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Abstract

A second harmonic generator is constructed to investigate the power and noise behaviour

of optical frequency conversion.

Strong squeezing of the second harmonic is demonstrated. It is found that pump

noise critically affects the squeezing, with attenuation of the pump noise significantly

improving the squeezing. A modular modelling approach is used to describe and quan-

tify this effect, and excellent agreement is found between theory and experiment.

Two methods of SHG are possible, passive (occurs external to a laser) and active (oc-

curs within a laser). Theoretically exploring the possible squeezing regimes, the effect of

laser noise on both methods is considered. It is concluded that active SHG is not feasible,

as the high dephasing of practical lasers totally destroys the squeezing.

It is shown that the second harmonic generator can simultaneously support multiple,

interacting, second order nonlinear processes. Two categories of interaction are iden-

tified: competing, where the interacting processes do not share all of the modes; and

cooperating, where they do.

Competing nonlinearities are evident in the system as triply resonant optical paramet-

ric oscillation (TROPO): where second harmonic generation (SHG) and non-degenerate

optical parametric oscillation (NDOPO) occur simultaneously. Power clamping of the

second harmonic and nondegenerate frequency production in both the visible and in-

frared are observed and explained, again obtaining good agreement between theory and

experiment. Design criteria are given that allow TROPO to be avoided in future efficient

SHG systems.

The second harmonic squeezing is observed to be degraded by TROPO, with a max-

imum value occurring just before the onset of TROPO – in contrast to predictions for

closely related systems. A model is developed that shows this is due to two effects: a

noise eating effect related to the second harmonic clamping; and low frequency noise

added by the additional TROPO modes.

A model of cooperating nonlinearities is developed that shows a wide variety of third

order effects, including cross- and self phase modulation (Kerr effects) and two photon

and Raman absorption, are in principle possible in the second harmonic generator. A

strong third order effect is demonstrated experimentally: the system is phase mismatched

and optical bistability is observed that is shown to be due to the Kerr effect.

Arguments are presented to prove that, in principle, the system acts as a Kerr medium

even at the quantum level. A model of Kerr squeezing is developed that allows consider-

ation of the effect of pump noise: it is shown that the predicted squeezing is sensitive to

both the amplitude and phase quadratures of the pump. Strong classical noise reduction

(but no squeezing) is observed on light reflected from the cavity. It is speculated that the

squeezing is masked by excess phase noise from the laser.

Due to the quantitative and qualitative agreement between experiment and theory,

and the experimental reliability of the system, it is concluded that SHG is now a well un-

derstood and practical source of squeezed light. The potential for future systems, given

the availability of new nonlinear materials, is discussed.
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Chapter 1

Introduction

Science and technology are separate, but forever intertwined, disciplines. At their best

they are enabling, with advances in one opening up new vistas for both: the electrical ba-

sis of modern society can be traced to esoteric 18th and 19th century science; conversely,

a straight intellectual line can be drawn from the mechanical clock to General Relativ-

ity. The laser is a prime example of an enabling technology, with many new sciences

and technologies resulting from its development. In this thesis we examine the interac-

tion of two such fields that owe their existence to the laser: quantum optics and optical

frequency conversion.

Optical frequency conversion was first demonstrated in 1961 by Franken and col-

leagues [1], just one year after the first demonstration of the laser [2]. They doubled the

frequency of a pulsed helium neon laser (694.3nm to 347.2nm) with a conversion effi-

ciency of one millionth of a percent. Throughout the 1960’s there were theoretical and

experimental advances, with the realisation that any frequency manipulation that could

be performed at radio frequencies, could, in principle at least, be performed at optical

frequencies. Further technological advances were limited by the performance of avail-

able nonlinear materials, and during the 1970’s the field lost much of its impetus as the

tunable dye laser became seen as the solution to wideband optical frequency production.

However dye lasers did have considerable experimental disadvantages (mechanically

complicated, require separate pump laser) and the field once again gained impetus in the

1980’s with the introduction of a suitable optical sources in the form of narrow linewidth,

solid state lasers (notably the Nd:YAG nonplanar ring oscillator, or NPRO), and the com-

mercial availability of good nonlinear materials. In the last few years both strong up

and down conversion sources have been developed (second harmonic generation and

optical parametric oscillation, respectively). At the inception of this thesis, conversion

efficiencies of 10-40% had been reported and were regarded as impressively high; cur-

rently, figures of 60-80% are regarded as standard. With the rapid development of such

efficient sources, previously neglected effects, such a simultaneous up and down conver-

sion, have taken on a new significance.

In principle, quantum optics could have been developed as a coherent field any time

after the final synthesis of quantum mechanics in the 1930’s. However, lacking the laser,

there was no strong impetus to do so, nor a suitable experimental system against which to

test the theory. Theoretical work began soon after the development of the laser, and con-

tinued throughout the 1960’s and 70’s. Wider attention was focussed on the field when

Caves [3] suggested that the sensitivity of interferometers (in particular, interferometers

to detect gravitational waves) could be improved via the use of squeezed states. These are

states of light where one quadrature is quieter than the standard quantum limit (SQL).

The SQL is also known as the quantum noise, as it is experimentally evident as a flat noise

floor on the photocurrent spectrum of the detected light. Squeezing was first demon-

strated in 1985 by Slusher et. al [4]; this was also the year that the input/output for-

malism was developed, which allowed theoretical predictions of quantum noise spectra

that could be tested against experiment [5]. At the inception of this thesis several bright

1



2 Introduction

continuous-wave squeezed sources had been demonstrated, but none had achieved their

predicted potential.

In this thesis we examine the classical and quantum dynamics of optical frequency

conversion. In particular, we focus on the steady state behaviour of continuous wave

cavity systems, i.e. systems in the linearisable limit. In this limit, the concern of classical

dynamics is the origin, destination, and frequency behaviour of the optical power; sim-

ilarly the concern of quantum dynamics becomes the origin, destination, and frequency

behaviour of the quantum noise.

The primary aim of the thesis is to understand what happens to quantum noise in

second harmonic generation (SHG), where light is produced at twice the frequency of the

original light. We build and analyse a SHG experiment to address the following questions

– where is squeezing generated? how much? what limits it? and how reliable can it

be made? There has been much previous theoretical and experimental work on these

questions , which is described in detail at the beginnings of Chapters 4 & 6. To briefly

summarise previous results: there are two forms of SHG, passive (external to a laser)

and active (internal to a laser). In principle either form can provide strong squeezing.

Experimentally, SHG is an attractive source of squeezing as it can be made very stable

and reliable, and only requires one nonlinear stage. However in practice squeezing has

only been observed in passive systems, and it has always been less than predicted. We

aim to explain these results, demonstrate strong squeezing in agreement with theory, find

what limits the squeezing, and recommend steps to avoid these limits.

As a consequence, a secondary aim of the thesis is to explore the power behaviour of

an efficient SHG system. SHG is a second order optical effect (where first order effects

are standard linear optics). As reviewed in Chapters 2, 7 & 8, in recent years there has

been investigation into a number of curious optical effects in second-order systems that

are due to two or more second-order processes occurring simultaneously. Depending on

the nature of the interaction, the final behaviour can effectively be either second-order or

third-order in nature. Previously, strong second-order effects due to interacting processes

have been demonstrated in efficient continuous wave systems (such as nondegenerate

frequency production around the fundamental in SHG); however no strong third order

effects have been demonstrated. We aim to explore which of these effects can and do

occur in our experiment, and detail their experimental signatures. Further, we aim to un-

derstand the effect these higher order interactions have on the quantum noise behaviour

of the system.

1.1 Thesis plan

The thesis has been written both as a report and as pedagogical document. It also encom-

passes a fair amount of conceptual ground. Given this, it is natural that many readers

will only be interested in a selection of the thesis topics. Accordingly, as far as was pos-

sible, the thesis has been written in a modular fashion. If the reader is chiefly interested

in classical frequency conversion, the key components are Chapters 2 and the relevant

experimental results presented in Chapters 6 & 7. If instead the reader’s interest is quan-

tum optics theory, then the key components are Chapters 3 & 4, the Appendices, and the

relevant theoretical sections of Chapters 6, 7, & 8. Experimentally minded readers can

find the nuts and bolts of the experimental design in Chapter 5, and the experimental

squeezing and noise reduction results in Chapters 6, 7, & 8.

In detail then, in the first part of Chapter 2 we give an overview of second order op-
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tical processes. In the second part we model classical second harmonic generation, and

discuss the doubly vs singly resonant limits. The third part introduces the idea of inter-

acting nonlinearities. In the fourth we present and contrast a classical model for second

harmonic generation (SHG) interacting with simultaneous nondegenerate optical para-

metric oscillation (TROPO) and predict power clamping in addition to nondegenerate

frequency production. In the fifth part we look at the interaction of SHG with itself, and

introduce equations that shows this can lead to a number of third order effects, notably

the Kerr effect which we consider in some detail.

The first part of Chapter 3 is an introduction to quantum theory (readers already

familiar with this material may wish to skip this section, but are advised to read the

discussion of the sideband picture); the second part looks at the two core methods for

modelling quantum systems, and the third part is a detailed exposition of the method

favoured in this thesis (the Heisenberg approach) for the case of an empty cavity.

At the beginning of Chapters 4, 6, 7, & 8, there is an appropriate review of previous

research. In Chapter 4 the limits to squeezing in both active and passive second harmonic

generation are explored via a Schrödinger approach – this is the only place in the thesis

where the Heisenberg approach is not used, and comparison between the two shows the

strong advantages of the Heisenberg approach. The first and second parts of the chapter

introduce the model and numerical parameters, respectively. In the third part, the limits

to squeezing are explored graphically, with intuitive interpretations provided to explain

the predicted behaviour.

Chapter 5 is a very detailed discussion of the design and construction of the exper-

iment. The first three parts discuss the laser and modecleaner, and optical path. The

fourth section concerns the doubling cavity, with particular emphasis placed on design

considerations. The last two parts discuss the locking system and detection systems.

Chapters 6,7, & 8 contain the bulk of the experimental results. The first part of Chapter

6 presents a quantum model of singly resonant frequency doubling, and predicts squeez-

ing of the second harmonic (a scaled model is given in Appendix 2). The second part

presents the concept of a modular approach to noise propagation. The third part presents

the experimental squeezing data. Pump noise is found to degrade the squeezing: atten-

uating this noise improves it significantly. Using the results of the first two parts of the

chapter, excellent agreement is found between theory and experiment.

Chapter 7 explores the classical and quantum signatures of TROPO. Data is presented

in the first part of the chapter that shows nondegenerate frequency generation in both

the visible and the infrared; in the second part power clamping of the second harmonic

is demonstrated. In the third part a model is developed for the effect on the second

harmonic noise, and data is presented that confirms the dual effects of noise eating and

additional low frequency noise.

Chapter 8 considers and explores the classical and quantum behaviour of the Kerr

effect. The first part explores the nonideal phase matching of our experiment, the sec-

ond part reports significant optical bistability, which demonstrates that large third order

effects are possible in practical, continuous wave, second order systems. The third part

introduces a quantum theory of the Kerr effect, and highlights the sensitivity of the Kerr

effect to both quadratures of the pump noise. The fourth part reports noise reduction (of

1.5-1.8 dB) on the beam reflected from a doubler run as a Kerr cavity.

Chapter 9 briefly summarises the results, discusses future research, and highlights

a number of concepts for general consideration, including removing the effect of pump

noise via optical cancellation. Appendix 1 contains an brief analysis of optical cancella-

tion in SHG, using the Heisenberg approach.
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Chapter 2

Classical nonlinear optics

When an electromagnetic (em) wave passes through a dielectric material, the electrons of

the constituent atoms or molecules are disturbed. As the valence electrons are displaced

from their normal orbits by the em wave, temporary dipoles are formed in the material.

The dipoles thus form a polarisation wave in the material. This wave reradiates an em

field.

For low em field strengths the polarisation wave mimics the incoming em wave. The

reradiated em wave thus matches the incident em wave. This regime is the province

of linear optics, for example, light passing through glass. At higher field strengths the

dipole response is distorted. The reradiated wave contains new frequency components

that depend on higher orders of the field. This is the province of nonlinear optics 1.

The induced macroscopic polarisation, P , is a function of the applied electric and

magnetic fields, E, B. P can be expanded in a convergent power series:

P = χ(1)E + χ(2)E2 + χ′(2)E.B + χ(3)E3 + . . . (2.1)

where χ(1) is the linear susceptibility, and χ(2) and χ(3) are weaker, higher order nonlin-

earities in the dielectric response. The χ(1) term describes linear effects, including the

electrooptic and photoelastic effects. For the case of an applied DC magnetic field, the

χ′(2) term describes the Faraday effect. The χ(3) term describes third order optical effects,

such as Four Wave Mixing (FWM), third harmonic generation (THG), self phase mod-

ulation (optical Kerr effect), cross phase modulation (optical cross-Kerr effect), applied

field phase modulation (electronic Kerr effect), 2 photon absorption (2PA), and Raman

processes.

In this thesis we consider optical χ(2) processes. That is, both electric fields are due to

the optical em field. (For the case of an applied DC electric field, the χ(2) term describes

the Pockel effect). As intensity is proportional to the square of the electric field, all optical

χ(2) processes are intensity dependent.

2.1 Overview of optical χ
(2) processes

Optical χ(2) processes fall into one of two complementary categories: upconversion, where

2 low frequency photons are converted into one high frequency photon; or downconver-

sion, where one high frequency photon is converted into two low frequency photons.

Note that optical χ(2) processes are always explicitly 3 photon processes. Fig. 2.1 is a

schematic overview of possible χ(2) processes. Optical fields are shown incident onto a

lossless χ(2) material. New fields are generated inside the material, and are shown ex-

iting from the material along with possible residual input fields. The residual fields are

either from fields not directly involved in the χ(2) process, or are due to less than perfect

nonlinear conversion. To emphasise again that χ(2) processes are explicitly 3 photon pro-

1The discussion in these two paragraphs is basically that given in Koechner [1, Ch. 10].
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Figure 2.1: Schematic overview of basic χ(2)processes. Fields explicitly involved in the

χ(2)process are shown in black. Possible residual fields are in grey. Vacuum inputs are not dis-

played. upconversion: parametric frequency generation. a) sum frequency generation (SFG): nonde-

generate. b) second harmonic generation (SHG): degenerate. downconversion: parametric amplifica-

tion - seeded by vacuum. In a cavity system these interactions lead to oscillation, in a travelling wave

system they lead to parametric fluorescence. c) nondegenerate optical parametric oscillation /

fluorescence (NDOPO/F). d) degenerate optical parametric oscillation / fluorescence (DOPO/F).

cesses, the fields that explicitly involve the 3 photons are shown in black. Residual fields

are shown in grey.

The top half of Fig. 2.1 shows the four basic χ(2) processes. The processes on the

left hand side of the figure are complementary to the those on the right. Fig. 2.1 (a)

shows Sum Frequency Generation (SFG), where two fields at ν1, ν2 are summed to form

a frequency ν3. SFG is implemented in frequency chains, and in detection of weak sig-

nals at low optical frequencies (by upconverting to higher optical frequencies that can

be detected with higher efficiency). Second Harmonic Generation (SHG) is obviously

the degenerate case of SFG, Fig. 2.1 (b). However it is of special interest as the two in-

coming photons can come from the same field. Due to this relative simplicity it is a

very widespread tool for generating higher optical frequencies. the low frequency field

is known as the fundamental, the high frequency as the second harmonic. As two low fre-

quency photons are required to produce one high frequency photon the second harmonic
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Figure 2.1: Schematic overview of basic χ(2) processes, part 2. e) difference frequency genera-

tion (DFG) / nondegenerate optical parametric amplification (NDOPA). f) difference frequency

generation (DFG) / degenerate optical parametric amplification (DOPA). upconversion: high fre-

quency amplification g) nondegenerate pump high frequency amplification. h) degenerate pump

high frequency amplification.

field and residual fundamental field tend to be anti-correlated.

Note that in both cases the quantum noise in the generated field, ν3, is influenced by

the vacuum noise at ν3 incident on the crystal. To keep Fig. 2.1 uncluttered the incident

vacuum fields are not shown. Please keep in mind however, that whenever a field is

generated (right hand side of each χ(2) block), there is an incident vacuum field at that

frequency (left hand side of χ(2) block, unshown).

Downconversion processes are also known as parametric amplification processes.

They can be categorised as: vacuum seeded, where only the high frequency pump field

is incident on the system; and bright seeded, where there is an additional low frequency

field. If the vacuum seeded downconversion takes place in a travelling wave system (no

optical feedback) it is known as Optical Parametric Fluorescence (OPF). If there is optical

feedback, i.e. the material is inside a cavity, then the the process is known as Optical

Parametric Oscillation (OPO). In the nondegenerate case (NDOPO/F) the field splits into

two low frequency fields, ν1, ν2, where ν3 = ν1 + ν2, Fig. 2.1 (c). This is the comple-

mentary process to SFG. The high frequency field is known as the pump field, the low

frequency fields as the signal and idler fields. Unlike the upconversion processes, where

the degree of degeneracy is set by the input fields, in downconversion it is set by the

phase-matching of the crystal (see section 2.1.1 below). In the degenerate case (DOPO/F)
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the field is frequency halved, ν3 = 2ν1, Fig. 2.1 (c). The low frequency field is known

as the subharmonic. DOPO is obviously complementary to SHG. Note that the χ(2) ma-

terial is acting as a parametric amplifier of the vacuum field at ν1. For both DOPO and

NDOPO the signal and idler fields are perfectly correlated to each other, as each pair of

low frequency photons is produced by the one high frequency photon.

If we take either DOPO or NDOPO and seed it with a bright field at, say, ν1, we induce

Difference Frequency Generation (DFG) as shown in Figs 2.1 (e) & (f). The seed field is

not directly involved in the χ(2) process, it acts solely as a catalyst causing the pump

field to downconvert so that one of the low frequencies matches the seed frequency. DFG

is often referred to as Optical Parametric Amplification (OPA), as in the limit of perfect

nonlinear conversion two photons (nondegenerate) or three photons (degenerate) at ν1

are produced for every one incident. DFG most often finds application in frequency

chains.

The complementary processes, which are equivalent to SFG or SHG with an ad-

ditional pump field at ν3, are rarely considered and have no widely accepted name,

Figs 2.1 (g) & (h). Unlike the seeded downconversion processes, the frequency of the

seed field does not influence the frequency of the generated wavelengths, which is set

only by the phasematching conditions. However, if the seed field and the upconverted

field(s) are the same frequency, then the system acts as an amplifier of the seed field. In

the limit of perfect nonlinear conversion, for either case, two high frequency photons are

produced for every incident high frequency photon.

The first four cases are limiting cases of the last four when the seed fields go to zero

power. In these descriptive sketches we have neglected more complex issues such as the

effect of unequal field intensities or phases.

2.1.1 Phase matching

Obviously for all the described χ(2) processes both energy and momentum of the in-

teracting photons must be conserved. If we use the indices 1, 2, for the low frequency

fields and the index 3 for the high frequency field, then energy conservation is expressed

simply in terms of the the relevant photon frequencies, ν1 + ν2 = ν3. Momentum con-

servation is expressed in terms of the optical wavevector, k, i.e. k1 + k2 = k3. When this

holds exactly, i.e. each the momentum of each photon is purely in the direction of the

wavevector (there are no transverse components of the momenta), the system is said to

be phase matched. To deal with situations where the longitudinal momenta do not match

exactly (there are transverse components of the momenta), we define the phase mismatch,

∆k ≡ k3 − (k1 + k2). In χ(2) materials, the wavevector, k, is related to the refractive index

of the material, n, via the relation (from Yariv [2]):

k(ν,Π) = ν
√
µε0n(ν,Π) (2.2)

Note that the refractive index is a function of both wavelength, ν, and polarisation, Π, and

thus so is the wavevector. For a certain set of polarisation conditions, the phase matching

condition becomes:

ν1n(ν1) + ν2n(ν2) = ν3n(ν3) (2.3)

If n(ν1) = n(ν2), this reduces to:

n(ν1) = n(ν3) (2.4)

That is, the refractive index must be the same for the high and low frequencies. Physically

this phase matching condition can be understood as follows. The phase velocity and
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wavelength of the polarisation wave that is established is determined by n(ν1). The phase

velocity and wavelength of the generated em wave is determined by n(ν3). Thus, for

efficient transfer of energy from the polarisation wave to the em wave, n(ν1) ' n(ν3).

In crystalline materials the refractive index is normally polarisation dependent. This

polarisation dependence offers a degree of freedom to achieve reasonable phase match-

ing. There are currently three methods for achieving phase matching in crystalline sys-

tems:

• Type I phase-matching. The refractive indices are equal when the two low frequency

fields are of the same polarisation and the high frequency field has orthogonal polarisa-

tion. This can be achieved by orienting the crystal to a certain angle, setting the crystal to

a certain temperature, or both. If the refractive indices are matched for light propagating

at 90◦ to the optical axis the crystal is said to be noncritically phase matched. It is noncrit-

ical in the sense that the light may propagate in any direction within the xy plane (where

z is the optical axis) and the phase matching is more robust with respect to small changes

in temperature & alignment.

• Type 2 phase-matching. The refractive indices are equal when the two low frequency

fields have orthogonal polarisations and the high frequency field has the same polari-

sation as one of the low frequency fields. Again, this can be achieved by orienting the

crystal to a certain angle, setting the crystal to a certain temperature, or both.

• Quasi-phase-matching (QPM) If no particular effort is made to match the refractive in-

dices via Type I or II phase matching then, in general, after some relatively short distance

(the coherence length, see eqn 2.17) the undesired complementary process begins to oc-

cur (e.g. downconversion instead of upconversion). At twice the coherence length there

is no net nonlinear effect. In QPM materials the χ(2) medium is periodically inverted

every coherence length, so that the undesired process in suppressed and the desired pro-

cess continues for that coherence length. Arbitrarily long pieces of material can be phase

matched in this manner. This is difficult in practice, as non-Type I,II coherence lengths are

typically very short (a few microns) and best results are obtained only when the medium

is totally and sharply inverted.

All three phase matching methods were first proposed in the 1960’s. The first two are

mature, in that there are several materials commercially available that span a range of

optical frequencies. The third method only began to reach its full potential in 1996 [3, 4].

In this thesis, all experiments were carried out via Type I noncritical phase matching in

magnesium oxide doped lithium niobate (see Chapters 5-8).

2.2 Second Harmonic Generation, SHG

2.2.1 Deriving the equations of motion

Consider a field at a field of frequency ν1, A1, and field of frequency ν2 = 2ν1, A2. The

fields are defined such that the optical power is given by the absolute square, i.e Pi =

A∗
iAi. The two fields interact in a χ(2) crystal of length Z. In the slowly varying envelope

approximation (SVEA), the interaction is described by [2, p. 399]:

dA1(z)

dz
= −iκ′A3(z)A

∗
1(z)f

′∗(∆kz)

dA3(z)

dz
= −iκ′A2

1(z)f
′(∆kz) (2.5)
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where κ′ is the nonlinear coupling parameter. The phase mismatch function, f ′(∆kz),

also describes the effect of focussing for Gaussian waves:

f ′(∆kz) =
e+i∆kz

1 + i z
zR

(2.6)

In the rest of this chapter we will consider only plane waves, zR → ∞, so that.

f(∆kz) = e+i∆kz (2.7)

Assuming the fields interact weakly, then after the length Z the fields become (integrating

eqn 2.5):

A1(Z) = A1(0) − iκ′Z A3(0) A∗
1(0) g(∆kZ)

A3(Z) = A3(0) − iκ′Z A2
1(0) g(∆kZ) (2.8)

Where the function g(∆kZ) is [5]:

g(∆kZ) =
1

Z

∫ Z

0
f(∆kz)dz

=
e+i∆kZ

2 − 1

+i∆kZ

= sinc(∆kZ
2

) e+i∆kZ
2 (2.9)

Now consider the ring cavity shown in Fig. 2.2. A field Ain is incident on a mirror of

A

A’

A
in

A
out

Figure 2.2: Schematic overview of a ring cavity. Coupling mirror has reflectivity r, transmittivity,

t.

reflectivity r, transmittivity, t. The field just inside the cavity is A, after one round trip

the field becomes A′. The output field is Aout. The boundary conditions for the cavity

are:

A = rA′ + tAin

Aout = −rAin + tA′ (2.10)

We require self-consistency, that is after one round-trip of time τ the cavity boundary

conditions are fulfilled. So from eqn 2.10:

A(0, t + τ) = rA(z, t) + tAin(t) (2.11)
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Using the Taylor expansion, f(x+ δx) = f(x) + ḟ(x)δx + . . ., this becomes:

∂A(0, t)

∂t
τ + A(0, t) = rA(Z, t) + tAin(t) (2.12)

Rewriting A(z, t + τ) ≡ A(z):

∂A(0)

∂t
=
r

τ
A(Z) − 1

τ
A(0) +

t

τ
Ain (2.13)

In practice, the mean field assumption (MFA), is satisfied, which implies that the am-

plitudes vary little along one round trip. Substituting eqn 2.8 into eqn 2.13 gives equa-

tions of motion for the scaled fields, αi:

α̇1 = −γ1α1 + κα3α
∗
1 +

√

2γ1A
in
1

α̇3 = −γ3α3 −
κ

2
α2

1 +
√

2γ3A
in
3 (2.14)

where we have used the scalings:

A1 =
√

hν1

√

r1
τ1
α1 A3 = i

√

hν3

√

r3
τ3
α3 κ = κ′Z

r1
τ1

√

r3
τ3

√

2 hν1 g(∆kZ)

Ain
1 =

√

hν1
√
r1A

in
1 Ain

3 = i
√

hν3
√
r3A

in
3 γi =

Ti
2 τi

(2.15)

and, as r ' 1, the approximation:

T = 1 − r2, (1 − r) =
T

(1 + r)
' T

2
(2.16)

The scalings are such that, αi, is dimensionless. The factor of one half that appears in the

nonlinear term of the second harmonic equation of motion appears directly due to the

frequency dependence of the scalings.

-4 π -2 π 0 2 π 4 π

-0.5

0

0.5

1

real part

imaginary

part

Phase mismatch, ∆k z

g
(∆

k
 z

)

Figure 2.3: Plot of g(∆kZ) vs ∆kZ, where g(∆kZ) = sinc(∆kZ

2
) e−i ∆kZ

2 . Black line = real part; gray

line = imaginary part.

The nonlinear coupling, κ, varies as as function of ∆k & Z via the function g(∆kZ).
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As shown in Fig. 2.3, g(∆kZ) has both real and imaginary components. For perfect phase

matching, ∆k = 0, g(∆kZ) is purely real. At ∆kZ = nπ, where n = 1, 2, 3, . . . both the

real and imaginary components of g(∆kZ) disappear: at these values there is no nonlin-

ear interaction whatsoever 2. As will be shown in section 2.2.3, the nonlinear conversion

efficiency is dependent on the absolute value of κ. Fig. 2.4 plots Z2|g(∆kZ)|2, the phase

mismatch dependent part of |κ|2, for several values of ∆k. When ∆k = 0 the nonlinear

coupling increases linearly with increasing interaction length. For ∆k = π/2 the non-

linear coupling reaches a maximum at Z = 2, i.e. the length where ∆kZ = π. This

characteristic length is known as the coherence length, lc:

lc ≡
π

∆k
(2.17)

If the phase mismatch is increased further, both the maximum possible nonlinear cou-

pling and the coherence length decrease accordingly. In practice it is impossible to achieve

perfect phase matching; practical materials also suffer appreciable loss. To maximise non-

linear interaction and minimise loss it is best to design a system so that the crystal length

is, at most, equal to the coherence length.

1 2 3 4

1

2

3

4

0

Crystal length, Z

∆k = 0,

perfect phase match

∆k = π/2

∆k = πN
o
n
li

n
ea

r 
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p
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n
g
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am

et
er

, 
|κ

|

Figure 2.4: Nonlinear coupling parameter, |κ| versus crystal length, Z. a) ∆k = 0 b) ∆k = π/2 c)

∆k = π.

2.2.2 Decay rate of an optical cavity

There are several possible definitions of the decay rate, γ, of an optical cavity. For a cavity

in the steady state, we assume that the field varies smoothly over the length of the cavity,

with no appreciable change in amplitude. This is known as the mean field assumption

(MFA). Given the MFA, the field retained in the cavity after each mirror interaction can

be described by a function that varies smoothly in time:

A(t) = rt/τ = R
t

2τ (2.18)

2However see section 2.5.1.
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where τ is the cavity round trip time, τ = c0/np; c0 is the speed of light in vacuo; n is the

refractive index; and p is the physical cavity perimeter. The free spectral range (FSR) of

the cavity is the frequency spacing between cavity resonances, and is defined as 1/τ . The

intracavity field amplitude can modelled by an exponential decay:

A(t) = e−γt (2.19)

Remembering that r =
√
R, simple algebra gives:

γ` =
1

τ
ln r =

1

2τ
lnR (2.20)

Note that γ` diverges as R→0. However using the Taylor expansion:

ln(1 + x) → x, for small x (2.21)

we can rewrite eqn 2.20 so that:

for x = r − 1, γm =
1

τ
(1 − r) =

1

τ
(1 −

√
R) (2.22)

for x = R− 1, γn =
1

2τ
(1 −R) (2.23)

Note that eqn 2.23 is equivalent to that given in eqn 2.15. So from eqns 2.20, 2.22, 2.23,

we now have 3 possible definitions of γ. How suitable are these? We can estimate this

by considering what happens before the steady state is reached. Assume that intracavity

power loss occurs only at the mirror, in a stepwise fashion (this is the opposite of the

MFA). There are then two ways of modelling the intracavity power. We define these as

Pa (make a round trip of cavity, then lose power at mirror), and Pb (lose power at mirror,

then make a round trip of cavity). That is:

Pa = Rround(t) (2.24)

Pb = Rround(t) + 1 (2.25)

where round(x) means “round to the nearest integer value of x”. Pa & Pb can be consid-

ered as bounds, in some sense, to the power loss from the cavity. In Fig. 2.5 these bounds

are plotted, as are the power decay curves predicted using each definition of γ, P = e−2γt.

For R=0.99, Fig. 2.5(a), it is not possible to distinguish between the definitions of γ: they

agree with each other and lie between the stepwise bounds. For moderate reflectivities,

such as R=0.70, γ` gives the best fit to the stepwise bounds, Fig. 2.5(b). At low reflec-

tivities, such as R=0.15, where we expect the mean field approximation to break down,

γ` still gives a surprisingly good fit to the stepwise bounds. However in the limit R→0,

γm is the better fit, as γ` predicts that photons leave the cavity instantaneously, which

is physically unlikely given that in a standing wave cavity half the photons make one

round trip, of duration τ . As is clear from Fig. 2.5(b-d), for any but high reflectivities γn
is a poor estimate of the cavity decay rate.

Inherent in this discussion is the assumption that the the cavity supports a single

resonance of the field (“a mode”). The break down of γ` as R→0 reflects the fact that this

assumption breaks down. As a rule of thumb, when the linewidth of a resonance starts to

approach the FSR then the cavity can no longer be said to be resonant (“a single mode”): it
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instead supports a field. Thus the explicit model of a resonance with a certain decay rate,

no longer suffices. (A suitable definition of γ can be obtained by retaining all the terms of

the Taylor expansion when deriving the equations of motion via self consistency, so that

eqn 2.12 contains a term that is the infinite sum of the Taylor terms [6].)

To summarise, for high reflectivities the definitions of γ are equally valid. For moder-

ate reflectivities γ` is the best definition, however as R→0 it breaks down. In this regime

γm is quite an acceptable definition. As in this thesis we we consider a wide range of

reflectivities we will favour γm to maintain consistency.

γ
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Figure 2.5: Decay of intracavity power versus time. Step functions are calculated as discussed in

text. Smooth curves are plotted using various definitions of γ. a) R = 0.99 b) R = 0.70 c) R = 0.15

d) R→0.

2.2.3 Doubly vs singly resonant SHG

In section 2.2.1 we derived the equations of motion for a doubly resonant cavity, where

both the fundamental and second harmonic modes are simultaneously resonant. Re-

membering that for simple SHG, Ain
3 = 0, we recast eqn 2.14 to define the equations of

motion as 3:

α̇1 = −(γ1 + i∆1) α1 + κα3α
∗
1 +

√

2γc1Ain
1

α̇3 = −(γ3 + i∆3) α3 −
κ∗

2
α2

1 +
√

2γc3Ain
3 (2.26)

3The equations of motion 2.14 & 2.26 are effectively those first given in Drummond et. al. [7], except that
the coupling follows the input/output formalism.
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where ∆i is the detuning for each mode, the losses are related by:

γi = γci + γotheri (2.27)

where γi is the total decay rate for mode i; γci is the decay rate through the coupling

mirror; and γotheri are decay rates due to internal losses, other mirrors, etc.

We define the term (γi+i∆i) as the effective decay rate of the cavity. To see why, consider

the following argument. Without loss of generality, we can assume that the pump rates,

Ain
i are real. If all detunings, ∆i, are zero then the field values, αi are real. In this limit

it is clear that the values of αi are limited by the total decay rates γi: if the decay rates γi
are large then the absolute values of αi will be small. If the detunings are not zero, then

the values of αi are complex, and their values are limited by both the decay rates, γi and

the detunings, ∆i. If the detunings, ∆i are very large, then, even if the decay rates γi are

small, the absolute values of αi will be small. Thus the detuning effectively increases the

decay rate of the cavity.

The pump rates, Ain
i , are related to the pump power, Pin

1 , by:

Pin
1 = hν1|Ain

i |2 (2.28)

The power through a cavity port, j, for a mode, i, is given by:

Pji = 2hνiγ
(j)
i |αi|2 (2.29)

Cavity ports include the outcoupling mirror, internal loss, and other cavity mirrors. The

intracavity or circulating power of a mode i is given by:

Pcirc
i =

hν

τ
|αi|2 (2.30)

The boundary conditions for the cavity are:

Aout
1 =

√

2γc1α
ss
1 −Ain

1 (2.31)

Aout
3 =

√

2γc3α
ss
3 −Ain

3 (2.32)

where αss
i is the steady state value of mode i; Ain

i is the incident field for mode i; and Aout
i

is the reflected field for mode i.

The singly resonant case, where only the fundamental is resonant, can be derived

using a similar argument as that given in section 2.2.1. Alternatively, we can use eqn

2.26 directly. The advantage of this approach is that it makes the connection between the

doubly and singly resonant cases transparent. In the singly resonant case the dynamics

of the second harmonic field are much quicker than those of the fundamental. Thus,

on the time scale of the fundamental field, the second harmonic is constant, letting us

set α̇3 = 0. As discussed in section 2.5.3, we can set ∆3 = 0. Solving for α̇3 = 0, and

assuming γc3 = γ3 we find:

αss
3 =

−κ
2γ3

|α1|2 +

√
2Ain

3√
γ3

(2.33)

Substituting this into eqn 2.26 we obtain the singly resonant equation of motion:

α̇1 = −(γ1 + i∆1) α1 − µ|α1|2α1 + 2
√
µAin

3 α
∗
1 +

√

2γc1A
in
1 (2.34)
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where the nonlinear interaction, µ, is:

µ =
κ2

2

(γ3 − i∆3)

(γ2
3 + ∆2

3)
(2.35)

For SHG, there is no power input at the second harmonic, so Ain
3 = 0 and the third term

disappears.
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Figure 2.6: Nonlinear conversion efficiency, ηnl, and scaled reflected power, Prefl
1 /Pin

1 , versus in-

cident power. Values used are: µ = .002; R = 0.991; γc
1 = γ1; τ = 1.863 10−10 s; λ = 1064

nm.

Thus the first term of equation 2.34 represents linear loss and linear detuning, the

second term, represents nonlinear loss, and if ∆3 6= 0, nonlinear detuning [7], whilst the

third term is linear gain. (∆3 = 0 is the case given in Paschotta et. al. [8]). The nonlinear

loss leads to power broadening of the cavity linewidth.

In singly resonant SHG, γc3 = 1/τ and ∆3 can be ignored (see 2.5.3). Using eqns 2.35

& 2.33 the boundary condition for the second harmonic becomes:

αout
3 =

√
µ|αss

1 |2 (2.36)

Equation 2.34 is a cubic in alpha. We obtain the steady state solution:

αss
1 =

√

2γc1A
in
1

|γ1 + γnl + i∆1|2
(2.37)

where γnl = µ|αss
1 |2. The generated second harmonic power is:

P3 = hν3|αout
3 |2

= h2ν1µ|αss
1 |2|αss

1 |2

= 4hν1|Ain
1 |2 γnlγ

c
1

|γ1 + γnl + i∆1|2
(2.38)
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From eqns 2.28 & 2.38, we can calculate the nonlinear conversion efficiency, ηnl:

ηnl =
4γc1γnl

|γ1 + γnl + i∆1|2
(2.39)

The reflected fundamental power is given by:

Prefl
1

Pin
1

= 1 − 4γc1(γnl + [γ1 − γc1])

|γ1 + γnl + i∆1|2

= 1 − ηnl −
4γc1(γ1 − γc1)

|γ1 + γnl + i∆1|2
(2.40)

For zero detuning, ∆1 = 0, Fig. 2.6 plots the nonlinear conversion efficiency and

the ratio of reflected to incident power as a function of incident power. The maximum

conversion efficiency, ηmax
nl , occurs at, γnl = γ1, with a value:

ηmax
nl =

γc1
γ1

(2.41)

(For γc1 = γ1, perfect conversion occurs, i.e. ηmax
nl = 1). The pump power at which the

maximum conversion efficiency occurs, is:

Pmax conv
1 = 2hν1

γ3
1

µγc1
(2.42)

Small fundamental decay rates, large outcoupling ratios (γc1/γ1) and large nonlinear cou-

plings minimise the power at which maximum conversion occurs.

When the reflected power is zero the cavity is said to be impedance matched. For zero

detuning this occurs at:

γimpnl = 2γc1 − γ1, for γc1 ≥ γ1/2 (2.43)

If γc1 < γ1/2 then there is no power at which the cavity is impedance matched. (Note that

when γc1 = γ1, γimpnl = γ1.) The impedance matching power, Pimp1 is given by:

Pimp1 = 2hν1
γc1(2γ

c
1 − γ1)

µ
, for γc1 ≥ γ1/2 (2.44)

2.3 Introducing: Interacting χ
(2) nonlinearities

In recent years there has been investigation into a wide number of optical effects in sec-

ond order systems: nonlinear phase shifts; optical bistability; power limiting; efficient

and broadband frequency generation. All these effects can be considered as due to one

of the basic χ(2)processes, as considered at the beginning of the chapter, cascaded with at

least another basic χ(2)process, for example SHG followed by OPO. Hence they are often

refereed to as cascaded nonlinearities.

As we shall see, the problem with this appellation is its generality. Very different

effects have been labelled as cascaded effects (e.g.. dynamics of simultaneous SHG and

NDOPO; nonlinear optical phase shift due to phase mismatched SHG; etc) but this name

does not specify the actual mechanism that causes the effect. To clarify the situation,

we introduce the concept of interacting nonlinearities. Interacting nonlinearities can be

categorised as cooperating and competing. Cooperating nonlinearities are those where all

the downconversion and upconversion processes share the same modes, e.g. ν ⇀↽ 2ν
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Figure 2.7: Conceptual layout of competing SHG & NDOPO. Gray lines represent vacuum inputs,

i.e zero average power.

or ν ± ∆1 ⇀↽ 2ν. Competing nonlinearities are those where all the downconversion

and upconversion processes do not share the same modes, e.g. ν ⇀↽ 2ν ⇀↽ ν ± ∆2,

or, ν ± ∆1 ⇀↽ 2ν ⇀↽ ν ± ∆2. We restrict the term “cascading” to describing situations

where several different competing or cooperating nonlinearities occur simultaneously

(for example, see section 7.1).

2.4 Competing χ
(2) nonlinearities

Systems of competing nonlinearities have been mainly investigated for their potential

as frequency tunable sources of light. Systems considered include: intracavity SFG and

NDOPO [10, 11]; intracavity DFG and NDOPO [12]; and intracavity SHG and NDOPO

[9, 13, 14, 15, 16, 17, 19]. In these systems the χ(2)processes have been considered as

occurring in separate nonlinear media or as occurring simultaneously in the one medium.

2.4.1 Competing SHG and NDOPO

In this section we will focus on competition between SHG and NDOPO. Consider a cavity

system in which SHG and NDOPO occur simultaneously. Fig. 2.7 shows the conceptual

layout. A frequency doubler, resonant at and pumped by a frequency ν, produces a

resonant field of frequency 2ν. The second harmonic can either downconvert back to

the original mode, or act as the pump for the NDOPO. For the latter to occur the signal

& idler modes (νs,i = ν ± ∆) must be simultaneously resonant with the mode ν. With

sufficient power in the 2ν field the NDOPO can be above threshold, otherwise the system

is below threshold and acts as an amplifier of the vacuum modes. By inspection (adding

appropriate terms to 2.26) we can write the equations of motion as [9]:

α̇1 = −(γ1 + i∆1) α1 + κ1α3α
∗
1 +

√

2γc1A
in
1

α̇3 = −(γ3 + i∆3) α3 −
κ∗1
2
α2

1 − κ∗2αsαi

α̇s,i = −(γs,i + i∆s,i) αs,i + κ2α3α
∗
i,s (2.45)

where α1, α2, αs , αi are the fundamental, second harmonic, signal, and idler field ampli-

tudes, respectively; and κ1 and κ2 are the respective nonlinear interaction rates for SHG
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and NDOPO. All four modes are resonant, so this system has been labelled Quadruply

Resonant Optical Parametric Oscillation (QROPO). The quantum properties of this sys-

tem have been modelled and several new nonclassical features are predicted [18]: this

will be discussed further in Chapter 7.

We are particularly interested in the case where the second harmonic is not resonant.

Adiabatically eliminating the second harmonic gives [19]:

α̇1 = −(γ1 + i∆1) α1 − 2
√
µ1µ2α

∗
1αsαi − µ1|α1|2α1 +

√

2γc1A
in
1

α̇s,i = −(γs,i + i∆s,i) αs,i −
√
µ1µ2α

2
1α

∗
i,s − 2µ2|αi,s|2αs,i (2.46)

where the nonlinear interactions for SHG & NDOPO are respectively:

µ1 =
κ2

2(γ3 + i∆3)

µ2 =
κ′2

2(γ3 + i∆3)
(2.47)

For simplicity, we will consider the case where all detunings are set to zero. The threshold

power for the NDOPO, and thus competition, is then given by:

P thr
1 = hν1

γ̄

γc
1

γ2
1√
µ1µ2

1

2

(

1 + R γ̄

γ1

)2

(2.48)

where we introduce the cumulative decay rate for the low frequencies of the NDOPO, γ̄,

and the scaled total nonlinearity, R:

γ̄ =
√
γsγi

R =
√

µ1/µ2 (2.49)

The scaled power, N, is defined with respect to the TROPO threshold as:

N =
P1

Pthr
1

(2.50)

The threshold power can be altered by changing either the value of the nonlinearities or

the signal & idler resonance conditions. The former is achieved via the phase matching.

The latter is achieved via dispersion matching, i.e. altering the dispersion (by changing

the laser frequency or cavity length), so that the signal & idler are unable to be resonant

with the fundamental. As discussed in section 2.2.3, a mode that is so detuned from the

optimum resonance condition is lossy, and can be considered to have an increased decay

rate which previously labelled the effective decay rate.

For the likely experimental optimum of equal losses and nonlinearities:

γs = γi = γ1, µ1 = µ2 (2.51)

we define a minimum threshold power:

Pmin
1 = h(2ν1)

γ2
1

ηµ1
(2.52)
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where the cavity escape efficiency, η is given by:

η =
γc1
γ1

(2.53)

Note that this expression is identical to that for the threshold power of a normal DOPO

cavity where the second harmonic is double-passed, but not resonant. The conversion

efficiency at TROPO threshold is defined as:

ε =
P2

P thr
1

(2.54)

Note that the minimum threshold, Pmin
1 , is the impedance matching point for the cavity,

and thus the point of maximum conversion efficiency, ε= η.

The obvious signature that the cavity is above threshold is production of the signal

and idler modes. However another, somewhat surprising, signature of competition ex-

ists: clamping of the second harmonic power. From 2.46 we find that for P1 > P thr
1

(N > 1), the second harmonic power is:

P2 = h2ν
γ̄2

µ2
(2.55)

i.e above threshold the generated second harmonic power is constant, and is clamped

to its threshold value. “Excess” fundamental pump power is not converted to second

harmonic, but instead is reflected or converted to signal and idler. (Clamping has also

been predicted for QROPO [9])

Similar behaviour has been predicted for the optical limiter [21]. Fig. 2.8 shows the con-

ceptual layout of both the optical limiter and the TROPO cavity. The limiter is a standing

wave DOPO cavity resonant at the subharmonic, ν, which is single-pass pumped at 2ν.

(Note that the following argument works equally well for a NDOPO cavity). At thresh-

old, the 2ν field is converted to the subharmonic as it propagates along the cavity so

that at the end of the cavity it is depleted to some value. As the power of the 2ν field is

increased, it’s value at the end of the cavity does not change: “excess” power is downcon-

verted to the subharmonic field. In turn the backward component of the standing wave

subharmonic partially upconverts to the pump (an example of cooperating nonlineari-

ties) so that a backward travelling wave at 2ν is generated: the remaining power exits the

cavity as subharmonic. Far above threshold, the reflection at 2ν predominates, with very

little power exiting the cavity at the subharmonic. From the point of view of the incident

2ν field then, the limiter is effectively a nonlinear mirror: at low powers it transmits all

of the 2ν field; above threshold it is limited to passing the threshold power, excess power

is reflected back from the cavity as fields at 2ν or the subharmonic. Note that within the

cavity the 2ν field has a very strong spatial dependence.

The TROPO system is obviously analogous to the limiter in that the 2ν field in both

cases sees three input and three output ports. For the limiter two of the ports are cavity

ports (input and output mirrors for the pump field) and one is a nonlinear port (inter-

action with the subharmonic). For the TROPO system only one of the ports is a cavity

port (the input/output port for the second harmonic), the other two ports are nonlin-

ear (interaction with the fundamental, interaction with the subharmonic/signal & idler).

Without the extra nonlinear port that competition provides, clamping could not occur.

As with the limiter the second harmonic field has a strong spatial dependence. However

unlike the optical limiter no additional 2ν field is generated: the excess second harmonic
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Figure 2.8: Conceptual layouts of: a) Optical limiter, a standing wave (N)DOPO resonant at the

subharmonic ν, which is single-pass pumped at 2ν. Only the DOPO case is shown here. Clamp-

ing of the transmitted 2ν (pump) field occurs due to cooperating nonlinearities. b) TROPO, Triply

Resonant Optical Parametric Oscillator. Fundamental, signal & idler modes are resonant, sec-

ond harmonic executes a double pass through crystal. Clamping of the generated 2ν (second

harmonic) field occurs due to competing nonlinearities. Gray lines represent vacuum inputs, i.e.

zero average power.

power is either downconverted to the signal & idler modes, or downconverted back to

the fundamental mode.

2.4.2 Competition and phase matching

In the systems considered in refs [10, 11, 12, 15] the competing nonlinear processes occur

in separate nonlinear media within the one cavity. This is easy to understand physically,

as the phase matching can be optimised for say, SHG in one crystal, and NDOPO in

the other. In refs [13, 14, 16, 17] and in this thesis competing SHG & NDOPO occur

simultaneously within the one nonlinear medium. How is this possible given that in these

systems the crystal is carefully phase matched to give the optimum SHG effect?

To understand this consider the nonlinear coupling. As was shown in section 2.2.3

the nonlinear coupling, µ, is a function of phase mismatch ∆k and the crystal length, Z,

via the nonlinear coupling phase mismatch function |g(∆kZ)|2 (which is defined in eqn

2.9). As discussed in section 2.2.1, the phase mismatch is a function of refractive index.

Thus, for example, using the refractive index expression for 5% MgO : LiNbO3 [20, 34]

we obtain:

∆k ' −8666(1 − λ0/λs)
2cm−1 + 7.49(T − T0)cm

−1K−1 (2.56)

where λ0 = 1064 nm, T0 = 107.05◦C. Substituting this into |g(∆kZ)|2 gives the depen-

dence of the nonlinear coupling on wavelength and crystal temperature: Fig. 2.9 plots

this explicitly. If we optimise the nonlinear coupling for SHG of a 1064 nm beam, then

we are sitting on top of the ridge at T = 107.05◦C (g(∆kZ) = 1). At this temperature

there is still gain for wavelengths other than 1064 nm, as shown in Fig. 2.10 which is a

slice through Fig. 2.9 at T = 107.05◦C. In the 10 nm around 1064 nm the gain is reduced

only slightly from the optimum, g(∆kZ) > 0.9; even 33 nm away there is considerable

gain (g(∆kZ) = 0.22 @ 1031 nm, c.f. with the measurements in section 7.1). If the signal

and idler modes of the NDOPO are resonant at any of these wavelengths there will be

sufficient nonlinear coupling for significant competition to occur.
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Figure 2.9: Plot of nonlinear coupling phase mismatch function, |g(∆kZ)|2, versus wavelength

and crystal temperature (after Schiller [34]).
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Figure 2.10: Plot of nonlinear coupling phase mismatch function, |g(∆kZ)|2, versus wavelength

at optimum temperature for SHG. Note the gain peak at 1031 nm.
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2.5 Cooperating χ
(2) nonlinearities

The concept of cooperating nonlinearities bears closer examination. Afterall, in standard

SHG the complementary OPO process certainly occurs - photons at 2ν can be converted

to photons at ν. (The equations of motion for SHG and OPO differ only in the position of

the the pump term, the interaction terms are exactly the same.) How then is the concept

of cooperating nonlinearities useful? As we saw in the last section, it’s useful when the

complementary χ(2)processes have non-symmetrical effects. Thus in (N)DOPO pump

clamping [21], downconversion depletes the single, forward pass, pump wave. Yet up-

conversion generates a backward travelling wave at the pump frequency, making it ap-

pear as if pump light is reflected - even though there is no mirror or cavity for the pump.

The up- and down- conversion processes share the same modes, but an asymmetrical

effect, power clamping, results. We describe such a results as being due to cooperating,

χ(2)processes.

Third order effects, such as a nonlinear phase shift (via the Kerr effect), are normally

associated with the χ(3)nonlinearity of a medium. In standard nonlinear crystals, this

is some 4 orders of magnitude weaker than the χ(2)nonlinearity. As the magnitude of

nonlinear effects go as the square of the nonlinearity, this means third order effects are

typically 8 orders of magnitude weaker than second order effects. However in recent

years large “third order” effects, of the same order of magnitude as second order effects,

have been produced via cascaded χ(2)nonlinearities. These systems have been the subject

of extensive research [22, 23], including CW studies using cavities [24, 25]. At the heart

of all of the effective third order effects is the production of a nonlinear phase shift: from

that point one can obtain optical bistability, optical switching, and so on.

The origin of the the nonlinear phase shift in “cascaded” systems can be explained

simply. Consider say, single pass SHG in a lossless crystal of length L. The fundamental

field enters the crystal and begins to be strongly converted to second harmonic. How-

ever the crystal is phase matched so that it has a coherence length of L/2, i.e. beyond this

distance the second harmonic converts back to fundamental. Only fundamental light

exits the crystal. This would seem rather pointless, except that the light experiences a

phase shift in both the SHG (ν → 2ν) and OPO processes (2ν → ν). As the χ(2)processes

are nonlinear with intensity, so are the respective phase shifts: the total effect is an in-

tensity dependent phase shift on the fundamental light. Obviously this effect will also

occur in other χ(2)processes, such as OPO, and in cavity systems. The complementary

χ(2)processes cooperate to give an overall effect: the nonlinear phase shifts from each

individual χ(2)process are cumulative. This is non-symmetrical in that the nonlinear

phase shifts add, as opposed to cancelling. Systems of cooperating χ(2)nonlinearities

hold promise for applications including optical switching, nonlinear optical amplifica-

tion [26], squeezing, and QND measurements [24].

In cavity systems there are three ways to produce a nonlinear phase shift: phase

matching, detuning, and thermal absorption. We discuss each of these in turn in the

following sections.

2.5.1 Higher order equations of motion

The preceding explanation of a nonlinear phase shift due to phase mismatch assumed

that there is no net nonlinear conversion, i.e. there is no nonlinear loss. The alert reader

is probably somewhat uncomfortable with this: afterall, the equations of motion from

section 2.2.1 make it clear that at the point of zero nonlinear conversion there is also zero
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nonlinear phase shift. What’s going on?

This discrepancy between intuitive model and equation is easily resolved: the stan-

dard equations of motion for SHG are incomplete. This is not a widely realised fact. We

now present the derivation a more complete set of equations that highlight which third

order effects are possible in a second order system.

Let us recap the argument that we used to derive the equations of motion in section

2.2.1. The interaction of the fields in the slowly varying envelope is described by eqns 2.5.

Using the assumption that the fields interact weakly, we then integrated eqns 2.5 to give

eqns 2.8. Eqns 2.8 describe, to first order in the nonlinearity, the fields after a single transit

through the nonlinear medium. The cavity equations of motion were derived from this

point.

To describe third order effects, it is necessary to have a description of the fields to

second order in the nonlinearity. This is easily obtained by substituting eqns 2.8 into

eqns 2.5 to give (writing Ai(0) = Ai):

A1(Z) = A1 − iκ′ A3 A∗
1 J ∗

1 − κ′2 (|A1|2 + |A3|2) A1J 2 + iκ′3 A3
1A

∗
3J 3

A3(Z) = A3 − iκ′ A2
1 J 1 − 2κ′2 |A1|2 A3 J ∗

2 + iκ′3A2
3A

2
1J 3 (2.57)

Where the functions J 1, J 2, J 3 are:

J 1 =

∫ Z

0
e+i∆kzdz =

e+i∆kZ − 1

+i∆k

= Z sinc(∆kZ
2

) e+i∆kZ
2 = Z g(∆kZ)

= Z +
i∆k

2!
Z2 +

(+i∆k)2

3!
Z3 + . . .

J 2 =

∫ Z

0
J 1e

−i∆kzdz =
Z − J ∗

1

+i∆k

=
Z2

2

[

sinc2(∆kZ
2

) + i

(

sinc(∆kZ
2

)cosc(∆kZ
2

) − 1

∆kZ/2

)]

=
Z2

2
+
i∆k

6
Z3 + . . .

J 3 =

∫ Z

0
J 2

1e
−i∆kzdz =

2 Z − J 1 −J ∗
1

∆k2

=
Z3

6
+ . . . = J ∗

3 (2.58)

The expansions of J i are derived using the relation ex =
∑∞

0 xn/n!. Notice that for

∆k = 0, J 1 = Z, J 2 = Z2/2, and J 3 = Z3/6: the higher order interactions exist even in

the perfectly phase matched case. For use later, we introduce the scaled functions:

J 1
′ =

J 1

Z
= g(∆kz), J 2

′ =
J 2

Z2 (2.59)

As can be seen directly from the definition of J 2, the second order interactions are gener-

ated by first order interactions cooperatively interacting with other fields before leaving

the cavity.

We can now derive the cavity equations of motion using exactly the same argument

we presented previously 4. Retaining only terms second order in κ and lower, and using

4The results presented in this section and section 2.2.1 were explicitly obtained for plane waves. R. Bruck-
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defns 2.15 and eqn 2.13 we find:

α̇1 = −(γ1 + i∆1)α1 + κα3α
∗
1J ∗

1 −
k2

2
(|α1|2

τ3
r3

− 2|α3|2
τ1
r1

)α1J 2 +
√

2γc1A
in
1

α̇3 = −(γ3 + i∆3)α3 −
κ

2
α2

1J 1 − κ2 τ1
r1
|α1|2α3J ∗

2 +
√

2γc3A
in
3 (2.60)

Similarly we can derive the nondegenerate equations of motion:

α̇1 = −(γ1 + i∆1) α1 + κα3α
∗
2 J ∗

1 −
k2

2
(2|α2|2

τ3
r3

− 2|α3|2
τ2
r2

)α1 J 2

+
√

2γc1A
in
1

α̇2 = −(γ1 + i∆1) α1 + κα3α
∗
1 J ∗

1 −
k2

2
(2|α1|2

τ3
r3

− 2|α3|2
τ1
r1

)α2 J 2

+
√

2γc1A
in
2

α̇3 = −(γ3 + i∆3) α3 − κα1α2J 1 − 2κ2(|α1|2
τ2
r2

− 2|α2|2
τ1
r1

)α3 J ∗
2

+
√

2γc3A
in
3 (2.61)

Eqns 2.60 & 2.61 describe an incredibly rich array of behaviours.

• Terms that are zeroth order in κ are simply linear loss, −γiαi, linear gain, +
√

2γciA
in
i ,

and linear detuning, ±i∆iαi.

• First order terms in κ describe second order effects: parametric gain or loss, +ReJ ∗
1καiα

∗
j ,

−Re J 1κ/2 α
2
i ; and parametric phase shifts, ImJ ∗

1καiα
∗
j −Im J 1κ/2 α

2
i .

• Second order terms in κ describe third order effects: intensity dependent absorptions,

two photon absorption (2PA), −ReJ 2 κ
2/2 |αi|2αi, and Raman absorption, +ReJ 2 κ

2 |αj |2αi;
intensity dependent phase shifts, self phase modulation (SPM) or Kerr effect, −ImJ 2 κ

2/2 |αi|2αi,
and cross phase modulation (CPM) or cross-Kerr effect, +Im J 2 κ

2 |αj |2αi.
• The system is not a full third order system: for example, there are no terms describ-

ing four wave mixing (FWM), iκα2
jα

∗
i , or third harmonic generation (THG).

A note on nomenclature. As can be seen from the above, intensity dependent phase

shifts are third order effects. In χ(3)systems the intensity dependent phase shift is known

as the Kerr effect: physically, it is an intensity dependent refractive index that leads to an

intensity dependent phase shift. Strictly speaking, the SPM and CPM in the equations

above cannot be described as Kerr effects, as they take place in a χ(2)system: they are

only “effective Kerr effects”. This is a cumbersome term. As the identification of intensity

dependent phase shifts as Kerr effects is widespread, we will use the term “Kerr effect”

in this thesis even though we are discussing χ(2)systems.

The system is similar in some respects to the purely third order system proposed by

Jack et. al. [28], in which FWM, CPM, & SPM occur simultaneously. In the limit of small

pumping of the Jack system, as far as quantum noise is concerned, the FWM term acts

as an OPO/SHG term. Thus we expect the system described above to share certain char-

acteristics with the Jack system, such as multiple bifurcation points, and squeezing that

rotates in quadrature as the Kerr terms dominate. Investigating in detail the behaviour

described by eqns 2.60 & 2.61 would in itself be another thesis. In the next section we

concentrate solely on the effective Kerr effect that occurs in singly resonant SHG.

meier has derived the Gaussian wave form of these results: the singly resonant results are given in [27].
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2.5.2 Phase mismatch induced Kerr effect

To derive the singly resonant case, it is not appropriate to apply adiabatic elimination to

eqns 2.60, as they contain the reflectivity of the second harmonic cavity explicitly. (It can

be done, but it requires considerable mathematical lendergermain.) Instead we start once

again from the description of the field interaction in the SVEA (slowly varying envelope

approximation):

dA1(z)

dz
= −iκ′A3(z)A

∗
1(z)f

∗(∆kz)

dA3(z)

dz
= −iκ′A2

1(z)f(∆kz) (2.62)

We integrate the second harmonic to first order, remembering that
∫

f(∆kz).dz = Zg(∆kz) =

J1:

A3(Z) = A3(0) − iκ′Z A2
1(0)(J 1/Z) = A3(0) − iκ′ A2

1(0)J1 (2.63)

As there is no initial second harmonic, A3(0) = 0. Substituting this into eqn 2.62 gives:

dA1(z)

dz
= +κ′2|A1(z)|2A1(z)J 1f

∗(∆kZ) (2.64)

Integrating this gives:

A1(Z) = A1(0) − κ′2Z2 |A1(z)|2A1(z)(J 2/Z
2) (2.65)

Which, by our now standard technique, gives the equation of motion [24]:

α̇1 = −(γ1 + i∆1) α1 − µJ 2
′|α1|2α1 +

√

2γc1A
in
1 (2.66)

where µ = hν1(κ
′Zr1/τ1)

2. Note that we are now using the scaled phase function, J 2
′.

The real part of J 2
′ leads to SHG, i.e. an intensity dependent loss. The imaginary part of

J 2
′ leads to an effective Kerr effect, i.e. an intensity dependent phase shift.

As pointed out earlier, intensity dependent losses (2PA, Raman) and phase shifts

(SPM, CPM) are normally considered to be third order effects: they are seen in many

applications involving χ(3)materials. Thus we see that a singly resonant frequency dou-

bler is effectively a third order system, the third order effects occurring directly due to

cooperating second order effects. For example, SHG in the singly resonant system is ef-

fectively two photon absorption, as when two fundamental photons form one second

harmonic photon it is not stored but leaves the cavity immediately. The two fundamen-

tal photons have been removed from the system. If there is a second harmonic cavity,

then there is a strong chance that the 2ν photon can downconvert back to fundamental

photons - this is the normal parametric interaction.

Optical bistability can occur in any Kerr cavity where the linear and nonlinear detun-

ing terms are of opposite sign. However both terms must be above a certain size, i.e there

is a detuning threshold, for the linear detuning, and a power threshold, for the nonlinear

detuning, that must be exceeded before bistability is observed.

The nonlinear detuning term, −µIm(J 2
′)|α1|2, is obviously a function of input power.

The threshold input power is found by solving eqn 2.66 in the steady-state case, α̇1 = 0,
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Figure 2.11: Phase mismatch dependence of the nonlinear conversion coefficient, ReJ 2
′, the non-

linear phase shift coefficient , ImJ 2
′, the normalised power threshold, Pbi thr

1 /Pmin
1 , and the nor-

malised cavity detuning at threshold, ∆bi thr
1 /γ1. The phase and detuning curves are in grey. Note

that all curves have been scaled as indicated to fit into the one plot.

under the condition of infinite slope in the cavity lineshape, (d|α1|2/d∆)−1 = 0 [24]:

Pbi thr1 = h(2ν)
γ2

µ

(

γ1

γc1

)2

p(∆kz) = Pmin1 p(∆kz) (2.67)

where η is the cavity escape efficiency (eqn 2.53); and p(∆kz) is the phase match function:

p(∆kz) =
2

3
√

3

|J 2
′|2

(|ImJ 2
′| −

√
3 ReJ 2

′)3
(2.68)

By definition Pbi thr1 is the power required to reach bistability for the minimum neces-

sary detuning, ∆bi thr
1 . For detunings greater than this, power greater than Pbi thr1 will be

required to observe bistability.

We can rewrite eqn 2.67 as:

Pbi thr1 =
γ2
1τ

2

ηΓSHG
p(∆kz) (2.69)

where ΓSHG is the power conversion coefficient for SHG. This is defined as:

P2 = ΓSHG(Pcirc
1 )2 (2.70)

The power conversion coefficient is a parameter that is widely used for comparison of

different χ(2)systems. In travelling wave systems it can be measured directly (simply

replace Pcirc
1 with the power of the travelling wave, P1). In cavity systems it is somewhat

inferential, as the circulating power is calculated from other measured parameters, but it

nevertheless a useful measure of the effective nonlinearity.

The linear detuning threshold is the detuning at which the slope of the cavity line-

shape becomes vertical. Thus the cavity detuning necessary to achieve bistability is given
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Figure 2.12: Transmitted and reflected power versus pump power. Powers scaled by Pmin
1 .

Bistability occurs for detunings, ∆1 ≥ ∆bi thr
1 . a) & b) ∆1 = 1.5

√
3γ1 = 1.5∆bi thr

1 . c) & d)

∆1 = ∆bi thr
1 (2π) =

√
3γ1.

by:

∆bi thr
1 = −sign(ImJ 2

′)

√
3|ImJ 2

′| + ReJ 2
′

|ImJ 2
′| −

√
3ReJ 2

′
γ1 (2.71)

Notice that for the case of zero nonlinear loss ReJ 2
′ = 0, the threshold for detuning

reduces to the well-known value ∆bi thr
1 =

√
3γ1 [29].

Fig. 2.11 plots the phase mismatch dependence of the real and imaginary parts of the

nonlinear coefficient, J 2
′. Nonlinear conversion ceases at ∆kz = m 2π (m = 1, 2, 3, . . .),

i.e. when the real part of J 2 becomes zero. At these points the system acts solely as

a Kerr medium: the large body of literature on Kerr cavities applies exactly, without

change. The Kerr nonlinearity at ∆kz = m 2π is ±µ/(mπ). This is very large compared

to intrinsic third order nonlinearity of typical crystals (∼ 108 times larger). The strongest

possible Kerr nonlinearity, which occurs at ∆kz = 2π, is only π times smaller than the

second order nonlinearity.

Fig. 2.11 also plots the normalised power threshold, Pbi thr1 /Pmin1 , and the normalised

cavity detuning at threshold, ∆bi thr
1 /γ1 versus the phase mismatch. Both functions show

a striking 2π periodicity. The power minima lie on a line of slope ±2/(3
√

3) that inter-

sects the origin. For large phase mismatch, the power maxima lie on a parallel lines that

intersect the y axis at Pbi thr1 /Pmin1 ' 5. Thus at large phase mismatch there is relatively

little difference between the power maxima and minima. The detuning minima lie on

a horizontal line that intercepts the y axis at ∆bi thr
1 =

√
3γ1. For large phase mismatch

∆bi thr
1 asymptotes to this line.

At ∆kz = 2π no net second harmonic is produced, as the nonlinearity is purely imagi-
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Figure 2.13: Transmitted and reflected lineshapes versus pump power. Power scaled by Pmin
1 ,

detuning scaled by γ1. Bistability occurs for pump powers, P1 ≥ Pbi thr
1 . a) & b) P1 = 5Pmin

1 . c) &

d) P1 = Pbi thr
1 (2π) ' 2.4Pmin

1 .

nary. However, considerable second harmonic is still produced within the cavity, and can

act as a pump source for NDOPO: thus TROPO can still occur. In fact, the minimum opti-

cal bistability threshold power, Pbi thr1 , is more than twice the minimum TROPO threshold

power, Pmin1 . To avoid TROPO when investigating Kerr behaviour, it will be necessary

to increase the TROPO threshold, Pthr1 , well above its minimum value Pmin1 (which is

discussed in section 2.4.1.

Now consider the case ∆kz = 2π, where the cavity acts purely as a Kerr cavity. The

output power obviously varies as a function of linear detuning and pump power. In the

literature this is normally investigated by fixing one of the phase terms in eqn 2.66 and

varying the other. Thus power bistability is observed when the cavity is locked to a linear

detuning (∆1 ≥ ∆bi thr
1 ), and the power is varied. As shown in Fig. 2.12, there is a clear

bistability. Detuning bistability (i.e. distortions of the line shapes), is observed when the

power is held constant (P1 ≥ Pbi thr1 ) and the cavity is scanned back and forth through

resonance, as shown in Fig. 2.13. As the power approaches threshold, the line shapes

begin to exhibit a marked asymmetry; at threshold the line shape has a vertical slope;

above threshold the line shapes are bistable.

2.5.3 Detuning induced Kerr effect

While the physics in the previous two sections has only been developed in the last few

years, it has been appreciated for a long time that it is possible to produce a nonlinear

phase shift in cavity SHG simply by appropriate detuning. This was first pointed out in

the seminal paper of Drummond et. al. [7, Section 8], and was alluded to in section 2.2.3.
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Restating equations 2.34& 2.35:

α̇1 = −(γ1 + i∆1) α1 − µ|α1|2α1 +
√

2γc1A
in
1 (2.72)

where the nonlinear interaction, µ, is:

µ =
κ2

2

(γ3 − i∆3)

(γ2
3 + ∆2

3)
(2.73)

The real part of µ|α1|2α1 is the SHG term and the imaginary part is the Kerr term. Unlike

the phase mismatch induced Kerr effect, the nonlinear loss cannot be suppressed in the

detuning induced Kerr effect.

There is one caveat concerning this mechanism: for it to work, the system needs to be

more doubly, than singly, resonant. That is, the second harmonic must act more like a res-

onance of the cavity, than as a freely propagating field. Consider the following argument.

In the limit of low reflectivity the width of the second harmonic resonance becomes so

large that its half points fall on adjoining cavity resonances (at ±1 FSR). These build up

resonances, which in turn overlap adjoining resonances, which in turn overlap adjacent

resonances, and so on. The second harmonic output is no longer a resonance but a field.

There is no longer a lineshape for the second harmonic cavity, the output is a wide flat

line, and so there is no detuning dependence - there is no resonance to be detuned from!

Thus there can be no detuning induced Kerr effect in singly resonant cavities.

Since its introduction, the detuning induced Kerr effect in SHG has rarely been con-

sidered. Given the notorious difficulty of working with doubly resonant SHG it is not

surprising that no experiments on it have been performed.

Although it is not identified as such, the detuning induced Kerr effect has been consid-

ered in a series of papers concerning a (N)DOPO resonant at the pump and subharmonic

frequencies simultaneously. Lugiato et. al predict that both bistability and self-pulsing

will occur in a DOPO where the cavity is detuned with respect to the pump and subhar-

monic [30]. Richy et. al have demonstrated asymmetric lineshapes and pump hysteresis

in a triply resonant (pump, signal, & idler) NDOPO detuned with respect to the pump

& signal [31]. The detuning induced Kerr effect has even been used to generate tran-

sient squeezing (66 ms) of -1.2 dB (25%) [32]. Although the given explanation of these

effects in the original references is somewhat complicated, the underlying mechanism is

the detuning induced Kerr effect, as identified above.

2.5.4 Thermally induced Kerr effect

In experimental systems there is an additional mechanism that can cause an intensity

dependent phase shift - absorption. Light that is absorbed in the crystal is converted

to heat. Most optical crystals have a positive thermal coefficient, so that heat leads to

expansion of the crystal.

Consider the situation of a monolithic cavity (the cavity is carved from the crystal)

that is detuned onto resonance from high optical frequency. As resonance is approached,

the circulating power increases, thus the absorbed power increases, heating the cavity

and causing it to become longer. The increase in length pushes the resonance frequency to

a lower frequency, so that it is necessary to decrease the optical frequency further to reach

resonance. Eventually of course resonance is reached. As the frequency is decreased

further, and the cavity comes off resonance, the cavity absorbs less heat and shortens

slightly. At some detuning point, the cavity finds that the resonance condition is now at a
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markedly higher frequency than the detuning where it finds itself, and the output drops

suddenly, switching to a low output. The resulting lineshape is markedly asymmetric:

broadened to, and switching on, the low frequency side.

Now consider approaching resonance from the low frequency side. Light that enters

the cavity heats it, lengthening the cavity and decreasing the cavity resonance frequency.

At some detuning point the cavity suddenly finds itself near resonance, and the cavity

switches to a high output. The resulting lineshape is also markedly asymmetric: nar-

rowed to, and switching on, the high frequency side. The result is a thermally induced

Kerr effect.

Thermal absorption is time dependent. Thus thermal distortion of lineshapes can be

avoided, or at least minimised, by scanning the cavity rapidly, i.e. many times faster

than the inverse time constant of the absorption, so that the heat dumped into the cavity

approaches a steady-state value and the cavity length effectively does not change during

the scan.

The thermally induced Kerr effect is unavoidable when the cavity is locked. How-

ever it is slow to respond - typical thermal absorption time constants are on the order of

seconds. Thus the thermally induced Kerr effect can be ignored if considering effects at

frequencies much higher than it can respond, for example, examining the noise reduction

at several MHz. (It does however complicate the locking the cavity to resonance.)

In this thesis we can always account for the thermal effect in of the two ways de-

scribed above. However, if an experiment is such that the thermal effect cannot be ig-

nored, then it can be modelled in one of two ways. In either case we add to the normal

equation of motion the term “i f(T)αi”, where T is the temperature, and f(T) = FT(t).

The Fourier thermal diffusion equation is:

∂T(~r, t)

∂t
= −κ∇2T(~r, t) + KIlight (2.74)

where t is time, κ is the thermal conductivity, T(~r, t) is the time dependent spatial tem-

perature distribution, K is the power to temperature conversion constant, and Ilight is the

light intensity. We simplify this to:

Ṫ = −BT(t) +A|αi|2 (2.75)

The thermal effect can be modelled by adding this equation to the other equations of

motion (remember, they are coupled to it via the term iFT(t)αi) and solving as normal.

Alternatively an explicit solution to eqn 2.75 can be found. Solving the homogeneous

part of eqn 2.75, Ṫ = −BT(t), gives:

T(t) = T0e
−Bt (2.76)

As an ansatz, we allow time variation of the constant, T0, and substitute into the inho-

mogeneous equation, 2.75, and solving, find:

T0(t) =

∫ t

t0

eBt
′
A|αi|2dt′ (2.77)

Substituting this into the eqn 2.76 gives:

T(t) =

∫ t

t0

e−B(t − t′)A|αi|2dt′ (2.78)
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Figure 2.14: Spring pendulum. left hand side: mechanical second harmonic generation. The pen-

dulum is driven at ω = 2πν. For certain values of pendulum length, L, spring coupling, k, and

mass m they system is phase matched and the mass oscillates along the pendulum with a fre-

quency 2ω. right hand side: mechanical parametric oscillation. The mass is driven at 2ω as shown.

Above a certain driving amplitude at phase match the pendulum begins to oscillate with a fre-

quency ν.

This can be substituted directly into the term iFT(t)αi in the equations of motion.

A more detailed analysis has been made for the case of a triply resonant (pump, sig-

nal, idler) optical parametric oscillator [33]. The phase shift was modelled by considering

the change in refractive index due to the change in temperature, via the Sellmeier equa-

tions. Good qualitative agreement was found between the model and experiment.

2.6 A mechanical analogy

Some people (I am one) find that consideration of the mechanical analogs of optical sys-

tems deepens their physical intuition. Second order optical systems are simply two har-

monic oscillators (the cavity modes) coupled by a nonlinear interaction (the χ(2)interaction).

A simple mechanical analog exists for such systems. Consider the spring pendulum, as

shown in Fig. 2.14, a coil spring of length, L, mass, µ, and spring constant, k, that is sus-

pended by one end so that it acts as a pendulum supporting a end mass, m. The spring

pendulum experiences mechanical losses, such as friction (analogous to optical losses.)

Gravity acts vertically downward.

The spring pendulum is characterised by two frequencies, the frequency of the pen-

dulum oscillation, νp = 1/(2π)
√

(m+ µ/2)/(m + µ/3)/g/L, and the frequency of the

spring oscillation, νs = 1/(2π)
√

k/(m+ µ/3). The pendulum can be driven (analogous

to the pump field) by moving the pivot point horizontally at the frequency νp; the spring

can be driven by moving the pivot point vertically at the frequency νs, or by moving the

end mass at the frequency νs. The interaction is nonlinear because when the pendulum

oscillates the spring experiences a downward centrifugal force that at a frequency twice

that of the pendulum frequency.

If the pivot point is driven horizontally at a frequency ν ′p, such that ν ′s = 2ν ′p, then

energy couples strongly from the pendulum to the spring , which starts oscillating at ν ′s.
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This is mechanical second harmonic generation [34]. For ν ′s = 2ν ′p, there must be “phase

matching”, i.e. kL = 4g(m+ µ/2). Even though the spring pendulum is lossy, there is no

threshold: as long as the spring pendulum is phase matched, any driving amplitude at νp
will lead to an oscillation at at νs. This is because at any position except the vertical, there

is always a velocity component that is along the the spring: this will tend to drive the

spring. (Grab a spring and a lump of metal and try this experiment, it works remarkably

well! Mind you, you will have to spend a little time finding the phase matched length.)

Now consider driving the pivot point vertically at a frequency ν ′s, again where ν ′s =

2ν ′p. At first the spring oscillates at the frequency, ν ′s, in the vertical direction. If there is

zero loss, then any infinitesimally small horizontal perturbation (analogous to quantum

noise) will kick the pendulum sideways. Once away from the vertical the velocity has

a component perpendicular to the spring that can drive the pendulum oscillation at the

frequency ν ′p. This is mechanical subharmonic generation. Now consider the case with

loss. Again an infinitesimally small horizontal perturbation kicks the spring sideways.

However if the spring motion does not contain enough energy to overcome the damping,

the spring remains vertical. The stronger the damping, the more energy is needed. The

energy is provided by the amplitude of the driving motion. Thus a threshold exists for

mechanical subharmonic generation, analogous to the optical case.

For optimum mechanical second and sub harmonic generation a phase matching con-

dition has to be fulfilled. If it is very far from being fulfilled, then no coupling between

oscillators occurs (they are independent harmonic oscillators). This allows us to visualise

the Kerr effect as follows. Change the system parameters slightly so that there is a slight

phase mismatch. Again drive the pivot horizontally with a frequency, ν ′p. Energy is now

coupled from the pendulum to the spring, but it is returned back to the pendulum. Under

these conditions the spring does not oscillate. Instead the pendulum motion lags/leads

the driving field with a phase that depends on the amplitude of the driving motion. This

is the mechanical analogy to the Kerr effect.

2.7 Summary of χ
(2)effects

Basic χ(2)effects can be categorised as upconversion and downconversion effects. The

former includes second and sum frequency generation (SHG & SFG), the latter includes

(non)degenerate optical parametric oscillation (N)DOPO.

Multiple χ(2)nonlinearities interact in one of two ways. Competing nonlinearities

are those that do not share the same frequencies, for example ν ⇀↽ 2ν ⇀↽ ν ± ∆2, or,

ν ± ∆1 ⇀↽ 2ν ⇀↽ ν ± ∆2. Cooperating nonlinearities are those that do share the same

frequencies, ν ⇀↽ 2ν or ν±∆1 ⇀↽ 2ν, but interact to produce an asymmetrical result, such

as an intensity dependent phase shift.

In a singly resonant SHG cavity competition occurs between SHG & NDOPO. This

competition has a power threshold, produces nondegenerate modes in a frequency range

around the fundamental, and causes clamping of the second harmonic power.

Cooperating nonlinearities can cause a strong intensity dependent phase shift, aka

Kerr effect. It can be induced via phase matching, detuning, or by thermal effects. The

Kerr effect in cavities leads to optical bistability, which has thresholds in both detuning

and power.
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Chapter 3

Quantum Models

One does not discover new lands without consenting to lose sight of the shore for a very long time

André Gide, The Counterfeiters

Physical theories have two equally important aspects: the formalism of the theory, and the

interpretation of the theory. The formalism of quantum optics is often regarded as com-

plex and mathematically demanding. In this chapter we show that it is in fact relatively

straightforward. Further, we present intuitive and powerful interpretations of quantum

noise that we use throughout this thesis: the sideband and ball-on-stick pictures. In de-

tail, in the first section we derive some of the principal results of quantum optics directly

from classical optics. In the second section we briefly discuss the two principal methods

of modelling quantum optical systems, the Schrödinger and Heisenberg approaches. In

the third section we illustrate the simplicity and ease of use of the Heisenberg approach

by deriving the noise characteristics of an empty cavity. In the fourth section we discuss

photodetection and the phase sensitive detection of light.

3.1 Quantum optics formalism without pain

The behaviour of light freely propagating in space is described by the source free Maxwell’s

equations. From these it is possible to derive the electromagnetic field as a function of

position, r, and time, t 1

E(r, t) = i
∑

j

(

h̄ωj
2ε0

)1/2

[ajuj(r)e
−iωj t − a∗ju

∗
j(r)e

+iωj t] (3.1)

where uj(r) are mode functions containing polarisation and spatial phase information.

The factor (h̄ωj/2ε0)
1/2 is chosen so that the Fourier amplitudes, aj & a∗j , are dimension-

less, i.e. they are are solely complex numbers or c-numbers. In this representation the

Fourier amplitudes are the orthogonal variables of the system.

The electromagnetic field is quantised by transforming the Fourier amplitudes to mu-

tually adjoint operators, âj & â†j
2. Transformation of orthogonal variables in this fashion

is referred to as a canonical transformation.

Mathematically, the commutator,
[

Â, B̂
]

, is defined as the following operation [3]:

[

Â, B̂
]

= ÂB̂ − B̂Â (3.2)

If the commutator is zero, then ÂB̂ = B̂Â, and we say Â and B̂ commute. The operators

1The discussion presented in this section is basically that of reference [1].
2To remind the reader that operators are very different mathematical objects to complex numbers,

throughout this thesis we will always mark operators with a circumflex, i.e. a “ˆ”
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âj & â†j obey the boson commutation relations:

[âj, âk] = 0
[

â†j , â
†
k

]

= 0
[

âj , â
†
k

]

= δjk (3.3)

The electromagnetic field is now quantised. It is the introduction of the above relations

that allow formal description of the nonclassical behaviour of the electromagnetic field

in quantum optics.

Classically the total energy of the electromagnetic field is described by the Hamilto-

nian [1]:

H =
1

2

∫

(

ε0E
2 +

B
2

µ0

)

dr (3.4)

where ε0 and µ0 are respectively the permittivity and permeability of free space, and E

and B are the amplitude of the electric and magnetic components of the electromagnetic

field.

After canonical transformation (using the boundary conditions of the mode functions,

u, and eqn 3.1 and the equivalent expression for B) this expression becomes:

Ĥ =
∑

j

hνj

(

â†j âj +
1

2

)

(3.5)

This is just the Hamiltonian of a collection of quantised simple harmonic oscillators

(SHO). Accordingly, the electromagnetic field can be considered to be a frequency en-

semble of modes, each mode represented by a simple harmonic oscillator.

Several quantum representations of the electromagnetic field enjoy wide circulation.

These include the number or Fock state representation, the coherent state representation,

and the squeezed state representation. We will discuss these in the following three sub-

sections.

3.1.1 Number states, or, Annihilation can Fock a state

The eigenstates of the simple harmonic oscillator Hamiltonian (eqn 3.5) are known as

number or Fock states, and are written |nj〉. They are eigenstates of the number operator,

n̂j = â†j âj , such that:

n̂j |nj〉 = nj|nj〉 (3.6)

The value of the number state represents the number of photons in that mode, e.g. there

are three photons in the mode |3j〉, where j is the frequency of the mode.

Mathematically, number states are both orthogonal and complete, i.e:

〈nj|mj〉 = δmn and
∞
∑

nj = 0

|nj〉〈nj | = 1 (3.7)

As the number states form a complete orthonormal set, any other state can be expanded

uniquely in terms of number states.

The operators âj & â†j when applied to the number state add and subtract a single

photon from the mode, and are thus known as the annihilation and creation operators,
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respectively. That is:

âj|nj〉 =
√

nj |nj − 1〉
â†j|nj〉 =

√

nj + 1 |nj + 1〉 (3.8)

Note that the annihilation operator applied to the ground or vacuum state, |0〉 gives zero.

âj |0j〉 = 0|0j〉 = 0 (3.9)

The eigenvalues of the number operator are simply nj = 0, 1, 2, . . .. The expectation value

of an operator corresponds to a physical measurement of the quantity represented by that

operator. The expectation value of the number operator is simply the number of photons

in the mode, i.e.:

〈nj|n̂|nj〉 = 〈nj|(nj |nj〉) = nj〈nj|nj〉 = nj (3.10)

The SHO Hamiltonian can be rewritten in terms of the number operator:

Ĥ =
∑

k

hνk

(

n̂j +
1

2

)

(3.11)

As the Hamiltonian represents the total energy of the system it is not surprising that it is

the energy operator. The eigenvalues of the energy operator are hνj(nj + 1/2), i.e:

Ĥ|nj〉 = hνj(nj + 1/2)|nj〉 (3.12)

So the SHO Hamiltonian represents the sum of (the number of photons in each mode

multiplied by the energy of the photon for that mode) plus (half the energy of the photon

for that mode, which represents the energy of the vacuum fluctuations for that mode).

The expectation value of the SHO Hamiltonian when applied to the ground state is:

〈0j |Ĥ|0j〉 =
1

2

∑

j

hνj (3.13)

That is, the ground state or vacuum energy is not zero. As there is no upper limit to

frequency for electromagnetic radiation the energy of the vacuum is in fact infinite. 3

This detail is normally side-stepped by the observation that measurements are made on

relative changes in the total energy of the electromagnetic field.

Physical light sources that correspond to the number state representation, i.e. all pho-

tons in the field are of exactly the same energy, are rare and normally require exotic ap-

paratus for their production. Thus the number state representation is rarely used for

modelling practical experiments.

3.1.2 Coherent states

For a laser running well above threshold, at detection frequencies well outside the laser

linewidth, the light is accurately described by the coherent state representation |α〉, where

3If an upper limit to the frequency of electromagnetic radiation does exist then the energy of the vacuum
state will be finite, but very, very large. Whilst intuitive arguments can be made for such a limiting mech-
anism, it is not widely accepted that such a limit exists, and no satisfactory physical model has yet been
suggested.
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α is a complex-number. Unlike the number state representation, where the phase is to-

tally unknown as the photon number is exactly known, in the coherent state representa-

tion both the phase and the amplitude of the light can be known, although, as we shall

see, not to arbitrary accuracy.

Mathematically, coherent states are generated from the vacuum state via the displace-

ment operator, D(α), i.e.:

|αj〉 = D̂(αj)|0j〉 (3.14)

where

D̂(αj) = eαj â
†
j − α∗

j âj (3.15)

and α is an arbitrary complex number. Coherent states are eigenstates of the annihilation

and creation operators, â & â†. This means these operators are poorly named with respect

to coherent states as they neither annihilate or create. That is:

âj|αj〉 = αj |αj〉
〈αj |â†j = 〈αj |α∗

j (3.16)

An operator, Â, is Hermitean or self-adjoint if Â = Â†. As the annihilation and creation

operators are non-Hermitean, the eigenvalues, αj & α∗
j , are complex.

Expressed in terms of the number state, the coherent state is:

|αj〉 = e−|αj |2/2
∞
∑

nj = 0

α
nj
j

(nj !)
1/2

|nj〉 (3.17)

Note that we have kept the explicit frequency dependence, j. For a classically noiseless,

freely propagating electromagnetic field, every mode of the field is a coherent state.

The mean value of the photon number, n̄j , in the coherent state is |αj |2:

n̄j = 〈αj |n̂j|αj〉 ≡ 〈nj〉
= 〈αj |â†j âj|αj〉
= 〈αj |α∗

jαj |αj〉
= |αj |2〈αj |αj〉
= |αj |2 (3.18)

The probability distribution of photons in the coherent state is Poissonian:

P(nj) = |〈nj |αj〉|2 = e−〈nj〉 〈nj〉
nj

nj!
(3.19)

This Poissonian nature is perhaps clearest expressed in the variance.

Classically, the variance, V (w), and standard error, ±∆w, of a measurable parameter,w,

are defined as:

V (w) = ∆w2

= (w − w̄)2 (3.20)

For a quantum observable, Â, of a state, |ψ〉 this becomes:

V (Â)ψ = 〈∆Â〉2ψ



§3.1 Quantum optics formalism without pain 41

= 〈ψ|(Â − 〈Â〉ψ)|ψ〉
= 〈ψ|(Â2 − 2〈Â〉ψÂ + 〈Â〉2ψ)|ψ〉
= 〈ψ|Â2|ψ〉 − 2〈ψ|〈Â〉ψÂ|ψ〉 + 〈ψ|〈Â〉2ψ)|ψ〉
= 〈Â2〉ψ − 2〈Â〉ψ〈Â〉ψ + 〈Â〉2ψ)〈ψ|ψ〉
= 〈Â2〉ψ − 〈Â〉2ψ (3.21)

where 〈Â〉ψ = 〈ψ|Â|ψ〉 and 〈Â2〉ψ = 〈ψ|Â2|ψ〉. The positive root of the variance, +(∆Â)ψ ,

is known as the uncertainty.

The variance of the photon number is thus:

V (n̂j)α = 〈∆n̂2
j〉α

= 〈αj |n̂2
j |αj〉 − 〈αj |n̂j|αj〉2

= 〈αj |(â†j âj)2|αj〉 − 〈αj |â†j âj|αj〉2

= 〈αj |â†j âj â†j âj|αj〉 − (|αj |2)2

= 〈αj |â†j(1 + â†j âj)âj |αj〉 − |αj |4

= 〈αj |â†j âj |αj〉 + 〈αj |â†j â†j âj âj |αj〉 − |αj |4

= |αj |2 + |αj |4 − |αj |4

= n̄j (3.22)

i.e. for the photon number of a coherent state, the variance equals the mean. This is the

defining characteristic of a Poissonian distribution. Note that the variance and uncer-

tainty of the photon number for the vacuum state, |0〉, are zero. That is, we are absolutely

sure that we will not measure any photons in the vacuum state.

3.1.3 Quadrature operators and minimum uncertainty states

Measurements of electronic signals are homologous with measurements of optical sig-

nals 4. We now introduce a concept that enjoys wide use in electronics. Consider an

arbitrary voltage signal, V, described by a sine wave:

V = A sin(ωt+ φ) (3.23)

This can expanded to:

V = A sin(ωt) cos(φ) +A cos(ωt) sin(φ) (3.24)

If phase information is to be extracted from V, the it needs to be compared to a reference

signal, known as the local oscillator, V0 = sin(ωt). The first term of eqn 3.24 is called the in-

phase component, as it is in phase with the local oscillator. The second term is known as

the in-quadrature component, as it is phase shifted π/2 with respect to the local oscillator.

Somewhat confusingly, these components are also referred to as quadratures or quadrature

phases (leading to the delightful term “in-quadrature quadrature”).

In practice the signal V is often observed at the rate ω - the information in this case

is being carried only by the amplitude A and relative phase of the signal φ. Thus we can

4The only difference is that of greatly increased frequency. Anything that is possible with electronic
signals is, in principle at least, possible with optical signals. This includes nonlinear processes such as
frequency doubling, parametric oscillation and frequency mixing
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write, in the rotating frame:

V = A cos(φ) +A sin(φ) = X1 +X2 (3.25)

Once the two quadratures,X1 &X2, are measured, the amplitude and phase of the signal

can be directly inferred: A =
√

X2
1 +X2

2 and φ = X2/X1.

We now introduce operators that correspond to the quadratures of the electromag-

netic field. To keep our notation uncluttered, we consider only a single mode of the field,

and so drop the frequency dependent subscript, j. We introduce the quadrature operators,

X̂1 and X̂2

X̂1 = â + â†

X̂2 = −i(â − â†) = e−iπ/2â + e+iπ/2â† (3.26)

Note that these operators are Hermitean, i.e. X̂j = X̂†
j

5. The quadrature operators give

dimensionless amplitudes (〈ψ|X̂1|ψ〉 and 〈ψ|X̂2|ψ〉) for the two quadrature phases of the

field mode, respectively the in-phase and in-quadrature components of the field mode.

For coherent states the quadrature amplitudes represent the real and imaginary parts

of the field mode, and are thus commonly known as the amplitude and phase quadratures.:

〈|X̂1|〉 = 〈α|X̂1|α〉 = 〈α|(â + â†)|α〉 = 〈α|â|α〉 + 〈α|â†|α〉
= α+ α∗ = 2Re(α)

〈|X̂2|〉 = 〈α|X̂2|α〉 = −i〈α|(â − â†)|α〉 = −i〈α|â|α〉 − i〈α|â†|α〉
= −i(α− α∗) = 2Im(α) (3.27)

Thus

2α = 〈|X̂1|〉 + i〈|X̂2|〉 (3.28)

Fig. 3.1a) shows a representation of the coherent state as a phasor in quadrature space.

φ

|α|

X2 X2

X1 X1

Figure 3.1: a) Coherent state as a phasor in quadrature space. b) as for (a), but including the

uncertainty area. Grey lines represent other possible field values.

The amplitude of the coherent state, shown as |α| in the diagram, is given by 1/2
√

〈X̂1〉2 + 〈X̂2〉2,

5This follows automatically from the mathematical properties of operators. If Â is non-Hermitean it can

be decomposed into Hermitean components (Â+Â†) and −i(Â−Â†), where Â = (Â+Â†)/2−i(Â−Â†)/2i.
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and the phase of the coherent state, shown as φ in the diagram, is given by 〈X̂2〉/〈X̂1〉.
As we discuss below, this picture of a coherent state is still not complete. We have yet to

consider the uncertainties in the state.

If P̂ and Q̂ are noncommuting Hermitean operators then the physical quantities P and

Q cannot be simultaneously measured with zero uncertainty. This is known as Heisen-

berg’s Uncertainty Principle. To see this6, suppose Â and B̂ are two Hermitean operators

and that all observables are taken for a fixed state |ψ〉. Now consider the expression :

〈C〉 = 〈ψ|(Â + iuB̂)(Â − iuB̂)|ψ〉 (3.29)

This is the squared length of the vector (Â − iuB̂)|ψ〉 and is therefore always real and

non-negative for positive u. Rearranging:

〈C〉 = 〈ψ|(Â2 + u2B̂ + iuB̂Â − iuÂB̂)|ψ〉
= 〈A〉2ψ + u2〈B〉2ψ − iu〈[Â, B̂]〉ψ (3.30)

As 〈C〉 is positive for real u, then from the root of the quadratic solution (“b2 + 4ac”):

〈Â2〉ψ〈B̂2〉ψ ≥ 1

4
|〈[Â, B̂]〉ψ|2 (3.31)

Now let Â = P̂+ 〈P̂〉 and B̂ = Q̂+ 〈Q〉. As 〈P̂〉 and 〈Q〉 are numbers [Â, B̂] = [P̂, Q̂]. Thus:

〈Â2〉ψ = 〈ψ|(P̂2 + 〈P̂〉2 − 2〈P̂〉P̂)|ψ〉
= 〈P̂2〉 + 〈P̂〉2 − 2〈P̂〉2

= 〈P̂2〉 − 〈P̂〉2

= 〈∆P〉2ψ (3.32)

And similarly, 〈B2〉ψ = 〈∆Q〉2ψ . Substituting into eqn 3.31 we obtain:

〈∆P〉2ψ〈∆Q〉2ψ = 1/4 |〈[P̂, Q̂]〉|2

〈∆P〉ψ〈∆Q〉ψ = 1/2 |〈[P̂, Q̂]〉| (3.33)

Thus the smaller the uncertainty in the measurement of the observable 〈P̂〉, the greater

the uncertainty in the observable 〈Q̂〉.
The commutator for the quadrature operators is:

[

X̂1, X̂2

]

= 2i (3.34)

Remembering that |[X̂1, X̂2]| = 2, the uncertainty relation for quadrature operators is

thus:

∆X1∆X2 = 1/2|〈[X̂1, X̂2]〉| = 1 (3.35)

One quadrature cannot be measured to arbitrary accuracy without the other quadrature

becoming arbitrarily uncertain.

Consider the variance of the amplitude and phase quadratures of the vacuum state.

As the uncertainty of the photon number was zero, naı̈vely we might expect the quadra-

ture variances to be zero. However from the uncertainty relation, eqn 3.35, we know this

6This proof is from reference [2].
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cannot be. We find:

V (X̂1)0 = 〈∆X1〉20
= 〈0|∆X̂1

2|0〉
= 〈0|X̂1

2|0〉 − 〈0|X̂1|0〉2

= 〈0|(â + â†)2|0〉 − 〈0|(â + â†)|0〉2

= 〈0|(â2 + â†â + ââ† + â†2)|0〉 − 0

= 0 + 0 + 〈0|(1 + â†â)|0〉 + 0 = 1 + 0

= 1

〈∆X̂1〉0 = ±1 (3.36)

Similarly for the phase quadrature:

V (X̂2)0 = 〈∆X̂2〉20 = 1

〈∆X̂2〉0 = ±1 (3.37)

The vacuum state is noisy. This can be thought of as the standard background noise of the

universe 7. It is possible due to the 1/2hν energy present in each vacuum mode of the

electromagnetic field. The noise level of the vacuum state is known by various names:

the standard quantum limit or SQL; shot noise; or the quantum noise limit or QNL

How do the uncertainties of the coherent state compare with those of the vacuum

state? The variance of the amplitude quadrature of the coherent state is

V (X̂1)α = 〈∆X̂1〉2α
= 〈α|∆X̂1

2|α〉
= 〈α|X̂1

2|α〉 − 〈α|X̂1|α〉2

= 〈α|(â + â†)2|α〉 − 〈α|(â + â†)|α〉2

= 〈α|(â2 + â†â + ââ† + â†2)|α〉
−
[

〈α|â|α〉 + 〈α|â†|α〉
]2

= 〈α|â2|α〉 + 〈α|â†â|α〉 + 〈α|(1 + â†â)|α〉
+〈α|â†2|α〉 − [α+ α∗]2

= α2 + |α|2 + 1 + |α|2 + α∗ 2 −
[

α2 + α∗ 2 + 2|α|2
]

= 1

〈∆X̂1〉α = 1 (3.38)

Similarly for the phase quadrature:

V (X̂2)α = 〈∆X̂2〉2α = 1

〈∆X̂2〉α = ±1 (3.39)

The coherent state has exactly the same uncertainty as the vacuum state. This is what

makes the coherent state worthy of attention. For both the coherent and vacuum states,

7This electromagnetic noise is present everywhere, at every frequency, in every direction. Your hand is a
wonderful source of vacuum noise. This noise is not the remnant radiation from the Big Bang. That is at a
microwave frequency only, and can only been seen by looking carefully at the sky.



§3.1 Quantum optics formalism without pain 45

the standard errors of the quadrature operators fulfill a special case of the Heisenberg

uncertainty relation:

〈∆X̂1〉α〈∆X̂2〉α = 1 (3.40)

Any state with uncertainties that fulfill this relation is known as a minimum uncertainty

state or MUS. As we shall see, both coherent and vacuum states are special cases of the

infinite set of minimum uncertainty squeezed states.

The phasor diagram must be modified to include an uncertainty outline, as shown in

Fig. 3.1(b). This is often, and imaginatively, titled the ball-on-stick diagram. The phasor

diagram can be interpreted in either the frequency or time domain. In the frequency

domain, each frequency mode of the electromagnetic field has a separate ball-on-stick

diagram. As we shall see, the uncertainty outline (a circle for a minimum uncertainty

state) can differ from mode to mode: a new picture must be drawn for each frequency of

the field.

3.1.4 Squeezed states

X2 X2

X1

X1

X2

X1

δY1

δY2

a) b)

c)

X2

X1

d)

α

Y2

δX2

δX1

β

Figure 3.2: a) Vacuum squeezing. b) Bright squeezing. c) Bright squeezing in rotated quadrature

space. Y1, Y2 shown on diagram. d) Number state.

Squeezed states are states where the uncertainty in one quadrature is less than the

standard quantum limit, that is to say, quieter than the normal background noise of

the universe. The production, measurement and modelling of these somewhat unusual

states will take up much of the discussion in this thesis.

Any quadrature of the field mode may be smaller than the SQL, not only the in-phase
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and in-quadrature quadratures. That quadrature is said to be squeezed, it’s complemen-

tary quadrature is sometimes said to be anti-squeezed. Minimum uncertainty squeezed

states are states where the squeezed and anti-squeezed quadratures fulfill the minimum

uncertainty relation, eqn 3.40.

This is best illustrated with phasor plots. Vacuum squeezed states are electromag-

netic states without any coherent excitation, as shown in Fig. 3.2(a). Bright squeezed

states are electromagnetic states with a coherent excitation, as shown in Fig. 3.2(b). For

bright squeezed states, fluctuations in the amplitude quadrature lie along the vector, α,

as shown. Fluctuations in the phase quadrature are at right angles to this.

Mathematically, both forms of squeezing are generated from the vacuum state. Vac-

uum squeezed states are defined as:

|0, ε〉 = Ŝ(ε)|0〉 (3.41)

and bright squeezed states are defined as:

|α, ε〉 = D(α)S(ε)|0〉 (3.42)

where the unitary squeeze operator, S(ε) is:

Ŝ(ε) = exp(1/2ε∗â2 − 1/2εâ†2) (3.43)

and ε = re2iφ. φ represents the quadrature angle of the squeezing: φ = 0 is amplitude

squeezing, φ = π/2 is phase squeezing. As shown in Fig. 3.2(c) we define rotated quadra-

ture operators, Ŷ1 and Ŷ2, that define a rotated complex amplitude, β:

β = αe−iφ

= 1/2(〈X̂1〉 + i〈X̂2〉)e−iφ

= 1/2(〈Ŷ1〉 + i〈Ŷ2〉) (3.44)

The squeeze operator attenuates one quadrature component of β whilst amplifying the

complementary quadrature. The degree of amplification and attenuation is set by the

squeeze factor, r = |ε|. For a squeezed state, the rotated quadrature uncertainties are:

〈∆Ŷ1〉α,r = e−r

〈∆Ŷ2〉α,r = e+r (3.45)

which fulfill the minimum uncertainty relation (eqn 3.40). The photon number of a

squeezed state is:

〈N̂〉α,r = |α|2 + sinh2r (3.46)

Note that a squeezed vacuum (α = 0) contains photons. That is, a squeezed vacuum state

is not really a vacuum state, as it contains more than the zero point energy. It requires

energy to alter the uncertainty circle of quantum noise limited states, be they vacuum or

coherent.

How does a squeezed state compare to a number state? The quadrature variances for

a number state are:

〈∆X̂1〉n = 〈∆X̂2〉n = 2n+ 1 (3.47)

As shown in Fig. 3.2(d), in quadrature space the number state is an annulus with radius√
n and width = 1. The number state is certainly not a minimum uncertainty state in
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quadrature space. However it is a minimum uncertainty state in number/phase space8,

whilst in that parameter space, vacuum, coherent and squeezed states are not. Although

a detailed treatment is beyond the scope of this thesis, we point out that in a parameter

space where a state is a minimum uncertainty state (squeezed state in quadrature space;

number state in number/phase space) the Wigner function is always positive. Further, in

quadrature space minimum uncertainty states are always Gaussian, and the uncertainty

outline, which is a contour of the Wigner function, is always an ellipse. The number

state in quadrature space has a Wigner function with negative values, corresponding to

negative classical probabilities.

3.1.5 Linearisation

Linearisation is an approximation that makes most empirical quantum optics possible. It

is only valid for detection of bright, steady-state, electromagnetic fields, i.e. fields with

amplitudes much larger than their fluctuations. (From the phasor diagram point of view,

the last requirement is that the “stick” is much longer than the width of the “ball”.)

In linearisation, operators are decomposed into two components, one a c-number, the

other an operator. The c-number component is the steady-state (and thus independent

of time) expectation value of the operator. The operator component describes the time-

varying fluctuations of the field. For example, linearising the annihilation operator of the

coherent state:

â ∼= α+ δâ(t) (3.48)

where φ is the phase of the coherent state. For the rest of this thesis we shall not explicitly

write the time dependence of the fluctuation operator. These fluctuation operators are ho-

mologous with the fluctuations discussed in previous section (i.e. δÂ ≡ ∆Â). Previously

established operator relations apply to the fluctuation operators. Thus, the quadrature

fluctuation operators are:

δX̂1 = (δâ + δâ†)

δX̂2 = −i(δâ − δâ†) (3.49)

Linearisation offers insight into the physics of various measurements. Consider, for a real

coherent field, the number operator:

n̂ = â†â ∼= α2 + α(δâ + δâ†) (3.50)

where we have omitted the higher order (and thus negligible) terms in the fluctuations.

We see that the number operator for a coherent field fluctuates around a mean value, and

that the fluctuations are only observable because they’re scaled by the field. Fluctuations

in photon number correspond to fluctuations in the amplitude quadrature (compare eqns

3.49 and 3.50). We can thus write the expectation value for the photon number of a co-

herent field as:

〈n̂〉α = 〈â†â〉α ∼= α2 + α〈δX̂1〉α (3.51)

As the average value of the amplitude quadrature fluctuations is zero, the average photon

number is α2.

8This argument is valid, if somewhat hypothetical. The number operator is well defined. The phase
operator is not, and still remains the subject of active research.
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3.1.6 The sideband picture

In previous sections we’ve introduced several seemingly disparate concepts: coherent

and squeezed states; quadrature operators; linearisation; and phasor diagrams. In this

section we present a physically intuitive picture that unifies these concepts, and allows

intuitive interpretation of the existing squeezing literature.

Consider a classical optical field of frequency Ω. It can be represented by a complex

phasor on a frequency line, see Fig. 3.3(a). We refer to this phasor as the carrier. Ampli-

tude modulation at a frequency ω is represented by two smaller phasors, referred to as

sidebands, that are displaced from the carrier by ±ω. The relative height of the sidebands

with respect to the carrier defines the modulation depth. The phasors are parallel to, and

in the same direction as, the carrier, as shown in Fig. 3.3(b). Both sidebands beat with the

carrier. It is the power of this beat signal that is measured experimentally. Phase modu-

lation is represented by an infinite set of sidebands, spaced at ω. The sidebands are in the

plane perpendicular to the carrier, and their relationship with one another is shown in

Fig. 3.3(c). The modulation depth, and therefore the relative heights of the sidebands is

given by a Bessel function. For small modulation depths the higher order sidebands are

very small and can be ignored. In this limit phase modulation can be represented by just

the first two sidebands at ±ω. As discussed later (see section 3.4.4), phase modulation is

normally detected by converting it to amplitude modulation. (A simple way to do this is

to rotate the carrier 90 degrees whilst leaving the sidebands unaffected.)

Any signal or modulation can be decomposed into amplitude and phase components.

For a classical field no signal is detected at a frequency ω unless there is explicit modula-

tion at that frequency. However real optical fields are not classical: there is noise at every

detection frequency. For a coherent field this noise is at the standard quantum limit. We

now explain this noise using the sideband picture.

In section 3.1.5 the operators â & â† were decomposed into a steady state component,

α, and frequency dependent fluctuation operators δâ & δâ† respectively. In the sideband

picture the fluctuation operators δâ & δâ† are considered to be tiny sidebands of fixed

length located at ±ω with respect to the carrier. The carrier has amplitude 2α: without

loss of generality we define it to be real. Now consider, for a coherent state, the fluctuation

operators δâ & δâ† at a specific sideband frequency, ω. The operators fluctuate randomly

around the frequency axis at all frequencies (i.e. for all observation bandwidths of the fre-

quency ω.) As they are uncorrelated they fluctuate at random with respect to each other.

At any given instant δâ & δâ† may be parallel to one another and the carrier, giving am-

plitude modulation; at another, they may be out of phase with one another but both per-

pendicular to the carrier, giving phase modulation; and at yet another, any combination

between these. Thus on average there is modulation, i.e. noise, at every quadrature: the

magnitude of the modulation is constant, and the same for all quadratures and sideband

frequencies. It is this noise that is represented by a circle on the phasor, or ball-on-stick,

diagram.

Although the power of the sideband fluctuations is minute, it is the beating between

the fluctuation sidebands and the carrier that provides the measurable quantum noise.

(As can be seen from eqns 3.50 & 3.51.)

Naturally, in the sideband picture the formalism derived in section 3.1.3 applies with-

out change. The amplitude modulation fluctuations are simply fluctuations in the am-

plitude quadrature, δX̂1 = δâ + δâ† (δâ & δâ† have the same phase as each other and the

carrier). Likewise, the phase modulation fluctuations are simply the fluctuations in the

phase quadrature, δX̂2 = ±i(δâ − δâ†) (δâ & δâ† are 180◦ out of phase with each other
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and both 90◦ out of phase with the carrier). The sideband picture also makes clear why

the operators δâ & δâ† cannot be measured explicitly: this would correspond to a mea-

surement of the power of one sideband solely. In contrast, photodetection measures the

power of the beat between the sidebands.

Linear processes, such as absorption or mixing at a beam splitter, affect the carrier

and sidebands differently but do not change the statistics of a coherent field. The mag-

nitude of the output carrier is attenuated or amplified. However the magnitude of the

output field sidebands is the same as the input field sidebands. This is because the linear

process mixes uncorrelated input vacuum and coherent fields that have the same magni-

tude sidebands. (For a 50/50 beamsplitter, half of the coherent sideband and half of the

vacuum sideband gives the same magnitude sideband as the initial coherent sideband.)

Nonlinear processes differ in that they can correlate the sidebands in some fashion.

For example, consider degenerate four-wave-mixing: it correlates the sidebands at ±ω so

that they are parallel to each other and the carrier [4]. Consider the effect of say, 10% cor-

relation of this type on a coherent field. Previously there was equal likelihood that that

sidebands would combine to give modulation of the amplitude, phase, or any quadra-

ture in between. However the sidebands are now correlated so that they now add more

often to form amplitude modulation, and thus less often to form phase modulation 9.

Accordingly the amplitude quadrature becomes noisier, the phase quadrature quieter.

Previously both quadratures were shot noise limited: the amplitude quadrature is now

anti-squeezed; the phase quadrature is squeezed (by 10%). In the ball-on-stick picture

the noise outline is now an ellipse, elongated along the carrier. The ellipse is narrower

than the original quantum noise circle.

Using this picture it is clear why a linear process degrades squeezing. It mixes in

uncorrelated, quantum noise level, sidebands, and thus reduces the correlation between

the sidebands of the squeezed field. (For a 50/50 beamsplitter with an incident 10%

squeezed field, the output fields are 5% squeezed.)

The sideband picture complements the ball-on-stick picture. Using both it is possible

to develop an intuitive understanding of squeezing in any nonlinear system.

Im

Re

optical carrier

Ω

frequency

Im

Re

ω

−ω

amplitude modulation

Ω

frequency

Im

Re

ω

−ω

phase modulation

−2ω

−3ω

2ω

3ω

frequency

Figure 3.3: Sideband diagrams. a) optical carrier b) amplitude modulation c) phase modulation

9This is a physically intuitive way of stating Heisenberg’s uncertainty principle. As we have seen, the
behaviour of the sidebands is described mathematically by the commutator.
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3.1.7 Limits of the sideband picture

How far can the sideband picture be taken? In the last section we stated that it can be used

for any linearised system. This may strike some readers as surprising, afterall, operators

are mathematically very different objects to electromagnetic field vectors. The following

argument puts the correspondence between the two on a formal footing.

Consider an electromagnetic field with small positive and negative sidebands:

E = E0 + δE+ + δE− (3.52)

where δE+ & δE− are located at ±ω with respect to the carrier, E0. The variance of the

intensity of this electromagnetic field is:

Var(I) = Var〈EE∗〉
= 〈(EE∗)2〉 − 〈EE∗〉2

= E2
0〈δE2

+ + δE2
− + 2δE+δE−〉 (3.53)

where the final value of the variance will depend on the exact definition of δE+ & δE−.

In linearised quantum mechanics, the photon number variance is given by:

Vn = α2VX1

= α2
{

〈δX̂1
2〉 − 〈δX̂1〉2

{

= α2
{

〈(δâ + δâ)2〉 − 〈δâ + δâ〉2
{

= α2〈δâ2 + δâ†2 + δâ†δâ + δâδâ†〉 (3.54)

Comparing eqns 3.53 and 3.54, it does appear that the sidebands δE+ & δE− are analo-

gous to the operators δâ & δâ†. However this is not quite the complete story.

The operators δâ & δâ† fulfill the commutation rule
[

δâ, δâ†
]

= 1. Applying this (in

the case of a coherent field) we find that the self correlation of a given quadrature is

VXi = 〈δX̃i, δX̃i〉 = 1 (i.e any given quadrature is quantum noise limited); and the cross-

correlation between orthogonal quadratures is VX1,X1
= 〈δX̃1, δX̃2〉 = 0 (i.e. orthogonal

quadratures are totally uncorrelated).

For a coherent electromagnetic field, E, these criteria stipulate that the sideband am-

plitude modulation (δE+ + δE−) or phase modulation (−i [δE+ − δE−]) must be at the

quantum noise limit; and that there is zero correlation between sideband amplitude and

phase modulation. These criteria are fulfilled when the positive and negative sidebands

are totally uncorrelated (〈δE+δE−〉 = 0) and of identical size (〈δE2
+〉 = 〈δE2

−〉 where

〈δE2
+ + δE2

−〉 = 1). With these definitions, the sideband and fluctuation operator be-

haviours are identical.

Thus for linearised systems the behaviour of the operators δâ & δâ† can be correctly

described by considering the operators to represent small sidebands of the optical field

- this is an interpretation only, the formalism is unchanged. Both linear and nonlinear

process can be understood in terms of manipulation, and in particular correlation, of

these sidebands.

3.1.8 Equations of motion

In section 3.1.5 we stressed that linearisation is possible only when the field is in the

steady-state. The most convenient way to ascertain this is to derive an equation of motion
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for the optical system, and then solve it to see if steady-state solutions exist 10.

Classically a perfect (i.e lossless) simple harmonic oscillator is described by the equa-

tion of motion:

ẋ = iΩx (3.55)

On integration the variable x oscillates indefinitely with angular frequency Ω. As the

system is lossless, it does not interact with the rest of the universe. To model the effect of

an irreversible (in the thermodynamic sense) interaction with the rest of the universe (for

example, friction in a mechanical system) we introduce the damping term, γ, so that:

ẋ = (iΩ − γ)x (3.56)

The system is now described as open. On integration, the variable x now undergoes an

oscillatory exponential decay.

For a quantised system, the equation of motion of operator, x̂11, can be found directly

from the Hamiltonian of the system using the following relation [3]:

ih̄ ˙̂a = [â, Ĥ] (3.57)

The Hamiltonian for a quantised simple harmonic oscillator of frequency ν, is:

H = hνj

(

â†â +
1

2

)

(3.58)

Thus the equation of motion of the quantised Fourier amplitude, â, for a quantised simple

harmonic oscillator is:
˙̂a = iΩâ (3.59)

which is clearly analogous to the equation of motion for a classical simple harmonic os-

cillator, eqn 3.55. Once again the classical variables have been transformed to operators.

By inspection then it would seem straightforward to write the equation of motion for a

quantised, damped, simple harmonic oscillator as:

˙̂a = (iΩ − γ)â (3.60)

However this is incorrect. It does not include the vital influence of vacuum noise that is

introduced by the coupling to the rest of the universe. To account for this, we model the

universe as a reservoir of an infinite number of electromagnetic modes, with Hamiltonian

[5]:

Huni = h̄

∫ ∞

∞
ΩB̂†(Ω)B̂(Ω)dΩ (3.61)

where B̂ and B̂† are the boson annihilation and creation operators respectively. The ther-

modynamically irreversible interaction of this reservoir with an arbitrary system opera-

tor, ĉ, is described by the Hamiltonian:

Huni = ih

∫ ∞

∞

√

2γ(B̂†(Ω)ĉ− B̂(Ω)ĉ†)dΩ (3.62)

10The discussion in this section is adapted from Buchler [6].
11In the Heisenberg picture of quantum mechanics, the operators are time dependent and the state vectors

are not. In the Schrödinger picture the opposite is true. In the interaction picture both operators and state
vectors are time dependent. The discussion here applies to the Heisenberg picture.
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where we use the Markovian approximation, that the coupling constant
√

2γ is independent

of frequency. We can now write the equation of motion for ĉ as [5]:

˙̂c =
1

ih̄

[

[ĉ,Hrev] −
{[

â, ĉ†
]

(γĉ+
√

2γδB̂(t)) − (γĉ† +
√

2γδB̂†(t)) [â, ĉ]
}]

(3.63)

where δB̂(t) is defined with respect to some arbitrary time t0:

δB̂(t) =

∫

e−iΩ(t−t0)B̂0(ω)dΩ (3.64)

The first term of equation 3.63 is the normal equation of motion for a closed system, i.e.

eqn 3.57. Substituting the quantised simple harmonic oscillator, eqn 3.5, into eqn 3.63 we

obtain the eqn of motion for â:

˙̂a = (iΩ − γ)â +
√

2γδB̂ (3.65)

It is not necessary to repeat this calculation for each new system under consideration.

In practice it is possible to write equations of motion for optical systems by inspection.

However it is vital to remember, for each coupling port γx, to add a term like “
√

2γxδB̂”.

Further, in optical systems the equations of motion are normally written in the rotating

wave frame, i.e. the system is observed at the optical frequency, ν = Ω/(2π). Thus the

optical frequency term, iΩ is omitted from the equations of motion.

3.2 Thickets of solutions

Theoretical quantum optics in large part consists of deriving a suitable Hamiltonian for

a system and then extracting from it the system dynamics (i.e. the equations of motion)

and the noise spectra, which can then be compared to experiment.

The broad outline of this approach was apparent early in the piece, for example,

Fig. 3.4 shows a conceptual map of possible approaches to modelling a laser, as drawn

by Haken in 1970 [7]. However the fine details were unclear, and so for example the

theoretical laser output spectra in [7] lack a quantum noise floor entirely. It took another

20 years of research before a simple and robust approach to modelling quantum optical

systems was available.

Until 1984 the most serious problem was that no sensible procedure existed to model

the input and output of a quantised cavity. Thus for the optical parametric oscillator the

optimum output squeezing at zero frequency was simultaneously predicted to be perfect

[8] and limited to 50% [9]. With the development of the input-output formalism [10, 11, 12]

this serious limitation was removed. The input/output formalism allowed, in an elegant

fashion, systems to be modelled with squeezed, coherent, or thermal input fields. (Using

the formalism the OPO problem was quickly resolved: in principle, perfect squeezing

can occur at zero frequency in the output field, reducing to the quantum noise limit at a

high frequencies with a Lorentzian bandwidth set by the cavity.)

Until the late 1980’s the Schrödinger approach (emphasised in grey on the right hand

side of Fig. 3.4) was favoured by the majority of the quantum optics community. In the

Schrödinger approach the operators are constant and the states vary with time. Fig. 3.5

shows the approach in more detail: it is quite involved. The penultimate product of this

approach are drift and diffusion matrices, A & D, that respectively describe the system

dynamics and noise properties. Deriving spectra from these is computationally intensive,
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Figure 3.4: Conceptual map of possible approaches to modelling a quantum optical system.

Adapted from Haken, 1970 [7].
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Equation for reduced density operator including modes, atoms

Equation of motion for quasi-probability density P,
with infinite-order derviatives

Fokker - Planck equation

Ito stochastic differential equations

Steady state solutions

Linearised Ito stochastic differential equation for fluctuations

Squeezing spectrum of external field

Von Neumnann equation for density operator of total system

Hamiltonian including atoms, modes, reservoirs

Born-Markov approximation:
eliminate reservoir varaibles

c-number representation

Truncate to second-order 
using scaling arguments

Transformation

Set time derivatives to zero

Linearise about steady-state
solutions for small fluctuations

Construct drift (A) and
diffusion (D) matrices

Figure 3.5: Detailed flow chart of the Schrödinger approach to modelling quantum optical sys-

tems. This approach is highlighted in grey on the right hand side of Fig. 3.4.
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Figure 3.6: Detailed flow chart of the Heisenberg approach to modelling quantum optical sys-

tems. This approach is highlighted in grey on the left hand side of Fig. 3.4.
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as it involves matrix inversion, and modelling practical systems nearly always involves a

final numerical, rather than algebraic, solution. Despite these shortcomings, the approach

was popular as it was obviously rigorous and thus reliable.

An alternative approach is the Heisenberg approach, shown in grey on the left hand

side of Fig. 3.4. The operators vary in time and the states are constant. Fig. 3.6 shows the

approach in more detail. The strength of this approach is both it’s computational sim-

plicity and it’s analytical descriptions of the system dynamics and spectra. This allows

an intuitive understanding of noise sources in practical systems that is not possible with

the Schrödinger approach due to its requisite numerical solutions. The quantum optics

community had always been aware of the Heisenberg approach and it was used to model

very simple systems such as empty cavities. Despite this the Heisenberg approach has

only recently begun to gain in popularity. In 1989 it was highlighted in a paper as the

semi-classical method [13]. Considerable scepticism initially greeted this paper, as many

felt that the method lacked necessary rigour. However it was quickly shown that the re-

sults were exactly equivalent to those of traditional methods [14]. In essence, it does not

matter whether the linearisation occurs at the end of the calculation (the traditional, or

Schrödinger, approach) or at the beginning (the semiclassical, or Heisenberg, approach).

A further cause of reluctance was that it was not at all obvious how to model active sys-

tems in the Heisenberg approach - this problem has only been recently solved [15].

Due to its simplicity and intuitive nature we prefer the Heisenberg approach in this

thesis, using it in Chapters 3 & 6-9. Comparison with the Schrödinger approach may be

made in Chapter 4, where it is used to model and compare active and passive SHG. In

the next section we walk the reader through the Heisenberg approach by modelling the

empty, passive, cavity. This is not solely a pedagogical exercise: it allows us brevity later

on when modeling the more complicated nonlinear systems; and the empty cavity results

are of considerable importance in themselves.

3.3 A walk through the Heisenberg approach

3.3.1 The empty cavity: equations of motion

Consider the ring cavity shown in Fig. 3.7. The cavity irreversibly couples through a

pump coupling port at mirror m1, a transmission port at mirror m2, and an absorption

port represented by a mirror m`. Mirrors m3 & m4 are ideal reflectors and so are not

coupling ports. We start with the equations of motion for a closed, passive, detuned

cavity - as noted previously, these are not yet correct:

˙̂a = −(γ + i∆)â
˙̂a† = −(γ + i∆)â† (3.66)

By inspection we add coupling terms to write the quantised equations of motion for the

open cavity - these are now the correct equations:

˙̂a = −(γ + i∆)â +
√

2γm1Âpump +
√

2γm2Âaux1 +
√

2γm`Âaux2

˙̂a† = −(γ + i∆)â† +
√

2γm1Â
†
pump +

√

2γm2Â
†
aux1 +

√

2γm`Â
†
aux2

(3.67)

where the total cavity decay rate is γ = γm1 + γm2 + γm`.
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Figure 3.7: Schematic of empty cavity. Mirrorm1 couples the pump; mirrorsm2 &m` respectively

couple vacuum fields from the transmitted and loss ports; mirrors m3 & m4 are perfect reflectors

and so do not couple vacuum in.

3.3.2 The empty cavity: linearisation

Linearising we can write for the fluctuation operators:

δ ˙̂a = −(γ + i∆)δâ +
√

2γm1δÂpump +
√

2γm2δÂaux1 +
√

2γm`δÂaux2

δ ˙̂a† = −(γ + i∆)δâ† +
√

2γm1δÂ
†
pump +

√

2γm2δÂ
†
aux1 +

√

2γm`δÂ
†
aux2

(3.68)

Combining these equations we obtain the equations of motion for the quadrature opera-

tors:

δ
˙̂
X1 = −γδX̂1 + ∆δX̂2 +

√

2γm1δX̂
pump
1 +

√

2γm2δX̂
aux1
1 +

√

2γm`δX̂
aux2
1

δ
˙̂
X2 = −γδX̂2 − ∆δX̂1 +

√

2γm1δX̂
pump
2 +

√

2γm2δX̂
aux1
2 +

√

2γm`δX̂
aux2
2

(3.69)

3.3.3 The empty cavity: Fourier transform

The fluctuation operators are intrinsically time dependent, i.e. δĉ = δĉ(t). We define the

Fourier transform of the fluctuation operators as:

δc̃ = δc̃(ω)

= FT [δĉ(t)]

=

∫ ∞

−∞
δĉ(t)eiωtdt (3.70)

In this thesis the tilde will always signify a Fourier transformed operator. The Fourier

transform obeys the normal mathematical rules for derivation and conjugation:

FT [
d

dt
ĉ(t)] = −iωc̃(ω)

FT [ĉ(t) ⊗ d̂(t)] = c̃(ω)d̃(ω) (3.71)
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The Fourier transform of the quadrature operator eqns of motion (eqn 3.69) is thus:

δX̃1 =
+∆δX̃2

√
2γm1δX̃

pump
1 +

√
2γm2δX̃

aux1
1 +

√
2γm`δX̃

aux2
1

γ − iω

δX̃2 =
−∆δX̃1

√
2γm1δX̃

pump
1 +

√
2γm2δX̃

aux1
1 +

√
2γm`δX̃

aux2
1

γ − iω
(3.72)

Solving these to eliminate the intracavity fluctuation operator, δX̃1,2, we obtain:

δX̃1 =
√

2γm1(δX̃
pump
1 + qδX̃pump

2 ) +
√

2γm2(δX̃
aux1
1 + qδX̃aux1

2 )

+
√

2γm`(δX̃
aux2
1 + qδX̃aux2

2 )

(1 + q2)(γ − iω)

(3.73)

where:

q =
∆

γ − iω
(3.74)

The subscript i = 1(2) indicates the amplitude (phase) quadrature, whilst the subscript

j = 2(1) indicates the complementary quadrature, i.e. phase (amplitude).

3.3.4 The empty cavity: boundary conditions

The boundary conditions for the reflected, transmitted and absorbed light of the empty

cavity are:

Ãrefl =
√

2γm1ã− Ãpump

Ãtrans =
√

2γm2ã− Ãaux1

Ãloss =
√

2γm`ã− Ãaux2 (3.75)

And thus for the quadrature fluctuation operators are:

δX̃refl
i =

√

2γm1X̃i − X̃pump
i

δX̃trans
i =

√

2γm2X̃i − X̃aux1
i

δX̃trans
i =

√

2γm`X̃i − X̃aux2
i (3.76)

On Fig. 3.7 we have indicated in grey a return field, Ãret. For a ring-cavity (in the

absence of nonlinear effects) this return field does not affect the mode ã. It sets up a mode

with identical spatial properties to ã that circulates in the opposite direction. However

for a standing wave cavity, the return field becomes the auxiliary field, Ãret = Ãaux1 and

thus has considerable influence.

Experimentally only the reflected and transmitted beams can be measured. Substitut-

ing eqns 3.73 into eqns 3.76 we see that the fluctuations in the reflected and transmitted

beams are:
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δX̃refl
i =

[

2γm1 − (1 + q2)(γ + iω)
]

δX̃pump
i + 2qγm1δX̃

pump
j

+2
√
γm1γm2(δX̃

aux1
i + qδX̃aux1

j )

+2
√
γm1γm`(δX̃

aux2
i + qδX̃aux2

j )

γ − iω

δX̃trans
i = 2

√
γm1γm2(δX̃

pump
i + qδX̃pump

j ) + 2qγm2δX̃
aux1
j

+
[

2γm2 − (1 + q2)(γ + iω)
]

δX̃aux1
i

+2
√
γm2γm`(δX̃

aux2
i + qδX̃aux2

j )

γ − iω (3.77)

3.3.5 The empty cavity: deriving spectra

The noise spectra, Vi, for the quadratures X̃i observed on a state ψ are found from the

self correlations of the fluctuation operators, i.e.:

VXi
(ω) = 〈δX̃i, δX̃

†
i 〉ψ

= 〈δX̃iδX̃
†
i 〉ψ − 〈δX̃i〉ψ〈δX̃†

i 〉ψ (3.78)

Independent fields have zero correlation:

〈X̃(j)
i , X̃

(k)
i 〉 = 0, (j) 6= (k) (3.79)

So from equations 3.77 the spectra for the reflected and transmitted beams are:

V refl
Xi

(ω) = |2γm1 − (1 + q2)(γ + iω)|2V pump
Xi

+ 4q2γm1V
pump
Xj

+4γm1γm2(V
aux1
Xi

+ q2V aux1
Xj

)

+4γm1γm`(V
aux2
Xi

+ q2V aux2
Xj

)

(γ2 + ω2)(1 + q2)2

V trans
Xi

(ω) = 4γm1γm2(V
pump
Xi

+ q2V pump
Xj

) + 4q2γm1V
aux1
Xj

+|2γm2 − (1 + q2)(γ + iω)|2V aux1
Xi

+4γm2γm`(V
aux2
Xi

+ q2V aux2
Xj

)

(γ2 + ω2)(1 + q2)2 (3.80)

3.4 Cavity configurations and photodetection

In this thesis two configurations of the empty cavity are of considerable importance: the

symmetric cavity and the single-ended cavity. We now examine these in turn.
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3.4.1 The symmetric cavity

A symmetric lossless cavity has two coupling ports of equal strength, i.e. γm1 = γm2 =

γ/2, γm` = 0. Consider the perfectly resonant case, ∆ = 0 ⇒ q = 0. The reflected and

transmitted spectra for either quadrature become:

V refl
Xi

(ω) =
ω2V pump

Xi
+ γ2V aux1

Xi

γ2 + ω2

V trans
Xi

(ω) =
γ2V pump

Xi
+ ω2V aux1

Xi

γ2 + ω2
(3.81)

where i = 1, 2 represents the amplitude and phase quadrature, respectively. At zero

frequency, ω = 0, the cavity is transparent to the input fields, i.e.:

V refl
Xi

(0) = V aux1
Xi

(0)

V trans
Xi

(0) = V pump
Xi

(0) (3.82)

This is known as the impedance-matched case: the reflected field contains no information

from the pump at all. At high frequencies ω → ∞, the cavity acts as a perfect reflector of

the input fields, i.e.:

V refl
Xi

(∞) = V pump
Xi

(∞)

V trans
Xi

(∞) = V aux1
Xi

(∞) (3.83)

A resonant symmetric lossless cavity acts as a low-pass filter of the input fields. We will

refer to such a cavity as a mode cleaner, as the high frequency noise of the pump field is

cleaned off the transmitted field 12.

What is the effect of detuning? Consider the case ∆ = γ. At zero frequency ω = 0,⇒
q = 1. The cavity is no longer simply transparent to the input fields: it mixes the input

fields and the quadratures of the input fields. The reflected and transmitted fields are

identical:

V refl
Xi

(0) = V trans
Xi

(0) =
[V pump
Xi

(0) + V pump
Xj

(0)] + [V aux1
Xi

(0) + V pump
Xj

(0)]

4
(3.84)

At high frequencies, ω → ∞,⇒ q = 0, the cavity again acts as a perfect reflector of the

input fields, i.e.:

V refl
Xi

(∞) = V pump
Xi

(∞)

V trans
Xi

(∞) = V aux1
Xi

(∞) (3.85)

A non-resonant symmetric lossless cavity acts as a low-pass filter and mixer of the in-

put fields and quadratures. This is clearly undesirable in mode cleaners: to function

efficiently they must be locked onto resonance.

3.4.2 The single-ended cavity

A lossless single-ended cavity is a cavity with a sole coupling port, i.e. γm1 = γ, γm2 =

γm` = 0. Consider the perfectly resonant case, ∆ = 0 ⇒ q = 0. The reflected spectrum

12Actually the name was originally coined to describe the spatial cleaning properties of such a cavity. The
input field can be spatially very messy (read “non-Gaussian”) but the transmitted field is always Gaussian.
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for either quadrature is independent of frequency:

V refl
Xi

(ω) = V pump
Xi

(ω) (3.86)

The resonant single-ended cavity simply acts as a perfect mirror.

Now consider a detuned cavity where ∆ = γ. At zero frequency ω = 0,⇒ q = 1. The

cavity rotates the quadratures of the input field, i.e.:

V refl
X1

(0) = V pump
X2

(0)

V refl
X2

(0) = V pump
X1

(0) (3.87)

At high frequencies, ω → ∞,⇒ q = 0, the cavity does not rotate the quadratures of the

field but once again acts as a perfect reflector of the input field, i.e.:

V refl
Xi

(∞) = V pump
Xi

(∞) (3.88)

The detuned single-ended cavity rotates the zero-frequency component with respect to

the high frequency sidebands. As discussed shortly, this behaviour is most useful as it

allows us to examine any quadrature of the pump field.

3.4.3 Photodetection

Photodetectors detect the power of the field. The mean optical power of a state |ψ〉 is:

Popt = hν〈n̂〉ψ = hν〈â†â〉ψ (3.89)

In section 3.1.5 we introduced the concept of linearisation. We now rewrite eqn 3.48 as:

ã(ω) ∼= α+ δã(ω)

= e−iφ(0)|α| + e−iφ(w)δã(ω) (3.90)

where φ(0) is the phase of the zero-frequency component of the field, and φ(ω) are the

phases of the fluctuation components of the field.

For a coherent state, the optical power has both steady-state and fluctuating compo-

nents:

Popt(ω) = hν|α|2 + hνe−2iϕ|α|[δã(ω) + e+2iϕδã†(ω)] (3.91)

where:

ϕ = φ(ω) − φ(0) (3.92)

The zero-frequency (steady-state) component of the field, |α| is known as the carrier of

the field, as it carries most of the energy. Note that the power measured due to the

fluctuations depends on the frequency dependent phase relationship between the carrier

and the sideband, ϕ. Rewriting 3.91 in terms of the quadrature fluctuation operators we

obtain:

Popt(ω) = hν|α|2 +
hνe−2iϕ

2
|α|[δX̃1(ω)(1 + e+2iϕ) + iδX̃2(ω)(1 − e+2iϕ)] (3.93)

Using eqns 3.78 and 3.93, we find that the photon number, or power, spectrum is related
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to the amplitude and quadrature fluctuation spectra by:

Vn(ω) =
|α|2
2

[

VX1(ω) + VX2(ω) +
1

2
e−2iϕ(1 + e+4iϕ) {VX1(ω) − VX2(ω)}

]

=
|α|2
2

[

VX1(ω) + VX2(ω) + cos 2ϕ {VX1(ω) − VX2(ω)}
]

= |α|2
[

VX1(ω)cos2ϕ+ VX2(ω)sin2ϕ
]

(3.94)

3.4.4 Phase sensitive detection

Im

Re

ω

−ω

X1

X2

sideband picture ball-on-stick picture

ω

Figure 3.8: Quadrature rotation from single ended cavity. left hand side: sideband picture. right

hand side: ball-on-stick picture.

Consider the single-ended cavity discussed in the last section. In the resonant case,

there is a flat frequency response, with V refl
Xi

(ω) = V pump
Xi

(ω). There is no differential

rotation between the carrier and sideband components of the pump field, φ(0) = φ(ω),⇒
ϕ = 0. The measured power spectrum is thus:

V refl
n (ω) = |α|2V pump

X1
(ω) (3.95)

For direct detection of fields 13 (including fields relayed by perfect mirrors), the power

fluctuation spectrum is related to the amplitude quadrature fluctuation spectrum.

Now consider the detuned single-ended cavity, ∆ = γ. The zero-frequency com-

ponent of the pump field is rotated by π/2, e.g. V refl
X1

(0) = V pump
X2

(0), whilst the high

frequency components are unaffected, V refl
X1

(∞) = V pump
X1

(∞). Thus the relative phase

between carrier and sideband is ϕ = φ(∞)− φ(0) = π/2. The measured power spectrum

at high frequencies is thus:

V refl
n (∞) = |α|2V pump

X2
(∞) (3.96)

At high frequencies the power fluctuation spectrum of the reflected field is related to

13As no steady-state phase information is measured in direct detection, it is possible, without loss of
generality, to define the detected field as real and the carrier phase angle, φ(0), as zero. This is often done
to simplify theoretical arguments. However as the theory presented here is in terms of the relative phase
between sideband and carrier, ϕ, we don’t need this definition.
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the phase quadrature fluctuation spectrum of the pump field. In general, the fluctuation

spectrum of any pump quadrature can be measured by varying the cavity detuning, ∆.

A detector placed after a non-resonant single-ended cavity acts as a phase sensitive

detector, i.e. it can detect any quadrature of the field. It enjoys several advantages, and one

disadvantage, compared to the standard phase sensitive detector, the homodyne detector.

The homodyne detector is a balanced detector (see next section) with a local oscillator

field input at the vacuum port. The local oscillator must have the same properties as the

signal field (frequency, spatial mode, etc.) and so in practice is normally derived from

the same source. As the local oscillator must be much stronger than the signal (at least

an order of magnitude) this constrains considerably the power available to the signal

beam. A further experimental constraint is that the spatial mode-match between the

local oscillator and signal beam is critical, and needs careful attention. The cavity based

phase sensitive detector avoids these limitations. The carrier acts as the local oscillator,

the sideband as the signal beam. The only disadvantage is that the cavity linewidth must

be an order of magnitude smaller than the signal frequency, so that the approximation

ω → ∞ is valid.

3.4.5 Balanced detection

a c

b

d

±

50/50

Figure 3.9: Schematic of a balanced detector.

Fig. 3.9 shows the balanced detector. Operators ã, b̃ and c̃, d̃ represent the annihilation

operators of the two input and output fields of a beam splitter, respectively. They are

related by:

c̃ =
√

1 − ξ ã−
√

ξ b̃

d̃ =
√

ξ ã+
√

1 − ξ b̃ (3.97)

where ξ is the beamsplitter reflectivity. The system is balanced when ξ = 0.5 as each

input field contributes equally to each output field, i.e.:

c̃ =
√

0.5 ã−
√

0.5 b̃

d̃ =
√

0.5 ã+
√

0.5 b̃ (3.98)
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We assume the input fields are linearisable and, without loss of generality, real:

ã = α+ δã(ω)

b̃ = β + δb̃(ω) (3.99)

As the following argument is true for all frequencies, we drop the explicit frequency

dependence of the fluctuation operator, writing δã(ω) → δã. The number operators for

the added and subtracted signals are:

ñ+ = c̃†c̃+ d̃†d̃

= α2 + β2 + α(δã + δã†) + β(δb̃ + δb̃†)

= α2 + β2 + αδX̃1
a + βδX̃1

b (3.100)

and

ñ− = c̃†c̃− d̃†d̃

= 2αβ + α(δb̃ + δb̃†) + β(δã+ δã†)

= 2αβ + αδX̃1
b + βδX̃1

a (3.101)

Now consider the case where one input field is bright, α 6= 0, and the other is vacuum,

β = 0. The number operators for the added and subtracted signals become:

ñ+ = α2 + αδX̃1
a (3.102)

and:

ñ− = 0 + α δX̃1
b (3.103)

For a linearised operator, the absolute value of the steady state component gives the mean

value. Thus for the added and subtracted signals:

〈ñ+〉ψ = α2

〈ñ−〉ψ = 0 (3.104)

There are no photons in the subtracted signal. However there is still the vacuum point

energy, and there are still fluctuations around this energy. For a linearised operator, the

fluctuation spectrum is found by taking the self correlations of the fluctuation compo-

nent. The power spectra of the added and subtracted signals are thus:

Vn+(ω) = α2 VXa
1
(ω)

Vn−(ω) = α2 VXb
1
(ω) = α2 (3.105)

The power spectrum of the added signal is proportional to the amplitude spectrum of

the bright field, a; the power spectrum of the subtracted signal is proportional to the

amplitude spectrum of the vacuum field, b, which is the quantum noise limit. A balanced

detector thus allows comparison of the power (and thus amplitude) fluctuation spectrum

of any input field, a, with the quantum noise limit. If the balanced detector is used in

conjunction with a detuned single-ended cavity, the fluctuation of any quadrature can be

compared to the quantum noise limit.



Chapter 3 bibliography 65

Chapter 3 bibliography

[1] D. F. Walls & G. J. Milburn, Quantum Optics, First Edition, Springer-Verlag, Berlin, 1994

[2] J. L. Martin, Basic quantum mechanics, First Edition, Oxford University Press, Oxford, 1982

[3] E. Merzbacher, Quantum Mechanics, Second Edition, John Wiley & Sons, Inc., New York, 1970

[4] H.-A. Bachor, A guide to experiments in quantum optics, First Edition, VCH Publishers, New York, 1997;

H.-A. Bachor and D. E. McClelland, Physica Scripta, T40, p. 40, 1992. Quantum optics experiments with

atoms

[5] C. Gardiner, Quantum Noise, First Edition, Springer-Verlag, Berlin, 1991

[6] B. C. Buchler, Feedback Control of Laser Intensity Noise, Honours Thesis, Australian National University,

Canberra, 1996

[7] H. Haken, “Laser Theory”, in Encyclopedia of Physics, Volume XXV/2c, Light and Matter Ic, Chief Editor S.
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Chapter 4

Limits to squeezing in SHG

A vacuum is a hell of a lot better than some of the stuff that nature replaces it with.

Tennessee Williams, Cat On A Hot Tin Roof

As one of the simplest nonlinear optical processes, second harmonic generation (SHG)

has been extensively investigated as a source of nonclassical light. Both active (occurs

within a laser cavity) and passive (occurs in a cavity external to a laser) SHG have been

modelled and found to be potential sources of squeezed light. There have been many

and varied predictions and the relationship between them all has not been particularly

clear (for example, some are apparently mutually inconsistent).

In 1981 Drummond et.al considered doubly resonant SHG and predicted anti-bunching

of the fundamental if a second harmonic field was also injected [1]. The next year Mandel

considered single pass SHG and found that the second harmonic field was not necessary:

predicting both squeezing and anti-bunching in the fundamental field [2]. For a dou-

bly resonant sub/second harmonic generation system, Milburn and Walls predicted in

1983 that the quadrature of the fundamental squeezing could be altered by altering the

phase of an injected second harmonic [3]. Widespread attention began to be focussed on

SHG as a source of squeezing after the paper of Lugiato et. al in 1983. They predicted,

for doubly resonant SHG pumped solely at the fundamental, that both the fundamental

and second harmonic would be squeezed (the predicted second harmonic squeezing was

smaller than that of the fundamental). They also emphasised the critical role of the value

of the ratio of the damping constants of the two modes [4]. In 1985 Collett and Walls

showed that, in principle at least, perfect squeezing was possible in either the fundamen-

tal or the second harmonic at the critical point of doubly resonant SHG (the self-pulsing

instability) [5]. Prompted by experimental difficulties, Collett and Paschotta realised that

double resonance was not necessary to produce squeezing, and predicted second har-

monic squeezing from a singly resonant cavity [6]. The strong correlation between the

fundamental and second harmonic has also been proposed as the basis of a QND like

measurement scheme [7].

Perfect squeezing can only be achieved when there is a strong interaction between

the fundamental and second harmonic. Experimentally this dictates a doubly resonant

system. Passive doubly resonant SHG systems are technically complicated, as practical

passive cavities require locking systems to remain resonant. To date, singly resonant

systems have proved to be much stabler than doubly resonant: the maximum length of

time squeezing has been observed in doubly resonant SHG has been 10 s; singly resonant

systems squeeze continuously for hours. As active modes are automatically resonant

there is a strong experimental attraction to active SHG as it requires locking of, at most,

only the second harmonic cavity. It promises strong squeezing in technically elegant

systems.

Various techniques have been used to model active SHG. In the good cavity limit where

the atomic decay rates are much higher than the relevant field decay rates, as is the case

for a gas laser, the system is modelled by adiabatically eliminating the atomic variables

67
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[8]. This introduces broadband atomic noise which degrades the correlation between the

amplitudes of the second harmonic and the fundamental. Nevertheless, a maximum of

50% squeezing of the amplitude of the second harmonic has been predicted, with an op-

timum value at zero frequency and decreasing with frequency. This has been elegantly

explained as the Poissonian photons of the fundamental being converted with high ef-

ficiency to second-harmonic photons which consequently have half-Poissonian statistics

[9]. In the bad cavity limit, where the field decay rate of the mode of interest is much

greater then the atomic decay rate and the decay rate of the other mode [10, 11], the

bandwidth of the atomic noise is small and there is a high correlation between the ampli-

tude of the second harmonic and the fundamental. Appropriate interaction between the

two cavity modes allows perfect squeezing at non-zero frequencies. Until the treatment

in this chapter was developed [12], no treatment to date had reconciled these two regimes

within the one model.

In this chapter we present an overall picture that unifies previous descriptions. We

consider both active and passive SHG, and include the critical role of laser noise. In

particular we evaluate the squeezing available using Nd:YAG as an active gain medium

and investigate which approaches are the most experimentally promising.

In the first two sections we model both active and passive SHG via the Schrödinger

approach. These sections can be skimmed, or even skipped, by all but the connoisseurs

as the Schrödinger approach is mathematically heavy-going and the final results aren’t

particularly informative in themselves. However the third section is crucial. In it we

investigate the regimes of squeezing numerically, endeavouring to provide a physically

intuitive picture for each result. These intuitive pictures will be used in latter chapters. In

the last section we summarise the results, and conclude that active SHG is not, and will

not be in the foreseeable future, a practical source of squeezed light.

4.1 Theory: Schrödinger approach

There have been successful squeezing experiments via passive SHG; there have been

none via active SHG. Accordingly we approach modelling the two systems a little dif-

ferently. As we know squeezing via passive SHG is possible, we consider the optimum

squeezing available in a practical situation, i.e. for a multi-port, lossy system with achiev-

able or near-achievable nonlinearities. To date most treatments of squeezing in passive

SHG have concentrated on the ideal regime, i.e. single ended, lossless systems that can

attain extreme nonlinearities, with a coherent pump or with idealized laser phase noise

[13]. We explicitly model the pump as the intrinsically noisy output of a laser: for the case

of singly resonant passive SHG, we have compared our model with experimental results

and found excellent agreement (see, [14] and next chapter). In this chapter we also model

the doubly resonant case 1.

In contrast, we do not know if squeezing via active SHG is possible, so we allow

ourselves a little more freedom, and consider situations with extreme nonlinearities. Pre-

viously active SHG has been studied using either the Haken-Lamb or Lax-Louisell laser

models. The Haken-Lamb model retains all the laser dynamics of a 2-level system. How-

ever for many lasers it is not possible to correctly describe the threshold behaviour using

a 2-level model. The Lax-Louisell model is a 3-level system in which the lasing coherence

has been adiabatically eliminated. Unfortunately crucial dynamical behaviour is lost in

1All the theory in this section was originally derived by Dr T. Ralph and published in [12].
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this limit. In this chapter we use a 3-level model [15] similar to Lax-Louisell except that

it retains all laser dynamics explicitly.

a

c
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second
harmonic

a)

b)

a

b

c

active
medium

pump

reflected
fundamental

transmitted
fundamental

second
harmonic

χ2active
medium

χ2

Figure 4.1: Schemata of active and passive second harmonic generation respectively. a is the

lasing mode, b is the fundamental mode of the SHG cavity, and c is the second harmonic mode.

4.1.1 Hamiltonians and master equations

Figs 4.1a & b are schematics of active and passive second harmonic generation respec-

tively. The same laser model is used for both, and consists of N 3-level atoms interacting

with an optical ring cavity mode via the resonant Jaynes-Cummings Hamiltonian. In the

interaction picture this is:

Ĥlas = ih̄g23

N
∑

µ=1

(â†Ĵ−23 − âĴ+
23) (4.1)

where carets indicate operators; g23 is the dipole coupling strength between the atoms

and the cavity; â & â† are the lasing mode annihilation and creation operators; Ĵ−23 & Ĵ+
23

are the collective Hermitean conjugate lowering and raising operators between the |i〉th
and |j〉th levels of the lasing atoms. Level 1 is the ground level. The field phase factors

have been absorbed into the definition of the atomic operators.

For the passive case the standard Hamiltonian for SHG is used [1]:

Ĥpshg = ih̄
κ

2
(b̂†2ĉ − b̂ĉ†2) (4.2)

where b̂ & b̂† are the fundamental annihilation and creation operators, ĉ & ĉ† are the

second harmonic annihilation and creation operators, and κ is the coupling parameter for

the interaction between the two modes. For the active case the Hamiltonian is essentially
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the same, except now the fundamental and the lasing mode are one and the same, so that:

Ĥashg = ih̄
κ

2
(â†2ĉ − âĉ†2) (4.3)

where the other terms are as above.

For both cases standard techniques [16] are used to couple the lasing atoms and cav-

ities to reservoirs and to derive a master equation for the reduced density operator ρ of

the system. Included in the laser model are spontaneous atomic emission from level |3〉
to level |2〉, and from level |2〉 to level |1〉, at rates γ23 and γ12 respectively. Incoherent

pumping of the laser occurs at a rate Γ; the rate of collisional or lattice induced phase

decay of the lasing coherence is γp.

In general optimum squeezing in these systems occurs at zero detuning, accordingly

will not examine the effect of non-zero detunings. However in passing we mention the

varied effects due to detuning: the quadrature of the squeezing can be rotated [17, 18];

the squeezing can be degraded as the intracavity intensity is lowered and less power is

available to drive the nonlinearity; the form of the nonlinearity can change [1]; and the

stability point of the system can move [8].

In the passive case the driving of the SHG cavity by the laser is modelled using the

cascaded quantum system formalism of Carmichael [19] and Gardiner [20]. The laser

cavity damping rate due to the output port which pumps the passive cavity is 2γa; the

cavity decay rate for the fundamental mode of the passive cavity is 2γb; and the cavity

decay rate for the second harmonic mode is 2γc. The resulting interaction picture master

equation is:

∂

∂ t
ρ̂ =

1

ih̄
[Ĥlas, ρ̂] +

1

ih̄
[Ĥpshg, ρ̂] +

1

2
(γ12L12 + γ23L23) ρ̂+

Γ

2
(L13ρ̂)

†

+
1

4
γp
[

2(Ĵ3 − Ĵ3) ρ̂ (Ĵ3 − Ĵ3) − (Ĵ3 − Ĵ3)
2 ρ̂− ρ̂(Ĵ3 − Ĵ3)

2
]

+γa(2âρ̂â
† − â†âρ̂− ρ̂â†â)

+γb(2b̂ρ̂b̂
† − b̂†b̂ρ̂− ρ̂b̂†b̂)

+γc(2ĉρ̂ĉ
† − ĉ†ĉρ̂− ρ̂ĉ†ĉ)

+2
√
γaγb(âρ̂b̂

† + b̂ρ̂â† − ρ̂â†b̂ − ρ̂âb̂†),

Lij ρ̂ = 2Ĵ−ij ρ̂Ĵ
+
ij − Ĵ+

ij Ĵ
−
ij ρ̂− ρ̂Ĵ+

ij Ĵ
−
ij (4.4)

Similarly in the active case the fundamental cavity damping rate is 2γa and the cavity

decay rate for the second harmonic mode is 2γc. The interaction picture master equation

is:

∂

∂ t
ρ̂ =

1

ih̄
[Ĥlas, ρ̂] +

1

ih̄
[Ĥashg, ρ̂] +

1

2
(γ12L12 + γ23L23) ρ̂+

Γ

2
(L13ρ̂)

†

+
1

4
γp
[

2(Ĵ3 − Ĵ3) ρ̂ (Ĵ3 − Ĵ3) − (Ĵ3 − Ĵ3)
2 ρ̂− ρ̂(Ĵ3 − Ĵ3)

2
]

+γa(2âρ̂â
† − â†âρ̂− ρ̂â†â)

+γc(2ĉρ̂ĉ
† − ĉ†ĉρ̂− ρ̂ĉ†ĉ),

Lij ρ̂ = 2Ĵ−ij ρ̂Ĵ
+
ij − Ĵ+

ij Ĵ
−
ij ρ̂− ρ̂Ĵ+

ij Ĵ
−
ij (4.5)
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4.1.2 Semiclassical equations

The semiclassical equations of motion are obtained directly from the master equation by

making the approximation of factorising expectation values.

The semiclassical equations of motion for the passive case are:

˙J23 = g23(J3 − J2)a−
1

2
(γ23 + γ12 + 2γp)J23

J̇2 = +g23(J23a
∗ − J∗23a) + γ23J3 − γ12J2

J̇3 = −g23(J23a
∗ − J∗

23a) + ΓJ1 − γ23J3

ȧ = g23J23 − γaa

ḃ = κb∗c − γbb− 2
√
γaγba

ċ = −γaa−
κ

2
b2 (4.6)

and their conjugate equations. The absence of circumflexes indicate semi-classical expec-

tation values. Here γa is the total loss rate of the laser cavity; γb is the total loss rate of the

fundamental cavity; γc is the total loss rate of the second harmonic cavity; and κ is the

coupling constant between fundamental and second harmonic.

We use the following standard scaling with the number of atoms N:

a′ =
a√
N

b′ =
b√
N

J ′
i =

Ji
N

J ′
ij =

Jij
N

κ′ = κ
√

N g′23 = g23
√

N (4.7)

In the active case the equations of motion for the active medium are unchanged, however

the equations for the fundamental and second harmonic modes become:

ȧ = g23J23 − γaa+ κa∗c

ċ = −γcc−
κ

2
a2 (4.8)

and their conjugate equations. The conditions for semiclassical steady state are obtained

by setting derivatives to zero.

4.1.3 Noise spectra

The drift and diffusion matrices are listed at the end of the chapter. Their calculation, by

obtaining c-number (complex number) Fokker-Planck equations from the master equa-

tion using positive-p representation, is tedious but standard [21]. We linearise the optical

modes:

z′(t) = z0 + δz (4.9)

where z represents modes a, b, or c; and z0 is the semiclassical steady state. For brevity we

will from this point on use a, b, ... to mean the scaled steady state solutions, e.g. a ≡ a0.

The spectral matrix S(ω) is defined as the Fourier transformed matrix of the two time

correlation functions of these small quantum perturbations (δαj) about the semiclassical

steady state, i.e.

Sij =

∫ +∞

−∞
e−iωt〈δαi(t+ τ), δαi(t)〉dτi (4.10)
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where we have used the notation 〈X,Y 〉 = 〈XY 〉 − 〈X〉〈Y 〉 and the ordering of the per-

turbations for the passive and active cases respectively is:

δα = (δa, δa† , δb, δb†, δc, δc† , δJ−23, δJ3, δJ2, δJ
+
23)

δα = (δa, δa† , δc, δc† , δJ−23, δJ3, δJ2, δJ
+
23)

(4.11)

The spectral matrix may be calculated from the Fokker Planck equations in both cases.

The solution for the spectral matrix is:

S(ω) = (A− iωI)−1D(AT + iωI)−1 (4.12)

whereA&D are the drift and diffusion matrices, respectively and I is the identity matrix.

The squeezing spectrum is then defined by:

VXθ
(ω) =

∫ +∞

−∞
e−iωt〈Xθ(t+ τ),Xθ(t)〉dτ (4.13)

We obtain noise spectra for modes a, b, or c by defining the quadrature phase amplitude

of the transmitted field z as

Xθ(t) = zoute
−iθ + z†oute

+iθ (4.14)

where again z represents modes a, b, or c. Setting θ = 0 gives the amplitude noise spectra.

Using the input/output formalism of Collett and Gardiner [22] we are able to obtain the

spectra in terms of the spectral matrix S(ω). In the passive case, using the ordering of eqn

4.11, we obtain for the laser, transmitted fundamental, and second harmonic respectively:

V las
X1

= 1 + 2γa
[

S12(ω) + S21(ω) + e−2iθS11(ω) + e+2iθS22(ω)
]

V νtrans
X1

= 1 + 2γtransb

[

S78(ω) + S87(ω) + e−2iθS77(ω) + e+2iθS88(ω)
]

V 2ν
X1

= 1 + 2γc
[

S9 10(ω) + S10 9(ω) + e−2iθS99(ω) + e+2iθS10 10(ω)
]

(4.15)

where γtransb is the loss rate of the fundamental transmission (not the pump mirror). The

spectra of the reflected fundamental depends on both the noise of the laser mode and the

noise of the fundamental. The amplitude spectra is thus given by:

V νrefl
X1

= 1 + 2γreflb [S78(ω) + S87(ω) + S77(ω) + S88(ω)] + 2γa

[S12(ω) + S21(ω) + S11(ω) + S22(ω)]

+2
√

γreflb γa[S71(ω) + S72(ω) + S82(ω) + S81(ω)

+ S17(ω) + S18(ω) + S27(ω) + S28(ω)] (4.16)

In the active case, again using the ordering of eqn 4.11, we obtain spectra for the funda-

mental and second harmonic respectively as:

V ν
X1

= 1 + 2γa
[

S12(ω) + S21(ω) + e−2iθS11(ω) + e+2iθS22(ω)
]

V 2ν
X1

= 1 + 2γc
[

S78(ω) + S87(ω) + e−2iθS77(ω) + e+2iθS88(ω)
]

(4.17)
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These spectra can be generated numerically using eqn 4.12 and the drift and diffusion

matrices.

4.2 Experimental modelling and numerical parameters

We are particularly interested in experimental systems pumped by Nd:YAG lasers. Al-

though Nd:YAG lasers are four level systems, we can accurately model them with a three

level model as the decay rate of from the fourth to the third level is very much faster

(approximately tenfold) than the other decay rates of the system, and so has negligible

effects on the dynamics of the system. Accordingly we use the following values:

γ23 = 5 × 10−5γ12 γ13 = 2γ23γ12

γtot = (γp + γ13 + γ23 + 1)γ12

σ = 6.5 × 10−23m2 γp = 9000γ12

g23 =

√

cyagσρyagγtot
4

(4.18)

where the speed of light in Nd:YAG is cyag = 1.64× 108m.s−1; the density of Nd atoms in

Nd:YAG is ρyag = 1.38 × 1026 atoms.m−3 and σ is the stimulated emission cross-section.

The decay rate from level 2 to 1 is γ12 = 1/(30 × 10−9)s−1.

Please note that although the expressions for squeezing spectra are given in terms of

angular frequency ([w] = rad.s−1), the decay rates are in expressed in Hertz ([f] = s−1), as

is customary. All spectra in this paper are plotted in Hz (s−1).

We also wish to model the lossy, multi-port nature of experimental cavities. The total

loss rate for a standing wave cavity is given by:

γz = γreflz + γtransz + γabsz (4.19)

where z is the mode; the first two terms are the loss rates through the front and end

mirrors of a standing wave cavity and the last term is the loss rate due to absorption. The

mirror decay rates are related to the mirror transmissions by eqn 2.23. The loss due to

absorption is given by γabsz = cyag/(2p) log e−αY AG` where αY AG is the absorption loss per

unit distance and ` is the physical crystal length.

The interaction is scaled by the number of lasing atoms as shown in eqn 4.7. The

number of lasing atoms, N, can be estimated one of two ways. The first is to calculate the

effective mode volume and then to use the known density of Nd atoms in YAG (ρyag =

1.38 × 1020atoms.cm−3). An alternative is to use an expression for the output power:

Plas = 2hνNγ12γ
out
a a2 (4.20)

where h is Planck’s constant; ν is the laser frequency; and γouta is the loss rate of the laser

output mirror. Using the measured laser power the number of atoms is to be N= 1017.

The models presented here are for doubly resonant systems. This allows exploration

of various squeezing regimes by smoothly varying the interaction between the modes. In

order to model singly resonant systems we simply take the appropriate bad cavity limit.

In this way the results of an explicitly singly resonant theory can be exactly duplicated

without loss of generality.
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Table 4.1: Squeezing limits

     PASSIVE    ACTIVE
          Ideal Limit Lossy with pump noise Ideal Limit   Lossy with pump noise

        mode      2ν      ν      2ν         ν    2ν      ν       2ν       ν

       singly Vopt = 1/9 Vopt = 2/3 Vopt ≅ 0.5  Vopt ≅ 0.95 Vopt = 1/2 Vopt = 1/2 No sqz'ing  No sqz'ing

     resonant Ωopt = 0 Ωopt = 0     Ωopt ≅ 1.1γ12 Ωopt ≅ 1.2γ12 Ωopt = 0 Ωopt = 0   owing to   owing to

        case         Fig. 4.2a  Fig. 4.2b           Fig. 4.5     high γp    high γp

      doubly Vopt = 0 Vopt = 0 Vopt ≅ 0.1  Vopt ≅ 0.3 Vopt = 0 Vopt = 0    Vopt ≅ 1/2  No sqz'ing

     resonant Ωopt ≠ 0 Ωopt ≠ 0     Ωopt ≅ 1.5γ12  Ωopt ≅ 0.5γ12 Ωopt ≠ 0 Ωopt ≠ 0   Ωopt ≅ 0   owing to

        case Fig. 4.3a Fig. 4.4a Fig. 4.3b    Fig. 4.4b Fig. 4.6      not shown    Fig. 4.9     high γp

4.3 Regimes of squeezing

Table 4.1 summarises the results of this section. The optimum predicted squeezing for

both active and passive SHG is considered for the two principal configurations: singly

resonant at the fundamental frequency ν; and doubly resonant. Two limits of the squeez-

ing are tabled: ideal and lossy with pump noise. The ideal limit comes from consideration of

a coherently pumped, single-ended, lossless device, and is only included for easy com-

parison with previous theoretical literature. However all the plots in this chapter come

from consideration of a lossy device. Thus, even when coherently pumped, the maxi-

mum plotted squeezing is not the ideal, as a fraction of the squeezing goes unobserved

(i.e. it is absorbed or transmitted through the other port.) Thus the maximum value of

squeezing in Fig. 4.3 is 0.28, and not the ideal value of 1/9 as listed in the table.

The lossy with pump noise “limit” comes from consideration of the experimental case

of a multi-port, lossy device pumped by a Nd:YAG laser. It is not a limit in the sense that

these figures cannot be bettered - it simply summarises the effect of laser noise as shown

in the plots and provides a realistic guide to the noise suppression that can be expected.

In addition, the typical detection frequencies at which the best noise suppression occurs

are listed in table 1. They indicate the optimum point of operation for a squeezing exper-

iment and are given as multiples of the linewidth of the SHG cavity at the fundamental.

4.3.1 Passive SHG

Why does SHG squeeze? Consider the following argument. It is clear from equation 2.34

that singly resonant SHG acts as a nonlinear loss term. That is, the stronger the field, the

proportionately larger the reduction in intensity. Now consider the ball-on-stick picture

for the fundamental field inside the cavity, Fig. 4.2. The stick length is reduced as power

is lost to the second harmonic field. The ball at the end of the stick is also affected. The

“top” of the ball (the point furtherest from the origin) is reduced more than the “bot-

tom” of the ball (the point closest to the origin) as it is of greater power. Thus the ball is

squeezed along the amplitude axis of the stick, and the light is amplitude squeezed. (Of

course, the ball is extended along the phase quadrature axis as the light obeys Heisen-
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berg’s uncertainty principle.) As explained later, the apportioning of squeezing from the

intracavity fundamental field to the extracavity fundamental and second harmonic fields

depends on the relative cavity decay rates and the strength of the nonlinear interaction.

X2

X1

a) b)

X2

X1

d2

d1d   > 2d1

Figure 4.2: Intuitive explanation of SHG squeezing. Phasor diagrams for an intracavity funda-

mental field a) without and b) with SHG: the top of the uncertainty area is more intense than the

bottom, and so is reduced more by the SHG, i.e. d2 >d1.

Good squeezing of the second harmonic requires the second harmonic loss rate to

be higher than that of the fundamental cavity, i.e., γc > γb. However to obtain perfect

squeezing, it is not desirable that γc be arbitrarily larger than γb. To see this, consider the

singly resonant case (the bad cavity limit for 2ν), γc � γb. Fig. 4.3a 2 shows the noise

spectrum with a coherent pump: the maximum squeezing occurs at zero frequency, in

the vicinity of the optimum value of 1/9 (see earlier comment), and then degrades with

frequency. Perfect squeezing cannot be achieved.

If a laser pump is used, as shown in Fig. 4.3b, the situation degrades further due to

the large amounts of low frequency noise added by the laser. This effectively moves the

maximum squeezing out in frequency whilst reducing it’s value. These results suggest a

partial explanation for the results of Paschotta et. al [6]: the observed deviation between

theory and experiment increased as a function of power. This can be simply explained

via our model as the noise tail of the laser masking the squeezing. As the laser power

is increased, the laser noise increases with respect to the shot noise 3, decreasing the

observed squeezing.

How then can perfect squeezing be obtained? Consider the doubly resonant case. A

critical pump power exists for doubly resonant SHG: at this power the system begins

self-pulsing [1, 23]. Before the critical point there exists a large damped oscillation in the

phase quadratures of both fields: at the critical point this becomes undamped and be-

comes the self-pulsing frequency, ωosc. This large oscillation in the phase quadrature de-

presses the amplitude quadrature, via Heisenberg’s uncertainty principle. At the critical

point, where the phase quadrature at ωosc is infinitely noisy, the amplitude quadrature is

infinitely quiet, i.e perfectly squeezed. Thus to obtain perfect squeezing we need to force

the system close to the critical point. This can be done by increasing the power or nonlin-

earity, or it can be done by adjusting the cavity decay rates so that the two modes interact

2The reader is advised to note the shape of the plots, and not worry too much about the exact numbers
used to get them. For completeness, the parameter values are given in the figure captions.

3Quantum noise scale as the square root of the optical power; classical noise scales as the optical power.
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Figure 4.3: Spectra for passive SHG in the singly resonant case. The parameters have been op-

timised to squeeze the second harmonic, i.e. γc � γb, where γb = .604γ12, γc = 77.6γ12, scaled

nonlinearity κ = 120000 (approximately 12600 s-1 unscaled), for a pump power of 120 mW. Please

note that the frequency axis is scaled by γ12 = 33.3 MHz. a) dotted lines - spectra obtained using a

coherent pump. The lower trace is the second harmonic, the upper trace the fundamental. b) un-

broken line - second harmonic spectrum obtained using a laser pump. The squeezing is masked

at low frequencies.

more strongly. In Fig. 4.4 we adjust only the second harmonic decay rate from the system

of Fig. 4.3. The large squeezing dip at ωosc is clearly evident. Note that the maximum

squeezing for the laser pump case is nearly equal to the ideal case: the squeezing at high

frequencies is much less affected by the pump noise.

While much of the behaviour discussed for the second harmonic will apply to the

fundamental, the two modes are by no means identical. Experimentally it would be

possible to build a doubler resonant only at the second harmonic, but in CW operation,

unrealistically high fundamental pump powers are then required to drive the doubling

process. A high finesse cavity for the fundamental light is employed to build up sufficient

power. However as good squeezing of the fundamental requires that the fundamental

cavity be lossier than that of the second harmonic γb > γc), a doubly resonant system

is necessary. This is confirmed by the rather poor noise suppression of the fundamental

light shown in Figs 4.3 & 4.4.

Spectra of the fundamental light from a doubly resonant passive doubler, for both

coherent and laser pump, are shown in Figs 4.5a & b respectively. For the coherent pump

the squeezing at zero frequency is modest (the maximum possible value is 2/3), however

due to the strong interaction between the modes (despite the relative difference in loss

rates, c.f. Fig. 4.3) there is a large oscillation that dips to nearly zero. Note that the

fundamental spectra in this figure are for a cavity where the fundamental is strongly

transmitted. The distinction is important when there is a noisy pump beam. In general

the reflected beam consists of two components, the part that interacts with the cavity (the

mode and impedance matched component) and the part that just reflects off of the cavity

without interacting. This latter component contributes additional noise to the reflected

beam that can mask the squeezing.
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Figure 4.4: Spectra for passive SHG in the doubly resonant case. The parameters are optimised

to squeeze the second harmonic, and are as for Fig. 4.3, except now γc = 9.06γ12. a) dotted lines -

spectra obtained using a coherent pump. The lower trace is the second harmonic, the upper trace

the fundamental. Note the squeezing on the second harmonic is much improved with no increase

in interaction strength or pump power. b) unbroken line - second harmonic spectrum obtained

using a laser pump. Again the squeezing is masked at low frequencies.
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Figure 4.5: Spectra for passive SHG in the doubly resonant case. The parameters have been

optimised to squeeze the fundamental, i.e. γb > γc, where γb = 3.46γ12, γc = .362γ12. The

interaction and pump power are the same as for Figs 4.3 & 4.4. a) dotted lines - spectra obtained

using a coherent pump. The lower trace is the fundamental, the upper trace the second harmonic.

Note that the fundamental is squeezed well beyond the 2/3 limit of the singly resonant case.

In the appropriate ideal case perfect squeezing is possible. b) unbroken lines - spectra obtained

using a laser pump. Note the squeezing is destroyed at low frequencies. The lower trace is the

fundamental, the second harmonic trace is above shot noise, and thus not visible on this plot.
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The squeezing of the two modes behaves differently as the interaction is increased. In

the second harmonic case the squeezing is optimised as the interaction is strengthened

(i.e. κ is increased). This is not the case for the fundamental. At a given pump power

the squeezing degrades for κ → ∞. There is an optimum nonlinear interaction value:

for sufficiently large interactions the squeezing is degraded at all detection frequencies.

This can be understood via the following analogy. Consider the frequency doubler as a

nonlinear beam splitter, with an incident fundamental beam split into, say, a transmitted

fundamental beam and a reflected second harmonic beam. The incident beam is the fun-

damental field inside the doubler, and is strongly squeezed in direct proportion to κ. As

κ is increased the squeezing on the incident fundamental increases and importantly, the

“reflectivity” of the beamsplitter increases. Thus in the limit of infinite κ all the incident

fundamental becomes second harmonic which is strongly squeezed. Conversely as κ is

increased the fraction of incident fundamental that is transmitted (i.e. light remaining at

the fundamental wavelength) becomes less and less, with a concomitant decrease in the

squeezing.

4.3.2 Active SHG

For clarity we will first consider active SHG under the assumption that the atomic de-

phasing rate, γp, is zero (the next section explains why this is desirable). Consider the

singly resonant limit, γc � γa. With a sufficiently high pump rate we obtain the spectra

shown in Fig. 4.6. For both the fundamental and second harmonic modes the squeezing

is maximum at zero frequency and then degrades with increasing detection frequency in

a Lorentzian like manner excepting the region of excess noise due to the laser’s resonant

relaxation oscillation (RRO) 5. Noise features present in the fundamental trace, both re-

laxation oscillation and squeezing are present on the second harmonic trace but amplified

away from the quantum limit.

As we are using a laser model that can produce rate-matched squeezing [15] it is nec-

essary to confirm that the SHG process is indeed the source of the noise suppression. This

was checked by turning off the doubling process, i.e setting κ to zero, and by adjusting

the pump rate such that the output power stays the same. We see a larger relaxation os-

cillation and no squeezing. The doubling process can significantly damp the relaxation

oscillation: a thousandfold reduction is not unusual. By increasing the pump rate a small

amount of squeezing at low detection frequencies can be created, which is due to rate

matching. We conclude that the preeminent cause of the squeezing predicted in Fig. 4.6

is second harmonic generation and not rate matching.

Fig. 4.7 considers the doubly resonant case in the limit of very high pump rate. As

was discussed in the previous section improved amplitude squeezing is expected due

to the phase oscillation between the fundamental and second harmonic modes. How-

ever the changes to the noise spectra are dramatic compared to the passive case. The

relaxation oscillation noise of both modes is suppressed, particularly that of the funda-

mental, and downshifted in frequency. Two regimes of squeezing become evident, that

before and that after the relation oscillation; hereafter they are called the low and high fre-

quency regimes, respectively. The second harmonic low frequency squeezing increases

significantly and attains the maximum possible value of 1/2 at zero frequency. Likewise

the high frequency squeezing is pushed very close to zero in a broad region that is much

5The RRO can be considered as an oscillation between photons stored in the lasing medium and photons
stored in the laser mode.
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Figure 4.6: Spectra for active SHG in the singly resonant case. The parameters have been op-

timised to squeeze the second harmonic, i.e. γc � γa, where γa = .6γ12, γc = 36000γ12,

scaled nonlinearity κ = 50000 (approximately 5220 s-1 unscaled), pump rate of Γ = 8 × 10−5γ12

(Γthresh = 4.08 × 10−9γ12) and dephasing rate, γp = 0. a) dotted line - fundamental spectrum. b)

unbroken line - second harmonic spectrum. Note that noise features present on the fundamental,

relaxation oscillation and squeezing both, are amplified away from the quantum limit.

larger than even the bandwidth of the second harmonic cavity. Both the high and the

low frequency squeezing regimes have been separately described in previous works. We

now understand the relationship between these regimes, and see that both are possible

in the one model for the one set of parameters.

Consider, as in Fig. 4.8, an active doubler resonant at the second harmonic (the bad

cavity limit for ν), γa � γc. A high pump rate is required simply to induce lasing. As the

interaction is strong both the low and high squeezing regimes are evident (c.f. Fig. 4.6),

however unlike the second harmonic case the noise features of the second harmonic are

no longer amplified versions of those of the fundamental. The low frequency squeezing

of the fundamental is less than that of the second harmonic; the high frequency squeezing

is greater.

In the doubly resonant case, γa > γc, the low frequency squeezing tends to be buried

under the relaxation oscillation - it is not robust compared to the second harmonic case.

Although the high frequency squeezing survives, further consideration of this case is

omitted for reasons explained in the next section.

4.3.3 Ugly reality: the effect of dephasing

Up to this point the atomic dephasing γp (the decay rate of the lasing coherence) was

considered to be zero. In solid state systems, such as Nd:YAG, this is not even approxi-

mately true as there is a large dephasing value due to coupling between phonons of the

crystal and the energy levels of the laser (or for gas lasers due to atomic and molecular

collisions). What then is the effect of large γp?

In the passive case the output spectrum of the laser becomes noisier for large γp: the

relaxation oscillation is down shifted in frequency, and it is amplified, even at the high

frequencies in the very tail of the oscillation. The extra pump noise leads to a further
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Figure 4.7: Spectra for active SHG in the doubly resonant case. There are two plots, covering

different frequency ranges. The parameters have been optimised to squeeze the second harmonic

and are as for Fig. 4.7 except now γc = 36γ12. a) dotted line - fundamental spectrum b) unbro-

ken line - second harmonic spectrum. Note the two regions of squeezing: low frequency, before

the relaxation oscillation, with maximum squeezing of 0.5; high frequency, above the relaxation

oscillation frequency with almost perfect squeezing.
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Figure 4.8: Spectra for active SHG in the doubly resonant case. The parameters have been op-

timised to squeeze the fundamental, i.e. γa � γc, where γa = 3600γ12, γc = .6γ12, κ = 50000,

pump rate of Γ = 3.99 × 10−2γ12 (Γthresh = 2.92 × 10−5γ12) and dephasing rate, γp = 0. a) dot-

ted line - fundamental spectrum. Note that both the relaxation oscillation and the squeezing at

low frequencies of the fundamental is less than the second harmonic. b) unbroken line - second

harmonic spectrum.

degradation of squeezing as the minimum point of the spectrum is reduced and moved

up in frequency by a small amount. Overall the effect of large γp is minimal.

In the active case increasing γp is of notable effect. The laser threshold increases; the

critical point threshold decreases, in some parameter regimes it is lower than the laser

threshold and the system is consequently unstable; and considerable noise is introduced

at frequencies below the dephasing value. The squeezing on the fundamental is particu-

larly sensitive, with even low dephasing values, such as γp = 0.5γa, completely masking

the squeezing. The squeezing of the second harmonic survives, albeit in a somewhat un-

likely regime. This is illustrated in Fig. 4.9 where the singly resonant system of Fig. 4.7

is evaluated for dephasing values of γp = 0, 18γ12, and 35γ12; corresponding to γp = 0,

0.5γc and 0.97γc. Note that the degradation of the low frequency squeezing is much less

pronounced and that it does not visibly degrade between the latter two values of γp.

This behaviour is perhaps best considered as follows. Dephasing adds considerable

phase noise inside the laser cavity, which is added directly to the fundamental and con-

sequently transmitted to the second harmonic. The survival of the low frequency second

harmonic amplitude squeezing reflects the fact that when using direct detection one only

sees amplitude noise at zero frequency. However, at higher frequencies the cavities mixes

in the internal phase noise. Thus the higher the dephasing rate, the narrower the region

of squeezing, as the phase noise at a given frequency is stronger. Remembering that the

parametric process also takes place in second harmonic generation, the phase noise on

the second harmonic generates additional amplitude noise on the fundamental. As a

consequence, none of the low frequency fundamental squeezing survives.

Contrast this with the passive case. Here the internal phase noise of the laser is not

directly involved in the doubling process. The narrow output linewidth of the laser filters

the phase noise considerably, consequently only a relatively small amount of excess noise

is added to the pump.
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Figure 4.9: Spectra showing effect of non-zero dephasing on active SHG, squeezing optimised

for second harmonic. Excepting the dephasing rates, other parameters are as for Fig. fig:SFDfig6.

There are two plots, covering different frequency ranges. For a) - c) the significantly squeezed

trace is the second harmonic. a) dotted lines - fundamental and second harmonic spectra for

γp = 0. b) long-short lines - fundamental and second harmonic spectra for γp = 18γ12. Note that

both the low and high frequency squeezing is degraded. c) unbroken lines - fundamental and

second harmonic spectra for γp = 35γ12. Compared to b) the high frequency squeezing is further

degraded while the low frequency squeezing is much less affected.
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Figure 4.10: Demonstration that in the active case low frequency squeezing of the second har-

monic is possible even with very high dephasing. The parameters are as for Fig. 4.7, except now

γp = 9000γ12 and pump rate Γ = 1.8×10−5γ12. Note that our model does not include pump noise

of the laser, which in real systems will totally mask this effect

It should be noted that the dephasing rate of Nd:YAG at room temperature is much

higher than the values considered in Fig. 4.9: we approximate it for the moment by γp =

9000γ12. At this value the high frequency squeezing in both the fundamental and second

harmonic cases is destroyed, as classical noise is introduced below frequencies of 9000γ12

(300 GHz). To access this squeezing in the laboratory a way of reducing γp must be found,

either through judicious choice of medium or cooling.

Theoretically the low frequency squeezing of the second harmonic persists even for

this value of the dephasing. To illustrate this, consider the system discussed for Fig. 4.7

except with dephasing rate γp = 9000γ12 and pump rate Γ = 1.8 × 10−5γ12. This is

illustrated in Fig. 4.10. Squeezing near the 50% limit occurs at zero frequency, but it

degrades quickly with increasing detection frequency to the quantum limit (by 56kHz).

It should be stressed that our laser model ignores both pump noise for the laser and

thermal noise, which in real lasers raises the noise floor at low frequencies (105 times

above quantum noise for a Lightwave Nd:YAG laser), completely masking this effect. In

addition unrealistically high pump powers are required, or alternatively a system with

an extremely low threshold.

4.4 SHGing and squeezing: it’s better to be passive

Passive SHG is already used as a source of bright squeezed light. As modelled here,

pump noise is a significant effect in passive SHG, and as reported in the next chapter,

reducing the pump noise significantly improves the squeezing. Although active SHG is

experimentally attractive, and other analyses have found the theoretical potential to be

high, we find that active SHG is not a suitable source of squeezed light and is unlikely to

be so in the foreseeable future. This is primarily due to the high dephasing values that

are inherent in most laser systems: only if an active system with small dephasing could

be found would active SHG be suitable for squeezing. Even then the issue of high pump
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rates would need to be addressed. Unfortunately any of these options offers experimental

complications at least as large as that of doubly resonant passive SHG, and with no extra

benefit as regards the squeezing.
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Chapter 4 appendix: drift and diffusion matrices

For the passive case the drift, A, and diffusion, D, matrices are respectively:

A =































γa 0 0 0 0 0 −g23 0 0 0

0 γa 0 0 0 0 0 0 0 −g23

2
√

γaγb1 0 γb −κc −κb∗ 0 0 0 0 0

0 2
√

γaγb1 −κc∗ γb −κb 0 0 0 0

0 0 κb 0 γc 0 0 0 0 0

0 0 0 κb∗ 0 γc 0 0 0 0

J∗ 0 0 0 0 0 γp
tot 0 g23a 0

g23J23 g23J23 0 0 0 0 g23a Γ + γ23 + γ13 Γ g23a

g23J23 g23J23 0 0 0 0 g23a −γ23 − γ13 γ12 g23a

0 J∗ 0 0 0 0 0 0 g23a γp
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where γptot = (γ13 + γ23 + γ12 + 2γp)/2 and J∗ = −g23(J3 − J2). And:
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where γcoh1 = −g232J23a+ γ23J3 + ΓJ1 + γ13J3 and γcoh2 = −g232J23a+ γ12J2 + γ23J3.

For the active case the drift, A, and diffusion, D, matrices are respectively:

A =























γb −κc∗ −κa 0 −g23 0 0 0

−κc γb 0 −κa 0 0 0 −g23

κa 0 γc 0 0 0 0 0

0 κa 0 γc 0 0 0 0

−g23(J3 − J2) 0 0 0 γp
tot 0 g23a 0

g23J23 g23J23 0 0 g23a Γ + γ12 −Γ g23a

g23J23 g23J23 0 0 g23a −γ23 − γ13 γ12 g23a

0 −g23(J3 − J2) 0 0 0 −g23a 0 γp
tot























and:

D =























κc 0 0 0 0 0 0 0
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0 0 0 0 g232J23a 0 0 ΓJ1 + γ12J3 + 2γpJ3

0 0 0 0 0 0 −g232J23a − γ23J3 0

0 0 0 0 −γ12J23 0 γcoh1 −γ12J23

0 0 0 0 0 0 0 g232J23a

























Chapter 5

Experimental design

Nothing is impossible to the man who hasn’t got to do it himself.

Anon

Figure 5.1 shows the core experimental layout that was used to obtain the results in

this thesis. In this chapter we discuss in detail the design, implementation and charac-

teristics of each stage of the experiment, proceeding componentwise from the laser to the

balanced detectors.

5.1 The laser

In the past 5 years the nonplanar ring oscillator (NPRO) Nd:YAG laser has become the

pump laser of choice for frequency conversion experiments. Its chief advantages over

competing technologies are its high stability, easy frequency tunability, narrow linewidth

operation, and well collimated output.

The Nd:YAG NPRO lasers used in the experiments in this thesis were all members

of the Lightwave Laser 122 series: at the Australian National University the 200 mW

(122-1064-200-F, serial no: 127); at the Universität Konstanz the 300 mW (122-1064-300-F,

serial no: 207) and the 500 mW (122-1064-500). The laser frequency in the 122 series can

be tuned via two ports: the slow port, where the laser crystal temperature is changed; and

the fast port, where a piezo placed on top of the laser crystal is tuned so that it compresses

the crystal.

When the crystal temperature is increased both the physical cavity length and the re-

fractive index increase: and so the laser frequency decreases. As the slow port is thermal

it responds best to driving frequencies under the order of a Hertz. The slow port range

and gain is considerable, over the temperature range 20–50 ◦C the average tuning coef-

ficient is ' −1GHz/◦C [1]. The laser itself is not stable over this entire range, at some

temperatures it undergoes a mode hop and two modes coexist, often with some instabil-

ity caused by their competition for gain. Table 5.1 shows the stable single mode regimes

for the ANU laser: within the stable temperature range the tuning coefficient of the laser

is ' −3.1GHz/◦C [1] or ' +1.20GHz/V. The slow port can be linearly driven over a

range of ±50V, beyond this the response is nonlinear.

The fast port of the laser allows considerably quicker frequency scanning, but at the

expense of range: Lightwave cites a range of > 30MHz for frequencies below 100kHz

with a tuning coefficient of > 1MHz/V. In 1994 Cantatore et. al [2] showed that it was

possible to phase and amplitude modulate the laser light using the fast port. Cantatore

et. al found that at frequencies between 0.5MHz and 1MHz the laser output was both

phase and amplitude modulated: at certain frequencies, believed to correspond to me-

chanical resonances of the piezo/crystal assembly, the residual amplitude modulation

was reduced by an order of magnitude and the modulation became chiefly phase. This is

an incredibly useful phenomenon, as it allows phase modulation of the laser for locking

purposes without the addition of a phase modulator (which is to be avoided from both
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Figure 5.1: Core experimental layout. The light source is a p-polarised Nd:YAG monolithic ring

laser (Lightwave 122) producing 200–500 mW of linearly polarised light at 1064 nm. The output of

the laser is passed through a variable attenuator (a half-wave plate ( λ
2 ) and polarising beamsplitter

assembly) and is then incident on a three mirror, mode cleaning, ring cavity of linewidth 800

kHz. Locking of the mode cleaner is effected using a 27.650 MHz frequency modulation applied

directly to the laser, and an error signal derived from the reflected light from the input mirror

of the mode cleaner. At low frequencies, < 500 Hz, the mode cleaner cavity length is made to

track the laser frequency via a piezo on the end mirror, while at high frequencies, > 500 Hz, the

laser frequency is made to track the mode cleaner. The output of the mode cleaner is slightly

elliptically polarised, this is corrected back to linear polarisation using a zero order quarter wave

plate ( λ
2 ). The light then passes through a a Faraday isolator: this prevents light from returning

to the laser, and allows easy access to the retroreflected beam. The light is then incident on the

frequency doubling cavity. Locking of the monolithic cavity is effected by placing a 45.167 MHz

frequency modulation directly across the xy faces of the MgO:LiNbO3 doubling cavity. The error

signal is derived from the reflected beam and is used to lock the laser at both low (< 500 Hz)

and high frequencies to the mode of the monolith. The output second harmonic at 532 nm is

s-polarised and separated from the 1064 nm pump via two dichroic beam splitters. It is incident

on two angled FND-100 photodetectors with retroreflectors, giving quantum efficiency 65%±5%.

The outputs are added and subtracted and sent to the spectrum analyser. BS = beamsplitter; PBS

= polarising beamsplitter; PID = proportional/integrator/differentiator; A = amplifier; λ/2 = zero

order half wave plate; λ/4 = zero order quarter wave plate.
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Table 5.1: Single mode temperature regimes for ANU Lightwave 122.

NPRO temperature Stable interval
[◦C] [◦C]

20.0 - 21.6 1.6
22.2 - 26.9 4.7
27.7 - 32.3 4.6
33.1 - 37.5 4.4
38.2 - 42.4 4.2
43.1 - 47.0 3.9
47.6 - 50.0 2.4

loss and mode match considerations). In the course of our experiments we found that

this behaviour extends to well above 80 MHz, with the modulation intensity reducing

with driving frequency. For the majority of the ANU experiments the laser was phase

modulated at 27.650MHz (this accuracy was necessary, a change in the last decimal place

leading to considerable amplitude modulation). The one caveat concerning modulation

at such high frequencies is that care must be taken not to feed too much power into the

piezo: Lightwave advises that powers above 1 W couple too much heat into the laser

crystal and can cause permanent laser damage.

The fast port can be a source of considerable noise at low frequencies (i.e. below the

resonant relaxation oscillation). If the fast port is unterminated, or terminated by a 50Ω

cable, then a series of large (10’s of dB above the noise floor) spikes are observed on

both the amplitude and phase of the laser light. The spikes appear to be pickup-driven

resonances of the piezo: if the port is terminated by a ground or a 50Ω load, the spikes

are severely reduced. Lightwave recommends terminating the fast port when not in use.

Even when in use, we have found it good practice to pass all signals to the fast port

through a 10dB attenuator, which provides sufficient loading to damp the spikes.

As the laser temperature is increased the laser power decreases by a few percent. As

power limitations were initially a concern in most of our experiments, the lasers were

run as a matter of preference at low temperatures. As Table 5.1 shows, this also gives

the broadest temperature range of single mode operation. The decrease in power is ba-

sically linear, however occasionally there appeared to be a slight sinusoidal modulation

around the line of best fit. This may be due to the laser polarisation being slightly temper-

ature dependent, the sinusoidal variation being due to the analysing effect of the internal

quarter- and half-wave plate and linear polariser assembly of the Lightwave.

A rare, but known, failure mode was observed with the Konstanz 300 mW laser. For

just over half the temperature tuning range the laser ran dual, instead of single, mode.

Closer inspection showed that the secondary, lesser power, mode was at a frequency

2.7nm lower than the main mode. As Fig. 5.2 shows, the secondary mode could be up to

16% of the power of the primary mode, as its power was reduced by increasing the tem-

perature the primary mode increased in power by a few percent, contrary to the normal

trend. The secondary mode was observed to go through its own mode hops indepen-

dently of the primary mode. According to Tom Kane of Lightwave [3], the secondary

mode is the 1061 nm line of Nd:YAG. The line can only be avoided by running the laser

above 35◦C, or if the full tuning range of the laser is required, replacing the laser crystal.
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Figure 5.2: Power of primary and secondary lasing modes versus temperature for the Lightwave

122 300mW laser. Note that by 35◦C the secondary mode has disappeared. The presence of this

mode effectively halves the tuning range of the laser.

5.2 The modecleaner

The normal application of mode cleaning cavities in quantum optics is to provide a spa-

tially and noise cleaned beam for the local oscillator beam in a homodyne detector. This

requires very narrow linewidths, and, as the signal field is a squeezed vacuum or very

weak squeezed bright field [5], output powers of only a few mW. This is achieved by de-

signing for as high a finesse as possible, using high reflectance coupling mirrors and/or

lengthy perimeters. Our application is further constrained by requiring transmission of

high powers, in excess of 100 mW. This limits the modecleaner finesse, as the intracavity

powers rapidly approach the damage threshold of many commercially available mirrors.

We settled on a three mirror, triangular ring cavity design. The mirrors were custom

built by A. G. Thompson & Co., Adelaide, South Australia to the following specifications:

input and output couplers reflectivity 98% (loss > .02%), third mirror high reflector, i.e

reflectivity of >99.9%. The cavity perimeter was 2.450m ±5mm, the free spectral range

(FSR) of the cavity was thus FSR= c0/(np) = 1/τ = 122 MHz. From Siegman [7] the

finesse of an optical cavity is:

F =
π
√
grt

1 − grt
(5.1)

where:

grt =
√

R1R2(R3 . . .)Rloss =
√

Rtot (5.2)

where Ri & Ti are the reflectivity and transmittivity of mirror i, respectively; Rloss is the

fraction of absorbed power; and Rtot is the total reflectivity of the cavity. It is related to

the total decay rate, γtot by (recalling eqn 2.22):

γtot =
1 −√

Rtot
τ

=
1 − grt
τ

(5.3)
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The bandwidth of the cavity is related to the finesse by:

F ' FSR

FWHM
(5.4)

where FWHM is the cavity bandwidth or linewidth (the terms are often, and confusingly,

used interchangeably). Alternatively, the bandwidth is related to the cavity decay rate by:

FWHM =
γtot
π
√
grt

' γtot
π

(5.5)

The circulating power is [8]:
P circ

P in
=
T1F2

π2grt
(5.6)

For the specified reflectivities the figures for predicted finesse and circulating power gain

are 138 and 36, respectively. As discussed in the next chapter, the high circulating power

traps dust in the cavity beams, and eventually deposits this dust onto the cavity mirrors,

increasing the cavity loss. The predicted cavity bandwidth is ≈ 800 kHz; i.e the output is

reduced by 3 dB (factor of 2) at ≈ 400 kHz. As the RRO of the laser (resonant relaxation

oscillation, also see next chapter) is at 542 kHZ, this should provide significant noise

filtering. As discussed in Chapter 6, linewidths narrower than this do not significantly

increase the final observed squeezing, but would make the cavity much harder to lock.

The transmitted and reflected powers are given by [7]:

P refl

P in
=

1

R1

(R1 − grt)
2

(1 − grt)2

P trans

P in
=

T1T2

(1 − grt)2
(5.7)

For the specified reflectivities and absorption we predict that 1.2% of the power will be

reflected and 64% will be transmitted, the rest is absorbed (c.f. Chapter 6). Thus in the

best case the modecleaner will attenuate the 200 mW laser beam to 128 mW. This is still

adequate power for our experiment. Note that the cavity can be fully characterised by

direct measurement of just five experimental parameters: the cavity perimeter, cavity

linewidth, and incident, reflected and transmitted powers.

5.3 Up the optical path

Optical loss is a particularly critical concern in squeezing experiments. Loss in the pump-

ing path degrades the optical power necessary to drive the nonlinear effect, which re-

duces the maximum generated squeezing; loss in the detection arm introduces uncorre-

lated noise (from the vacuum) which quickly reduces the maximum observed squeezing.

Accordingly all components in the experiment were chosen on the basis of low loss. The

focussing lenses were either V-line coated at the appropriate wavelength or broadband

AR coated in the suitable wavelength range, with loss typically < 0.1%. For the in-

frared, the original steering mirrors were quartered 2” aluminium coated Newport mir-

rors. However these were relatively lossy (R< 95 − 96%); and were eventually replaced

by a combination of New Focus 1064nm dielectric coated mirrors (5104, R> 99%) and

Rimkevicius 1064nm dielectric coated mirrors (R> 98%). All optics used in the ANU

experiments are listed in Table 5.2
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Table 5.2: Optics used in experiment.

Description Wavelength Manufacturer Model No. Comments
[nm]

λ/2 plate 1064 Newport 10RP02-34 loss < 0.2%
zero order 1” round

λ/4 plate 1064 Newport 10RP04-34 loss < 0.2%
zero order 1” round

λ/4 plate 532 Newport 10RP04-16 loss < 0.2%
zero order 1” round

non-polarising beam 1064 Newport 05BC16NP.9 50/50±5%
splitter (NPBS) 1/2” round

polarising beam 1064 Newport 05BC16PC.9 loss < 2%
splitter (PBS) 1/2” round

non-polarising beam 532 Newport 05BC16NP.3 50/50±5%
splitter (NPBS) 1/2” round

polarising beam 532 Newport 05BC16PC.3 loss < 2%
splitter (PBS) 1/2” round

dichroic (long wave 1064 Newport 03BDL001 losses < 0.1, < 0.2%
pass filter) /532 1” round

Aluminium steering BBIR Newport 20D10ER.2 loss ' 4 − 5%
mirror 2” round

dielectric steering 1064 New Focus 5104 loss < 1%
mirror 1” round

dielectric steering 1064 Rimkevicius custom loss < 2%
mirror 1” square

dielectric steering 532 Rimkevicius custom loss < 2%
mirror 1” square

assorted lenses 1064 Newport KPXxxxAR.yy loss < 0.2%
plano-convex /532 1”,2” round

Fig. 5.1 is conceptually correct, but does not show the actual physical layout of the

experiment. To fit the experiment into the available table space, the optical path was

folded through 90◦ just before the Faraday isolator. The large angle reflection from the

folding mirror caused the beam to become elliptically polarised (as did, to a different

degree, transmission through the modecleaner); the λ/4 plate was used to rotate the beam

back to linear polarisation so that the beam propagated through the Faraday isolator

without additional loss.

Initially a commercial Faraday isolator (OFR IO-2-YAG, serial #:8043) was utilised.

However due to its small aperture (2mm) and the relatively large beam diameter it was

found to attenuate the beam by up to 30%. At ANU we constructed our own isolator,

using Newport polarising beam splitters (see Table 5.2) and a Faraday rotator (aperture

10mm) constructed for ANU by Dr Anatoly Masalov of the Lebedev Physical Institute,

Moscow, Russia. The Faraday isolator assembly functions as shown in Fig. 5.3: the po-

larisation of the light is shown above the incident beam and below the reflected beam.

The incident, horizontally polarised beam, passes unchanged through the first polaris-

ing beam splitter (PBS); is rotated 45◦ by the λ/2 plate; is rotated back to horizontal by
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the Faraday rotator; passes unchanged through the second PBS and is then incident on

the reflecting surface, be it monolith or mirror. The horizontally polarised component of

the reflected beam again passes unchanged through the second PBS (the rest is reflected

out); is rotated −45◦ by the Faraday rotator; and hence rotated to the vertical by the λ/2

plate and then reflected perpendicular to the incident beam path by the first PBS. If the

reflecting mirror or cavity does not alter the polarisation then all of the reflected light

exits through the port marked “out” (the second PBS is to increase the overall isolation of

the Faraday isolator). At Konstanz, we borrowed a Gsänger Faraday Isolator (FR 1065/8,

aperture 8mm) from Gsänger Optoelectronik Gmbh: this had similar performance to the

ANU isolator. Note that as only the power and noise from the “in” port is incident on the

reflecting surface, this is a suitable technique for coupling squeezed vacuum into the dark

port of interferometers, which is of particular interest in gravity wave interferometry.

PBS PBS

in

out

λ/2 rotator

monolith or

reflecting mirror

or

dark port of

interferometer

Figure 5.3: Operation of a Faraday isolator. The polarisation of the beam is shown above the

incident beam, and below the reflected beam. If the mirror at the right does not affect polarisation,

then all the light that enters the “in” port exits via the “out” port. Note that only the noise of the

“in” port is coupled into the reflecting mirror.

The power coupled to the monolithic cavity is also reduced by nonperfect modematch

and alignment. Modematching was optimised using two lenses mounted on Newport

xyz mounts; alignment was optimised using a custom built beamsteerer. A beamsteerer

consists of two mirrors fixed to the one substrate. If the substrate is rotated horizontally

or vertically then the output beam is displaced horizontally or vertically; if one mirror is

tilted horizontally or vertically with respect to the other then the output beam angle is

altered horizontally or vertically. The beamsteerer thus allows separate control of the 4

degrees of freedom necessary to align the cavity. We found that using the beamsteerer it

was possible to align a cavity very quickly (less than 10 minutes) compared with tradi-

tional alignment procedures.

5.4 Designing the SHG cavity

5.4.1 Types of cavity

Fig. 5.4 shows the three basic styles of nonlinear optical cavity: external mirror, hemilithic,

and monolithic (these styles can be either standing wave or ring). In the external mirror

design the majority of cavity reflections are external to the nonlinear medium. The intra-

cavity loss is high due to the two air/crystal interfaces. However it is advantageous in

doubly resonant SHG as it allows both mirrors to be scanned, so that the fundamental

and second harmonic modes can be independently locked. The increased dispersion also
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external mirror hemilithic

monolithic

Figure 5.4: The three basic styles of nonlinear optical cavity. external mirror most cavity reflec-

tions external to nonlinear crystal. hemilithic one cavity reflection external to nonlinear crystal.

monolithic all cavity reflections internal to nonlinear crystal.

acts to suppress TROPO, which allows greater SH squeezing ([6], see Chapter 7.) The

hemilithic design (hemilith, lit. “half-a-piece”) is a good compromise: it halves the num-

ber of intracavity surfaces and thus the intracavity loss but it still leaves free an external

mirror that can be scanned for locking purposes. The monolithic design (monolith, lit.

“one piece”) avoids loss due to intracavity surfaces (the mode is confined totally within

the crystal) but at the expense of losing a locking degree of freedom. The laser frequency

can be locked to the cavity resonance but, due to practical effects that are explained later,

the cavity length cannot be adjusted so that the cavity resonance matches the laser fre-

quency. Combinations of the three basic styles are possible, for example a hemi-monolith,

where the fundamental is resonated solely in a monolith and the second harmonic is res-

onated between the external mirror and end reflector of the monolith.

Loss is critical in SHG, as the maximum conversion efficiency, ηnl is equal to the out-

coupling ratio, ηnl = γc1/γ1 ≈ T1/Ttot. Loss directly increases the total decay rate, γ1,

and thus reduces the maximum conversion efficiency. The outcoupling decay rate, γc1,

can be increased accordingly, but this in turn shifts the pump power required to reach

the maximum conversion efficiency (see eqn 2.42). If designing a doubler purely as a

source of SH (for example to pump an OPO), the best design approach is to have as large

an outcoupler as possible, with the point of maximum conversion efficiency, Pmax conv
1 ,

just under the maximum available power at the fundamental. It is not wise to have

Pmax conv
1 higher than the maximum available pump power as the slope of the conversion

efficiency is quite steep up to this point. Conversely, there is no particular advantage

to pumping at powers much greater than Pmax conv
1 as above it the conversion efficiency

slowly degrades, and the system becomes susceptible to TROPO (see Chapter 7). For the

complementary process, OPO, the point of maximum conversion efficiency Pmax conv
1 is

the threshold power, Pthr3 . A cavity designed to the above criteria is very suitable for the

production of vacuum squeezing by OPO: near threshold the squeezing is near perfect

and the high escape efficiency ensures that the majority of the squeezing is detected.

The design criteria are different for the generation of good SH squeezing. At the point

of maximum conversion efficiency, regardless of what power this actually is, the second

harmonic is squeezed by 3 dB (see next chapter). It is plainly advantageous to have this

at low, easily detected, optical powers. The cavity should be designed so that Pmax conv
1

is relatively low with respect to the maximum pump power. This enables the cavity to

be driven far above Pmax conv
1 , which is the strong squeezing regime. The cavity should
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also be designed with dispersive elements to suppress TROPO, which degrades the SH

squeezing (see Chapter 7). At the start of this thesis, the neither QROPO or TROPO

had been observed, and the latter point was not appreciated. Further the state of the art

material technology at the time could not reliably produce high nonlinearity/low loss

materials, so low loss was the overwhelming design criterion – the monolithic cavity

style was chosen.

5.4.2 Monolith design

There are several forms of monolithic, or internal mirror, cavities. The oldest is the whis-

pering gallery resonator [9], where typically the light is confined by a infinite series of

total internal reflections (TIR’s) in a sphere. WGM’s have been investigated for a num-

ber of applications in the past 30 years, including lasing (in dye microdroplets [10], and

Nd:YAG spheres [11]) and as high Q optical cavities (Q’s in excess of 108 have been re-

ported [12, 13]). Their chief disadvantages are small size (and hence high sensitivity to

mechanical vibration) and highly elliptical output modes (Bessel as opposed to Gaus-

sian modes). As the technology for polishing small perovskite (the structure of MgO:LN)

spheres had not been perfected at the time (and still has not) this design option was not

pursued.

There are three methods to form a mirror in a monolithic resonator: total internal

reflection, frustrated total internal reflection (FTIR), and dielectric coating of a surface.

These three methods can be combined as required and over the past decade most of

these have been explored at Stanford University. In the late 80’s Kozlovsky et. al. demon-

strated singly resonant SHG in a dielectric mirror, standing wave monolith [14] and in a

combined TIR/dielectric mirror, travelling wave monolith [15]. Schiller et. al. demon-

strated doubly resonant SHG and QROPO (see Chapter 7) in a monolith that used solely

FTIR and TIR, which they called a MOTIRR (monolithic TIR resonator) [16]; Serkland et.

al. used a MOTIRR to demonstrate 1064nm pumped OPO [17]. At Konstanz Universität

Bruckmeier et. al. constructed a cavity that used all three methods for use in a QND

experiment [18].

Once we decided to focus on squeezing via singly resonant SHG (see Chapter 6) we

settled on a standing wave cavity with dielectric mirrors as this had the lowest achievable

loss. (Such cavities are not suitable for doubly resonant SHG, as they lack a locking

degree of freedom, see section 5.5). We selected the well-tested crystal MgO:LiNbO3
1 as

the nonlinear medium since it exhibits a large χ(2) for SHG of 1064 nm light as well as low

bulk absorption and scatter loss. LiNbO3 is doped with MgO to avoid the photorefractive

effect, which in pure LN is known to cause crystal damage at high intensities - pure LN

cannot be used in our experiments. The chief disadvantage of doping is that it increases

the crystal inhomogeneities and scattering and so decreases the nonlinearity to loss ratio

(see Chapter 8).

Our chief concern when designing the resonator was to maximise the nonlinearity.

For LiNbO3 the phase matching length, i.e the length of maximum nonlinear interaction

(see Chapter 2), is 12.5mm. We cut the monolith to this length. The loss figure for LN

is normally quoted as 0.1%/cm, for 12.5mm the round trip loss is thus 0.25% (Rloss =

99.75%). At the point of maximum conversion efficiency (Pmax conv
1 ) the second harmonic

is squeezed by 3dB. Experimentally, we desire Pmax conv
1 to be a low power so that we can

drive the crystal far above it and produce strong squeezing. If the outcoupling decay rate

1Magnesium oxide doped lithium niobate; aka MgO:LN; aka “maglen”. n = 2.233
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is much higher than the loss decay rate (γc1 � γloss
1 ), then Pmax conv

1 is high. To keep it

low, we chose an outcoupling reflectivity of R1 = 99.60%, and an end mirror reflectivity

of R1 > 99.9%. The predicted finesse is thus 840, and the predicted power build up in

the absence of SHG (the “cold cavity”) is 280: the high circulating power ensures a large

nonlinear interaction. However this is at the expense of a narrow cold cavity linewidth

(FWHM = 6.4 Mhz, noise reduced by 3dB at 3.2 MHz). This something of a trade-off

as the squeezing bandwidth is proportional to the cold cavity bandwidth2, and a large

squeezing bandwidth is preferred as the laser adds considerable noise at low frequencies

which destroys the squeezing (see chapters 4 & 6).

As the monolith is so short it has a high FSR – 5.4 GHz. It is not possible to scan

quickly over the full FSR of the monolith: the fast port of the laser only has in extremis

a range of 100MHz; scanning via the piezoelectric effect (200V/mm, i.e. 1000V over 5

mm) does not give a significantly greater range. Users of MgO:LiNbO3 are typically

advised against applying high voltages across the crystal when high optical powers are

present. However we have observed no ill effects after more than 3 years of applying

1000V (ramped over 20mS) whilst several Watts of light were present in the crystal.

The nonlinearity, µ, scales as the square of intensity: as intensity is the ratio of power

to area a small beam diameter is obviously desirable. However with Gaussian (as op-

posed to waveguided) beams it is not desirable to focus the beam as tightly as possible.

If this is done the beam expands very rapidly away from the focus, so that at the ends

of the crystal the intensity is quite low and the contribution to the total nonlinearity is

small. Nor is a large, parallel beam desirable, as the interaction is quite weak along the

entire length of the crystal. The optimum interaction occurs somewhere between these

limits. The following rule of thumb is useful: for a symmetric resonator, set the waist size

so that the crystal length is twice the Rayleigh length. The Rayleigh length is defined as:

zR =
πw2

0n

λ
(5.8)

where w0 is the spot size at the waist, n is the refractive index and λ is the wavelength of

the light (note that higher frequencies have longer Rayleigh lengths). Thus for a 12.5mm

LN crystal the desired Rayleigh length is 6.25 mm, which translates to a 30.8 µm waist

for 1064 nm. (For the Konstanz crystal these figures are 5mm and 27.5 µm, respectively).

From Siegman [7], the waist of a resonator is given by:

w2
0 =

Lλ

nπ

√

g1g2(1 − g1g2)

(g1 + g2 − g1g2)2
(5.9)

where L is the length of a standing wave cavity, λ is the wavelength, n is the refractive

index and gi is:

gi = 1 − L

ROCi
(5.10)

where ROCi is the radius of curvature for mirror i. The monolith is symmetric, so g1 = g2.

The ANU crystal was cut and polished by CSIRO, Sydney, Australia, the final dimen-

sions being 5(x)× 12.5(y)× 5(z) mm, where (z) is the optic axis. A set of standard curva-

tures was available from CSIRO: the 14.24 mm radius was closest to optimum, giving a

waist of 32.7µm, and the cavity ends were cut accordingly. The dual wavelength dielec-

2As SHG is loss from the fundamental, it broadens the cavity linewidth, this is the “hot cavity” linewidth:
squeezing has this bandwidth.
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tric mirror coatings were produced by LZH, Hannover, Germany. LZH were selected as

they offered coatings with a minimal relative phase shift between the fundamental and

second harmonic: such a phase shift reduces the effective nonlinearity (see section 8.1).

The specified reflectivities were 99.60% ± 0.03% @ 1064 nm & ∼ 4% @ 532 nm for the

front coating; 99.90% ± 0.03% @ 1064 nm & 99.9% @ 532 nm for the back coating. The

xy faces of the crystal were gold coated by LZH to allow electro-optic modulation of the

cavity. The nonlinearity, µ, could not be estimated a priori. As the effective nonlinearity,

µ, depends on the cavity geometry, the phase properties of the mirror coatings, and the

crystal quality (inhomogeneities etc.) it is not surprising that estimates of µ inferred from

the literature varied between one another by up to a factor of two. Experimentally we

inferred a maximum value of µ = 0.012 (see chapters 6 & 7).

MgO:LN expands anisotropically with temperature, i.e. the optical axis, z, expands

at a different rate to the xy plane. In the monolith, the light propagated down the y axis

and accordingly the end faces were cut so that the spherical surfaces were tangent to

the xz plane. As these surfaces were cut at room temperature, and the monolith was

typically operated at a temperature in excess of 100 ◦C, the end surfaces were not truly

spherical under experimental conditions as they were distorted by the anisotropic ther-

mal expansion. (Experimentally, this was seen by the fact that the residual higher order

Gauss-Hermite transverse modes were always slightly non-degenerate in frequency). In

extremis, repeated anisotropic expansion of the monolith as it is heated and cooled has

been known to buckle the coatings from the spherical surfaces and to cause them to

come loose from the crystal: this occurred with large sections of the mirror coatings on

the Konstanz monolith prior to the author’s use of it. Thus it is strongly advised to keep

the thermal cycling of these systems to a mininum.

5.4.3 Future design considerations

The criteria used to design the ANU crystal are now effectively obsolete. Materials are

now commercially available with very high nonlinearity to loss ratios (e.g. KNbO3,

PPLN). This suggests a completely different approach to designing cavities for SH squeez-

ing: as the nonlinearity to loss ratio is so large the high finesse constraint can be relaxed

and attention focussed wholly on minimising Pmax conv
1 .

Aside from finesse, the other method to increase the stored energy in a cavity is to in-

crease the cavity length (in some sense, there is more room to store photons). As this nar-

rows the cavity linewidth the outcoupler reflectivity can be accordingly lowered, which

has the side benefit of increasing the conversion efficiency. However the feasibility of this

is critically linked to the strength of the nonlinearity. In our experiments the nonlinear-

ity was inferred to be µ ≈ 0.01. Say that the nonlinearity for a 50mm piece of PPLN is

9 times higher than this, i.e. µ = 0.09 3. The intracavity loss is relatively high, 5 cm @

0.1%/cm + 2 surfaces @ 0.1%/surface = 0.7% intracavity loss. We consider an external

mirror, bowtie cavity with an optical perimeter of 4cm and reflectivities of R1 = 0.90%,

and R2 = R3 = R4 = 99.9%. With these values, Pmax conv
1 ' 10 mW, the conversion

efficiency at this point (assuming perfect mode match) is ηnl = 0.90 and the cold cavity

linewidth is ' 15MHz. These figures are better than those obtained from the ANU and

Konstanz monoliths, and for a far simpler experimental design: it is certainly worth pur-

3This is a reasonable estimate of the potential of the new nonlinear materials (PPLN, etc.). However note
that µ also scales with cavity length, and in general it varies with cavity configuration (see eqns 2.15 & 2.35).
Insufficient attention to cavity design could lower the µ of a cavity built using new nonlinear materials to
that achieved with current materials.
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suing. Note that Pmax conv
1 scales inversely with µ (eqn 2.42): if the nonlinearity of the

cavity, µ, is simply that of the current design then Pmax conv
1 ≈ 90 mW, which is not at all

favourable.

Doubly resonant SHG has a much lower Pmax conv
1 than the singly resonant case [19].

However doubly resonant systems are considered technically difficult as the second har-

monic mode needs to be locked to resonance. In a tight corner it is worth considering

the intermediate situation, where the power of the second harmonic is built up by a

low reflectivity mirror (say 10% as opposed to AR). The second harmonic is still such

a broad resonance that it does not need locking (unless the experimenter is very, very,

unlucky). (The equations in section 5.2 break down & are basically meaningless for low

R, as arcsin(θ) 6= θ for large θ. Keeping this in mind, for our example of R=10%, we

very roughly calculate a finesse for the second harmonic of 2 and a half, a circulating

power twice the incident power and a FWHM for the resonance of two fifths of the FSR,

as FWHM/FSR= 1/F).

5.4.4 The Wrong Polarisation

The inhomogeneities of the crystal lead to another subtle effect that can totally upset the

experiment – which however is fortunately rare, and easily avoided. In MgO:LN, the re-

fractive indices of the s- and p- polarisations of 1064nm are quite different. Consequently

the TEM00 modes of the the s- and p- polarisations are, in general, resonant at different

frequencies. The cavity is driven at p-polarisation, however due to inhomogeneities in

the crystal, a small amount of light is scattered from the p- polarisation into the s-.

In a typical experiment this appears as the following. When scanning over several

cavity linewidths (say, via the fast port of the laser) the p-polarised TEM00 mode is clearly

evident as a large peak. The s-polarised mode appears as a very small peak some distance

from the large peak: typically it cannot be eliminated via improving the alignment and

mode match - if desired, unambiguous identification can be made by rotating the input

polarisation. As the thermal port of the laser is slowly scanned, all the peaks slowly move

across the range set by the fast scan of the laser. However, and this is a key point, the

s- and p-polarisation peaks move at different rates: the s-polarised peak moving more

rapidly than the p-. At some laser temperature, the s- and p-polarisations become fre-

quency degenerate: when this happens, considerable power exchange occurs between

the two, with the s-polarised mode able to rob almost all of the power from the desired

p-polarised mode4. Obviously if this occurred when the cavity was locked and generat-

ing second harmonic (as did happen occasionally) the results were disastrous. However

it is a simple effect to avoid, simply changing the laser temperature destroys the degen-

eracy of the two modes and the problem ceases to exist.

5.5 The locking system

Up to three locking loops were required in this experiment: two optical and one thermal.

Nominally these loops are independent, although of course they are coupled through

the optical interactions. For example, as the monolith comes into resonance extra heat is

dumped into the cavity and the thermal loop must adjust accordingly; in turn the cavity

4R. Bruckmeier has modelled this and found it to be equivalent to an avoided crossing between the two
polarisations [21].
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expands and the frequency drops and both the monolith and modecleaning loops must

then adjust; and so on.

The thermal locking loop was used to maintain the crystal temperature to mK stabil-

ity. The loop consisted of a heater, oven, detector and temperature controller. At the time

of construction, no peltier heaters existed that could run reliably in excess of 100 ◦C (this

is no longer true), so a resistive heater was constructed. It consisted of three 20Ω resis-

tors (RS-WH20), wired in parallel; one resistor was attached to each free side of the oven.

The oven itself was a 32 × 35 × 44mm copper block, with an internal space to accommo-

date the crystal coffin. The oven block was large so as to give a large thermal mass: this

was desired as only limited heating power was available (≈ 4.5 W), and the large ther-

mal mass insulated the crystal from ambient temperature fluctuations. The combination

of large thermal mass and resistive-only heating led to a large time constant, with the

system taking 10-20 minutes to stabilise to a new temperature setting. (Alternatively, if

excess power and/or peltier heating/cooling is available it is better to design for a small

thermal mass so that the time constant is much smaller.) The crystal coffin was variously

a Macor c©(ceramic) or Teflon c©coffin that electrically insulated the crystal from the oven.

Although much harder to machine (it is very brittle) Macor is to be preferred to Teflon as

at high temperatures Teflon outgases. The crystal resided inside the coffin between two

thin copper strips, which were used to apply up to 1000V across the crystal. The temper-

ature sensor was a 220 kΩ bead thermistor (RS 256-051) that was set deep into the oven,

it was not placed on or near the crystal. The design philosophy was to stabilise the core

temperature of the oven and let this stable environment provide the heat for the crystal.

The temperature controller design was adapted from that of Bradely et. al. [22] by

Alex Eades, Matthew Taubman, and this author. The controller is a parallel PID design,

that has as its input the thermistor as one arm of a resistance bridge. Small changes in

temperature lead to small resistance, and thus voltage, changes - this is the locking signal.

The accuracy of the circuit comes from the accurately known resistor values (ppm) in

the resistance bridge. The option of placing ppm resistors on a internal peltier board,

to stabilise their values and reduce long term drift, was designed into the system but

never implemented as the long term drift was found to be within tolerance. The output

was converted from a current push/pull stage of Bradley’s original design (necessary for

driving peltiers) to a simple current stage (“push vs pull” current is not meaningful w.r.t.

a resistor). Two 3.5 digit displays were used: one displayed the set point of the controller

(a.bc V), the other the error signal (cd.e mV). At the stable operating point for the thermal

locking loop the error signal read 00.0 mV, from this we inferred a stability of ±.05 mV,

or, reading from the thermistor chart, ±1mK.

The optical locking loops were all Pound-Drever (reflected beam) or modified Pound-

Drever (transmitted beam) schemes. As discussed earlier, the laser was phase modu-

lated directly at 27.650 MHz to provide the phase modulation for the modecleaner; the

MgO:LN crystal was modulated at 45.167 MHz to provide the phase modulation for the

monolithic cavity. In both cases the reflected (or occasionally transmitted beam) was

detected by a photodetector; the RF signal from this detector was mixed with the local

oscillator used to drive the original phase modulation; the output of the mixer was then

the locking signal. Both locking loops are shown in Fig. 5.1. We now consider the optical

locking loops separately.

The modecleaner locking signal was sent to a custom PID (MCPID, constructed by

Matthew Taubman [23]): this unit had very high gain at frequencies below 1 kHz, above

this the gain was steeply rolled off to avoid exciting the piezo resonances. The PID out-

put was split into low and high frequency components: the low frequency component
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Table 5.3: Amplifiers and signal generators.

Description Frequency Manufacturer Model No. Comments
[MHz]

HV amplifier DC – 0.002 David Cooper – 1 kV
ANU

power amplifier 0.25 – 150 Electronic 325LA 25 W
(thumper) Navigation Industries

power amplifier ISOMET RFA-1108 5 W
(bronze)

power amplifier Minicircuits ZHL-1A 1 W
(black)

power amplifier Q-BIT QB538
(black)

signal amplifier 0.01 – 500 MITEQ AU-1261 “low-noise”
(bronze)

signal amplifier 5 – 500 TRONTECH W500EF-AGC > 60dB gain
(silver)

signal 0.1 Hz - Goodwill GFG-8050 5 V
generator 2 MHz Instruments

signal 0.35 – 50 Tektronix 190B 10 V
generator

signal 30 – 100 National VP-8177A > 0.09 V
generator

signal 1 – 520 Wavetek 3000-200 1 V
generator

drove a 1000V amplifier that in turn drove the piezo that held the third modecleaner mir-

ror; the high frequency component was fed into the laser locking loop (of which, more

later). The modecleaner was a problematic beast to lock: due to its long perimeter and

separated mirrors it was very sensitive to vibration. The following mechanical adjust-

ments reduced, but by no means eliminated, this sensitivity. The mirrors were mounted

in commercial mirror holders that were in turn mounted on solid metal blocks. It was

found that stainless steel, as opposed to aluminium, blocks decreased the sensitivity of

the modecleaner to air-carried acoustic vibrations but increased the sensitivity to table-

carried vibrations. As the table was mechanically well insulated, this was an acceptable

trade-off. The spurious motion of the third mirror was damped by wedging the metal

mount between two rubber machine mounts that were themselves firmly attached to the

table. The piezo was mounted on a brass counter-weight, which improved the mechani-

cal resonances of the piezo/mirror assembly. Two separate series of these were observed:

4,8,12.. and 6,12,.. kHz. In future we advise experimenters to avoid this design: it is

worth exploring the Lutz Pickelmann design of sandwiching the mirror between two

oppositely wired piezos and preloading the mirror/piezo assembly.

By itself, the modecleaner could be locked solely with the low frequency PID output.

However once the monolithic cavity was also locked, the modecleaner was no longer

able to respond sufficiently and it was necessary to modulate the laser frequency so that

at high frequencies it tracked the narrow resonance of the modecleaner as well as the

considerably broader resonance of the monolith. This situation was plainly prone to
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conflict, and various noise signals due to this competition were clearly evident on the

noise spectra (see next chapter). If the MCPID and 1000V amplifier were replaced with

a higher slew rate combination that could cope with the frequency changes introduced

by the monolith locking loop then it would no longer be necessary to tie the two optical

locking loops together.

The monolith locking signal was fed into a PID controller (UNIPID, constructed by

Matthew Taubman [23]). The output of this was fed into another UNIPID which was used

to add the high frequency signal from the mode cleaner locking loop. The combined

output was fed into a laser controller (another Matt Taubman product [23]). The laser

controller supplied ±100V and ±50V to the fast and slow ports of the laser, respectively.

As the fast port was also used to phase modulate the laser, the fast locking and 27 MHZ

signals were added via a junction box, to prevent the locking signal from destroying the

signal generator.

The monolith and laser were locked together by changing the laser frequency. It is

in principle possible to instead alter the monolith resonance frequency via the piezoelec-

tric effect - this would then remove the competition between monolith and modecleaner

locking signals. However this is inadvisable as at high voltages and optical powers the

MgO:LN crystal becomes susceptible to photorefractive damage. It is also impossible in

practice as the high DC voltage and optical fields cause “charge screening”, i.e. positive

and negative charges within the crystal lattice migrate so that they cancel out the applied

DC field. In bulk MgO:LN this cannot be avoided, nor can it be sidestepped by increasing

the applied DC voltage, as this quickly reaches the dielectric breakdown value for LN.

Table 5.4: General RF components.

Description Frequency Manufacturer Model No. Comments
[MHz]

mixer 0.2–500 Minicircuits ZP-10514

splitter/combiner 5–500 Minicircuits ZFSC-2-1 0◦

splitter/combiner 1–500 Minicircuits ZFSCJ-2-1 180◦

adder/subtractor 5–1000 ANZAC H-1-4
(MA-COM)

RF switch 1–500 Minicircuits ZFSW-2-46 off:0V
on:−7V

attenuator, x dB DC–1500 Minicircuits CAT-x

variable attenuator RS Components: 610-506
Hatfield

switchable delay EG&G ORTEC DB463
line
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5.6 The detection systems

There were three quite separate components of the detection systems: the optical spec-

trum analysers, the photodetectors themselves, and the optical and electronic arrange-

ment of the balanced detectors.

The generated second harmonic was s-polarised and picked off the pump path with a

dichroic (technically a long wave pass optical filter, see Table 5.2). Some residual infrared

remained on the SH beam, so it was reflected into the visible detection system via another

dichroic, which attenuated the IR to a negligible amount. The reflected infrared was

extracted from the pump beam path via the Faraday isolator, and input directly into the

IR detection system.

5.6.1 Optical spectrum analysers

An optical spectrum analyser (OSA) is a scanning confocal optical cavity. In the ideal

limit an OSA is insensitive to alignment and mode mismatch: all the even higher order

spatial modes of the cavity are frequency degenerate with the TEM00, and all the odd

higher order spatial modes are frequency degenerate and located 1/2 FSR away from

the TEM00. If the cavity is reasonably well aligned the odd peak becomes very small and

only one large peak per FSR is observed as the cavity is scanned. Extra optical frequencies

clearly show up as additional peaks.

In our experiments the OSA’s were used to detect the presence of TROPO (see Chap-

ters 2 & 7). The OSA’s are not shown in Fig. 5.1: they were set-up so that they could

intercept some or all of the light from the balanced detection arms of the experiment.

Both OSA’s were standing wave cavities, and relatively narrow linewidth. The infrared

OSA was constructed in-house from two HR@1064nm, 15cm mirrors (FWHM< 500kHz);

the visible OSA was a commercial Tropel model (FWHM< 200kHz).

5.6.2 Photodetectors

In this thesis we sought to detect squeezing of both infrared and visible light on beams

ranging in power from 30 to 100 mW. In addition to handling relatively high optical

power, our detectors required high quantum efficiency (QE) and relatively high frequency

response (MHz to 10’s of MHZ). Singly each of these features is readily available with

commercial photodiodes, as are some combinations of two of these features (e.g. high

QE and power handling but poor frequency response; high frequency response and QE

but poor power handling; etc). However it is very difficult to find a commercial photodi-

ode that combines all three.

Quantum efficiency is critical in squeezing as loss quickly degrades the squeezing.

The QE of a single photodiode can be raised by a combination of the following: removing

the glass of the diode case; angling the diode to near Brewster’s angle for the diode

material; directing the light reflected from the diode back onto the diode with a curved

mirror (retroreflecting); AR coating the diode surface. All but the last were used in these

experiments 5. Until recently the workhorse photodiode for visible photodetection in

quantum optics has been the EG&G FND-100: we constructed a photodetector with this

photodiode and using the above techniques measured a maximum QE of 65 ± 2% at 532

5Owens et.al showed that the QE can also be increased by using a bounce detector arrangement, where a
second photodetector is used to detect light reflected from the first, and the photocurrents of the two detec-
tors are added. They report a maximum QE of 1.00 ± 0.01 at 830nm using Hamamatsu S1721 photodiodes.
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nm. (In the late 1980’s QE’s of 80% were reported [25]. However it appears that EG&G

changed their manufacturing process, and with FND-100’s purchased from 1992 onwards

the best measured figure has been 65%.) Care must be taken when retroreflecting: it was

found that optical feedback from the detectors could both initiate and alter the properties

of TROPO (see Chapters 2 & 7).

The quantum efficiency was calculated by measuring the DC optical power before

the detector (taking care not to over or under focus the beam, and to ensure that it was

consistently the same size) with a NIST traceable power detector; and measuring the DC

photocurrent drawn by the photodiode (by placing an ammeter in line with the photodi-

ode power supply). The quantum efficiency is calculated from:

QE =
nelectron
nphoton

=
hν

q

I

P
(5.11)

where I and P are the measured DC photocurrent and optical power, respectively.

Better QE’s are possible with Hamamatsu silicon photodiodes. We also constructed

photodetectors based around the Hamamatsu S1721, S1722, and S3590 photodiodes. Ta-

ble 5.5 summarises the results. These are the DC quantum efficiencies (of which more

later).

Table 5.5: Photodiodes. For the visible photodiodes the quantum efficiency (QE) was measured

when the photodiode was driven at 30V. * = measurement taken with glass left in place.

Photodiode Material QE w/o optimised Max. Comments
glass QE power

EG&G silicon 46% 65% < 50mW @ 532 nm
FND-100 Φ = 2.54mm

Hamamatsu silicon 74% 91% < 50mW @ 532 nm
S1721 Φ = 2.54mm

Hamamatsu silicon 63% – < 50mW @ 532 nm
S1722 Φ = 4.1mm

Hamamatsu silicon 85% 88% < 100mW @ 532 nm
S3590 10 × 10mm

EG&G InGaAs 75%∗ 80% < 50mW @ 1064 nm
C30641G area= 1mm2

EG&G InGaAs 64%∗ – < 50mW @ 1064 nm
C30642G area= 2mm2

The photodetectors in this thesis were built around the dual DC/AC circuit designed

by Mal Gray [24]. The basic design is as shown in Fig. 5.5. The DC output has a low-pass

filter frequency corner of ≈ 160kHz. The AC output was amplified by low noise mono-

lithic RF amplifier (variously a Minicircuits MAR-6 or Hewlett Packard MIMIC,INA-

01170). The coupling capacitor and amplifier effectively act as a high pass filter, this

combined with the inductor, resistor, and capacitor combination between the photodiode

and ground (which causes a zero in the frequency response) allowed rolling off and sig-

nificant suppression of the resonant relaxation oscillation (RRO). This was necessary to

avoid saturation of the RF amplifier.

Squeezing has been detected in experiments for over a decade. Yet it is only recently

that the problem of measuring the noise of high power optical beams near the quantum
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Figure 5.5: Photodetector circuit. PD = photodiode (EG&G FND100 or Hamamatsu S1721, S1722,

or S3590). A1 = Minicircuits MAR6 or Hewlett Packard MIMIC INA-01170. D1 = D2 = 1n4007

diode. R1 = 680Ω (for MAR6) or 250Ω (for INA-01170); R2 = 100Ω; R3 = 1.1kΩ; R5 = 20kΩ poten-

tiometer; R6 = 1.1kΩ; R7 = 100kΩ. C1 = 1nF; C2 = 1 or 10 nF; C3 = 0.1µF; C4 = 10nF; C5 = 22µF;

C6 = C7 = 1nF. L1 = L2 = 10µH; L3 = L4 = 1µH.

limit at RF frequencies has begun to be addressed. Currently, there is no widely accepted

model for the behaviour of pin photodiodes in this limit (high power, high frequency,

near QNL): this would not matter if the DC and AC responses were similarly behaved,

but as the following observations show, they are not. The observations are not due to

quirks in the design of the AC section of the photodetector circuit - excepting the photo-

diode this is easily modelled and understood - they are due to the photodiode itself.

The RF noise power varies as a function of the beam diameter. Obviously if the beam

is underfocussed (diameter larger than photosensitive area) then not all the light is cap-

tured by the detector: both the AC (RF power) and DC (quantum efficiency) responses

decrease. However if the beam is overfocussed (diameter somewhat smaller than pho-

tosensitive area), the AC and DC responses are longer the same: the RF power can drop

significantly, yet no change is observed in the DC current. The effect is power depen-

dent: no AC saturation is observed at low powers with a given diameter; yet at higher

optical powers significant AC saturation is observed. It is necessary to increase the beam

diameter to recover the AC response. Clearly the AC response is clearly dependent on

the optical power density, and a a consequence there exists an optimum beam size for

photodetection (between the under- and over- focussing diameters). The FND-100 was

reasonably tolerant with respect to this behaviour; the S-1721 was not, it had a very nar-

row range of waists where the RF power was maximised.

At high optical powers, increasing the reverse bias voltage can vastly improve the

AC response of the photodiode, whilst again changing the DC response only minimally.

It is as if a certain amount of electrical power is required to respond at RF frequencies,

and if this power is not supplied then the RF response is severely attenuated. When

taking suqeezing data, all the visible photodiodes in this thesis were run with a reverse

bias voltage of at least 50V, below this the RF response was notably attenuated for high

(> 20 − 30 mW) optical powers. Once again, the S1721 showed greater sensitivity to this
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effect than the FND100.

Thermal effects also affect the AC response. When the photodiode can was not well

heatsunk (it was free standing in air), increasing the incident optical power consistently

caused the AC response to increase for FND100 photodiodes and decrease for S1721 pho-

todiodes. To avoid these thermal effects, the photodetectors were constructed so that the

photodiode cans were snugly and firmly in contact with either brass or copper heat sinks.

A slight thermal effect could still be observed with the brass heatsinks, none at all with

the copper.

Despite awareness of, and care taken to avoid, the above phenomena, the AC re-

sponse of the high power and quantum efficiency photodiodes is still not fully under-

stood. For example, for a 30mW 532 nm beam 1.7 dB of squeezing was measured using

the FND100 photodetectors (see next chapter); using the measured DC quantum effi-

ciency of 65% we inferred 3 dB of actual squeezing (which was very consistent with the

theoretical predictions, see Chapter 6). Using the S1721 photodetectors to measure the

same beam, 2.1 dB of squeezing is observed; however from the measured DC quantum

efficiency of 91% we inferred only 2.4 dB of squeezing. Given that the S1721 was observed

to be more susceptible to affects that change the AC response, we suggest the following.

There exists an effective AC quantum efficiency for photodetection. Ideally this is the

same as the DC value, but it may be degraded from it by a variety of phenomena (power

density saturation, insufficient reverse bias, thermal effects). In this specific instance the

S1721 AC quantum efficiency would appear to be 77%, as opposed to 91%. (We do not

consider the alternative, adjusting the AC response of the FND100, for two reasons: the

FND100 was observed to be much less sensitive to AC effects than the S1721; the ob-

served output from the FND100 agrees with theoretical predictions for the measured and

inferred cavity parameters, the S1721 output does not.)

It is not clear why the S1721 response is so degraded in this instance. One possible ex-

planation is immediately obvious (there may be others). The over- and under- focussing

regions may begin to overlap as the incident optical power is increased. Thus, it is not

possible to make the beam any larger as not all of it will be captured, yet even for the

maximum beam size there will be some saturation due to the overfocussing effect. If this

is true then the observed AC response should appear to decrease with increasing optical

power. Considering the physical mechanism of photodetection, it may not be the actual

optical power that causes the overfocussing effect, but the amount of photocurrent. The

problem is no doubt exacerbated by turning the photodiodes to increase the DC quan-

tum efficiency, for circular beams this transforms the incident light to an ellipse. To avoid

this experiments are planned using a D-lens which will ensure the beam is circular (min-

imum power density) for the turned photodiodes [26]: further work is also required to

understand the relationship between these phenomena. Given these results, the visible

squeezing results presented in this thesis are those taken using the FND100 based pho-

todetectors.

5.6.3 Balanced detectors

As discussed in section 3.4.5, balanced detection requires a 50/50 beamsplitter. In prac-

tice commercial nonpolarising beamsplitters are rarely 50/50, varying by up to 5%. Ac-

cordingly we did not use a nonpolarising beam splitter, instead using various λ/2 plate

and polarising beam splitter combinations. For the infrared detector the two output

beams were at right angles to one another and orthogonally polarised: as the individ-

ual detectors were not turned to Brewster’s angle the different polarisations were not
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troublesome. For the visible balanced detector the lowest loss solution was found to be a

beamsplitter, nominally coated for 543nm, turned so that the two output beams were sep-

arated by ≈ 110◦, the polarisations were somewhat different, so care was needed when

optimising the quantum efficiency via turning the photodetectors to Brewster’s angle.

For both the infrared and visible cases the AC outputs of the two individual pho-

todetectors were sent to an an adder/subtractor (see Table 5.4). The two outputs of

the adder/subtractor were connected to an electronic switch, the output of which was

sent to a HP-8568B signal analyser. This enabled quick switching between the added

and subtracted signals without physically disconnecting cables. All cables were carefully

matched for length. In practice the observed spectra from the individual photodetectors

had slightly different frequency dependencies (i.e. shapes). By varying the retroreflec-

tion, angle tuning, and optical balance, it was possible to accurately balance the two

photodetectors over limited frequency ranges, as the situation demanded. For example,

better than 40 dB cancellation between 8–12 MHz with lesser cancellation, < 20dB, at 45

MHz. In the high cancellation frequency regimes, the detectors were balanced to within

0.1 dB.

It was occasionally necessary to split the photodetector signal, normally between the

photodetector and adder/subtractor, to obtain a locking signal or to obtain a signal for

feedback/feedforward measurements [23, 27]. If this is done, it is vitally important that the

splitters are correctly balanced and isolated. Otherwise misleading results can be obtained:

for example, the output of the adder/subtractor changes if one of the splitter outputs, be-

fore the adder/subtractor, is not terminated, or drives a poorly impedance matched load.

(This is fairly normal behaviour for RF components.) To avoid any such problems, we

systematically placed amplifiers, which incidentally act as RF amplifiers, on all splitter

outputs.
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Chapter 6

Squeezing in SHG

This is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.

Winston Churchill

As discussed in Chapter 4, in the early to mid 80’s there was a considerable body of the-

oretical literature that indicated SHG was a suitable source of squeezed light. With this

in mind, the first demonstration of SHG squeezing was made by Pereira et. al in 1988 [1].

They used a LiNBO3 crystal in a doubly resonant, external mirror, standing wave cavity,

and observed transient (10 ms) squeezing of 13%/-0.6 dB on a < 10mW reflected funda-

mental beam. Their experiment was chiefly limited by dispersion, i.e. the tendency for

the fundamental and second harmonic waves to get out of phase with one another due to

air/crystal interfaces and the mirror coatings. The interface problem was elegantly over-

come in the experiment of Sizmann et. al [2]. By using a doubly resonant monolithic cavity

they were able to observe transient (ms) squeezing of 19%/-0.9 dB on a 100 µW second

harmonic beam. The clever use of monolithic technology attracted widespread attention.

Using this technology Kürz et. al were eventually able to observe, for up to 10 s at a

time, 52%/-3.2 dB squeezing on a 3.2 mW reflected fundamental beam [3]. In all of these

experiments the observed squeezing was much less than that expected from theory, even

after correction for nonperfect quantum efficiency and electronic noise. This degradation

was attributed to the problem of maintaining double resonance, i.e actively stabilising

both the fundamental and second harmonic cavities. Technical difficulties with this lim-

ited both the achievable nonlinearity and the length of time which squeezing could be

produced.

Prompted by these difficulties, the theory was reexamined by Collett and Paschotta.

They found that double resonance was not necessary to produce squeezing, and pre-

dicted second harmonic squeezing from a singly resonant cavity. In 1994 Paschotta et. al

used a singly resonant monolith that only needed to be locked at the fundamental. Stable

squeezing of 20%/-0.94 dB was observed on a ' 30mW second harmonic beam [4]. After

correction for detection efficiency and electronic noise the observed squeezing was sig-

nificantly less than the predicted value of -2.2 dB. This was attributed to either laser noise

or a thermal effect, as a strong power bistability, thought to be due to thermal problems,

was observed for high pump powers.

In 1995 Ralph et. al [5] observed 13%/-0.6 dB second harmonic squeezing and iden-

tified laser noise as one source of squeezing degradation. By accurately modelling the

driving laser they obtained excellent agreement between theory and experiment for their

system. However their model was developed using the Schrödinger approach (see Chap-

ter 4) and was thus computationally laborious and not very intuitive. In the same year

Tsuchida [6] observed -2.4 dB second harmonic squeezing but again agreement between

theory (-3.0 dB) and experiment was poor.

The other SHG system that holds great promise as a source of bright strongly squeezed

light is travelling wave SHG. In 1993 Li & Kumar predicted that amplitude squeezing of

both the fundamental (100%) and the second harmonic (50%) was possible for single pass

109
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Table 6.1: Experiments in squeezing via SHG

Paper Observed Power λ Obs. Agrees
squeezing (mW) (nm) time with

theory

Cavity systems:
doubly resonant

1988 Pereira et. al 13%/-0.6 dB < 10 1064 10 ms No
1990 Sizmann et. al 19%/-0.9 dB 0.100 532 1 ms No
1993 Kürz et. al 52%/-3.2 dB 3.2 1064 10 s No

singly resonant
1994 Paschotta et. al 20%/-0.94 dB ' 30 532 stable No
1995 Ralph et. al 13%/-0.6 dB 30 532 stable Yes
1995 Tsuchida et. al 42%/-2.4 dB 64 431 stable No
1996 White et. al 30%/-1.7 dB 34 532 stable Yes

Travelling wave:
1996 Youn et. al. 6%/-0.3 dB 0.10av 532 n.a. No

SHG. The phase matched case is particularly simple, with the prediction of fundamental

amplitude squeezing of VX1(0) = 1 − η where η is the nonlinear conversion parameter.

In 1996 Youn et. al [7] observed a modest 7%/-0.3 dB for pulsed travelling wave SHG:

again, agreement between theory and experiment was poor.

In this chapter we examine the squeezing produced by singly resonant SHG. The re-

sults in this chapter were published in 1996 [8]. In the first section we derive the nonlinear

interaction terms and the quantum noise characteristics via the Heisenberg approach. In

the second section we introduce the concept of a “modular” approach to noise propa-

gation in quantum optics systems, with particular reference to the experimental system

presented in the last chapter. In the third section we present and compare the experimen-

tal and theoretical results. We find excellent agreement between theory and experiment.

In the last section we briefly discuss the future of squeezing via SHG.

6.1 Quantum theory of the frequency doubler

The classical models of frequency doubling presented in Chapter 2 did not consider the

noise properties of the light. In this section we use the Heisenberg approach to derive the

noise properties of frequency doubled systems.

6.1.1 Deriving the interaction terms

The beauty of starting from the Hamiltonian is that derivation of the equations of motion

is straightforward. In Chapter 3 we derived from the Hamiltonian the decay and cou-

pling terms for the equations of motion. We now derive the nonlinear interaction terms.

(Compare this with derivation with that of Chapter 2 where deriving the nonlinear inter-

action terms was an involved process that required particular care with scaling so as to

fulfill energy conservation.)
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Consider the interaction Hamiltonian for SHG/DOPO:

H = ih̄
κ

2
(a†21a3 − a2

1a
†
3) (6.1)

Using eqn 3.57 we can obtain the interaction terms for the degenerate equations of motion

for a second order system. For the low frequency mode (known as the fundamental or

subharmonic for SHG/DOPO respectively):

ih̄ȧ1 = ih̄
κ

2
(a1a

†2
1a3 − a1a

2
1a

†
3 − a†21a3a1 + a3

1a
†
3) (6.2)

The second and fourth terms cancel. Repeatedly applying the commutator relation gives:

ȧ1 =
κ

2
(a1a

†2
1 − a†21a1)a3

=
κ

2
(a1a

†2
1 − a†1(1 + a1a

†
1))a3

=
κ

2
(a1a

†2
1 − a†1 − (1 + a1a

†
1)a

†
1)a3

=
κ

2
(−a†1 − a†1)a3

= −κa†1a3 (6.3)

Similarly for the high frequency mode (known as the second harmonic or pump for

SHG/DOPO respectively):

ȧ3 =
κ

2
(a3a

†2
1a3 − a3a

2
1a

†
3 − a†21a3a3 + a2

1a
†
3a3)

=
κ

2
(a2

1a
†
3a3 − a3a

2
1a

†
3)

= +
κ

2
a2
1 (6.4)

Note the factor of half in the high frequency mode. This was not at all obvious in the

classical derivation.

Similarly derivation of the interaction terms for the nondegenerate equations of mo-

tion is straightforward. The interaction Hamiltonian for SFG/NDOPO is:

H = ih̄
κ

2
(a†1a

†
2a3 − a1a2a

†
3) (6.5)

The interaction term for the signal equation of motion is thus:

ȧ1 = −κ
2
(a†1a

†
2a3a1 − a1a2a

†
3a1 − a1a

†
1a

†
2a3 + a1a1a2a

†
3)

= −κ
2
(a†1a1 − a1a

†
1)a

†
2a3

= −κ
2
a†2a3 (6.6)

And similarly for the idler equation of motion:

ȧ2 = −κ
2
a†1a3 (6.7)
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Whilst for the pump equation of motion:

ȧ3 = +
κ

2
(a3a

†
1a

†
2a3 − a3a1a2a

†
3 − a†1a

†
2a

2
3 + a1a2a

†
3a3)

= +
κ

2
a1a2(a

†
3a3 − a3a

†
3)

= +
κ

2
a1a2 (6.8)

For the remainder of this section we consider only the degenerate equations of motion.

However our calculational methods can be easily extended to the nondegenerate case.

6.1.2 Quantum noise of the singly resonant doubler

ω
in1

2 ωin3

out3

out1

in2

out2

Figure 6.1: Schematic of singly resonant doubler. in1 = fundamental power coupling input, in2 =

fundamental transmission and loss input, in3 = second harmonic vacuum input.

Using the interaction terms derived in the last section, we can write the equations of

motion for SHG/OPO as:

˙̂a1 = −(γ1 + i∆1)â1 + κâ†1â2 +
√

2γc1Â
in1
1 +

√

2γ`1Â
in2
1

˙̂a3 = −(γ3 + i∆3)â3 − κ/2â2
1 +

√

2γ3Â
in3
2 (6.9)

where we have explicitly set the low frequency mode to have non-perfect escape effi-

ciency, η = γc1/γ1. As Fig. 6.1 shows, we consider a standing wave cavity where the two

inputs (coupling and combined transmission and loss) for the low frequency mode are

labelled in1 & in2, and the input for the high frequency mode is labelled in3. For singly

resonant SHG, we can set ∆3 = 0 (see section 2.5.3). Adiabatically eliminating the second

harmonic (see section 2.2.3) we obtain:

â3 = − κ

2γ3
â2
1 +

√

2

γ3
Âin3

2 (6.10)

Substituting this into eqn 6.9:

˙̂a1 = −(γ1 + i∆1)â1 − µâ†1â1â1 + 2
√
µâ†1Â

in3
3 +

√

2γc1Â
in1
1 +

√

2γ`1Â
in2
1 (6.11)

where µ = κ2/(2γ2). Linearising (see sections 3.1.5 & 3.3.2) we obtain the fluctuation

equation of motion:

δ̇â1 = −(γ1 + i∆1)δâ1 − µ(2|α1|2δâ1 + α2
1δâ

†
1) + 2

√
µ(Ain3

3 δâ†1 + α∗
1δÂ

in3
3 )

+
√

2γc1Â
in1
1 +

√

2γ`1Â
in2
1 (6.12)
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Recalling that for SHG, A3 = 0, the quadrature fluctuation equations of motion for the

fundamental are (see section 3.1.3):

δ
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µ
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µ

2

[

α2
1 + α∗ 2

1

]

)δX̂2 − (∆1 − i
µ

2
)
[

α2
1 − α∗ 2

1

]

)δX̂1

+
√
µ(α1 + α∗

1)δX̂2
in3 − i

√
µ(α1 − α∗

1)δX̂1
in3

+
√

2γc1δX̂2
in1 +

√

2γ`1δX̂2
in2 (6.13)

Fourier transforming (see section 3.3.3) this becomes:

δX̃1 =
√

2γc1δX̃1
in1 +

√

2γ`1δX̃1
in2 +

√
µ(α1 + α∗

1)δX̃1
in3

−i√µ(α1 − α∗
1)δX̃2

in3 + (∆1 + i
µ

2
)
[

α2
1 − α∗ 2

1

]

δX̃2

γ1 + 2µ|α1|2 + µ/2(α2
1 + α∗ 2

1 ) − iω

δX̃2 =
√

2γc1δX̃2
in1 +

√

2γ`1δX̃2
in2 +

√
µ(α1 + α∗

1)δX̃2
in3

−i√µ(α1 − α∗
1)δX̃1

in3 − (∆1 − i
µ

2
)
[

α2
1 − α∗ 2

1

]

δX̃1

γ1 + 2µ|α1|2 − µ/2(α2
1 + α∗ 2

1 ) − iω (6.14)

Eliminating the cross terms we obtain the expression:

δX̃i =
Ci(Dj + Ej) + Fj(Di + Ei)

FiFj − CiCj
(6.15)

where the subscripts i = 1, 2 and j = 2, 1 denote the quadrature and its complement; Ci
is the coupling term,

Ci = ±(∆ ± i
µ

2

[

α2
1 − α∗ 2

1

]

); (6.16)

The “+” sign is used for Ci; the “−” sign for Cj . Di is the fundamental noise input term,

Di =
√

2γc1δX̃
in1
i +

√

γ`1δX̃
in2
i ; (6.17)

Ei is the second harmonic noise input term,

Ei = +
√
µ(α1 + α∗

1)δX̃
in3
i ± i

√
µ(α∗

1 − α1)δX̃
in3
i ; (6.18)

and Fi is the nonlinear loss term,

Fi = γ1 + 2µ|α1|2 ±
µ

2
(α2

1 + α∗ 2
1 ) − iω (6.19)

Consider the quadrature fluctuations δX̃i. Detuning couples to δX̃i the complementary

quadrature fluctuations from both the fundamental and second harmonic noise inputs,
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Ci(Dj + Ej). As a general rule, extra sources of vacuum noise are to be avoided, as

they introduce, extra uncorrelated noise and this tends to decrease the squeezing. Fur-

ther, increasing the detuning increases the effective decay rate (see section 2.2.3) which

decreases the field α1 and thus the nonlinear interaction term, µ|α1|2. Thus the overall

effect of detuning is to introduce additional noise and a weaker nonlinearity: the squeez-

ing degrades. For zero detuning, ∆ = 0, α = α∗ & Ci = 0, and |α2
1| is a maximum: the

squeezing is optimal.

Now consider the boundary conditions for SHG in the singly resonant case. For the

reflected fundamental and the generated second harmonic these are (see eqns 2.32 &

2.36):

Âout1
1 =

√

2γc1â1 − Âin1
1

Âout3
3 =

√
µâ2

1 − Âin3
1 (6.20)

Linearising and Fourier transforming, we obtain:

δX̃
out1
i =

√

2γc1X̃i − X̃
in1
i

δX̃
out3
i =

√
µ
[

δX̃i(α1 + α∗
1) ± iδX̃i(α1 − α∗

1)
]

− δX̃
in3
i (6.21)

For zero detuning the fluctuations in the reflected fundamental and generated second

harmonic fields are:

δX̃
out1
i =

√

2γc1

[

Di + Ei
Fi

]

− δX̃
in1
i

δX̃
out3
i = 2α1

√
µ

[

Di +Ei
Fi

]

− δX̃
in3
i (6.22)

Using eqns 6.16-6.19, we take the self correlations (see section 3.3.5) to obtain the noise

spectrum for the reflected fundamental 1:

V out1
Xi

(ω) =

[

(

2γc1 − γ1 −
[

3
1

]

µα2
1

)2
+ ω2

]

V in1
Xi

(ω)

+4γc1

[

γ`1V
in2
Xi

(ω) + 2µα2
1V

in3
Xi

(ω)
]

(

γ1 +
[

3
1

]

µα2
1

)2
+ ω2

= V in1
Xi

(ω) +
[

γ`1V
in2
Xi

(ω) + 2µα2
1V

in3
Xi

(ω)
]

−
(

γ`1 +
[

3
1

]

µα2
1

)

V in1
Xi

(ω)

4γc1
(

γ1 +
[

3
1

]

µα2
1

)2
+ ω2 (6.23)

and the noise spectrum for the generated second harmonic:

V out3
Xi

(ω) =
8µα2

1

[

γc1V
in1
Xi

(ω)γ`1V
in2
Xi

(ω)
]

+
[

([

1
3

]

µα2
1 − γ1

)2
+ ω2

]

V in3
Xi

(ω)
(

γ1 +
[

3
1

]

µα2
1

)2
+ ω2

1The term
[

3
1

]

is not a vector. It is shorthand to remind the reader to either multiply by “3” for the

amplitude quadrature Xi, or to multiply by “1” for the phase quadrature Xj .
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= V in3
Xi

(ω) +

8µα2
1

[

γc1V
in1
Xi

(ω)γ`1V
in2
Xi

(ω)
]

− (γ1 ± µα2
1)V

in3
Xi

(ω)
(

γ1 +
[

3
1

]

µα2
1

)2
+ ω2

(6.24)

The ports in2 & in3 are vacuum inputs, so V in2
Xi

(ω) = V in3
Xi

(ω) = 1. Eqns 6.23 & 6.24

simplify to:

V out1
Xi

(ω) = 1 − 4γc1
(V in1

Xi
(ω) − 1)

(

γ`1 +
[

3
1

]

µα2
1

)

± µα2
1

(

γ1 +
[

3
1

]

µα2
1

)2
+ ω2

V out3
Xi

(ω) = 1 + 8µα2
1

γc1(V
in1
Xi

(ω) − 1) ∓ µα2
1

(

γ1 +
[

3
1

]

µα2
1

)2
+ ω2

(6.25)

The intuitive explanation for this squeezing is given in 4.3.1.

6.1.3 Squeezing limits

It can be seen from eqns 6.25 that both the reflected fundamental and the generated sec-

ond harmonic can be squeezed. To find the optimum possible squeezing, consider the

case of perfect coupling efficiency, γc1 = γ1, and quantum noise limited input V in1
Xi

= 1.

At high frequencies, ω → ∞, both the reflected fundamental and generated second

harmonic are quantum noise limited in all quadratures and thus minimum uncertainty

states:

V out1
X1

(∞) = V out1
X2

(∞) = 1

V out3
X1

(∞) = V out3
X2

(∞) = 1 (6.26)

The maximum possible second harmonic squeezing occurs at zero frequency, ω = 0, and

infinite nonlinear interaction, µα2
1 → ∞. The reflected fundamental is quantum noise

limited. Both fields are minimum uncertainty states:

V out1
X1

(0) = 1 V out1
X2

(0) = 1

V out3
X1

(0) =
1

9
V out3

X2
(0) = 9 (6.27)

The maximum possible fundamental squeezing occurs at zero frequency, ω = 0, and

finite nonlinear interaction, µα2
1 = γ1. As this is the impedance matching point for the

cavity (as γc1 = γ1) the reflected field is a mildly squeezed vacuum2, the second harmonic

is somewhat squeezed. Neither field is a minimum uncertainty state, as VX1VX2 = 7/6:

V out1
X1

(0) =
2

3
V out1

X2
(0) =

7

4

V out3
X1

(0) =
7

9
V out3

X2
(0) =

3

2
(6.28)

2In 1991 Sizmann et. al. [10] proposed producing a strongly squeezed vacuum from the impedance
matched reflection of a doubly resonant SHG cavity. In practice, the observed vacuum squeezing in both
cases will be degraded by the non-modematched portion of the pump beam.
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All these limits are for the ideal case. In practical systems the squeezing will be less as

γc1 = γ is unobtainable and most seriously, VX1 = 1 only at high frequencies. In practical

lasers VX1 � 1 as the detection frequency nears zero. As we shall see, this driving noise

can totally obscure the squeezing.

6.2 Transfer of noise: a modular approach

A critical but often overlooked characteristic of quantum optics experiments is their sen-

sitivity to source noise and its effect throughout the experiment. This has implications

both for practical applications, where source noise is endemic, and for modelling, which

most often assumes a coherent, and thus quantum noise limited at all frequencies, source.

The best known example of a system insensitive to source noise is the squeezed vac-

uum produced by optical parametric oscillation. By assuming the source is a coherent

state, excellent agreement has been obtained between theory and experiment [11]. This

is not the case for bright squeezing produced by processes such as Kerr interactions, rate

matched lasers, or second harmonic generation. In such processes the statistics of the

source beam carry over to the output beam. If the source beam is modelled as a coherent

state for experiments where the source has intrinsic excess noise, the agreement between

theory and experiment is quite poor [4] [6].

The development of the cascaded quantum formalism [12] allowed the noise char-

acteristics of the source to be fully modelled and propagated via a master equation ap-

proach. The formalism was first tested for the case of squeezed light produced by second

harmonic generation [5]. As Fig. 6.2 (a) shows, the system was modelled as a second har-

monic generator driven by a solid state laser, which in turn was pumped by a coherent

state. As is clear from Chapter 4, the cascaded formalism does not lend itself to analytical

solutions, making physical interpretation of the theory difficult [13].

The noise spectra derived in this Chapter and Chapter 3 are effectively transfer func-

tions: they alter an input function, V in(ω), to an output function, V out(ω). Such a transfer

function can be derived for any quadrature of any linearisable optical element, be it ac-

tive or passive, linear or nonlinear. This allows any optical element to be treated as a

standalone module. Complex optical systems are modelled by simply combining these

modules, and looking at the final output.

In Fig. 6.2 (b) we show the conceptual layout of the SHG squeezing experiment. The

second harmonic generator is driven by a laser of frequency ν1 and produces amplitude

quadrature squeezed light of frequency 2ν1. The driving laser, which is in turn pumped

by a diode laser array, has intrinsic amplitude noise, which masks the squeezing at low

frequencies. To improve the squeezing, the driving laser is passed through a narrow

linewidth mode cleaning cavity, which reduces the linewidth of the amplitude noise.

The system is particularly simple in that the transfer of noise is one way only, and it is

not necessary to model the effects of optical feedback for any of the modules. The transfer

function for the second harmonic generator is given by the second equation in eqns 6.25;

that of the mode cleaning cavity is given by the second equation in eqns 3.81; and that of

the laser is given in the next section, in eqn 6.32. Combining these three equations to give

the output spectrum of the system is straightforward. Furthermore, modelling removal

of the mode cleaner is trivial: the term V out
las is used instead of V out

cav as the input term

V in1
X1

in eqn 6.25; and the parameter representing the power driving the second harmonic

generator is adjusted. All other parameters remain fixed. Compare this to Schrödinger

approach as given in [5, 9], which requires laborious numerical calculations.
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2 ν1

2 ν1

ν1ν1

ν1

V    (ω) = 1las
in

V     (ω)V    (ω)

diode
lasers

mode
cleaner

solid
state
laser

solid
state
laser

SHG

SHG

a)

b)

las
out

SHG
out

V     (ω)SHG
out

V    (ω)las
out V    (ω)mc

out
V    (ω)las

in

analytical expressions for V(ω)

numerical calculations (10 x 10 matrices) for V(ω)

Figure 6.2: Conceptual layout. a) is the system of [5]. A second harmonic generator is driven by

a coherently pumped laser of frequency ν1 and produces amplitude quadrature squeezed light

of frequency 2ν1. Predictions are obtained via numerical calculation of large matrices. b) is the

system presented in this chapter. To accurately reflect the experimental situation the solid state

laser is modelled with a noisy diode laser pump. The solid state laser has intrinsic amplitude

noise which masks the squeezing at low frequencies: to improve the squeezing, the laser can

be passed through a narrow linewidth mode cleaning cavity which reduces the linewidth of the

amplitude noise. Analytical spectra are presented for each stage of the experiment.

6.2.1 The laser model

A comprehensive quantum model of a Nd:YAG laser, including its transfer function, is

given in [14]. In this section we briefly review the results applicable to our experiment.

As shown in Fig. 6.3 the Nd:YAG laser is a four level system. As level 4 decays very

rapidly with respect to the other three levels it can be adiabatically eliminated, allowing

the laser to be modelled as a three level system. The equations of motion for the system

are then:

α̇′
las =

G

2
(J ′

3 − J ′
2)α

′2
las − γlasα

′2
las

J̇ ′
2 = G(J ′

3 − J ′
2)α

′2
las + γ32J

′
3 − γ21J

′
2

J̇ ′
3 = −G(J ′

3 − J ′
2)α

′2
las − γ32J

′
3 + ΓJ ′

1

N = J1 + J2 + J3 (6.29)

where G is the stimulated emission rate, G = σsρc
′; σs is the stimulated cross section for

the Nd:YAG laser; ρ is the density of the Nd atoms in the YAG crystal; c′ is the speed

of light in the laser medium; γ32 and γ21 are the spontaneous emission rates from levels

|3〉 to |2〉, and |2〉 to |1〉, respectively; Γ is the rate of incoherent pumping of the lasing

transition; γlas1 and γlas2 are the cavity decay rates for the output mirror and all other

losses, respectively; γlas = γlas1 + γlas2 is the total cavity decay rate; α′
las and J ′

i are the

semiclassical solutions for the laser mode and atomic populations, respectively; and N is

the number of active atoms. To aid calculation, the equations of motion are scaled by N,
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i.e.:

αlas =
α′
las√
N
, Ji =

J ′
i

N
(6.30)

The steady state solutions are:

α =

√

J2(γ21 − γ32)

2γlas
J1 =

γ21J2

Γ

J2 =
1 − 2γlas/G

γ21/Γ + 2
J3 = J2 +

2γlas
G

(6.31)

The amplitude quadrature output spectrum, V out
las is:

V out
las = 1 +

(2γlas1)
2[ω2 + (Gα2

las + γ32 + Γ)2] − 8γlas1γlasGα
2
las(Gα

2
las + γ32 + Γ)

+2γlas1G
2α2

las(ΓJ1V
in
las + γ32J3) + 2γlas1G[(γ32 + Γ)2 + ω2](J3 + J2)

+4γlas1γlas2[(Gα
2
las + γ32 + Γ)2 + ω2]

(2Gα2
lasγlas − ω2)2 + ω2(Gα2

las + γ32 + Γ)2 (6.32)

where ω is the detection frequency and V in
las is the amplitude quadrature spectrum of the

diode laser array field that pumps the Nd:YAG laser. As can be seen from the denomina-

tor of eqn 6.32 there is a resonance in the spectrum at the frequency ω2
RRO = 2Gα2

lasγlas. If

this resonance is underdamped, 2Gα2
lasγlas > (Gα2

las + γ32 + Γ)2, then a strong resonance

appears at ωRRO, known as the resonant relaxation oscillation (RRO). The RRO can be

considered as an oscillation between photons stored in the lasing medium and photons

stored in the laser mode. Below ωRRO the spectrum is dominated by pump noise (the

noise of the diode laser array) and quantum noise from the spontaneous emission and

phase decay of the coherence. Above ωRRO these noises roll off due to the filtering effect

of the lasing cavity, so that at high frequencies the laser approaches the quantum noise

limit. It is the tail of the large noise feature due to the RRO that we wish to attenuate with

the mode cleaning cavity.

4

3

2

1

γ14

Γ

γ34

γ23

γ12

lasing

Figure 6.3: Laser level scheme. The fourth level decays very rapidly, and so can be adiabatically

eliminated. Lasing occurs between levels three and two.
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6.3 The experiment

6.3.1 The laser

The values for the material parameters of Nd:YAG can be found in the existing literature:

σs = 6.5× 10−23m2; ρ = 1.38× 1026atoms.m−3; c′ = 1.640× 108m.s−1; γ32 = 4.3× 103s−1;

γ21 = 3.3×107s−1 [15, p. 49]; thusG = 1.47×1012s−1. The Lightwave laser is most similar

to that produced by Lazer Zentrum Hannover: the latter has a perimeter of p = 28.5

mm; an input coupler reflectivity of R = 96.8%; and internal round trip losses of 1.6%

[16]. We use these parameters to model the Lightwave. Using equation 2.22 we find

γlas1 = 9.28×107s−1 & γlas = 1.39×108s−1. Γ is the only fit parameter required; its value

is determined by fitting the frequency of the predicted RRO to that of the experimentally

observed RRO. The latter for our laser is 542 kHz, and so Γ = 8.703s−1. The diode

laser arrays used to pump the Nd:YAG laser suffer large, very broadband, amplitude

noise. We model the diode laser spectrum as white noise 52 dB above shot noise, i.e.

V in
las(ω) ' 160000. This is consistent with the directly measured noise power for diode

arrays [19].

The Lightwave 122 has an internal noise-eater, i.e. an optoelectronic feedback circuit

that reduces the peak power of the RRO. Unfortunately the noise-eater significantly in-

creases the noise in frequency regime that we desire to be quantum noise limited. Ac-

cordingly all data in this thesis have been taken with the noise-eater turned off.

The experimental noise spectra were obtained by examining the photocurrent with

a Hewlett Packard spectrum analyser (HP-8568B). Despite its name, this instrument is

actually a signal analyser: incoming photocurrent is digitally processed on the assump-

tion that the input is made up of sinusoidal signals. Thus whilst the absolute power for

large signals is correctly displayed, stochastic noise (such as the quantum noise floor) is

displayed at powers 2 dB lower than the true power [18, p. 33] [17, p. 26]. For large sig-

nals, the signal to noise measurements must be corrected by 2 dB; for signals of the same

power as the noise (nominal SNR = 1) the correction is 0.4 dB.

Although discussed in Hewlett-Packard’s technical literature, this discrepancy is not

at all widely appreciated in the quantum optics community. For experiments that look

at the relationship between two similar noise spectra, such as squeezing experiments,

the analyser behaviour can be ignored as it equally affects both spectra. However the

analyser behaviour cannot be ignored when comparing deterministic signals to noise, as

in QND and noiseless amplification experiments.

In this section we are interested in modelling the observed output of the laser. Due to

the analyser effect, the observed spectra is nonlinearly distorted with respect to the actual

spectra (almost no correction necessary at the peak of the RRO; ≈ 2 dB correction neces-

sary at the quantum noise floor; varies in between). Fortunately this nonlinear behaviour

can be mimicked reasonably well by a brute force adjustment to our model. Consider

curve (a) in Fig. 6.4: the experimentally observed spectrum for 14 ± 0.5 mW of Nd:YAG

light, attenuated from an output power of ≈ 210 mW. This observed spectra is distorted

by the analyser effect: the theoretical spectra for this case (210mW attenuated to 14 mW)

is not shown, as it does not match the observed spectra at all. However if we arbitrarily

adjust our model (300mW attenuated to 14 mW) we obtain curve (b): the fit is very good,

albeit a little high in the region 5-15 MHz. This is the only such adjustment necessary in

this thesis.
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6.3.2 The modecleaner

The mirror reflectivities were directly measured to be R1 = 97.5 ± 0.1%, and R2 = 97.9 ±
0.1%, at an incident angle of 45 degrees; and R3 = 99.89 ± 0.1% at an incident angle

of 0 degrees. The losses of the mirrors 1 & 2 were inferred to be 0.35%. The cavity

perimeter was measured to be 2.450 m ± 5 mm. From this we calculate the free spectral

range (FSR) to be 122.4 MHz (FSR = c0/(np)). It is now possible to calculate the decay

rates using eqn 2.22: the total decay rate is γmc = 3.33 × 106s−1, the incoupling rate is

γmc′1 = 1.29 × 106s−1 and the outcoupling rate is γmc2 = 1.54 × 106s−1.

The optimum modematch measured for the cavity was 96.0±0.5%, and the optimum

measured impedance match was 88 ± 1%. The total power matching factor, M, is thus:

M = 0.96 × 0.88 = 0.8448 (6.33)

The transmitted power was measured to be 60.1 ± 0.5%, and was a maximum imme-

diately following cleaning of all the mirrors. In the hour following a mirror clean the

transmitted power asymptoted to ≈ 50% as the high circulating power in the cavity

trapped and carried dust onto the mirrors (the cavity is free-standing in unfiltered air).

The observed transmitted power is in excellent agreement with the predicted transmitted

power, which is given by:

P trans

P in
= M4γmc1γmc2

γ2
mc

= 0.607 (6.34)

Curves (c) & (d) in Fig. 6.4 show the predicted and measured spectra for a beam of 14 mW

transmitted through the modecleaner. The agreement between theory and experiment is

excellent. The effect of the modecleaner is clear: there is substantial noise reduction as

seen by the quantum noise limited frequency moving from 45 MHZ to 7MHz.

6.3.3 The frequency doubler

The doubler cavity perimeter is measured to be 25.0 m ± 0.5 mm. From this we calculate

the free spectral range (FSR) to be 5.370 GHz (FSR = c0/(np)).

When the monolith is at room temperature there is very little nonlinear coupling (if

the room is darkened some second harmonic can be observed but it is microwatts or

smaller.) The linewidth of the cavity is only set by the mirror reflectivities and material

loss: this is the natural, or “cold”, cavity linewidth. When the monolith is heated to

' 110◦C the nonlinear coupling becomes significant, and the additional loss from the

fundamental to the second harmonic significantly broadens the cavity mode. This is the

power broadened, or “hot”, cavity linewidth.

Hot or cold, the linewidth can be measured directly. The monolithic cavity is scanned

through the TEM00 mode and the FWHM of the transmitted beam is measured with an

oscilloscope. A frequency scale is provided by modulating the laser at 20 MHz which

produces obvious side peaks. The ratio of the FWHM (in s) to the distance between the

sidepeaks (in s) times twice the modulation frequency gives the FWHM in MHz. for the

cold cavity, the measured FWHM is 5.67 ± 0.10 MHz. From this we can infer a total decay

rate of γ1 = 1.78 × 107s−1.

The maximum observed second harmonic conversion efficiency is ηnl = 56%. From,

ηnl = γc1/γ1 we can infer the outcoupling decay rate, γc1 = 9.95 × 106s−1. The strength

of the nonlinear coupling does not alter the maximum second harmonic conversion effi-

ciency, only the power at which it occurs.
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Figure 6.4: A comparison of the mode cleaner and laser output spectra for power incident on the

infrared balanced detector of 14 mW. The experimental traces have been corrected for electronic

noise. The upper traces, (a) & (b) are, respectively, the experimental and theoretical traces for the

output spectrum of the laser (with the noise eater turned off). The lower traces (c) & (d) are the

equivalent for the mode cleaner output spectrum. The noise filtering action of the mode cleaner

is very clear. While the laser is not quantum noise limited until beyond 50 MHz, the output of

the mode cleaner is quantum noise limited beyond 7 MHz. The large peak at 27.6 MHz is the

modulation signal for the locking of the mode cleaner.

In theory the temperature (phase match) for maximum second harmonic generation

is the temperature where greatest squeezing will occur. In principle the phasematching

curve is a sinc function: best squeezing results should be obtained at the peak. However

in practice the phase matching curve is not a sinc function, and due to the presence of a

parasitic OPO and a Kerr effect (see next two chapters), the optimum squeezing was not

observed for the maximum nonlinearity. At the point of optimum squeezing, we infer

µ = 0.10.

The second harmonic generator produces squeezed light at 532 nm that is picked

off with a dichroic and detected via a self-homodyne detector. In general the quantum

efficiency of available photodetectors is lower in the green than in the infrared. To max-

imise quantum efficiency, the photodetectors (EG&G FND-100) have the external glass

removed, are turned to Brewsters angle, and the reflected light is directed back onto the

detector via a curved retroreflector. These measures push the quantum efficiency of each

detector to 65% ± 5%.

The second harmonic generator was pumped with a mode matched power of 81 mW,

producing 34 mW of second harmonic light. Higher pump powers than this cause the

onset of parasitic parametric oscillation (see next chapter) which degrades the squeezing.

Fig. 6.5 clearly shows the effect of driving noise on the squeezing of the second harmonic.
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Figure 6.5: Squeezing spectra of the second harmonic. The mode matched power of the funda-

mental was 81 mW, the second harmonic power was 34 mW. The experimental traces have been

corrected for electronic noise. Trace (a) and trace (c) are the spectra obtained for the experiment

run without and with the mode cleaner respectively. The maximum squeezing and detection fre-

quency of occurrence in each case are: trace (a), 0.47 dB (0.75 dB inferred) at 23 MHz; trace (c), 1.7

dB (3.0 dB inferred) at 7.5 MHz. The sub shot noise noise feature at 10 MHz on trace (c) is residual

noise from the locking systems of the mode cleaner and the second harmonic generator. Traces

(b) and (d) are the theoretical plots corresponding to the experimental traces. Trace (e) is the the-

oretical prediction for the squeezing if there were no extra noise present at all, i.e the driving field

were coherent.

First consider the system without the modecleaner. Trace (a) is the second harmonic

spectrum: it is far from the ideal result (quantum noise limited pump) as shown by trace

(e). Trace (b) is the theoretical spectrum taking into account the laser noise. The agree-

ment between theory and experiment is excellent: very clearly, the laser noise causes

significant degradation of the squeezing. To produce trace (e), eqn 6.25 was used with

V in1
X1

= 1; to produce trace (b) the term V in1
X1

in eqn 6.25 was replaced with V out
las , i.e. eqn

6.32.

Now consider the effect of the modecleaner. As trace (c) shows, the squeezing is con-

siderably improved: the maximum squeezing is moved from 0.47 dB (0.75 dB inferred)

at 23 MHz to 1.6 dB (3.0 dB inferred) at 7.5 MHz, and the spectrum above 11 MHz is

that predicted for the ideal case with no excess pump noise. The sub shot noise feature

at '10 MHz is residual noise from the locking system (c.f. Fig. 6.4). The agreement with

theory, trace (d), is again excellent. To reiterate our earlier point: the only changes to the

model between producing traces (b) and (d) was the inclusion of the mode cleaner (equa-

tion 3.81) at the appropriate place in equation 6.25, and an adjustment of the parameter
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representing the optical power reaching the monolith. All other parameters remain fixed.

The squeezing measurement is a sensitive test of the modular model. For example,

the diode lasers that pump the solid state laser have considerable excess noise (more than

50 dB above the quantum noise limit). In [5] this was not considered - the diode laser was

modelled as quantum noise limited, and yet excellent agreement was obtained between

theory and experiment. This is not true for the modecleaner case, where there is a greater

degree of squeezing. The approximation that the diode laser pump is quantum noise

limited gives poor agreement between theory and experiment: it is necessary to include

the correct amount of excess classical noise.

The excellent agreement between theory and experiment, and the inclusion of the

modecleaner which led to the large observed improvement in squeezing (from 0.75 dB

to 3.0 dB, inferred), suggests a significant improvement is possible in the system of ref-

erence [6]. The modular approach can be applied to any experiment where transfer of

source noise is significant, notably injection locked laser systems [19] and holds great

potential for modelling complicated multi element experiments, such as gravity wave

interferometers.

6.4 Squeezing via SHG: the next generation?

As an optical source, SHG offers power, stability, and simplicity. Squeezing via second

harmonic generation was first demonstrated in 1988: however it has been criticised as a

squeezing source as it has not been well characterised. This is no longer a valid criticism:

in this chapter we have identified, modelled, and tested against experiment the effect

of pump noise on the squeezing. Further, in the next two chapters we do the same for

the effects of competing and cooperating nonlinearities, respectively. Squeezing via SHG

in practical systems is now well characterised and understood. There are likely to be

two directions of research for the next generation of experiments: cavity systems and

travelling wave systems.

Consider the cavity system is this thesis. There are several obvious improvements and

extensions that would allow miniaturisation of the experimental setup, improved stabil-

ity, and greater squeezing. Most immediate is replacement of the current modecleaner.

The relatively low reflectivity of the mirrors necessitate a long perimeter to achieve the

desired narrow linewidth. However the lengthy perimeter allows for differential vibra-

tion of its component mirrors, making it hard to lock, and the large footprint clutters the

experimental layout. The 2 m ring cavity could be replaced with a much shorter stand-

ing wave cavity with higher reflectivity mirrors. For example, REO supplies mirrors for

1064 nm with absorption and scatter loss of 5 ppm and transmission of ' 30 ppm. An 8

cm cavity with these mirrors would have an equivalent linewidth to the 2 m cavity. The

reflected beam could be extracted by inputting the beam through a polarising beam split-

ter and quarter wave (λ/4) plate; the transmitted beam would need to be passed through

a quarter wave plate to return it to linear polarisation. If the cavity is built around an

Invar c©spacer, it will be intrinsically stable, and, as it is almost totally enclosed, much

less susceptible to dust problems.

The current experimental setup could also be extended by adding an external mirror

for 532 nm. For high reflectivities this would require another locking loop to maintain the

second harmonic cavity on resonance. As discussed in Chapter 4, the addition of a cavity

at the second harmonic will tend to improve the squeezing at a frequency well away from

zero frequency. This further evades the problems of low frequency laser noise.
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A longer term, and perhaps more desirable, improvement is to redesign the SHG

cavity. A larger linewidth is desirable, as it allows large squeezing at higher frequencies

away from the pump noise of the laser. This can be achieved by a combination of a shorter

cavity perimeter and/or using one of the new high nonlinearity materials, such as PPLN

(periodically poled LiNbO3) or BLIRA-free KNbO3
3. The higher nonlinearity also allows

the cavity to be driven harder for a fixed pump power, improving the magnitude of the

squeezing. The higher nonlinearity lowers the TROPO threshold: it is desirable to design

a cavity with dispersive elements to avoid this (see next chapter). The combination of

these features may allow the modecleaner to be dispensed with entirely.

As mentioned in the introduction it has been predicted that strong squeezing will be

available via travelling wave SHG. The recently developed periodically poled materials

appear to be the materials of choice for the next generation of these experiments. Previ-

ously high peak power pulses were necessary to attain strong interactions in travelling

wave SHG systems: now it is possible to use CW light. The Stanford group recently

achieved 40% nonlinear conversion single-pass with a 50 mm long waveguide pumped

with a 5.6 W 1064 nm beam, generating 2.25 W at 532nm [20]. It is very likely that the

residual 3.35 W 1064 nm beam was squeezed by -2.2 dB/40% (S= 1 − η = 1 − .4 = .6)

over a very wide detection bandwidth (no cavity linewidth means the limit is set by the

material response).

Observations of such very bright beams will be non-trivial: as discussed in section

3.4.4 one possible technique is to lock the beam to a cavity that transmits most of the

beam power and then detect the squeezing on the low power reflected beam at a fre-

quency much higher than the cavity linewidth. Alternatively, if the squeezing bandwidth

is optical, then it may be possible to observe the squeezing by shining the beam onto a

low-loss high-power diffraction grating and examining the vacuum squeezing at the line

immediately adjacent to 1064nm. A small amount of the carrier can be used as the lo-

cal oscillator. This will either require extremely high bandwidth photodetection, or, as

is more likely, frequency shifting of the local oscillator. A final possibility is to chop the

light beam to reduce the DC power and observe the squeezing at frequencies well above,

and away from the harmonics of, the chopping frequency.
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Chapter 7

Competing nonlinearities: going

TROPO

troppo adj. mentally ill, allegedly from exposure to a tropical climate

The Australian Concise Oxford Dictionary

Parametric oscillation in a frequency doubler was first observed in 1993 [1]. Such

competing nonlinearities are currently the object of much work, both theoretical and ex-

perimental, as they offer the ability to generate widely tunable cw light. In this chapter

we examine the experimental classical and quantum signatures of Triply Resonant Op-

tical Parametric Oscillation (TROPO), i.e. parametric oscillation in a frequency doubler

where the second harmonic is not resonant. In the first section we examine the frequency

generation characteristics: cascaded sum and difference frequency generation cause pro-

duction of new frequencies centred around both the fundamental and the second har-

monic frequencies. In the second section we observe and discuss power clamping of

the second harmonic field. In the third section we derive the second harmonic squeez-

ing spectrum for TROPO from the quadruply resonant case (QROPO) and compare the

experimental and theoretical results.

The classical behaviour of TROPO was presented in section 2.4. To recap, the second

harmonic in singly resonant generation is able to act as the pump for a nondegenerate

optical parametric oscillation. The NDOPO occurs simultaneously and competes with,

the SHG. The conceptual layout is shown in Fig. 7.1. The core experimental setup is

as discussed in the preceding two chapters. The reflected infrared and generated sec-

ond harmonic beams were sent either to balanced-homodyne pairs (to examine the noise

spectra), or to optical spectrum analysers (to examine the spectral content).

SHG

NDOPO

2 ν

ν

signal
idler

second
harmonic

fundamental

ν±∆

Figure 7.1: Conceptual layout of TROPO. Gray lines represent vacuum inputs, i.e. zero average

power.
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7.1 Frequency generation

The obvious signature of competition in TROPO is production of nondegenerate fre-

quency modes once the system is driven above the competition threshold, i.e. N>1.

In section 2.4.2 it was calculated that the phase matching for nondegenerate frequency

production was quite broad: 90% of the optimum nonlinear gain in the region 1064 ± 10

nm; 22% of the optimum nonlinear gain at 1031, 1097 nm. The nondegeneracy will be

further limited by the cavity dispersion and the fixed bandwidth of the cavity mirrors (∼
40 nm centred at 1064 nm). How large a frequency nondegeneracy can be achieved in

practice?

To test this experimentally the reflected infrared field was examined with a scanning

diffraction grating whilst the cavity was scanned repeatedly through the TEM00 mode 1.

Scanning the monolith ensures that the cavity experiences a wide range of dispersions,

and thus does not limit the possible resonances of the signal and idler. The output of

the scanning grating is monitored with a silicon photodiode (EG & G FND-100). Fig. 7.2

shows the scanning grating output for the most nondegenerate case, ∆ = 31nm. This

is the broadest nondegeneracy reported to date for this system. The large peak in the

centre of the plot is the fundamental, at 1064 nm. The peak at the far left of the plot is

the signal, that at the far right is the idler. The signal intensity is 4.3% of the 1064nm

peak; the idler is much weaker. This may be intrinsic, i.e. idler production is weaker than

signal, however it is more probable that this is due to the very steep roll-off in quantum

efficiency in silicon photodetectors between 1000 & 1100 nm. The signal wavelength of

1033 nm agrees well with the calculated maximum of nonlinear gain centred at 1031 nm.

The idler appears displaced slightly (2.5 nm) from its expected position of 1096 nm. This

is an unavoidable artifact caused by hysteresis in the scanning motor of the scanning

diffraction grating.

In practice, the phase matching curve is not simply the sinc function introduced in

Chapter 2. (This is discussed in considerably more detail in the next chapter.) What is the

effect of a non-ideal phase matching curve on the competition threshold?

To measure this, the monolith (#19) was again scanned repeatedly through the res-

onance. The reflected fundamental and generated second harmonic lineshapes were

observed for signs of TROPO (see next section). Curve (a) in Fig. 7.3 is the observed

threshold power versus the crystal temperature (and thus phase-matching). Curves (b)

& (c) are the phase matching curves for SHG when driven by 33 mW of modematched

fundamental. Curve (b) is single-pass SH, i.e. residual SH power generated on the first

half of the round trip through the cavity that is transmitted through the high reflectivity

mirror, and curve (c) is double-pass SH, i.e. the majority of the SH power that exits the

AR coated side. Note that the threshold curve has two minima: roughly corresponding

to maxima in the double pass and single pass power, respectively. In the latter case, even

though minimal second harmonic is produced, the intracavity second harmonic field is

large enough to pump the NDOPO.

The scanning diffraction grating is a slow method to analyse the spectral content of a

field (it normally takes a minute or so to complete a scan). An optical spectrum analyser

(OSA) allows quick spectral analysis of a field (in our case the scan time was 20 mS) but

at the expense of absolute information. Optical spectrum analysers indicate the presence,

1The locked cavity results in this section were obtained with the ANU monolith (“the log”); the scanned
cavity results in this section were obtained when the author was at Universität Konstanz, using “Kristall
#19”.
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Figure 7.2: Broadband nondegenerate frequency production in the infrared. Light more than

30nm from 1064 is clearly visible.

but not the absolute optical frequency, of nondegenerate modes.

Fig. 7.4a is the output of the infrared optical spectrum analyser for the laser only. The

laser frequency is clearly visible as the large spike on each side of the plot. (The small

spike in the centre has no significance. It is due to misalignment of the analysed beam.)

Fig. 7.4b is the output for the locked monolith (the log) just above threshold: note the

strong conversion to signal and idler. The observed minimum threshold was 14 mW, the

observed conversion efficiency at the minimum threshold was 60%. These values agree

remarkably well with the calculated values. Using eqn 2.52 and the monolith parameters

from Chapter 6, γc1 = 9.94 × 106 & γ1 = 1.66 × 107, a nonlinear strength of µ = .012

gives a calculated minimum threshold of Pmin1 = 14.3 mW and a calculated conversion

efficiency of η = γc1/γ1 = 0.60. The nonlinear value, µ, is different to that used in Chapter

6 as the crystal temperature was different. (As pointed in Chapter 6, the temperature

for strongest nonlinear conversion was not the temperature for the strongest observed

squeezing. For the parameters of Chapter 6, Pmin1 = 21 mW.)

In locked operation, the signal and idler mode-hopped irregularly, stable operation

occurred for up to ten minutes at a time. Gross control of the frequency and existence of

the signal and idler was achieved by detuning the fundamental mode. As the monolith

was detuned around resonance, the effective decay rate (see section 2.2.3) of the funda-

mental did not change greatly, but, due to dispersion mismatch, the effective decay rates

of the signal and idler became very large (see section 2.3). This shifted the threshold

power above the operating power and suppressed the NDOPO (c.f. eqn 2.48). In the sys-

tem of [5], finer control was achieved by using a hemilithic cavity, i.e. a semi-monolithic

design where a translatable cavity mirror is external to the MgO:LiNbO3 crystal. Such

a cavity has tunable dispersion, and allows for stable operation with long intervals be-

tween mode hops.

As the driving power was increased further two extra modes were observed in the



130 Competing nonlinearities: going TROPO

0

4

8

12

16

20

107.3 107.8 108.3 108.8

S
eco

n
d

 h
arm

o
n

ic p
o

w
er (m

W
)

Temperature (˚C)

0

30

60

90

120

150

107.3 107.8 108.3 108.8

T
h

re
sh

o
ld

 p
o

w
er

 (
m

W
)

Temperature (˚C)

b (x 15)

c

a

Figure 7.3: TROPO threshold and second harmonic power versus crystal temperature for Kon-

stanz crystal. (a) observed threshold power; (b) single-pass SH power, (residual SH transmitted

through high reflectivity mirror) & (c) double-pass SH power; as a function of crystal temperature

(i.e. phase mismatch). Lines are guides for the eye.

infrared, and four extra modes were observed in the visible, Figs 7.4c,d - this is the first

observation of extra modes around the second harmonic. Extra modes in the infrared

were first observed in [2] where they were labelled as an extra signal idler pair. However

it is impossible for parametric oscillation to drive two signal/idler mode pairs simulta-

neously, and such an explanation does not account for the extra modes in the visible. It

was then proposed in [3] that the extra modes were due to cascaded second harmonic,

sum and difference frequency generation between the signal, idler and pump fields. Figs

7.4c,d strongly support this mechanism. The extra modes in the visible are likely gen-

erated by SFG (ν + νs,i = 2ν ± ∆) or SHG (2νs,i = 2ν ± 2∆), whilst the extra pair in

the infrared are from DFG with the visible modes (ν + νs,i − νi,s = 2νs,i − ν = ν ± 2∆).

Irrefutable proof of the mechanism will require a measurement of the absolute frequency

of all the extra modes.

When the driving power was increased further, yet more modes were observed in

the infrared field. This suggests that the cascading mechanism may be extended over

quite a frequency range (observation of up to 8 extra mode pairs in the infrared has been

reported [6]). Such systems of multiply competing nonlinearities hold great promise both

as sources of frequency tunable light and for frequency measurement, e.g as a precise

frequency chain.

Frequency chains can be made in many ways. One particularly elegant idea is the FM

laser: a laser is modulated to produce sidebands at ± the FSR of the laser cavity. These

build up and steal gain from the gain medium, and are in turn modulated at ±1 FSR;

the new sidebands at ±2 FSR build up and steal gain and are in turn modulated, and

so on. A broad frequency comb is generated, (with comb tooth spacing of 1 FSR) that is

chiefly limited by the gain bandwidth of the lasing medium. Now consider modulating a

singly resonant doubler at 1 FSR and driving it well above the competition threshold. All

other things being equal, the modulation will seed the signal and idler pair and a similar

process to that in the FM laser will occur - with the advantage that frequency combs will

be generated both in the infrared and the visible. Such a device should find immediate

application in frequency chain measurements and applications.
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7.2 Power signatures

For an empty cavity scanned through resonance the reflected and transmitted lineshapes

have Lorentzian profiles. This is true of the frequency doubler below the competition

threshold, however above this threshold the cavity lineshapes become quite notably dis-

torted. At detunings where the signal and idler become resonant (i.e. at detunings where

the driving power is above the competition threshold) the second harmonic lineshapes

are depleted and the fundamental lineshapes are enlarged. The resulting lineshapes are

not even approximately Lorentzian, with very obvious “hat” and “valley” shaped fea-

tures on the infrared and visible lineshapes, respectively.

The signature of competition for a locked cavity is equally as dramatic. Fig. 7.5 shows

experimental curves of second harmonic versus fundamental power for two different

detunings. In curve (a) the second harmonic power is clamped at 23 mW at a threshold

power of 41 mW. This threshold is much higher than the observed minimum threshold,

Pmin
1 = 14.3 mW, as the signal and idler modes see high cavity losses due to dispersive

mismatch. In curve (b) the monolith is tuned towards resonance so that the effective

fundamental decay rate is lower than in curve (a), however the detuning increases the

dispersive mismatch, and thus γs,i, suppressing the NDOPO and moving the threshold

to 54 mW. Fig. 7.5 was the first observation of power clamping, some 34 years after it was

first predicted [7].

This phenomena has important consequences when designing nonlinear optical sys-

tems. Clamping is undesirable in many applications, such as frequency doubling to form

a high power light source. With the development of low dispersion, efficient nonlinear

cavities, clamping is expected to become a widely observed phenomenon. In the past

year alone it has been observed in systems with competing SHG and NDOPO [4, 5, 8]
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and in an optical limiter formed by an OPO intracavity with a laser [9]. It can be sup-

pressed via tunable dispersion, or avoided entirely by designing the system so that the

minimum threshold point occurs at a power higher than maximum pump power. Ideally

clamping shouldn’t occur in many frequency doublers as they are optimised for maxi-

mum conversion efficiency, i.e. pumped at Pmin
1 . However in practice, many doublers

are optimised by pumping them at powers above Pmin
1 . This is done because for powers

less than Pmin
1 the conversion efficiency falls off very steeply: small variations in fun-

damental power lead to large variations in harmonic power. However above Pmin
1 the

conversion efficiency falls off very slowly: the harmonic power is much more robust to

small variations in the fundamental power. It is exactly this regime which is prone to

competition.
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Figure 7.5: Second harmonic power versus fundamental power curves for two different detun-

ings, (a) & (b). The systematic error bar is shown. All power measurements are NIST traceable

with an absolute error of 7%.

7.3 Squeezing: 4 modes good, 3 modes bad

Classical signatures of competition all involve the redistribution of power (the second

harmonic is clamped, new modes appear, etc.) Naturally such signatures only occur

above threshold. In contrast, the quantum signatures of competition involve the redistri-

bution of noise, and so can occur both below and above threshold.

NDOPO generates correlated signal and idler fields at frequencies νs,i = ν1 ± ∆,

where ν1 is half the pump frequency. Above threshold the signal and idler are bright

fields; below threshold they are correlated vacuum fields. As discussed in section 3.1.6,

correlated quantum noise implies squeezing, and correlated amplitudes imply squeez-

ing of the phase quadrature. Accordingly, Polzik et. al. [8] have suggested pumping

the TROPO below threshold and examining the reflected fundamental field. If phase

squeezing is observed in a region around the difference frequency ∆, then the presence

of competition can be inferred, even though the NDOPO is below threshold. For the
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QROPO case, where the second harmonic is also resonant, the threshold will be lower

but the signature will be the same. In our experiment the free spectral range of the mono-

lith, (which sets the minimum value of ∆), is much larger than the maximum bandwidth

of the detectors (5.4 GHz and 100 MHz, respectively), ruling out any observation of this

signature.

Above threshold the QROPO and TROPO cases have very different quantum signa-

tures. The QROPO case has been considered in a series of papers by Marte [10]. We

briefly list the chief results here.

In Chapter 4 it was shown that, for high interaction strengths, the modes in doubly

resonant second harmonic generation (DRSHG) experience a strong phase oscillation of

frequency, νdip. The amplitude squeezing is improved at and around νdip. As the funda-

mental power is increased, the phase oscillation becomes larger, pushing the amplitude

squeezing to zero. Above this power, the oscillation becomes real and the system under-

goes a transition to the self-pulsing regime. QROPO has a notable effect: the frequency of

perfect squeezing increases with increasing fundamental power; excess power is drained

off to the signal and idler modes and the self-pulsing oscillation is damped out - the sys-

tem remains stable. Another feature is that the quadrature of the squeezing rotates from

amplitude to phase as the NDOPO comes to dominate the SHG.

The signal and idler modes are similar to those produced by normal NDOPO: they are

perfectly correlated so that the subtracted intensity fluctuations of both beams is perfectly

squeezed; and each individual beam can be amplitude squeezed up to 50% at high inter-

action. In a normal NDOPO, however, the added intensity fluctuations of both beams is

Poissonian if the pump beam is Poissonian. In the QROPO case however, the added in-

tensity fluctuations are squeezed, i.e. sub-Poissonian. This reflects the amplitude squeez-

ing of the second harmonic that drives the NDOPO. Thus perfectly correlated signal and

idler photons arrive at predictable intervals.

Now consider our system. The second harmonic is not resonant, and compared to the

QROPO case the quantum signature of competition is very different: above threshold the

squeezing degrades. To see this, we start with the QROPO case as given by Marte [10].

Recalling the equations of motion 2.45:

α̇1 = −(γ1 + i∆1) α1 + κ1α3α
∗
1 +

√

2γc1ε1

α̇3 = −(γ3 + i∆3) α3 −
κ∗1
2
α2

1 − κ∗2αsαi

α̇s,i = −(γs,i + i∆s,i) αs,i + κ2α3α
∗
i,s (7.1)

where α1, α2, αs , αi are the fundamental, second harmonic, signal, and idler field ampli-

tudes, respectively; and κ1 and κ2 are the respective nonlinear interaction rates for SHG

and NDOPO. We redefine eqns 2.49 so that:

γ̄ =
√
γsγi

R = κ1/κ2 (7.2)

For a quantum noise limited fundamental pump, V ν1
X1

= 1, and perfect outcoupling effi-

ciency, γc1 = γ1, the second harmonic spectrum is given by:

V 2ν1
X̂1

= 1 − 4γ2|ε2|
ω2|ε1|2 − |ε0|2Γ2

+(ω)(1/R)

ω2N 2
+(ω) + |ε0|2M+(ω)

(7.3)
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where:

ε2 = Rγ̄
ε1 =

√

2NRγ̄γ2

ε0 =
√

2(N − 1)Rγ̄γ2

Γ2
+(ω) = ω2 + (γ1 + |ε2|)2

N+(ω) = ω2 − γ2(γ1 + |ε2|) − |ε1|2

M+(ω) = −2ω2[Γ2
+(ω) − |ε1|2] + |ε1|2Γ2

+(ω) (7.4)

We can examine the TROPO case by adiabatically eliminating the second harmonic, i.e.

γ2 → ∞. After straightforward, albeit somewhat tedious algebra the spectrum becomes [4]:

V2 = 1 +
2(N − 1)B(ω) − 2NA(ω)

(N − 1)2B(ω) + ω2(γf/2γ̄)2 + NA(ω)C(N)/R + (ω2/2γ̄)2
(7.5)

where N is the number of times above threshold (N> 1):

N =
P1

Pthr
1

(7.6)

and:

γf = γ1 + ε2

A(ω) = R2ω2

B(ω) = γ2
f + ω2

C(N) = γ1/γ̄ + R(N + 1) + 2(N − 1)

(7.7)

If we assume the minimum threshold for competition, Pmin
1 , then γs = γi = γ1 and

µ1 = µ2 and equation 7.5 simplifies to [11]:

V2 = 1 +
2(N − 1 − ω̂2)

4N2ω̂2 + (N − 1 − ω̂2)2
(7.8)

where ω̂ = ω/(2γ1). Both eqn 7.5 and eqn 7.8 are obviously very different to the descrip-

tion of the second harmonic spectrum in singly resonant SHG, c.f. eqn 6.25:

V 2ν1
X1

(ω) = 1 + 8γnl
γc1(V

in1
Xi

(ω) − 1) − γnl

(γ1 + 3γnl)
2 + ω2

(7.9)

where the nonlinear loss rate, γnl = µ1 |α1|2 and V in1
X1

is the amplitude quadrature spec-

trum of the pump field 2.

For the singly resonant doubler, maximum squeezing occurs at zero frequency with

a value of V=1/9 (-9.5 dB) when V in1
X1

= 1 and γnl >> γ1, i.e. for high pumping powers.

However once competition begins the maximum squeezing occurs at the competition

threshold, for powers above threshold the squeezing degrades. For the minimum thresh-

2An expression for the squeezing spectrum of the second harmonic, scaled to the point of minimum
TROPO threshold power, Pmin

1 (i.e., the maximum conversion effiency, Pmax conv
1 ), is given in Appendix 2.
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old, Pmin
1 , the maximum squeezing is at zero frequency with a value V=1/2 (-3 dB). For

higher thresholds, Pthr
1 > Pmin

1 , the maximum squeezing is still at zero frequency , but

with correspondingly larger values. In all cases eqn 7.5 connects to eqn 7.9 without dis-

continuity.
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Figure 7.6: Theoretical second harmonic squeezing spectra for the TROPO case when P thr
1 =Pmin

1 .

(a) N = 1.001 (b) N = 1.25 and (c) N = 3.

As Fig. 7.6 shows, for N>1 two effects come into in play, both of which degrade

the squeezing. The first effect is broadband. As N is increased, the second harmonic

power is clamped, and the second harmonic noise is pulled towards the noise set by the

second harmonic input field, V in3
X1

. As this input is a vacuum field, the second harmonic

noise is pulled towards the quantum noise limit. This occurs regardless of whether the

original second harmonic noise is above (super-Poissonian), or below (sub-Poissonian),

shot noise. In the limit N→ ∞ the output is always quantum noise limited, even if the

second harmonic amplitude was infinitely noisy (perfectly phase squeezed), or infinitely

quiet (perfectly amplitude squeezed).

We label this the noise-eater effect. It is analogous to the behaviour of the electro-optic

noise-eater: i.e. a feedback loop where a beamsplitter cuts off a proportion of a beam and

feeds it to a photodetector; the photocurrent drives an amplitude modulator that is placed

before the beamsplitter. (This is an amplitude noise-eater, phase noise-eaters can also be

constructed.) The input is the field before the modulator, the output is the field after

the beamsplitter. For high gain, the output noise is pulled towards the limit set by the

vacuum entering the empty beamsplitter port [12]. As the reflectivity of the beamsplitter

is increased, the output power decreases but the output noise becomes dominated by the

input vacuum field: in the limit R→ 1 the output is trivially quantum noise limited, as

it is simply the perfect reflection of the input vacuum field. The electro-optic noise-eater

is not homologous to the TROPO case: in the limit N→ ∞ the second harmonic field

still contains power (P2, see eqn 2.55). This noise-eating behaviour is expected to occur

in other nonlinear optical systems. It has been predicted for the optical limiter [13], i.e.

a degenerate OPO that clamps the 2ν field (see section 2.4.1); and from simple physical

arguments it is expected to occur in the saturated laser amplifier [14].

The additional squeezing degradation evident at low frequencies on the second har-
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Figure 7.7: (a) Squeezing spectra. (a) Without competition, P1 = 74 mW (b) With competition,

P1 = 60 mW.

monic is due to a second, more subtle, effect. In a conventional OPO, the amplitude

quadratures of the signal & idler are very noisy above threshold, as the phase quadra-

tures are quite strongly squeezed. (For a DOPO the amplitude only becomes shot noise

limited at P = 4Pthr and eventually becomes 50% squeezed for P > 25Pthr [15]). This

low frequency amplitude noise is transmitted from the signal and idler to the second

harmonic, degrading the squeezing at low frequencies. However as N is increased this

noise decreases, easing the low-frequency squeezing degradation, as can be seen from

curves (b) & (c) in Fig. 7.6.

Fig. 7.7(a) shows the experimentally observed squeezing a pump power of 74 mW,

competition is suppressed via detuning as discussed earlier. Below 6 MHz the squeezing

degrades due to laser pump noise, as discussed in the last Chapter, above 6 MHz the

squeezing is as expected from theory with V in
1 = 1. The spikes at 17 and 27 MHz are

from the locking signals. With competition, even at the lower pump power of 60 mW, the

squeezing degrades notably as shown in Fig. 7.7(b). As predicted, there is considerable

excess noise at low frequencies, whilst the degradation at higher frequencies is more

gradual. The excess noise at low frequencies is greater than that shown in Fig. 7.6 due

to the presence of numerous, overlapping, noise spikes. It is believed that these spikes

are due to a locking instability in the modecleaner which is driven by competing locking

signals; with the modecleaner absent, these spikes disappear.

It is clear that even a small amount of χ2 competition leads to a marked degradation

in the squeezing. This previously unexpected limit to second squeezing can be avoided

in one of two ways. This weakness can be turned into a strength if the second harmonic

is made resonant: however experimentally this is a more complicated setup. (With this

in mind, “4 modes good, 1 mode better”). Alternatively the system can be designed so

that competition is suppressed when the pump power is greater than the maximum con-

version efficiency power. One solution is a cavity with high dispersion, so that the signal

and idler modes are unable to become simultaneously resonant with the fundamental.

The cavity used by Tsuchida [16] was highly dispersive , with many air/material inter-
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faces, and the high value of second harmonic squeezing, -5.2 dB inferred, suggests that

the system was well above its minimum threshold.

7.4 Summary of TROPO signatures

Competition between SHG and NDOPO in a monolithic cavity has been observed to

cause generation of new frequencies in both the visible and infrared fields, clamping of

the second harmonic power, and degradation of the second harmonic squeezing. Compe-

tition imposes a previously unsuspected limit to squeezing and power generation. These

signatures are expected to be commonly observed in efficient, low dispersion systems,

unless explicit steps are taken to avoid competition.
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Chapter 8

Cooperating nonlinearities: Kerr

effect

Oh Kerr, Occur!

Sign on laboratory door at Konstanz Universität, courtesy of Robert Bruckmeier

Third order, or χ(3), nonlinear optical nonlinearities are of considerable importance in

modern optics. In signal processing and communications they offer the potential to real-

ize all-optical switching [1, 2]; in quantum optics they may be employed to manipulate

the quantum fluctuations of light, in particular to generate nonclassical states of light

[3, 4, 5] and perform quantum nondemolition measurements [6, 7].

Central to these applications is the search for materials exhibiting large nonlinearities;

in addition they must be enviromentally stable and resistant to optical power. For quan-

tum optical use the media must also have a large ratio of nonlinearity to loss in order to

suppress the influence of vacuum fluctuations. A variety of χ(3) media has been investi-

gated, including vitreous silica, semiconductors, organic compounds, atomic beams, and

cold atoms [3, 4, 5, 6, 7]. Because of the limitations (complexity and stability) of these sys-

tems, the possibility [8, 9] of using well known second order nonlinear materials for the

same purposes sparked a new direction of research [10]. A number of studies [11] have

discussed or demonstrated various aspects of cooperating effects in second harmonic

generation.

In this chapter we investigate the strong Kerr effect that occurs in singly resonant

SHG due to cooperating second order nonlinearities. Phase mismatch is central to this,

so in the first section we investigate the phase matching curve for our experiments. Previ-

ous investigations that have seen strong third order effects in second order systems have

been performed with single pass geometries, and used pulsed lasers with high peak in-

tensities to attain a strong interaction. In the second section we report observation of

optical bistability with low power, continuous wave light. In the third section we derive

a quantum model for the Kerr effect via the Heisenberg approach, and briefly investigate

its behaviour. In the fourth section we report preliminary observations of noise reduction

due to the Kerr effect and in the fifth section we summarise our results.

The classical behaviour of the Kerr effect was presented in section 2.5. To recap, the

phase matching in singly resonant SHG is tuned so that the second harmonic generated

on the forward trip through the cavity is backconverted to fundamental on the return

leg. The light is phase shifted during both processes, the processes are nonlinear, thus

the fundamental experiences a nonlinear phase shift. The conceptual layout is shown in

Fig 8.1. The basic experimental setup is as discussed in the previous chapters 1.

1The locked cavity results in this chapter were obtained with the ANU monolith (“the log”); the scanned
cavity results in this chapter were obtained when the author was at Universität Konstanz, using “Kristall
#19”.
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ωpump

2 ω

Figure 8.1: Conceptual layout of Kerr in nominally singly resonant SHG. Gray lines represent

vacuum inputs, i.e. zero average power.

8.1 Phasematching

Temperature [˚C]

D
o

u
b

le
 p

as
s 

se
co

n
d

 h
ar

m
o

n
ic

 p
o

w
er

 [
m

W
] O

n
e w

ay
 seco

n
d

 h
arm

o
n

ic p
o

w
er [m

W
]0

2

4

6

8

10

12

14

16

18

105 106 107 108 109 110 111
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

105 106 107 108 109 110 111

One way

Double pass •

Figure 8.2: Phasematching curve for second harmonic (SH) generation. double pass: total SH

power leaving the crystal through the AR side; single pass: fraction of SH power generated on

the first half of the round trip and transmitted through the nominally high-reflectivity mirror.

Modematched input 1064 nm power was 33 mW. Lines are guides for the eye.

To map out the phase matching curve the second harmonic power was measured

as a function of crystal temperature. The cavity was repeatedly scanned through reso-

nance: under these conditions for crystal # 19 the TROPO threshold was 49 mW; to avoid

TROPO the cavity was driven at 33 mW. The power of both the single pass (residual

second harmonic that is transmitted through the high reflector) and the double pass (sec-

ond harmonic that exits the monolith through the AR coated face) beams was measured.

Fig. 8.2 plots the observed results. Two points are striking: the double pass curve does

not, even remotely, resemble a sinc function; and the single and double pass curves do

not have the same shape.

Why is this? A major reason for the difference between the double pass curve and

single pass curves is the differential phaseshift between the fundamental and second

harmonic waves that occurs at the high reflector [12]. For an ideal singly resonant doubler
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Figure 8.3: Nonlinear interaction, g(∆kz), versus phase match: a) with no differential phase shift

between fundamental and second harmonic waves ∆φ = 0; b) large differential phase shift, ∆φ =

170◦.

with interference solely at the back mirror, this interference is described by [13]:

g(∆kz)int = g(∆kz)

[

sin(∆φ+ ∆kz)

2sin(∆φ+ ∆kz/2)

]2

(8.1)

where ∆φ is the differential phase shift between the fundamental and the second har-

monic at the back mirror. Fig. 8.3 plots g(∆kz) versus phase match without and with a

differential phase shift. The effect of the interference is clear: the strength of the nonlin-

earity is greatly reduced and the width of the phase matching peaks is narrowed. (Exper-

imentally this is undesirable, as narrowed phase matching peaks require higher precision

temperature locking.) Clearly something like this is occurring in our system, however it

is not the entire story.

If the back reflector is the only cause of degradation then the single pass curve should

be a sinc function. However in our system it is a distorted, asymmetric curve version of

a sinc function (distinctly “sinc-ish”, but not a sinc). This distortion is due to physical

and temperature inhomogeneities in the crystal, that leads, even for a single pass, to

interference effects between the fundamental and second harmonic. It is well known that

MgO doped LiNbO3 has many more inhomogeneities than pure LiNbO3, and thus has a

distorted phase matching curve [14]. For pure LiNbO3 the FWHM of the phase matching

curve has been measured to be 0.55 K [13]; from Fig. 8.3 we see that for our single pass

curve the FWHM is 0.3 K. From this, and the distorted single and double pass curves,

we conclude that the effective nonlinearity of our material is well below the optimum

available with pure LiNbO3.

Consider the double pass curve in Fig. 8.2. Over most of the temperature range, the

intensity changes were observed to be spatially uniform, i.e. the Gaussian profile of the

second harmonic field dimmed or brightened uniformly. However at a few temperatures

the intensity dimmed due to a vertical stripe (i.e. vertical to the table; parallel to the opti-

cal axis of the crystal) appearing in the spatial profile of the beam (e.g. near T= 108.6◦C).

As the temperature was scanned the vertical stripe was displaced horizontally across the
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spot, the greatest reduction in intensity occurring when the stripe was in the middle of

the spot. No such feature was seen in the single pass beam, and this behaviour was ob-

served with both the ANU & Konstanz monoliths. Given that the stripe does not appear

in the single pass beam it is clear that we are witnessing interference between the forward

and backward propagating second harmonic beams. A likely mechanism is that the end

mirror coating is stressed by the anisotropic thermal expansion of the crystal (see section

5.4.2), thus the phase shift that this coating imparts to the backward propagating second

harmonic is not spatially uniform. This would explain why the stripe is always in the

same direction, however it does not explain why this only occurs at a few temperatures,

unless we postulate stick-slip behaviour of the stress in the coating. We also mention

in passing that at the minima of the double-pass curve the second harmonic power was

very small but nevertheless non-zero. As these power minima were approached, the spa-

tial mode of the second harmonic evolved from a TEM00 mode to higher order Gauss-

Hermite and Gauss-Laguerre modes before finally settling on a hexagonal pattern that

was neither Gauss-Hermite or Gauss-Laguerre.

8.2 Optical bistability

Recalling eqn 2.66, the classical equation of motion for a phase mismatch of ∆kz = 2π in

a singly resonant doubler is:

α̇1 = −(γ1 + i∆1) α1 ±
µ

π
|α1|2α1 +

√

2γc1ε1 (8.2)

That is, the system acts exactly as a Kerr medium, where i (µ/π)|α1|2 is the nonlinear

phase shift and i∆1 is the linear phase shift. High cavity finesse increases the field α

and thus enhances the nonlinear interaction. As shown earlier, significant nonlinear be-

haviour occurs when the linear detuning, ∆1, is of the order (but opposite in sign to) the

nonlinear detuning, (µ/π)|α1|2. Loss thus play a critical role in the experimental reali-

sation of this system, as both the enhancement and the relative detuning scale inversely

with cavity losses.

Figs 8.4 & 8.5 show the behaviour of the line shape of the cavity mode at high in-

put power (125 mW) as the laser is detuned back and forth. The data was obtained by

recording the 1064 nm power transmitted through the nominally highly reflecting mirror,

which is proportional to |α|2. The wavevector mismatch ∆kL was controlled by varying

the temperature (T ) of the crystal relative to the phasematching peak at about 108◦C, with

a tuning coefficient ∂∆k/∂T=7.5 rad/(cm K).

In scanned operation the linewidth of crystal # 19 was measured to be 9.0 MHz:

from this a total, cold cavity, decay rate of γc1 = 2.8 × 107s−1 (i.e. T c = 0.33%). From

the linewidth and the incoupling at resonance the cavity loss was inferred to be γ`1 =

1.3 × 107s−1 (i.e. T ` = 0.30%): the crystal is relatively lossy. Note that the round-trip

conversion efficiency at the phasematching peak of 53 ± 1% agrees well with the pre-

dicted maximum conversion efficiency of ηnl = T c/(T c + T `) = 53%. A SHG coefficient

ΓSHG ' 2/kW is inferred from this result.

From the plane wave analysis in section 2.5.2, the minimum optical bistability thresh-

old is expected when the external conversion efficiency is near zero. The measured dou-

ble pass SHG efficiency in Fig. 8.3 exhibits near zero minima, which were therefore cho-

sen as the operating points for the observation of the cascading effect. Assuming the

idealised calculations of section 2.5.2 to be valid, we calculate that the minimum power
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Figure 8.4: Lineshapes of the TEM00 resonator mode, 1064 nm input power was 125 mW. The

phase matching for both curves is such that there nonlinearities do not cooperate. For T = 30.0◦C

there is effectively zero nonlinear loss, the linewidth is due solely to mirror and cavity loss decay

rates. For T = 107.49◦C the nonlinear loss is large, and the linewidth is accordingly broadened.

No significant scanning asymmetries can be seen for either case: the thermal effect has been at-

tenuated. The horizontal positions of the lineshapes are arbitrary.

for optical bistability is Pbi thr
1 ' 45 mW.

Irrespective of crystal temperature and ∆k, absorption of circulating power causes

the cavity to heat and expand, resulting in the cavity lineshapes leaning to negative de-

tunings (see section 2.5.4). To attenuate the influence of this thermal effect, the laser was

scanned through resonance relatively quickly (11.8 MHz/µs). Fig. 8.4 shows the line-

shape when the doubler is operated at room temperature where the phase mismatch is

extremely large. No significant asymmetry due to the thermal effect is observed. With

the crystal temperature adjusted for maximum SHG efficiency, a significant broadening

due to the conversion loss µReJ 2
′|α|2 is observed and a corresponding reduction in cir-

culating subharmonic power. However there is still no significant scanning asymmetry.

From this we conclude that the thermal effects have been effectively attenuated, and will

only play a minor role, if any, in what follows.

With the temperature changed slightly from the phasematching peak so as to give

nearly zero double pass conversion efficiency (see Fig. 8.2), the scans change dramati-

cally as shown in Fig. 8.5. At the high input power level used the scans display hysteresis

and are strongly asymmetric. For opposite phase mismatches, the bistability occurs at op-

posite detuning, as predicted in section 2.5.2. The Kerr effect caused by the cooperating

nonlinearities is clearly present. Another signature that this is due to cooperating nonlin-

earities, and not some other mechanism such as thermal absorption, is that the nonlinear

detuning can be changed by altering the phase mismatch: the thermal bistability can

never be so affected.

Small thermal effects are still present, as can be seen from the fact that the bistability

is greater for negative wavevector mismatch. In the scans shown in Fig. 8.5, second har-

monic power production was minimal (a few mW), which is also borne out by the fact

that the peak subharmonic circulating power was nearly the same as for the cold cavity

case (Fig. 8.4).
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Figure 8.5: Lineshapes of the TEM00 resonator mode, 1064 nm input power was 125 mW. T =

107.1◦C and T = 109.3◦C are points of opposite and roughly equal phase mismatch: the nonlinear

loss was minimal at both temperatures. The distinctly different forward and backward scans are

evidence for optical bistability due to a cascaded χ(2) nonlinearity. The horizontal positions of the

lineshapes are arbitrary.

Threshold was observed to occur for a pump power of ≈ 70 mW, which does not

compare well to the predicted value. This is unsurprising, given that Pbi thr
1 was calcu-

lated using the assumptions of plane waves, a homogeneous nonlinear material and the

absence of interference effects, which as Fig. 8.2 shows, is not even approximately true.

For crystal #19 TROPO was observed at pump powers above 49 mW, even when the

crystal was phase matched to produce little or no second harmonic. As discussed in the

last chapter, if there is sufficient power in the intracavity second harmonic field, TROPO

can occur. (That is, even if ReJ ′
2 = 0). It can be suppressed by changing the phase match,

however we were constrained in this by the need to be at a phase match value suitable for

a strong Kerr bistability, i.e. little or no second harmonic production. The fast scanning of

the cavity also suppresses TROPO to an extent: there appears to be a thermal effect where

the signal and idler can pull themselves into resonance via heating if they are not quite

on a favourable resonance. Scanning quickly through such resonances (12 MHz/µS) does

not give the signal and idler the time they need to establish themselves. A combination

of both these methods was used to avoid TROPO: this became increasingly difficult at

higher fundamental powers.

Fig. 8.5 is the first observation of optical bistability due to cooperating (or cascaded)

χ(2) nonlinearities 2. As discussed at the end of the chapter, cooperating nonlineari-

ties offer a powerful technique for the next generation of experiments that require large

χ(3)nonlinearities.

2Z.Y. Ou [15]) observed an intensity dependent phase shift in a cw pumped KNbO3 doubler. No bista-
bility was observed, and theory and experiment did not agree very well. However for high ∆kz the theory
does asymptote to that presented in this thesis. Several, unexplained power features were observed in [15]:
these appear similar to the signatures of TROPO or of an avoided crossing between the orthogonal polar-
isation modes of the fundamental. The latter are typically frequency nondegenerate, power is exchanged
between the two when they are not.
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8.3 Quantum theory of the Kerr effect

The classical models of the Kerr effect presented in Chapter 2 did not consider the noise

properties of the light. There have been various treatments of the noise behaviour of

a Kerr cavity [16, 17, 18, 5]. The treatments have varied in both approach (microscopic

versus macroscopic) and detail (phenomenological versus rigorous). However all have

considered only the case of a quantum noise limited driving field, and are thus of limited

utility for modelling experiments. Accordingly in this section we derive, via the Heisen-

berg approach, our own model to explore the noise reduction behaviour in a Kerr cavity.

8.3.1 Deriving the interaction term

To quantise the doubler acting as a Kerr medium, we replace the complex numbers, α, in

eqn 8.2 with operators â. In the classical treatment (see sections 2.2.3 and 2.5.2) the extra

term J ′
1

√
2µAin

3 is omitted from eqn 8.2 as there is no seed second harmonic field, i.e.

Ain
3 = 0. In the quantum treatment there is a second harmonic vacuum field: however as

at ∆kz = 2π the function J ′
1 = 0, the second harmonic vacuum has no effect. Even at the

quantum level, the phase mismatched singly resonant doubler does not respond to the

second harmonic input.

The adiabatic elimination also gives us the ordering of the interaction term, it is â†ââ,

as opposed to ââ†â or âââ† (remember, ordering is important with operators). Is this

the same ordering as for the χ(3)based Kerr effect? Consider the classical, interaction

Hamiltonian for a nonlinear optical system:

Hint = −
∫

crystal

~d · ~EdV (8.3)

~d can be expanded in a Taylor series:

di = χijEj + χijkEjEk + χijk`EjEkE` + . . . (8.4)

For an isotropic material, the classical Hamiltonian then becomes:

Hint = χ́(1)
∫

crystal
E2dV + χ́(2)

∫

crystal
E3dV + χ́(3)

∫

crystal
E4dV (8.5)

Consider a single optical field, of optical frequency ν. Using the interaction picture elec-

tric field (eqn 3.1), and quantising (aν → âν) we obtain:

Ê = iεν
[

âνe
−i2πνt + â†νe

+i2πνt
]

(8.6)

Substituting this into eqn 8.5 we find that the slowly varying parts of the Hamiltonian

(i.e. terms independent of e±n 2πt) are:

Hint = χ́(1)
∫

crystal
ε2ν(1 + 2â†ν ânu)dV

+χ́(2)
∫

crystal
0dV

+χ́(3)
∫

crystal
ε4ν(1 + 4â†2ν â

2
nu)dV (8.7)

Evaluating the spatial integrals, and suitably defining χ̀(3) we find the interaction Hamil-
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tonian for the third order effect is:

Ĥint = ih̄χ̀(3)(1 + 4â†2ν â
2
nu) (8.8)

The equation of motion interaction term is thus, using eqn 3.57:

˙̂a = 1/(ih̄)[â, Ĥint]

= (âĤint − Ĥintâ)

= χ̀(3)(ââ†2â2 − â†2â2â)

...

= 8χ̀(3)â†ââ = χ(3)â†ââ (8.9)

So the form of the interaction for the χ(3)Kerr effect is â†ââ, the same as the χ(2)based

Kerr effect. We conclude that the phase mismatched singly resonant doubler (where

∆kz = ±2nπ) is identical in every aspect, both quantum and classical, to a Kerr cavity.

8.3.2 Quantising the Kerr cavity

Using the interaction term discussed in the last section, we can write the equations of

motion for the Kerr effect as:

˙̂a1 = −(γ1 + i∆1)â1 ± iµâ†1â1â1 +
√

2γc1Â
in1
1 +

√

2γ`1Â
in2
1 (8.10)

and its conjugate equation. Note that we have absorbed the the factor of π into µ. As

normal, we explicitly consider non-perfect escape efficiency, η = γc1/γ1.

Once again we consider two ports for the cavity, the pumping port, in1 and an “other”

(loss, transmission, etc.) port in2. Linearising (see sections 3.1.5 & 3.3.2) we obtain the

fluctuation equations of motion:

δ̇â1 = −(γ1 + i∆1)δâ1 + iµ(2|α1|2δâ1 + α2
1δâ

†
1) +

√

2γc1Â
in1
1 +

√

2γ`1Â
in2
1 (8.11)

and its complex conjugate. We consider the rotated quadrature operators, Ŷ1 & Ŷ2,

where:

Ŷ1 = âe−iθ + â†e+iθ

Ŷ2 = âe−i(θ+π/2) + â†e+i(θ+π/2)

= −i(âe−iθ − â†e+iθ) (8.12)

where θ is the quadrature angle. For θ = 0, Ŷ1 = X̂1 & Ŷ2 = X̂2. The quadrature

fluctuation equations of motion are (see section 3.1.3):

δ
˙̂

Yi = GδŶi +HiδŶj + Ji (8.13)

where the subscripts i = 1, 2 and j = 2, 1 denote the quadrature and its complement; G

is:

G = −(γ1 − i
µ

2

[

α2
1e

−iθ − α∗ 2
1 e+iθ

]

) (8.14)

and Hi is:

Hi = ±(∆1 − 2µ|α1|2) +
µ

2

[

α2
1e

−iθ + α∗ 2
1 e+iθ

]

) (8.15)
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where the “+” sign is used for H1 and the “−” sign is used for H2. Ji is the coupling

term:

Ji =
√

2γc1δŶ
in1
i +

√

2γ`1δŶ
in2
i (8.16)

Fourier transforming (see section 3.3.3) eqn 8.12 becomes:

δỸi =
HiδỸj + Ji
−(G+ iω)

δỸj =
HjδỸi + Jj
−(G+ iω)

(8.17)

Eliminating the cross terms we obtain the expressions:

δỸi =
HiJj − Ji(G+ iω)

(G+ iω)2 −HiHj
(8.18)

The boundary condition for the reflected fundamental is (see eqns 2.32):

Ỹout1
i =

√

2γc1Ỹi − Ỹin1
i (8.19)

Thus we obtain:

δỸout1
i =

√

2γc1HiJj − 2
√

γc1γ
`
1(G+ iω)δỸin2

i

−((G+ iω)(2γc1 + (G+ iω)) −HiHj)Ỹ
in1
i

(G+ iω)2 −HiHj (8.20)

Using eqns 8.16 we take the self correlations (see section 3.3.5) to obtain the noise spec-

trum for the reflected fundamental:

V out1
Yi

(ω) = |(G+ iω)(2γc1 + (G+ iω)) −HiHj|2V in1
Yi

(ω) + 4γc 2
1 |Hi|2V in1

Yj
(ω)

4γc1γ
`
1(|G|2 + ω2)V in2

Yi
(ω) + |Hi|2V in2

Yj
(ω))

|(G+ iω)2 −HiHj|2 (8.21)

The port in2 is a vacuum input, so V in2
Yi

(ω) = 1.

8.3.3 Limits to noise reduction

Teasing out the limits analytically for the Kerr case is a little harder than in the SHG case,

as the final expression contains terms like α1 & α∗
1 as well as |α1|.

Fortunately we can use an algebraic trick to simplify analysis. The complex number,

α, can be expressed in terms of its magnitude and argument as α = |α|eiψ . From some

straightforward mathematics, we find the following:

θ 2ψ − π/2 2ψ 2ψ + π/2 2ψ + π

α2
1e

−iθ − α∗ 2
1 e+iθ +i 2|α1|2 0 −i 2|α1|2 0

α2
1e

−iθ + α∗ 2
1 e+iθ 0 2|α1|2 0 −2|α1|2

That is, observing the light at certain quadratures allows us to only consider the absolute

magnitude of the field. This simplifies the analysis tremendously, and we find:
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θ 2ψ − π/2 2ψ 2ψ + π/2 2ψ + π

G −γ1 − µ|α1|2 −γ1 −γ1 + µ|α1|2 −γ1

H1 +(∆1 − 2µ|α1|2) +(∆1 − µ|α1|2) +(∆1 − 2µ|α1|2) +(∆1 − 3µ|α1|2)
H2 −H1 −(∆1 − 3µ|α1|2) −H1 −(∆1 − µ|α1|2)

It is clear that we do not need to consider θ = 2ψ±π/2 any further as at those quadrature

angles H1 = −H2 so that VY1 = VY2 and so we will not observe squeezing.

Consider the spectra of the two quadratures, Y1 & Y2 when observed at the quadra-

ture angle θ = 2ψ. We introduce the scaled quantities:

ώ =
ω

γ1
∆́ =

∆1

γ1
ń =

µ|α1|2
γ1

ć =
γc1
γ1

´̀=
γ`1
γ1

(8.22)

where ń is the number of times above threshold and ć is the coupling ratio. The spectra

are now written as:

V 2ψ
Y1

(ω) =
[

ω2 − (2ć+ 1) − (∆́ − ń)(∆́ − 3ń)
]2
V in1

Y1
(ω) + 4ώ2(ć+ 1)2V in1

Y1
(ω)

+4ć2(∆́ − ń)2V in1
Y2

(ω) + 4ć´̀(ώ2 + 1)V in2
Y1

(ω) + (∆́ − ń)2V in2
Y2

(ω))

[

(∆́ − ń)(∆́ − 3ń) − ω2 + 1
]2

+ 4ω2

V 2ψ
Y2

(ω) =
[

ω2 − (2ć+ 1) − (∆́ − ń)(∆́ − 3ń)
]2
V in1

Y2
(ω) + 4ώ2(ć+ 1)2V in1

Y2
(ω)

+4ć2(∆́ − 3ń)2V in1
Y1

(ω) + 4ć´̀(ώ2 + 1)V in2
Y2

(ω) + (∆́ − 3ń)2V in2
Y1

(ω))

[

(∆́ − ń)(∆́ − 3ń) − ω2 + 1
]2

+ 4ω2 (8.23)

As always, optimum squeezing occurs when the intracavity squeezed field is output

through only one port, i.e. γc1 = γ1 and ć = 1, ´̀ = 0. For these quadratures, the best

squeezing occurs at zero frequency, ω = 0. Under these conditions, the spectra simplify

to:

V 2ψ
Y1

(ω) =
[

3 + (∆́ − ń)(∆́ − 3ń)
]2
V in1

Y1
(ω) + 4(∆́ − ń)2V in1

Y2
(ω)

[

(∆́ − ń)(∆́ − 3ń) + 1
]2

+ 4ω2

V 2ψ
Y2

(ω) =
[

3 + (∆́ − ń)(∆́ − 3ń)
]2
V in1

Y2
(ω) + 4(∆́ − 3ń)2V in1

Y1
(ω)

[

(∆́ − ń)(∆́ − 3ń) + 1
]2

+ 4ω2 (8.24)

From eqn 8.24 is is clear that when (∆́− ń)(∆́−3ń) = −1 both quadratures are infinitely

noisy. As a general rule, the vicinity of such points is where maximum squeezing occurs.

This can be seen from the numerators, which are a minimum (and thus the squeezing

is maximum) when (∆́ − ń)(∆́ − 3ń) = −3. In the limit that µ|α1|2, ∆1 � γ1 both the

Y1 & Y2 quadratures can be strongly squeezed (at different values of the nonlinearity

naturally), as shown in Fig. 8.6. However as µ|α1|2, ∆1 approach γ1 the squeezing is less

robust, and only the squeezing at the Y2 quadrature survives, as shown in Fig. 8.7.

Fig. 8.8 plots the spectra for both quadratures for parameters where one of the quadra-

tures is squeezed. Even under these ideal conditions, the squeezing linewidth is rela-

tively narrow (less than half the cavity linewidth), and there is considerable additional
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Figure 8.6: Y1 & Y2 quadratures versus scaled nonlinearity, ń = µ|α1|2/γ1. The pump is quantum

noise limited V in1
Y1

(ω) = V in1
Y2

(ω) = 1, the squeezing is observed at zero frequency, ω = 0 for scaled

detuning ∆́ = ∆1/γ1 = 15, and perfect outcoupling, ć = γc
1/γ1 = 1. Note that both quadratures

are strongly squeezed, but at different nonlinearities.
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Figure 8.7: As for Fig. 8.6 except for a smaller detuning, ∆́ = 5. Now only one quadrature is

strongly squeezed.
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Figure 8.8: Theoretical Kerr squeezing spectra for Y1, Y2 quadratures. Scaled frequency, ώ =

ω/γ1; perfect outcoupling, ć = 1; scaled detuning ∆́ = 15; scaled nonlinearity such that (∆́ −
ń)(∆́ − 3ń) = −3; and quantum noise limited pump V in1

Y1
(ω) = V in1

Y2
(ω) = 1. Note the relatively

narrow squeezing linewidth.
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Figure 8.9: Intuitive explanation of Kerr squeezing. Phasor diagrams for an intracavity funda-

mental field: right hand side without Kerr effect; left hand side with Kerr effect. The top of the

uncertainty area is more intense than the bottom, and so is phase shifted further by the Kerr

effect.
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Figure 8.10: Theoretical Kerr squeezing spectra for Y1, Y2 quadratures. Scaled frequency, ώ =

ω/γ1; outcoupling, ć = 0.6; scaled detuning ∆́ = 15; scaled nonlinearity such that (∆́ − ń)(∆́ −
3ń) = −3; and noisy pump V in1

Y1
(ω) = V in1

Y2
(ω) = 3. The squeezing is strongly degraded, but the

output beam is still less noisy than the input beam on the Y1 quadrature. This noise reduction is

sometimes known as “classical squeezing”.

noise on the other quadrature. It is clear the Kerr squeezed states are not even close to

minimum uncertainty states.

Compared to SHG squeezing, Kerr squeezing is unusual in that even for optimum

squeezing of the output, both quadratures of the input field are coupled together. Indeed,

this nonlinear coupling is the heart of the squeezing mechanism. Consider the following

argument. It is clear from equation 8.2 the Kerr effect acts as an intensity dependent

phase shift. That is, the stronger the field, the proportionately larger the phase shift. Now

consider the ball-on-stick picture for the fundamental field inside the cavity, Fig. 8.9. The

stick is rotated by an angle proportional to the square of the length of the stick (µα2
1). The

ball at the end of the stick is also affected. The “top” of the ball (the point furtherest from

the origin) is rotated further than the “bottom” of the ball (the point closest to the origin)

as it is of greater power. The ball is thus smeared out into a banana or teardrop shape

as shown in Fig. 8.9. Note that at some quadrature axis the banana is narrower than the

original ball - the light is now squeezed.

As a source of bright squeezing, the Kerr effect is inherently less practical than SHG

as it is sensitive to both the amplitude and the phase quadrature of the input light beam.

In practice, the phase quadrature of laser light is even noisier than the amplitude (at

some frequencies many 10’s of dB more). In addition to noise from the same sources that

contribute to the amplitude noise (RRO, pump noise, spontaneous emission noise, etc)

the phase quadrature has additional noise due to the high phase diffusion of the laser.

What is the effect of extra phase noise on Kerr squeezing? No equation for the phase

quadrature (equivalent to eqn 6.32 for the amplitude spectrum of a 4 level laser) has

yet been published or tested against experiment. However we can tease out the effects of

unequal quadratures fairly simply. The quadratures Y1 & Y2, are related to the amplitude

and phase quadratures, X1 & X2, by:

V in1
Y1

= cos2(θ)V in1
X1

+ sin2(θ)V in1
X2
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Figure 8.11: Theoretical Kerr squeezing spectra for Y1, Y2 quadratures. Scaled frequency, ώ =

ω/γ1; outcoupling, ć = 0.6; scaled detuning ∆́ = 15; scaled nonlinearity such that (∆́ − ń)(∆́ −
3ń) = −3; and noisy pump V in1

X1
(ω) = 3, V in1

X2
(ω) = 10 observed at a quadrature angle θ = π/6.

The squeezing is destroyed, but the output beam is still less noisy than the input beam on the Y1

quadrature.

V in1
Y2

= sin2(θ)V in1
X1

+ cos2(θ)V in1
X2

(8.25)

where θ is the quadrature observation angle. Normally V in1
Y1

, V in1
Y2

will be different to

V in1
X1

, V in1
X2

. However for the case V in1
X1

= V in1
X2

, then V in1
Y1

= V in1
Y2

= V in1
X regardless of the

value of the quadrature angle. Fig. 8.10 shows the effect of such a uniformly noisy pump,

V in1
Y1

(ω) = V in1
Y2

(ω) = 3, and nonperfect output coupling, ć = 0.6. The squeezing is con-

siderably degraded, but for the Y1 quadrature the output is quieter than the input over

the same frequency range that it was squeezed in the quantum noise limited case. Thus

this noise reduction is sometimes known as “classical squeezing”. At high frequencies

both quadratures asymptote to the input noise levels: this is expected, as discussed in

section 3.4.2 well away from resonance the cavity simply acts a mirror. When the pump

is noisier in the phase quadrature than the amplitude, the input values of the quadra-

tures Y1 & Y2 depend on the quadrature angle. Fig. 8.11 considers the case θ = π/6: the

squeezing is now totally destroyed. The classical noise reduction occurs over the same

frequency range as previously. (It is apparently stronger, as the input noise level has been

raised, however in absolute terms it is reducing the noise to approximately the same level

as previously.) Very large differences between the two quadratures quickly swamp the

squeezing.

In principle, the Kerr medium offers a strong source of squeezed light. In practice,

considerable care will need to be taken to reduce the doubly deleterious effect of pump

noise.

8.4 Experimental Kerr noise reduction

As is clear from the above theory, the noise is reduced on a quadrature that varies as a

function of power, detuning and nonlinearity. Observation of this noise reduction would
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Figure 8.12: TROPO threshold and second harmonic power versus crystal temperature for ANU

crystal. Temperature scale has not been calibrated. double pass: total SH power leaving the crystal

through the AR side. Modematched input 1064 nm power was 33 mW. Lines are guides for

the eye, but have been omitted when spanning temperatures where TROPO thresholds were not

recorded.

seem to require an extended experimental setup, so that the quadrature of the light could

be examined at will. Ideally this would be done with an external local oscillator (which

would, however, have to be much stronger than the signal beam) or by using a single-

ended analysing cavity as a phase-sensitive detector (see section 3.4.4).

Due to financial and time constraints, neither option was available during this thesis.

However a preliminary experimental investigation was carried out using the Kerr cavity

itself as the single ended cavity to form a phase sensitive detector. The trick is to vary the

detuning whilst examining the reflected beam from the monolithic cavity. As discussed

earlier, frequencies away from the carrier are rotated in quadrature with respect to the

carrier, which is by definition the amplitude. Of course using the cavity as both phase

sensitive detector and nonlinear medium is not ideal, as the detuning used to change the

observed quadrature also changes the nonlinear process. Nevertheless, the experimen-

tal results obtained to date are intriguing, and suggest that the phase mismatched Kerr

system does bear further examination.

The experimental setup is basically that discussed in Chapters 5, 6, & 7. The reflected

beam was extracted via a Faraday isolator and sent to a balanced infrared detector pair,

of photodetector quantum efficiency 80%. The propagation efficiency through the isola-

tor and associated optics was approximately 63% so that the total quantum efficiency of

the detection setup was approximately 50%. The detuning was varied sinusoidally by

modulating the locking point of the locking loop. The modecleaner was removed (for

simplicity) and the cavity was driven at 30 mW at 1064 nm. Above this TROPO occurred

(of which, more later).

The monolith temperature was decreased from the optimum SHG squeezing point

to a Kerr point (i.e. minimal second harmonic production, strongly asymmetric cavity

scans, see section 8.2.) Fig. 8.12 shows the phase matching curve for the ANU crystal.

Note that no effort has been made to absolutely calibrate the temperature scale, as we
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Figure 8.13: Reflected fundamental noisepower versus frequency for Kerr cavity. a) Noise from

laser: measured on light reflected from cavity when laser is not locked, and detuned well away

from resonance. The cavity thus acts as a simple mirror, R> 99%. b) quantum noise for traces a

& c. c) Noise on reflected beam at optimum detuning when crystal set to a Kerr point, i.e. phase

match conditions s.t. minimal second harmonic production, strongly asymmetric cavity scans,

etc. For this plot, T = 5.34 V, where the optimum SHG squeezing occurred at T = 5.38 V.

were chiefly interested in relative measurements. The phase matching curve is symmet-

rical and less distorted than that of the Konstanz crystal. The outcoupling ratio of the

ANU crystal was also some 10% higher (as inferred from the conversion efficiency, see

Chapter 6): from these data we infer than the ANU crystal suffered from far less material

inhomogeneity than the Konstanz crystal. We operated at the two Kerr points, T = 5.34 V

& T = 5.44 V, where the SH production was near zero; optimum SH squeezing occurred

at T = 5.38 V.

The crystal was set to T = 5.34 V. When the laser was neither locked nor scanned,

and detuned well away from the cavity resonance, the cavity acted as a simple reflector

(R> 99%). The spectrum of the reflected fundamental for this case is shown in Fig. 8.13a

(obtained from the sum port of the detector); Fig. 8.13b is the quantum noise (obtained

from the difference port of the detector). Considerable amplitude noise, due to the tail of

the RRO of the laser, is evident. The peak at 45 MHz is the residual amplitude noise from

the phase modulation used in to the Pound-Drever locking scheme (see Chapter 5).

The laser was then brought onto resonance, and locked. As the cavity was manually

detuned the power of the reflected beam did not appreciably change (and the quantum

noise trace was identical to trace b). However the spectrum varied considerably: for most

of the detuning range it was well above the original noise (as represented by trace a).

However for a narrow range of detunings the observed spectrum was quieter than the

original light. Fig. 8.13b shows the spectrum for the optimum detuning. The reflected

light is not squeezed (it is well above shot noise) but at low frequencies it is quieter than

the original light by up to 1.5 dB. The extra structure around the locking peak highlights
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Figure 8.14: Reflected fundamental noisepower versus frequency for Kerr cavity. a) Noise from

laser: measured on light reflected from cavity when laser is not locked, and detuned well away

from resonance. The cavity thus acts as a simple mirror, R> 99%. b) quantum noise for traces a

& c. c) Noise on reflected beam at optimum detuning when crystal set to a Kerr point, i.e. phase

match conditions s.t. minimal second harmonic production, strongly asymmetric cavity scans,

etc. For this plot, T = 5.44 V, where the optimum SHG squeezing occurred at T = 5.38 V.

that we are no longer observing the amplitude quadrature: we are somewhat rotated

into the phase quadrature, and are thus seeing more of the phase modulation. The noise

reduction increased with increasing power, however the power could not be increased

past 30 mW as a strong TROPO occurred.

This noise reduction only occurred in the vicinity of Kerr points. It was not observed

when the crystal was set to the point of optimum SHG production nor to a temperature

well away from phase match where no second harmonic was produced nor Kerr bistabil-

ity observed (the “cold” cavity regime). However noise reduction was observed for the

opposite Kerr point, T = 5.44 V. Fig. 8.14 shows the spectrum : optimum reduction was

observed for a detuning of opposite sign to that of Fig. 8.13. This is a typical signature

of a Kerr mechanism (see section 8.2), but is not in itself conclusive. There is additional

noise evident at low frequencies that was repeatedly present for this phase match: it is

currently unexplained but may be linked to the locking system. The detectors were re-

balanced between taking Figs 8.13 & 8.14 so to achieve better cancellation of the peak at

45 MHz. The residual amplitude modulation was observed to be 25.9 dB above the shot

noise for the simply reflected case; for the rotated quadrature the peak increased by 17.8

dB (clipped on the plot shown here).

To gain a feel for the detuning and quadrature dependence of the noise reduction

the noisepower was examined as the cavity was slowly detuned around zero detuning

whilst locked (the locking point was scanned at 298 mHz). Of course the cavity could not

be symmetrically detuned as one side of the lineshape is bistable. On the stable side of the

lineshape the cavity was detuned far enough that more than 90◦ of quadrature rotation
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Figure 8.15: Reflected fundamental noisepower versus frequency for Kerr cavity. a) Noise from

laser: measured on light reflected from cavity when laser is not locked, and detuned well away

from resonance. The cavity thus acts as a simple mirror, R> 99%. b) Noise on reflected beam at

5.98 MHz as a function of detuning. T = 5.34 V, c.f. Fig. 8.13. c) quantum noise as a function of

detuning, c.f. trace b.

was observed (the noise began to drop again). This suggests that the cavity was detuned

on the order of 1 linewidth on that side of the lineshape (see section 3.4.4). Fig. 8.15 is

the noisepower versus detuning at f = 5.98 Mhz and T = 5.34 V. Trace a is the simply

reflected noise; trace b is the reflected noise as a function of detuning and trace c is the

shot noise of the reflected light. The optimum noise reduction occurs near, but not at, the

peak of the lineshape (i.e. at the minimum power for the reflected beam). As seen from

the optical bistability measurement, this peak is shifted in detuning from the nominal

zero detuning point of the cavity. Beyond these simple statements, interpretation must

be necessarily proscribed as both the observed quadrature and degree of nonlinearity are

affected by the detuning.

Given such a strong effect on the classical noise, it was natural to reintroduce the

modecleaner so that the input noise was quantum noise limited, and look for squeezing.

None was found. There appear to be two reasons for this, both specific to our system.

Firstly, the TROPO intruded severely. As discussed in chapters 5, a locking instability

exists when both the modecleaner and monolith are locked together. In the last chapter is

was seen that this had a deleterious effect on the noise, apparently seeding the TROPO.

This effect was quite strong at the Kerr points: with the modecleaner in place the mono-

lith could not be driven above 20 mW without strong TROPO occurring. This limited the

power. Secondly the locking instability also appears to introduce considerable additional

phase noise, as can be seen from Fig. 8.16. This is the quietest spectra, observed at the op-

timum detuning. The features at 45 and 27 MHZ are the locking spikes for the monolith

and modecleaner, respectively. The other features are beat signals and noise introduced
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Figure 8.16: As for Fig. 8.13 but with modecleaner in place. No squeezing is seen, but there is

considerable additional phase noise.
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by the dual locking loop. Clearly although quantum noise limited in the amplitude, the

same is not true of the phase quadrature. This must be addressed if squeezing is to be

observed.

A final observation on the relationship between TROPO and Kerr. The presence of

TROPO (at powers above 30 mW) was detected via the infrared optical spectrum anal-

yser, as discussed in the last chapter. However there was an additional signature: above

the TROPO threshold the detuning at which the minimum noise spectra was observed,

and thus approximately the peak of the lineshape, did not change very much with power.

This can be seen in Fig. 8.17, where the optimum detuning is plotted versus power.

8.5 Summary of Kerr effects

Cooperating χ(2) nonlinearities offer a powerful method for obtaining χ(3) effects with

comparatively low cw powers. As the method is solid state based, it is far simpler than

previous methods based on atomic media. Furthermore, a large variety of nonlinear solid

state media are available that cover a very large spectral range. Indeed, even media that

are not normally considered as phase matchable for SHG may be used, since coopera-

tion is effective even for relatively large phase mismatchs due to the linear, rather than

quadratic dependence of the bistability threshold on ∆k.

Optical bistability was observed with a relatively low power cw pump beam. For

cavity systems the bistability threshold can be lowered in several ways. Resonating the

second harmonic significantly reduces the threshold, but at the expense of a more com-

plicated (i.e. doubly resonant) experiment. Now that engineered high nonlinearity ma-

terials (QPM materials, such as PPLN) are commercially available it should be possible

to significantly lower the threshold simply by virtue of the higher nonlinearity. (Unlike

MgO:LiNbO3, the phasematching curves for these materials also correspond closely to

the theoretical optimum, another bonus.)

Since several cavity quantum-optical effects such as squeezing [17, 18, 19], quantum

nondemolition measurements [20], and noiseless amplification [21], have been predicted

assuming self- or cross-Kerr interactions [22], an important extension of the present work

is the demonstration that cooperation can lead not only to a self-interaction, as studied

here, but also, in phase mismatched sum-frequency generation or type-II SHG, to an

effective cross-Kerr coupling between two waves of different wavelength or polarization,

respectively.

Our model for Kerr squeezing shows that pump noise plays a doubly critical role as

the noise on both quadratures of the pump is coupled into the cavity. When the singly

resonant doubler was phase mismatched to the Kerr points, classical noise reduction (1.5-

1.8 dB) was observed on the reflected fundamental field. The reduction increased with

power, was strongly detuning dependent, and the sign of the optimum detuning changed

when the sign of the phase mismatch changed. No squeezing was observed, we believe

due to excess phase noise of the laser.
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Chapter 9

Conclusions

His face was that of one who has undergone a long journey.

Epic of Gilgamesh

Cheer up lad, I see land!

Diogenes, on seeing a reader approach the bottom of a parchment scroll

In this thesis we have studied the classical and quantum dynamics of optical frequency

conversion, constructing a second harmonic generator to use as our conceptual and ex-

perimental testbed.

Classically we confined our attention to steady state behaviours. We found that in-

stead of a single second order nonlinear process (χ(2)nonlinearity), our system could sup-

port multiple processes. To unify the various outcomes, we introduced the concept of

interacting χ(2)nonlinearities, and classified the interactions as either competing or co-

operating. Competing nonlinearities are those where all the up and down conversion

processes do not share the same modes; cooperating nonlinearities are where they do

share the same modes.

We observed and modelled competition between second harmonic generation (SHG)

and non-degenerate optical parametric oscillation (NDOPO). As the cavity supports three

modes, this competition is labelled triply resonant optical parametric oscillation (TROPO).

Observed power signatures of TROPO included clamping of the second harmonic power

and nondegenerate frequency production in both the visible and infrared. We found that

our system could generate light up to 31 nm from degeneracy in the infrared; multiple

modes were also observed, which supports the previously suggested idea of cascaded

second, sum-, and difference- frequency generation. Given its simplicity, TROPO appears

to be a particularly promising method for nondegenerate frequency production. We

showed that the second harmonic power is strongly clamped to its competition threshold

value (the first observation of clamping since its prediction in 1962) and advised on how

to avoid this clamping if strong second harmonic generation is desired.

We developed a set of cavity equations that showed cooperating second order nonlin-

earities lead to a wide range of third order effects, including self phase modulation (SPM

or Kerr effect); cross phase modulation (CPM or cross-Kerr effect); two photon absorp-

tion (2PA, this is the effect of singly resonant SHG) and Raman absorption. A cooperating

χ(2)system is not a full third order system, as neither four wave mixing (FWM) or third

harmonic generation (THG) are predicted. In our experiment we observed (and mod-

elled) a strong optical bistability due to the Kerr effect, showing that in principle and

practice a second order cavity can act as a strong third order medium.

For systems with large numbers of photons (linearisable systems), the quantum dy-

namics of the system can be seen in the behaviour of the quantum noise. We emphasised

an intuitive interpretation of quantum noise, the sideband picture, and explored the lim-

its of this interpretation showing that is is valid for any linearisable system. We discussed

the Heisenberg approach to modelling linearisable systems, the output of which is quan-

tum noise transfer functions that allow a modular approach to modelling experiments.

161
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Theoretically we considered the effect of laser noise for various configurations of both

active (occurs within a laser cavity) and passive (occurs external to a laser cavity) second

harmonic generation. We concluded that squeezing via active SHG is not feasible with

practicable systems, as the inherent dephasing of lasers totally destroys the squeezing.

We highlighted the critical role of laser noise in passive SHG: experimentally pump noise

was shown to obscure the squeezing (this is true for all bright squeezing processes). We

improved the squeezing by reducing the pump noise with a modecleaning cavity and,

unlike previous bright squeezing experiments, obtained perfect agreement between the-

ory and experiment. The simplicity of the modular approach of the theory was high-

lighted.

The effect of TROPO on the second harmonic squeezing was observed and modelled.

In contrast to the predicted outcome for the related quadruply resonant case, the squeez-

ing was found to degrade. We showed that this was due to two effects: a noise eating

effect linked to the power clamping, and the effect of the noise of the nondegenerate

modes. It was shown that maximum SH squeezing is limited to the value that occurs at

TROPO threshold: TROPO must be avoided if strong SH squeezing is to be observed.

We predicted that for certain phase match values the SHG cavity would act exactly as

a Kerr cavity, even at the quantum level. We developed a quantum theory that allowed

consideration of the pump noise and found that as the Kerr effect ties together the ampli-

tude and phase quadratures, it is sensitive to the pump noise of both. Experimentally, we

observed classical noise reduction (1.5-1.8 dB) due to the Kerr effect, but no squeezing.

We speculated that the squeezing may be obscured by excess phase noise from the laser.

In conclusion, the work in this thesis has provided definitive limits for classical and

quantum behaviour of a frequency doubler. Systems can now be tailored to exclude or

include interacting χ(2)nonlinearities as desired. The quantum noise behaviour is now

well understood, with the effects of pump noise and interacting nonlinearities all consid-

ered and investigated. Squeezing via second harmonic generation is currently the most

reliable and well characterised source of bright, continuous wave, squeezed light.

9.1 Future research

There is no doubt that with the advent of tailored nonlinear materials (PPLN, PPLT,

etc.) solid state frequency conversion will undergo another renaissance (the last occur-

ring with the introduction of the NPRO laser). The interacting nonlinearity phenomena

considered in this thesis may prove to be of technological, as well as fundamental, in-

terest: nondegenerate frequency production via TROPO; optical switching via the Kerr

effect. In particular TROPO and the associated cascaded second, sum-, and difference-

frequency generation, may be a valuable technique in optical frequency chains, as the

nondegenerate modes can be directly seeded by appropriate modulation (at ±n FSR) of

the fundamental.

The new materials also make possible experiments in quantum optics that up to now

we have only been able to dream about. Some of these are: squeezing via single pass

SHG, which will occur on both the fundamental and second harmonic beams and have

a very broad bandwidth as it is not cavity limited; strong squeezing from ring cavity

SHG, which allows us to ignore pump noise (see next section); quantum non demolition

measurements via SHG, which are simpler than the equivalent OPO experiments; more

than 1/9th squeezing via singly resonant SHG (see next section); and double-passing

squeezed vacuum through ring OPO cavities to produce very strongly squeezed vacuum.
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The technology developed for this thesis is already in the process of becoming ob-

solete. Given this, and the design knowledge gained from our experiments, it is clear

that the current “best” numbers for SHG squeezing will be surpassed quite soon. In the

longer term, the question is not so much as to how far the technology can be pushed, but

rather whether a technological use will be found for bright squeezing. It is this that will

decide the long term relevance of the field.

9.2 Some random ideas

This section contains a number of ideas and approaches that have arisen during the the

course of the thesis. Of course, it’s much easier to generate ideas than to model them

all (let alone test them experimentally!) and for one reason or another these ideas have

never quite made it to the publication stage. They are listed here as starting points for

discussion - and who knows? one of them may eventually get turned into an experiment.

At any rate I hope the reader enjoys considering and discussing them as much as I did

(there were more, but these I omitted on grounds of length and humanity).

9.2.1 Resurrecting buried squeezing

There are two methods to evade pump noise. The first, as discussed in Chapter 6, is to

try very hard to ensure that there is minimal pump noise, for example, by using a mode

cleaning cavity to produce a quantum noise limited pump. An alternative method is to

let the squeezing be buried under the pump noise, and resurrect it later in the experiment

via optical cancellation [1]-[5].

To do this requires two independent sources of quantum noise. Consider a bright

quantum noise limited beam incident on a 50/50 beamsplitter. The two outputs, c̃ & d̃,

are superpositions of the two inputs, ã & b̃, where (from eqn 3.98):

c̃ =
√

0.5 ã−
√

0.5 b̃

d̃ =
√

0.5 ã+
√

0.5 b̃ (9.1)

and in this sense the output beams are clearly dependent on the input fields. The sum

of the two outputs is the noise on the bright input, the difference of the two beams is the

noise of the vacuum input (see section 3.4.5). Experimentally, two sources are defined as

uncorrelated if the added and subtracted signals are identical. When both beamsplitter

input fields are quantum noise limited, the added and subtracted signals are identical

(see section 3.4.5): thus by the experimental definition the beamsplitter outputs are un-

correlated. Now let the bright input beam have considerable classical noise: the added

signal is now the noise of the input beam; the difference signal is still the quantum noise.

The added signal is greater than the subtracted, from which we conclude that the classi-

cal noise on the output beams is correlated. However one can still regard the quantum

noise of the two output beams, which is buried deep under the classical noise and not

directly detectable, as uncorrelated.

Now consider driving two identical squeezing experiments with the two noisy out-

puts of the beam splitter. As the inputs to the squeezers are far above quantum noise,

the outputs are far above quantum noise - any squeezing is buried under the classical

noise. However, if the two outputs are subtracted (optically or electronically) then the

correlated classical noise will removed, but the uncorrelated quantum noise, which is
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Figure 9.1: Resurrecting buried squeezing. The two counterpropagating modes of a singly reso-

nant, ring frequency doubler are pumped with noisy fundamental beams of identical power. The

detected spectrum of either the SH outputs is noisy, no squeezing is present. However if the two

SH outputs are subtracted (optically or electronically), then the ideal SH squeezing spectrum is

retrieved. Optical subtraction is illustrated, this produces a squeezed vacuum at 532 nm. The

bright noisy beam from the sum port of the beamsplitter can be used as a local oscillator in a

homodyne detection scheme to detect the vacuum squeezing. All beamsplitters are 50/50.

now squeezed, will not be. The squeezing is resurrected. If the outputs are optically sub-

tracted then the output is a vacuum squeezed beam, even if the squeezing processes are

intrinsically bright (such as SHG).

Optical subtraction to retrieve squeezing was first proposed by Shirasaki & Haus in

1990, who considered the case of pulsed Kerr squeezing [1]. Proof of the principle was

provided in 1991 by Bergman and Haus [2] in a remarkable experiment where 5 dB of

pulsed Kerr squeezing, generated in a Sagnac interferometer, was observed between 35-

85 kHz. This was notable as previous attempts had been plagued by the addition of fibre

induced classical noise, which in this experiment was largely cancelled out by the optical

subtraction. The experiment was repeated with a 1 GHz pump, and squeezing was ob-

served between 10-30 MHz that deviated from the ideal only due to imperfect temporal

mode matching and detector quantum efficiency [3]. The cancellation had removed all

sensitivity to the pump noise.

Lai et. al [4] extended the idea to the CW regime, proposing (using chiefly phe-

nomenological arguments) two systems for generating squeezed vacuum. Both systems

were based on injection locking squeezed laser diode(s), the common classical noise im-

posed by the master laser being optically subtracted to leave a squeezed vacuum output.
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Ralph et. al. considered optical cancellation of the outputs of two identically pumped

SHG systems [5]. Using the then recently developed cascaded system formalism, they

presented a rigorous analysis which included the effects of possible experimental limi-

tations (such as asymmetric pumping, detuning, and unbalanced detection) and found

that laser noise obscured squeezing could be retrieved. However their theory is based on

the Schrödinger approach, and is not particularly elegant. In Appendix 1 we present a

simpler, but equivalent treatment, based on the intuitive Heisenberg formalism favoured

in this thesis.

Experimentally, optical cancellation works best when the two squeezing systems are

identical. For the case of SHG this could be arranged (at least in the first instance) by

dual pumping a ring SHG cavity and examining the SH outputs from the counterpropa-

gating modes, as illustrated in Fig. 9.1. Any technical noise induced by the cavity would

be identical for both modes and thus removed at the difference port. This scheme is ex-

perimentally attractive, as it avoids the need for a modecleaner, and with the advent of

significant squeezing from ring SHG cavities [6], it appears experimentally feasible. (If a

doubly resonant SHG system is to used to provide fundamental squeezing, then the lay-

out is even simpler. The reflected fundamental beams are retroreflected onto the cavity

and in principle a squeezed vacuum exits from the first beamsplitter. The advantage here

is that the non-modematched components of the light reflected from the cavity are largely

cancelled.) In the longer term it is clearly worth considering construction of Sagnac fre-

quency doubling cavities, so that the cancellation is intrinsic, as has been demonstrated

with pulsed Kerr squeezing.

9.2.2 Breaking the 1/9th barrier

χ(2) medium

build-up
cavity?

laser
cavity?

Figure 9.2: Speculative design to beat 1/9th limit to SH squeezing. Based on the proposal of

Maeda and Kikuchi [8]. Explanation in text.

All the models presented in this thesis used the mean field approximation (MFA),

i.e. intracavity loss is sufficiently low that a mean field is established and maintained

within the cavity. The experiments conformed with this model. (Do not be misled by
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the figure of 65% conversion efficiency: this is with respect to the pump field, not the

intracavity field. The intracavity conversion efficiency, and thus loss, were still quite

low.) Experiments are rapidly approaching the point where this will no longer be true:

Stanford recently reported a single pass conversion efficiency of 40% using PPLN [7]. If

a cavity is built around such a crystal, then the fundamental field will experience very

large loss, and no mean field as such will be built up.

Maeda and Kikuchi have considered this situation for a singly resonant doubler, and

examined the squeezing of the second harmonic [8]. The residual fundamental light is

not built up as such, acting more as an optical negative feedback beam. Although it does

not contribute much power per circulation, it is strongly anti-correlated to the second

harmonic and this information is fed back each circulation. The result is the second har-

monic light is squeezed beyond the 1/9th limit discussed in Chapter 6. For arbitrarily

large interaction and total feedback the second harmonic squeezing in principle becomes

perfect.

The key is a high reflectivity coupling mirror, to feed as much of the anticorrelated

residual fundamental back into the process each circulation. Unfortunately this raises

the pump power required to unfeasible levels, as most of the power simply reflects from

the front mirror. Fig. 9.2 shows the beginning of an idea that may help this experiment.

Either a build-up cavity or laser cavity could be built in around the coupling mirror, so

that the high circulating power is used to pump the SHG cavity. This may bring the

experiment into the feasible regime. I feel the laser is more attractive, as it will tend to be

injection locked by the very small component of residual fundamental, and so a locking

loop will not be required to keep the front cavity resonant.

9.2.3 Kerr in QPM

dichroic
BS H

R
 @

 1064 nm

HR @ 532 nm

piezo

1064 nm

532 nm

QPM material

A

Figure 9.3: System to study the SHG and Kerr behaviour of a χ(2)medium. By varying the phase

difference between the reflected fundamental and second harmonic beams, the system behaviour

smoothly varies between pure SHG and pure Kerr. Compared with temperature tuning the phase

match, this is quick and convenient.

There remains much fruitful research to be done on the interaction between pure SHG

and pure Kerr behaviour in a χ(2)system. One of the frustrating features of investigating

this using the experimental layout in this thesis was that the phase matching could only

be changed via the crystal temperature, which was very slow.
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We propose here a more convenient design. Fig. 9.3 shows the core idea. A piece of

QPM material (for example, PPLN) is pumped with fundamental light. For the moment

we assume that the nonlinear interaction is strong enough that some SHG occurs in a

single pass. The phase matching at point “A” depends not only on the crystal tempera-

ture (as per normal) but on the position of the second harmonic mirror with respect to

the fundamental mirror: this sets the phase difference ∆φ. If the external mirrors are

adjusted so that ∆φ = 0 then the reflected SH light is perfectly in phase with the SH light

produced on the backward leg by the reflected fundamental. This is a pure SHG case.

Adjusting the piezo we can also go towards the Kerr situation: the reflected SH light in-

terferes destructively with the SH produced by the forward leg. If the beams interfere

totally (as is possible in the low conversion limit) then the material acts as a perfect Kerr

medium. The Kerr phase shift can be detected interferometrically, or may be observed as

a Z-scan effect due to the intensity gradient of the Gaussian beam. For high nonlinear in-

teractions, optical switching may occur if a weak beam is injected at the second harmonic

or fundamental.

All kinds of tricks are now possible. Scanning quickly between the Kerr and SHG

limits while observing the quantum noise properties being just one. As ∆φ is scanned

both the quadrature and wavelength of the optimum squeezing will vary. Of course this

is just the kernel of an idea. A cavity for the fundamental can be built up around the

crystal by placing an appropriate mirror at A (a high finesse is probably not necessary).

The cavity has the advantage of making the forward and pump beams equal in intensity

so that perfect SH cancellation, and thus a perfect Kerr effect, is possible. With a cavity

the Kerr effect can be observed directly as optical bistability.
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Appendix A

Resurrecting buried squeezing

Consider two fundamental vacuum fields δâ & δb̂, incident into two separate SHG sys-

tems. From eqn 6.22 the the second harmonic amplitude fluctuations for the two fields

are, respectively:

δX̃
out3a,b
i = 2α1

√
µ

[

Da,b
i + Ea,bi
Fi

]

− δX̃
in3a, b
i (A.1)

where Di, Ei and Fi are defined in eqns 6.17-6.19. The added and subtracted amplitude

fluctuations, δX̃
±
1 , are defined as:

δX̃
±
1 = δX̃

out3a,b
1 ± δX̃

out3a,b
1 (A.2)

Substituting eqn A.1 and eqns 6.17-6.19 into eqn A.2 we find:

δX̃
±
i =

2α1
√

2µγc1

[

δX̃
in1b
1 ± δX̃

in1a
1

]

+ (µ|α1|2 − γ1 + iω)

[

δX̃
in3b
1 ± δX̃

in3a
1

]

γ1 + 3µ|α1|2 − iω
(A.3)

Let the two fields a & b be the outputs of a 50/50 beamsplitter illuminated by a laser las

and a vacuum vac, i.e.:

δX̃
in1a
1 =

√

1/2(δX̃
las
1 + δX̃

vac
1 )

δX̃
in1b
1 =

√

1/2(δX̃
las
1 − δX̃

vac
1 ) (A.4)

Using these definitions we write:

δX̃
±
i =

4α1
√

µγc1

[

δX̃
las,vac
1

]

+ (µ|α1|2 − γ1 + iω)

[

δX̃
in3b
1 ± δX̃

in3a
1

]

γ1 + 3µ|α1|2 − iω
(A.5)

Taking the self correlations we find the added and subtracted spectra are:

V ±
X1

=
16µ|α1|2γc1V las,vac

X1
+
[

(µ|α1|2 − γ1)
2 + ω2

]

[

V in3b
X1

+ V in3a
X1

]

(γ1 + 3µ|α1|2)2 + ω2
(A.6)

Or, recalling that V in3b
X1

= V in3a
X1

= 1:

V ±
X1

= 2



1 + 8µ|α1|2
γc1(V

las,vac
X1

− 1) − µ|α1|2
(γ1 + 3µ|α1|2)2 + ω2



 (A.7)

As V vac
X1

= 1, the added and subtracted spectra are identical only if the laser is quantum

noise limited, i.e. V las
X1

= 1. Irrespective of the laser noise, the subtracted spectrum is
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170 Resurrecting buried squeezing

always:

V ±
X1

= 2V idealSHG
X1

(A.8)

where V idealSHG
X1

is the ideal second harmonic squeezing spectrum (as defined in eqn 6.25

with V in1
X1

= 1). Experimentally it is actually the photon number spectra that are detected,

i.e:

V ±
n = α2

1V
±
X1

(A.9)

For the sum port, the average detected photon number is n̄+ = 2α2
1. From this we see

that the photon number spectrum for the difference port is directly proportional to the

ideal second harmonic squeezing spectrum:

V −
n = n̄+V idealSHG

X1
(A.10)

Thus regardless of the pump noise of the laser the difference port always gives the ideal

squeezing spectrum. Theoretically, it does not matter whether the difference port is elec-

tronic (two second harmonic beams separately detected, photocurrents added and sub-

tracted) or optical (two second harmonic beams optically combined with a 50/50 beam-

splitter so that all the power exits via one port only; the dark port is vacuum squeezing).

Experimentally of course the latter is of more interest.



Appendix B

A scaled squeezing theory

Never submit a thesis near April Fool’s Day. Unable to sleep the night after submis-

sion, I was reading through the thesis (oh foolish boy) and realised that what the thesis

needed as a finishing touch was a scaled theory for the second harmonic squeezing in the

absence of TROPO - analogous to the scaled squeezing theory in the presence of TROPO

presented in Chapter 7.

Such a scaled theory is more intuitive than that presented in Chapter 6 or the existing

literature. For example, it is stated several times that regardless of the power at which

the maximum conversion efficiency occurs, the second harmonic squeezing at that power

will always be 50% (-3 dB) - however this cannot be seen from a casual inspection of eqns

6.25 or 7.9. To remedy this deficiency then, here are the results of that night’s labours.

For singly resonant SHG, the second harmonic squeezing at zero detection frequency

is given by (c.f. 7.9):

V 2ν1
X1

(0) = 1 − 8N2

(3N + 1)2
(B.1)

where N is the ratio of the nonlinear loss rate to the linear loss rate, i.e.

N =
γnl
γ1

=
µ1 |α1|2
γ1

(B.2)

Obviously, N cannot be measured directly. Accordingly, we introduce the power scaling

parameter, Q:

Q =
P1

Pmax conv
1

=
N(N + 1)2

4
(B.3)

Equally obviously, Q can be measured directly, as it is the ratio of two power measure-

ments - and so the value of N can be calculated directly from Q 1. The cubic dependence

of Q on N describes an important behaviour of singly resonant SHG: increasingly higher

pump powers (Q ∼ N3) are required to obtain decreasingly small improvements to the

squeezing (V ∼ N).

The halfwidth half-maximum of the squeezing (i.e. the squeezing linewidth as mea-

sured on a spectrum analyser) scales with N as:

fHWHM =
γ1(3N + 1)

2π
' (3N + 1)

2
fFWHM cc (B.4)

where fFWHM cc is the cold cavity bandwidth: fFWHM cc ' γ1/π. Again we see that the

squeezing bandwidth will increase only slowly with increased pump power (V ∼ N ∼
Q1/3). Scaling by the cold cavity bandwidth we define the scaled linewidth to be:

f ′ =
(3N + 1)

2
(B.5)

1This definition of Q is only valid for N≥ 1.

171



172 A scaled squeezing theory

We also introduce a scaled conversion efficiency, η′

η′ =
ηnl

ηmax
nl

=
4N

(N + 1)2
(B.6)

As the power is increased, the conversion efficiency degrades from its maximum value.

The table below neatly summarises the behaviours described in eqns B.1-B.6 for in-

creasing pump power. From the table we see that increasingly higher powers are required

for decreasingly small improvements in squeezing performance.

We emphasise that these results are scaled to the power at which maximum conver-

sion efficiency occurs, Pmax conv
1 , and that a desired design goal is to make this power as

low as possible (for design purposes Pmax conv
1 can be calculated using eqn 2.42).

Table B.1: Parameters of scaled squeezing theory for increasing pump power.

Q N V 2ν1
X1

(0) V 2ν1
X1

(0) [dB] f ′ η′

1 1 0.50 -3.0 2.0 1.00

2.3 1.5 0.40 -4.0 2.75 0.96

4.5 2 0.35 -4.6 3.5 0.89

12 3 0.28 -5.5 5.0 0.75

25 4 0.24 -6.2 6.5 0.64

45 5 0.22 -6.6 8.0 0.55

74 6 0.20 -6.9 9.5 0.49

112 7 0.19 -7.2 11.0 0.44

162 8 0.18 -7.4 12.5 0.40

225 9 0.17 -7.6 14.0 0.36

303 10 0.17 -7.8 15.5 0.33

2.2 × 103 20 0.14 -8.5 30.5 0.18

2.6 × 105 100 0.12 -9.3 151 0.04


