to the out-of-loop efficiency %�. Figure 9.6(b), and Figure 9.7(c)
and (d) show the same plots of signal transfer coefficient versus feedforward gain but
with realistic experimental parameters.

2This noise eater operation for the feedforward configuration only works at one gain value. In contrast,
feedback control of intensity noise works at any high enough gains.
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9.6 Experimental results of noiseless amplification

9.6.1 Quantum noise limited input
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Figure 9.8: Signal transfer coefficient, ��, vs signal gain, �. � � ���. The optimum value of
�� � ����� ���	 occurs at a gain of � � ���� 0.6 dB.

In our initial experiments, the input light used for signal amplification is within 0.2 dB
of the QNL at a detection frequency of 20 MHz. We impose an input signal at 20 MHz
with �/%�� � �!4� 0.1 dB. The highest �� of our scheme does not occur at arbitrarily
large feedforward. There is an optimum magnitude and phase for the electronic gain,
which corresponds to the complete cancellation of vacuum fluctuations introduced by the
feedforward beam splitter. The half-wave plate is adjusted to tap half of the input light,
� � �!�, for feedforward. The signal transfer coefficient, ��, and the signal gain, ;, are
obtained for various feedforward electronic gains. As can be seen from Figure 9.8, there is
clearly an optimum feedforward gain where �� � �!2 � �!�	 is a maximum at ; � 7!!�
0.6 dB. For higher signal gains, the value of �� value degrades and asymptotes to the
value corresponding to direct in-loop detection. This is because for high feedforward
gains, the contribution from the in-loop signal overwhelms the transmitted signal.

A theoretical curve calculated from the experimental parameters is also plotted on
Figure 9.8. The optimum feedforward gain 5��
 corresponds to a signal gain of; � 3.4 dB
and a signal transfer coefficient of �� � �!24, in good agreement with the experimental
values.

To obtain optimum performance at higher signal gain requires a greater reflectivity
at the beam splitter (see Eq. (9.28)). For higher beam splitter reflectivity, the transmitted
beam is dominated by the vacuum fluctuations. Thus, higher feedforward gain is re-
quired to completely cancel the vacuum fluctuations, resulting in a shift of the optimum
operating point 5��
 to a higher value. This is demonstrated in Figure 9.9 where the beam
splitter reflectivity was increased to 90%, ie. � � �!�. With maximum available feedfor-
ward gain, we achieve �� � �!22� �!�	 with a signal gain of ; � �7!!� 0.5 dB. We have
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Figure 9.9: Signal transfer coefficient, ��, vs signal gain, �, for transmittivity of � � ���. Dotted
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evidence of phase sensitive amplification; (b) is the �� value when feedforward signal dominates,
points above this line are evidence of vacuum fluctuations cancellation. (c) is the ����

� of the
scheme set by the efficiency of the in-loop detector � � ���	� ���	.

also calculated the �� as a function of signal gain for a PIA, as shown by curve (a), a PIA
with the same signal gain would be limited to a transfer coefficient of �� � �!��. Our
system clearly exceeds this limit.

9.6.2 Squeezed input

It is important to note that the absolute power of the amplified output signal, as measured
by the spectrum analyser, is not necessarily larger than that of the input signal. This
is because the absolute signal power is scaled by the intensity of the light field and in
our scheme the intensity of the light field is unavoidably decreased. This reduction in
intensity also reduces the QNL of the output beam. However the size of the amplified
signal with respect to the QNL is increased. It is this relative amplification of the signal
(as measured by ;) which reduces the fragility of the signal.

To illustrate this, we use our system to amplify squeezed light, which is notoriously
sensitive to losses. As our squeezed source, we use the second harmonic output from the
singly resonant frequency doubler described in Chap. 5. The SHG produces squeezing in
the amplitude quadrature which can then be amplified by our feedforward scheme. The
top half of Figure 9.10 shows the input noise spectrum. This is obtained from the in-loop
balanced detector pair by setting the beam splitter to total reflection. Trace (i) shows the
QNL, which is obtained by subtracting the photo-currents in the balanced detector pair.
Trace (ii) is the sum of the photo-currents, which gives the noise spectrum of the input
light. Regions where (ii) is below (i) are amplitude squeezed. The maximum measured
squeezing of 1.6 dB is observed in the region of 8-10 MHz on a 26 mW beam. The in-
ferred value, after taking into account the detection efficiency and electronic noise floor,
is 1.8 dB. A small input modulation signal (2.80 dB observed) is introduced at 10 MHz
which, allowing for detection losses, has �/%�� � �!��� �!�7. Other features of the spec-
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Figure 9.10: Top: Noise spectra of the squeezed input beam. Trace (i) and (ii) are the difference
and sum of the balanced photo-currents, respectively. A modulation signal of �� � � 2.8 dB
is introduced at 10 MHz. Bottom: Noise spectra of the output beam. (a) Direct detection of the
input light using the single output detector. Because of the presence of loss �� � ����, the signal
degrades to SNR = 0.4 dB. (b) Output noise spectrum without feedforward and with large loss
�	�	 � �����. The signal is completely destroyed. (c) With optimum feedforward gain, the signal
is reconstructed with �� � � 2.6 dB. This corresponds to �� � ����� ���	 and � � ���� 0.2 dB.

tra include the residual 17.5 MHz locking signals of the frequency doubling system [109]
and the low frequency roll-off of the photo-detector, introduced to avoid saturation due
to the large relaxation oscillation of the laser at 	 0.5 MHz.

The bottom half of Figure 9.10 shows the noise spectra obtained from the single out-
put detector. Setting the beam splitter reflectivity to zero, � � � the transmitted beam
is made to experience 86% downstream loss, %� � �!�!, after the feedforward loop. As
trace (a) shows, the �/% is strongly degraded by the attenuation such that the signal is
now barely visible above the noise. We now perform signal amplification by setting the
beam splitter reflectivity to 90%, � � �!�. This further attenuates the output beam to
%
�
 � �%� � �!��!. With no feedforward gain, as trace (b) shows, the modulation signal
is now too small to be seen above the noise. Due to the large amount of attenuation,
trace (b) is quantum noise limited to within 0.1 dB over most of the spectrum. Finally, by
choosing the optimum signal gain, ; � �!7� 0.2 dB, trace (c) shows the amplified input
signal with �/%� 
 � �!2	� �!�7. Traces (b) and (c) are of the same intensity, hence we
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can see that the output signal is significantly above the QNL. This is the reason why the
amplified output is far more robust to losses then the input. This result corresponds to a
signal transfer coefficient of �� � �!4�� �!�	, again in good agreement with the theoreti-
cally calculated result of �� � �!44. This is to be compared with the best performance of
a PIA, with similarly squeezed light, of �� 	 �!!. Note that trace (c) has a different shape
to (a) and (b) due to the transfer function of the in-loop electronics and the phase varia-
tion of the feedforward across the frequency spectrum. As can be seen, the bandwidth of
the RF gain is from 7 MHz to 21 MHz. However the optimum feedforward gain is only
satisfied in a limited region of the spectrum around 10 MHz.

9.7 Signal and power amplification

EOM

Signal amplification
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Power amplification
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f

Ring
Laser

Input Output Input

Output

Figure 9.11: Signal and power amplifiers. Left: electro-optic feedforward loop. Right: injection
locked ring laser. Dotted lines in the insert spectra represent the standard quantum limit of the
light field.

The direct detection of an optical signal gives a photocurrent signal strength that is
proportional to both the DC optical intensity as well as the RF fluctuations or modulation
encoded in the light field. A spectrum analyser noise variance measurement of the light
field ����� is thus proportional to

�����  ()���� (9.31)

where )���� is the normalized variance of the field and ( is the optical intensity. An
amplification of light can therefore be either an amplification of the optical intensity or an
amplification of the field fluctuations (modulation) or both. We thus define the following
gain factors

;� �
)� 

)��

(9.32)

;� �
(� 

(��

(9.33)
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;
�
 � ;�;� (9.34)

Hence a signal amplifier is one which amplifies the fluctuations of the input state whilst a
power amplifier is one which amplifies the intensity. The total gain of an optical amplifier
is the product of both the signal and power gains.
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Figure 9.12: Transfer function of an injection locked laser. (I) This region corresponds to the
geometric summing of the noise of the slave and master lasers. (II) This region corresponds to
phase insensitive laser amplification. (III) At frequencies larger than the linewidth of the laser
cavity, the seed wave is simply reflected.

In most amplification schemes, power and signal amplifications occur simultane-
ously. This is not always desirable. For example, in gravitational wave detection high
power quantum noise limited lasers are required. However, the amplification of optical
power of a laser source using the standard laser amplifier means that the noise variance
of the field will be amplified to levels much high than the standard quantum limit. In
this case, it would be ideal to have power amplification without signal amplification. On
the other hand, in an optical communication network, signal amplification is preferred
since this would lead to a robust transmission of optical signal as demonstrated in the
Sec. 9.6.2. Corresponding increase in the optical power however, could lead to the sat-
uration of the detection photodiodes. In this case, signal amplification with little or no
power amplification is desirable.

The electro-optic feedforward scheme can noiselessly amplify the signal of an input
beam. However, it cannot increase the optical intensity of the transmitted beam. Instead
the transmitted beam intensity is attenuated by the reflectivity of the beam splitter and
non-ideal downstream loss. Hence as shown in Figure 9.11 the measured noise power
����� of the output may not have increased through the feedforward loop. Again assum-
ing an ideal situation, the signal and power gains of the electro-optic feedforward loop
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at the optimum electronic gain point is given by

)� 
 �
�

�
)�� (9.35)

(� 
 � �(��! (9.36)

This gives a total gain of ;
�
 � �.

We now turn our attention to the injection locking of a ring laser with an input signal
field. The transfer function of the injection locked ring laser system [15, 110–112] is mea-
sured and modelled by Harb et al. [113] and Ralph et al [45], respectively. The results are
summarized in Figure 9.12. We can divide the frequency spectrum of the injection locked
transfer function into three regimes. At frequencies much smaller than the resonant re-
laxation oscillation of the slave laser (region I), the output noise variance of the injection
locked laser is given by

)� 
  (��)�� 
 ()���))���
(�� 
 ()���

(9.37)

where (� denote the intensities and )� the variances. The subscripts indicate the input,
output and free running parameters. Hence in this low frequency regime, the output
variance is a weighted sum of both the input noise variance and the free running slave
laser noise variance.

At frequencies around the laser resonance (region II), we find the noise variance trans-
fer function to be

)� 
  �)�� 
 �� � �� (9.38)

where � is the semiclassical intensity amplification factor of the injection locked system.
This is similar to that of the transfer function of a phase insensitive laser amplifier.

At even higher frequencies (region III), we move to the regime outside the laser cavity
linewidth. High frequency fluctuations of the injected field are thus directly reflected off
the front face of the ring laser. In this case, the transfer function of the noise variance is
simply

)� 
  )�� (9.39)

This regime is thus ideal for power amplification [114] since signal on the input field
is unchanged whilst the optical intensity of the input field is amplified by the injection
locked slave laser as illustrated in Figure 9.11.

In all three regimes, the optical intensity gain is given by

(� 
 � ;�(�� (9.40)

where ;� � �(�� 
 (���*���(��.

For our combined amplification system, we thus predict that the signal will undergo a
gain of;� � ��� and the power, a gain of ;� � ;��+;����, � ��. The total gain and signal
transfer coefficient is then the product of the gains and the coefficients of the individual
stages.

;
�
 � � ;� �;� (9.41)

���
�
 � �����- � �����. (9.42)
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Figure 9.13: Schematic of the combined feedforward-injection locked amplifier.

9.7.1 Experimental setup and results

The schematic of the combined signal and power amplifier is shown in Figure 9.13. Un-
like in the previous section, this experiment was done with 1064 nm light because of the
use of the Nd:YAG NPRO as the slave laser (LZH350). We took ��!��� 0.02 mW of power
from the master laser (LZH700) and introduced an input signal at 73 MHz with an am-
plitude modulator so that the frequency region of interest was well outside the cavity
linewidth of the slave laser. The signal imposed had a SNR � �7!�� 0.1 dB with the noise
level at the standard quantum limit. A half-wave plate and polarizing beam splitter com-
bination was placed before the slave laser to enable separate investigation of the signal
amplifier. The slave laser was capable of generating 360 mW of light and had a FSR of
5.8 GHz. At the output of the laser, we tapped off 2% of the optical intensity and used
this as a locking signal by monitoring the beat between the master and the slave lasers.
Finally, the remainder of the slave output was attenuated with neutral density filters to a
measurable level before the final analysis was done using a RF spectrum analyser.

Figure 9.14 shows the locus of the maximum signal transfer coefficient for various
signal gains ;�. Again, this figure demonstrates the noiseless amplification capability
of the electro-optic feedforward loop. A wide range of signal amplification gains with
�� � �!2 was obtained. With the noiseless signal amplification confirmed, we injected
the output into the slave Nd:YAG NPRO laser. It is worth noting that the signal transfer
coefficients reported in Figure 9.14 is the measured value using a photodetector with
efficiency of %��
 � �!�7 � �!�	. By direct injection of the output signal into the NPRO
laser, this efficiency is irrelevant and thus signal transfer is only limited by the mode-
matching efficiency of the injection locking. Typically, the mode-matching efficiency is
%���� � �!� � �!�	.

Our measurement of the power amplification performance is shown in Figure 9.15.
The output variances )� 
 were taken for a range of power gains and input variances. The
photodetection system used in this experiment has a saturation level at around 20 mW
making direct measurement of the slave output impossible most of the time. The use
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Figure 9.14: Locus of maximum signal transfer coefficient with varying beam splitter reflectivity.

Total gain Signal gain Power gain Signal transfer coef. Measured % power
; ;� ;� �� %

9.8 9.8 1.0 �!2 ��!2 �� �!�	 1
10.0 2.5 4.0 �!22��!22�� �!�� 1
15.8 15.8 1.0 �!22��!22�� �!�� 1
23.0 14.4 1.6 �!2 ��!���� �!�� 0.69
73.3 14.1 5.2 �!4!��!2��� �!�� 0.29
225 2.5 90 �!����!��� �!7 0.05
311 16.7 18.6 �!7���!  �� �!	 0.025

Table 9.1: Signal transfer coefficients for the combined amplifier setup for various signal and
power gain levels. � represent the fraction of output measured by the final detection system and
values in bracket are the inferred values of the combined system.

of neutral density filter means that the output variance has to be inferred from partial
detection. Nevertheless, all of the measurements suggests a close to perfect transfer of
signal variance.

Finally, Table 9.1 summarizes for the various cases of composite amplifications. From
pure signal amplification of ;� � ��!2 to large power amplification of ;� � ��, all of
which have demonstrated noiseless amplification with signal transfer coefficient �� �

�!�. The largest gain achieved in our experiment correspond to a total gain of 311 (25 dB).

9.8 Summary

This chapter has demonstrated several fundamental characteristics of the electro-optic
feedforward control loop. We have shown that with the correct amount of positive elec-
tronic gain, the feedforward can completely cancel the vacuum fluctuations introduced
at a beam splitter. As a result, we were able to achieve noiseless signal amplification
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Figure 9.15: Normalized variance of the injection locked laser as a function of the normalized
variance of the master laser at the detection frequency of 73 MHz. � represent the attenuation of
the output field before detection. The dotted line denotes perfect signal transfer of �� � �.

with performance limited only by the detection efficiency of the photodetectors. With an
amplitude squeezed beam as input, we demonstrated that noiseless signal amplification
made the modulated signals on the squeezed beam robust to lossy transmission. Finally,
when the feedforward loop was used in combination with an injection locked laser, inde-
pendently variable noiseless signal and power amplifications were demonstrated.
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Chapter 10

Quantum Nondemolition
Measurement with Electro-Optic
Control

Vizzini: Inconceivable!
Inigo: You keep using that word. I do not think it means what you think it means . . .

The Princess Bride

Overview

This chapter introduces the concept of quantum nondemolition (QND) measurements
and shows that the electro-optic feedforward loop when used in combination with a
squeezed vacuum meter input is a QND device. More generally, the squeezed vacuum
meter input can be thought of as a pre-enhancement stage and the electro-optic feedfor-
ward as a post-enhancement stage of most QND measurements.

10.1 Introduction

As early as the 1930’s, von Neumann, Bohr, Heisenberg and others [115] have hinted on
the quantum limit and the irrepeatability of precision measurements. It is not until the
1970’s that Braginsky [116] suggested the possibility of QND measurement. The example
he used was that of a mechanical bar for the detection of gravitational wave called the
Weber bar. Subsequently, many scientists [117–120] have translated this idea to the QND
measurement of electro-magnetic fields. Since then QND studies took off in nonlinear
optics more successfully than its mechanical counterpart, because of the more advanced
techniques available in optical systems. In fact, for similar reasons, the detection of grav-
itational waves has also been shifted from a mechanical paradigm to one of optics. There
are many experimental demonstrations of QND measurements [104–106, 121–128]. Most
of them use nonlinear optical properties to establish some form of coupling between the
input signal beam with an input meter beam. The idea is that after the nonlinear inter-
action, the output meter and signal beam will possess information of the original input
signal.

Bruckmeier et al. [128, 129] in recent years has also demonstrated that with the intro-
duction of a squeezed meter input as proposed by Shapiro [130], QND measurements
can be significantly improved. In this chapter we will show that the electro-optic feedfor-
ward loop can be use to provide another level of enhancement for QND measurements.

115
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Furthermore, when combined with a squeezed meter input beam the electro-optic feed-
forward loop can itself be a QND device.

10.2 Criteria for QND measurements

A sequence of repeated measurements of an observable on a stationary classical system
will always yield the same results, to within experimental errors. In another words, the
act of measurement does not have to significantly affect the system that is being mea-
sured in the classical world. However, for quantum systems this is in general not true
because of the collapse of the wavefunction of the quantum system and the Heisenberg
uncertainty principle. In the quantum world, the act of measurement will always intro-
duce perturbations on the system that is being measured. For small quantum system,
this effect can be very significant. One standard example frequently found in textbook
is the position and momentum measurement of a particle. It can be easily shown that,
as a consequence of Heisenberg uncertainty principle, the successive accurate measure-
ments of position affect the uncertainty in the momentum of the given system. This in
turn results in an indeterminacy in subsequent results of position measurements. On the
other hand, the accurate determination of the momentum of a quantum system seems
to not have such devastating effect on subsequent momentum measurements. The type
of measurement similar to the measurement of a particle momentum is called quantum
nondemolition (QND) measurement.

Quantum 
Nondemolition 
Measurement

Signal in

Meter out

Signal out

Meter in

Figure 10.1: Schematic of a QND experiment. The input signal is the state of interest and nor-
mally contains interesting information which we are trying to extract. The meter out is where the
information is obtained. This is normally classical in nature (eg. photocurrent). The meter input
is the probe sent into the measurement system. Sometimes, the probe can simply be the vacuum
fluctuations.

Several more precise definitions of a QND measurement will be presented in the re-
maining of this section. From here onwards, we use the symbol & to denote the system
of interest (signal) and 0 to denote the meter introduced to measure the system. A QND
measurement can then be thought of as a special interaction between the system and the
meter as shown in Figure 10.1. We also restrict ourselves in the linearizable , travelling-
wave regime of quantum optics. So that all quantum fluctuations can be considered to
only the first order. A consequence of this is that the quadrature amplitudes can be used
and we avoid the complexity of dealing with photon number and phase operator for
light.

Braginsky [116] defines the QND observable - as an observable which satisfies the
following equation

�B�-� � �� (10.1)

where B is the evolution operator for the system and meter. This equation defines well
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the non-demolition property of the observation of - by the meter, but does not address
the efficacy of the measurement itself. Subsequently Caves et al. in one of their papers
[120] decomposed this general definition of a QND measurement into two separate con-
ditions. The first condition is that the QND observable must commute with the system
Hamiltonian.

���� -� � � (10.2)

This is called the QND variable condition. Secondly, the interaction Hamiltonian between
the system and meter must also commute with the observable,

����
� -� � �! (10.3)

The second condition ensure that the interaction between the system and meter is QND.
The simultaneous fulfilment of both equations is sufficient to satisfy the original defini-
tion of Eq. (10.1).

An even more practical version of the criteria for QND is later given by Holland et al.
and Poizat et al [8, 131, 132]. We will list the criteria and discuss them individually:

� Efficiency of meter transfer
The meter transfer coefficient, �!, is a figure of merit for the amount of information
that is obtained by the QND measurement.

�! �
�/%� 


�

�/%��
�

(10.4)

where we have used the superscripts to represent the input and output of the signal
and the meter beam. A �! � � is therefore a perfect measurement of the input
signal. However, this criteria does not actually guarantee that the output signal
still retain its original information. Thus we require another transfer coefficient.

� Efficiency of signal transfer
As defined in Chap. 9 the signal transfer coefficient of a measurement is given by

�� �
�/%� 


�

�/%��
�

(10.5)

Again, a �� � � means that the input signal experiences no degradation or change
from the measurement and is thus an ideal condition. The sum of both signal and
meter transfer coefficients, called the total transfer coefficient � � �� 
 �!, thus
tells us the information performance of the QND measurement.

Apart from information considerations, a quantum system is also characterized by its
fluctuations and correlations. The next three criteria are their measures:

� Information retrieval
The correlation between the meter output and the signal input is given by

?�	� 

! � 	 ��

� � �
�	 ��

� 	
� 

! ��/�� �	 ��

� ��	� 

! ��

) ��
� ) � 


!

(10.6)

Where the subscript �<3 denotes the symmetric ordering of the operators. This cri-
terion is therefore a measure of information retrieval, since a strong correlation be-
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tween the signal input and the meter output means that a good amount of informa-
tion has been retrieved by the meter.

� Back action evasion
The formal equation to describe back action evasion is given by the following equa-
tion

���0�� -� � � (10.7)

Where ��0� is the interaction Hamiltonian between the detector and the meter.
However, this is not very intuitive. A more practical measure of back action evasion
is given by the following correlation

?�	� 

� � 	 ��

� � �
�	 ��

� 	
� 

� ��/� � �	 ��

� ��	� 

� ��

) ��
� ) � 


�

(10.8)

Similar to the signal transfer coefficient, strong correlation between the input and
the output signal suggest that the measurement introduce no significant degrada-
tion of the signal beam. Back action due to the measurement process is thus evaded
by the system.

� Quantum state preparation
The final meaningful correlation that can be obtained from the 4-port QND as
shown in Figure 10.1 is the correlation between the signal output and meter out-
put.

?�	� 

� � 	� 


! � �
�	� 


� 	� 

! ��/� � �	� 


� ��	� 

! ��
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(10.9)

When the two outputs are strongly correlated, a measurement of the meter output
can determine the state of the signal output. Hence the correlation coefficient given
is known as the state preparation correlation.

The correlation coefficients given above can take any value between �� and �. For
measurements where fluctuations are Gaussian, it is more convenient to express these
characteristics in terms of their covariances,

)��)� � ) � 

!

�
�� ?�	� 
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(10.10)
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(10.12)

Which takes value of � to 
�. Obviously, it is an overkill to have all five of the figures
of merit given above since there are overlapping information between the covariances.
Poizat et al. [132] proposed that in most situations, a 2-dimensional representation of the
figures of merit is sufficient for a given QND measurement.

Figure 10.2 shows the QND representation in the 2-dimensional diagram. On the �-
axis, the total transfer coefficient is chosen. A good measurement in terms of information
is therefore located to the right of the 2-D diagram. On the +-axis, the quantum state
preparation covariance is chosen. We follow the conventional notation and represent the
covariance as )��! � )2��. This covariance is chosen instead of the others because it is the
only covariance given above that does not depend on the input meter and signal states.
Thus, this is a more practical measurement in real experiment. With these two figures,
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Figure 10.2: A two dimensional representation of QND measurement. The �-axis is the total
transfer coefficient and the �-axis is the quantum state preparation covariance ����

the 2-D space is divided into 4 quadrants by the )��! � � and the � � � lines. As we shall
shortly see in the next section, these lines represent the boundaries between quantum and
classical measurements. The top left quadrant is called the classical quadrant, where the
performances of both the information transfer and quantum correlation can be reached
entirely classically. The top right quadrant is the noiseless amplification or quantum optical
tap quadrant. In this regime, information transfer has exceeded the quantum limit. How-
ever, strong correlation does not yet exist between the output states of the measurement.
The results obtained in Chap. 9 thus lie within this quadrant since the in-loop signal does
not correlate beyond the quantum limit with the output amplified signal. The bottom
left quadrant is the quantum state preparation quadrant. In this regime, the output states
are strongly correlated to each other. Hence, the measurement of one can be use to de-
termine and prepare the quantum state of the other. Finally, the QND quadrant is the
bottom right quadrant where performances in both information transfer and quantum
correlation exceed the quantum limit.

In the next section, we examine the use of a normal beam splitter as a measurement
device and show that it corresponds to the intersection point of the quadrants with a
coherent vacuum meter and a quantum noise limited signal inputs.

10.3 The beam splitter

Let us consider a lossless beam splitter as a measurement device where the two input
ports are now regarded as the signal and meter inputs. The transmitted output beam is
now our signal output and the reflected beam our meter output. We restrict ourselves
in the linearizable regime and only consider all quantum fluctuations to the first order.
Our analysis can therefore be restricted to the quadrature amplitude of interest by simply
writing the small fluctuating terms Æ		 for both the signal and meter inputs. The output



120 Quantum Nondemolition Measurement with Electro-Optic Control

beams are thus given by
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where � is the transmittivity of the beam splitter. The noise variances are easily calculated
as )	 � �Æ	�

	 Æ		�, giving
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In terms of these noise variances, the signal to noise ratios and transfer coefficients are
thus given by
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similar to the convention used in Chap. 9, where )	 and denotes the total signal and noise
variance of 
 and )	�� is the noise variance level of 
 (see Eq. (9.28)). We shall now restrict
ourselves to a quantum noise limited signal input, ) ��

��� � �. The signal and meter transfer
coefficients of the beam splitter can then be obtained by making simple substitutions of
the above equations,
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For a coherent vacuum meter input ) ��
! � �, the total transfer coefficient of the beam

splitter is � � �, independent of its transmittivity. This suggest that an increase in the
signal transfer is at the expense of the meter transfer coefficient and vice versa.

The covariance of the beam splitter is given by
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We note that for uncorrelated fields

�Æ		 Æ	�� � Æ	��Æ	�
	 �� (10.24)

ie. the average contribution of the product of uncorrelated fields is zero. Again when
both the signal and meter input are quantum noise limited, ) � 


��! � � independent of the
transmittivity of the beam splitter. Thus, we have shown that a beam splitter measure-
ment with quantum noise limited signal and meter inputs corresponds to the intersection
point of quadrants in the 2-D QND representation.

The introduction of a squeezed vacuum meter input can improve the beam splitter
measurement. Eqs. (10.22) shows that a smaller value of the input meter variance leads
to improvements in the transfer coefficients. Furthermore, Eq. (10.23) also show likewise
improvement to the covariance of the beam splitter outputs. This suggests that a beam
splitter with a squeezed vacuum meter input is a QND device as proposed by Shapiro
[130] and demonstrated in recent years by Bruckmeier et al. [128, 129]. Figure 10.3 shows
the results of the calculation with 0 to 6 dB of vacuum squeezing as meter input for the
beam splitter.
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Figure 10.3: Beam splitter with squeezed vacuum input. (a) � � ��� and (b) � � ���. Both plots
show the locus of 0 to 6 dB squeezing. Circles represents meter squeezing with integer number of
decibels.

10.4 Electro-optic feedforward as a QND measurement

Let us now examine the electro-optic feedforward loop in light of the QND criteria. Fig-
ure 10.4 again shows the schematic of the feedforward loop. The previously unused
beam splitter port is now our meter input port which can be injected with a squeezed
vacuum. The in-loop beam is now the meter output beam and the transmitted beam is
the signal output beam. We use the superscripts to denote the three stages of the signal
and meter: The input (��), the output (� 
), and the final ( ). The signal and meter outputs
are simply the respective output fields of the beam splitter. The final stage of the meter
however, denotes the measured photocurrent of the feedforward loop and is thus depen-
dent on the efficiency of the in-loop meter detector %!. Similarly, the final stage of the
signal represents the photocurrent of the signal detector after the feedforward loop. For
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convenience, we can lump all downstream losses after the feedforward loop into a total
output efficiency %�.

ε
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Figure 10.4: Electro-optic feedforward used as a QND measurement scheme

The photocurrents of the meter and signal are given by,
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where Æ	�! and Æ	�� are the vacuum fluctuations introduced by the efficiency of the
meter detector and the total output loss. Note that the output and the meter vacua are
uncorrelated and therefore cannot be combined together as field amplitudes.

Similar to the previous section, we find the transfer coefficients of the feedforward
loop by making substitutions
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and we obtained
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The covariance of the scheme is given by
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With some algebra, the covariance can be shown to be
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A surprising results since it shows that the covariance is independent of the gain of the
feedforward loop.

From the results of Eqs. (10.29), (10.30) and (10.34), it is clear that electro-optic feedfor-
ward can only affect the signal transfer coefficient. Leaving the meter transfer coefficient
and the covariance unchanged. The improvement of the signal transfer can be explained
as follows. Any anti-correlations between the signal input and output fields will reduce
the signal transfer. However, the anti-correlation as explained in Chap. 9, is entirely due
to the input meter fluctuations and is still information stored in the in-loop photocurrent.
We can therefore make use of electro-optic feedforward control to cancel and correct for
the anti-correlation. The optimum amount of electro-optic feedforward gain is obtained
by differentiating Eq. (10.30) in terms of 5,
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This gives an optimum final signal transfer coefficient of

�  
����
 �

%!��� �� 
 %���
 )! � %!�

%!��� �� 
 %���� )!� 
 )! � �� 
 �
(10.36)

The QND results after feedforward is therefore shifted towards the right hand side of the
2-D QND diagram without any detrimental effect on the covariance of the measurement
(see Figure 10.5). The numerical calculations performed are all based on realistic experi-
mental parameters. The electro-optic feedforward with a squeezed vacuum meter input
is hence a very good QND device with performance potentially comparable to many of
the best QND proposals.
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Figure 10.5: QND performances with squeezed vacuum meter input and optimum electro-optic
feedforward gain ���	. Circles represent points without electro-optic feedforward but with a
squeezed vacuum meter input of 0, 1, 2, 3, 4, 5, and 6 dB squeezing. Arrows represent the
improvements with optimum electro-optic feedforward. Top: Results with perfect efficiencies
�� � �� � �. Bottom: Results with realistic efficiencies �� � �� � ���� Left: Beam splitter trans-
mittivity � � ���. Right: Beam splitter transmittivity � � ���

10.5 Pre- and post- enhancement of a QND measurement

Since we are restricting the analysis to the linearizable regime, we can make use of matrix
representation to describe QND measurements. In general, we can write the signal and
meter outputs as a vector obtained by the multiplication of a QND matrix with an input
state vector,
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Where Æ	�	 are the vacuum fluctuations due to losses; �	 and A	 represent the coupling
coefficient of the signal and meter outputs with the 
th input mode, respectively. The
conditions for QND can then be expressed as

�� 	 �� (10.38)
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�10.5 Pre- and post- enhancement of a QND measurement 125

Most linear processes have the principle diagonal terms �� and A! strongly coupled (as
well as the off diagonal terms �! and A�) and are thus unsuitable for QND measure-
ment. Eqs. (10.38) and (10.39) are basically the conditions for back action evasion. This
condition is normally achieved via the phase sensitivity of some nonlinear interaction
process. Eq. (10.40) on the other hand, ensures high measurement precision by the meter.

We can express the feedforward loop as a matrix equation and obtained
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Thus in the limit of %!� %�� � and �� �, the QND measurement becomes perfect.
Another example of this representation is given by reference [128] for the QND mea-

surement using an OPA
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where �� � -�8 is the ratio of losses to parametric interaction strength. In the limit of
� � � this system is again a perfect QND device. However, in any nonlinear interaction
process, loss is inevitable. One way to alleviate the problem is to pre-enhance the mea-
surement by the injection of squeezed vacuum making Æ	��

! � �. This thus relaxes the
QND conditions given in Eqs. (10.39) and (10.40).

Quantum 
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Figure 10.6: QND measurement with pre- and post- enhancements from a squeezed meter input
and a meter feedforward, respectively.

We can, by the same token regard the electro-optic feedforward control as a post-
enhancement stage of a given QND measurement. Since in most situations the meter
output field is measured and converted into photocurrent readout, this information can
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be used to correct and further improve the signal output. Figure 10.6 shows the concep-
tual schematic of a pre- and post- enhanced QND device. The final output of the scheme
is given by
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Where ' is the squeezing parameter; #�$� % and & denote the expressions for feedfor-
ward control. Both the pre- and post- enhancements are widely applicable to many QND
devices, since no assumption was made on the form of the QND matrix.



Chapter 11

Quantum Teleportation of
Continuous Variables

Kirk: ”You’d think they have people beaming down everyday.”
Spock: ”Yes, curious lack of interest.”

Errand Of Mercy, Star Trek.

Overview

This chapter examines the quantum teleportation of the quadrature amplitudes of
electro-magnetic field from a small signal communication point of view. We show that
mixed bright squeezed beams can provide the entanglement required for teleportation.
Specific experimental criteria for teleportation of bright beams in terms of the informa-
tion transfer and quantum correlations are discussed. The relevant published paper to
this chapter is

� “Teleportation with bright squeezed lights”,
T. C. Ralph and P. K. Lam, Phys. Rev. Lett. 81, 5668 (1998).

11.1 Introduction

The word “teleportation” seems to always inevitably conjure up images from science
fiction movies, in which machines can make material object spontaneously disappear into
thin air and reconstitute itself at some remote sites. In common language, teleportation is
simply “the disembodied transport of an object from one place to another” [133, 134]. For
classical information, teleportation seems to be rather ubiquitous nowadays. A simple
telephone call for example, has already satisfied the description of the statement and can
be known as voice teleportation. The sound wave which impacts on the microphone
is disembodied and converted into electrical current, and in some cases optical field,
during transport and then synthesized back to voice via a speaker at the receiver phone.
Another everyday example of teleportation is telefaxing, where information written on
a piece of paper is teleported to another fax machine1. The fax machine at the remote
site, can even provide material (paper) identical to the original for the reconstruction

1The wireless telegraph is not difficult to understand. The ordinary telegraph is like a very long cat. You
pull the tail in New York, and it meows in Los Angeles. The wireless is the same, only without the cat. –
Albert Einstein

127
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of information. Hence, more technically, teleportation is a process with the following
qualitative attributes:

� Information or material must be transported from a sender to a receiver.
Although the teleportation of atomic system has been proposed and demonstrated
to a limited extent [135], we will only devote our attention to the transport of optical
states in this chapter.

� Information or material must involve some form of disembodiment during transport.
This is to ensure that the direct propagation of a light beam or the throwing and
normal transporting of an object is not classified as teleportation. A property that
is perhaps useful in situation where interception is undesirable as in a quantum
cryptographic system.

� Information or material transport must be speedy.
Depending on the form of disembodiment, the speed of transport can be the speed
of light, electrical current or sound wave.

� The reconstruction process at the receiver must preserve as many physical properties of the
original as possible.
In particular, we would like to consider the simultaneous transportation of pairs of
canonically conjugate observables. We can therefore no longer regard remote QND
reconstruction [136] as an example of teleportation since QND measurements are
only concerned with a single observable.

The statements above are still rather vague and qualitative. In particular, we need to
find figures of merit on the quality of the reconstructed copy. Furthermore it seems that
because the observables in consideration here are canonical conjugates of each other, the
Heisenberg uncertainty principle (HUP) implies that teleportation of information will not
surpass a given quantum limit. This is because HUP precludes the simultaneous precise
determination of conjugate observables. A remarkable discovery by Bennett et al. [137]
however, found that the unknown state of a spin-��	 particle could be “teleported” be-
yond this quantum limit to a remote station through the transmission of classical infor-
mation, provided the sender and receiver share an Einstein-Podolsky-Rosen type (EPR)
entangled quantum pair [138]. We call this type of transport “quantum teleportation”.

Experimental realizations of quantum teleportation have so far been achieved by
several groups on different systems. Boschi et al. [139] and Bouwmeester et al. [140]
demonstrated that the polarization state of a single photon can be quantum teleported.
Their demonstration have been restricted by the efficiency inherent in photon counting
experiments. Davidovich et al. [135] have also proposed a scheme for the teleporta-
tion of atomic state between two high-Q microwave cavities. Developments by Vaidman
[141], Braunstein and Kimble [142] have shown the possibility of the teleportation of con-
tinuous quantum variables, such as the quadrature amplitudes of the electromagnetic
field. This enables high efficiency homodyne detection techniques to be used. The ini-
tial scheme proposed was to make use of below threshold OPO as an EPR source [143].
Furusawa et al. [134] recently proceeded to demonstrate the first quantum teleportation
of continuous variables by a method using the mixing of squeezed light similar to the
proposal of this chapter.

In this chapter, we will show that two bright squeezed sources can be used to pro-
duce the required EPR state for quantum teleportation. The significance of this to the
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below threshold OPO is three-fold: (i) It illustrates that EPR state twin beams can be pro-
duced from individual squeezed inputs. This is of practical as well as general interest as
compact and reliable, bright squeezed sources (eg. pump suppressed diode lasers [144])
appear feasible in the short term; (ii) As all beams are “bright”, it provides additional
degrees of freedom in the experimental setup. This is an improvement to using para-
metric down conversion as the EPR source since the necessary quantum correlations for
teleportation only exist near threshold [69] and; (iii) It highlights the physics by enabling
a direct analogy with electro-optic feedforward described in Chap. 9 to be drawn.

We proceed to analyze the setup from a small signal, quantum optical communica-
tions point of view. Success is measured by the precision with which the spectral vari-
ances of the conjugate input variables (intensity and phase) can be reconstructed on the
teleported output. Specific experimental criteria for teleportation of bright beams are
proposed.

11.2 Teleportation with classical channels
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Figure 11.1: Simple transmission scheme.

Let us start off with a rather simple optics experiment to attempt the teleportation of
an optical state. Figure 11.1 depict schematically a setup where an input signal encoded
in a light beam is detected and its amplitude fluctuations is converted into photocurrent.
This photocurrent is then fedforward to a remote station where the information is used to
reconstruct the original signal beam by encoding the photocurrent signal on a new laser
beam. Obviously, the act of detection at the home station constitutes a valid disembodi-
ment of the original optical state. However, it is also equally obvious that such a system
at best can only be able to reconstruct the amplitude quadrature information since no
phase information has actually been measured.

In order to overcome this problem, we now add another detection system and mea-
sure simultaneously both the amplitude and phase quadratures of the input light as
shown in Figure 11.2. The reconstruction of the original light beam at the remote site
is similarly done in two stages, where the amplitude and phase fluctuations of the new
laser beam are modulated by the respective information carried by the respective mea-
sured photocurrents.

Again using the linearized formalism, we write the input field as �-����� � -�� 


Æ �-������ where �-�� is the field annihilation operator; -�� is the classical, steady state, co-
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Figure 11.2: Classical teleportation scheme.

herent amplitude of the field (taken to be real); and Æ �-�� is a zero-mean operator which
carries all the classical and quantum fluctuations. For bright beams the amplitude noise
spectrum is given by

) �
�� ��� � ��Æ-����� 
 Æ-�

�������� � ��Æ	�
�������� (11.1)

where the absence of hats indicate Fourier transforms have been taken. We denote all am-
plitude quadrature parameters by a “
” subscript or superscript and phase quadrature
parameters by “�”. The phase noise spectrum is then given by
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We can write the input light amplitude noise spectrum as )�
�� � ) �

� 
 ) �
� . Where

) �
� is the signal power and ) �

� is the quantum noise power. Similarly the phase noise
spectrum can be written ) �

�� � ) �
� 
 ) �

� . Suppose the input light is split into two equal
halves with a beam splitter as shown in Figure 11.2. The amplitude spectrum is detected
in arm 1 and the phase spectrum is detected in arm 2 leading to the following spectra
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As the amplitude and phase quadratures are conjugate observables, Heisenberg uncer-
tainty principle states that it is not possible to obtain perfect knowledge of both simul-
taneously. This is ensured by the noise penalties, )�

 and ) �
 introduced by the beam

splitter. For the case of only vacuum entering at the empty port of the beam splitter
) �
 � ) �

 � �.
The measurement penalty may be reduced for one quadrature by introducing

squeezed vacuum into the empty port such that either )�
 2 � 2 ) �

 or ) �
 � � � ) �

 ,
however any improvement in the measurement of one quadrature is always at the ex-
pense of degrading the measurement of the other. To quantify this we consider the trans-
fer coefficients of the two quadratures defined by two signal transfer coefficients,
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for the amplitude quadrature and for the phase quadrature, respectively. Here �/%

stands for the signal to noise ratios of the input quadratures, ��, and the detected fields,
�� 	. We find quite generally
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Since we wish to derive a quantum limit to the measurement scheme, we assume that
our input beam is in a minimum uncertainty state by making )�� ) �

� � �. Using the
Heisenberg uncertainty principle for the quadratures )�

 ) �
 � �, we find
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for any simultaneous measurement of both quadratures using the measurement scheme
shown in Figure 11.2. This places an absolute upper limit on the information that can
possibly be transmitted through the classical channel.

The information arriving at the receiver is imposed on an independent beam of light
using amplitude and phase modulators. We now wish to consider how well this can be
achieved. The problem is that the light beam at the receiver must carry its own quantum
noise. For small signals the action of the modulators can be considered additive and we
will assume that they are ideal in the sense that loss is negligible and the phase modulator
produces pure phase modulation and similarly for the amplitude modulator. The output
field is given by
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and the fluctuations imposed by the modulators can be written as the following convo-
lutions over time [107]
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where �� and �� describe the action of the electronics in the amplitude and phase chan-
nels respectively. The amplitude and phase quadrature fluctuations of the receiver beam
are represented by Æ �	�

� and Æ �	�
� respectively. The amplitude and phase quadrature

noise spectra of the output field are
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where various parameters have been rolled into the electronic gain of the amplitude chan-
nel, 5� and 5�, which is proportional to the Fourier transform of ��.

By making �5���� �5��� �� �, the signal transfer coefficient for the output ��� �

�/%�� 
��/%
�
�� can satisfy the equality in Eq. (11.8), thus realizing the maximum allow-

able information transfer. However the output beam would then be much noisier than
the input beam and hence yield a very dissimilar state. A measure of the similarity of the
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input and output beams is given by the amplitude and phase conditional variances [131];
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If ) �
�* 
 ) �

�* � � then the input and output are maximally correlated. For our system we
find

) �
�* 
 ) �

�* � ) �
� 
 ) �
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 �5	��) �
 
 �5���) �

 (11.15)

Once again any attempt to suppress the noise penalty in one quadrature, say by squeez-
ing the receiver beam, results in a greater penalty in the other quadrature. The best result
is obtained for 5� � 5� � � and a coherent receiver beam giving

) �
�* 
 ) �

�* � 	 (11.16)

That is the best correlation between the states is achieved by not transferring any informa-
tion. In principle one could measure )�

�* directly by performing a perfect QND measure-
ment of the amplitude quadrature of the input field and electronically subtracting it from
an amplitude quadrature measurement of the output field. In a similar way )��* could in
principle be measured using a perfect QND measurement of the phase quadrature of the
input field. Clearly this is impractical. However the correlations can be inferred quite
easily from individual measurements of the transfer coefficients and the absolute noise
levels of the output field via

) �
�* � ��� ��

� �) �
� 


) �
�* � ��� ��� �) �

� 
 (11.17)

These results are summarized in Figure 11.3 where ��
� 
��� versus ) �

�*
)
�
�* are plotted as

a function of increasing �5��. The dotted lines represent the limits set by purely classical
transmission with symmetric emphasis on both quadrature amplitudes.

11.3 Teleportation with quantum and classical channels

11.3.1 The requisite EPR state

We now consider the electro-optical arrangement that is shown in Figure 11.4. It is similar
to that proposed by Braunstein and Kimble [142]. However in contrast to reference [142]
we have replaced the parametric down converter with two coherently related amplitude
squeezed sources which are mixed on a 50:50 beam splitter (BS1). One of the sources is
phase shifted by  �	 with respect to the other before mixing.

The results of the mixing at the beam splitter of these two amplitude squeezed
sources, is two output fields with EPR-type entanglement. Figure 11.5 shows the ball-on-
stick picture of the situation. As originally proposed by Einstein-Podolsky-Rosen [138],
an EPR entanglement is the condition of a pair of quantum states correlated to each other
via two canonically conjugate variables. For example, two particles are said to have EPR
entanglement when they are correlated with each other via both position and momen-
tum. Similarly, a quantum optical analogue of the situation is that two optical states
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lines indicate the classical limits.

are EPR entangled when correlations exist in both the amplitude and phase quadratures
between the two states. Ou et al. [143] have demonstrated that such a optical entangle-
ment does exist between the two output light fields of a nondegenerate below threshold
OPO. When two the detection systems were set to measure the amplitude quadrature of
the output fields, the difference of the photocurrents will show intensity squeezing [20].
Conversely, when the detection systems are measuring the phase quadrature of the two
output light field, the sum of the photocurrents will exhibit phase squeezing. Using the
ball-on-stick picture presented in Chap. 2, we obtain similar results with the mixing of
two bright amplitude squeezed beams.

11.3.2 Quantum teleportation results

Once the EPR entanglement is confirmed, one of the beams is sent to where we wish
to measure the input signal. There it is mixed with the input signal beam (which is of
similar intensity) on another 50/50 beam splitter (BS2). We combine them in phase such
that there are “bright” and “dark” outputs. The bright beam is directly detected to ob-
tain its amplitude quadrature. The dark beam is mixed with a local oscillator (LO) and
homodyne detection is used to measure its phase quadrature (represented schematically
in Figure 11.4). The photocurrents obtained are sent to amplitude and phase modulators
situated in the other beam coming from the mixed squeezed sources.

Following the approach of Chap. 9, the amplitude noise spectrum of the output field
is found to be
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�� (11.18)
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Figure 11.4: Schematic of quantum teleportation arrangement. SQZa and SQZb are coherently
related squeezed sources with the intensity of � much greater than that of �. The signal input and
local oscillator (LO) must also be coherently related to the squeezed sources. BS1 and BS2 are
50:50 beam splitters.

and similarly the phase noise spectrum is given by
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Here the amplitude (phase) spectra of beams � and " are given by ) �
� () �

� ) and ) �
� () �

� ),
respectively. The cross coupling of the phase spectrum of the weak beam, ", into the am-
plitude spectrum of the output is due to the  �	 phase shift. Consider first the situation
if beams " and the signal are blocked so that just vacuum enters the empty ports of the
beam splitters. The setup is then just a feedforward loop. We have shown in Chap. 9 and
in reference [145] that the measurement penalty at the feedforward beam splitter (BS1)
can be completely cancelled by correct choice of the electronic gain, allowing noiseless
amplification of )�

� to be achieved. This cancellation can be seen from Eq. (11.18) with
the electronic gain set to 5� �

�
	. The remaining penalty is due to the in-loop beam

splitter (BS2) which, here, is allowing us to detect both quadratures. But now suppose
we inject our signal into the empty port of the in-loop beam splitter. With 5� �

�
	 we

find Eq. (11.18) reduces to
) �
� 
 � 	) �

� 
 ) �
�� (11.20)

and if beam � is strongly amplitude squeezed such that )�
� 22 � then

) �
� 
  ) �

�� (11.21)

Now consider the phase noise spectrum of Eq. (11.19). If we impose the same electronic
gain condition on the fed-forward phase signal as we have for the amplitude signal we
will get an output spectrum

) �
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 � 	) �

� 
 ) �
�� (11.22)
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Figure 11.5: EPR entanglement.

If beam � is strongly amplitude squeezed then the uncertainty principle requires )�� � �

so this is not a useful arrangement. However if we perform negative rather than positive
feedforward on our phase signal such that 5� � ��	 then we will cancel the phase noise
of beam � and instead see the vacuum noise entering at the empty port of the feedforward
beam splitter. Finally by injecting our low intensity beam " at this port we find

) �
� 
 � 	) �

� 
 ) �
�� (11.23)

Beam " can be made strongly amplitude squeezed without affecting Eq. (11.21) thus giv-
ing us

) �
� 
  ) �

�� (11.24)

Hence we have the remarkable result that we can satisfy both Eqs. (11.21) and (11.24)
simultaneously even though the only direct connection between the input and output
fields is classical. More generally, the spectral variance at some arbitrary quadrature
phase angle ($) is given by
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� (11.25)

This form makes it clear that, provided beam � and beam " are both strongly ampli-
tude squeezed, the input and output spectral variances will be approximately equal for
any arbitrary quadrature angle (not just amplitude and phase). Note that neither the
sender or receiver obtain quantum limited information about the teleported field due to
the presence of a noisy anti-squeezed quadrature in both the phase and amplitude mea-
surements.

Experimental conditions will in general be non-ideal. We define teleportation as hav-
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ing been unconditionally achieved when both the correlation and the information trans-
fer have exceeded the classical limits (ie. ��

� 
 ��� � � and ) �
�* 
 ) �

�* � 	) at some RF
detection frequency. In Figure 11.6 we plot ��� 
 ��� versus ) �

�* 
 ) �
�* as a function of

feedforward gain for various values of squeezing. Notice that although moderate values
of squeezing allow either information transfer or state reconstruction to be superior to
the classical channel limit, squeezing must be greater than 50% before both conditions
can be met simultaneously and hence teleportation achieved.
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Figure 11.6: Performance of quantum teleportation arrangement. Information transfer (� �
� �

��
� ) is plotted versus state reconstruction (� �

�� � � �
�� ) for �� � �� � ��� starting from � with

increments of ����. Circles, pluses, squares and crosses are for 25%, 50%, 75% and 90% squeezing
from both sources, respectively. Dashed lines indicate the classical limits and shaded region are
region of unconditional quantum teleportation.

In summary we have shown that the EPR type correlation needed to produce tele-
portation of continuous variables can be established using two bright squeezed sources.
We have analyzed the setup from a small signal quantum optical point of view. We have
established criteria for deciding if teleportation has been achieved and have shown that
the mechanism can be understood in terms of electro-optic feedforward control.



Chapter 12

Conclusions

Roads? Where we’re going we don’t need...roads.

Dr. Emmet Brown, Back to the Future

12.1 Summary of the squeezing results

This thesis reports the generation of optical squeezed state by ���� nonlinear processes.
In the SHG experiment, we have observed 2.1 dB of intensity quadrature squeez-

ing from the second harmonic output. A modular theory for noise propagation in our
SHG experiment is developed. The experimental data and the theoretical predictions are
shown to be in excellent agreement with each other.

Our investigations into the limiting factors of SHG squeezing reveal that competition
between nonlinearities can occur within a single monolithic nonlinear crystal. We find
that in the presence of competition, the second harmonic output power can be optically
clamped. Our study of the quantum noise of competition suggests that the onset of com-
petition degrades the second harmonic squeezing. This is a hitherto unpredicted limit
for SHG squeezing. An improvement on the SHG squeezing by suppressing the onset of
competition with intra-cavity dispersion is proposed.

The classical study of the OPO process has facilitated us with crucial information for
the optimal design of an OPO for squeezed vacuum generation. Using a low loss OPO
with large escape efficiency, we have observed more than 7 dB of vacuum squeezing at
70% of threshold. Limits to the observed vacuum squeezing are discussed. In particular,
we find that the phase jitters of the OPO system becomes the dominant limiting factor
for strong vacuum squeezing when the other efficiencies of the system are optimized.
The OPO can be operated as an amplifier when an input seed wave is used. By locking
the relative phase of the seed wave in quadrature with the second harmonic pump, the
input seed wave underwent parametric de-amplification and 4 dB of intensity squeezing
is observed from the OPA output.

12.2 Summary of the electro-optic feedforward control results

With the use of an electro-optic feedforward loop, we demonstrate that vacuum fluc-
tuations introduced at a beam splitter can be compensated with the correct amount of
feedforward gain.

The first application of this quantum noise control via an electro-optic feedforward
loop is the noiseless signal amplification of a coherent input. The results achieved,
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�� � �!��, with this simple setup is limited only by the efficiency of the photodetec-
tors and is comparable to most of the proposed noiseless amplification schemes. When
used in combination with an injection locked laser, we have proceeded to demonstrate
the independently variable signal and power amplifications. Large total gain, as high as
; � 7��, has been achieved while maintaining excellent signal transfer.

More interesting applications were demonstrated when the feedforward loop is used
in conjunction with squeezed light. We have shown that the noiseless signal amplification
of a squeezed input can lead to robust transmission of modulation signals in the squeezed
beam. Even in the presence of large downstream loss (2 "), our results obtained by the
feedforward amplifier still exceed the performance of an ideal (no loss) phase insensitive
amplifier.

The injection of squeezed vacuum into a feedforward loop is shown to corresponds to
a QND measurement. Theoretical modeling using achievable experimental parameters
suggest excellent performance of the QND device. In a more general sense, we can utilize
the injection of squeezed vacuum state and the electro-optic feedforward control as two
pre- and post- enhancement stages of a QND measurement.

Finally, we propose the possibility of quantum teleportation using two electro-optic
feedforward loops and two sources of squeezed light. Measures based on information
transfer and quantum correlation are also proposed for the characterization of quantum
teleportation.

12.3 Future research

12.3.1 Mode-locked OPO via competing nonlinearities

The competing nonlinearities described in the SHG experiment of Chap. 6 are surpris-
ingly ubiquitous in many experiments. Since the onset of competition leads to a degra-
dation of the second harmonic squeezing, it is regarded as a parasitic effect for squeezed
state generation. However, a precise control of the onset of competition can lead to useful
application as a frequency comb generator. When the nonlinear crystal cavity is driven
with a modulation frequency equal to its cavity FSR, two effects will occur. Firstly, the
incident fundamental beam entering the cavity will experience an energy transfer to its
sidebands due to the existence of the modulation. Since these sidebands are at one FSR
away, they are themselves resonant modes of the nonlinear cavity. The build up of these
intra-cavity sideband fields can possibly lead to the production of an optical frequency
comb [17, 146, 147]. Secondly, the generation of intra-cavity NDOPO can facilitate large
frequency tuning of the optical comb [148] which may be useful as an optical frequency
reference. We also anticipate that such systems will produce pulsed outputs similar to
a mode-locked laser. Perhaps, with the variation of temperature and cavity length, the
pulse width of the mode-locked OPO can be controlled. The device mode-locked OPO
can hence potentially be a frequency and pulse width tunable light source.

12.3.2 Implementations of QND measurement and quantum teleportation

The proposals of Chap. 10 and Chap. 11 have not yet been implemented experimentally.
The author feels that experimental implementation of these two ideas can possibly lead
to more interesting physics not yet discovered by the theoretical models used.
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With the availability of a strongly squeezed vacuum and a carefully designed electro-
optic control loop, calculations done in Chap. 10 suggest that the QND measurement
achievable by the proposed method should have excellent performances in both the
quantum correlations and the total signal transfer coefficients.

Although quantum teleportation has been demonstrated in many experimental sys-
tems [134, 139, 140], many questions still exist in the characterization of the results and the
possible applications of quantum teleportation. Our proposal of characterizing the per-
formance of the teleporter by measurements of quantum correlations and signal transfer
coefficients are different to the characterization via a measurement of the fidelity

� � �����=� 
����� (12.1)

where ����� is the input ket and =� 
 is the density function of the output state. Depending
on the optical state undergoing teleportation and its application, one measure may have
advantage over the other.

12.3.3 The squashed state of light

X+

X-

(a)

(b)

Figure 12.1: The squashed state of light. (a) The squeezed state (black) and a minimum uncer-
tainty coherent state (grey). (b) The squashed state (black) has a squeezed quadrature whilst the
orthogonal quadrature is still quantum noise limited.

The observation of sub-shot-noise photocurrent within an electro-optic control loop
was observed by Walker et al. [149] and Machida et al. [150] not long after the first demon-
stration of squeezed light. The generation of this in-loop squeezing or squashed light [151],
as is commonly called, is much easier than the generation of real squeezing. Shapiro
et al. [152] pointed out that this sub-shot-noise in-loop light beam does not obey the free
field boson commutation relation. Consequently the reduction in the noise of one quadra-
ture does not necessarily accompany an increase of noise in the orthogonal quadrature
as shown in Figure 12.1. However, attempts to utilize this sub-shot noise light by directly
coupling it out of the electro-optic control loop only yield, at best, quantum noise limited
results.

Recently, Buchler et al. [153] proposed that the sub-shot-noise statistics of the
squashed state can be utilised to suppress the classical and quantum radiation pressure
noise on the mirrors of an optical cavity. Wiseman [154] proposed that an in-loop atom
will experience fluorescence line narrowing when illuminated by the squashed state. In
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both cases, the in-loop squashed state can be thought of as being utilized via an in-loop
QND measurement: The use of an optical cavity or the coupling of in-loop light to an
atom. Experimental investigations into the application and generation of squashed state
can potentially yield important breakthrough and further extend the use of quantum
electro-optic control of light.



Appendix A

Measuring Signal and Noise with a
Spectrum Analyser

In this appendix, we work through a numerical example of a signal-to-noise ratio mea-
surement using a spectrum analyser. The details of the correction factors used in this
calculation are provided in reference [30].

Suppose that we have measured simultaneously using a spectrum analyser a signal
level of 8 � �4� dBm and noise level (assume that the measurement is in a quantum
noise limited environment) of Æ � �22 dBm. From a separate measurement of the pho-
todetector used in the setup, we found that the photodetector has a quantum efficiency
of % � �!�	. The following tables provide a step-by step guide to working out the actual
signal and noise power.

The measured quantities listed in Table A.1 are the quantities displayed by the RF
spectrum analyser and the values are calculated based on these uncorrected values. the
SNR figure used throughout this thesis is based on the usual definition of the ratio of sig-
nal power to noise power. However, at the signal frequency the measurement obtained
by the spectrum analyser is the sum of signal and noise power. Hence Æ and 8 are the
only two quantities directly measurable.

Based on the explanation given in Chap. 3 and reference [30], the noise levels of the
measurements are suitably corrected in Table A.2. The true values are therefore the actual
values of quantities as measured by the photodetector. The ��3 value given in Table A.2

Measured quantity mathematical expression value
3 (dBm) Æ -88.00 dBm

(mW) ��Æ�	� �!�2�� ���3 mW
� 
3 (dBm) 8 -79.00 dBm

(mW) ��%�	� �!	��� ���% mW
� (dBm) �� =�,���%�	� � ��Æ�	�� -79.58 dBm

(mW) ��%�	� � ��Æ�	� �!���� ���% mW
�� 
3��3 (dB) 8 � Æ 9.00 dB

���%�Æ��	� 7.94
��3 (dB) �� =�,���%�	�� ��Æ�	��� Æ 8.42 dB

���%�	� � ��Æ�	�����Æ�	� 6.95

Table A.1: Measured spectrum analyser quantities
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True quantity mathematical expression value
3 (dBm) Æ 
 	 -86.00 dBm

(mW) �!�2�� ��Æ�	� 	!��	� ���3 mW
�� 
3� (dB) �� =�,���%�	�
 �!�2�� ��Æ�	�� -78.69 dB

��%�	� 
 �!�2�� ��Æ�	� �!7�	� ���%mW
� (dBm) �� =�,���%�	� � ��Æ�	�� -79.58 dBm

(mW) ��%�	� � ��Æ�	� �!���� ���% mW
�� 
3��3 (dB) �� =�,���%�	�
 �!�2�� ��Æ�	��� �Æ 
 	� 7.31 dB

���%�	� 
 �!�2�� ��Æ�	�����!�2�� ��Æ�	�� �!72

��3 (dB) �� =�,���%�	�� ��Æ�	��� �Æ 
 	� 6.42 dB
���%�	� � ��Æ�	�����!�2�� ��Æ�	�� 4.38

Table A.2: Corrected values

Inferred quantity mathematical expression value
�� 
3��3 (dB) �� =�,���%�	�
 �!�2�� ��Æ�	��� �Æ 
 	 
 �� =�, %� 7.67 dB

���%�	� 
 �!�2�� ��Æ�	�����!�2�%� ��Æ�	�� 5.85
��3 (dB) �� =�,����%�	� 
 �!�2�� ��Æ�	�����!�2�%� ��Æ�	��� �� 6.85 dB

���%�	�
 �!�2�� ��Æ�	�����!�2�%� ��Æ�	��� � 4.85

Table A.3: Inferred values

is thus the usual SNR value reported in all of the measurements in this thesis. Note that
when the measured signal size is comparable to the quantum noise, the SNR’s can be
significantly different before and after correction (�/%���� �  !�� and �/%
� � � !!72).

Finally, we can infer the values of the measured quantities by assuming that the non-
ideal efficiency of the photodetector will lead to the weakening of signals toward the
standard quantum limit. The ��3 value given in Table A.3 is used only as limit of com-
pliance to theoretical predictions.
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Photodetector Circuit Diagrams
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Figure B.1: Circuit diagram of 1064 nm photodetector. The photodiode used is ETX-500 from
Epitaxx. RF operational amplifiers use are Comlinear CLC-420 and CLC-430.
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DC amplification is done separately using LM 358 operational amplifier.
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PID Controller Circuit Diagrams
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Figure C.1: Gain and integration stages of UniPID 5.0.
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Temperature Controller Circuit
Diagrams
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Appendix E

Laser Controller Circuit Diagrams

Figure E.1: Schematic of fast input (HV) amplifier of laser controller.
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Figure E.2: Fast input (HV) amplifier of laser controller.
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Figure E.3: Slow input of laser controller.
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Figure E.4: Laser controller power supply.



Appendix F

Q-Switched Second Harmonic
Generation

This appendix discusses the generation of optical second harmonic with a Q-switched
diode pumped Nd:YAG laser. Reliable single-pass second harmonic generation of more
than 400 mW of 532 nm average power is reported. The maximum conversion efficiency
of the setup is 65% and the output mode of the second harmonic is single mode and has
diffraction limited beam quality. Results presented here are from the following publica-
tion:

� “High average power Q-switched second harmonic generation with diode pumped Nd:YAG
Laser”,
P. K. Lam, I. Freitag, M. Bode, A. Tünnermann, and H. Welling, Electron. Lett. 34,
666 (1998).

F.1 Introduction

Since its conception, the non-planar Nd:YAG ring laser [14] has been demonstrated to be
an ideal pump source for efficient CW generation of single-frequency second harmonics
[81, 155]. Owing to its unique geometry, single-frequency mode, unidirectional output,
with excellent frequency stability is guaranteed, allowing problem free operation for sec-
ond harmonic generation (SHG).

We demonstrate that a passively Q-switched non-planar ring Nd:YAG laser [4] is an
ideal source for pulsed SHG. In particular, we have shown that similar to its CW coun-
terpart, the pulsed second harmonic beam generated is also single-frequency mode and
inherits the diffraction limited beam quality of the pump source. High conversion ef-
ficiency for average power of up to 400 mW can be achieved by simply single-passing
the fundamental beam through a nonlinear medium. Neither the passive Q-switching
nor the single-pass SHG require any control electronics, thus making the set up easy to
assemble, economical and compact.

F.2 Q-switched NPRO

The Q-switched laser crystal assembly used for pulsed SHG is shown in Figure F.1. It
consists of a piece of 9)4� . >?@ sandwiched between two pieces of Nd:YAG crystal.
The first piece of Nd:YAG crystal has a dimension of 3 mm x 8 mm x 6 mm and functions
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as the active medium which provides large atomic inversions necessary for efficient Q-
switching. As observed from previous work [156], 6mm length of active medium is used
to ensure that all of the pump light from the diode lasers is absorbed before the reaching
the saturable absorber. The front face of the crystal is coated for high transmittance at the
808 nm pump frequency and T = 36% for 1064 nm. The flat surfaces formed an unstable
resonator cavity which relies entirely on thermal lensing for stability. The 9)4� . >?@

crystal is a 1 mm thick 10 mm diameter disc. At low optical intensity, it has a starting
transmission of ��
 for 1064 nm, which is dependent on the 9)4� doping concentration.
This transmittance increases with increasing intensity, thus providing the saturable ab-
sorption necessary for Q-switched operation [157, 158]. The final piece of Nd:YAG crystal
acts as a reflector which provides the non-planar geometry for inducing an optical diode
effect when placed in a strong magnetic field [14]. All surfaces internal to the laser cavity
are anti-reflection coated for 1064 nm.

8mm

6mm

3mm

11mm
1mm

Top View

10mm

Front View

Side View

Perspective View

Figure F.1: Top and front views of the crystal assembly. The shaded areas are the !��� � "#$ disc
and the white areas are the Nd:YAG crystals. The lasing mode is shown in black lines.

For the purpose of optimizing for a high average output power, we set up the Q-
switched laser as shown in Figure F.2. The crystal assembly is bi-directionally pumped
by four diode laser arrays capable of delivering up to 6.5 W of 808 nm light. The pump
beams are mode-selectively directed into the laser cavity to ensure single *+(�� mode
operation. Two polarizing beam splitters are used to combine the p- and s- polarized
light, from the transmitted and reflected diode laser beams, respectively. Owing of the
Q-switched operation, some of the optical power is inevitably absorbed by the saturable
absorber and can cause the crystal assembly to heat up. At high pump powers, we found
this to have a detrimental effect on the stability of the laser operation. The laser can
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sometimes oscillate in both directions in the presence of excessive heating. However,
this instability can be controlled by using a water-cooled crystal mount to drain away
the heat absorbed thus re-activating efficient operation of the Peltier element which is
in direct contact with the crystal assembly. Active stabilization of the crystal assembly
temperature is then controlled via a temperature controller.

����

F.I. KTP Det

DC

DL

PBS

M

DC

λ/4

λ/2λ/2 F

DL

DL DL

QL

Figure F.2: Schematic of the Q-switched second harmonic generator. PBS: Polarizing beam split-
ter; DC: Dichroic beam splitter; DL: Diode laser array; QL:Q-switched laser; M: Mirror; ��	� ���:
Half and quarter wave plates, respectively; FI: Faraday isolator and F: IR Filter.

As shown in Figure F.2, two dichroic plates are placed in front of the crystal assembly
to safeguard against reflection of any pulsed light on the pump diode arrays. One of
these dichroics is also used to output the fundamental radiation. Because of the high peak
power achievable during Q-switching, efficient SHG can be achieved without the need
of a resonator cavity for the nonlinear medium. To demonstrate the simplicity of SHG
with the Q-switched source, we single-pass the output beam through a 15mm long room
temperature type II phase matched KTP crystal, which is anti-reflection coated for both
the fundamental and second harmonic frequencies. Due to the lower damage threshold
for the second harmonic light in the KTP crystal, a long crystal in combination with a long
focal length lens is more desirable. This is to ensure that the high peak power of the Q-
switched laser is not over-focused beyond the damage threshold. Once this precaution is
taken, high conversion to the second harmonic is readily observed and can be optimized
by translating the mode-matching lens.

F.3 Results

Figure F.3 shows both the fundamental peak power (and pulse width) of the laser as a
function of average output power for the 9)4� . >?@ disc with ��
 � 4�". We found that
by reducing the starting transmittance of the 9)4� . >?@ to ��
 2  �", peak powers of
more than 30 kW (	2.3 ns) are achievable. However, this is attained at the expense of
lowering the average power to less than 300 mW. On the other hand, an average power
of as much as 1W is attainable by increasing the starting transmittance to ��
 � 27".
This, however, reduces the peak power of the system to less than 4 kW (	5 ns), making
the SHG less efficient. Hence, a compromise is necessary to ensure that sufficient peak
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Figure F.3: Q-switched output pulse frequency (dots) and pulse width (crosses) vs average fun-
damental power.

power is attained for the SHG without significantly reducing the average output power.
With the present setup of ��
 � 4�", the peak power of the Q-switched output can reach
as much as 8 kW (	3.7 ns) and the average power 670 mW.
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Figure F.4: Single pass conversion efficiency (dots) and average output power (crosses) of the
second harmonic output vs fundamental power.

Figure F.4 shows both the second harmonic power and its conversion efficiency as a
function of average fundamental power. For an average fundamental power of 670 mW,
as much as 411 mW of 532 nm second harmonic is obtained. The highest single-pass con-
version efficiency is 65.2% at a fundamental average power of around 370 mW. Similar to
the fundamental output, the second harmonic beam is measured to be single-frequency
mode and has a diffraction limited quality Gaussian profile. We note that the single-pass
conversion efficiency is independent of the fundamental intensity to about �	" making
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the second harmonic power to be almost linearly proportional to the fundamental power.
This is attributed to the increasing thermal lensing effect experienced by the KTP crystal
due to the traversal of high peak power beams.

F.4 Conclusions

We have reported a compact and efficient source of stable, single-frequency Q-switched
1064 nm ideal for pulsed SHG. A maximum single-pass conversion efficiency of 65% is
achieved and average 532 nm power as high as 411 mW is obtained. Similar to the CW
non-planar ring laser, the pulsed second harmonic generated by the Q-switched laser
is highly single-frequency and inherits the Gaussian diffraction limited quality of the
fundamental beam. Because both the passive Q-switching and the single pass SHG are
completely devoid of any control electronics, this system is economical, compact and
simple to assemble.
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Appendix G

Optical Homodyne Tomography of
Information Carrying Laser Beams

Overview

Optical homodyne tomography (OHT) is a tool that allows the reconstruction of Wigner
functions for each detection frequency of a propagating optical beam. It can measure
probability distribution functions (PDF’s) of the field amplitude for any given quadra-
ture of interest. In this appendix, we demonstrate OHT for a range of classical optical
states with constant and time varying modulations and show the advantage of OHT over
conventional homodyne detection. The OHT simultaneously determines the signal to
noise ratio in both amplitude and phase quadratures. We show that highly non-Gaussian
Wigner functions can be obtained from incoherent superpositions of optical states.

G.1 Introduction

Optical homodyne tomography (OHT) allows the reconstruction of the Wigner function
C ��	� ��� [159] representation of an optical state. The theoretical foundation of quantum
state reconstruction was outlined by Vogel and Risken [160] and has inspired a series
of experiments, initially with optical pulses [161, 162] and more recently with CW light
[83, 163, 164].

In practical applications, such as sensing or communication, a laser beam is modu-
lated in order to carry information. This can occur at different modulation frequencies or
channels �!. Each modulation frequency has its own Wigner function C'!��	� ���, and
can vary dramatically from channel to channel [165]. Hence, a realistic laser beam with
signal modulations is a propagating multi-mode quantum state, which is quite different
to the single mode intra-cavity description of an optical state. Such a realistic light beam
can only be described by a spectrum of Wigner functions C', one for each frequency �.

In the early experiments [161] of pulsed laser OHT, only one single Wigner func-
tion was reconstructed. This Wigner function contains all statistical moments of the
photon number in the pulses and individual Fourier components of a pulse could not
be separated. In more recent experiments with CW lasers, Wigner functions C'& for
squeezed and classical states were reported for specific detection frequencies �&. In the
case of squeezed light, Wigner functions with elliptical two-dimensional Gaussian quasi-
probability distributions were demonstrated [83, 163, 164].

In this appendix, we use the Wigner function representation to describe coherent
states with different forms of classical sinusoidal phase modulation (PM). At the mod-
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162 Optical Homodyne Tomography of Information Carrying Laser Beams

ulation frequency we observe that the Wigner functions are displaced away from the
origin of the phase space and the results allow us to directly determine the signal to noise
ratio (SNR) for both amplitude and phase signals. At all other frequencies, the Wigner
functions are always centred at the origin. We demonstrate how the Wigner functions are
controlled by the quadrature and depth of modulation.

One of the advantages of OHT over conventional homodyne measurements [166, 167]
is that OHT can show any non-Gaussian features in the Wigner functions of more com-
plex optical states. Such features are contained in the higher order moments of the noise
statistics with the result that a simple measurement of the noise variance (2nd order
moment) alone is an insufficient description. The additional complexity means Wigner
function reconstruction demands more sophisticated statistical analysis. Unfortunately,
unlike experiments in atom optics [168], complex optical states are extremely difficult to
generate [47]. They require highly nonlinear processes which have fluctuations compara-
ble to the average steady state amplitude. To date only a few proposals for the generation
of such non-classical states exist [169]. We test the ability of OHT to reconstruct highly
non-Gaussian Wigner functions by using laser beams with time varying modulation to
produce classical superpositions of optical states. We discuss the accuracy of the OHT
technique and some of the practical limitations.

This work demonstrates the capability of OHT for the diagnosis of realistic laser
beams and establishes techniques that will be important once highly non-Gaussian, eg.
“Schrödinger’s cat”, states can be experimentally realised.

G.2 Standard homodyne detection

The conventional approach for the measurement of a laser beam is the balanced homo-
dyne detection. The light generated by a CW laser with an optical frequency 1 is pro-
cessed by an interferometric arrangement (Black components in Figure G.1). The ma-
jority of the optical power (�'() is split off by mirror M1 as the optical local oscillator
beam and sent via mirror M3 to the combining beamsplitter M4. A small part of the
optical power (�����) reaches M4 via the mirror M2 as the test beam. The relative phase
between the beams is controlled by moving M3 with a piezo position controller (PZT).
The two optical outputs are converted into photocurrents 
	��� and 
���� using matched,
high efficiency detectors PD1 and PD2, respectively. The difference 
���� � 
	��� � 
����

between the currents is analysed. The fluctuations of the test beam can be described with
the generalised quadratures ���$� � �����	� 
 ����	���	. Here ��	 � ����� is the amplitude
quadrature, ��� � ��� �	� is the phase quadrature. Under the condition of �'( � �����

this device will provide a photocurrent 
� which contains information about the fluctu-
ations of the test beam alone, and is immune to the fluctuations , or noise, of the local
oscillator beam.

The variance )'&�$� describes the properties of the test beam at one detection fre-
quency �& and is normalised to the standard quantum limit so that for a coherent state,
)'�$� � �. The difference photocurrent 
���� is analysed using an RF spectrum analyser.
The electric noise power �	'& is proportional to the optical power of the local oscillator
�'( and the variance )'&�$�

�	����� $�  �'()'&�$� (G.1)

Due to the strong attenuation in the neutral density filter ND (transmission � �"), the
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Figure G.1: Experimental setup of OHT. EOM: Electro-optic modulator; ND: neutral-density fil-
ter; PZT: Piezo; PD: photodetector; LPF: low-pass filter; VCA: Voltage controlled attenuator; SA:
Spectrum Analyser.

test beam does not contain the actual noise spectrum of the laser but rather fluctuations
introduced by the vacuum. If the output of the laser was squeezed, ()'& 2 �) or slightly
noisy ()'& � �) the test beam would still have a noise spectrum close to the quantum
noise limit of )'& � �. This device is not particularly sensitive to laser noise. However,
any modulation or squeezing generated inside the interferometer is clearly detectable.
For example, a phase modulation introduced by driving the electro-optical modulator
(EOM) within the interferometer at frequency �! would increase )'!�$ �  �	�.

G.3 Modulation

The output of the modulator is given by �� 
 � �� ����	 1� 
 Æ �����!��� and the phase
modulation generates sideband pairs at 1' � �!. For Æ 
 �, only the first order side-
bands ( � �) are important. The linearized annihilation operator for the quantum mode
after the modulator is given by

����� � ��� 
 Æ�������� 
 #��	'� � � #�	'���

	 �� � 	
#�� �����!�� 
 Æ������ (G.2)

where # � �	�Æ�, the first order Bessel function, and the operators contain the quantum
fluctuations. The output current from the homodyne detector for a projection angle $ is


��$� ��  �� ����$�� 	#�� �����!�� ����$� 
 Æ �	�$� ��! (G.3)
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The factor of proportionality depends on the efficiencies of the detectors, losses and the
electronic gain. Æ �	�$� �� describes the quantum fluctuation in this particular quadrature.
In conventional experiments, the analysis of a particular Fourier component of the pho-
tocurrent is done by an RF spectrum analyser with the phase $ of the local oscillator kept
constant. The result is a spectrum as given in Eq. (G.1). As a consequence the phase vari-
ance )'!�$ �  �	� increases in proportion to the modulation depth while all other parts
of the spectrum )'�$ �  �	� with � �� �! remain unchanged.

G.4 Optical homodyne tomography

In order to obtain the Wigner function of a light beam, only small modifications to the
balanced homodyne apparatus are required [163]. Phase synchronous detection is intro-
duced by replacing the spectrum analyser with a mixer demodulator (Blue components
in Figure G.1). The mixer is gated by an electronic local oscillator signal derived from the
same generator that drives the EOM. This electronic signal is shifted by a phase � giving
a mixed down difference current 
'!�$� �A ��. Starting with Eq. (G.2) and using Fourier
transforms we can derive the output current from the mixer as :


'!�$� �A �� � �#�� ������ ����$�� ������Æ	�	�$��!A �� 
 ������Æ	���$��!A �� (G.4)

where Æ	��$��!A �� can be understood as the total quantum fluctuations centered around
��!. Æ	�	�$��!A �� and Æ	���$��!A �� are the imaginary and real parts of Æ	��$��!A ��

respectively. For � � �, we obtain


'!�$� �A �� � �#�� ����$� � Æ	�	�$��!A ��! (G.5)

The first term contains all the modulation and the second term all the quantum fluctua-
tions. Note that for synchronous detection, the phase of the modulation has to be known
to the observers. In practice, this is not always possible.

If the modulation phase � is unavailable to the detection system, as would be the case
for the monitoring of remotely generated signals, then either a phase recovery technique
or asynchronous demodulation is required. Asynchronous demodulation can be simu-
lated by equation (4) where the demodulation phase � is a linear function of time. This
corresponds to an uncorrelated demodulation generator operating at �	 in Figure G.1.

A typical synchronously demodulated photocurrent plot is shown in Figure G.2,
where the phase angle $ is repetitively scanned. By selecting data that correspond to
the same value inside the vertical intervals Æ$ , we obtain measurements of, D'&�$� ��, for
any given quadrature interval �$� $ 
 Æ$�. Next a histogram of this current is formed by
binning the data in intervals Æ$ for a coherent state. This results in the PDF D'&��� $� of
the quadrature amplitude for various projection angle $. Figure G.3 shows a series of
such PDF’s for a full scan of $.

The width of a PDF corresponds to the variance ) �$� of the given quadrature. For
any realistic, and thus linearizable state with photon number 3 � �, the shape of the
PDF is a Gaussian. For a coherent state the width of the Gaussian is equal to the photon
number, thus identical to a Poissonian distribution. Squeezed states have sub-Poissonian
PDF’s at one particular angle $�, the squeezing quadrature.
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Figure G.2: The data processing of a typical OHT experiment. (a) One segment of the measured
time trace of quadrature amplitude value by scanning the PZT

G.5 Wigner function reconstruction

Wigner functions can be reconstructed from the PDF’s using the inverse Radon transform
[160, 170].

C'&��	� ��� �
�

! �

	 ��

��

	 ��

��

	 �

�
D'&��� $���'�
%����	 ��� $��� ��� $���%����%�$ (G.6)

The resulting Wigner function C'&��	� ��� is shown in Figure G.4. For a coherent state the
function is symmetric - with concentric contour lines. For a squeezed state the function
is asymmetric, with elliptical contour lines. For all coherent or squeezed states, without
modulation (# � �), the Wigner function is centered at the origin. This can be seen from
equation Eq. (G.5) where only the second term contributes in this case. The orientation
of the ellipse gives the squeezing quadrature. Since the Wigner function is normalized
to the standard quantum limit, its position and size is independent of the optical power.
Thus, a squeezed vacuum state has the same Wigner function as a bright squeezed state,
provided that �'( � �����. Note that the Wigner function should not be confused with
the widely used picture of a “ball on a stick” which tries to describe several properties
of an optical state simultaneously. The “stick” indicates the average, DC optical power
while the “ball” represents high frequency, AC fluctuations. The Wigner function which
can be measured at a particular frequency depends only on the noise and signals at that
frequency. Hence, Wigner functions can only be displaced from the origin by introducing
a modulation.

The distance of the centre of the Wigner function from the origin is a direct measure-
ment of the modulation depth. Amplitude modulation causes displacement along the
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Figure G.3: The data processing of a typical OHT experiment. (b)The PDF after binning the time
trace.

�	 axis whilst PM along the �� axis. The Wigner function gives us immediately infor-
mation about the signal quadrature, strength and noise. It provides the conventional
signal to noise ratio, where both signal and noise are measured in the same quadrature,
as well as the relative size of the noise in the orthogonal quadrature. The later is of inter-
est in applications where some degree of crosstalk between the quadratures is unavoid-
able. Amongst others, this includes any application of resonantly locked cavities where
a small imperfection of the locking can introduce cavity detunings and thus a mixing of
the quadratures.

G.6 Experimental results

G.6.1 Varying the depth of phase modulation

The process of reconstructing Wigner functions and the effect of modulation depth is
clearly demonstrated in Figure G.5. Here we use phase modulation and synchronous
detection for four different modulation depths. For # � � (no modulation, i.e. a co-
herent state) the Wigner function is circular and centred at the origin. As the frequency
modulation depth is increased, the Wigner function is displaced along the “��” (phase
variance) axis. For large modulation, it is apparent that the phase modulation process
has introduced significant amplitude modulation, resulting in the Wigner function being
displaced vertically from the �	 axis (amplitude variance). This is due to the imperfection
of the phase modulator.

It is important to note that synchronous demodulation requires the optimization of
the demodulation phase �. This ensures that the modulation component is detected
with maximum efficiency and results in the optimum SNR being recorded on the Wigner
function.
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Figure G.4: The data processing of a typical OHT experiment. (c) The reconstructed Wigner
function.

G.6.2 Switched phase modulation

In order to demonstrate the ability of our OHT system to record the details of a highly
non-Gaussian distribution, we added a low frequency modulation to gate the PM on
and off. By selecting this gating frequency at 200 Hz, within the detection bandwidth
( 100 kHz) we can then record the resulting distribution. The resulting Wigner function
is plotted in Figure G.6. As can be seen, the gating process (square wave signal generator
in Figure G.1) produces a Wigner function with 2 peaks: one peak corresponds to zero
modulation and is located at the origin, whilst the other corresponds to phase modula-
tion.

G.6.3 Asynchronous detection (variable phase �).

Finally we demonstrate the results of asynchronous detection. This is achieved experi-
mentally by using a separate �	 as the demodulation signal, which is different from the
modulation frequency �! used to drive the EOM. It is necessary to ensure that �! and
�	 differ in frequency by an amount small compared with the detection bandwidth. Un-
der these conditions the detected Wigner function then represents the weighted average
of all possible demodulation phase values �. The resulting Wigner function, for phase
modulation, is shown in Figure G.7. The distribution is now centred on the origin and
spread symmetrically along the phase quadrature axis. The peaks at the extreme of the
modulation correspond to the turning points where the dwell time of the modulation, as
a function of phase, is greatest.

G.7 Discussion and summary

In conclusion, we have demonstrated that the reconstruction of Wigner functions pro-
vides clear information about the modulation and information carried by a laser beam at
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Figure G.5: Wigner functions of states with phase modulation of different depths. Four Wigner
function contours are shown.

a given detection frequency. For the coherent and the squeezed states with modulations,
the Wigner functions contain the same information as could be obtained with homodyne
detection but they are easier to interpret. In particular, the displacement of a Wigner func-
tion C'& provides information on the quadrature and strength of the modulation and the
width of C'& describes the noise. The signal to noise ratio at any given quadrature can
be read directly.

In general, most optical states which can be generated can be described by a linearized
theory and thus has a two dimensional Gaussian C'&��	� ���. In order to demonstrate
the ability of measuring highly non-Gaussian Wigner functions, an asynchronous de-
modulation scheme is used.
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Figure G.6: The reconstructed Wigner function and contour plot of a classical mixture state. (a)
Wigner function; (b) contour plot.
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